WorldWideScience

Sample records for terahertz heating effects

  1. Modeling terahertz heating effects on water

    DEFF Research Database (Denmark)

    Kristensen, Torben T.L.; Withayachumnankul, Withawat; Jepsen, Peter Uhd

    2010-01-01

    We apply Kirchhoff’s heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused...

  2. Modeling terahertz heating effects on water.

    Science.gov (United States)

    Kristensen, Torben T L; Withayachumnankul, Withawat; Jepsen, Peter U; Abbott, Derek

    2010-03-01

    We apply Kirchhoff's heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused down to a spot with a diameter of 0.5 mm, we find that the steady-state temperature increase per milliwatt of transmitted power is 1.8?C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample temperature. For THz time domain systems, we indicate how to use our model as a worst-case approximation based on the beam average power. It turns out that THz pulses created from photoconductive antennas give a negligible increase in temperature. As biotissue contains a high water content, this leads to a discussion of worst-case predictions for THz heating of the human body in order to motivate future detailed study. An open source Matlab implementation of our model is freely available for use at www.eleceng.adelaide.edu.au/thz.

  3. Regulatory effects of terahertz waves

    OpenAIRE

    Vyacheslav F. Kirichuk; Alexey N. Ivanov

    2013-01-01

    There are modern data about biological effects of terahertz (THz) waves in this article. Items of interaction of THz waves with bio objects of different organization level. A complex of the data indicates that the realization of a THz wave effect in biosystems is possible at molecular, cellular, tissular, organ and system levels of regulation. There are data about changes in nervous and humoral regulation of an organism and metabolic effects of THz waves.

  4. Effective Surface Conductivity Approach for Graphene Metamaterials Based Terahertz Devices

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices.......We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices....

  5. An effective way to reduce water absorption to terahertz

    Science.gov (United States)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  6. Hot electron effect in terahertz hybrid devices

    NARCIS (Netherlands)

    Leone, B; Gao, [No Value; Klapwijk, TM; Jackson, BD; Laauwen, WM; de Lange, G

    We analyse both the direct current and submillimeter pumped cut-rent-voltage characteristics of a hybrid superconductor-insulator-superconductor terahertz, mixer consisting of a Nb tunnel junction integrated with NbTiN tuning striplines. We And that the presence of the Nb/NbTiN interface gives rise

  7. Antenna-coupled terahertz radiation from joule-heated single-wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    M. Muthee

    2011-12-01

    Full Text Available In this letter an experimental method is introduced that allows detection of terahertz (THz radiation from arrays of joule-heated Single-Walled Carbon Nanotubes (SWCNTs, by coupling this radiation through integrated antennas and a silicon lens. The radiation forms a diffraction-limited beam with a total maximum radiated power of 450 nW, significantly greater than the power estimated from Nyquist thermal noise (8 nW. The physical radiation process is unknown at this stage, but possible explanations for the high radiated power are discussed briefly. The emission has a typical bandwidth of 1.2 THz and can be tuned to different frequencies by changing the dimensions of the antennas. Arrays of the devices could be integrated in CMOS integrated circuits, and find application in THz systems, such as in near-range medical imaging.

  8. Poole-Frenkel Effect in Terahertz Electromagnetic Fields

    OpenAIRE

    Ganichev, Sergey; Diener, J.; Yassievich, Irina; Prettl, Wilhelm

    1995-01-01

    The ionisation of deep impurity centres in germanium has been observed with radiation in the terahertz range where the photon energy is much less than the binding energy of the impurities. It is shown that for not too high radiation intensities the ionisation is caused by the Poole-Frenkel effect. As in the well-known case of d.c. fields, the electric field of the high-frequency radiation lowers the Coulomb potential barrier and enhances the thermal emission of carriers.

  9. Terahertz-field-induced second harmonic generation through Pockels effect in zinc telluride crystal.

    Science.gov (United States)

    Cornet, Marion; Degert, Jérôme; Abraham, Emmanuel; Freysz, Eric

    2014-10-15

    We report on the second harmonic generation (SHG) of a near-infrared pulse in a zinc telluride crystal through the Pockels effect induced by an intense terahertz pulse. The temporal and angular behaviors of the SHG have been measured and agree well with theoretical predictions. This phenomenon, so far overlooked, makes it possible to generate second harmonic through cascading of two second-order nonlinear phenomena in the near-infrared and terahertz ranges. We also show how this cascading process can be used to sample terahertz pulses.

  10. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  11. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene...... in the working range. We demonstrate the possibility of the absorber bandwidth control with the metamaterial’s unit cell geometry. The results of fabrication and characterization of the THz graphene metamaterials based absorbers will be presented at the conference....

  12. Silicon junctionless field effect transistors as room temperature terahertz detectors

    Science.gov (United States)

    Marczewski, J.; Knap, W.; Tomaszewski, D.; Zaborowski, M.; Zagrajek, P.

    2015-09-01

    Terahertz (THz) radiation detection by junctionless metal-oxide-semiconductor field-effect transistors (JL MOSFETs) was studied and compared with THz detection using conventional MOSFETs. It has been shown that in contrast to the behavior of standard transistors, the junctionless devices have a significant responsivity also in the open channel (low resistance) state. The responsivity for a photolithographically defined JL FET was 70 V/W and the noise equivalent power 460 pW/√Hz. Working in the open channel state may be advantageous for THz wireless and imaging applications because of its low thermal noise and possible high operating speed or large bandwidth. It has been proven that the junctionless MOSFETs can also operate in a zero gate bias mode, which enables simplification of the THz array circuitry. Existing models of THz detection by MOSFETs were considered and it has been demonstrated that the process of detection by these junctionless devices cannot be explained within the framework of the commonly accepted models and therefore requires a new theoretical approach.

  13. Silicon junctionless field effect transistors as room temperature terahertz detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marczewski, J., E-mail: jmarcz@ite.waw.pl; Tomaszewski, D.; Zaborowski, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Knap, W. [Institute of High Pressure Physics of the Polish Academy of Sciences, ul. Sokolowska 29/37, 01-142 Warsaw (Poland); Laboratory Charles Coulomb, Montpellier University & CNRS, Place E. Bataillon, Montpellier 34095 (France); Zagrajek, P. [Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2015-09-14

    Terahertz (THz) radiation detection by junctionless metal-oxide-semiconductor field-effect transistors (JL MOSFETs) was studied and compared with THz detection using conventional MOSFETs. It has been shown that in contrast to the behavior of standard transistors, the junctionless devices have a significant responsivity also in the open channel (low resistance) state. The responsivity for a photolithographically defined JL FET was 70 V/W and the noise equivalent power 460 pW/√Hz. Working in the open channel state may be advantageous for THz wireless and imaging applications because of its low thermal noise and possible high operating speed or large bandwidth. It has been proven that the junctionless MOSFETs can also operate in a zero gate bias mode, which enables simplification of the THz array circuitry. Existing models of THz detection by MOSFETs were considered and it has been demonstrated that the process of detection by these junctionless devices cannot be explained within the framework of the commonly accepted models and therefore requires a new theoretical approach.

  14. Terahertz-induced Kerr effect in amorphous chalcogenide glasses

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Strikwerda, Andrew; Iwaszczuk, Krzysztof

    2013-01-01

    We have investigated the terahertz-induced third-order (Kerr) nonlinear optical properties of the amorphous chalcogenide glasses As2S3 and As2Se3. Chalcogenide glasses are known for their high optical Kerr nonlinearities which can be several hundred times greater than those of fused silica. We use...

  15. Detection of terahertz radiation using submicron field effect transistors and their use for inspection applications

    Science.gov (United States)

    Delgado Notario, J. A.; Javadi, E.; Velázquez, J. E.; Diez, E.; Meziani, Y. M.; Fobelets, K.

    2017-10-01

    We investigated room temperature detection of terahertz radiation by using two different types of transistors (Strained Silicon Modulation field effect transistor, GaAs PHEMT). Experimental results show a good level of response under excitation at 0.3 THz. Competitive performance parameters were obtained (NEP and responsivity) in comparison with other detectors. Enhancement of the photoresponse signal by imposing a dc drain-to-source current (Ids) was observed experimentally. Inspection of hidden objects by using those devices within a terahertz imaging setup was demonstrated at 300 GHz and a better image was obtained under Ids.

  16. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Planken, P.C.M.

    2005-01-01

    The authors present measurements and calculations on the effect of thin dielectric coatings on the propagation of terahertz pulses along the surface of metal wires. Our measurements show that propagation over only a few centimeters of wire having a thin dielectric coating, strongly distorts the

  17. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging

    DEFF Research Database (Denmark)

    Haaser, Miriam; Naelapaa, Kaisa; Gordon, Keith C

    2013-01-01

    In this study, terahertz pulsed imaging (TPI) was employed to investigate the effect of the coating equipment (fluid bed and drum coater) on the structure of the applied film coating and subsequent dissolution behaviour. Six tablets from every batch coated with the same delayed release coating fo...

  18. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene

    Science.gov (United States)

    Cai, Xinghan; Sushkov, Andrei B.; Suess, Ryan J.; Jadidi, Mohammad M.; Jenkins, Gregory S.; Nyakiti, Luke O.; Myers-Ward, Rachael L.; Li, Shanshan; Yan, Jun; Gaskill, D. Kurt; Murphy, Thomas E.; Drew, H. Dennis; Fuhrer, Michael S.

    2014-10-01

    Terahertz radiation has uses in applications ranging from security to medicine. However, sensitive room-temperature detection of terahertz radiation is notoriously difficult. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism; photoexcited carriers rapidly thermalize due to strong electron-electron interactions, but lose energy to the lattice more slowly. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating or dissimilar contact metals produces a net current via the thermoelectric effect. Here, we demonstrate a graphene thermoelectric terahertz photodetector with sensitivity exceeding 10 V W-1 (700 V W-1) at room temperature and noise-equivalent power less than 1,100 pW Hz-1/2 (20 pW Hz-1/2), referenced to the incident (absorbed) power. This implies a performance that is competitive with the best room-temperature terahertz detectors for an optimally coupled device, and time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.

  19. Complex Terahertz and Direct Current Inverse Spin Hall Effect in YIG/Cu1-xIrx Bilayers Across a Wide Concentration Range.

    Science.gov (United States)

    Cramer, Joel; Seifert, Tom; Kronenberg, Alexander; Fuhrmann, Felix; Jakob, Gerhard; Jourdan, Martin; Kampfrath, Tobias; Kläui, Mathias

    2018-02-02

    We measure the inverse spin Hall effect of Cu1-xIrx thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu1-xIrx. The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.

  20. Detection of terahertz radiation in metamaterials: giant plasmonic ratchet effect (Conference Presentation)

    Science.gov (United States)

    Rudin, Sergey; Rupper, Greg; Kachorovski, Valentin; Shur, Michael S.

    2017-05-01

    The electromagnetic wave impinging on the spatially modulated two-dimensional electron liquid (2DEL) induces a direct current (DC) when the wave amplitude modulated with the same wave vector as the 2DEL but is shifted in phase (the ratchet effect). The recent theory of this phenomenon predicted a dramatic enhancement at the plasmonic resonances and a non-trivial polarization dependence [1]. We will present the results of the numerical simulations using a hydrodynamic model exploring the helicity dependence of the DC current for silicon, InGaAs, and GaN metamaterial structures at cryogenic and room temperatures. In particular we will report on the effect of the DEL viscosity and explore the nonlinear effects at large amplitudes of the helical electromagnetic radiation impinging on the ratchet structures. We will then discuss the applications of the ratchet effect for terahertz metamaterials in order to realize ultra-sensitive terahertz (THz) radiation detectors, modulators, phase shifters, and delay lines with cross sections matching the terahertz wavelength and capable of determining the electromagnetic wave polarization and helicity. To this end, we propose and analyze the four contact ratchet devices capable of registering the two perpendicular components of the electric currents induced by the elliptically or circularly polarized radiation and analyze the load impedance effects in the structures optimized for the ratchet metamaterial THz components. The analysis is based on the hydrodynamic model suitable for the multi-gated semiconductor structures, coupled self-consistently with Poisson's equation for the electric potential. The model accounts for the effects of pressure gradients and 2DEL viscosity. Our numerical solutions are applicable to the wide ranges of electron mobility and terahertz power. [1] I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, Helicity-Driven Ratchet Effect Enhanced by Plasmons, Phys. Rev. Lett. 114, 246601, 15 June 2015

  1. Extreme Sensitivity of Room-Temperature Photoelectric Effect for Terahertz Detection.

    Science.gov (United States)

    Huang, Zhiming; Zhou, Wei; Tong, Jinchao; Huang, Jingguo; Ouyang, Cheng; Qu, Yue; Wu, Jing; Gao, Yanqing; Chu, Junhao

    2016-01-06

    Extreme sensitivity of room-temperature photoelectric effect for terahertz (THz) detection is demonstrated by generating extra carriers in an electromagnetic induced well located at the semiconductor, using a wrapped metal-semiconductor-metal configuration. The excellent performance achieved with THz detectors shows great potential to open avenues for THz detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.

    2015-11-12

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  3. The effect of symmetry on resonant and nonresonant photoresponses in a field-effect terahertz detector

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J. D.; Qin, H., E-mail: hqin2007@sinano.ac.cn; Yang, X. X.; Zhang, Z. P.; Li, X. X.; Zhang, X. Y.; Cai, Y.; Wu, D. M.; Zhang, B. S. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou, Jiangsu 215123 (China); Lewis, R. A. [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2522 (Australia); Sun, Y. F. [College of Electronic and Information Enging, Suzhou University of Sciences and Technology, Suzhou, Jiangsu 215011 (China)

    2015-01-19

    The effect of the symmetries in the terahertz (THz) field distribution and the field-effect channel on THz photoresponse is examined. Resonant excitation of cavity plasmon modes and nonresonant self-mixing of THz waves are demonstrated in a GaN/AlGaN two-dimensional electron gas with symmetrically designed nanogates, antennas, and filters. We found that the self-mixing signal can be effectively suppressed by the symmetric design and the resonant response benefits from the residual asymmetry. The findings suggest that a single detector may provide both high sensitivity from the self-mixing mechanism and spectral resolution from the resonant response by optimizing the degree of geometrical and/or electronic symmetries.

  4. Terahertz sources

    National Research Council Canada - National Science Library

    Shumyatsky, Pavel; Alfano, Robert R

    2011-01-01

    We present an overview and history of terahertz (THz) sources for readers of the biomedical and optical community for applications in physics, biology, chemistry, medicine, imaging, and spectroscopy...

  5. Invited Article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kühne, P., E-mail: kuehne@huskers.unl.edu; Schubert, M., E-mail: schubert@engr.unl.edu; Hofmann, T., E-mail: thofmann@engr.unl.edu [Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Herzinger, C. M., E-mail: cherzinger@jawoollam.com; Woollam, J. A., E-mail: jwoollam@jawoollam.com [J. A. Woollam Co., Inc., 645 M Street, Suite 102, Lincoln, Nebraska 68508-2243 (United States)

    2014-07-15

    We report on the development of the first integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, covering an ultra wide spectral range from 3 cm{sup −1} to 7000 cm{sup −1} (0.1–210 THz or 0.4–870 meV). The instrument comprises four sub-systems, where the magneto-cryostat-transfer sub-system enables the usage of the magneto-cryostat sub-system with the mid-infrared ellipsometer sub-system, and the far-infrared/terahertz ellipsometer sub-system. Both ellipsometer sub-systems can be used as variable angle-of-incidence spectroscopic ellipsometers in reflection or transmission mode, and are equipped with multiple light sources and detectors. The ellipsometer sub-systems are operated in polarizer-sample-rotating-analyzer configuration granting access to the upper left 3 × 3 block of the normalized 4 × 4 Mueller matrix. The closed cycle magneto-cryostat sub-system provides sample temperatures between room temperature and 1.4 K and magnetic fields up to 8 T, enabling the detection of transverse and longitudinal magnetic field-induced birefringence. We discuss theoretical background and practical realization of the integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, as well as acquisition of optical Hall effect data and the corresponding model analysis procedures. Exemplarily, epitaxial graphene grown on 6H-SiC, a tellurium doped bulk GaAs sample and an AlGaN/GaN high electron mobility transistor structure are investigated. The selected experimental datasets display the full spectral, magnetic field and temperature range of the instrument and demonstrate data analysis strategies. Effects from free charge carriers in two dimensional confinement and in a volume material, as well as quantum mechanical effects (inter-Landau-level transitions) are observed and discussed exemplarily.

  6. Terahertz bolometric detection by thermal noise in graphene field effect transistor

    Science.gov (United States)

    Mahjoub, Akram M.; Suzuki, Shinichi; Ouchi, Takahiro; Aoki, Nobuyuki; Miyamoto, Katsuhiko; Yamaguchi, Tomohiro; Omatsu, Takashige; Ishibashi, Koji; Ochiai, Yuichi

    2015-08-01

    Monolayer (MLG) and bilayer (BLG) graphene devices have been fabricated with integrated antennas and have been investigated for a wideband terahertz (THz) detection at room temperature (RT). The devices show opposite (metallic vs. semiconducting, respectively) temperature coefficients of their resistance, which enable us to achieve a reproducible THz response via bolometric heating. The bolometric nature of this response is inferred by determining the spectral density of the 1/f resistance noise exhibited by the devices, as a function of the incident THz power. With increasing power, the spectral density varies in the two devices in a manner that reflects the opposite signs of their resistance temperature coefficients. The bolometric response is furthermore confirmed for both devices by the variation of their Hooge parameter as a function of the THz power. Overall, these observations confirm the capacity of graphene devices for sensitive broadband THz detection near RT.

  7. Cancellation of Fabry-Perot interference effects in terahertz time-domain spectroscopy of optically thin samples

    Science.gov (United States)

    Fastampa, Renato; Pilozzi, Laura; Missori, Mauro

    2017-06-01

    Terahertz time-domain spectroscopy is increasingly used in many fields of research. For strongly absorbing materials with refraction index close to 1, optical parameters at terahertz frequencies are most conveniently quantified using transmission measurements through thin samples. Unfortunately, extracting optical parameters from raw data implies the use and/or development of complicated numerical data processing procedures. In this work we present an efficient computational procedure for extracting the optical parameters in very thin samples (≲100 μ m) from transmission terahertz time-domain spectroscopy. In our procedure, we are able to successfully remove from raw data the Fabry-Perot interference effects, which are commonly recognized to be the leading cause of inaccuracy in the extracted parameters, introducing fictitious oscillations in their frequency dependence. The procedure is based on the Davidenko method to identify the roots of complex functions used to numerically solve the implicit equation obtained by equating the experimental and theoretical transfer functions. The advantage of the method is the possibility of obtaining the roots using the numerical solution of a system of real differential equations using standard mathematical packages. In addition, we show that complete removal of the Fabry-Perot oscillations is achieved by including in the computational procedure, besides the sample thickness, the instrumental error on the starting instant of the terahertz signal sampling. This error could be common to many terahertz time-domain systems, especially those using optical fibers. This correction is necessary in general to preserve the terahertz spectroscopic features in the extracted optical parameters for strongly absorbing materials with refraction index close to 1, such as water, biological matter, and several organic materials.

  8. Terahertz Techniques

    CERN Document Server

    Bründermann, Erik; Kimmitt, Maurice FitzGerald

    2012-01-01

    Research and development in the terahertz portion of the electromagnetic spectrum has expanded very rapidly during the past fifteen years due to major advances in sources, detectors and instrumentation. Many scientists and engineers are entering the field and this volume offers a comprehensive and integrated treatment of all aspects of terahertz technology. The three authors, who have been active researchers in this region over a number of years, have designed Terahertz Techniques to be both a general introduction to the subject and a definitive reference resource for all those involved in this exciting research area.

  9. Terahertz deconvolution

    National Research Council Canada - National Science Library

    Walker, Gillian C; Bowen, John W; Labaune, Julien; Jackson, J-Bianca; Hadjiloucas, Sillas; Roberts, John; Mourou, Gerard; Menu, Michel

    2012-01-01

    The ability to retrieve information from different layers within a stratified sample using terahertz pulsed reflection imaging and spectroscopy has traditionally been resolution limited by the pulse width available...

  10. Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors

    NARCIS (Netherlands)

    Neumann, V.A.; Laurita, N.J.; Pan, LiDong; Armitage, N.P.

    2016-01-01

    An ongoing limitation of terahertz spectroscopy is that the technique is generally limited to the study of relatively large samples of order 4 mm across due to the generally large size of the focal beam spot. We present a nested concentric parabolic reflector design which can reduce the terahertz

  11. Photogalvanic effects induced by terahertz-lasers in semiconductor quantum films and applications; Terahertzlaserinduzierte photogalvanische Effekte in Halbleiter-Quantenfilmen und deren Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Wolfgang

    2008-06-16

    In this work photogalvanic effects where investigated in GaN/AlGaN heterostructures for the first time. For this purpose one of the strongest pulsed terahertz-lasers in the world was built and a computer controlled measurement system was developed. Additionally in this work an application of photogalvanic effects is presented, a pure-electric detection system, which allows to determine the polarisation state of terahertz radiation in sub-nanosecond time resolution. (orig.)

  12. Terahertz scanning probe microscope

    NARCIS (Netherlands)

    Klapwijk, T.M.

    2014-01-01

    The invention provides aterahertz scanning probe microscope setup comprising (i) a terahertz radiation source configured to generate terahertz radiation; (ii) a terahertz lens configured to receive at least part of the terahertz radiation from the terahertz radiation source; (iii) a cantilever unit

  13. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach.

    Science.gov (United States)

    Andryieuski, Andrei; Lavrinenko, Andrei V

    2013-04-08

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.

  14. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers....

  15. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    Science.gov (United States)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  16. Polarization insensitive terahertz metamaterial absorber.

    Science.gov (United States)

    Grant, J; Ma, Y; Saha, S; Lok, L B; Khalid, A; Cumming, D R S

    2011-04-15

    We present the simulation, implementation, and measurement of a polarization insensitive resonant metamaterial absorber in the terahertz region. The device consists of a metal/dielectric-spacer/metal structure allowing us to maximize absorption by varying the dielectric material and thickness and, hence, the effective electrical permittivity and magnetic permeability. Experimental absorption of 77% and 65% at 2.12 THz (in the operating frequency range of terahertz quantum cascade lasers) is observed for a spacer of polyimide or silicon dioxide respectively. These metamaterials are promising candidates as absorbing elements for thermally based terahertz imaging.

  17. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...

  18. Electrically tunable hot-silicon terahertz attenuator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minjie [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Vajtai, Robert; Ajayan, Pulickel M. [Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2014-10-06

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 10{sup 3}. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ∼550 K, with the corresponding free-carrier density adjusted between ∼10{sup 11 }cm{sup −3} and ∼10{sup 17 }cm{sup −3}. This “hot-silicon”-based terahertz attenuator works most effectively at 450–550 K (corresponding to a DC voltage variation of only ∼7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1–2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  19. Detection of Terahertz Radiation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation.......The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation....

  20. One dimensional semiconductor nanostructures: An effective active-material for terahertz detection

    Directory of Open Access Journals (Sweden)

    Miriam S. Vitiello

    2015-02-01

    Full Text Available One-dimensional (1D nanostructure devices are at the frontline of studies on future electronics, although issues like massive parallelization, doping control, surface effects, and compatibility with silicon industrial requirements are still open challenges. The recent progresses in atomic to nanometer scale control of materials morphology, size, and composition including the growth of axial, radial, and branched nanowire (NW-based heterostructures make the NW an ideal building block for implementing rectifying diodes or detectors that could be well operated into the Terahertz (THz, thanks to their typical achievable attofarad-order capacitance. Here, we report on our recent progresses in the development of 1D InAs or InAs/InSb NW-based field effect transistors exploiting novel morphologies and/or material combinations effective for addressing the goal of a semiconductor plasma-wave THz detector array technology. Through a critical review of material-related parameters (NW doping concentration, geometry, and/or material choice and antenna-related issues, here we underline the crucial aspects that can affect detection performance across the THz frequency region.

  1. One dimensional semiconductor nanostructures: An effective active-material for terahertz detection

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, Miriam S., E-mail: miriam.vitiello@sns.it; Viti, Leonardo; Ercolani, Daniele; Sorba, Lucia [NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa I-56127 (Italy); Coquillat, Dominique; Knap, Wojciech [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-University Montpellier 2, Montpellier (France)

    2015-02-01

    One-dimensional (1D) nanostructure devices are at the frontline of studies on future electronics, although issues like massive parallelization, doping control, surface effects, and compatibility with silicon industrial requirements are still open challenges. The recent progresses in atomic to nanometer scale control of materials morphology, size, and composition including the growth of axial, radial, and branched nanowire (NW)-based heterostructures make the NW an ideal building block for implementing rectifying diodes or detectors that could be well operated into the Terahertz (THz), thanks to their typical achievable attofarad-order capacitance. Here, we report on our recent progresses in the development of 1D InAs or InAs/InSb NW-based field effect transistors exploiting novel morphologies and/or material combinations effective for addressing the goal of a semiconductor plasma-wave THz detector array technology. Through a critical review of material-related parameters (NW doping concentration, geometry, and/or material choice) and antenna-related issues, here we underline the crucial aspects that can affect detection performance across the THz frequency region.

  2. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    Science.gov (United States)

    Duka, M. V.; Dvoretskaya, L. N.; Babelkin, N. S.; Khodzitskii, M. K.; Chivilikhin, S. A.; Smolyanskaya, O. A.

    2014-08-01

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 - 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth.

  3. Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy

    DEFF Research Database (Denmark)

    Mackenzie, David; Buron, Jonas Christian Due; Bøggild, Peter

    2016-01-01

    We perform contactless full-wafer maps of the electrical conductance of a 4-inch wafer of single-layer CVD graphene using terahertz time-domain spectroscopy both before and after deposition of metal contacts and fabrication of devices via laser ablation. We find that there is no significant chang...

  4. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  5. Effect of continuous irradiation with terahertz electromagnetic waves of the NO frequency range on behavioral reactions of male albino rats under stress conditions.

    Science.gov (United States)

    Kirichuk, V F; Antipova, O N; Krylova, Ya A

    2014-06-01

    We studied the effect of terahertz waves (NO frequency range, 150.176-150.664 GHz) on stress-induced variations in behavioral reactions of male albino rats during hypokinetic stress. THz irradiation was followed by partial or complete normalization of behavioral reactions of male albino rats after hypokinetic stress. The most significant effect was observed after continuous irradiation for 30 min.

  6. Subwavelength micropillar array terahertz lasers.

    Science.gov (United States)

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2014-01-13

    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  7. Terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-tong [Los Alamos National Laboratory; Taylor, Antoineete J [Los Alamos National Laboratory; Azad, Abul K [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.

  8. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gayduchenko, I., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); National Research Centre “Kurchatov Institute,” Moscow 123128 (Russian Federation); Kardakova, A.; Voronov, B.; Finkel, M. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Fedorov, G., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700 (Russian Federation); Jiménez, D. [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Morozov, S. [Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700 (Russian Federation); Presniakov, M. [National Research Centre “Kurchatov Institute,” Moscow 123128 (Russian Federation); Goltsman, G. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Moscow 109028 (Russian Federation)

    2015-11-21

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.

  9. Electron heating by photon-assisted tunneling in niobium terahertz mixers with integrated niobium titanium nitride striplines

    NARCIS (Netherlands)

    Leone, B; Gao, [No Value; Klapwijk, TM; Jackson, BD; Laauwen, WM; de Lange, G

    2001-01-01

    We describe the gap voltage depression and current-voltage (I-V) characteristics in pumped niobium superconductor-insulator-superconductor junction with niobium titanium nitride tuning stripline by introducing an electron heating power contribution resulting from the photon-assisted tunneling

  10. A Perfect Terahertz Metamaterial Absorber

    OpenAIRE

    Bagheri, Alireza; Moradi, Gholamreza

    2015-01-01

    In this paper the design for an absorbing metamaterial with near unity absorbance in terahertz region is presented. The absorber's unit cell structure consists of two metamaterial resonators that couple to electric and magnetic fields separately. The structure allows us to maximize absorption by varying dielectric material and thickness and, hence the effective electrical permittivity and magnetic permeability.

  11. Nanoantenna enhanced terahertz spectroscopy of a monolayer of cadmium selenide quantum dots

    KAUST Repository

    Razzari, Luca

    2014-01-01

    Exploiting the localization and enhancement capabilities of terahertz resonant dipole nanoantennas coupled through nanogaps, we present an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  12. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Han [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiong, Yongqian, E-mail: yqxiong@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Pei, Yuanji [National Synchrotron Radiation laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

    2014-11-11

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  13. Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier

    Science.gov (United States)

    Starinshak, David P.; Wilson, Jeffrey D.

    2008-01-01

    Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.

  14. Theoretical analysis of external feedback effect on oscillation characteristics of resonant-tunneling-diode terahertz oscillators

    Science.gov (United States)

    Asada, Masahiro; Suzuki, Safumi

    2015-07-01

    The resonant tunneling diode (RTD) is a candidate for a compact and coherent source in the terahertz frequency range. We show theoretically that the oscillation characteristics of RTDs are strongly affected by the external feedback of partially reflected output power. The oscillation frequency and output power largely change with a small amount of the reflected output power as a periodic function of the position of the reflection object. A change in the current-voltage curve, which can be used for the detection of the external feedback, also occurs.

  15. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    Science.gov (United States)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. K.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  16. Temperature variation induced by the pulsed-periodic laser pumping under terahertz wave generation

    Science.gov (United States)

    Kitaeva, G. Kh; Moiseenko, E. V.; Shepelev, A. V.

    2017-09-01

    During nonlinear-optical parametric frequency conversion the heat-related effects occur, considerably influencing the conversion process. We develop versatile methods for analytic and numerical calculations of thermo-optical parameters and the temperature distribution inside a non-linear crystal pumped by periodic laser pulses. As an example, numerical results are presented for a number of laser-based schemes actual for the non-linear optical terahertz wave generation and parametric frequency conversion processes.

  17. Invited Review Terahertz Transmission, Scattering, Reflection, and Absorption—the Interaction of THz Radiation with Soils

    Science.gov (United States)

    Lewis, R. A.

    2017-07-01

    Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.

  18. Urban Heat Island Effect Actions - Neighborhood Data

    Data.gov (United States)

    Louisville Metro Government — The urban heat island effect — defined as the difference in temperature between the core of Louisville and its suburbs — contributes to heat-related illnesses and...

  19. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, D.; Novitsky, Andrey

    2012-01-01

    We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging.......We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging....

  20. Dynamical effects and terahertz harmonic generation in low-doped bulk semiconductors and submicron structures

    Energy Technology Data Exchange (ETDEWEB)

    Persano Adorno, D.; Capizzo, M.C.; Zarcone, M. [Dipartimento di Fisica e Tecnologie Relative, Viale delle Scienze, Ed. 18, 90128, Palermo (Italy)

    2006-08-15

    We present results obtained using a three-dimensional multivalleys Monte Carlo (MC) model to simulate the nonlinear carrier dynamics under the influence of an intense sub-terahertz electric field in a doped bulk semiconductor. By self-consistently coupling a one-dimensional Poisson solver to the ensemble MC code we simulate also the nonlinear carrier dynamics in n{sup +}nn{sup +} structures operating under large-amplitude periodic signals and investigate the voltage-current characteristic hysteresis cycle and the high-order harmonic efficiency. For both cases we discuss the dependence of the nonlinearities and of the harmonic generation efficiency on the frequency and the intensity of the alternating signal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Optical feedback effects on terahertz quantum cascade lasers: modelling and applications

    Science.gov (United States)

    Rakić, Aleksandar D.; Lim, Yah Leng; Taimre, Thomas; Agnew, Gary; Qi, Xiaoqiong; Bertling, Karl; Han, She; Wilson, Stephen J.; Kundu, Iman; Grier, Andrew; Ikonić, Zoran; Valavanis, Alexander; Demić, Aleksandar; Keeley, James; Li, Lianhe H.; Linfield, Edmund H.; Davies, A. Giles; Harrison, Paul; Ferguson, Blake; Walker, Graeme; Prow, Tarl; Indjin, Dragan; Soyer, H. Peter

    2016-11-01

    Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1-5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.

  2. EFFECTIVE SOLUTIONS FOR THERMOELECTRIC HEAT TRANSFORMERS USING HEAT CONVERTERS

    Directory of Open Access Journals (Sweden)

    A. S. Marchenko

    2016-01-01

    Full Text Available Objectives. The present article is based on the examination of the causes of thermodynamic heat loss in thermoelectric heat transformers. It is shown that the external loss in a real system is comparable to the internal loss in thermoelements at the present stage of thermoelectric engineering instrument development. External technical losses are attributed to the irreversibility of processes in system elements. These are determined by their technical resolution and can be lowered by means of specific approaches to design and construction. Methods. Examples of effective technical solutions for thermoelectric units of the "air-to-air" and "air-to-liquid" types, in which external losses are minimised due to the application of heat exchangers based on two-phase thermosyphons of special configuration, are given. For air coolers with a classic all-metal fin design based on the sensitivity analysis method, the dependence of the thermoelectric unit efficiency on the heat exchanger characteristics was calculated. Results. As a result, calculations of the dependence of cooling unit refrigeration capacity on the energy transformation ratio, power transfer coefficient, energy conversion efficiency (ECE and the relative energetic efficiency of ECE were performed based on the characteristic of the heat exchanger air passage geometry. There is a dependence relationship between the thermoelectric conversion cooling unit refrigeration capacity and transformation ratio within the function of material and thickness of the ribs on the intercostal distance and on the height of the air heat exchanger channel. Conclusion. Examples of the proposed effective thermal circuit technical solutions are based on thermoelectricheat transformers with heat flow direction change and with heat exchangers, which are based on two-phase thermosyphons. Classical solutions of all-metal heat exchangers can also be optimised on the basis of the sensitivity analysis methodology. 

  3. Towards terahertz microscopy

    NARCIS (Netherlands)

    Van der Valk, N.C.J.

    2005-01-01

    Terahertz (=1012 Hz) radiation is a form of electromagnetic radiation that is at this moment used rarely for imaging purposes. However, there are indeed reasons to assume that imaging with terahertz radiation could be very useful. First, many materials, such as paper, plastics and clothing are

  4. Terahertz polarization imaging

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M.

    2005-01-01

    We present a new method to measure the polarization state of a terahertz pulse by using a modified electrooptic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results:

  5. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  6. An effect of temperature distribution on terahertz phase dynamics in intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp; Kawabata, Shiro

    2013-11-15

    Highlights: •We calculate the temperature distribution in intrinsic Josephson junctions (IJJs). •We investigate the effect of temperature distribution on THz radiation from IJJs. •The Joule heating in the IJJs makes inhomogeneous temperature distribution. •The inhomogeneous temperature distribution strongly excites THz emission. -- Abstract: In this study, we numerically calculate the temperature distribution and the THz phase dynamics in the mesa-structured intrinsic Josephson junctions (IJJs) using the thermal diffusion equation and the Sine–Gordon equation. We observe that the temperature distribution has a broad peak around the center region of the IJJ mesa. Under a high external current, a “hot spot” where the temperature is locally higher than the superconducting critical temperature appears around this region. The transverse Josephson plasma wave is strongly excited by the inhomogeneous temperature distribution in the mesa. This gives rise to intense THz emission.

  7. Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures.

    Science.gov (United States)

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-26

    We design an ultra-thin terahertz metamaterial absorber based on graphene/MgF(2) multilayer stacking unit cells arrayed on an Au film plane and theoretically demonstrate a dual-band total absorption effect. Due to strong anisotropic permittivity, the graphene/MgF(2) multilayer unit cells possess a hyperbolic dispersion. The strong electric and magnetic dipole resonances between unit cells make the impedance of the absorber match to that of the free space, which induces two total absorption peaks in terahertz range. These absorption peaks are insensitive to the polarization and nearly omnidirectional for the incident angle. But the absorption intensity and frequency depend on material and geometric parameters of the multilayer structure. The absorbed electromagnetic waves are finally converted into heat and, as a result, the absorber shows a good nanosecond photothermal effect.

  8. Metamaterials for terahertz polarimetric devices

    Energy Technology Data Exchange (ETDEWEB)

    O' hara, John F [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory; Smirnova, Evgenya [Los Alamos National Laboratory; Azad, Abul [Los Alamos National Laboratory

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  9. Characterization of burn injuries using terahertz time-domain spectroscopy

    Science.gov (United States)

    Arbab, M. Hassan; Dickey, Trevor C.; Winebrenner, Dale P.; Chen, Antao; Mourad, Pierre D.

    2011-03-01

    The accuracy rates of the clinical assessment techniques used in grading burn injuries remain significantly low for partial thickness burns. In this paper, we present experimental results from terahertz characterization of 2nd and 3rd degree burn wounds induced on a rat model. Reflection measurements were obtained from the surface of both burned and normal skin using pulsed terahertz spectroscopy. Signal processing techniques are described for interpretation of the acquired terahertz waveform and differentiation of burn wounds. Furthermore, the progression of burn injuries is shown by comparison between acute characterization and 72-hours survival studies. While the water content of healthy and desiccated skin has been considered as a source of terahertz signal contrast, it is demonstrated that other biological effects such as formation of post-burn interstitial edema as well as the density of the discrete scattering structures in the skin (such as hair follicles, sweat glands, etc.) play a significant role in the terahertz response of the burn wounds.

  10. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 117105 (Russian Federation); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Leiman, V. G. [Department of General Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 147100 (Russian Federation); Fedorov, G. [Department of General Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 147100 (Russian Federation); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Goltzman, G. N.; Titova, N. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Gayduchenko, I. A. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); National Research Center “Kurchatov Institute,” Moscow 123182 (Russian Federation); Coquillat, D.; But, D.; Knap, W. [Laboratoire Charles Coulomb UMR 5221, Universite Montpellier 2 and CNRS, F-34095, Montpellier (France); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Computer, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2016-07-28

    We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.

  11. Active metamaterials terahertz modulators and detectors

    CERN Document Server

    Rout, Saroj

    2017-01-01

    This book covers the theoretical background and experimental methods for engineers and physicist to be able to design, fabricate and characterize terahertz devices using metamaterials. Devices utilize mainstream semiconductor foundry processes to make them for communication and imaging applications. This book will provide engineers and physicists a comprehensive reference to construct such devices with general background in circuits and electromagnetics. The authors describe the design and construction of electromagnetic (EM) devices for terahertz frequencies (108-1010cycles/sec) by embedding solid state electronic devices into artificial metamaterials where each unit cell is only a fraction of the wavelength of the incident EM wave. The net effect is an electronically tunable bulk properties with effective electric (permittivity) and magnetic (permeability) that can be utilized to make novel devices to fill the terahertz gap.

  12. Nanoscale Terahertz Emission Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Kim, Hyewon; Colvin, Vicki L.

    By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate.......By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate....

  13. Inducing an Incipient Terahertz Finite Plasmonic Crystal in Coupled Two Dimensional Plasmonic Cavities

    CERN Document Server

    Dyer, Gregory C; Preu, Sascha; Vinh, N Q; Allen, S James; Reno, John L; Shaner, Eric A

    2016-01-01

    We measured a change in the current transport of an antenna-coupled, multi-gate, GaAs/AlGaAs field-effect transistor when terahertz electromagnetic waves irradiated the transistor and attribute the change to bolometric heating of the electrons in the two-dimensional electron channel. The observed terahertz absorption spectrum indicates coherence between plasmons excited under adjacent biased device gates. The experimental results agree quantitatively with a theoretical model we developed that is based on a generalized plasmonic transmission line formalism and describes an evolution of the plasmonic spectrum with increasing electron density modulation from homogeneous to the crystal limit. These results demonstrate an electronically induced and dynamically tunable plasmonic band structure.

  14. Heat sink effects in VPPA welding

    Science.gov (United States)

    Steranka, Paul O., Jr.

    1990-01-01

    The development of a model for prediction of heat sink effects associated with the Variable Polarity Plasma Arc (VPPA) Welding Process is discussed. The long term goal of this modeling is to provide means for assessing potential heat sink effects and, eventually, to provide indications as to changes in the welding process that could be used to compensate for these effects and maintain the desired weld quality. In addition to the development of a theoretical model, a brief experimental investigation was conducted to demonstrate heat sink effects and to provide an indication of the accuracy of the model.

  15. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland); Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey); Nojima, S. [Yokohama City University, Department of Nanosystem Science, Graduate School of Nanobioscience, Kanazawa Ku, 22-2 Seto, Yokohama, Kanagawa 2360027 (Japan); Alici, K. B. [TUBITAK Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey); Ozbay, Ekmel [Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey)

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a

  16. Robust Topological Terahertz Circuits using Semiconductors

    CERN Document Server

    Bahari, Babak; Kanté, Boubacar

    2016-01-01

    Topological Insulator-based devices can transport electrons/photons at the surfaces of materials without any back reflections, even in the presence of obstacles. Topological properties have recently been studied using non-reciprocal materials such as gyromagnetics or using bianisotropy. However, these effects usually saturate at optical frequencies and limit our ability to scale down devices. In order to implement topological devices that we introduce in this paper for the terahertz range, we show that semiconductors can be utilized via their cyclotron resonance in combination with small magnetic fields. We propose novel terahertz operating devices such as the topological tunable power splitter and the topological circulator. This work opens new perspectives in the design of terahertz integrated devices and circuits with high functionality.

  17. Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range

    Science.gov (United States)

    Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong

    2015-03-01

    Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.

  18. Analyzing screen heat insulation and its effect on energy consumption while heating building envelopes in conditions of intermittent heating

    Directory of Open Access Journals (Sweden)

    Vytchikov Yuri

    2016-01-01

    Full Text Available The paper is devoted to screen heat insulation and its effect on energy consumption while heating building envelopes in conditions of intermittent heating. It also describes the non-stationary process of heat transfer through heat insulated outer walls. The authors introduce calculation results of specific energy consumption for heating insulated and non-insulted outer walls. The paper proves that energy consumption for heating insulated outer walls depends on the thickness of non-aerated air-space insulation The research shows positive effects of using thermal protection systems with screen thermal insulation in outer building envelopes in conditions of intermitten heating.

  19. Effect of Pyrodextrinization, Crosslinking and Heat- Moisture ...

    African Journals Online (AJOL)

    Effect of Pyrodextrinization, Crosslinking and Heat- Moisture Treatment on In vitro Formation and Digestibility of Resistant Starch from African Locust Bean (Parkia biglobosa). A Sankhon, W-R Yao, I Amadou, H Wang, H Qian, M Sangare ...

  20. The non-linear terahertz response of hot electrons in low-dimensional semiconductor superlattices: Suppression of the polar-optical phonon scattering

    Science.gov (United States)

    Ignatov, Anatoly A.

    2017-10-01

    We study the response of low-dimensional semiconductor superlattices to strong terahertz fields on condition of a strong suppression of inelastic scattering processes of electrons caused by the polar-optical phonons. For our study, we employ a balance equations approach, which allows investigating the response of the superlattices to strong terahertz fields taking account of both the inelastic and the strongly pronounced elastic scattering of electrons. Our approach provides a way to analyze the influence of the Bloch dynamics of electrons in a superlattice miniband side by side with the effects of the electron heating on the magnitude and the frequency dependence of a superlattice current responsivity in the terahertz frequency band. Our study shows that the suppression of the inelastic scattering caused either by a reduction of the superlattice dimensionality by lateral quantization or by a strong magnetic field application can give rise to a huge enhancement of the current responsivity. This enhancement can be interpreted in terms of the well pronounced electronic bolometric effect occurring due to the efficient electron heating in the low-dimensional superlattices by the incident terahertz fields.

  1. Metamaterials for terahertz polarimetric devices

    Energy Technology Data Exchange (ETDEWEB)

    O' hara, John F [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory; Smirnova, Evgenya [Los Alamos National Laboratory; Azad, Abul [Los Alamos National Laboratory; Chen, Hou-tong [Los Alamos National Laboratory; Peralta, Xomalin G [SNL; Brener, Igal [SNL

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.

  2. On Ultrafast Time-Domain TeraHertz Spectroscopy in the Condensed Phase: Linear Spectroscopic Measurements of Hydrogen-Bond Dynamics of Astrochemical Ice Analogs and Nonlinear TeraHertz Kerr Effect Measurements of Vibrational Quantum Beats

    Science.gov (United States)

    Allodi, Marco A.

    . We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 wavenumbers (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice. To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoium-based THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 wavenumbers), in exact agreement with the fundamental transition frequency of the lowest energy vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies. To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab

  3. Temperature dependent terahertz properties of Ammonium Nitrate

    Science.gov (United States)

    Rahman, Abdur; Azad, Abul; Moore, David

    Terahertz spectroscopy has been demonstrated as an ideal nondestructive method for identifying hazardous materials such as explosives. Many common explosives exhibit distinct spectral signatures at terahertz range (0.1-6.0 THz) due to the excitations of their low frequency vibrational modes. Ammonium nitrate (AN), an easily accessible oxidizer often used in improvised explosive, exhibits strong temperature dependence. While the room temperature terahertz absorption spectrum of AN is featureless, it reveals distinct spectral features below 240 K due to the polymorphic phase transition. We employed terahertz time domain spectroscopy to measure the effective dielectric properties of AN embedded in polytetrafluoroethylene (PTFE) binder. The dielectric properties of pure AN were extracted using three different effective medium theories (EMT), simple effective medium approach, Maxwell-Garnett (MG) model, and Bruggeman (BR) model. In order to understand the effect of temperature on the dielectric properties, we varied the sample temperature from 5K to 300K. This study indicates presence of additional vibrational modes at low temperature. These results may greatly enhance the detectability of AN and facilitate more accurate theoretical modeling.

  4. Heat transformation coefficient as an effectiveness indicator of different heat supply techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kalafati, D.D. (Moskovskij Ehnergeticheskij Inst. (USSR))

    1984-02-01

    For comparing heat effectiveness of different heat supply techniques it is suggested to use the heat transformation coefficient which is determined as the ratio of heat supplied to the user to the work performed. This coefficient is calculated for various heat supply techniques. It equals for electric heating 1, for boiler room 2.2-2.4, for heat pump 2.5-3, for nuclear heat supply plant (NHSP) 3.2, for central heating-and-power plant (CHPP) and for nuclear central heating-and-power plant (NCPP) 5-6. The technique outlined permits to clearly estimate comparative heat effectiveness of various heat supply techniques and determine the economy of the total spent or lost work (electric power) in the course of transition from one heat supply technique to another.

  5. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Chigrin, Dmitry N.

    2012-01-01

    We propose a graphene hyperlens for the terahertz (THz) range. We employ and numerically examine a structured graphene-dielectric multilayered stack that is an analog of a metallic wire medium. As an example of the graphene hyperlens in action, we demonstrate an imaging of two point sources...... separated by a distance λ0/5. An advantage of such a hyperlens as compared to a metallic one is the tunability of its properties by changing the chemical potential of graphene. We also propose a method to retrieve the hyperbolic dispersion, check the effective medium approximation, and retrieve...

  6. Terahertz time-domain spectroscopy of edible oils

    Science.gov (United States)

    Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek

    2017-06-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.

  7. Terahertz in-line digital holographic multiplane imaging method

    Science.gov (United States)

    Huang, Haochong; Wang, Dayong; Rong, Lu; Li, Weihua; Wang, Yunxin

    2017-05-01

    Terahertz waves of which frequency spans from 0.1 to 10 THz bridge the gap between the infrared spectrum and microwaves. Owing to the special features of terahertz wave, such as penetrability and non-ionizing, terahertz imaging technique is a very significant and important method for inspections and detections. Digital holography can reconstruct the amplitude and phase distributions of a sample without scanning and it already has many successful applications in the area of visible and infrared light. The terahertz in-line digital holographic multi-plane imaging system which is presented in this paper is the combination of a continuous-wave terahertz source and the in-line scheme of digital holography. In order to observe a three dimensional (3D) shape sample only a portion of which appears in good focus, the autofocusing algorithm is brought to the data process. The synthetic aperture method is also applied to provide the high resolution imaging effect in the terahertz waveband. Both intrinsic twin images and defocused objective images confuse the quality of the image in an individual reconstructed plane. In order to solve this issue, phase retrieval iteration algorithm is used for the reconstruction. In addition, the reconstructed amplitude image in each plane multiplies the mask of which the threshold depends on the values of the autofocusing curve. A sample with simple artificial structure is observed which verifies that the present method is an authentic tool to acquire the multi-plane information of a target in terahertz waves. It can expect a wide application in terahertz defect detecting, terahertz medical inspection and other important areas in the future.

  8. Terahertz Acoustics in Hot Dense Laser Plasmas

    Science.gov (United States)

    Adak, Amitava; Robinson, A. P. L.; Singh, Prashant Kumar; Chatterjee, Gourab; Lad, Amit D.; Pasley, John; Kumar, G. Ravindra

    2015-03-01

    We present a hitherto unobserved facet of hydrodynamics, namely the generation of an ultrahigh frequency acoustic disturbance in the terahertz frequency range, whose origins are purely hydrodynamic in nature. The disturbance is caused by differential flow velocities down a density gradient in a plasma created by a 30 fs, 800 nm high-intensity laser (˜5 ×1016 W /cm2 ). The picosecond scale observations enable us to capture these high frequency oscillations (1.9 ±0.6 THz ) which are generated as a consequence of the rapid heating of the medium by the laser. Adoption of two complementary techniques, namely pump-probe reflectometry and pump-probe Doppler spectrometry provides unambiguous identification of this terahertz acoustic disturbance. Hydrodynamic simulations well reproduce the observations, offering insight into this process.

  9. Nonlinear transmission of an intense terahertz field through monolayer graphene

    Directory of Open Access Journals (Sweden)

    H. A. Hafez

    2014-11-01

    Full Text Available We report nonlinear terahertz (THz effects in monolayer graphene, giving rise to transmission enhancement of a single-cycle THz pulse when the incident THz peak electric field is increased. This transmission enhancement is attributed to reduced photoconductivity, due to saturation effects in the field-induced current and increased intraband scattering rates arising from transient heating of electrons. We have developed a tight-binding model of the response using the length gauge interaction Hamiltonian that provides good qualitative agreement. The model fully accounts for the nonlinear response arising from the linear dispersion energy spectrum in graphene. The results reveal a strong dependence of the scattering time on the THz field, which is at the heart of the observed nonlinear response.

  10. Diameter effect on critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, A. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada)], E-mail: atana052@uottawa.ca; Cheng, S.C. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada); Groeneveld, D.C. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada); Chalk River Laboratories, Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Shan, J.Q. [Department of Nuclear Engineering, Xi' an Jiaotong University (China)

    2009-02-15

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods.

  11. Asymmetric planar terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ramjan [Los Alamos National Laboratory; Al - Naib, Ibraheem A. I. [PHILIPPS UNIV; Koch, Martin [PHILIPPS UNIV; Zhang, Weili [OKLAHOMA STATE UNIV

    2010-01-01

    Using terahertz time-domain spectroscopy, we report an experimental observation of three distinct resonances in split ring resonators (SRRs) for both vertical and horizontal electric field polarizations at normal incidence. Breaking the symmetry in SRRs by gradually displacing the capacitive gap from the centre towards the comer of the ring allows for an 85% modulation of the fundamental inductive-capacitive (LC) resonance. Increasing asymmetry leads to the evolution of an otherwise inaccessible high quality factor electric quadrupole resonance that can be exploited for bio-sensing applications in the terahertz region.

  12. The effect of terahertz electromagnetic radiation on cardiovascular system and orbital vessels in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    K. U. Eremenko

    2014-01-01

    Full Text Available Aim.To study the effect of terahertz (THz radiation at atmospheric oxygen frequency (129 GHz on cardiovascular and hemodynamic parameters of orbital arteries following the irradiation of bioactive points in healthy volunteers and age-related macular degeneration (AMD patients.Materials and methods. 18 healthy volunteers (36 eyes and 20 AMD patients (34 eyes were examined. Blood pressure (BP, heart rate (HR, systolic and diastolic blood flow velocities, resistance index (RI in orbital arteries before and following THz radiation of two bioactive points VB1 and TR23 at atmospheric oxygen frequency 129 GHz in continuouswave generation mode were measured.Results. First data on the effect of THz waves at atmospheric oxygen irradiation and absorption molecular spectrum frequency (129 GHz in continuous wave generation mode on ocular hemodynamics in healthy persons and AMD patients are presented. Following THz irradiation at atmospheric oxygen frequency (129 GHz, common hemodynamicparameters (BP, HR decreased. In healthy volunteers, systolic and diastolic BP reduced by 22.83±4.09 and 8.82±0.98 mm Hg, respectively (р<0.05, HR reduced by 6.11±0.15 bpm (р<0.05. In AMD patients, systolic and diastolic BP significantly decreased by 45.55±0.43 and 9.56±1.42 mm Hg, respectively (р<0.05, HR decreased by 6.15±1.1 bpm (р<0.05. In AMD patients, systolic blood flow velocity significantly reduced by 2.89±0.1 cm / sec in central retinal artery and increased by0.9‑5.97 cm / sec in short posterior ciliary arteries and ophthalmic artery. RI in these vessels decreased by 0.13, 0.11, 0.13 and 0.12, respectively.Conclusion. THz waves at atmospheric oxygen irradiation and absorption molecular spectrum frequency (129 GHz are safe and cause no side effects on general health of healthy volunteers and AMD patients. Besides, this method improves ocular hemodynamics.

  13. The effect of terahertz electromagnetic radiation on cardiovascular system and orbital vessels in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    K. U. Eremenko

    2014-07-01

    Full Text Available Aim.To study the effect of terahertz (THz radiation at atmospheric oxygen frequency (129 GHz on cardiovascular and hemodynamic parameters of orbital arteries following the irradiation of bioactive points in healthy volunteers and age-related macular degeneration (AMD patients.Materials and methods. 18 healthy volunteers (36 eyes and 20 AMD patients (34 eyes were examined. Blood pressure (BP, heart rate (HR, systolic and diastolic blood flow velocities, resistance index (RI in orbital arteries before and following THz radiation of two bioactive points VB1 and TR23 at atmospheric oxygen frequency 129 GHz in continuouswave generation mode were measured.Results. First data on the effect of THz waves at atmospheric oxygen irradiation and absorption molecular spectrum frequency (129 GHz in continuous wave generation mode on ocular hemodynamics in healthy persons and AMD patients are presented. Following THz irradiation at atmospheric oxygen frequency (129 GHz, common hemodynamicparameters (BP, HR decreased. In healthy volunteers, systolic and diastolic BP reduced by 22.83±4.09 and 8.82±0.98 mm Hg, respectively (р<0.05, HR reduced by 6.11±0.15 bpm (р<0.05. In AMD patients, systolic and diastolic BP significantly decreased by 45.55±0.43 and 9.56±1.42 mm Hg, respectively (р<0.05, HR decreased by 6.15±1.1 bpm (р<0.05. In AMD patients, systolic blood flow velocity significantly reduced by 2.89±0.1 cm / sec in central retinal artery and increased by0.9‑5.97 cm / sec in short posterior ciliary arteries and ophthalmic artery. RI in these vessels decreased by 0.13, 0.11, 0.13 and 0.12, respectively.Conclusion. THz waves at atmospheric oxygen irradiation and absorption molecular spectrum frequency (129 GHz are safe and cause no side effects on general health of healthy volunteers and AMD patients. Besides, this method improves ocular hemodynamics.

  14. Effects of heat acclimation on time perception.

    Science.gov (United States)

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Timpmann, Saima; Burk, Andres; Ööpik, Vahur; Allik, Jüri; Kreegipuu, Kairi

    2015-03-01

    Cognitive performance is impaired during prolonged exercise in hot environment compared to temperate conditions. These effects are related to both peripheral markers of heats stress and alterations in CNS functioning. Repeated-exposure to heat stress results in physiological adaptations, and therefore improvement in exercise capacity and cognitive functioning are observed. The objective of the current study was to clarify the factors contributing to time perception under heat stress and examine the effect of heat acclimation. 20 young healthy male subjects completed three exercise tests on a treadmill: H1 (at 60% VO(2)peak until exhaustion at 42°C), N (at 22°C; duration equal to H1) and H2 (walk until exhaustion at 42°C) following a 10-day heat acclimation program. Core temperature (T(C)) and heart rate (HR), ratings of perceived fatigue and exertion were obtained continuously during the exercise, and blood samples of hormones were taken before, during and after the exercise test for estimating the prolactin, growth hormone and cortisol response to acute exercise-heat stress. Interval production task was performed before, during and after the exercise test. Lower rate of rise in core temperature, heart rate, hormone response and subjective ratings indicated that the subjects had successfully acclimated. Before heat acclimation, significant distortions in produced intervals occurred after 60 minutes of exercise relative to pre-trial coefficients, indicating speeded temporal processing. However, this effect was absent after in acclimated subjects. Blood prolactin concentration predicted temporal performance in both conditions. Heat acclimation slows down the increase in physiological measures, and improvement in temporal processing is also evident. The results are explained within the internal clock model in terms of the pacemaker-accumulator functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Active chimney effect using heated porous layers: optimum heat transfer

    Science.gov (United States)

    Mehiris, Abdelhak; Ameziani, Djamel-Edine; Rahli, Omar; Bouhadef, Khadija; Bennacer, Rachid

    2017-05-01

    The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  16. High Reliability Oscillators for Terahertz Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  17. Quantum behavior of terahertz photoconductivity in silicon nanocrystals networks

    Science.gov (United States)

    Pushkarev, V.; Ostatnický, T.; Němec, H.; Chlouba, T.; Trojánek, F.; Malý, P.; Zacharias, M.; Gutsch, S.; Hiller, D.; Kužel, P.

    2017-03-01

    Quantum-size effects are essential for understanding the terahertz conductivity of semiconductor nanocrystals, particularly at low temperatures. We derived a quantum mechanical expression for the linear terahertz response of nanocrystals; its introduction into an appropriate effective medium model provides a comprehensive microscopic approach for the analysis of terahertz conductivity spectra as a function of frequency, temperature, and excitation fluence. We performed optical pump-terahertz probe experiments in multilayer Si quantum dot networks with various degrees of percolation at 300 and 20 K and with variable pump fluence (initial carrier density) over nearly three orders of magnitude. Our theoretical approach was successfully applied to quantitatively interpret all the measured data within a single model. A careful data analysis made it possible to assess the distribution of sizes of nanocrystals participating to the photoconduction. We show and justify that such conductivity-weighted distribution may differ from the size distribution obtained by standard analysis of transmission electron microscopy images.

  18. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We investigate the self-phase modulation (SPM) of a single-cycle terahertz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the terahertz pulse, leading to an ultrafast reduction of the plasma frequency...... the broad spectrum of the terahertz pulse, with the zero-nonlinearity point defined by the electron momentum relaxation rate. We also observed the nonlinear spectral broadening and compression of the terahertz pulse....

  19. Frequency selective terahertz retroreflectors

    Science.gov (United States)

    Williams, Richard James

    The use of novel optical structures operating at terahertz frequencies in industrial and military applications continues to grow. Some of these novel structures include gratings, frequency selective surfaces, metamaterials and metasurfaces, and retroreflectors. A retroreflector is a device that exhibits enhanced backscatter by concentrating the reflected wave in the direction of the source. Retroreflectors have applications in a variety of diverse fields such as aviation, radar systems, antenna technology, communications, navigation, passive identification, and metrology due to their large acceptance angles and frequency bandwidth. This thesis describes the design, fabrication, and characterization of a retroreflector designed for terahertz frequencies and the incorporation of a frequency selective surface in order to endow the retroreflector with narrow-band frequency performance. The radar cross section of several spherical lens reflectors operating at terahertz frequencies was investigated. Spherical lens reflectors with diameters ranging from 2 mm to 8 mm were fabricated from fused silica ball lenses and their radar cross section was measured at 100 GHz, 160 GHz, and 350 GHz. Crossed-dipole frequency selective surfaces exhibiting band-pass characteristics at 350 GHz fabricated from 12 um-thick Nickel screens were applied to the apertures of the spherical lens reflectors. The radar cross section of the frequency selective retroreflectors was measured at 160 GHz and 350 GHz to demonstrate proof-of-concept of narrow-band terahertz performance.

  20. Terahertz generation from graphite

    NARCIS (Netherlands)

    Ramakrishnan, G.; Chakkittakandy, R.; Planken, P.C.M.

    2009-01-01

    Generation of subpicosecond terahertz pulses is observed when graphite surfaces are illuminated with femtosecond near-infrared laser pulses. The nonlinear optical generation of THz pulses from graphite is unexpected since, in principle, the material possesses a centre of inversion symmetry.

  1. Terahertz Radome Inspection

    Directory of Open Access Journals (Sweden)

    Fabian Friederich

    2018-01-01

    Full Text Available Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize the composite structures for best possible radio performance. Hence, there exists a significant interest in non-destructive testing techniques, which can be used for defect inspection of radomes in field use as well as for quality inspection during the manufacturing process. Contactless millimeter-wave and terahertz imaging techniques provide millimeter resolution and have the potential to address both application scenarios. We report on our development of a three-dimensional (3D terahertz imaging system for radome inspection during industrial manufacturing processes. The system was designed for operation within a machining center for radome manufacturing. It simultaneously gathers terahertz depth information in adjacent frequency ranges, from 70 to 110 GHz and from 110 to 170 GHz by combining two frequency modulated continuous-wave terahertz sensing units into a single measurement device. Results from spiraliform image acquisition of a radome test sample demonstrate the successful integration of the measurement system.

  2. Heat Effects on Living Plants

    Science.gov (United States)

    Robert C. Hare

    1961-01-01

    This review of knowledge concerning the effects of high temperatures on plants was undertaken in preparation for research aimed at determining how forest fires affect physiological processes in woody species. Major subjects discussed include morphological and physiological responses to high temperatures, external and internal factors governing these responses,...

  3. Tailoring Terahertz Near-Field Enhancement via Two-Dimensional Plasmons

    Science.gov (United States)

    Davoyan, Arthur R.; Popov, Vyacheslav V.; Nikitov, Sergei A.

    2012-03-01

    We suggest a novel possibility for electrically tunable terahertz near-field enhancement in flatland electronic materials supporting two-dimensional plasmons, including recently discovered graphene. We employ electric-field effect modulation of electron density in such materials and induce a periodic plasmonic lattice with a defect cavity. We demonstrate that the plasmons resonantly excited in such a periodic plasmonic lattice by an incident terahertz radiation can strongly pump the cavity plasmon modes leading to a deep subwavelength concentration of terahertz energy, beyond λ/1000, with giant electric-field enhancement factors up to 104, which is 2 orders of magnitude higher than achieved previously in metal-based terahertz field concentrators.

  4. Modelling heating effects in cryocooled protein crystals

    CERN Document Server

    Nicholson, J; Fayz, K; Fell, B; Garman, E

    2001-01-01

    With the application of intense X-ray beams from third generation synchrotron sources, damage to cryocooled macromolecular crystals is being observed more commonly . In order to fully utilize synchrotron facilities now available for studying biological crystals, it is essential to understand the processes involved in radiation damage and beam heating so that, if possible, action can be taken to slow the rate of damage. Finite Element Analysis (FEA) has been applied to model the heating effects of X-rays on cryocooled protein crystals, and to compare the relative cooling efficiencies of nitrogen and helium.

  5. Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy

    Science.gov (United States)

    Feng, Xiaodong; Hu, Min; Zhou, Jun; Liu, Shenggang

    2017-07-01

    Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.

  6. An Effective Method for Substance Detection Using the Broad Spectrum THz Signal: A "Terahertz Nose"

    Directory of Open Access Journals (Sweden)

    Vyacheslav A. Trofimov

    2015-05-01

    Full Text Available We propose an effective method for the detection and identification of dangerous substances by using the broadband THz pulse. This pulse excites, for example, many vibrational or rotational energy levels of molecules simultaneously. By analyzing the time-dependent spectrum of the THz pulse transmitted through or reflected from a substance, we follow the average response spectrum dynamics. Comparing the absorption and emission spectrum dynamics of a substance under analysis with the corresponding data for a standard substance, one can detect and identify the substance under real conditions taking into account the influence of packing material, water vapor and substance surface. For quality assessment of the standard substance detection in the signal under analysis, we propose time-dependent integral correlation criteria. Restrictions of usually used detection and identification methods, based on a comparison between the absorption frequencies of a substance under analysis and a standard substance, are demonstrated using a physical experiment with paper napkins.

  7. Recent Progress in Terahertz Metasurfaces

    Science.gov (United States)

    Al-Naib, Ibraheem; Withayachumnankul, Withawat

    2017-09-01

    In the past decade, the concept of metasurfaces has gradually dominated the field of metamaterials owing to their fascinating optical properties and simple planar geometries. At terahertz frequencies, the concept has been driven further by the availability of advanced micro-fabrication technologies that deliver sub-micron accuracy, well below the terahertz wavelengths. Furthermore, terahertz spectrometers with high dynamic range and amplitude and phase sensitivity provide valuable information for the study of metasurfaces in general. In this paper, we review recent progress in terahertz metasurfaces mainly in the last 5 years. The first part covers nonuniform metasurfaces that perform beamforming in reflection and transmission. In addition, we briefly overview four different methodologies that can be utilized in realizing high-quality-factor metasurfaces. We also describe two recent approaches to tuning the frequency response of terahertz metasurfaces using graphene as an active medium. Finally, we provide a brief summary and outlook for future developments in this rapidly progressing field.

  8. Emission of strong Terahertz pulses from laser wakefields in weakly coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Divya, E-mail: dsingh@rajdhani.du.ac.in [PWAPA Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India); Department of Physics & Electronics, Rajdhani College, University of Delhi, Raja Garden, Ring Road, New Delhi 110015 (India); Malik, Hitendra K. [PWAPA Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India)

    2016-09-01

    The present paper discusses the laser plasma interaction for the wakefield excitation and the role of external magnetic field for the emission of Terahertz radiation in a collisional plasma. Flat top lasers are shown to be more appropriate than the conventional Gaussian lasers for the effective excitation of wakefields and hence, the generation of strong Terahertz radiation through the transverse component of wakefield.

  9. Terahertz-based target typing.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.; Barrick, Todd A.

    2008-09-01

    The purpose of this work was to create a THz component set and understanding to aid in the rapid analysis of transient events. This includes the development of fast, tunable, THz detectors, along with filter components for use with standard detectors and accompanying models to simulate detonation signatures. The signature effort was crucial in order to know the spectral range to target for detection. Our approach for frequency agile detection was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays.

  10. Electric heating effects in nematic liquid crystals

    Science.gov (United States)

    Yin, Y.; Shiyanovskii, S. V.; Lavrentovich, O. D.

    2006-07-01

    Electric heating effects in the nematic liquid crystal change the liquid crystal physical properties and dynamics. We propose a model to quantitatively describe the heating effects caused by dielectric dispersion and ionic conductivity in the nematic liquid crystals upon the application of an ac electric field. The temperature increase of the liquid crystal cell is related to the properties of the liquid crystal such as the imaginary part of the dielectric permittivity, thermal properties of the bounding plates, and the surrounding medium as well as frequency and amplitude of the electric field. To study the temperature dynamics experimentally, we use a small thermocouple inserted directly into the nematic bulk; we assure that the thermocouple does not alter the thermal behavior of the system by comparing the results to those obtained by a noncontact birefringent probing technique recently proposed by Wen and Wu [Appl. Phys. Lett. 86, 231104 (2005)]. We determine how the temperature dynamics and the stationary value of the temperature increase depend on the parameters of the materials and the applied field. We used different surrounding media, from extremely good heat conductors such as aluminum cooling device to extremely poor conductor, Styrofoam; these two provide two limiting cases as compared to typical conditions of nematic cell exploitation in a laboratory or in commercial devices. The experiments confirm the theoretical predictions, namely, that the temperature rise is controlled not only by the heat transfer coefficient of the surrounding medium (as in the previous model) but also by the thickness and the thermal conductivity coefficient of the bounding plates enclosing the nematic layer. The temperature increase strongly depends on the director orientation and can change nonmonotonously with the frequency of the applied field.

  11. The effect of heat on tissue extensibility: a comparison of deep and superficial heating.

    Science.gov (United States)

    Robertson, Val J; Ward, Alex R; Jung, Peter

    2005-04-01

    To compare the effects of deep heating (shortwave diathermy [SWD]) and superficial heating (hydrocollator packs) on tissue extensibility. A double-blind, repeated-measures study. Possible effects of sex and intervention order were controlled. A clinical laboratory. Twenty-four subjects with no neurologic or musculoskeletal pathologies affecting their lower limbs. Three intervention conditions: deep heating (SWD), superficial heating (hot packs), and no heating were applied in preallocated order to each subject at least 36 hours apart. Ankle dorsiflexion in weight bearing was measured by using an inclinometer to ascertain changes in the extensibility of the calf muscles and associated soft tissues. Deep heating increased the range of ankle dorsiflexion by 1.8 degrees +/-1.9 degrees . The change in ankle dorsiflexion after superficial and no heating was 0.7 degrees +/-1.5 degrees and -0.1 degrees +/-1.0 degrees , respectively. Deep heating, in the absence of stretching, increases tissue extensibility more than superficial heating or no heating. Superficial heating is more effective than no heating, but the difference was not statistically significant.

  12. Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection.

    Science.gov (United States)

    Han, Sang-Pil; Kim, Namje; Ko, Hyunsung; Ryu, Han-Cheol; Park, Jeong-Woo; Yoon, Young-Jong; Shin, Jun-Hwan; Lee, Dong Hun; Park, Sang-Ho; Moon, Seok-Hwan; Choi, Sung-Wook; Chun, Hyang Sook; Park, Kyung Hyun

    2012-07-30

    We propose a compact fiber-pigtailed InGaAs photoconductive antenna (FPP) module having an effective heat-dissipation solution as well as a module volume of less than 0.7 cc. The heat-dissipation of the FPP modules when using a heat-conductive printed circuit board (PCB) and an aluminium nitride (AlN) submount, without any cooling systems, improve by 40% and 85%, respectively, when compared with a photoconductive antenna chip on a conventional PCB. The AlN submount is superior to those previously reported as a heat-dissipation solution. Terahertz time-domain spectroscopy (THz-TDS) using the FPP module perfectly detects the absorption lines of water vapor in free space and an α-lactose sample.

  13. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    KAUST Repository

    Tian, Zhen

    2013-09-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  14. Terahertz (THZ) Imaging

    Science.gov (United States)

    2006-03-01

    Especially for thin films of material the absorption and time delay of a THz pulse are mostly too low to be detected. 48. Nemec, H.; Kuzel, P.; Khazan, M...the summary) states that the use of thin ZnTe electro-optic sensors for coherent characterization of a freely propagating terahertz beam...on a GaAs wafer is determined by the diameter of the gating- 40 beam-induced thin photo carrier layer. With a dynamic aperture created on a GaAs

  15. Characteristic responses of biological and nanoscale systems in the terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Balakin, A V; Evdokimov, M G; Ozheredov, I A; Sapozhnikov, D A; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Esaulkov, M N; Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-07-31

    This paper briefly examines methods for the generation of pulsed terahertz radiation and principles of pulsed terahertz spectroscopy, an advanced informative method for studies of complex biological and nanostructured systems. Some of its practical applications are described. Using a number of steroid hormones as examples, we demonstrate that terahertz spectroscopy in combination with molecular dynamics methods and computer simulation allows one to gain information about the structure of molecules in crystals. A 'terahertz colour vision' method is proposed for analysis of pulsed terahertz signals reflected from biological tissues and it is shown that this method can be effectively used to analyse the properties of biological tissues and for early skin cancer diagnosis. (laser biophotonics)

  16. An Inquiry into the Effect of Heating on Ascorbic Acid

    Science.gov (United States)

    Yip, Din Yan

    2009-01-01

    Investigations that study the effect of heating on ascorbic acid are commonly performed in schools, but the conclusions obtained are quite variable and controversial. Some results indicate that heating may destroy vitamin C, but others suggest that heating may have no effect. This article reports an attempt to resolve this confusion through a…

  17. Physiological effects after exposure to heat : A brief literature review

    NARCIS (Netherlands)

    Bogerd, C.P.; Daanen, H.A.M.

    2011-01-01

    Many employees are exposed to heat stress during their work. Although the direct effects of heat are well reported, the long term physiological effects occurring after heat exposure are hardly described. The present manuscript addresses these issues in the form of a brief literature review. Repeated

  18. Terahertz imaging for styrofoam inspection

    Science.gov (United States)

    Pradarutti, B.; Riehemann, S.; Notni, G.; Tünnermann, A.

    2007-09-01

    Imaging of styrofoam with the help of ultrashort Terahertz pulses is investigated. With a combination of pulse amplitude and time delay imaging it is possible to speed up the measurement about two orders of magnitudes.

  19. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    Science.gov (United States)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  20. Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Tominaga, Keisuke, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013 (Japan); Hayashi, Michitoshi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp; Wang, Houng-Wei [Center for Condensed Matter Sciences, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan (China); Kambara, Ohki; Sasaki, Tetsuo [Research Institute of Electronics, Shizuoka University, 3-5-1 Jyohoku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Nishizawa, Jun-ichi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Jun-ichi Nishizawa Memorial Research Center, Tohoku University, 519-1176 Aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan)

    2014-05-07

    The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.

  1. Terahertz Imaging of Subjects With Concealed Weapons

    National Research Council Canada - National Science Library

    Dickinson, Jason C; Goyette, Thoms M; Gatesman, Andrew J; Joseph, Cecil S; Root, Zachary G; Giles, Robert H; Waldman, Jerry; Nixon, William E

    2006-01-01

    .... Two contrasting techniques were used to collect the imagery. Both methods made use of in-house transceivers, consisting of two ultra-stable far-infrared lasers, terahertz heterodyne detection systems, and terahertz anechoic chambers...

  2. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  3. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    which controls the gasification rate of the energetic material for estimating heat transfer. Radiation effect on flow and heat transfer is important in the context of space technology and processes involving high temperature. In recent years, the problems of free convective and heat transfer flows through a porous medium under ...

  4. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  5. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  6. Resonant features of the terahertz generation in semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Trukhin, V. N., E-mail: valera.truchin@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Bouravleuv, A. D. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Centre (Russian Federation); Mustafin, I. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Cirlin, G. E. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Centre (Russian Federation); Kuritsyn, D. I.; Rumyantsev, V. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Morosov, S. V. [Russian Academy of Sciences, St. Petersburg Academic University—Nanotechnology Research and Education Centre (Russian Federation); Kakko, J. P.; Huhtio, T.; Lipsanen, H. [Aalto University, Department of Micro- and Nanosciences, Micronova (Finland)

    2016-12-15

    The paper presents the results of experimental studies of the generation of terahertz radiation in periodic arrays of GaAs nanowires via excitation by ultrashort optical pulses. It is found that the generation of THz radiation exhibits resonant behavior due to the resonant excitation of cylindrical modes in the nanowires. At the optimal geometric parameters of the nanowire array, the generation efficiency is found to be higher than that for bulk p-InAs, which is one of the most effective coherent terahertz emitters.

  7. Effect of intense terahertz laser and magnetic fields on the binding energy and the transition energy of shallow impurity in a bulk semiconductor

    Science.gov (United States)

    Wang, Weiyang; Xu, Lei; Wu, Bo; Zhang, Sha; Wei, Xiangfei

    2017-09-01

    The influences of intense terahertz laser and magnetic fields on shallow-donor states in GaAs bulk semiconductors in the Faraday geometry are studied theoretically in the framework of the effective-mass approximation. The interaction between the laser field and the semiconductor is treated nonperturbatively by solving analytically the time-dependent Schrödinger equation in which the two external fields are included exactly. In the nonresonant region, we have found that the binding and transition energies decrease with increasing laser-field intensity or decreasing laser-field frequency, and the binding energy increases with magnetic field. For relatively low radiation levels, the transition energy first slowly decreases with increasing magnetic field, but after a critical value, it rapidly increases with increasing magnetic field. However, it slowly decreases with magnetic field when the laser-field intensity is strong enough. Furthermore, in the vicinity of the resonant regime, the oscillatory behaviours of the binding and transition energies with laser-field frequency and magnetic field are observed. These results obtained indicate the possibility of manipulating the shallow impurity states in semiconductor by changing the intense laser-field frequency and intensity and the magnetic field, which gives a new degree of freedom in semiconductor device application.

  8. Controlling Propagation Properties of Surface Plasmon Polariton at Terahertz Frequency

    Science.gov (United States)

    Gupta, Barun

    Despite great scientific exploration since the 1900s, the terahertz range is one of the least explored regions of electromagnetic spectrum today. In the field of plasmonics, texturing and patterning allows for control over electromagnetic waves bound to the interface between a metal and the adjacent dielectric medium. The surface plasmon-polaritons (SPPs) display unique dispersion characteristics that depend upon the plasma frequency of the medium. In the long wavelength regime, where metals are highly conductive, such texturing can create an effective medium that can be characterized by an effective plasma frequency that is determined by the geometrical parameters of the surface structure. The terahertz (THz) spectral range offers unique opportunities to utilize such materials. This thesis describes a number of terahertz plasmonic devices, both passive and active, fabricated using different techniques. As an example, inkjet printing is exploited for fabricating two-dimensional plasmonic devices. In this case, we demonstrated the terahertz plasmonic structures in which the conductivity of the metallic film is varied spatially in order to further control the plasmonic response. Using a commercially available inkjet printers, in which one cartridge is filled with conductive silver ink and a second cartridge is filled with resistive carbon ink, computer generated drawings of plasmonic structures are printed in which the individual printed dots can have differing amounts of the two inks, thereby creating a spatial variation in the conductivity. The inkjet printing technique is limited to the two-dimensional structurers. In order to expand the capability of printing complex terahertz devices, which cannot otherwise be fabricated using standard fabricating techniques, we employed 3D printing techniques. 3D printing techniques using polymers to print out the complex structures. In the realm of active plasmonic devices, a wide range of innovative approaches have been

  9. Active terahertz metamaterial devices

    Science.gov (United States)

    Chen, Houtong; Padilla, Willie John; Averitt, Richard Douglas; O'Hara, John F.; Lee, Mark

    2010-11-02

    Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.

  10. Metasurfaces in terahertz waveband

    Science.gov (United States)

    He, Jingwen; Zhang, Yan

    2017-11-01

    Metasurface, composed of subwavelength antennas, allows us to obtain arbitrary permittivity and permeability in electromagnetic (EM) waveband. It can be used to control the polarization, frequency, amplitude, and phase of the EM wave. Conventional terahertz (THz) components, such as high-impedance silicon lens, polyethylene lens, and quartz wave plate, rely on the phase accumulation along the wave propagation to reshape the THz wavefront. The metasurface employs the localized surface plasmon resonance to modulate the wavefront. Compared with conventional THz components, metasurface has the advantages of being ultrathin, ultralight, and low cost. In recent years, a large number of THz devices based on metasurface have been proposed. We review in broad outline the metasurface devices in the THz region and describe the progress of static and tunable THz field-modulated metasurfaces in detail. Finally, we discuss current challenges and opportunities in this rapidly developing research field.

  11. Osmotic and Heat Stress Effects on Segmentation

    National Research Council Canada - National Science Library

    Weiss, Julian; Devoto, Stephen H

    2016-01-01

    .... Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals...

  12. Heat sink effects on weld bead: VPPA process

    Science.gov (United States)

    Steranka, Paul O., Jr.

    1990-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  13. Effect of heat input on dilution and heat affected zone in submerged ...

    Indian Academy of Sciences (India)

    Effect of heat input on dilution and heat affected zone in submerged arc welding process. HARI OM1,∗ and SUNIL PANDEY2. 1Department of Mechanical Engineering, YMCA University of Science and. Technology, Sector 06, Faridabad 121 006, India. 2Department of Mechanical Engineering, Indian Institute of Technology ...

  14. Effect of heat and heat acclimatization on cycling time trial performance and pacing

    DEFF Research Database (Denmark)

    Racinais, Sebastien; Périard, Julien D; Karlsen, Anders

    2015-01-01

    PURPOSE: To determine the effects of heat-acclimatization on performance and pacing during outdoor cycling time-trials (TT, 43.4km) in the heat. METHODS: Nine cyclists performed 3 TTs in hot ambient conditions (TTH, ∼37ºC) on the first (TTH-1), sixth (TTH-2) and fourteenth (TTH-3) days of training...

  15. EFFECT OF DIFFERENT HEAT EXCHANGERS ON THE WASTE-HEAT DRIVEN THERMOACOUSTIC ENGINE

    Directory of Open Access Journals (Sweden)

    DAVID W. Y. KHOO

    2016-01-01

    Full Text Available To enhance the efficiency of the SCORE thermoacoustic engine, it is important to investigate the heat transfer between the bulge or theconvolution and the regenerator. Heat transfer due to convection has greatinfluence on performance of the thermoacoustic engine. The total heat transfer from the bulge or the convolution to the first few layers of the regenerator is mainly due to convection and radiation. In this paper, the two modes of heat transfers, convection and radiation are under investigation numerically. The main objective of the present study is to find an ideal shape of the bulge which transports heat from the cooking stove to regenerator. Four different designs of the bulge are proposed in this work. Numerical method FluentTM CFD modelling with surface to surface (S2S radiation method is chosen to study the radiation effect. The main challenge in the development of the models of such system is to simulate the coupled heat transfer effect and the temperature gradient across both the bulge and porous media surfaces. The results show a very limited amount of heat transfer by convection on all the bulge simulated cases, with a dominant radiative heat transfer over the convective heat transfer while convection was found to be dominant in the convolution simulated case. By looking at the heat fluxes solely, convolution design is recommended to improve the engine performance as it possesses higher total heat flux comparatively but most of it was found to be by convection rather than radiation. The results were validated analytically in a recent accepted paper and found to be in good agreement. To accurately predict the heat transfer in the model, conduction must also be included in future studies as well.

  16. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities

    Science.gov (United States)

    Anderson, G. Brooke; Bell, Michelle L.

    2011-01-01

    Background Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. Objectives We analyzed mortality risk for heat waves in 43 U.S. cities (1987–2005) and investigated how effects relate to heat waves’ intensity, duration, or timing in season. Methods Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Results Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29–5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06–7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14–4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. Conclusions We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change. PMID:21084239

  17. The heating effect on different light emitting diodes chips materials

    Science.gov (United States)

    Chu, K. K.; Hambali, N. A. M. A.; Ariffin, S. N.; Wahid, M. H. A.; Shahimin, M. M.; Ali, Norshamsuri

    2017-09-01

    In this paper, simulation of non-radiative recombination heating and Joule heating effects based on different material of a light emitting diodes chip for Gallium Nitride, Indium Nitride, Zinc Oxide, Zinc Selenide and Titanium Dioxide are demonstrated. Among the light emitting diodes chips materials, Indium Nitride, Zinc Oxide and Zinc Selenide has the capability to produce the highest non-radiative recombination heating which the heating value is potential up to ×1012 to ×1013 W/m3. Meanwhile, Titanium Dioxide has the capability to generate higher value of non-radiative recombination heating with lowest value of electron carriers concentration. For the joule heating effect, the Titanium Dioxide shows the fast heating behavior as compared with other materials.

  18. Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies

    Science.gov (United States)

    Pacheco-Peña, Victor; Engheta, Nader; Kuznetsov, Sergei; Gentselev, Alexandr; Beruete, Miguel

    2017-09-01

    The terahertz band has been historically hindered by the lack of efficient generators and detectors, but a series of recent breakthroughs have helped to effectively close the "terahertz gap." A rapid development of terahertz technology has been possible thanks to the translation of revolutionary concepts from other regions of the electromagnetic spectrum. Among them, metamaterials stand out for their unprecedented ability to control wave propagation and manipulate electromagnetic response of matter. They have become a workhorse in the development of terahertz devices such as lenses, polarizers, etc., with fascinating features. In particular, epsilon-near-zero (ENZ) metamaterials have attracted much attention in the past several years due to their unusual properties such as squeezing, tunneling, and supercoupling where a wave traveling inside an electrically small channel filled with an ENZ medium can be tunneled through it, reducing reflections and coupling most of its energy. Here, we design and experimentally demonstrate an ENZ graded-index (GRIN) metamaterial lens operating at terahertz with a power enhancement of 16.2 dB, using an array of narrow hollow rectangular waveguides working near their cutoff frequencies. This is a demonstration of an ENZ GRIN device at terahertz and can open the path towards other realizations of similar devices enabling full quasioptical processing of terahertz signals.

  19. Biomedical Applications of Terahertz Spectroscopy and Imaging.

    Science.gov (United States)

    Yang, Xiang; Zhao, Xiang; Yang, Ke; Liu, Yueping; Liu, Yu; Fu, Weiling; Luo, Yang

    2016-10-01

    Terahertz (THz=10(12)Hz) radiation has attracted wide attention for its unprecedented sensing ability and its noninvasive and nonionizing properties. Tremendous strides in THz instrumentation have prompted impressive breakthroughs in THz biomedical research. Here, we review the current state of THz spectroscopy and imaging in various biomedical applications ranging from biomolecules, including DNA/RNA, amino acids/peptides, proteins, and carbohydrates, to cells and tissues. We also address the potential biological effects of THz radiation during its biological applications and propose future prospects for this cutting-edge technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Terahertz Science, Technology, and Communication

    Science.gov (United States)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  1. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...... based on heat pump performance at distinct operatingconditions. Results show that percentage increase of operating costs is similar for thethree considered climate zones, even though the effect of maldistribution on heat pumpperformance varies with operating conditions. Differences in terms of absolute...

  2. Effects Of Heat Sinks On VPPA Welds

    Science.gov (United States)

    Nunes, Arthur C.; Steranka, Paul O., Jr.

    1991-01-01

    Report describes theoretical and experimental study of absorption of heat by metal blocks in contact with metal plate while plate subjected to variable-polarity plasma-arc (VPPA) welding. Purpose of study to contribute to development of comprehensive mathematical model of temperature in weld region. Also relevant to welding of thin sheets of metal to thick blocks of metal, heat treatment of metals, and hotspots in engines.

  3. Low frequency terahertz-induced demagnetization in ferromagnetic nickel

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mostafa, E-mail: most.shalaby@gmail.com; Vicario, Carlo, E-mail: carlo.vicario@psi.ch [SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Hauri, Christoph P., E-mail: christoph.hauri@psi.ch [SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2016-05-02

    A laser stimulus at terahertz (THz) frequency is expected to offer superior control over magnetization dynamics compared to an optical pulse, where ultrafast demagnetization is mediated by heat deposition. As a THz field cycle occurs on a timescale similar to the natural speed of spin motions, this can open a path for triggering precessional magnetization motion and ultimately ultrafast magnetic switching by the THz magnetic field component, without quenching. Here, we explore the ultrafast magnetic response of a ferromagnetic nickel thin film excited by a strong (33 MV/cm) terahertz transient in non-resonant conditions. While the magnetic laser pulse component induces ultrafast magnetic precessions, we experimentally found that at high pump fluence, the THz pulse leads to large quenching which dominates the precessional motion by far. Furthermore, degradation of magnetic properties sets in and leads to permanent modifications of the Ni thin film and damage.

  4. Time-reversed lasing in the terahertz range and its preliminary study in sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yun, E-mail: shenyunoptics@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Huaqing [Department of Physics, Nanchang University, Nanchang 330031 (China); Deng, Xiaohua [Institute of Space Science and Technology, Nanchang University, Nanchang 330031 (China); Wang, Guoping [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-02-05

    Time-reversed lasing in a uniform slab and a grating structure are investigated in the terahertz range. The results show that both the uniform slab and grating can support terahertz time-reversed lasing. Nevertheless, due to the tunable effective refractive index, the grating structure can not only exhibit time-reversed lasing more effectively and flexibly than a uniform slab, but also can realize significant absorption in a broader operating frequency range. Furthermore, applications of terahertz time-reversed lasing for novel concentration/thickness sensors are preliminarily studied in a single-channel coherent perfect absorber system. - Highlights: • Time-reversed lasing are investigated in the terahertz range. • The grating structure exhibit time-reversed lasing more effectively and flexibly than a uniform slab. • THz time-reversed lasing for novel concentration/thickness sensors are studied.

  5. Practical microstructured and plasmonic terahertz waveguides

    Science.gov (United States)

    Markov, Andrey

    by low-loss air layers of comparable thickness. A large fraction of the modal fields in these waveguides is guided in the low-loss air region, thus effectively reducing the waveguide transmission losses. I consider that such waveguides can be useful not only for low-loss THz wave delivery, but also for sensing of biological and chemical specimens in the terahertz region, by placing the recognition elements directly into the waveguide microstructure. The main advantage of the proposed planar porous waveguide is the convenient access to its optical mode, since the major portion of THz power launched into such a waveguide is confined within the air layers. Moreover, small spacing between the layers promotes rapid loading of the analyte into the waveguide due to strong capillary effect (negative impact of dielectric cladding on the waveguide optical properties. In particular, I detail the use of low-density foams and microstructured plastic claddings as two enabling materials for the two-wire waveguide encapsulation. The hybrid fibe

  6. Particle shape effect on heat transfer performance in an oscillating heat pipe

    Directory of Open Access Journals (Sweden)

    Chen Hsiu-hung

    2011-01-01

    Full Text Available Abstract The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP was investigated experimentally. A binary mixture of ethylene glycol (EG and deionized water (50/50 by volume was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP.

  7. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber by micro......We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber...

  8. A terahertz grid frequency doubler

    OpenAIRE

    Moussessian, Alina; Wanke, Michael C.; Li, Yongjun; Chiao, Jung-Chih; Allen, S. James; Crowe, Thomas W.; Rutledge, David B.

    1998-01-01

    We present a 144-element terahertz quasi-optical grid frequency doubler. The grid is a planar structure with bow-tie antennas as a unit cell, each loaded with a planar Schottky diode. The maximum output power measured for this grid is 24 mW at 1 THz for 3.1-μs 500-GHz input pulses with a peak input power of 47 W. An efficiency of 0.17% for an input power of 6.3 W and output power of 10.8 mW is measured. To date, this is the largest recorded output power for a multiplier at terahertz frequenci...

  9. The effect of heating direction on flow boiling heat transfer of R134a in micro-channels

    Science.gov (United States)

    Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi

    2017-04-01

    This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.

  10. Perceived heat stress and health effects on construction workers.

    Science.gov (United States)

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  11. Effects of ridged walls on the heat transfer in a heated square duct

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.S.; Rodriguez, W.V. [Ciudad Universitaria, Mexico DF (Mexico). Instituto de Ingenieria, UNAM, Coordinacion de Ingenieria de Procesos Industrails y Ambientales, Circuito Interior; Issa, R. [LEGI-MOST, INPG, Grenoble (France)

    2005-05-01

    Turbulent flows in rectangular cooling ducts of rocket engine thrust chambers are characterized by secondary motions of Prandtl's first and second kinds. These secondary currents play a prominent part in heat transfer between the thrust chamber and the cooling gas conveyed in the duct. Previous numerical and experimental works reveal that attaching ridges on the walls of the duct causes the formation of new secondary flows of Prandtl's second kind. These new structures are likely to increase the heat transfer. The present study has investigated numerically, through large eddy simulations, the effects of different forms of ridges on heat transfer in straight square duct flows. (author)

  12. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  13. Effects of fouling in heat transfer equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Abilene, TX (United States))

    1993-03-04

    Fouling between the hot and cold streams in heat transfer equipment is a major reason boilers, heaters, and heat exchangers do not perform according to original specifications. Commonly used fluids such as water and air have well-established fouling factors. However, the factors for some industrial effluents, particularly for flue gas streams resulting from the combustion or incineration of solid or liquid fuels, can be determined only through operating experience. The paper discusses the signs of fouling, and how expensive fouling can be illustrating the second with three example problems.

  14. Effect of water activity and heating rate on Staphylococcus aureus heat resistance in walnut shells.

    Science.gov (United States)

    Zhang, Lihui; Kou, Xiaoxi; Zhang, Shuang; Cheng, Teng; Wang, Shaojin

    2018-02-02

    Water activity (a w ) and heating rate have shown important effects on the thermo-tolerance of pathogens in low moisture foods during thermal treatments. In this study, three strains were selected to compare the heat resistance in walnut shell powder and finally the most heat resistant S. aureus ATCC 25923 was chosen to investigate the influence of a w and heating rate using a heating block system (HBS). The results showed that S. aureus ATCC 25923 became more thermo-tolerant at lower a w . The D-values of S. aureus ATCC 25923 increased with decreasing water activity and heating rates (<1°C/min). A significant increase in heat resistance of S. aureus ATCC 25923 in walnut shell powder was observed only for the heating rates of 0.2 and 0.5°C/min but not at 1, 5 and 10°C/min. There was a rapid reduction of S. aureus ATCC 25923 at elevated temperatures from 26 to 56°C at a heating rate of 0.1°C/min. The inactivation under non-isothermal conditions was better fitted by Weibull distribution (R 2 =0.97 to 0.99) than first-order kinetics (R 2 =0.88 to 0.98). These results suggest that an appropriate increase in moisture content of in-shell walnuts and heating rate during thermal process can improve the inactivation efficiency of pathogens in low moisture foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  16. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  17. Electro-optic crystal mosaics for the generation of terahertz radiation

    Science.gov (United States)

    Carrig, T.J.; Taylor, A.J.; Stewart, K.R.

    1996-08-06

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.

  18. Broadband terahertz dynamics of propylene glycol monomer and oligomers

    Science.gov (United States)

    Koda, Shota; Mori, Tatsuya; Kojima, Seiji

    2016-12-01

    We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.

  19. Terahertz wavefront manipulating by double-layer graphene ribbons metasurface

    Science.gov (United States)

    Zhao, Hongliang; Chen, Zhihong; Su, Fei; Ren, Guangjun; Liu, Fei; Yao, Jianquan

    2017-11-01

    It was recently presented that the phase gradient metasurface can focus the reflection in terahertz range. However, narrow bandwidth and complex tuning method are still challenges. For instance, the size is difficult to be changed once the device is built. We propose a tunable double-layer graphene ribbons array (DLGRA) metasurface which has great potentials for applications in terahertz wavefront control. By changing the Fermi level of each graphene ribbon independently, the DLGRA separated by a bonding agent and a thin dielectric spacer can achieve nearly 2 π phase shift with high reflection efficiency. A reflector which can focus terahertz waves over a broad frequency range is demonstrated numerically by the DLGRA. Intriguingly, through a lateral shift between the nearby graphene ribbons, the variation of coupling induces a shift of focusing frequency. Hence, this approach increases the frequency range to a higher degree than the fixed state. The proposed metasurface provides an effective way for manipulating terahertz waves in a broad frequency range.

  20. Effect of Pyrodextrinization, Crosslinking and Heat- Moisture ...

    African Journals Online (AJOL)

    starch prior to modification by pyrodextrinization, cross-linking and heat-moisture treatment. Solubility, swelling power, x-ray diffraction, scanning electron microscopy (SEM) and thermal properties of the native and modified starches were ... the chemical and nutritional composition of P. biglobosa seeds revealed that it is rich ...

  1. Finite-size effect on optimal efficiency of heat engines

    Science.gov (United States)

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n -particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  2. Terahertz antireflection coatings using metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-tong [Los Alamos National Laboratory; Zhou, Jiangfeng [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Azad, Abul K [Los Alamos National Laboratory; Chen, Frank [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory

    2010-01-01

    We demonstrate terahertz metamaterial antireflection coatings (ARCs) that significantly reduce the reflection and enhance the transmission at an interface of dielectric media. They are able to operate over a wide range of incidence angles for both TM and TE polarizations. Experiments and finite-element simulations will be presented and discussed.

  3. Terahertz near-field microspectroscopy

    NARCIS (Netherlands)

    Knab, J.R.; Adam, A.J.L.; Chakkittakandy, R.; Planken, P.C.M.

    2010-01-01

    Using near-field, terahertz time-domain spectroscopy (THz-TDS), we investigate how the addition of a dielectric material into a subwavelength-diameter, cylindrical waveguide affects its transmission properties. The THz electric near-field is imaged with deep subwavelength resolution as it emerges

  4. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  5. EFFECT OF POST-WELD HEAT TREATMENT ON THE ...

    African Journals Online (AJOL)

    Effect of post- weld heat treatment on the microstructure and mechanical properties of arc welded medium carbon steel was investigated. Medium carbon steel samples were butt- welded by using the shielded metal arc welding technique and, thereafter, heat treated by annealing, normalising and quench hardening in ...

  6. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  7. Effect of heat treatment on structure and magnetic properties of ...

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  8. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and ...

  9. Effect of heat treatment temperature on microstructure and ...

    Indian Academy of Sciences (India)

    Effect of heat treatment temperature on microstructure and electrochemical properties of hollow carbon spheres prepared in high-pressure argon. Boyang Liu Yun ... 40 cycles. However, the discharge capacity of the HCSs decreases and the cycling performance is improved with the increase of heat treatment temperature.

  10. (AJST) EFFECT OF HEAT TREATMENT ON WEAR RESISTANCE ...

    African Journals Online (AJOL)

    ABSTRACT: The effects of heat treatment on the hardness and by extension the wear resistance of locally produced grinding plate ... from the grinding plate and were heat treated at 840°C, 860°C and 880°C and quenched at different rate. Some of the ... during dry sliding at low loading conditions has been attributed to the ...

  11. Effect of Hydrochloric Acid, Mechanical Scarification, Wet Heat ...

    African Journals Online (AJOL)

    Michael Horsfall

    HCL), Wet heat. ABSTRACT; The effect of different ... treatments observed showed 100% for wet heat, 90% for scarification (sand paper) and 70% for HCL of 50% ... the principle constant being a dry season of 5-7 month/year. It may grow in ...

  12. Climate Change Effects on Heat Waves and Future Heat Wave-Associated IHD Mortality in Germany

    Directory of Open Access Journals (Sweden)

    Stefan Zacharias

    2014-12-01

    Full Text Available The influence of future climate change on the occurrence of heat waves and its implications for heat wave-related mortality due to ischemic heart diseases (IHD in Germany is studied. Simulations of 19 regional climate models with a spatial resolution of 0.25° × 0.25° forced by the moderate climate change scenario A1B are analyzed. Three model time periods of 30 years are evaluated, representing present climate (1971–2000, near future climate (2021–2050, and remote future climate (2069–2098. Heat waves are defined as periods of at least three consecutive days with daily mean air temperature above the 97.5th percentile of the all-season temperature distribution. Based on the model simulations, future heat waves in Germany will be significantly more frequent, longer lasting and more intense. By the end of the 21st century, the number of heat waves will be tripled compared to present climate. Additionally, the average duration of heat waves will increase by 25%, accompanied by an increase of the average temperature during heat waves by about 1 K. Regional analyses show that stronger than average climate change effects are observed particularly in the southern regions of Germany. Furthermore, we investigated climate change impacts on IHD mortality in Germany applying temperature projections from 19 regional climate models to heat wave mortality relationships identified in a previous study. Future IHD excess deaths were calculated both in the absence and presence of some acclimatization (i.e., that people are able to physiologically acclimatize to enhanced temperature levels in the future time periods by 0% and 50%, respectively. In addition to changes in heat wave frequency, we incorporated also changes in heat wave intensity and duration into the future mortality evaluations. The results indicate that by the end of the 21st century the annual number of IHD excess deaths in Germany attributable to heat waves is expected to rise by factor 2

  13. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  14. Photoconductive, dielectric and percolation properties of anodic TiO2 nanotubes studied by terahertz spectroscopy

    Science.gov (United States)

    Kuchařík, Jiří; Sopha, Hanna; Krbal, Milos; Rychetský, Ivan; Kužel, Petr; Macak, Jan M.; Němec, Hynek

    2018-01-01

    Self-organized layers of anodic TiO2 nanotubes were investigated using time-resolved terahertz spectroscopy in the steady state and upon photoexcitation. The interpretation of the conductivity spectra is based on the response of confined charges calculated by the Monte-Carlo method and on the evaluated distribution of the probing terahertz electric field in the heterogeneous structure. We show that the charge motion perpendicular to the nanotube axis is confined on ~10 nm scale, and that the charge mobility inside these confinement areas is comparable to that observed in a bulk anatase crystal. The electrical connectivity between individual nanotubes assessed from the terahertz spectra qualitatively correlates with the geometry observed in SEM images. The measured transient terahertz transmission spectra feature an apparent resonance; we demonstrate that it is not a signature of a new low-energy excitation but a geometrical effect of Fabry–Pérot interferences in the photoexcited slab.

  15. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  16. Effect of Heat Treatment on Properties of Glass Nanocomposite Sealants.

    Science.gov (United States)

    Lee, Dong Bok; Ha, Su-Jeong; Jang, Dong-Hoon; Park, Sung; Bae, Joongmyeon; Lee, Jae Chun

    2015-01-01

    The objective of this study was to investigate the effect of heat treatments on the viscosities and electrical conductivities of glass sealants to be used in solid oxide fuel cells. Glass-based sealants, both with and without an alumina nanopowder added as a nanofiller, were heat treated at temperatures ranging from 750 degrees C to 770 degrees C for periods of up to 240 h. The effects of heat treatments on the viscosities, electrical conductivities and phase transformations of the sealants were investigated. The results showed that alumina nanopowder added to the glass increased both high-temperature electrical conductivities and the viscosities of the sintered glass nanocomposite sealants. However, lengthy heat treatments decreased the electrical conductivities of the glass nanocomposite sealants. This decrease in the conductivities of the heat-treated glass nanocomposites was attributed to the crystallization of glass phase, owing to the dissolution of the alumina nanofiller in the sealing glass.

  17. Multi-band terahertz metasurface absorber

    Science.gov (United States)

    Wang, Xuying; Wang, Qingmin; Dong, Guoyan; Hao, Yanan; Lei, Ming; Bi, Ke

    2017-12-01

    A terahertz metasurface perfect absorber with multi-band performance is demonstrated. The absorber is composed of a ground plane and four split-ring resonators (SRRs) with different dimensions, separated by a dielectric spacer. The numerical simulation results illustrate that the proposed absorber has four distinct absorption peaks at resonance frequencies of 4.24, 5.66, 7.22, and 8.97 THz, with absorption rates of 96.8%, 99.3%, 97.3%, and 99.9%, respectively. Moreover, the corresponding full width at half-maximum (FWHM) values are about 0.27, 0.35, 0.32, and 0.42 THz, respectively, which are much broader than those of previously reported absorbers. Besides, the calculated magnetic field distributions allow us to understand the absorption mechanism in detail. The effects of incident angle and azimuthal angle on the absorber are also investigated. The results show that the proposed absorber is partially sensitive to the incident angle, which makes this design promising for practical applications in terahertz imagers and detectors.

  18. Materials for phantoms for terahertz pulsed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Gillian C [Academic Unit of Medical Physics, University of Leeds, Wellcome Wing, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX (United Kingdom); Berry, Elizabeth [Academic Unit of Medical Physics, University of Leeds, Wellcome Wing, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX (United Kingdom); Smye, Stephen W [Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, LS9 7TF (United Kingdom); Brettle, David S [Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, LS9 7TF (United Kingdom)

    2004-11-07

    Phantoms are commonly used in medical imaging for quality assurance, calibration, research and teaching. They may include test patterns or simulations of organs, but in either case a tissue substitute medium is an important component of the phantom. The aim of this work was to identify materials suitable for use as tissue substitutes for the relatively new medical imaging modality terahertz pulsed imaging. Samples of different concentrations of the candidate materials TX151 and napthol green dye were prepared, and measurements made of the frequency-dependent absorption coefficient (0.5 to 1.5 THz) and refractive index (0.5 to 1.0 THz). These results were compared qualitatively with measurements made in a similar way on samples of excised human tissue (skin, adipose tissue and striated muscle). Both materials would be suitable for phantoms where the dominant mechanism to be simulated is absorption ({approx}100 cm{sup -1} at 1 THz) and where simulation of the strength of reflections from boundaries is not important; for example, test patterns for spatial resolution measurements. Only TX151 had a frequency-dependent refractive index close to that of tissue, and could therefore be used to simulate the layered structure of skin, the complexity of microvasculature or to investigate frequency-dependent interference effects that have been noted in terahertz images. (note)

  19. Moisture detection in composites by terahertz spectroscopy

    Science.gov (United States)

    Malinowski, Paweł; Pałka, Norbert; Opoka, Szymon; Wandowski, Tomasz; Ostachowicz, Wiesław

    2015-07-01

    The application of Glass Fibre Reinforced Polymers (GFRP) in many branches of industry has been increasing steadily. Many research works focus on damage identification for structures made out of such materials. However, not only delaminations, cracks or other damage can have a negative influence of GFRP parts performance. Previous research proved that fluid absorption influences the mechanical performance of composites. GFRP parts can be contaminated by moisture or release agent during manufacturing, while fuel, hydraulic fluid and moisture ingression into the composite can be the in-service treats. In the reported research authors focus on moisture detection. There are numerous sources of moisture such as post manufacturing NDT inspection with ultrasonics coupled by water or exposition to moisture during transportation and in service. An NDT tool used for the research is a terahertz (THz) spectrometer. The device uses an electromagnetic radiation in the terahertz range (0.1-3 THz) and allows for reflection and transmission measurements. The spectrometer is equipped with moving table that allows for XY scanning of large objects such as GFRP panels. In the conducted research refractive indices were experimentally extracted from the materials of interest (water and GFRP). Time signals as well as C-scans were analysed for samples with moisture contamination. In order to be sure that the observed effects are related to moisture contamination reference measurements were conducted. The obtained results showed that the THz NDT technique can detect moisture hidden under a GFRP with multiple layers.

  20. Methods to Estimate Acclimatization to Urban Heat Island Effects on Heat- and Cold-Related Mortality.

    Science.gov (United States)

    Milojevic, Ai; Armstrong, Ben G; Gasparrini, Antonio; Bohnenstengel, Sylvia I; Barratt, Benjamin; Wilkinson, Paul

    2016-07-01

    Investigators have examined whether heat mortality risk is increased in neighborhoods subject to the urban heat island (UHI) effect but have not identified degrees of difference in susceptibility to heat and cold between cool and hot areas, which we call acclimatization to the UHI. We developed methods to examine and quantify the degree of acclimatization to heat- and cold-related mortality in relation to UHI anomalies and applied these methods to London, UK. Case-crossover analyses were undertaken on 1993-2006 mortality data from London UHI decile groups defined by anomalies from the London average of modeled air temperature at a 1-km grid resolution. We estimated how UHI anomalies modified excess mortality on cold and hot days for London overall and displaced a fixed-shape temperature-mortality function ("shifted spline" model). We also compared the observed associations with those expected under no or full acclimatization to the UHI. The relative risk of death on hot versus normal days differed very little across UHI decile groups. A 1°C UHI anomaly multiplied the risk of heat death by 1.004 (95% CI: 0.950, 1.061) (interaction rate ratio) compared with the expected value of 1.070 (1.057, 1.082) if there were no acclimatization. The corresponding UHI interaction for cold was 1.020 (0.979, 1.063) versus 1.030 (1.026, 1.034) (actual versus expected under no acclimatization, respectively). Fitted splines for heat shifted little across UHI decile groups, again suggesting acclimatization. For cold, the splines shifted somewhat in the direction of no acclimatization, but did not exclude acclimatization. We have proposed two analytical methods for estimating the degree of acclimatization to the heat- and cold-related mortality burdens associated with UHIs. The results for London suggest relatively complete acclimatization to the UHI effect on summer heat-related mortality, but less clear evidence for cold-related mortality. Milojevic A, Armstrong BG, Gasparrini A

  1. Effects of portland cement particle size on heat of hydration.

    Science.gov (United States)

    2013-12-01

    Following specification harmonization for portland cements, FDOT engineers reported signs of : deterioration in concrete elements due to temperature rise effects. One of the main factors that affect : concrete temperature rise potential is the heat g...

  2. Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect

    Directory of Open Access Journals (Sweden)

    Touahri Sofiane

    2012-01-01

    Full Text Available The three dimensional mixed convection heat transfer in a electrically heated horizontal pipe conjugated to a thermal conduction through the entire solid thickness is investigated by taking into account the thermal dependence of the physical properties of the fluid and the outer heat losses. The model equations of continuity, momentum and energy are numerically solved by the finite volume method. The pipe thickness, the Prandtl and the Reynolds numbers are fixed while the Grashof number is varied from 104to107. The results obtained show that the dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection, and the local Nusselt number at the interface solid-fluid is not uniform: it has considerable axial and azimuthally variations. The effect of physical variables of the fluid depending on temperature is significant, which justifies its inclusion. The heat transfer is quantified by the local and average Nusselt numbers. We found that the average Nusselt number of solid-fluid interface of the duct increases with the increase of Grashof number. We have equally found out that the heat transfer is improved thanks to the consideration of the thermo dependence of the physical properties. We have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation: NuA=12.0753 Ri0.156

  3. Plasmon induced transparency in graphene based terahertz metamaterials

    OpenAIRE

    Devi, Koijam Monika; Islam, M.; Chowdhury, Dibakar R.; Sarma, Amarendra K.; Kumar, Gagan

    2017-01-01

    Plasmon induced transparency (PIT) effect in a terahertz graphene metamaterial is numerically and theoretically analyzed. The proposed metamaterial comprises of a pair of graphene split ring resonators placed alternately on both sides of a graphene strip of nanometer scale. The PIT effect in the graphene metamaterial is studied for different vertical and horizontal configurations. Our results reveal that there is no PIT effect in the graphene metamaterial when the centers of both the split ri...

  4. Anti-reflection coating design for metallic terahertz meta-materials

    Science.gov (United States)

    Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; Hoffmann, Matthias C.; Urazhdin, Sergei; Vavassori, Paolo; Bonetti, Stefano

    2018-02-01

    We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extended gold plates separated by a 2 $\\mu$m gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-$\\mu$m wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2\\% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.

  5. Effect of axial heat flux distribution on CHF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol

    2000-10-01

    Previous investigations for the effect of axial heat flux distributions on CHF and the prediction methods are reviewed and summarized. A total of 856 CHF data in a tube with a non-uniform axial heat flux distribution has been compiled from the articles and analyzed using the 1995 Groeneveld look-up table. The results showed that two representative correction factors, K5 of the look-up table and Tongs F factor, can be applied to describe the axial heat flux distribution effect on CHF. However, they overpredict slightly the measured CHF, depending on the quality and flux peak shape. Hence, a corrected K5 factor, which accounts for the axial heat flux distribution effect is suggested to correct these trends. It predicted the CHF power for the compiled data with an average error of 1.5% and a standard deviation of 10.3%, and also provides a reasonable prediction of CHF locations.

  6. Heat

    CERN Document Server

    Lawrence, Ellen

    2016-01-01

    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  7. Heat sink effects in variable polarity plasma arc welding

    Science.gov (United States)

    Abdelmessih, Amanie N.

    1991-01-01

    The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.

  8. Invited review: Effects of heat stress on dairy cattle welfare.

    Science.gov (United States)

    Polsky, Liam; von Keyserlingk, Marina A G

    2017-11-01

    The effects of high ambient temperatures on production animals, once thought to be limited to tropical areas, has extended into northern latitudes in response to the increasing global temperature. The number of days where the temperature-humidity index (THI) exceeds the comfort threshold (>72) is increasing in the northern United States, Canada, and Europe. Compounded by the increasing number of dairy animals and the intensification of production, heat stress has become one of the most important challenges facing the dairy industry today. The objectives of this review were to present an overview of the effects of heat stress on dairy cattle welfare and highlight important research gaps in the literature. We will also briefly discuss current heat abatement strategies, as well as the sustainability of future heat stress management. Heat stress has negative effects on the health and biological functioning of dairy cows through depressed milk production and reduced reproductive performance. Heat stress can also compromise the affective state of dairy cows by inducing feelings of hunger and thirst, and we have highlighted the need for research efforts to examine the potential relationship between heat stress, frustration, aggression, and pain. Little work has examined how heat stress affects an animal's natural coping behaviors, as well as how the animal's evolutionary adaptations for thermoregulation are managed in modern dairy systems. More research is needed to identify improved comprehensive cow-side measurements that can indicate real-time responses to elevated ambient temperatures and that could be incorporated into heat abatement management decisions. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  9. Non-linear graphene optics for terahertz applications

    OpenAIRE

    Mikhailov, S. A.

    2008-01-01

    The linear electrodynamic properties of graphene -- the frequency-dependent conductivity, the transmission spectra and collective excitations -- are briefly outlined. The non-linear frequency multiplication effects in graphene are studied, taking into account the influence of the self-consistent-field effects and of the magnetic field. The predicted phenomena can be used for creation of new devices for microwave and terahertz optics and electronics.

  10. Terahertz Cherenkov radiation from ultrafast magnetization in terbium gallium garnet

    Science.gov (United States)

    Gorelov, S. D.; Mashkovich, E. A.; Tsarev, M. V.; Bakunov, M. I.

    2013-12-01

    We report an experimental observation of terahertz Cherenkov radiation from a moving magnetic moment produced in terbium gallium garnet by a circularly polarized femtosecond laser pulse via the inverse Faraday effect. Contrary to some existing theoretical predictions, the polarity of the observed radiation unambiguously demonstrates the paramagnetic, rather than diamagnetic, nature of the ultrafast inverse Faraday effect. From measurements of the radiation field, the Verdet constant in the subpicosecond regime is ˜3-10 times smaller than its table quasistatic value.

  11. EFFECTIVE HEAT INSULATION OF COMPLICATED FORM FOR HEAT AGGREGATES OF METALLURGY

    Directory of Open Access Journals (Sweden)

    E. V. Toropov

    2008-01-01

    Full Text Available The matters of determination of rational parameters of isolation coverings for heat aggregates, functioning in metallurgical, machine-building and industrial complexes, are examined in the article. Recommendations on choice of geometrical parameters of isolation of complicated form, providing obtaining of energy saving effect at functioning of high-temperature aggregates, are offered.

  12. Terahertz applications: trends and challenges

    Science.gov (United States)

    Robin, Thierry; Bouye, Clementine; Cochard, Jacques

    2014-03-01

    The objective of our work [1] was to determine the opportunities and challenges for Terahertz application development for the next years with a focus on systems: for homeland security and for Non Destructive Testing (NDT). Terahertz radiation has unique abilities and has been the subject of extensive research for many years. Proven concepts have emerged for numerous applications including Industrial NDT, Security, Health, Telecommunications, etc. Nevertheless, there has been no widely deployed application and Businesses based on THz technologies are still in their infancy. Some technological, market and industrial barriers are still to be broken. We summarize the final analysis and data: study of the technology trends and major bottlenecks per application segment, main challenges to be addressed in the next years, key opportunities for THz technologies based on market needs and requirements.

  13. Review in terahertz spectral analysis

    OpenAIRE

    El Haddad, Josette; Bousquet, Bruno; Canioni, Lionel; Mounaix, Patrick

    2013-01-01

    International audience; Nowadays terahertz spectroscopy is a well-established technique and recent progresses in technology demonstrated that this new technique is useful for both fundamental research and industrial applications. Varieties of applications such as imaging, non destructive testing, quality control are about to be transferred to industry supported by permanent improvements from basic research. Since chemometrics is today routinely applied to IR spectroscopy, we discuss in this p...

  14. Ultrabroadband terahertz conductivity of Si nanocrystal films

    DEFF Research Database (Denmark)

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  15. Effect of heat treatment on viability of Taenia hydatigena eggs.

    Science.gov (United States)

    Buttar, Birpal S; Nelson, Mark L; Busboom, Jan R; Hancock, Dale D; Walsh, Douglas B; Jasmer, Douglas P

    2013-04-01

    Effects of heat treatments on activation and infectivity of Taenia hydatigena eggs were assessed. Eggs containing oncospheres were used for in vitro and in vivo studies to determine the response to 5min of heat treatment, ranging from room temperature (22°C) to 60°C. The study demonstrated 99.47% and 100% reduction in oncosphere activation or infectivity after 5min of heat treatment at 60°C and 57.38°C under in vitro and in vivo conditions, respectively. Similar results between the two approaches indicted the appropriateness of the in vitro methods to identify oncosphericidal treatments of practical significance. Similar heat treatments may also be effective against Taenia saginata and help to reduce occurrence of beef cysticercosis. Published by Elsevier Inc.

  16. Terahertz semiconductor-heterostructure laser.

    Science.gov (United States)

    Köhler, Rüdeger; Tredicucci, Alessandro; Beltram, Fabio; Beere, Harvey E; Linfield, Edmund H; Davies, A Giles; Ritchie, David A; Iotti, Rita C; Rossi, Fausto

    2002-05-09

    Semiconductor devices have become indispensable for generating electromagnetic radiation in everyday applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio-frequency emitters enable wireless communications. But the terahertz region (1-10 THz; 1 THz = 10(12) Hz) between these ranges has remained largely underdeveloped, despite the identification of various possible applications--for example, chemical detection, astronomy and medical imaging. Progress in this area has been hampered by the lack of compact, low-consumption, solid-state terahertz sources. Here we report a monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure. The prototype demonstrated emits a single mode at 4.4 THz, and already shows high output powers of more than 2 mW with low threshold current densities of about a few hundred A cm(-2) up to 50 K. These results are very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.

  17. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...... into the physics of charge transport, built-in fields, grain boundaries or surface states. We describe a new implementation of LTEM with a spatial resolution in the nanoscale regime based on a scattering-type near-field tip-based approach. We observe a spectral reshaping of the signal compared to conventional LTEM......-size-limited spatial resolution of ∼20 nm by imaging a gold nanorod using terahertz emission from the underlying substrate. This work enables for the first time the possibility of performing LTEM measurements on individual nanostructures....

  18. A study of the heated length to diameter effects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    An analytical and experimental investigation has been performed on the heated length-to-diameter effect on critical heat flux exit conditions. A L/D correction factor is developed by applying artificial neural network and conventional regression techniques to the KAIST CHF data base. In addition, experiment is being performed to validate the developed L/D correction factor with independent data. Assessment shows that the developed correction factor is promising for practical applications. 6 refs., 8 figs. (Author)

  19. Effects of deep heating to treat osteoarthritis pain: systematic review

    OpenAIRE

    Jorge, Matheus Santos Gomes; Zanin,Caroline; Knob, Bruna; Wibelinger, Lia Mara

    2017-01-01

    ABSTRACT BACKGROUND AND OBJECTIVES: Osteoarthritis is an inflammatory and degenerative joint disease, causing pain, musculoskeletal disorders and impact on functionality, daily life activities and quality of life. The action of physical agents by means of deep heating seems to be an alternative to treat such disease. This study aimed at verifying the effects of deep heating on osteoarthritis patients. CONTENTS: A systematic review was carried out in Medline, Scielo and LILACS databases as f...

  20. Effects of Lewis number on coupled heat and mass transfer in a circular tube subjected to external convective heating

    Science.gov (United States)

    Jiao, Anjun; Zhang, Yuwen; Ma, Hongbin; Critser, John

    2010-01-01

    Heat and mass transfer in a circular tube subject to the boundary condition of the third kind is investigated. The closed form of temperature and concentration distributions, the local Nusselt number based on the total external heat transfer and convective heat transfer inside the tube, as well as the Sherwood number were obtained. The effects of Lewis number and Biot number on heat and mass transfer were investigated. PMID:20862211

  1. Effect of inhomogeneity and plasmons on terahertz radiation from GaAs (1 0 0) surface coated with rough Au film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaojun; Quan, Baogang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Xu, Xinlong, E-mail: xlxuphy@nwu.edu.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory for Incubation Base of Photoelectric Technology and Functional Materials, and Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Hu, Fangrong [College of Electronic Engineering and Automatization, Guilin University of Electronic Technology, Guilin 541004 (China); Lu, Xinchao [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Gu, Changzhi; Wang, Li [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-11-15

    We measured terahertz (THz) radiation from GaAs (1 0 0) surface coated with rough Au film in the thickness ranging from 5 to 21 nm under the incident angle from 0° to 50°. Anomalous THz emission was observed with inhomogeneous crack structures at normal incidence, which originates dominantly from the lateral photo-Dember current. Meanwhile, enhanced THz radiation from Au/GaAs was investigated with the variation of the Au morphology, which confirmed that localized surface plasmons play an important role in the THz radiation. The results indicate the prospect of harnessing surface plasmons for efficient THz emission with controllable morphology of Au on semiconductors.

  2. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  3. Effects of polarization-charge shielding in microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  4. Terahertz spectroscopy on hole transport in pentacene thin films

    Science.gov (United States)

    Engelbrecht, S. G.; Prinz, M.; Arend, T. R.; Kersting, R.

    2014-07-01

    Charge transport in pentacene thin films is investigated using terahertz electromodulation spectroscopy. Although the material is highly polycrystalline, a hole mobility of about 20 cm2/Vs is found, which exceeds the mobility obtained in DC measurements by orders of magnitude. The high AC mobility results from a motion of charge carriers, which is not hindered by grain boundaries. An upper limit of mh*≈0.8 me is deduced for the conductivity effective mass of holes in pentacene.

  5. Terahertz spectroscopic study of benzodiazepine sedative hypnotics

    Science.gov (United States)

    Deng, Fusheng; Shen, Jingling; Wang, Xianfeng

    2011-08-01

    Terahertz time domain spectroscopy (THz-TDS) is used to the pure active ingredient of three benzodiazepine sedative hypnotics with similar molecular structure. The absorption spectra of them are studied in the range of 0.2~2.6THz. Based on the experiment, the theoretical simulation results of diazepam, nitrazepam and clonazepam are got by the Gaussian03 package of DFT/B3LYP/6-31G* method in single-molecule models. The experimental results show that even if the molecular structure and medicine property of them are similar, the accurate identification of them can still be done with their characteristic absorption spectra. Theoretical simulation results are well consistent with the experimental results. It demonstrates that absorption peaks of them in THz range mainly come from intra-molecular forces and are less affected by the intermolecular interaction and crystal effects

  6. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-15

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  7. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-22

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  8. Terahertz wireless communications based on photonics technologies.

    Science.gov (United States)

    Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki

    2013-10-07

    There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.

  9. Broadband plasmon induced transparency in terahertz metamaterials

    KAUST Repository

    Zhu, Zhihua

    2013-04-25

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. © 2013 IOP Publishing Ltd.

  10. Simulation of photoconductive antennas for terahertz radiation

    Directory of Open Access Journals (Sweden)

    Carlos Criollo

    2015-01-01

    Full Text Available Simulation of terahertz (THz emission based on PC antennas imposes a challenge to couple the semiconductor carrier phenomena, optical transport and the THz energy transport. In this paper a Multi-physics simulation for coupling these phenomena using COMSOL Multi-physics 4.3b is introduced. The main parameters of THz photoconductive (PC antenna as THz emitter have been reviewed and discussed. The results indicate the role of each parameter in the resulting photocurrent waveform and THz frequency: The radiated THz photocurrent waveform is determined by the photoconductive gap (the separation between the metallic electrodes, the incident laser illumination and the DC excitation voltage; while the THz frequency depends on the dipole length. The optimization of these parameters could enhance the emission. The simulations extend the advance of compact and cost-effective THz emitters.

  11. Effective Dielectric Properties of Au-ZnS and Au-ZnO Plasmonics Nanocomposites in the Terahertz Regime

    Science.gov (United States)

    Zolanvar, A.; Sadeghi, H.; Ranjgar, A.

    2014-10-01

    Composite materials based on plasmonic nanoparticles allow building metamaterials with very large effective permittivity (positive or negative). Moreover, if clustered or combined with other nanoparticles, it is also possible to generate effective magnetic permeability (positive or negative), and an ad-hoc design would result in the generation of double negative materials, and therefore backward wave propagation. In this work, the optical properties such as the effective permittivity, permeability and refractive index of Au-ZnS and Au-ZnO nanocomposites in a broad frequency range are studied. The enhancement is attributed to energy transfer from ZnS or ZnO to Au followed by a large local electromagnetic field on or near the surface of the Au nanoparticles. Local surface plasmon resonance could be the key reason for this enhancement. The surface plasmon, in response to changes in the refractive index of the local environment, also depends on the type of metal through the bulk plasma wavelength and the nano-particle compositions and geometry.

  12. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    Science.gov (United States)

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  13. Broadband terahertz metamaterial absorber based on sectional asymmetric structures.

    Science.gov (United States)

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-08-30

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber's working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber's each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging.

  14. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  15. Effect of heat treatment on corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2017-01-01

    Full Text Available In the present paper, duplex WC-Co/NiCrAlY coating is coated onto Ti6Al4V substrate and vacuum heat treatment is employed to investigate the corrosion behavior of heat treated samples as well as Ti6Al4V substrate for comparison. In this duplex coating system, High Velocity Oxy Fuel (HVOF process is used to deposit NiCrAlY interlayer with a constant thickness of 200 μm and WC-Co ceramic top layer with varying thickness of 250 μm, 350 μm and 450 μm deposited by Detonation Spray (DS process. Different heat treatment temperatures (600–1150 °C were employed for the coated samples to study the microstructure and the effect on corrosion resistance of the duplex coatings. Potentiodynamic polarization tests were carried to investigate the corrosion performance of duplex coated heat treated samples and the substrate in Ringer’s solution at 37 °C and prepared the pH to 5.7. The microstructure upon corrosion after heat treatment was characterized by SEM analysis to understand the corrosion behavior. The results disclosed that at all heat treatment temperatures, all the coated samples exhibited better corrosion resistance than the base substrate. However, during 950 °C and 1150 °C heat treatment temperatures, it was observed highest corrosion potential than 600 °C and 800 °C. The 350 μm thickness, coated sample exhibited highest corrosion resistance compared to other two coated samples and the substrate at all heat treatment temperatures.

  16. Terahertz dielectric properties of multiwalled carbon nanotube/polyethylene composites

    Science.gov (United States)

    Dorozhkin, K. V.; Dunaevsky, G. E.; Sarkisov, S. Yu; Suslyaev, V. I.; Tolbanov, O. P.; Zhuravlev, V. A.; Sarkisov, Yu S.; Kuznetsov, V. L.; Moseenkov, S. I.; Semikolenova, N. V.; Zakharov, V. A.; Atuchin, V. V.

    2017-10-01

    The terahertz dielectric properties of multiwalled carbon nanotube/polyethylene (MWCNT/PE) composites prepared in different ways and with various contents of carbon nanotubes have been measured by terahertz time-domain spectroscopy. The experimental dielectric susceptibilities were modeled within effective medium approximation. The MWCNTs with average diameter of 9 nm produced by ethylene decomposition over FeCo catalyst were used in the experiments. Two types of composites were prepared by various mechanical mixing of MWCNT and polyethylene powders. The other two types of composites were fabricated employing ethylene polymerization on the MWCNTs before mechanical mixing with polyethylene powder. The samples with MWCNT concentration of 0.1, 0.5, 1 and 4 wt. % were prepared for each composite type. The measured dielectric susceptibilities were higher for composites made of nanotubes with preliminary polymerization of ethylene as compared to the composites produced by just mechanical mixing at equal concentrations of MWCNTs. It was also found that the dielectric susceptibilities of the MWCNT/PE composites can be satisfactory described within Maxwell–Garnett effective medium approximation at sufficient levels (>0.5–1 wt. %) of MWCNT contents. The obtained results confirm the possibility to produce MWCNT/PE composite materials with desired dielectric properties in terahertz range.

  17. Investigation of the Frohlich hypothesis with high intensity terahertz radiation

    Science.gov (United States)

    Weightman, Peter

    2014-03-01

    This article provides an update to recent reviews of the Frohlich hypothesis that biological organisation is facilitated by the creation of coherent excited states driven by a flow of free energy provided by metabolic processes and mediated by molecular motions in the terahertz range. Sources of intense terahertz radiation have the potential to test this hypothesis since if it is true the growth and development of sensitive systems such as stem cells should be influenced by irradiation with intense terahertz radiation. A brief survey of recent work shows that it is not yet possible to make an assessment of the validity of the Frohlich hypothesis. Under some conditions a variety of cell types respond to irradiation with intense THz radiation in ways that involve changes in the activity of their DNA. In other experiments very intense and prolonged THz radiation has no measureable effect on the behavior of very sensitive systems such as stem cells. The wide variation in experimental conditions makes it impossible to draw any conclusions as to characteristics of THz radiation that will induce a response in living cells. It is possible that in environments suitable for their maintenance and growth cells are capable of compensating for any effects caused by exposure to THz radiation up to some currently unknown level of THz peak power.

  18. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  19. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  20. Effects of heat acclimation on hand cooling efficacy following exercise in the heat.

    Science.gov (United States)

    Adams, Elizabeth L; Vandermark, Lesley W; Pryor, J Luke; Pryor, Riana R; VanScoy, Rachel M; Denegar, Craig R; Huggins, Robert A; Casa, Douglas J

    2017-05-01

    This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg-1·min-1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90-240 min of treadmill or stationary bike exercise (60-80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min-1) had a greater cooling rate than NC (0.013 ± 0.003°C·min-1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min-1) was similar to NC (0.025 ± 0.002°C·min-1) (0.004°C [-0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min-1) was similar to when NHA (0.020 ± 0.003°C·min-1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.

  1. Effect of carrier heating on photovoltage in FET

    Science.gov (United States)

    Ivchenko, E. L.

    2014-12-01

    Within the framework of the Boltzmann equation, we have calculated the dc electric current and emf induced in a two-dimensional system by a high-frequency field of an electromagnetic wave or by an electric field of a plasmon wave. It has been established that the generated current consists of two contributions, one of which is proportional to the real part of the wave vector projection of the exciting wave onto the interface plane and represents the electron drag effect, and the other contribution is proportional to the extinction coefficient of the wave in the interface plane. It has been shown that the main cause of the second contribution is a nonuniform electron heating created by the wave and controlled by the energy relaxation time of the electron gas. In field-effect transistors (FET), the heating mechanism of the electric-current formation can significantly exceed the current calculated neglecting the heating.

  2. Terahertz-Driven Luminescence and Colossal Stark Effect in CdSe-CdS Colloidal Quantum Dots

    Science.gov (United States)

    Pein, Brandt C.; Chang, Wendi; Hwang, Harold Y.; Scherer, Jennifer; Coropceanu, Igor; Zhao, Xiaoguang; Zhang, Xin; Bulović, Vladimir; Bawendi, Moungi; Nelson, Keith A.

    2017-09-01

    Unique optical properties of colloidal semiconductor quantum dots (QDs), arising from quantum mechanical confinement of charge within these structures, present a versatile testbed for the study of how high electric fields affect the electronic structure of nanostructured solids. Earlier studies of quasi-DC electric field modulation of QD properties have been limited by the electrostatic breakdown processes under the high externally applied electric fields, which have restricted the range of modulation of QD properties. In contrast, in the present work we drive CdSe:CdS core:shell QD films with high-field THz-frequency electromagnetic pulses whose duration is only a few picoseconds. Surprisingly, in response to the THz excitation we observe QD luminescence even in the absence of an external charge source. Our experiments show that QD luminescence is associated with a remarkably high and rapid modulation of the QD band-gap, which is changing by more than 0.5 eV (corresponding to 25% of the unperturbed bandgap energy) within the picosecond timeframe of THz field profile. We show that these colossal energy shifts can be consistently explained by the quantum confined Stark effect. Our work demonstrates a route to extreme modulation of material properties without configurational changes in material sets or geometries. Additionally, we expect that this platform can be adapted to a novel compact THz detection scheme where conversion of THz fields (with meV-scale photon energies) to the visible/near-IR band (with eV-scale photon energies) can be achieved at room temperature with high bandwidth and sensitivity.

  3. Handbook of terahertz technologies devices and applications

    CERN Document Server

    Song, Ho-Jin

    2015-01-01

    Terahertz waves, which lie in the frequency range of 0.1-10 THz, have long been investigated in a few limited fields, such as astronomy, because of a lack of devices for their generation and detection. Several technical breakthroughs made over the last couple of decades now allow us to radiate and detect terahertz waves more easily, which has triggered the search for new uses of terahertz waves in many fields, such as bioscience, security, and information and communications technology. The book covers some of the technical breakthroughs in terms of device technologies. It discusses not only th

  4. Terahertz Tools Advance Imaging for Security, Industry

    Science.gov (United States)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  5. Narrowband Metamaterial Absorber for Terahertz Secure Labeling

    Science.gov (United States)

    Nasr, Magued; Richard, Jonathan T.; Skirlo, Scott A.; Heimbeck, Martin S.; Joannopoulos, John D.; Soljacic, Marin; Everitt, Henry O.; Domash, Lawrence

    2017-09-01

    Flexible metamaterial films, fabricated by photolithography on a thin copper-backed polyimide substrate, are used to mark or barcode objects securely. The films are characterized by continuous-wave terahertz spectroscopic ellipsometry and visualized by a scanning confocal imager coupled to a vector network analyzer that constructed a terahertz spectral hypercube. These films exhibit a strong, narrowband, polarization- and angle-insensitive absorption at wavelengths near 1 mm. Consequently, the films are nearly indistinguishable at visible or infrared wavelengths and may be easily observed by terahertz imaging only at the resonance frequency of the film.

  6. Pulsed Terahertz Spectroscopy of Biomolecules

    Science.gov (United States)

    Markelz, A. G.; Heilweil, E. J.

    1998-03-01

    Measurements of the collective vibrational modes associated with the 3D tertiary structure of biomolecules were undertaken using pulse terahertz spectroscopy. Transmission measurements of calf thymus DNA (CT-DNA), bovine serum albumin (BSA), and collagen were made for 2 cm-1 to 45 cm-1. For all three biomolecules, low frequency absorption bands could be distinguished from a broadband absorption increasing with frequency. For lyophilized powder samples, features appear at 15 cm-1 and 22 cm-1 for CT-DNA, 10 cm-1 for BSA, and 8 cm-1 and 12 cm-1 for collagen. Measurements were performed as a function of hydration and conformation.

  7. The effect of multiple heat sources on exomoon habitable zones

    Science.gov (United States)

    Dobos, Vera; Heller, René; Turner, Edwin L.

    2017-05-01

    With dozens of Jovian and super-Jovian exoplanets known to orbit their host stars in or near the stellar habitable zones, it has recently been suggested that moons the size of Mars could offer abundant surface habitats beyond the solar system. Several searches for such exomoons are now underway, and the exquisite astronomical data quality of upcoming space missions and ground-based extremely large telescopes could make the detection and characterization of exomoons possible in the near future. Here we explore the effects of tidal heating on the potential of Mars- to Earth-sized satellites to host liquid surface water, and we compare the tidal heating rates predicted by tidal equilibrium model and a viscoelastic model. In addition to tidal heating, we consider stellar radiation, planetary illumination and thermal heat from the planet. However, the effects of a possible moon atmosphere are neglected. We map the circumplanetary habitable zone for different stellar distances in specific star-planet-satellite configurations, and determine those regions where tidal heating dominates over stellar radiation. We find that the "thermostat effect" of the viscoelastic model is significant not just at large distances from the star, but also in the stellar habitable zone, where stellar radiation is prevalent. We also find that tidal heating of Mars-sized moons with eccentricities between 0.001 and 0.01 is the dominant energy source beyond 3-5 AU from a Sun-like star and beyond 0.4-0.6 AU from an M3 dwarf star. The latter would be easier to detect (if they exist), but their orbital stability might be under jeopardy due to the gravitational perturbations from the star.

  8. Effect of Heat on Antioxidant Activity of Some Tropical Leafy ...

    African Journals Online (AJOL)

    USER

    diseases and aging. The protective effect of these vegetables and fruits has been attributed to the presence of high biological active constituents they ..... As a consequence total phenolics which are usually stored in vegetables in the pectin or cellulose networks can be released during aquathermal processing, as heat can ...

  9. intercritical heat treatments effects on low carbon steels quenched

    African Journals Online (AJOL)

    DR B. A. EZEKOYE

    of a duplex structure comprising hard particles embedded in a soft ferrite matrix, but then differ in the way the strain is partitioned between the phases. The purpose of this work was to investigate the effect of diverse intercritical heat treatments on the mechanical properties of six low carbon steels, containing carbon with the ...

  10. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  11. Heat damaged forages: effects on forage energy content

    Science.gov (United States)

    Traditionally, educational materials describing the effects of heat damage within baled hays have focused on reduced bioavailability of crude protein as a result of Maillard reactions. These reactions are not simple, but actually occur in complex, multi-step pathways. Typically, the initial step inv...

  12. Effects of heat treatment on deformation characteristics of medium ...

    African Journals Online (AJOL)

    The effects of heat treatment on bending deformation, tensile strength and hardness of RST 37 medium carbon steels were investigated. Steel rod samples of ø12 mm diameter, 100 mm length, and % weight composition of 0.39 wt % C, 0.70 wt % Mn and 0.80 wt % Si and traces of alloying elements were tested.

  13. Self-heating effect induced by ion bombardment on polycrystalline ...

    Indian Academy of Sciences (India)

    to the self-heating effect by energy exchange between incident ions and Al surface, and the suppression by conti- nuous ion bombardment with a .... The temperature of the water-cooled substrate holder was fixed at 15. ◦. C. The Ar. + ... as the interaction between continuous ion bombardment and isotropic diffusion on the ...

  14. Variable viscosity effects on mixed convection heat and mass ...

    African Journals Online (AJOL)

    An analysis is carried out to study the viscous dissipation and variable viscosity effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the presence of chemical reaction. The governing boundary layer equations are written into a dimensionless form by similarity ...

  15. Reparable, high-density microelectronic module provides effective heat sink

    Science.gov (United States)

    Carlson, K. J.; Maytone, F. F.

    1967-01-01

    Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.

  16. Effect of Heat on Antioxidant Activity of Some Tropical Leafy ...

    African Journals Online (AJOL)

    USER

    Effect of Heat on Antioxidant Activity of Some Tropical Leafy Vegetables. *1S.O. Nwozo, 1 B.J. Oso, and 1,2B.E. Oyinloye .... reacted with the divalent iron to form stable magenta complex species that were very soluble in water. ..... compartments; suppression of the oxidation capacity of antioxidants by thermal inactivation of ...

  17. Effects of moisture content and heat treatment on peroxide value ...

    African Journals Online (AJOL)

    Effects of moisture content and heat treatment on peroxide value and oxidative stability of un-refined sesame oil. ... Its seed contains about 42-54 % quality oil, 22-25 % protein, 20-25 % carbohydrates and 4-6% ash. This composition varies with genetic ... and temperature. Key words: Sesame, Oil, Crude, Oxidation, Storage ...

  18. Effect of summer climatic conditions on different heat tolerance ...

    African Journals Online (AJOL)

    The effect of climatic conditions during summer on different heat tolerance indicators was determined in Friesian and ... Friesian cows, and that Jerseys should be more widely used in the warmer regions of South Africa. Die invloed van ..... McDOWELL, R.E., LEE, D.H.K., FOHRMAN, M.H. & ANDERSON,. R.S., 1953.

  19. Effects of sulphuric acid, mechanical scarification and wet heat ...

    African Journals Online (AJOL)

    Effects of different treatment methods on the germination of seeds of Parkia biglobosa (mimosaceae) were carried out. Prior treatment of seeds with sulphuric acid, wet heat and mechanical scarification were found to induce germination of the dormant seeds. These methods could be applied to raise seedlings of the plant for ...

  20. Effects of heat treatment on density, dimensional stability and color ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the effect of heat treatment on some physical properties and color change of Pinus nigra wood which has high industrial use potential and large growing stocks in Turkey. Wood samples which comprised the material of the study were obtained from an industrial plant. Samples were ...

  1. Effects of heat-activated persulfate oxidation on soil microorganisms

    DEFF Research Database (Denmark)

    Tsitonaki, Aikaterini; Smets, Barth F.; Bjerg, Poul Løgstrup

    2008-01-01

    The effects of heat-activated persulfate on indigenous microorganisms and microcosms augmented with Pseudomonas putida KT2440 were studied in laboratory batch reactors with aquifer material. Microscopic enumeration was used to measure the changes in cell density, and acetate consumption was used...

  2. Effect of whole cottonseed, plus lanolin heat-treated whole ...

    African Journals Online (AJOL)

    The study was conducted to determine the effect of whole cottonseed (WCS), heat-treated whole cottonseed (HWCS), ... Dry matter intakes did not differ ... treatments. Milk protein content or yield was not affected by any of the treatments. Milk fatty acid composition was altered significantly by all cottonseed treatments.

  3. Effects of Fermentation and Heating on the Functional Properties of ...

    African Journals Online (AJOL)

    A comparative study was conducted to determine the effects of heat treatment and fermentation on the functional properties of African oil bean (Pentaclethra macrophylla: Benth) seeds. The objective was to determine the nutritional benefits inherent therein, and the possible utilization of this plant food source as a ...

  4. Mammalian stem cells reprogramming in response to terahertz radiation.

    Directory of Open Access Journals (Sweden)

    Jonathan Bock

    2010-12-01

    Full Text Available We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied terahertz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG. Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming.

  5. The effect of rowing headgear on forced convective heat loss and radiant heat gain on a thermal manikin headform.

    Science.gov (United States)

    Bogerd, Cornelis P; Brühwiler, Paul A; Heus, Ronald

    2008-05-01

    Both radiant and forced convective heat flow were measured for a prototype rowing headgear and white and black cotton caps. The measurements were performed on a thermal manikin headform at a wind speed of 4.0 m . s(-1) (s = 0.1) in a climate chamber at 22.0 degrees C (s = 0.05), with and without radiant heat flow from a heat lamp, coming from either directly above (90 degrees ) or from above at an angle of 55 degrees . The effects of hair were studied by repeating selected measurements with a wig. All headgear reduced the radiant heat gain compared with the nude headform: about 80% for the caps and 95% for the prototype rowing headgear (P headgear (9%) (P headgear, showing that forced convective heat loss is the dominant heat transfer parameter under the chosen conditions. The results of the headgear - wig combinations were qualitatively similar, with lower absolute heat transfer.

  6. Sub-surface terahertz imaging through uneven surfaces: visualizing Neolithic wall paintings in Çatalhöyük.

    Science.gov (United States)

    Walker, Gillian C; Bowen, John W; Matthews, Wendy; Roychowdhury, Soumali; Labaune, Julien; Mourou, Gerard; Menu, Michel; Hodder, Ian; Jackson, J Bianca

    2013-04-08

    Pulsed terahertz imaging is being developed as a technique to image obscured mural paintings. Due to significant advances in terahertz technology, portable systems are now capable of operating in unregulated environments and this has prompted their use on archaeological excavations. August 2011 saw the first use of pulsed terahertz imaging at the archaeological site of Çatalhöyük, Turkey, where mural paintings dating from the Neolithic period are continuously being uncovered by archaeologists. In these particular paintings the paint is applied onto an uneven surface, and then covered by an equally uneven surface. Traditional terahertz data analysis has proven unsuccessful at sub-surface imaging of these paintings due to the effect of these uneven surfaces. For the first time, an image processing technique is presented, based around Gaussian beam-mode coupling, which enables the visualization of the obscured painting.

  7. Generation of high-power terahertz radiation by nonlinear photon-assisted tunneling transport in plasmonic metamaterials

    Science.gov (United States)

    Chen, Pai-Yen; Salas, Rodolfo; Farhat, Mohamed

    2017-12-01

    We propose an optoelectronic terahertz oscillator based on the quantum tunneling effect in a plasmonic metamaterial, utilizing a nanostructured metal-insulator-metal (MIM) tunneling junction. The collective resonant response of meta-atoms can achieve >90% optical absorption and strongly localized optical fields within the MIM plasmonic nanojunction. By properly tailoring the radiation aperture, the nonlinear quantum conductance induced by the metamaterial-enhanced, photon-assisted tunneling may produce miliwatt-level terahertz radiation through the optical beating (or heterodyne down conversion) of two lasers with a slight frequency offset. We envisage that the interplay between photon-assisted tunneling and plasmon coupling within the MIM metamaterial/diode may substantially enhance the modulated terahertz photocurrent, and may therefore realize a practical high-power, room-temperature source in applications of terahertz electronics.

  8. A numerical analysis of the effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes

    Science.gov (United States)

    Faghri, Amir; Chen, Ming-Ming

    1989-01-01

    The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.

  9. The present status of high-T c superconducting terahertz emitters

    Science.gov (United States)

    Kashiwagi, T.; Kubo, H.; Sakamoto, K.; Yuasa, T.; Tanabe, Y.; Watanabe, C.; Tanaka, T.; Komori, Y.; Ota, R.; Kuwano, G.; Nakamura, K.; Katsuragawa, T.; Tsujimoto, M.; Yamamoto, T.; Yoshizaki, R.; Minami, H.; Kadowaki, K.; Klemm, R. A.

    2017-07-01

    A terahertz (THz) wave emitter using the stack of intrinsic Josephson junctions present in the high-T c superconductor Bi2Sr2CaCu2O8+δ (Bi2212) has been developed. By applying a dc voltage V across the stack, the ac-Josephson effect converts this to an ac-current that emits photons at the Josephson frequency proportional to V. The Bi2212 device also behaves as and electromagnetic (EM) cavity, so depending upon the shape of the Bi2212 crystal, when the Josephson frequency matches that of a cavity resonance, the emission power is enhanced. However, the EM radiation characteristics also strongly depend upon the effects of Joule self heating of the device. In order to alleviate this Joule heating problem, we fabricated three distinct stand-alone Bi2212 sandwich device shapes, each crystal being first covered with Au on its top and bottom, and then sandwiched between sapphire plates. From our comparative studies of the three devices, we obtained important clues that could help to increase the emission power up to ∼mW and the frequency range up to several THz, as necessary for many applications such as security screening, high speed communications, medical and biological sensing, and astronomical detection, etc.

  10. Effects of Vapor Path Structures on Critical Heat Flux and Boiling Heat Transfer in Pool Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Most of industry areas which have used the boiling heat transfer determine the safety margin of the power systems based on the CHF point. If the power density of the systems exceed the CHF region, the systems will be damaged because vapor films, which have much lower heat transfer capabilities, will cover the heating surface. Therefore, numerous studies related to the CHF prediction models have been extensively studied over the last 60 years, in terms of its physical mechanisms. Hydrodynamic instability, macrolayer dryout, hot/dry spot, and bubble interaction theories have been proposed as the CHF triggering and prediction models. One theory widely used to predict the CHF mechanism is hydrodynamic instability theory proposed by Zuber and modified hydrodynamic theories have been proposed and developed to analyze the CHF enhancement mechanisms. The paper concluded that the RT instability should consider the effect of heater characteristics to predict the CHF values more accurately. The CHF studies related to the hydrodynamic instabilities have been focused on finding the change of the RT instability wavelength and making a relation between the RT instability and KH instability wavelengths, but the effect of the critical height for the vapor path which can represent the KH instability wavelength has not been reported. Therefore, the effect of the critical height of the vapor path was examined using various types of intended vapor path with different heights of the structures. The effect of the vapor path with various heights of the structures was considered in the plate pool boiling facility to find the hydrodynamic instability mechanisms. The critical height of the intended vapor path was found when the height was less than 3 mm. The modified KH instability wavelength by considering numerical constant of the Zuber's prediction model predicted the critical height of the vapor path as the similar value of the experimental results. The results indicated that the

  11. Metal Mesh Filters for Terahertz Receivers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of this SBIR program is to develop and demonstrate metal mesh filters for use in NASA's low noise receivers for terahertz astronomy and...

  12. Investigating murals with terahertz reflective tomography

    Science.gov (United States)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Wang, Sen; Zhang, Qunxi; Ye, Jiasheng; Zhang, Yan

    2015-08-01

    Terahertz time-domain spectroscopy (THz-TDS) imaging technology has been proposed to be used in the non-invasive detection of murals. THz-TDS images provide structural data of the sample that cannot be obtained with other complementary techniques. In this paper, two types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by the terahertz reflected time domain spectroscopy imaging system. These preset defects include a leaf slice and a slit built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. With this THz tomography, different defects with the changes of optical thickness and their relative refractive index have been identified. The application of reflective pulsed terahertz imaging has been extended to the defect detection of the murals.

  13. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...

  14. The effect of the flexibility of hydrogen bonding network on low-frequency motions of amino acids. Evidence from Terahertz spectroscopy and DFT calculations

    Science.gov (United States)

    Li, Yin; Lukács, András; Bordács, Sándor; Móczár, János; Nyitrai, Miklós; Hebling, János

    2018-02-01

    Low-frequency modes of L-Asp and L-Asn were studied in the range from 0.1 to 3.0 THz using time-domain Terahertz spectroscopy and density functional theory calculation. The results show that PBE-D2 shows more success than BLYP-D2 in prediction of THz absorption spectra. To compare their low-frequency modes, we adopted ;vibrational character ID strips; proposed by Schmuttenmaer and coworkers [Journal of Physical Chemistry B, 117, 10444(2013)]. We found that the most intense THz absorption peaks of two compounds both involve severe distortion of their hydrogen bonding networks. Due to less rigid hydrogen bonding network in L-Asp, the side chain (carboxyl group) of L-Asp exhibits larger motions than that (carboxamide group) of L-Asn in low-frequency modes.

  15. The footprint of urban heat island effect in China

    Science.gov (United States)

    Decheng Zhou; Shuqing Zhao; Liangxia Zhang; Ge Sun; Yongqiang Liu

    2015-01-01

    Urban heat island (UHI) is one major anthropogenic modification to the Earth system that transcends its physical boundary. Using MODIS data from 2003 to 2012, we showed that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities. We found an obvious urban/ rural temperature “cliff”, and estimated that the footprint of UHI effect (...

  16. Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sørensen, J G; Kristensen, Torsten Nygård; Kristensen, K V

    2007-01-01

    In insects mild heat stress early in life has been reported to increase life span and heat resistance later in life, a phenomenon termed hormesis. Here, we test if the induction of the heat shock response by mild heat stress is mediating hormesis in longevity and heat resistance at older age....... To test this hypothesis we used two heat shock transcription factor (Hsf) mutant stocks. One stock harbours a mutation giving rise to a heat sensitive Hsf which inactivates the heat shock response at high temperature and the other is a rescued mutant giving rise to a wild-type phenotype. We measured...... longevity, heat resistance and expression level of a heat shock protein, Hsp70, in controls and mildly heat treated flies. We found a marked difference between males and females with males showing a beneficial effect of the early heat treatment on longevity and heat resistance later in life in the rescued...

  17. Impact of Heat Wave Definitions on the Added Effect of Heat Waves on Cardiovascular Mortality in Beijing, China

    Directory of Open Access Journals (Sweden)

    Wentan Dong

    2016-09-01

    Full Text Available Heat waves are associated with increased mortality, however, few studies have examined the added effect of heat waves. Moreover, there is limited evidence for the influence of different heat wave definitions (HWs on cardiovascular mortality in Beijing, the capital of China. The aim of this study was to find the best HW definitions for cardiovascular mortality, and we examined the effect modification by an individual characteristic on cardiovascular mortality in Beijing, a typical northern city in China. We applied a Poisson generalized additive approach to estimate the differences in cardiovascular mortality during heat waves (using 12 HWs compared with non-heat-wave days in Beijing from 2006 to 2009. We also validated the model fit by checking the residuals to ensure that the autocorrelation was successfully removed. In addition, the effect modifications by individual characteristics were explored in different HWs. Our results showed that the associations between heat waves and cardiovascular mortality differed from different HWs. HWs using the 93th percentile of the daily average temperature (27.7 °C and a duration ≥5 days had the greatest risk, with an increase of 18% (95% confidence interval (CI: 6%, 31% in the overall population, 24% (95% CI: 10%, 39% in an older group (ages ≥65 years, and 22% (95% CI: 3%, 44% in a female group. The added effect of heat waves was apparent after 5 consecutive heat wave days for the overall population and the older group. Females and the elderly were at higher risk than males and younger subjects (ages <65 years. Our findings suggest that heat wave definitions play a significant role in the relationship between heat wave and cardiovascular mortality. Using a suitable definition may have implications for designing local heat early warning systems and protecting the susceptible populations during heat waves.

  18. Contrast-enhanced continuous-terahertz-wave imaging based on superparamagnetic iron oxide nanoparticles for biomedical applications.

    Science.gov (United States)

    Zhang, Rui; Zhang, Liangliang; Wu, Tong; Zuo, Shasha; Wang, Ruixue; Zhang, Cunlin; Zhang, Jue; Fang, Jing

    2016-04-18

    We present a novel contrast-enhanced continuous-terahertz-wave imaging modality based on magnetic induction heating of superparamagnetic iron oxide nanoparticles (SPIOs), which yields a highly sensitive increment in the reflection terahertz (THz) signal in SPIO solution upon exposure to an alternating magnetic field. In the differential and relative refection change focal-plane images before and after alternating magnetic field exposure, a dramatic contrast is demonstrated between water with and without SPIOs. This low-cost, simple, and stable contrast-enhanced continuous-THz-wave imaging system is suitable for miniaturization and real-time imaging application.

  19. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Michael J. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zalden, Peter [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chen, Frank [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Weems, Ben [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Chatzakis, Ioannis [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Hoffmann, Matthias C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); JARA–Fundamentals of Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M., E-mail: aaronl@stanford.edu [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  20. Heat Transport Effects in Rotating Gases and Plasmas

    Science.gov (United States)

    Kolmes, Elijah; Geyko, Vasily; Fisch, Nathaniel

    2016-10-01

    In some contexts, rotating gases and plasmas exhibit heat transport effects that are substantially different from what would be found in the absence of rotation. For instance, a Ranque-Hilsch vortex tube is a device which separates an input stream of (neutral) gas into hot and cold streams by setting up a rotating flow in a specially designed cylindrical chamber. One class of vortex tube models involves radial motion that carries gas up and down the pressure gradients set up by the centrifugal potential inside the tube and which results in adiabatic heating and cooling of the radially moving material. The approach of producing heat transport in a rotating flow using pressure gradients and motion along those gradients may have applications in plasma systems. We discuss possible applications for rotational heat transport effects in plasma systems, including Z-pinch configurations. Princeton Plasma Physics Laboratory; U.S. Defense Reduction Agency Grant No. HDTRA1-11-1-0037; and the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948.

  1. Terahertz detection of magnetic field-driven topological phase transition in HgTe-based transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kadykov, A. M. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, Universite Montpellier, 34095 Montpellier (France); Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, Nizhny Novgorod 603950 (Russian Federation); Teppe, F., E-mail: frederic.teppe@univ-montp2.fr; Consejo, C.; Ruffenach, S.; Marcinkiewicz, M.; Desrat, W.; Dyakonova, N.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, Universite Montpellier, 34095 Montpellier (France); Viti, L.; Vitiello, M. S. [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Krishtopenko, S. S.; Morozov, S. V.; Gavrilenko, V. I. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Mikhailov, N. N.; Dvoretsky, S. A. [Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent' eva 13, Novosibirsk 630090 (Russian Federation)

    2015-10-12

    We report on terahertz photoconductivity under magnetic field up to 16 T of field effect transistor based on HgTe quantum well (QW) with an inverted band structure. We observe pronounced cyclotron resonance and Shubnikov-de Haas-like oscillations, indicating a high mobility electron gas in the transistor channel. We discover that nonlinearity of the transistor channel allows for observation of characteristic features in photoconductivity at critical magnetic field corresponding to the phase transition between topological quantum spin Hall and trivial quantum Hall states in HgTe QW. Our results pave the way towards terahertz topological field effect transistors.

  2. Dynamical effects of vegetation on the 2003 summer heat waves

    Science.gov (United States)

    Stéfanon, M.

    2012-04-01

    Dynamical effects of vegetation on the 2003 summer heat waves Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Nathalie de Noblet(2) (1) IPSL/LMD, France; (2) IPSL/LSCE, France The land surface model (LSM) in regional climate models (RCMs) plays a key role in energy and water exchanges between land and atmosphere. The vegetation can affect these exchanges through physical, biophysical and bio-geophysical mechanisms. It participates to evapo-transpiration process which determines the partitioning of net radiation between sensible and latent heat flux, through water evaporation from soil throughout the entire root system. For seasonal timescale leaf cover change induced leaf-area index (LAI) and albedo changes, impacting the Earth's radiative balance. In addition, atmospheric chemistry and carbon concentration has a direct effect on plant stomatal structure, the main exchange interface with the atmosphere. Therefore the surface energy balance is intimately linked to the carbon cycle and vegetation conditions and an accurate representation of the Earth's surface is required to improve the performance of RCMs. It is even more crucial for extreme events as heat waves and droughts which display highly nonlinear behaviour. If triggering of heat waves is determined by the large scale, local coupled processes over land can amplify or inhibit heat trough several feedback mechanism. One set of two simulation has been conducted with WRF, using different LSMs. They aim to study drought and vegetation effect on the dynamical and hydrological processes controlling the occurrence and life cycle of heat waves In the MORCE plateform, the dynamical global vegetation model (DGVM) ORCHIDEE is implemented in the atmospheric module WRF. ORCHIDEE is based on three different modules. The first module, called SECHIBA, describes the fast processes such as exchanges of energy and water between the atmosphere and the biosphere, and the soil water budget. The phenology and carbon

  3. The Effect of a Piezoelectric Fan on Forced Air Heat Transfer in a Pin-Fin Heat Sink

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2015-02-01

    Full Text Available An investigation was carried out on the effect of airflow from the blade of a piezoelectric fan on the main cooling airflow across a pin-fin heat sink. The study considered the respective orientation and distances between the piezoelectric blade and the heat sink in a rectangular channel where the airflow was uniform and axial. Three different pin-fin heat sinks with in-line pin-fin arrays were used: 5´5, 7´7 and 9´9. Variable parameters included the Reynolds number of the main airflow and the relative position of the piezoelectric blade and the heat sink. The results showed that the smaller the horizontal distance between the blade and the heat sink, or the greater the vertical distance between the piezoelectric blade and the channel floor, the better the total heat transfer enhancement. Of the three heat sinks used, the 9´9 unit coupled with transverse oscillation of the piezoelectric blade had a slightly higher heat-transfer ratio enhancement. The heat-transfer enhancement ratio Nu/Nu0 (Nu0 is the Nusselt number of the system without the piezoelectric blade will gradually approach 1 with an increase of the Reynolds number of the main flow. At ReL=1200, and with the assistance of the piezoelectric blade, the maximum value of Nu/Nu0 for the 9´9 pin-fin heat sink exceeded 2.

  4. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  5. Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ

    Science.gov (United States)

    Boyd, S. T. P.; Chatto, A. R.; Lee, R. A. M.; Duncan, R. V.; Goodstein, D. L.

    2006-09-01

    In 2000 Harter et al. reported the first measurements of the enhancement of the heat capacity ΔCQ≡C(Q)-C(Q=0) of helium-II transporting a heat flux density Q near Tλ. Surprisingly, their measured ΔCQ was ˜7-12 times larger than predicted, depending on which theory was assumed. In this report we present a candidate explanation for this discrepancy: unintended heat flux inhomogeneity. Because C(Q) should diverge at a critical heat flux density Qc, homogeneous heat flow is required for an accurate measurement. We present results from numerical analysis of the heat flow in the Harter et al. cell indicating that substantial inhomogeneity occurred. We determine the effect of the inhomogeneity on ΔCQ and find rough agreement with the observed disparity between prediction and measurement.

  6. Effects of flash tank vapor injection on the heating performance of an inverter-driven heat pump for cold regions

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jaehyeok; Jeong, Min Woo; Kim, Yongchan [Department of Mechanical Engineering, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-713 (Korea)

    2010-06-15

    A heat pump has received much attention as substitute for the conventional boiler or heating coil because of its high efficiency. For the wide application of the heat pump, the most important design factor is the performance degradation upon its installation in tropical and cold regions. In this study, the effects of flash tank vapor injection on the heating performance of a two-stage heat pump with an inverter-driven twin rotary compressor were measured and analyzed for compressor frequency ranging from 50 to 100 Hz at ambient temperatures of -15, -5, and 5 C. The COP and heating capacity of the injection cycle were enhanced by 10% and 25%, respectively, at the ambient temperature of -15 C. The total mass flow rate of the injection cycle was 30-38% higher than that of the non-injection cycle. (author)

  7. Effect of heat processing on selected grain amaranth physicochemical properties

    Science.gov (United States)

    Muyonga, John H; Andabati, Brian; Ssepuuya, Geoffrey

    2014-01-01

    Grain amaranth is a pseudocereal with unique agricultural, nutritional, and functional properties. This study was undertaken to determine the effect of different heat-processing methods on physicochemical and nutraceutical properties in two main grain amaranth species, of Amaranthus hypochondriacus L. and Amaranthus cruentus L. Grains were prepared by roasting and popping, milled and analyzed for changes in in vitro protein digestibility, gruel viscosity, pasting characteristics, antioxidant activity, flavonoids, and total phenolics. In vitro protein digestibility was determined using the pepsin-pancreatin enzyme system. Viscosity and pasting characteristics of samples were determined using a Brookfield Viscometer and a Rapid Visco Analyzer, respectively. The grain methanol extracts were analysed for phenolics using spectrophotometry while antioxidant activity was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. Heat treatment led to a reduction in protein digestibility, the effect being higher in popped than in roasted samples. Viscosities for roasted grain amaranth gruels were significantly higher than those obtained from raw and popped grain amaranth gruels. The results for pasting properties were consistent with the results for viscosity. In both A. hypochondriacus L. and A. cruentus L., the order of the viscosity values was roasted>raw>popped. The viscosities were also generally lower for A. cruentus L. compared to A. hypochondriacus L. Raw samples for both A. hypochondriacus L. and A. cruentus L. did not significantly differ in total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant activity values. Thermal processing led to an increase in TFC and antioxidant activity. However, TPC of heat-processed samples remained unchanged. From the results, it can be concluded that heat treatment enhances antioxidant activity of grain amaranth and causes rheological changes dependent on the nature of heat treatment. PMID

  8. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  9. High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation

    KAUST Repository

    Zhang, Huifang

    2017-11-30

    Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.

  10. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy

    Science.gov (United States)

    Castro-Camus, E.; Palomar, M.; Covarrubias, A. A.

    2013-10-01

    The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz spectroscopy to study the water dynamics of Arabidopsis thaliana by comparing the dehydration kinetics of leaves from plants under well-irrigated and water deficit conditions. We also present measurements of the effect of dark-light cycles and abscisic acid on its water dynamics. The measurements we present provide a new perspective on the water dynamics of plants under different external stimuli and confirm that terahertz can be an excellent non-contact probe of in-vivo tissue hydration.

  11. Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model.

    Science.gov (United States)

    Hokmabadi, Mohammad Parvinnezhad; Wilbert, David S; Kung, Patrick; Kim, Seongsin M

    2013-07-15

    Metamaterial terahertz absorbers composed of a frequency selective layer followed by a spacer and a metallic backplane have recently attracted great attention as a device to detect terahertz radiation. In this work, we present a quasistatic dynamic circuit model that can decently describe operational principle of metamaterial terahertz absorbers based on interference theory of reflected waves. The model comprises two series LC resonance components, one for resonance in frequency selective surface (FSS) and another for resonance inside the spacer. Absorption frequency is dominantly determined by the LC of FSS while the spacer LC changes slightly the magnitude and frequency of absorption. This model fits perfectly for both simulated and experimental data. By using this model, we study our designed absorber and we analyze the effect of changing in spacer thickness and metal conductivity on absorption spectrum.

  12. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui

    2017-08-15

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  13. Transition radiation from graphene plasmons by a bunch beam in the terahertz regime.

    Science.gov (United States)

    Zhang, Kai-Chun; Chen, Xiao-Xing; Sheng, Chang-Jian; Ooi, Kelvin J A; Ang, Lay Kee; Yuan, Xue-Song

    2017-08-21

    The terahertz band is an increasingly important spectrum in a wide range of applications from bioimaging and medical diagnostics to security and wireless communications. We propose a tunable terahertz coherent radiation source based on graphene plasmon-induced transition radiation. The transition radiation in terahertz regime arises from the graphene plasmons, which are excited by a normally incident bunched electron beam. We analyze the field-intensities and spectral-angular distributions of the transition radiation with respect to Fermi energy, substrate dielectric permittivity, and electron bunch energy for both the coherent and incoherent radiation. The effect of electron bunching on the radiation pattern is discussed. The mechanism of plasmon frequency-selective transition radiation is discovered.

  14. Effective use of heat-recovery steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (Abco Industries, Abilene, TX (United States))

    1993-01-01

    Heat-recovery steam generators (HRSGs), often called waste-heat boilers, recover energy from gas streams in a wide range of chemical-process plants. They play the same role in cogeneration and combined-cycle plants that generate steam and electric power, and in facilities that incinerate solid, liquid or gaseous waste. The HRSG is basically a heat exchanger that serves as a boiler. The steam-generation rate and the amount of space available help determine the particular type used in a given situation. So do the quantity, temperature, pressure, chemical composition and purity of the gas. HRSGs are in general custom-designed for each situation, and the purchasing company's engineers must take special care in preparing a well-written specification. Guidelines for doing so appear later. How to use HRSGs effectively in chemical-process plants can be aptly illustrated by two major examples, both covered below: steam reforming of natural gas to produce hydrogen, as in an ammonia or methanol plant; and manufacture of sulfuric acid by the contact process. Also included below is a look at HRSGs in incineration plants, followed by guidelines for proper specifying of these heat-exchange devices.

  15. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  16. Plasmonic Terahertz Amplification in Graphene-Based Asymmetric Hyperbolic Metamaterial

    Directory of Open Access Journals (Sweden)

    Igor Nefedov

    2015-05-01

    Full Text Available We propose and theoretically explore terahertz amplification, based on stimulated generation of plasmons in graphene asymmetric hyperbolic metamaterials (AHMM, strongly coupled to terahertz radiation. In contrast to the terahertz amplification in resonant nanocavities, AHMM provides a wide-band THz amplification without any reflection in optically thin graphene multilayers.

  17. Enhanced terahertz emission from thin film semiconductor/metal interfaces

    NARCIS (Netherlands)

    Ramakrishnan, G.

    2012-01-01

    Terahertz light is electromagnetic radiation, similar to visible light. The photons that the terahertz light is comprised of carry a much smaller amount of energy compared to the visible light photons. Unlike visible light, terahertz light can pass through materials like plastic, cardboards, wood

  18. EFFECT OF HEAT TREATMENT ON ANTIOXIDANT ACTIVITY OF SOME SPICES

    OpenAIRE

    Ademoyegun Olufemi Temitope; Adewuyi Gregory Olufemi; Fariyike Timothy Alaba

    2010-01-01

    Spices show potential health benefits as they possess antioxidant activity. The study was to determine the effect of cooking on the antioxidant activity of some selected spices. The total phenol content of five spices (Onion, Garlic, Ginger, Turmeric, and Basil) was determined at different heating periods (1h and 2 h) at 1000c. Although these dietary spice are resistant to thermal denaturation, interestingly, in the case of onion shows reduction in all the tested activities and others show...

  19. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  20. The effect of convective heating on evaporative heat loss in anesthetized children.

    Science.gov (United States)

    Cassey, John; Salter, Jo; Colyvas, Kim; Burstal, Richard; Stanger, Rohan

    2014-12-01

    Convective warming is effective in maintaining core temperature under anesthesia. It may increase evaporative water loss (EWL). If significant, further investigation of warming modifications to minimize this impact would be warranted. To quantify EWL in two groups of children (warmed and nonwarmed) having surgical procedures under anesthesia. We performed an observational study of well children having general anesthesia for elective surgical procedures lasting ≥60 min. They were recruited sequentially to each of three age groups: 1-12 months, 13 months-5 years, and 5-12 years--with each age group divided into convectively warmed (43°C) and nonwarmed (21°C) subgroups. Evaporative heat loss (EHL) was calculated from accurate measurement of net EWL during the surgical period. Sixty children were studied. As a percentage of body mass, mean EWLs were 0.29 (warmed) and 0.09 (nonwarmed). Using an ancova model, only procedure duration had a significant impact and explained why the extended procedural time in some convectively warmed children led to higher mean EWLs for that group. For the nonwarmed group, the mean Tcore drop was 1.27°C with a contribution from EWL of 0.6°C over ~70 min. Within the age range 1 month-12 years, EHL is not significantly influenced by convective heating under anesthesia. There is no thermal advantage in exploring technique modifications such as humidifying the warming air. Previous estimates of the contribution of EHL to total heat loss in anesthetized children may require revision. © 2014 John Wiley & Sons Ltd.

  1. Responding to the Effects of Extreme Heat: Baltimore City's Code Red Program.

    Science.gov (United States)

    Martin, Jennifer L

    2016-01-01

    Heat response plans are becoming increasingly more common as US cities prepare for heat waves and other effects of climate change. Standard elements of heat response plans exist, but plans vary depending on geographic location and distribution of vulnerable populations. Because heat events vary over time and affect populations differently based on vulnerability, it is difficult to compare heat response plans and evaluate responses to heat events. This article provides an overview of the Baltimore City heat response plan, the Code Red program, and discusses the city's response to the 2012 Ohio Valley/Mid Atlantic Derecho, a complex heat event. Challenges with and strategies for evaluating the program are reviewed and shared.

  2. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Gapeyev, A B; Pashovkin, T N [Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region (Russian Federation); Matyunin, S N [Section of Applied Problems at the Presidium of the Russian Academy of Sciences, Moscow (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  3. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Science.gov (United States)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  4. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  5. Mitigating the Urban Heat Island Effect in Megacity Tehran

    Directory of Open Access Journals (Sweden)

    Sahar Sodoudi

    2014-01-01

    Full Text Available Cities demonstrate higher nocturnal temperatures than surrounding rural areas, which is called “urban heat island” (UHI effect. Climate change projections also indicate increase in the frequency and intensity of heat waves, which will intensify the UHI effect. As megacity Tehran is affected by severe heatwaves in summer, this study investigates its UHI characteristics and suggests some feasible mitigation strategies in order to reduce the air temperature and save energy. Temperature monitoring in Tehran shows clear evidence of the occurrence of the UHI effect, with a peak in July, where the urban area is circa 6 K warmer than the surrounding areas. The mobile measurements show a park cool island of 6-7 K in 2 central parks, which is also confirmed by satellite images. The effectiveness of three UHI mitigation strategies high albedo material (HAM, greenery on the surface and on the roofs (VEG, and a combination of them (HYBRID has been studied using simulation with the microscale model ENVI-met. All three strategies show higher cooling effect in the daytime. The average nocturnal cooling effect of VEG and HYBRID (0.92, 1.10 K is much higher than HAM (0.16 K, although high-density trees show a negative effect on nocturnal cooling.

  6. Thermal effect of a thermoelectric generator on parallel microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied...

  7. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  8. Optofluidic microring flowmeter based on heat transfer effect

    Science.gov (United States)

    Gong, Yuan; Zhang, Minglei; Gong, Chaoyang; Wu, Yu; Rao, Yunjiang; Fan, Xudong

    2017-04-01

    We demonstrate an optofluidic flow rate sensor based on the heat transfer effect in a microfluidic channel for the lab-on-a-chip applications. By employing an optofluidic ring resonator (OFRR), the wavelength shift of the resonant dip of the whispering gallery mode is detected as a function of the flow rate when the flow is heated by a 1480 nm laser. A measurement range of 2 μL/min - 100 μL/min, a minimum detectable change of 30 nL/min for the flow rate detection are achieved. Experimental results indicate that the OFRR flow rate sensor has good repeatability and the inverse sensitivity is beneficial for detecting the low flow rate with high sensitivity.

  9. Joule Heating Effects on Electrokinetic Flow Instabilities in Ferrofluids

    Science.gov (United States)

    Brumme, Christian; Shaw, Ryan; Zhou, Yilong; Prabhakaran, Rama; Xuan, Xiangchun

    We have demonstrated in our earlier work that the application of a tangential electric field can draw fluid instabilities at the interface of a ferrofluid/water co-flow. These electrokinetic flow instabilities are produced primarily by the mismatch of electric conductivities of the two fluids. We demonstrate in this talk that the Joule heating induced fluid temperature rises and gradients can significantly suppress the electrokinetic flow instabilities. We also develop a two-dimensional depth-averaged numerical model to predict the fluid temperature, flow and concentration fields in the two-fluid system with the goal to understand the Joule heating effects on electric field-driven ferrofluid flow instabilities. This work was supported by the Honors and Creative Inquiry programs at Clemson University.

  10. PWR-blowdown heat transfer separate effects program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described.

  11. Effect of heat sink on the recurrence of small malignant hepatic tumors after radiofrequency ablation.

    Science.gov (United States)

    Lin, Zheng-Yu; Li, Guo-Lin; Chen, Jin; Chen, Zhong-Wu; Chen, Yi-Ping; Lin, Sun-Zhi

    2016-12-01

    The aim of this study was to investigate the effect of heat sink on the recurrence of hepatic malignant tumors heat sink effect is an important factor affecting recurrence of hepatic malignant tumors after RFA.

  12. Direct Measurements of Terahertz Meta-atoms with Near-Field Emission of Terahertz Waves

    Science.gov (United States)

    Serita, Kazunori; Darmo, Juraj; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2017-09-01

    We present the direct measurements of terahertz meta-atoms, an elementary unit of metamaterials, by using locally generated terahertz waves in the near-field region. In contrast to a conventional far-field terahertz spectroscopy or imaging, our technique features the localized emission of coherent terahertz pulses on a sub-wavelength scale, which has a potential for visualizing details of dynamics of each meta-atom. The obtained data show the near-field coupling among the meta-atoms and the impact of the electric field distribution from the excited meta-atom to neighbor meta-atoms. The observable LC resonance response is enhanced with an increase of numbers of meta-atoms. Furthermore, our approach also has a potential for visualizing the individual mode of meta-atom at different terahertz irradiation spots. These data can help us to understand the important role of the meta-atom in metamaterials and develop the novel terahertz components and devices such as active terahertz metamaterial and compact, high-sensitive bio-sensor devices.

  13. A wavefront analyzer for terahertz time-domain spectrometers

    DEFF Research Database (Denmark)

    Abraham, E.; Brossard, M.; Fauche, P.

    2017-01-01

    We report on the development of a terahertz wavefront sensor able to determine the optical aberrations of a terahertz time-domain spectrometer. The system measures point-by-point the amplitude and phase of the terahertz electric field in a given plane. From this measurement, we reconstruct...... the terahertz wavefront and calculate its Zernike coefficients. In particular, we especially show that the focus spot of the spectrometer suffers from optical aberrations such as remaining defocus, first and second order astigmatisms, as well as spherical aberration. This opens a route to wavefront correction...... for improved terahertz imaging and spectroscopy....

  14. A new class of electrically tunable metamaterial terahertz modulators.

    Science.gov (United States)

    Yan, Rusen; Sensale-Rodriguez, Berardi; Liu, Lei; Jena, Debdeep; Xing, Huili Grace

    2012-12-17

    Switchable metamaterials offer unique solutions for efficiently manipulating electromagnetic waves, particularly for terahertz waves, which has been difficult since naturally occurring materials rarely respond to terahertz frequencies controllably. However, few terahertz modulators demonstrated to date exhibit simultaneously low attenuation and high modulation depth. In this letter we propose a new class of electrically-tunable terahertz metamaterial modulators employing metallic frequency-selective-surfaces (FSS) in conjunction with capacitively-tunable layers of electrons, promising near 100% modulation depth and graphene, Si, MoS(2), oxides etc, thus opening up myriad opportunities for realizing high performance switchable metamaterials over an ultra-wide terahertz frequency range.

  15. DRY HEATING OF PALM FRUITS: EFFECT ON SELECTED PARAMETERS

    OpenAIRE

    Nuâman Abdul Hadi; Ng Mei Han; Choo Yuen May; Ma Ah Ngan

    2012-01-01

    This study reports on the effects of dry heating of oil palm fruits for the purpose of sterilization and solvent extraction with various oil parameters. Steam sterilization of oil palm fresh fruit bunches was required as a pre-treatment to deactivate enzymes that give rise to Free Fatty Acids (FFA) before the oil could be extracted. While the use of high-pressure steam was effective, large amount of water used ends up as palm oil mill effluent, which requires appropriate treatment. Dry heatin...

  16. The effect of heat waves on dairy cow mortality.

    Science.gov (United States)

    Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N

    2015-07-01

    This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW. Copyright © 2015 American Dairy Science

  17. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  18. [A Compact Source of Terahertz Radiation Based on Interaction of Electrons in à Quantum Well with an Electromagnetic Wave of a Corrugated Waveguide].

    Science.gov (United States)

    Shchurova, L Yu; Namiot, V A; Sarkisyan, D R

    2015-01-01

    Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.

  19. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.

    Science.gov (United States)

    Esteban, Maria-Dolores; Conesa, Raquel; Huertas, Juan-Pablo; Palop, Alfredo

    2015-06-01

    Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures. While the heat resistance was hardly reduced when thymol was present in the heating medium, the effect in the recovery medium was greater, reducing the D100 °C values down to one third for B. subtilis and B. cereus when 0.5 mM thymol was added. This effect was dose dependent and was also observed at other heating temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Heat Stress Effects on Growing-Finishing Swine

    Science.gov (United States)

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  1. Peculiarities of determining the effective thermal conductivity of multilayer nanostructures under unsteady heating

    Science.gov (United States)

    Khvesyuk, V. I.; Chirkov, A. Yu

    2017-11-01

    Some features of pulse heating method are considered to study the main regularities of changes in the temperature of thin films in application to flash method. Heat exchange with the surrounding space is taken into account. The characteristic parameters of laser heating system are specified. The mathematical model of the heating process is based on the heat equation with effective heat conductivity. Such an analysis allows to estimate effective thermal diffusivity and thermal conductance including Kapitza conductance. For multi-layer nano-films Kapitza conductance can be estimated as its contribution to effective conductance is significant.

  2. Investigation of Terahertz Emission from BiVO4 /Au Thin Film Interface

    NARCIS (Netherlands)

    Kumar, N.; Abdi, F.F.; Trzesniewski, B.; Smith, W.A.; Planken, P.C.M.; Adam, A.J.L.

    2015-01-01

    We demonstrate emission of terahertz pulses from a BiVO4/Au thin film interface, illuminated with femtosecond laser pulses. Based on the experimental observations, we propose that the most likely cause of the THz emission is the Photo-Dember effect caused by the standing wave intensity distribution

  3. The footprint of urban heat island effect in China.

    Science.gov (United States)

    Zhou, Decheng; Zhao, Shuqing; Zhang, Liangxia; Sun, Ge; Liu, Yongqiang

    2015-06-10

    Urban heat island (UHI) is one major anthropogenic modification to the Earth system that transcends its physical boundary. Using MODIS data from 2003 to 2012, we showed that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities. We found an obvious urban/rural temperature "cliff", and estimated that the footprint of UHI effect (FP, including urban area) was 2.3 and 3.9 times of urban size for the day and night, respectively, with large spatiotemporal heterogeneities. We further revealed that ignoring the FP may underestimate the UHI intensity in most cases and even alter the direction of UHI estimates for few cities. Our results provide new insights to the characteristics of UHI effect and emphasize the necessity of considering city- and time-specific FP when assessing the urbanization effects on local climate.

  4. A Simple Birefringent Terahertz Waveguide Based on Polymer Elliptical Tube

    Science.gov (United States)

    Wang, Jing-Li; Yao, Jian-Quan; Chen, He-Ming; Li, Zhong-Yang

    2011-01-01

    We propose a simple birefringent terahertz (THz) waveguide which is a polymer elliptical tube with a cross section of elliptical ring structure. It can be achieved by stretching a normal circular-tube in one direction. Simulations based on the full-vector finite element method (FEM) show that this kind of waveguides exhibits high birefringence on a level of 10-2 over a wide THz frequency range. Moreover, as a majority of modal power is trapped in the air core inside the polymer elliptical tube, the THz waveguide guiding loss caused by material absorption can be reduced effectively.

  5. Terahertz study of hole transport in pentacene thin films

    Science.gov (United States)

    Engelbrecht, Stefan G.; Prinz, Markus; Arend, Thomas R.; Kersting, Roland

    2014-10-01

    Terahertz electromodulation spectroscopy is a novel tool for studying charge carrier transport in polycrys­talline thin films. The technique selectively probes the high-frequency response of mobile carriers and is insensitive to scattering at grain boundaries as well as to trapping processes. In thin films of pentacene we find a hole mobility of 21 cm2 /Vs, which exceeds the largest previously reported values obtained in poly­ crystalline pentacene. Additionally, the data provide an upper limit of the hole conductivity effective mass of mh ≍ 0.8 me.

  6. Terahertz electromodulation spectroscopy of electron transport in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, S. G.; Arend, T. R.; Kersting, R., E-mail: roland.kersting@lmu.de [Photonics and Optoelectronics Group, Physics Department and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Amalienstr. 54, 80799 München (Germany); Zhu, T.; Kappers, M. J. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2015-03-02

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  7. Terahertz electromodulation spectroscopy of electron transport in GaN

    Science.gov (United States)

    Engelbrecht, S. G.; Arend, T. R.; Zhu, T.; Kappers, M. J.; Kersting, R.

    2015-03-01

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  8. Tunable terahertz optical properties of graphene in dc electric fields

    Science.gov (United States)

    Dong, H. M.; Huang, F.; Xu, W.

    2018-03-01

    We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.

  9. Sensitivities Affecting Heat and Urban Heat Island Effect on Local Scale Projected to Neighborhood Scale in Baltimore, Maryland

    Science.gov (United States)

    Sze, C.; Zaitchik, B. F.; Scott, A.

    2015-12-01

    Urban regions are often impacted more by heat than adjacent rural areas, which is a phenomenon known as the urban heat island (UHI) effect. Urban areas are also highly heterogeneous and notoriously difficult to monitor using standard meteorological protocols—the hottest microclimates within a city often occur in locations that lack open, representative installation sites that are an adequate distance from buildings and direct heat sources. To investigate the challenges of monitoring urban heat, this study examines the sensitivity of temperature and humidity sensors currently used in a Baltimore UHI monitoring network to differences in sun exposure, material on which the data collecting instrument is attached, and land cover class of the vicinity. Sensitivity to sun exposure and attachment site can be interpreted as sources of uncertainty for urban heat monitoring, while sensitivity to land cover may reflect a true source of local temperature and humidity variability. In this study, we present results from a test deployment designed to assess the sensitivity of heat measurements to each of these three factors. We then apply these results to interpret measurements taken across the entire Baltimore UHI monitoring network. These results can then be used to improve heat measurements and more accurately represent and quantify the UHI effect on a broader scale, such as in neighborhoods or urban centers.

  10. Terahertz detectors and focal plane arrays

    Science.gov (United States)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  11. Ultrafast terahertz Faraday rotation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Heyman, J. N.; Foo Kune, R. F.; Alebachew, B. A.; Nguyen, M. D. [Macalester College, Saint Paul, Minnesota 55105 (United States); Robinson, J. T. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-12-07

    Terahertz (THz) Faraday rotation measurements were performed to investigate carrier dynamics in p-type Chemical vapor deposition (CVD) graphene. We used static and time-resolved polarization-sensitive THz transmission measurements in a magnetic field to probe free carriers in GaAs, InP, and Graphene. Static measurements probe the equilibrium carrier density and momentum scattering rate. Time-resolved (optical pump/THz probe) measurements probe the change in these quantities following photoexcitation. In a typical CVD graphene sample, we found that 0.5 ps following photoexcitation with 1 × 10{sup 13} photons/cm{sup 2} pulses at 800 nm the effective hole scattering time decreased from 37 fs to 34.5 fs, while the carrier concentration increased from 2.0 × 10{sup 12} cm{sup −2} to 2.04 × 10{sup 12} cm{sup −2}, leading to a transient decrease in the conductivity of the film.

  12. Terahertz spectroscopic investigation of methylenedioxy amphetamine

    Science.gov (United States)

    Wang, Guangqin; Shen, Jingling

    2008-03-01

    Experimental measurement and theoretical analysis of THz spectrum for methylenedioxy amphetamine are introduced. The refractive index and absorption coefficient of the sample were observed by terahertz time-domain spectroscopy (THz-TDS) technique in the range of 0.2~2.6 THz. It exhibits obvious absorption feature at 1.40 THz and weak THz absorption at around 1.68 and 2.21 THz. The spectral absorption characteristic in THz band was useful for the inspection and identification of drugs using THz-TDS. The theoretical calculation was performed using Density functional theory (DFT) with the GAUSSIAN 03 software package. Fully geometry optimization and frequency analysis of the optimized structure were performed at the B3LYP/6-21G levels. The simulated absorption spectrum was in agreement with the experimental data, and can hence be used for the assignment of observed THz spectrum. The theoretical simulation result showed that absorption peaks mainly result from intra-molecule and inter-molecule vibrations, different absorption peaks are corresponding to different vibrational modes and intensity. So the combination of the THz-TDS and DFT is an effective way to investigate characteristic spectra of illicit drugs.

  13. Charging of heated colloidal particles using the electrolyte Seebeck effect.

    Science.gov (United States)

    Majee, Arghya; Würger, Alois

    2012-03-16

    We propose a novel actuation mechanism for colloids, which is based on the Seebeck effect of the electrolyte solution: Laser heating of a nonionic particle accumulates in its vicinity a net charge Q, which is proportional to the excess temperature at the particle surface. The corresponding long-range thermoelectric field E is proportional to 1/r(2) provides a tool for controlled interactions with nearby beads or with additional molecular solutes. An external field E(ext) drags the thermocharged particle at a velocity that depends on its size and absorption properties; the latter point could be particularly relevant for separating carbon nanotubes according to their electronic band structure.

  14. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    -induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions.......The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision...

  15. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  16. Terahertz polarization imaging for colon cancer detection

    Science.gov (United States)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2014-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, noninvasive medical imaging modality for delineating colorectal cancer. The terahertz reflectance measurements of fresh 3 - 5 mm thick human colonic excisions were acquired using a continuous-wave polarization imaging technique. A CO2 optically pumped Far- Infrared molecular gas laser operating at 584 GHz was used to illuminate the colon tissue, while the reflected signals were detected using a liquid Helium cooled silicon bolometer. Both co-polarized and cross-polarized remittance from the samples was collected using wire grid polarizers in the experiment. The experimental analysis of 2D images obtained from THz reflection polarization imaging techniques showed intrinsic contrast between cancerous and normal regions based on increased reflection from the tumor. Also, the study demonstrates that the cross-polarized terahertz images not only correlates better with the histology, but also provide consistent relative reflectance difference values between normal and cancerous regions for all the measured specimens.

  17. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  18. Micromachined components for terahertz frequency applications

    CERN Document Server

    Parkhurst, G M

    2001-01-01

    lithographic technology for the fabrication of terahertz circuits, the integration of an active solid state device is explored. The device chosen for this work is the resonant tunnel diode (RTD). Some background discussion of the operation of these devices as oscillators is presented, and techniques for full integration of devices into a waveguide, using processes which are completely compatible with semiconductor manufacturing technology, are explored experimentally. Two main problems prevent the use of the terahertz frequency band (defined for present purposes as 100GHz - 10THz) in a wider range of applications. The first is the absence of a convenient, cheap solid-state source of power and the second is the significant cost of conventional passive components. In this Thesis, the second issue is addressed in detail, describing developments in the fabrication and characterisation of low cost lithographically-produced terahertz frequency passive components. An extensive study of the use of ultra-thick UV phot...

  19. The Effect of Heat Treatment on Alkali Activated Materials

    Directory of Open Access Journals (Sweden)

    Girts BUMANIS

    2017-08-01

    Full Text Available The primary object of the present research was to investigate the porous low calcium alkali activated material (AAM. Traditionally Na+ ions for alkali activation solution ensure highly alkaline media which enhances the dissolution of amorphous phase in the raw materials forming solid cementitious material with sodium aluminosilicate hydrate (N-A-S-H structure afterwards. Almost all alkali ions are partially hydrated filling the pores in the gel structure (N-A-S-H gel, type zeolite precursor and neutralizing the charge on Al(OH-4 groups. These alkali ions are available for leaching in water environment. Due to this property the application of porous AAM in this research is related to the water treatment systems similar to those of natural zeolites which are considered as effective sorbent because of their porous structure, high specific surface and ion exchange. Porous AAM was obtained from metakaolin, sodium silicate glass, modified sodium silicate solution with Ms = 1.68 and diethylene glycol (DEG aluminium paste as pore forming agent. The density of AAM was 1150 ± 12 kg/m3 and compressive strength fc > 12 MPa. The effect of heat treatment to microstructure and structural properties of AAM was investigated. Heat treatment is an effective method for changing the alkali leaching kinetic form AAM structure.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16280

  20. Effect of calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutions: The role of calcium-ion activity and micellar integrity

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.A.L.; Hooijdonk, van A.C.M.; Linden, van der E.

    2012-01-01

    There is general consensus that calcium chelators enhance heat stability in milk. However, they increase the heat stability to considerably different extents. For this reason, the effect of various calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein

  1. Effect of erythrocyte heat treatment on pulmonary vascular resistance.

    Science.gov (United States)

    Hakim, T S

    1994-07-01

    The effect of red blood cell deformability on the pulmonary vascular resistance was studied in isolated dog and rat lungs. Blood cells were incubated at 49 degrees C for 1 hr, to render them rigid. The resistance to blood flow in the lung was assessed either by calculating the pulmonary vascular resistance (PVR = arterial - venous pressure difference divided by flow rate) or by examining the vascular pressure-flow relationship for changes in slope and intercept. The resistance in the lung was first assessed during perfusion with normal blood and again during perfusion with rigid cells. The results showed that PVR in dog lungs increased by 15% during perfusion with heat-treated blood and that this increase in PVR was associated with a significant increase in the middle segment resistance (arterial-venous occlusion technique) and with an increase in critical closing pressure (pressure intercept of the pressure-flow curve). In contrast to the small effect in dog lungs, the PVR in rat lungs rose more than 400% during perfusion with heat-treated blood. The marked increase of PVR in rat lungs was prevented with papaverine (PVR increased only 58%), suggesting that vasoconstriction was a primary event in rat lungs. The rise in vascular resistance in rat lungs was further shown to be primarily due to the presence of rigid erythrocytes (RBC). The increase in PVR in the rat lungs was not due to mechanical obstruction of the vasculature but rather to constriction of arteries and veins (double occlusion technique). The conclusion from this study is that RBC deformability plays an important role in the pulmonary vasculature, primarily because of release of vasoactive substances and partially because of the potential mechanical obstruction of capillaries. These events are apparently species dependent and are attributed mostly to red blood cell deformability which decreases during heat treatment.

  2. Geometric phaselike effects in a quantum heat engine

    Science.gov (United States)

    Giri, Sajal Kumar; Goswami, Himangshu Prabal

    2017-11-01

    By periodically driving the temperature of reservoirs in a quantum heat engine, geometric or Pancharatnam-Berry phaselike (PBp) effects in the thermodynamics can be observed. The PBp can be identified from a generating function (GF) method within an adiabatic quantum Markovian master equation formalism. The GF is shown not to lead to a standard open quantum system's fluctuation theorem in the presence of phase-different modulations with an inapplicability in the use of large deviation theory. Effect of quantum coherences in optimizing the flux is nullified due to PBp contributions. The linear coefficient, 1 /2 , which is universal in the expansion of the efficiency at maximum power in terms of Carnot efficiency no longer holds true in the presence of PBp effects.

  3. Heat and mass transfer in Hartmann flow with Soret effect in presence of a constant heat source

    OpenAIRE

    AHMED, Nazibuddin

    2012-01-01

    An exact solution of the laminar flow of an incompressible, viscous, electrically conducting fluid between two infinite, parallel, horizontal isothermal stationary walls in the presence of a transverse magnetic field and constant heat source, taking into account the induced magnetic field, induced electric field, Soret effect and dissipating heat is presented. The expressions for the non-dimensional velocity field, temperature field, concentration field, induced magnetic field, induce...

  4. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  5. Tunable Terahertz Hybrid Metal-Graphene Plasmons.

    Science.gov (United States)

    Jadidi, Mohammad M; Sushkov, Andrei B; Myers-Ward, Rachael L; Boyd, Anthony K; Daniels, Kevin M; Gaskill, D Kurt; Fuhrer, Michael S; Drew, H Dennis; Murphy, Thomas E

    2015-10-14

    We report here a new type of plasmon resonance that occurs when graphene is connected to a metal. These new plasmon modes offer the potential to incorporate a tunable plasmonic channel into a device with electrical contacts, a critical step toward practical graphene terahertz optoelectronics. Through theory and experiments, we demonstrate, for example, anomalously high resonant absorption or transmission when subwavelength graphene-filled apertures are introduced into an otherwise conductive layer. These tunable plasmon resonances are essential yet missing ingredients needed for terahertz filters, oscillators, detectors, and modulators.

  6. Polarization insensitive, broadband terahertz metamaterial absorber.

    Science.gov (United States)

    Grant, James; Ma, Yong; Saha, Shimul; Khalid, Ata; Cumming, David R S

    2011-09-01

    We present the simulation, implementation, and measurement of a polarization insensitive broadband resonant terahertz metamaterial absorber. By stacking metal-insulator layers with differing structural dimensions, three closely positioned resonant peaks are merged into one broadband absorption spectrum. Greater than 60% absorption is obtained across a frequency range of 1.86 THz where the central resonance frequency is 5 THz. The FWHM of the device is 48%, which is two and half times greater than the FWHM of a single layer structure. Such metamaterials are promising candidates as absorbing elements for bolometric terahertz imaging.

  7. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph......We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon...

  8. Dynamic optically induced planar terahertz quasioptics

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    Optical control of the propagation direction of a terahertz pulse inside an optically transparent parallel plate waveguide is demonstrated by patterned charge carrier photoexcitation of a silicon slab embedded within the waveguide. It is shown experimentally and through finite element simulations...... that photoexcitations with sufficient conductivity can induce a partial reflection, capable of steering the pulse inside the two-dimensional waveguide. A beamsplitter is demonstrated as proof of principle and is used to delay the arrival of the reflected terahertz pulse at the detector by several picoseconds by moving...

  9. Reconfigurable metamaterials for terahertz wave manipulation

    Science.gov (United States)

    Hashemi, Mohammed R.; Cakmakyapan, Semih; Jarrahi, Mona

    2017-09-01

    Reconfigurable metamaterials have emerged as promising platforms for manipulating the spectral and spatial properties of terahertz waves without being limited by the characteristics of naturally existing materials. Here, we present a comprehensive overview of various types of reconfigurable metamaterials that are utilized to manipulate the intensity, phase, polarization, and propagation direction of terahertz waves. We discuss various reconfiguration mechanisms based on optical, electrical, thermal, and mechanical stimuli while using semiconductors, superconductors, phase-change materials, graphene, and electromechanical structures. The advantages and disadvantages of different reconfigurable metamaterial designs in terms of modulation efficiency, modulation bandwidth, modulation speed, and system complexity are discussed in detail.

  10. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance

    DEFF Research Database (Denmark)

    Sadeghinezhad, Emad; Mehrali, Mohammad; Rosen, Marc A.

    2016-01-01

    An experimental investigation has been carried out to examine the thermal, performance of a sintered wick heat pipe using aqueous graphene nanoplatelets (GNP) nanofluids. The study focuses on changes in the effects of GNP concentration, heat pipe inclination angle and input heating power. The max......An experimental investigation has been carried out to examine the thermal, performance of a sintered wick heat pipe using aqueous graphene nanoplatelets (GNP) nanofluids. The study focuses on changes in the effects of GNP concentration, heat pipe inclination angle and input heating power...

  11. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Modeling effects of urban heat island mitigation strategies on heat-related morbidity: a case study for Phoenix, Arizona, USA.

    Science.gov (United States)

    Silva, Humberto R; Phelan, Patrick E; Golden, Jay S

    2010-01-01

    A zero-dimensional energy balance model was previously developed to serve as a user-friendly mitigation tool for practitioners seeking to study the urban heat island (UHI) effect. Accordingly, this established model is applied here to show the relative effects of four common mitigation strategies: increasing the overall (1) emissivity, (2) percentage of vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of percentage increases by 5, 10, 15, and 20% from baseline values. In addition to modeling mitigation strategies, we present how the model can be utilized to evaluate human health vulnerability from excessive heat-related events, based on heat-related emergency service data from 2002 to 2006. The 24-h average heat index is shown to have the greatest correlation to heat-related emergency calls in the Phoenix (Arizona, USA) metropolitan region. The four modeled UHI mitigation strategies, taken in combination, would lead to a 48% reduction in annual heat-related emergency service calls, where increasing the albedo is the single most effective UHI mitigation strategy.

  13. Effect of Twisted-Tape Turbulators and Nanofluid on Heat Transfer in a Double Pipe Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Heydar Maddah

    2014-01-01

    Full Text Available Heat transfer and overall heat transfer in a double pipe heat exchanger fitted with twisted-tape elements and titanium dioxide nanofluid were studied experimentally. The inner and outer diameters of the inner tube were 8 and 16 mm, respectively, and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made from aluminum sheet with tape thickness (d of 1 mm, width (W of 5 mm, and length of 120 cm. Titanium dioxide nanoparticles with a diameter of 30 nm and a volume concentration of 0.01% (v/v were prepared. The effects of temperature, mass flow rate, and concentration of nanoparticles on the overall heat transfer coefficient, heat transfer changes in the turbulent flow regime Re≥2300, and counter current flow were investigated. When using twisted tape and nanofluid, heat transfer coefficient was about 10 to 25 percent higher than when they were not used. It was also observed that the heat transfer coefficient increases with operating temperature and mass flow rate. The experimental results also showed that 0.01% TiO2/water nanofluid with twisted tape has slightly higher friction factor and pressure drop when compared to 0.01% TiO2/water nanofluid without twisted tape. The empirical correlations proposed for friction factor are in good agreement with the experimental data.

  14. Heat Release Effects on Scaling Laws for Turbulent Shear Flows

    Science.gov (United States)

    Tacina, Kathleen M.; Dahm, Werner J. A.

    1996-11-01

    Experiments have long suggested apparent differences in the fundamental scaling laws for turbulent shear flows between reacting and nonreacting flows. These differences result from the density changes produced by exothermic reaction, and are here shown to be similar to the changes produced by free-stream density differences in nonreacting flows. Motivated by this, we show that the fundamental scaling laws can be generalized to predict the changes due to heat release. The bilinear dependence of temperature T(ζ) on an appropriately defined conserved scalar ζ allows the density changes to be related to an equivalent nonreacting flow, in which one of the free-stream fluid temperatures is set to a value determined by the adiabatic flame temperature and the overall stoichiometry. This scaling principle is applied to turbulent jet diffusion flames, and leads to a generalized scaling variable d^+ for both reacting and nonreacting flows; it effectively extends the momentum diameter d^* of Thring & Newby (1952) and Ricou & Spalding (1961) to reacting flows. The resulting predicted effects of heat release show good agreement with all available data from momentum-dominated jet flames. (Supported by GRI Contract No. 5093-260-2728.)

  15. The Effect of Heating Temperature on the Prooxidant and Hydroperoxide Decomposition Activity of Myoglobin

    National Research Council Canada - National Science Library

    BERISHA, Adrian; ENDO, Yasushi; FUJIMOTO, Kenshiro

    2000-01-01

    Solutions of myoglobin from the heart of a horse were heated at various temperatures to assess the effect of heating temperature on the prooxidant and hydroperoxide decomposition activity of myoglobin...

  16. Terahertz multi-metal-wire hybrid-cladding hollow waveguide for refractive index sensing

    Science.gov (United States)

    Ying-Ying, Yu; Xu-You, Li; Kun-Peng, He; Bo, Sun

    2016-02-01

    We propose a design of terahertz refractive index sensing based on the multi-metal-wire (MMW) hybrid-cladding hollow waveguide. The proposed terahertz hybrid-cladding hollow waveguide comprises one air core in the center surrounding MMW surrounded dielectric. The central air core is used for filling lossless measurands and transmitting terahertz light. In particular, the refractive index sensing is realized by measuring the mode field area (MFA) variation of radially polarized mode. The modal effective refractive index, mode field intensity distribution, and mode field area properties responding to the measurand refractive indexes for different operating frequencies and structure dimensions are investigated, respectively. Simulations show that the proposed terahertz refractive index sensor can realize easily the measurement of the measurand refractive index. Meanwhile, the effects of operating frequency and structure parameters on sensitivity and measurement accuracy are also studied. In view of the trade-off between sensitivity and measurement accuracy, the reasonable choice of the operating frequency and structure parameters can optimize appropriately the sensitivity and measurement accuracy, and the sensitivity can reach approximately 0.585 mm2/RIU (RIU is short for refraction index units) with the proper frequency and structure parameter. Project supported by the National Natural Science Foundation of China (Grant No. 51309059).

  17. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  18. Hovering in the heat: effects of environmental temperature on heat regulation in foraging hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Langland, Kathleen M; Wethington, Susan M; Powers, Sean D; Graham, Catherine H; Tobalske, Bret W

    2017-12-01

    At high temperature (greater than 40°C) endotherms experience reduced passive heat dissipation (radiation, conduction and convection) and increased reliance on evaporative heat loss. High temperatures challenge flying birds due to heat produced by wing muscles. Hummingbirds depend on flight for foraging, yet inhabit hot regions. We used infrared thermography to explore how lower passive heat dissipation during flight impacts body-heat management in broad-billed (Cynanthus latirostris, 3.0 g), black-chinned (Archilochus alexandri, 3.0 g), Rivoli's (Eugenes fulgens, 7.5 g) and blue-throated (Lampornis clemenciae, 8.0 g) hummingbirds in southeastern Arizona and calliope hummingbirds (Selasphorus calliope, 2.6 g) in Montana. Thermal gradients driving passive heat dissipation through eye, shoulder and feet dissipation areas are eliminated between 36 and 40°C. Thermal gradients persisted at higher temperatures in smaller species, possibly allowing them to inhabit warmer sites. All species experienced extended daytime periods lacking thermal gradients. Broad-billed hummingbirds lacking thermal gradients regulated the mean total-body surface temperature at approximately 38°C, suggesting behavioural thermoregulation. Blue-throated hummingbirds were inactive when lacking passive heat dissipation and hence might have the lowest temperature tolerance of the four species. Use of thermal refugia permitted hummingbirds to tolerate higher temperatures, but climate change could eliminate refugia, forcing distributional shifts in hummingbird populations.

  19. Carbon nanotube fiber terahertz polarizer

    Science.gov (United States)

    Zubair, Ahmed; Tsentalovich, Dmitri E.; Young, Colin C.; Heimbeck, Martin S.; Everitt, Henry O.; Pasquali, Matteo; Kono, Junichiro

    2016-04-01

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ˜-30 dB with a low insertion loss (fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  20. All-integrated terahertz modulators

    Science.gov (United States)

    Degl'Innocenti, Riccardo; Kindness, Stephen J.; Beere, Harvey E.; Ritchie, David A.

    2018-01-01

    Terahertz (0.1-10 THz corresponding to vacuum wavelengths between 30 μm and 3 mm) research has experienced impressive progress in the last few decades. The importance of this frequency range stems from unique applications in several fields, including spectroscopy, communications, and imaging. THz emitters have experienced great development recently with the advent of the quantum cascade laser, the improvement in the frequency range covered by electronic-based sources, and the increased performance and versatility of time domain spectroscopic systems based on full-spectrum lasers. However, the lack of suitable active optoelectronic devices has hindered the ability of THz technologies to fulfill their potential. The high demand for fast, efficient integrated optical components, such as amplitude, frequency, and polarization modulators, is driving one of the most challenging research areas in photonics. This is partly due to the inherent difficulties in using conventional integrated modulation techniques. This article aims to provide an overview of the different approaches and techniques recently employed in order to overcome this bottleneck.

  1. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  2. Terahertz circular Airy vortex beams.

    Science.gov (United States)

    Liu, Changming; Liu, Jinsong; Niu, Liting; Wei, Xuli; Wang, Kejia; Yang, Zhengang

    2017-06-20

    Vortex beams have received considerable research interests both in optical and millimeter-wave domain since its potential to be utilized in the wireless communications and novel imaging systems. Many well-known optical beams have been demonstrated to carry orbital angular momentum (OAM), such as Laguerre-Gaussian beams and high-order Bessel beams. Recently, the radially symmetric Airy beams that exhibit an abruptly autofocusing feature are also demonstrated to be capable of carrying OAM in the optical domain. However, due to the lack of efficient devices to manipulate terahertz (THz) beams, it could be a challenge to demonstrate the radially symmetric Airy beams in the THz domain. Here we demonstrate the THz circular Airy vortex beams (CAVBs) with a 0.3-THz continuous wave through 3D printing technology. Assisted by the rapidly 3D-printed phase plates, individual OAM states with topological charge l ranging from l = 0 to l = 3 and a multiplexed OAM state are successfully imposed into the radially symmetric Airy beams. We both numerically and experimentally investigate the propagation dynamics of the generated THz CAVBs, and the simulations agree well with the observations.

  3. Brain mediators of the effects of noxious heat on pain

    Science.gov (United States)

    Atlas, Lauren Y.; Lindquist, Martin A.; Bolger, Niall; Wager, Tor D.

    2014-01-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. While useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this paper, we used multi-level mediation analysis to identify brain mediators of pain—regions whose trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across four levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including: a) somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and b) two networks co-localized with ‘default mode’ regions in which stimulus intensity-related decreases mediated increased pain. We also identified ‘thermosensory’ regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. PMID:24845572

  4. Heat transfers and related effects in supercritical fluids

    CERN Document Server

    Zappoli, Bernard; Garrabos, Yves

    2015-01-01

    This book investigates the unique hydrodynamics and heat transfer problems that are encountered in the vicinity of the critical point of fluids. Emphasis is given on weightlessness conditions, gravity effects and thermovibrational phenomena. Near their critical point, fluids indeed obey universal behavior and become very compressible and expandable. Their comportment, when gravity effects are suppressed, becomes quite unusual. The problems that are treated in this book are of interest to students and researchers interested in the original behavior of near-critical fluids as well as to engineers that have to manage supercritical fluids. A special chapter is dedicated to the present knowledge of critical point phenomena. Specific data for many fluids are provided, ranging from cryogenics (hydrogen) to high temperature (water). Basic information in statistical mechanics, mathematics and measurement techniques is also included. The basic concepts of fluid mechanics are given for the non-specialists to be able to ...

  5. effects of heat input on the chemical composition and hardness

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... Abstract. This study examines the thermochemical reactions which alter weld metal chemistry by applying the arc heat considering the convective, radiation and arc heat losses. From numerical analysis, it was found that the radiation heat loss was dominant in the welding process which confirms the claims ...

  6. Experimental Analysis of the Effects of Particulate Fouling on Heat Exchanger Heat Transfer and Air-Side Pressure Drop for a Hybrid Dry Cooler

    OpenAIRE

    Bell, Ian; Groll, Eckhard; Konig, Holger

    2011-01-01

    It is well known that significant fouling by particulate matter can have a deleterious effect on the performance of enhanced surface heat exchangers, and the same is true for hybrid heat exchangers. Hybrid heat exchangers are heat exchangers which are typically run in dry mode to reject heat. When the ambient conditions require more heat rejection than can be provided by sensible heat transfer a water pump is turned on and water flows over the fins and the evaporation of water provides a fu...

  7. The effects of summer temperature and heat waves on heat-related illness in a coastal city of China, 2011-2013.

    Science.gov (United States)

    Bai, Li; Ding, Gangqiang; Gu, Shaohua; Bi, Peng; Su, Buda; Qin, Dahe; Xu, Guozhang; Liu, Qiyong

    2014-07-01

    Devastating health effects from recent heat waves in China have highlighted the importance of understanding health consequences from extreme heat stress. Despite the increasing mortality from extreme heat, very limited studies have quantified the effects of summer extreme temperature on heat-related illnesses in China. The associations between extreme heat and daily heat-related illnesses that occurred in the summers of 2011-2013 in Ningbo, China, have been examined, using a distributed lag non-linear model (DLNM) based on 3862 cases. The excess morbidities of heat-related illness during each heat wave have been calculated separately and the cumulative heat wave effects on age-, sex-, and cause-specific illnesses in each year along lags have been estimated as well. After controlling the effect of relative humidity, it is found that maximum temperature, rather than heat index, was a better predictor of heat-related illnesses in summers. A positive association between maximum temperatures and occurrence of heat-related diseases was apparent, especially at short lag effects. Six heat waves during the period of 2011-2013 were identified and all associated with excess heat-related illnesses. Relative to the average values for the corresponding periods in 2011 and 2012, a total estimated 679 extra heat-related illnesses occurred during three heat waves in 2013. The significant prolonged heat wave effects on total heat-related illnesses during heat waves in three study years have also been identified. The strongest cumulative effect of heat waves was on severe heat diseases in 2013, with a 10-fold increased risk. More males than females, individuals with more severe forms of illness, were more affected by the heat. However, all age groups were vulnerable. Recent heat waves had a substantial and delayed effect on heat illnesses in Ningbo. Relevant active well-organized public health initiatives should be implemented to reduce the adverse effects of heat extremes on the

  8. Optical monitoring of thermal effects in RPE during heating

    Science.gov (United States)

    Schuele, G.; Huie, Ph.; Yellachich, D.; Molnar, F. E.; O'Conell-Rodwell, C.; Vitkin, E.; Perelman, L. T.; Palanker, D.

    2005-04-01

    Fast and non-invasive detection of cellular stress is useful for fundamental research and practical applications in medicine and biology. Using Light Scattering Spectroscopy we extract information about changes in refractive index and size of the cellular organelles. Particle sizes down to 50nm in diameter can be detected using light within the spectral range of 450-850 nm. We monitor the heat-induced sub-cellular structural changes in human RPE cells and, for comparison, in transfected NIH-3T3 cells which express luciferase linked to the heat shock protein (HSP). Using inverse light scattering fitting algorithm, we reconstruct the size distribution of the sub-micron organelles from the light scattering spectrum. The most significant (up to 70%) and rapid (20sec) temperature-related changes can be linked to an increase of refractive index of the 160nm sized mitochondria. The start of this effect coincides with the onset of HSP expression. This technique provides an insight into metabolic processes within organelles larger than 50nm without exogenous staining and opens doors for non-invasive real-time assessment of cellular stress, which can be used for monitoring of retinal laser treatments like transpupillary thermo therapy or PDT.

  9. Optical emission of graphene and electron-hole pair production induced by a strong terahertz field

    Science.gov (United States)

    Oladyshkin, I. V.; Bodrov, S. B.; Sergeev, Yu. A.; Korytin, A. I.; Tokman, M. D.; Stepanov, A. N.

    2017-10-01

    We report on experimental observation of optical emission of graphene induced by an intense terahertz (THz) pulse. P-doped chemical-vapor-deposition graphene with an initial Fermi energy of about 200 meV was used; optical photons were detected in the 2.0-3.5 eV range. Emission started when the THz field amplitude exceeded 100 kV/cm. For the THz fields from 200 to 300 kV/cm, the temperature of optical radiation was constant, while the number of emitted photons increased by several dozen times. This fact clearly indicates multiplication of electron-hole pairs induced by an external field and not electron heating. The experimental data are in good agreement with the theory of Landau-Zener interband transitions. It is shown theoretically that Landau-Zener transitions are possible even in the case of heavily doped graphene because the strong THz field removes quasiparticles from the region of interband transitions for several femtoseconds, which cancels the Pauli blocking effect.

  10. Plasmon-enhanced terahertz emission in self-assembled quantum dots by femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Carreño, F., E-mail: ferpo@fis.ucm.es; Antón, M. A., E-mail: antonm@fis.ucm.es; Melle, Sonia, E-mail: smelle@fis.ucm.es; Calderón, Oscar G., E-mail: oscargc@fis.ucm.es; Cabrera-Granado, E., E-mail: ecabrera@fis.ucm.es [Facultad de Óptica y Optometría, Universidad Complutense de Madrid, C/ Arcos de Jalón 118, 28037 Madrid (Spain); Cox, Joel, E-mail: jcox27@uwo.ca; Singh, Mahi R., E-mail: msingh@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London N6A 3K7 (Canada); Egatz-Gómez, A., E-mail: Ana.Egatz-Gomez.1@nd.edu [Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana 46556 (United States)

    2014-02-14

    A scheme for terahertz (THz) generation from intraband transition in a self-assembled quantum dot (QD) molecule coupled to a metallic nanoparticle (MNP) is analyzed. The QD structure is described as a three-level atom-like system using the density matrix formalism. The MNP with spherical geometry is considered in the quasistatic approximation. A femtosecond laser pulse creates a coherent superposition of two subbands in the quantum dots and produces localized surface plasmons in the nanoparticle which act back upon the QD molecule via dipole-dipole interaction. As a result, coherent THz radiation with a frequency corresponding to the interlevel spacing can be obtained, which is strongly modified by the presence of the MNP. The peak value of the terahertz signal is analyzed as a function of nanoparticle's size, the MNP to QD distance, and the area of the applied laser field. In addition, we theoretically demonstrate that the terahertz pulse generation can be effectively controlled by making use of a train of femtosecond laser pulses. We show that by a proper choice of the parameters characterizing the pulse train a huge enhancement of the terahertz signal is obtained.

  11. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency.

    Science.gov (United States)

    Zhang, Yin; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2014-09-22

    Graphene can be utilized in designing tunable terahertz devices due to its tunability of sheet conductivity. In this paper, we combine the metamaterial having unit cell of cross-shaped metallic resonator with the double layer graphene wires to realize polarization independent absorber with spectral tuning at terahertz frequency. The absorption performance with a peak frequency tuning range of 15% and almost perfect peak absorption has been demonstrated by controlling the Fermi energy of the graphene that can be conveniently achieved by adjusting the bias voltage on the graphene double layers. The mechanism of the proposed absorber has been explored by a transmission line model and the tuning is explained by the changing of the effective inductance of the graphene wires under gate voltage biasing. Further more, we also propose a polarization modulation scheme of terahertz wave by applying similar polarization dependent absorbers. Through the proposed polarization modulator, it is able to electrically control the reflected wave with a linear polarization of continuously tunable azimuth angle of the major axis from 0° to 90° at the working frequency. These design approaches enable us to electrically control the absorption spectrum and the polarization state of terahertz waves more flexibly.

  12. 3D Printed Terahertz Focusing Grating Couplers

    Science.gov (United States)

    Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin

    2017-06-01

    We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.

  13. Terahertz Plasmonic Structure With Enhanced Sensing Capabilities

    DEFF Research Database (Denmark)

    Yahiaoui, Riad; Strikwerda, Andrew C.; Jepsen, Peter Uhd

    2016-01-01

    We have designed, fabricated, and experimentally verified a highly sensitive plasmonic sensing device in the terahertz frequency range. For a proof of concept of the sensing phenomenon, we have chosen the so-called fishnet structure based on circular hole array insensitive to the polarization of ...

  14. Ultrabroadband terahertz spectroscopy of a liquid crystal

    DEFF Research Database (Denmark)

    Vieweg, N.; Fischer, B. M.; Reuter, M.

    2012-01-01

    Liquid crystals (LCs) are becoming increasingly important for applications in the terahertz frequency range. A detailed understanding of the spectroscopic parameters of these materials over a broad frequency range is crucial in order to design customized LC mixtures for improved performance. We p...

  15. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...

  16. Design Guidelines for Terahertz Mixers and Detectors

    NARCIS (Netherlands)

    Focardi, P.; McGrath, W.R.; Neto, A.

    2005-01-01

    Twin-slot antennas and coplanar waveguides are a popular choice for coupling signals to state-of-the-art mixers and detectors at terahertz frequencies. Although these sensors show promising performance in terms of noise temperature, they usually also show a considerable downward shift in the center

  17. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  18. Terahertz absorption spectrum of triacetone triperoxide (TATP)

    Science.gov (United States)

    Wilkinson, John; Konek, Christopher T.; Moran, Jesse S.; Witko, Ewelina M.; Korter, Timothy M.

    2009-08-01

    We report here, for the first time, the terahertz absorption spectrum of triacetone triperoxide (TATP). The experimental spectra are coupled with solid-state density functional theory, and preliminary assignments are provided to gain physical insight into the experimental spectrum. The calculated absorption coefficients are in excellent agreement with experiment.

  19. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  20. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  1. Magnetic shear effect on confinement and electron heat transport in dominant electron heating experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, G.T.; Saoutic, B.; Guiziou, L.; Basiuk, V.; Becoulet, A.; Clairet, F.; Colas, L.; Devynck, P.; Gil, C.; Joffrin, E.; Litaudon, X.; Segui, J.L.; Voitsekhovitch, I.; Zou, X.L. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Budny, R.V. [Princeton Plasma Physics Laboratory, New Jersey (United States)

    1996-12-31

    Various steady-state non-inductive plasmas, with strong electron heating and significant modification of the current density profile, have been routinely obtained on Tore Supra in either Lower Hybrid Current Drive or Fast Ware Heating experiments. In those dominant electron heating discharges, the dependence of electron heat diffusivity({chi}{sub e}) on the electron temperature gradient, the magnetic shear (s) and the safety factor (q) has been investigated. The increase of {chi}{sub e} with {nabla}T{sub e} indicates the existence of a critical temperature gradient. Moreover, the current density profile effect on the global confinement and the local transport is clearly observed. The electron heat flux (q{sub e}) is found to be roughly proportional to q{sup 2}. The effect of magnetic shear on {chi}{sub e} is studied in the improved confinement discharges obtained by modifying of the current profile. {chi}{sub e} decreases when the magnetic shear increases in the confinement zone and/or when it vanishes in the plasma center. When s becomes negative a decrease in {chi}{sub e} by two orders of magnitude is observed. The effect of the current profile is also observed in the saturated ohmic regime. Comparisons between experimental {chi}{sub e} and well known local transport models (Taroni, and Rebut - Lallia -Watkins) are reported. (authors). 31 refs.

  2. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  3. Thermoporoelastic effects during heat extraction from low-permeability reservoirs

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Nick, Hamidreza M.; Zimmerman, R. W.

    2018-01-01

    Thermoporoelastic effects during heat extraction from low permeability geothermal reservoirs are investigated numerically, based on the model of a horizontal penny-shaped fracture intersected by an injection well and a production well. A coupled formulation for thermo-hydraulic (TH) processes...... is presented that implicitly accounts for the mechanical deformation of the poroelastic matrix. The TH model is coupled to a separate mechanical contact model (M) that solves for the fracture contact stresses due to thermoporoelastic compression. Fractures are modelled as surface discontinuities within a three......-dimensional matrix. A robust contact model is utilised to resolve the contact tractions between opposing fracture surfaces. Results show that due to the very low thermal diffusivity of the rock matrix, the thermally-induced pore pressure partially dissipates even in the very low-permeability rocks that are found...

  4. Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate

    Directory of Open Access Journals (Sweden)

    Rakesh Hari

    2016-01-01

    Full Text Available Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physical nonlinear programming problem with nonlinear constraints is solved using LINGO 15.0 software, which enables finding optimum values for the independent design variables for which entropy generation is minimum. The effect of heat load, length, and sink temperature on design variables and corresponding entropy generation is studied. The second law analysis using minimum entropy generation principle is found to be effective in designing performance enhanced heat pipe.

  5. The effectiveness of heat pumps as part of CCGT-190/220 Tyumen CHP-1

    Directory of Open Access Journals (Sweden)

    Tretyakova Polina

    2017-01-01

    Full Text Available The article considers the possibility of increasing the energy efficiency of CCGT-190/220 Tyumen CHP-1 due to the utilization of low-grade heat given off in the condenser unit of the steam turbine. To assess the effectiveness of the proposed system, the indexes of thermal efficiency are given. As a result of a research the following conclusions are received: The heat-transfer agent heat pump, when heated uses low-grade heat TPP and increases heat output, but consumes the electricity. Using a heat pump is effective for a small temperature difference between the condenser and the evaporator. Good example is heating water before chemical treatment. This method is more efficient than using a replacement boiler and it is used in steam selection.

  6. Effect of dry-heating with pectin on gelatinization properties of sweet ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of dry-heating with pectin at different dry heating temperatures, heating times and pH on the gelatinization properties of sweet potato starch. Methods: The gelatinization properties of sweet potato starch - pectin blend were analyzed using a rapid viscosity analyzer (RVA), differential scanning ...

  7. Effects of particle size and laser wavelength on heating of silver ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 2. Effects of ... Nanoparticles, pulsed laser, heating, absorbance. Abstract. Laser energy absorption results in significant heating of metallic nanoparticles and controlling the heating of nanoparticles is one of the essential stages of selective cell targeting.

  8. Effect of consumption of fresh and heated virgin coconut oil on the ...

    African Journals Online (AJOL)

    Background: It is a common practice to heat cooking oil and reuse it in order to cut expenses. The use of repeatedly heated cooking oil predisposes to various cardiovascular diseases. Virgin coconut oil (VCO) is reported to possess antioxidant action. Aim: The study aimed to determine the effect of heating of VCO on the ...

  9. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  10. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  11. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon.

    Science.gov (United States)

    Chen, Xu; Fan, Wenhui

    2017-05-18

    A planar terahertz metamaterial sensor consisting of a corrugated metal stripe perforated by three rectangular grooves is proposed and investigated numerically. Due to the formation of Fabry-Perot resonance of the spoof surface plasmons mode on the corrugated metal stripe, the extremely sharp resonance in transmission spectrum associated with strong local field enhancement and high quality factor can be realized and exploited for ultrasensitive sensing. Since the intense interaction between electromagnetic waves and analyte materials, the frequency sensitivity of 1.966 THz per refractive index unit and the figure of merit of 19.86 can be achieved. Meanwhile, the film thickness sensitivity of this metamaterial sensor is higher than 52.5 GHz/μm when the analyte thickness is thinner than 4 μm. More interestingly, we find that the metal thickness has a great effect on the sensor performance. These findings open up opportunities for planar metamaterial structures to be developed into practical sensors in terahertz regime.

  12. Terahertz Vibrations and Hydrogen-Bonded Networks in Crystals

    Directory of Open Access Journals (Sweden)

    Masae Takahashi

    2014-03-01

    Full Text Available The development of terahertz technology in the last few decades has made it possible to obtain a clear terahertz (THz spectrum. THz vibrations clearly show the formation of weak bonds in crystals. The simultaneous progress in the code of first-principles calculations treating noncovalent interactions has established the position of THz spectroscopy as a powerful tool for detecting the weak bonding in crystals. In this review, we are going to introduce, briefly, the contribution of weak bonds in the construction of molecular crystals first, and then, we will review THz spectroscopy as a powerful tool for detecting the formation of weak bonds and will show the significant contribution of advanced computational codes in treating noncovalent interactions. From the second section, following the Introduction, to the seventh section, before the conclusions, we describe: (1 the crystal packing forces, the hydrogen-bonded networks and their contribution to the construction of organic crystals; (2 the THz vibrations observed in hydrogen-bonded molecules; (3 the computational methods for analyzing the THz vibrations of hydrogen-bonded molecules; (4 the dispersion correction and anharmonicity incorporated into the first-principles calculations and their effect on the peak assignment of the THz spectrum (5 the temperature dependence; and (6 the polarization dependence of the THz spectrum.

  13. Switching terahertz waves with gate-controlled active graphene metamaterials.

    Science.gov (United States)

    Lee, Seung Hoon; Choi, Muhan; Kim, Teun-Teun; Lee, Seungwoo; Liu, Ming; Yin, Xiaobo; Choi, Hong Kyw; Lee, Seung S; Choi, Choon-Gi; Choi, Sung-Yool; Zhang, Xiang; Min, Bumki

    2012-11-01

    The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.

  14. Effectiveness of sanitizers, dry heat, hot water, and gas catalytic infrared heat treatments to inactivate Salmonella on almonds.

    Science.gov (United States)

    Bari, Md Latiful; Nei, Daisuke; Sotome, Itaru; Nishina, Ikuo; Isobe, Seiichi; Kawamoto, Shinnichi

    2009-10-01

    The majority of almond-related foodborne outbreaks have been associated with Salmonella. Therefore, it is necessary to find an effective method to inactivate these organisms on raw almond prior to market distribution. This study was conducted to assess the effectiveness of sanitizers (strong or mild electrolyzed water, ozonated water, and distilled water), dry heat treatment, and hot water treatments followed by catalytic infrared (IR) heat treatment to inactivate Salmonella populations on raw almond. Raw almonds inoculated with four-strain cocktails of Salmonella were treated either by soaking in different chemical sanitizers or with dry heat and/or hot water for various periods of time followed by catalytic IR heat treatment for 70 seconds. The treated seeds were then assessed for the efficacy of the treatment in reducing populations of the pathogens. After inoculation and air-drying, 5.73 +/- 0.12 log colony-forming units (CFU)/g Salmonella were detected in nonselective medium. Sanitizer treatment alone did not show significant reduction in the Salmonella population, but in combination with IR drying it reduced the population to 3.0 log CFU/g. Dry heating at 60 degrees C for 4 days followed by IR drying for 70 seconds reduced the Salmonella population an additional 1.0 log CFU/g. Hot water treatments at 85 degrees C for 40 seconds followed by IR drying for 70 seconds reduced pathogens to an undetectable level by direct plating, but not by enrichment.

  15. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  16. Rotatable illusion media for manipulating terahertz electromagnetic waves

    National Research Council Canada - National Science Library

    Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing; Li, Li; Wang, XiaoBin

    2013-01-01

    Based on composite optical transformation, we propose a rotatable illusion media with positive permittivity and permeability to manipulate terahertz waves, and a new way to realize singular parameter...

  17. Near optimal graphene terahertz non-reciprocal isolator

    National Research Council Canada - National Science Library

    Tamagnone, Michele; Moldovan, Clara; Poumirol, Jean-Marie; Kuzmenko, Alexey B; Ionescu, Adrian M; Mosig, Juan R; Perruisseau-Carrier, Julien

    2016-01-01

    .... Here we report the design, fabrication and measurement of a terahertz non-reciprocal isolator for circularly polarized waves based on magnetostatically biased monolayer graphene, operating in reflection...

  18. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    Science.gov (United States)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  19. Terahertz frequency spectrum characterization of coherent heterodyne time-domain spectrometer

    Science.gov (United States)

    Zhao, Ji; Zhang, Liang-liang; Luo, Yi-man; Wu, Tong; Zhang, Cunlin; Zhao, Yue-jin

    2013-12-01

    Terahertz wave which can provide innovative sensing and imaging techniques can obtain spectroscopic information unavailable at other wavelengths. The terahertz air-biased-coherent-detection (ABCD) method can achieve the third-order nonlinear susceptibility tensor to produce field-induced optical second harmonic photons. Therefore, the intense terahertz wave generated and detected by the laser-induced air plasma provides a promising ultra-broadband terahertz source and sensor for spectroscopy and imaging technique. Aiming at that purpose, an understanding of the frequency spectrum characterization of terahertz pulse is crucial. In this work, we investigated the variation of the THz pulse bandwidth measured through the third harmonic generation using the coherent detection scheme, by increasing the optical probe pulse power and biased electric field. A bandwidth broadening of the measured THz pulse is observed by increasing either the probe pulse power or the bias voltage strength. We speculate that a pulse shape change of the probe beam and a saturation effect during the second-harmonic generation might cause the bandwidth broaden with probe power. To further investigate the mechanism, we fixed the power of probe laser at 150mW and changed the bias voltage. The results show that the frequency spectrum width becomes wider gradually with the increasing of the bias voltage. A theoretical explaination shows that the bandwidth broadening with bias field might be introduced by a pulse shape change of the bias field induced second harmonic wave. This study reveals that we can control THz intensity and bandwidth by changing probe power and bias voltage in the ABCD system.

  20. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens.

    Science.gov (United States)

    Choi, H C; Salim, H M; Akter, N; Na, J C; Kang, H K; Kim, M J; Kim, D W; Bang, H T; Chae, H S; Suh, O S

    2012-02-01

    A geothermal heat pump (GHP) is a potential heat source for the economic heating of broiler houses with optimum production performance. An investigation was conducted to evaluate the effect of a heating system using a GHP on production performance and housing environment of broiler chickens. A comparative analysis was also performed between the GHP system and a conventional heating system that used diesel for fuel. In total, 34,000 one-day-old straight run broiler chicks were assigned to 2 broiler houses with 5 replicates in each (3,400 birds/replicate pen) for 35 d. Oxygen(,) CO(2), and NH(3) concentrations in the broiler house, energy consumption and cost of heating, and production performance of broilers were evaluated. Results showed that the final BW gain significantly (P < 0.05) increased when chicks were reared in the GHP broiler house compared with that of chicks reared in the conventional broiler house (1.73 vs. 1.62 kg/bird). The heating system did not affect the mortality of chicks during the first 4 wk of the experimental period, but the mortality markedly increased in the conventional broiler house during the last wk of the experiment. Oxygen content in the broiler house during the experimental period was not affected by the heating system, but the CO(2) and NH(3) contents significantly increased (P < 0.05) in the conventional broiler house compared with those in the GHP house. Fuel consumption was significantly reduced (P < 0.05) and electricity consumption significantly increased (P < 0.05) in the GHP house compared with the consumption in the conventional house during the experiment. The total energy cost of heating the GHP house was significantly lower (P < 0.05) compared with that of the conventional house. It is concluded that a GHP system could increase the production performance of broiler chicks due to increased inside air quality of the broiler house. The GHP system had lower CO(2) and NH(3) emissions with lower energy cost than the

  1. Effect of heat input on dilution and heat affected zone in submerged ...

    Indian Academy of Sciences (India)

    Submerged arc welding (SAW) is a fusion joining process, known for its high deposition capabilities. This process is useful in joining thick section components used in various industries. Besides joining, SAW can also be used for surfacing applications. Heat Affected Zone (HAZ) produced within the base metal as a result of ...

  2. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2014-01-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate...... this lifespan-prolonging effect late in life, we treated flies with mild heat stress (34 °C for 2 h) 3 times early in life and compared the transcriptomic response in these flies versus non-heat-treated controls 10–51 days after the last heat treatment. We found significant transcriptomic changes in the heat......-treated flies. Several hsp70 probe sets were up-regulated 1.7–2-fold in the mildly stressed flies weeks after the last heat treatment (P stress. We...

  3. Suppression of the self-heating effect in GaN HEMT by few-layer graphene heat spreading elements

    Science.gov (United States)

    Volcheck, V. S.; Stempitsky, V. R.

    2017-11-01

    Self-heating has an adverse effect on characteristics of gallium nitride (GaN) high electron mobility transistors (HEMTs). Various solutions to the problem have been proposed, however, a temperature rise due to dissipated electrical power still hinders the production of high power and high speed GaN devices. In this paper, thermal management of GaN HEMT via few-layer graphene (FLG) heat spreading elements is investigated. It is shown that integration of the FLG elements on top of the device structure considerably reduces the maximum temperature and improves the DC and small signal AC performance.

  4. Thermal-diffusion effects on mixed convection flow in a heat absorbing fluid with Newtonian heating and chemical reaction

    Science.gov (United States)

    Hussanan, Abid; Salleh, Mohd Zuki; Tahar, Razman Mat; Khan, Ilyas

    2015-02-01

    Thermal-diffusion and chemical reaction effects on mixed convection heat and mass transfer flow past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a system of linear partial differential equations using appropriate non-dimensional variables. Using Laplace transform method the resulting equations are solved analytically and the expression for velocity, temperature and concentration are obtained. They satisfy all imposed initial and boundary conditions. Numerical results for temperature and concentration are shown in various graphs for embedded flow parameters and discussed in details.

  5. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots

    KAUST Repository

    Toma, Andrea

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

  6. Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots.

    Science.gov (United States)

    Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo; Razzari, Luca

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

  7. Effects of Angle of Rotation on Pool Boiling Heat Transfer of V-shape Tube Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2016-10-15

    The most important facility for the systems is a passive heat exchanger that transfers core decay heat to the cold water in a water storage tank under atmospheric pressure. Since the space for the installation of the heat exchanger is usually limited, developing more efficient heat exchangers is important. In general, pool boiling is generated on the surface of the heat exchanging tube. The major design parameter of the heat exchanger is a tube arrangement. The upper tube is affected by the lower tube and the enhancement of the heat transfer on the upper tube is estimated by the bundle effect. Since heat transfer is related to the conditions of a tube surface, bundle geometries, and a liquid type, lots of studies have been carried out for the combinations of those parameters. An experimental study was performed to investigate the effects of the angle of rotation on pool boiling heat transfer of a V-shape tube bundle. For the test, two smooth stainless steel tubes of 19 mm outside diameter and the water at atmospheric pressure were used. The enhancement of the heat transfer is clearly observed when the angle becomes to 90° where the upper tube has the maximum region of influence by the lower tube. The convective flow and liquid agitation enhance heat transfer while the coalescence of the bubbles deteriorates heat transfer.

  8. Effects of Fluid Directions on Heat Exchange in Thermoelectric Generators

    DEFF Research Database (Denmark)

    Suzuki, Ryosuke; Sasaki, Yuto; Fujisaka, Takeyuki

    2012-01-01

    Thermal fluids can transport heat to the large surface of a thermoelectric (TE) panel from hot and/or cold sources. The TE power thus obtainable was precisely evaluated using numerical calculations based on fluid dynamics and heat transfer. The commercial software FLUENT was coupled with a TE model...

  9. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    obtained from Alapli-Zonguldak Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for varying durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. The mechanical properties ...

  10. Radius ratio effects on natural heat transfer in concentric annulus

    DEFF Research Database (Denmark)

    Alipour, M.; Hosseini, R.; Kolaei, Alireza Rezania

    2013-01-01

    This paper studies natural convection heat transfer in vertical and electrically heated annulus. The metallic cylinders mounted concentrically in a parallel tube. Measurements are carried out for four input electric powers and three radius ratios with an apparatus immersed in stagnant air...

  11. effects of heat input on the chemical composition and hardness

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... This study examines the thermochemical reactions which alter weld metal chemistry by applying the arc heat ... Keywords: alloying element, brinell hardness number (BHN), chemical composition, heat input, thermochemical reaction ..... national Journal of Advances in Science and Tech- nology, Vol.

  12. Effect of heat acclimation on sitting orthostatic tolerance in the heat after 48 and 96 hour bed rest in men

    Science.gov (United States)

    Greenleaf, J. E.; Matter, M., Jr.

    1995-01-01

    The purpose of this pilot study was to investigate sitting orthostatic tolerance and determine potentially adverse signs and symptoms that would incapacitate subjects in a hot environment (Gemini reentry cabin temperature profile) after 48 hr and 96 hr of horizontal bed rest (BR), which simulated microgravity deconditioning. Six college men (23-29 yr) were allocated into two groups: heat acclimated (three subjects: No. 1- control, No. 2- 48 hr BR, and No. 3- 96 hr BR) and nonheat acclimated (three subjects: No. 4- control, No. 5- 48 hr BR, and No. 6- 96 hr BR). After BR they sat in an ambient temperature of 57 C (135 F) for 30 min which then was decreased to 49 C (120 F) for up to 480 min. Tolerance time in the heat with seated orthostatic stress was 480 min (subject No. 1) and 180 min (subject No. 4) in the two ambulatory men, but was reduced to 22-150 min in the four bed-rested men irrespective of their heat acclimation status. Although heat acclimation appeared to enhance tolerance and attenuate accompanying physiological responses, as well as ameliorate the frequency and intensity of adverse signs and symptoms at termination of exposure, tolerance was reduced in the bed-rest deconditioned subjects regardless of their acclimation level. Thus, these few collective findings do not indicate an unequivocal positive effect of acute heat acclimation on sitting orthostatic tolerance in acute bed-rest deconditioned subjects.

  13. Positive effects of vegetation: urban heat island and green roofs.

    Science.gov (United States)

    Susca, T; Gaffin, S R; Dell'osso, G R

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 °C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO(2) equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Fuel rod crud deposition: effects of heat load

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Facundo

    1999-05-15

    Anomalous diameter changes have been observed on the fuel rods of the in-pile test assembly IFA-585. These diameter changes are described in the HWR-407 [1], where it is suggested that crud deposition is their cause. The present report continues the study of the causes of crud deposition on the fuel rods, by analysing its dependence with the heat load. It is observed that crud deposition is less favoured on the cladding at axial positions of pellet-pellet interfaces, and that this is directly correlated with the fact that heat flux is lower at pellet-pellet interfaces. A finite element model is built to analyse the heat flux on the cladding at the surroundings of pellet-pellet interfaces. Also, an empirical formula is derived for the dependence of crud deposition rate with heat loading, taking into account the differences in heat flux on the surroundings of pellet-pellet interfaces (author) (ml)

  15. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.

    Science.gov (United States)

    Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A

    2013-02-01

    The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Terahertz Dynamics in Carbon Nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2012-02-01

    This NSF Partnerships for International Research and Education (PIRE) project supports a unique interdisciplinary and international partnership investigating terahertz (THz) dynamics in nanostructures. The 0.1 to 10 THz frequency range of the electromagnetic spectrum is where electrical transport and optical transitions merge, offering exciting opportunities to study a variety of novel physical phenomena in condensed matter. By combining THz technology and nanotechnology, we can advance our understanding of THz physics while improving and developing THz devices. Specifically, this PIRE research explores THz dynamics of electrons in carbon nanomaterials, namely, nanotubes and graphene --- low-dimensional, sp^2-bonded carbon systems with unique finite-frequency properties. Japan and the U.S. are global leaders in both THz research and carbon research, and stimulating cooperation is critical to further advance THz science and to commercialize products developed in the lab. However, obstacles exist for international collaboration --- primarily linguistic and cultural barriers --- and this PIRE project aims to address these barriers through the integration of our research and education programs. Our strong educational portfolio endeavours to cultivate interest in nanotechnology amongst young U.S. undergraduate students and encourage them to pursue graduate study and academic research in the physical sciences, especially those from underrepresented groups. Our award-winning International Research Experience for Undergraduates Program, NanoJapan, provides structured research internships in Japanese university laboratories with Japanese mentors --- recognized as a model international education program for science and engineering students. The project builds the skill sets of nanoscience researchers and students by cultivating international and inter-cultural awareness, research expertise, and specific academic interests in nanotechnology. U.S. project partners include Rice

  17. A study of the effects of prior heat treatment on the skin reaction of mouse feet after heat alone or combined with X-rays: influence of misonidazole

    NARCIS (Netherlands)

    Wondergem, J.; Haveman, J.

    1984-01-01

    The skin of mouse feet was used to study the effects of hyperthermic treatment, either alone or combined with irradiation. The present experiments show that a priming heat treatment induces resistance both to a subsequent heat treatment and to a subsequent combined irradiation-heat treatment. The

  18. Time-resolved terahertz spectroscopy of charge carrier dynamics in the chalcogenide glass As30Se30Te40 [Invited

    DEFF Research Database (Denmark)

    Wang, Tianwu; Romanova, Elena A.; Abdel-Moneim, Nabil

    2016-01-01

    Broadband (1.6-18 THz) terahertz time-domain spectroscopy (THz-TDS) and time-resolved terahertz spectroscopy (TRTS) were performed on a 54 mu m thick chalcogenide glass (As30Se30Te40) sample with a two-color laser-induced air plasma THz system in transmission and reflection modes, respectively. Two...... by the Drude-Smith conductivity model with a carrier scattering time of 12-17 fs, and we observe significant carrier localization effects. A fast refractive index change was observed 100 fs before the conductivity reached its maximum, with 2 orders of magnitude larger amplitude than expected for the optically...

  19. Effect of heat treatment on precipitation on V-5Cr-5Ti heat BL63

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Li, H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    The microstructures of V-5Cr-5Ti heat BL63 are compared following heat treatments at 1125{degrees}C for 1 h and 1125{degrees}C for 1 h followed by 890{degrees}C for 24 h. Following the 890{degrees}C treatment, precipitate density was increased due to the presence of a moderate density of highly elongated particles. Microchemical analysis showed that these particles often contained both Ti and V, some particles showed minor amounts of Si, S, and P, but it was also possible to show that these precipitates were enriched in O rather than C or N. Following the 1125{degrees}C heat treatment, only Si was found as a minor impurity in large particles, but S could be identified at grain boundaries, which were coated with a fine distribution of precipitates. The embrittlement observed is ascribed to a combination of interstitial solid solution hardening and grain boundary embrittlement, with interstitial hardening likely the dominant factor.

  20. The Comparison of the Effect of Deep and Superficial Heat on Healthy Ankle Joint Position Sense

    Directory of Open Access Journals (Sweden)

    Farahnaz Ghaffarinejad

    2014-09-01

    Full Text Available Background: Heat therapy is one of the natural treatments that can affect the information transferred by the proprioceptive receptors. Heat has an effect on the conduction velocity of peripheral nerves, but the exact effect of two kinds of deep and superficial heat on the joint position sense is not known clearly. The present study aimed to compare the effect of deep and superficial heat on ankle joint position sense. Methods: Thirty healthy male students aged between 18 to 30 y/o participated in this study. Deep heat by short-wave diathermy and superficial heat by water of 42 ºC were applied for 15 minutes in two sessions for all participants. In all of the tests, active and passive ankle joint position sense in dorsiflexion and plantarflexion were measured by pedal goniometers prior to and after heat application. The Non-Parametric-Paired T-test Wilcoxon and Non-Parametric- Paired T-test Mann-Withney were used to analyze the data. Results: The superficial heat does not have any positive or negative effect on the ankle joint position sense. After the deep heat, the absolute angular error of active dorsiflexion was increased, but passive plantarflexion was decreased significantly. Comparing the two types of heat, the results revealed that the deep heat increased the absolute angular error of active dorsiflexion significantly more than superficial heat. Conclusion: According to the results, deep heat therapy improves passive ankle joint position sense in plantar flexion, but it worsens the active joint position sense of dorsiflexion. Therefore, it seems that after applying deep heat therapy on an ankle joint, exercise prescriptions need to be cautious.

  1. Effect of size sprinkled heat exchange surface on developing boiling

    Directory of Open Access Journals (Sweden)

    Petr Kracík

    2016-06-01

    Full Text Available This article presents research of sprinkled heat exchangers. This type of research has become rather topical in relation to sea water desalination. This process uses sprinkling of exchangers which rapidly separates vapour phase from a liquid phase. Applications help better utilize low-potential heat which is commonly wasted in utility systems. Low-potential heat may increase utilization of primary materials. Our ambition is to analyse and describe the whole sprinkled exchanger. Two heat exchangers were tested with a similar tube pitch: heat exchanger no. 1 had a four-tube bundle and heat exchanger no. 2 had eight-tube bundle. Efforts were made to maintain similar physical characteristics. They were tested at two flow rates (ca 0.07 and 0.11 kg s−1 m−1 and progress of boiling on the bundle was observed. Initial pressure was ca 10 kPa (abs at which no liquid was boiling at any part of the exchanger; the pressure was then lowered. Other input parameters were roughly similar for both flow rates. Temperature of heating water was ca 50°C at a constant flow rate of ca 7.2 L min−1. Results of our experiments provide optimum parameters for the given conditions for both tube bundles.

  2. Self-heating and memory effects in RF power amplifiers explained through electro-thermal

    DEFF Research Database (Denmark)

    Wei, Wei; Jensen, Ole Kiel; Mikkelsen, Jan H.

    2013-01-01

    Self-heating has already been proven to be one of the key sources to memory effects in RF power amplifiers (PAs). However, mechanisms behind the generation of memory effects, as caused by self-heating have not been well documented. On basis of transistor physical properties this paper proposes...... a simple electro-thermal model and shows how self-heating can generate different types of memory effects, such as bandwidth dependent intermodulation components and hysteresis loops. In addition, it is shown that self-heating can result in generation of new spectral components even in an otherwise linear...

  3. Simulations of joule effect heating in a bulge test

    Science.gov (United States)

    Demazel, Nathan; Laurent, Hervé; Carin, Muriel; Coër, Jérémy; Le Masson, Philippe; Favero, Jérôme; Canivenc, Romain; Graveleau, Stéphane

    2016-10-01

    This work focuses on the integration of an electrical conduction heating of circular blank in a bulge test device. This device will be used to characterize the thermomechanical behaviour of Usibor®1500 under biaxial deformation at very high temperature (to 930°C). First a thermoelectric model using COMSOL Multiphysics® was developed to study the heating of a rectangular blank. This model is validated by comparing the calculated temperatures with thermocouples measurements. Secondly electrical field optimization is approached to obtain a fast and uniform heating of a circular blank.

  4. The Effect of Heating on Useful Components of Garlic

    Directory of Open Access Journals (Sweden)

    H Shirzad

    2011-04-01

    Full Text Available Introduction & Objective: Garlic (Allium sativum. L. is an important dietary herb which its useful compounds may be altered during different processes. The aim of this study was to evaluate the effect of heating on the amounts of allicin, felavonol, felavonoid, total phenolic components, and antioxidant capacity of garlic. Materials & Methods: In this experimental study which was conducted at Shahr-e-Kord University of Medical Sciences in 2009, the alcoholic extract of fresh, micro waved, and boiled garlic were prepared. Then, their antioxidant capacities were evaluated in linoleic acid and ß-carotene linoleate system. The phenolic contents were measured with Folin–ciocalteu method, felavonoid or felavonol contents with aluminum coloride method, and allicine contents with spectrophotometry method. Collected data were statistically analyzed using the SPSS software. Differences between the means of groups were evaluated by a two-tailed t-test for independent samples. Results: The fresh and fresh boiled garlic had the highest and lowest antioxidant activities, respectively (P0.05. The flavonoid and phenolic compounds in fresh garlic were more than micro waved or boiled garlic. The allicin content in fresh garlic was also higher then micro waved or boiled garlic (P<0.05. All of these components were low in boiled garlic. Conclusion: Fresh garlic has the most useful compounds and consumption of this form of the vegetable is recommended.

  5. Effect of magnetic nanoparticle heating on cortical neuron viability.

    Science.gov (United States)

    Rivet, Christopher J; Yuan, Yuan; Gilbert, Ryan J; Borca-Tasciuc, Diana-Andra

    2014-03-01

    Superparamagnetic iron oxide nanoparticles are currently approved for use as an adjunctive treatment to glioblastoma multiforme radiotherapy. Radio frequency stimulation of the nanoparticles generates localised hyperthermia, which sensitises the tumour to the effects of radiotherapy. Clinical trials reported thus far are promising, with an increase in patient survival rate; however, what are left unaddressed are the implications of this technology on the surrounding healthy tissue. Aminosilane-coated iron oxide nanoparticles suspended in culture medium were applied to chick embryonic cortical neuron cultures. Cultures were heated to 37 °C or 45 °C by an induction coil system for 2 h. The latter regime emulates the therapeutic conditions of the adjunctive therapy. Cellular viability and neurite retraction was quantified 24 h after exposure to the hyperthermic events. The hyperthermic load inflicted little damage to the neuron cultures, as determined by calcein-AM, propidium iodide, and alamarBlue® assays. Fluorescence imaging was used to assess the extent of neurite retraction which was found to be negligible. Retention of chick, embryonic cortical neuron viability was confirmed under the thermal conditions produced by radiofrequency stimulation of iron oxide nanoparticles. While these results are not directly applicable to clinical applications of hyperthermia, the thermotolerance of chick embryonic cortical neurons is promising and calls for further studies employing human cultures of neurons and glial cells.

  6. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  7. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  8. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...... by a classical Drude–Smith model, suitable for disorder-driven metal–insulator transitions. In this work, we explore the time evolution of the frequency dependent complex conductivity after optical injection of carriers on a picosecond time scale. Furthermore, we show the lifetime of photoconductivity...

  9. Effective ways to modernize outdated coal heat power plants

    Science.gov (United States)

    Suchkov, S. I.; Kotler, V. R.; Batorshin, V. A.

    2016-12-01

    An analysis of the state of equipment of 72 outdated coal HPP (heat power plants) of a total capacity 14.3 GW with steam parameters before the turbines p before ≤ 9 MPa, t before = 420-540°C was performed. The equipment is characterized by a considerably low efficiency factor, even if it were converted to burning the natural gas, and by increased release of harmful substances. However, on the most part of the considered HPP, the steam turbines, unlike the boilers, have thus far retained the operation applicability and satisfactory reliability of performance. The analysis has shown that it makes sense to effectively modernize the outdated coal HPP by transformation of their equipment into combined-cycle plant (CCP) with coal gasification, which has high economic and ecological indicators due to thermodynamic advantage of the combined cycle and simpler purification of the generator gas in the process under pressure. As the most rational way of this transformation, the one was recognized wherein—instead of the existing boiler (boilers) or parallel to it—a gasification and gas turbine system is installed with a boiler-utilizer (BU), from which steam is fed to the HPP main steam pipe. In doing this, the basic part of the power station equipment persists. In the world, this kind of reconstruction of steam power equipment is applied widely and successfully, but it is by use of natural gas for the most part. It is reasonable to use the technology developed at Heat Engineering Research Institute (HERI) of hearth-steam gasification of coal and high-temperature purification of the generator gas. The basic scheme and measures on implementation of this method for modernization of outdated coal HPP is creation of CCP with blast-furnace of coal on the basis of accessible and preserved HPP equipment. CCP power is 120 MW, input-output ratio (roughly) 44%, emissions of hazardous substances are 5 mg/MJ dust, 20-60 mg/MJ SO2, and 50-100 mg/MJ NO x . A considerable decrease of

  10. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew

    2015-01-01

    . Terahertz (THz) radiation, commonly understood to be nonionizing due to its low photon energy, is here shown to produce electron field emission. We demonstrate that a carrier-envelope phase-stable single-cycle optical field at THz frequencies interacting with a metallic microantenna can generate...... and accelerate ultrashort and ultrabright electron bunches into free space, and we use these electrons to excite and ionize ambient nitrogen molecules near the antenna. The associated UV emission from the gas forms a novel THz wave detector, which, in contrast with conventional photon-counting or heat...

  11. Magneto-optical properties of InSb for terahertz applications

    Directory of Open Access Journals (Sweden)

    Jan Chochol

    2016-11-01

    Full Text Available Magneto-optical permittivity tensor spectra of undoped InSb, n-doped and p-doped InSb crystals were determined using the terahertz time-domain spectroscopy (THz-TDS and the Fourier transform far-infrared spectroscopy (far-FTIR. A Huge polar magneto-optical (MO Kerr-effect (up to 20 degrees in rotation and a simultaneous plasmonic behavior observed at low magnetic field (0.4 T and room temperature are promising for terahertz nonreciprocal applications. We demonstrate the possibility of adjusting the the spectral rage with huge MO by increase in n-doping of InSb. Spectral response is modeled using generalized magneto-optical Drude-Lorentz theory, giving us precise values of free carrier mobility, density and effective mass consistent with electric Hall effect measurement.

  12. High Effectiveness Heat Exchanger for Cryogenic Refrigerators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  13. Effect of Heat Treatment on Microstructural Changes in Aluminium Bronze

    Directory of Open Access Journals (Sweden)

    Hájek J.

    2016-09-01

    Full Text Available This paper attempts to summarise the microstructural changes which take place in aluminium bronzes during heat treatment. Another objective of this study was to map the potential of a certain type of aluminium bronzes for undergoing martensitic transformation. The methods, which were chosen for assessing the results of heat treatment with regard to their availability, included measurement of hardness and observation of microstructure using light and scanning electron microscopy, Additional tools for evaluation of microstructure comprised measurement of microhardness and chemical analysis by EDS. An important part of the experiment is observation of microstructural changes in the Jominy bar during the end-quench test. Upon completing experiments of this kind, one can define the heat treatment conditions necessary for obtaining optimum properties. In addition, the paper presents important findings on how to improve the corrosion resistance of aluminium bronzes by special heat treatment sequences.

  14. Installation Effects on Heat Transfer Measurements for a Turbine Vane

    National Research Council Canada - National Science Library

    Polanka, Marc

    2003-01-01

    ...). This turbine vane was instrumented with two types of heat flux gauges. The first was a thin film Upilex gauge design wrapped over the full airfoil surface, while the second consisted of Pyrex insert type gauges...

  15. Effect on Non-Uniform Heat Generation on Thermionic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    2012-01-19

    The penalty resulting from non-uniform heat generation in a thermionic reactor is examined. Operation at sub-optimum cesium pressure is shown to reduce this penalty, but at the risk of a condition analogous to burnout. For high pressure diodes, a simple empirical correlation between current, voltage and heat flux is developed and used to analyze the performance penalty associated with two different heat flux profiles, for series-and parallel-connected converters. The results demonstrate that series-connected converters require much finer power flattening than parallel converters. For example, a ±10% variation in heat generation across a series array can result in a 25 to 50% power penalty.

  16. Terahertz spectroscopic investigation of Chinese herbal medicine

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiaoli; Li Jiusheng, E-mail: forever-li@126.com [Centre for THz Research, China Jiliang University, Hangzhou 310018 (China)

    2011-02-01

    The absorption spectra of panax notoginseng and glycyrrhiza in the frequency range of 0.2{approx}1.6THz has been measured with terahertz time-domin spectroscopy at room temperature. Simultaneously, the corresponding theoretical spectra were given by using density functional theory methods. It was found that the absorption peaks of the two molecules obtained by theoretical were in good agreement with the experimental results.

  17. Terahertz spectroscopic investigation of Chinese herbal medicine

    Science.gov (United States)

    Xiao-li, Zhao; Jiu-sheng, Li

    2011-02-01

    The absorption spectra of panax notoginseng and glycyrrhiza in the frequency range of 0.2~1.6THz has been measured with terahertz time-domin spectroscopy at room temperature. Simultaneously, the corresponding theoretical spectra were given by using density functional theory methods. It was found that the absorption peaks of the two molecules obtained by theoretical were in good agreement with the experimental results.

  18. Review of Anisotropic Terahertz Material Response

    OpenAIRE

    ARIKAWA, T.; Zhang, Q.; Ren, L; Belyanin, A. A.; Kono, J.

    2013-01-01

    Anisotropy is ubiquitous in solids and enhanced in low-dimensional materials. In response to an electromagnetic wave, anisotropic absorptive and refractive properties result in dichroic and birefringent optical phenomena both in the linear and nonlinear optics regimes. Such material properties have led to a diverse array of useful polarization components in the visible and near-infrared, but mature technology is non-existent in the terahertz (THz). Here, we review several novel types of aniso...

  19. Semiconductor saturable absorbers for ultrafast terahertz signals

    OpenAIRE

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluen...

  20. Semiconductor saturable absorbers for ultrafast terahertz signals

    OpenAIRE

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductorsGaAs,GaP, and Ge in the terahertz (THz) frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum states, due to conduction band nonparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation flue...

  1. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  2. Convergence of Photonics and Electronics for Terahertz Wireless Communications

    DEFF Research Database (Denmark)

    Salazar, Adrian Ruiz; Rommel, Simon; Anufriyev, E.

    2016-01-01

    Terahertz wireless communications are expected to offer the required high capacity and low latency performance necessary for short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: Convergence...... of Electronics and Photonics Technologies Enabling Terahertz Applications....

  3. TeraHertz imaging of hidden paint layers on canvas

    NARCIS (Netherlands)

    Adam, A.J.L.; Planken, P.C.M.; Meloni, S.; Dik, J.

    2009-01-01

    We show terahertz reflection images of hidden paint layers in a painting on canvas and compare the results with X-ray Radiography and Infrared Reflectography. Our terahertz measurements show strong reflections from both the canvas/paint interface and from the raw umber/lead white interface,

  4. The preparation method of terahertz monolithic integrated device

    Science.gov (United States)

    Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.

  5. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  6. Pulsed terahertz inspection of non-conducting sandwich composites

    Science.gov (United States)

    Lopato, P.; Chady, T.

    2013-01-01

    Pulsed terahertz inspection enables accurate, contactless and safe for operating personnel evaluation of non-conducting structures. In this paper we present results of pulsed terahertz testing of various sandwich composite structures incorporating glass and basalt fibers based skin materials and spherecore and balsa wood based core materials. Various Time-Frequency Distributions (TFD) are utilized in order to obtain most valuable defects response.

  7. Terahertz Characterization of DNA: Enabling a Novel Approach

    Science.gov (United States)

    2015-11-01

    nucleic acid sequences within a genetic library would pave the way for improved forensic analysis, genetic testing, and DNA production processes.1 Other...ARL-CR-0788 ● NOV 2015 US Army Research Laboratory Terahertz Characterization of DNA : Enabling a Novel Approach prepared by...Research Laboratory Terahertz Characterization of DNA : Enabling a Novel Approach prepared by Sarah Stranieri University of Illinois at Urbana

  8. Terahertz Spectroscopy of Crystalline and Non-Crystalline Solids

    DEFF Research Database (Denmark)

    Parrott, Edward P. J.; Fischer, Bernd M.; Gladden, Lynn F.

    2013-01-01

    Terahertz spectroscopy of crystalline and non-crystalline solids is probably one of the most active research fields within the terahertz community. Many potential applications, amongst which spectral recognition is probably one of the most prominent, have significantly stimulated the development...

  9. Toasting the jelly sandwich: The effect of shear heating on lithospheric geotherms and strength

    Science.gov (United States)

    Hartz, Ebbe H.; Podladchikov, Yuri Y.

    2008-04-01

    We refine conventional continental-scale geodynamic models byincluding conversion of mechanical work done by deformationinto heat. The intensity of the shear heating is extracted fromthe Brace-Goetze strength envelope without any additional modelparameters or assumptions. Incorporation of this, certainlypresent, heating rate into a model may result in up to tenfoldstress reduction, which is exceeding the effects of variationof common parameters within their uncertainty limits. Shearheating with lithospheric thickening at high integrated strengthsolves the puzzle of the heretofore-missing heat source recordedby metamorphism, magmatism, and heat flow in mountain building.However, the mechanism is self-limiting as the rising temperaturereduces stress and thus the rate of heat production. Thus thisis a self-regulating mechanism maintaining a moderate integratedlithospheric strength consistent with results of model-independentforce-balanced calculations and with surface heat flow measurements.

  10. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  11. The effectiveness of absorption heat pumps application for the increase of economic efficiency of CHP operation

    Directory of Open Access Journals (Sweden)

    Luzhkovoy Dmitriy S.

    2017-01-01

    Full Text Available The article deals with a comparative analysis of CHP operational efficiency in various working modes before and after the absorption heat pumps installation. The calculation was performed using a mathematical model of the extraction turbine PT- 80/100-130/13. Absorption heat pumps of LLC “OKB Teplosibmash” were used as AHP models for the analysis. The most effective way of absorption lithium-bromide heat pumps application as a part of the turbine PT-80/100-130/13 turned out to be their usage in a heat-producing mode during a non-heating season with a load of hot water supply. For this mode the dependence of the turbine heat efficiency on the heat load of the external consumer at a given throttle flow was analyzed.

  12. The effectiveness of the implementation and automation of heat pump on public buildings

    Directory of Open Access Journals (Sweden)

    Trusov Artur

    2016-01-01

    Full Text Available This article is devoted to consideration of effectiveness of the implementation and automation of heat pump on public buildings, in particular, at public catering. This article shows the advantages of this equipment compared to other heating systems, as well as the future development of these systems in Russia. The article presents the analysis of prices for the cost of the heating period, analyze the operating parameters of the gas, electric boilers and heat pumps. Also, there is a heat pump automation scheme, which shows the functional relationship of the devices of automation, regulators and actuators, which are controlled heat pump. According to the calculations the authors come to the conclusion that the best is the heat pump.

  13. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Directory of Open Access Journals (Sweden)

    Ahmed W. Mustava

    2013-04-01

    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  14. Graphene plasmonics for tunable terahertz metamaterials.

    Science.gov (United States)

    Ju, Long; Geng, Baisong; Horng, Jason; Girit, Caglar; Martin, Michael; Hao, Zhao; Bechtel, Hans A; Liang, Xiaogan; Zettl, Alex; Shen, Y Ron; Wang, Feng

    2011-09-04

    Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz frequency range. Here we explore plasmon excitations in engineered graphene micro-ribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons. The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13, 14). The results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials.

  15. Applications of terahertz spectroscopy to pharmaceutical sciences.

    Science.gov (United States)

    Taday, Philip F

    2004-02-15

    The application of terahertz pulsed spectroscopy within the US Food and Drug Administration's (FDA's) recent process analytical technology (PAT) initiative is considered. As a case study the potency levels in paracetamol (4-acetamidophenol) and aspirin (acetylsalicylic acid) test tablets have been recovered from the terahertz absorption spectra using a multivariate partial-least-squares (PLS) calibration model. Root-mean-square errors of cross-validation (RMSECVs) of 2.85% and 3.90% were obtained for paracetamol and aspirin, respectively. Information about other excipients can also be obtained; for example, using the strong lactose absorption lines in the tablets, RMSECVs of 3.65% and 4.30% could be recovered from the paracetamol and aspirin samples, respectively. As active ingredients may also change their solid-state form during formulation processing or storage and as this can adversely affect the final dosage performance, monitoring of pharmaceutical ingredients is essential for a 'right-first-time' philosophy within the industry. Terahertz pulse spectroscopy is a high-throughput technique with many areas of potential exploitation in the pharmaceutical industry; these issues are discussed in this paper.

  16. Graphene geometric diodes for terahertz rectennas

    Science.gov (United States)

    Zhu, Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-05-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10-15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current-voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion.

  17. Magneto-plasmonic terahertz resonances in patterned graphene metasurfaces

    Science.gov (United States)

    Poumirol, Jean-Marie; Liu, Peter; Tamagnone, Michele; Slipchenko, Tetiana; Martin-Moreno, Luis; Mosig, Juan; Faist, Jerome Faist; Kuzmenko, Alexey B.

    When the time reversal symmetry is broken by a magnetic field, graphene displays strong non-reciprocal magneto-optical effects in the terahertz range such as magnetic circular dichroism and the Faraday rotation. Here we demonstrate that both these effects can be tuned over a large portion of the THz range due to strong magneto-plasmonic resonances that appear in patterned graphene. We studied different patterned types of graphene metasurfaces, such as periodic arrays of anti-dots, squares and metal-ring resonators. Importantly, the frequency and the intensity of the resonances can be efficiently controlled by electrostatic doping. Overall, combining this plasmonic control with magnetic and electronic biasing demonstrated that that non-reciprocity in graphene can be modulated and tuned at frequencies well beyond the cyclotron resonance in unpatterned graphene samples. Graphene Flagship.

  18. Rapid heating effects on grain-size, texture and magnetic properties ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 7. Rapid heating effects on ... The rapid heating effects on the microstructure, texture and magnetic properties of 3% Si nonoriented electrical steel has been investigated through optical microscopy, X-ray diffraction and Epstein frame. The results show that ...

  19. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  20. Active graphene–silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596

  1. Strong emission of terahertz radiation from nanostructured Ge surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul; Maeng, Inhee; Kee, Chul-Sik, E-mail: cskee@gist.ac.kr [Integrated Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Leem, Jung Woo; Yu, Jae Su, E-mail: jsyu@khu.ac.kr [Department of Electronics and Radio Engineering, and Institute for Wareable Convergence Electronics, Kyung Hee University, Gyeonggi-do 446-701 (Korea, Republic of); Kim, Tae Heon; Lee, Jong Seok [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2015-06-29

    Indirect band gap semiconductors are not efficient emitters of terahertz radiation. Here, we report strong emission of terahertz radiation from germanium wafers with nanostructured surfaces. The amplitude of THz radiation from an array of nano-bullets (nano-cones) is more than five (three) times larger than that from a bare-Ge wafer. The power of the terahertz radiation from a Ge wafer with an array of nano-bullets is comparable to that from n-GaAs wafers, which have been widely used as a terahertz source. We find that the THz radiation from Ge wafers with the nano-bullets is even more powerful than that from n-GaAs for frequencies below 0.6 THz. Our results suggest that introducing properly designed nanostructures on indirect band gap semiconductor wafers is a simple and cheap method to improve the terahertz emission efficiency of the wafers significantly.

  2. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    Science.gov (United States)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  3. Effects of ventilation behaviour on indoor heat load based on test reference years

    Science.gov (United States)

    Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas

    2016-02-01

    Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.

  4. Study on heat transport rate of an osmotic heat pipe. Effects of the initial concentration on the heat transport limits; Shinto heat pipe no netsu yuso ni kansuru kenkyu. 1. Shoki nodo no netsu yuso genkai ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ipposhi, S.; Imura, H. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1998-01-25

    This paper describes an experimental study on. the effects of an initial concentration on a maximum heat transport rate of an osmotic heat pipe operated under the atmospheric pressure. The working fluid was aqueous polyethylene glycol 600 solution and the 18 tubular-type osmosis membranes made of acetyl cellulose were used. The initial concentration was varied from 0.1 to 1.0 kmol/ m{sup 3} with 0.1 kmol/m{sup 3} step. As a result, it is shown that the optimum initial concentration exists for the maximum heat transport rate in the osmotic heat pipe. In addition, the concentrations in the solution riser and downcomer are related to the initial concentration. 11 refs., 11 figs., 2 tabs.

  5. Effects of Simulated Heat Waves on Cardiovascular Functions in Senile Mice

    Directory of Open Access Journals (Sweden)

    Xiakun Zhang

    2014-08-01

    Full Text Available The mechanism of the effects of simulated heat waves on cardiovascular disease in senile mice was investigated. Heat waves were simulated in a TEM1880 meteorological environment simulation chamber, according to a heat wave that occurred in July 2001 in Nanjing, China. Eighteen senile mice were divided into control, heat wave, and heat wave BH4 groups, respectively. Mice in the heat wave and heat wave BH4 groups were exposed to simulated heat waves in the simulation chamber. The levels of ET-1, NO, HSP60, SOD, TNF, sICAM-1, and HIF-1α in each group of mice were measured after heat wave simulation. Results show that heat waves decreased SOD activity in the myocardial tissue of senile mice, increased NO, HSP60, TNF, sICAM-1, and HIF-1α levels, and slightly decreased ET-1 levels, BH4 can relieve the effects of heat waves on various biological indicators. After a comprehensive analysis of the experiments above, we draw the followings conclusions regarding the influence of heat waves on senile mice: excess HSP60 activated immune cells, and induced endothelial cells and macrophages to secrete large amounts of ICAM-1, TNF-α, and other inflammatory cytokines, it also activated the inflammation response in the body and damaged the coronary endothelial cell structure, which increased the permeability of blood vessel intima and decreased SOD activity in cardiac tissues. The oxidation of lipoproteins in the blood increased, and large amounts of cholesterol were generated. Cholesterol penetrated the intima and deposited on the blood vessel wall, forming atherosclerosis and leading to the occurrence of cardiovascular disease in senile mice. These results maybe are useful for studying the effects of heat waves on elderly humans, which we discussed in the discussion chapter.

  6. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    Directory of Open Access Journals (Sweden)

    Jiawei Sui

    2014-12-01

    Full Text Available This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σInSb =256000 S/m, and 80 K, σInSb =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  7. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront

    Directory of Open Access Journals (Sweden)

    Jingkun Gao

    2016-12-01

    Full Text Available An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG-based nonuniform FFT (NUFFT is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section of targets in the terahertz regime.

  8. Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

    Directory of Open Access Journals (Sweden)

    Yunhua Cao

    2016-01-01

    Full Text Available Propagation characteristics of oblique incident terahertz wave from the nonuniform dusty plasma are studied using the propagation matrix method. Assuming that the electron density distribution of dusty plasma is parabolic model, variations of power reflection, transmission, and absorption coefficients with frequencies of the incident wave are calculated as the wave illuminates the nonuniform dusty plasma from different angles. The effects of incident angles, number density, and radius of the dust particles on propagation characteristics are discussed in detail. Numerical results show that the number density and radius of the dust particles have very little influences on reflection and transmission coefficients and have obvious effects on absorption coefficients. The terahertz wave has good penetrability in dusty plasma.

  9. Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime

    Science.gov (United States)

    Jian, Shao; Jie, Li; Ying-Hua, Wang; Jia-Qi, Li; Zheng-Gao, Dong; Lin, Zhou

    2016-05-01

    The obvious circular dichroism (CD) and optical activity can be obtained based on the chiral metamaterial due to the plasmon-enhanced effect, which is very attractive for future compact devices with enhanced capabilities of light manipulation. In this paper, we propose a dual-chiral metamaterial composed of bilayer asymmetric split ring resonators (ASRR) that are in mirror-symmetry shape. It is demonstrated that the CD can get enhancement in the terahertz regime. Moreover, the CD can be further improved by modulating the asymmetry of ASRR. The enhanced CD effect in the terahertz regime has great potential applications in sensing, biomedical imaging, and molecular recognition. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174051, 11374049, and 11204139), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131283), and the Fundamental Research Funds for the Central Universities, China.

  10. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath

    2000-01-01

    This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded

  11. High effectiveness liquid droplet/gas heat exchanger for space power applications

    Science.gov (United States)

    Bruckner, A. P.; Mattick, A. T.

    1983-01-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approximately 100-300 microns in diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber.The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  12. Experimental investigation of the effect vertical oscillation on the heat transfer coefficient of the finned tube

    Directory of Open Access Journals (Sweden)

    Kadhim S. K.

    2016-01-01

    Full Text Available The aim of this work is to investigate experimentally the effect of the forced vibrations on the free convection heat transfer coefficient using heated longitudinally finned cylinder made of Aluminium. The effect of the vibration frequency ranged from 2 to16 Hz with various heat fluxes ranged from 500-1500 W/m2. It was found that, the relation between the heat transfer coefficient and amplitude of vibration increased for all inclination angles from (0°-45°, while the increment of inclination angle decreases the values of convection heat transfer coefficient. The results show that the heat transfer coefficient ratio (hv/ho of longitudinal finned cylinders in (0° angle was (8% and (30% greater than those for the (30° and (45° respectively.

  13. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Team, JET [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

    2016-02-09

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The higher T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating

  14. Effects of oil heated with gluten on weight-loss dieting. II.

    Science.gov (United States)

    Totani, Nagao; Burenjargal, Munkhjargal; Tateishi, Sayuri; Yawata, Miho

    2008-01-01

    We previously proposed that oil heated with gluten was suitable for use as a safe oil for weight-loss dieting. In the present paper, the properties of the oil were improved, and the weight-loss effect was compared with that of heated oil. Fresh oil was heated for 10 h at 180 degrees C with or without gluten and filtered using filter paper. A powdered diet (AIN93G; no fat) was mixed with 7 wt% of fresh oil (control) or filtrates of the heated oils described above, and the mixture was fed to male Wistar rats for 12 weeks. The gluten and heated oil groups showed no gross symptoms attributable to the experimental oils but had a slowed body weight increase; a significant difference was found in weight on and after 21 weeks of age as compared to rats consuming the control diet, and fecal excretion was increased as compared to the control group. Serum levels of triacylglycerol, phospholipids, cholesterol, and glucose of the gluten and heated oil groups were significantly lower than those of the control group. High aspartate aminotransferase (AST) levels occurred more frequently in the heated oil group than the gluten group. The number of rats with dark red patches on the surface of the liver, which are indicative of liver damage, was higher in the heated oil group. In conclusion, the weight-reducing effect of the oil heated with gluten was confirmed and improved by removing traces of heated gluten from the oil.

  15. EFFECTIVENESS ANALYSIS OF CAMPUS HEAT SUPPLY SYSTEM OF DNIPROPETROVSK NATIONAL UNIVERSITY OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2014-03-01

    Full Text Available Purpose. Heat consumption for heating and hot water supply of housing and industrial facilities is an essential part of heat energy consumption. Prerequisite for development of energy saving measures in existing heating systems is their preliminary examination. The investigation results of campus heating system of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan are presented in the article. On the basis of the analysis it is proposed to take the energy saving measures and assess their effectiveness. Methodology. Analysis of the consumption structure of thermal energy for heating domestic and hot water supply was fulfilled. The real costs of heat supply during the calendar year and the normative costs were compared. Findings. The recording expenditures data of thermal energy for heating supply of residential buildings and dormitories in 2012 were analyzed. The comparison of actual performance with specific regulations was performed. This comparison revealed problems, whose solution will help the efficient use of thermal energy. Originality. For the first time the impact of climate conditions, features of schemes and designs of heating systems on the effective use of thermal energy were analyzed. It was studied the contribution of each component. Practical value. Based on the analysis of thermal energy consumption it was developed a list of possible energy saving measures that can be implemented in the system of heat and power facilities. It was evaluated the fuel and energy resources saving.

  16. Effect of heating oxyhemoglobin and methemoglobin on microsomes oxidation.

    Science.gov (United States)

    Bou, Ricard; Hanquet, Nicolas; Codony, Rafael; Guardiola, Francesc; Decker, Eric A

    2010-05-01

    Hemoglobin (Hb) has been proposed to be a major pro-oxidant in raw and cooked meats. To understand the mechanisms and differentiate between the pro-oxidant and antioxidant potential of oxyhemoglobin (OxyHb) and methemoglobin (MetHb), their pro-oxidant activity, protein solubility, radical scavenging capacity, iron content and contribution of non-chelatable iron on lipid oxidation were determined as a function of thermal treatments. The ability of native OxyHb and MetHb to promote lipid oxidation was similar and higher than their corresponding OxyHb or MetHb heated at 68 and 90 degrees C but not different from those at 45 degrees C. The pro-oxidant activity of MetHb heated at 68 and 90 degrees C were similar whereas the pro-oxidant activity of OxyHb heated at 68 degrees C was higher than that heated at 90 degrees C. The decreased pro-oxidant activity of heat-denatured Hb was associated with a decrease in the solubility of heme iron while free iron showed little impact on the lipid oxidation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  18. Effects of unsteady free stream velocity and free stream turbulence on stagnation point heat transfer

    Science.gov (United States)

    Gorla, R. S. R.

    1984-01-01

    The combined effects of transient free stream velocity and free stream turbulence on heat transfer at a stagnation point over a cylinder situated in a crossflow are studied. An eddy diffusivity model was formulated and the governing momentum and energy equations are integrated by means of the steepest descent method. The numerical results for the wall shear stress and heat transfer rate are correlated by a turbulence parameter. The wall friction and heat transfer rate increase with increasing free stream turbulence intensity.

  19. In vivo terahertz pulsed spectroscopy of dysplastic and non-dysplastic skin nevi

    Science.gov (United States)

    Zaytsev, Kirill I.; Chernomyrdin, Nikita V.; Kudrin, Konstantin G.; Gavdush, Arseniy A.; Nosov, Pavel A.; Yurchenko, Stanislav O.; Reshetov, Igor V.

    2016-08-01

    The results of the in vivo terahertz (THz) pulsed spectroscopy (TPS) of pigmentary skin nevi are reported. Observed THz dielectric permittivity of healthy skin and dysplastic and non-dysplastic skin nevi exhibits significant contrast in THz frequency range. Dysplastic skin nevus is a precursor of melanoma, which is reportedly the most dangerous cancer of the skin. Therefore, the THz dielectric spectroscopy is potentially an effective tool for non-invasive early diagnosis of melanomas of the skin.

  20. Nonlinear thermal convection in a layer of nanofluid under G-jitter and internal heating effects

    Directory of Open Access Journals (Sweden)

    Bhadauria B. S.

    2014-01-01

    Full Text Available This paper deals with a mathematical model of controlling heat transfer in nanofluids. The time-periodic vertical vibrations of the system are considered to effect an external control of heat transport along with internal heating effects. A weakly non-linear stability analysis is based on the five-mode Lorenz model using which the Nusselt number is obtained as a function of the thermal Rayleigh number, nano-particle concentration based Rayleigh number, Prandtl number, Lewis number, modified diffusivity ratio, amplitude and frequency of modulation. It is shown that modulation can be effectively used to control convection and thereby heat transport. Further, it is found that the effect of internal Rayleigh number is to enhance the heat and nano-particles transport.

  1. Effect of heat sink on the recurrence of small malignant hepatic tumors after radiofrequency ablation

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Lin

    2016-01-01

    Conclusions: The curative effect of MRI-guided RFA is better than those of US- and CT-guided ablation. The heat sink effect is an important factor affecting recurrence of hepatic malignant tumors after RFA.

  2. The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range - A review of novel and prospective applications

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Saito, T.; Ogawa, I.; Mitsudo, S.; Tatematsu, Y. [Research Center for Development of Far Infrared Region, University of Fukui, 3-9-1 Bunkyo, 910-8507 Fukui (Japan); Sabchevski, S. [Research Center for Development of Far Infrared Region, University of Fukui, 3-9-1 Bunkyo, 910-8507 Fukui (Japan); Institute of Electronics of the Bulgarian Academy of Sciences, 72 Tzarigradsko Shose Blvd., 1784 Sofia (Bulgaria)], E-mail: sabch@ie.bas.bg

    2008-12-31

    Some recent advancements in the development of powerful high frequency gyrotrons that generate coherent radiation in the sub-terahertz and terahertz regions of the electromagnetic spectrum as well as their typical and novel applications are presented and discussed.

  3. Terahertz focusing of multiple wavelengths by graphene metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liming, E-mail: liming.liu@student.adfa.edu.au [Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612 (Australia); Zarate, Yair; Shadrivov, Ilya V. [Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Hattori, Haroldo T. [School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612 (Australia); Neshev, Dragomir N.; Powell, David A. [Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 2601 (Australia)

    2016-01-18

    Metasurfaces can achieve nearly arbitrary wavefront control based on manipulation of the wave phase profile. We propose a metasurface based on double graphene cut-wire resonators which can cover the complete 2π phase region with high reflection efficiency. This full phase coverage is essential for efficient wavefront manipulation, without reflecting energy into unwanted channels. A mirror capable of focusing multiple wavelengths is demonstrated numerically based on the proposed structure. The mirror can effectively focus terahertz (THz) waves from 1.2 to 1.9 THz to the same focal point by changing the Fermi level of each graphene resonator separately. The presented metasurface could provide a powerful platform for controlling THz waves, including focusing, beam steering, beam shaping, and holography.

  4. Highly birefringent elliptical core photonic crystal fiber for terahertz application

    Science.gov (United States)

    Sultana, Jakeya; Islam, Md. Saiful; Faisal, Mohammad; Islam, Mohammad Rakibul; Ng, Brian W.-H.; Ebendorff-Heidepriem, Heike; Abbott, Derek

    2018-01-01

    We present a novel strategy for designing a highly birefringent photonic crystal fiber (PCF) with near zero flattened dispersion properties by applying elliptical air holes in the core area. The elliptical structure of the air holes in the porous-core region introduces asymmetry between x and y polarization modes, which consequently offers ultra-high birefringence. Also the compact geometry of the conventional hexagonal structure in the cladding confines most of the useful power. The optical properties including birefringence, dispersion, confinement loss, effective material loss (EML) and single modeness of the fiber are investigated using a full-vector finite element method. Simulation results show an ultra-high birefringence of 0 . 086 ultra-flattened near zero dispersion of 0 . 53 ± 0 . 07 ps/THz/cm in a broad frequency range. The practical implementation of the proposed fiber is feasible using existing fabrication technology and is applicable to the areas of terahertz sensing and polarization maintaining systems.

  5. Tunable and Broadband Differential Phase Sections in Terahertz Frequency Range

    Science.gov (United States)

    Kosiak, O. S.; Bezborodov, V. I.; Kuleshov, Ye. M.; Nesterov, P. K.

    2016-12-01

    Purpose: Studying the quasioptical tunable and broadband differential phase section (DPS) consisting of several birefringent elements (BE) on the basis of form birefringence effect. Design/methodology/approach: Using the polarization scattering matrix method, the impact of the mutual rotation axis of anisotropy of several BE by the amount of phase shift and the position of the plane of anisotropy of resulting DPS is considered. Findings: The DPS tunable in a wide range are shown to be possibly implemented in the case of quarter- wave DPS of two, and in the case of half-wave DPS of three, identical non-tunable BE. The analysis has shown to the possibility of creating a broadband quarter-wave and half-wave DPS. Conclusions: Experimental research has confirmed the possibility of constructing a tunable and broadband DPS. On this basis, tunable and broadband polarization converters, rotators of polarization plane, polarization phase shifters and frequency shifters in the terahertz frequency range can be created.

  6. Nanoparticles doped film sensing based on terahertz metamaterials

    Science.gov (United States)

    Liu, Weimin; Fan, Fei; Chang, Shengjiang; Hou, Jiaqing; Chen, Meng; Wang, Xianghui; Bai, Jinjun

    2017-12-01

    A nanoparticles concentration sensor based on doped film and terahertz (THz) metamaterial has been proposed. By coating the nanoparticles doped polyvinyl alcohol (PVA) film on the surface of THz metamaterial, the effects of nanoparticle concentration on the metamaterial resonances are investigated through experiments and numerical simulations. Results show that resonant frequency of the metamaterial linearly decreases with the increment of doping concentration. Furthermore, numerical simulations illustrate that the redshift of resonance results from the changes of refractive index of the doped film. The concentration sensitivity of this sensor is 3.12 GHz/0.1%, and the refractive index sensitivity reaches 53.33 GHz/RIU. This work provides a non-contact, nondestructive and sensitive method for the detection of nanoparticles concentration and brings out a new application on THz film metamaterial sensing.

  7. Ultrafast Terahertz Dynamics and Switching in Quantum Dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2012-01-01

    In this Chapter we describe the experimental studies of ultrafast carrier dynamics and all-optical switching in semiconductor quantum dots (QDs) using ultrafast terahertz (THz) techniques. In the first part of this chapter we describe the studies of carrier capture into the QDs, and thermionic...... carrier release from the QDs with (sub-)picosecond time resolution, using optical pump–THz probe measurements. In the second part of this chapter we investigate the direct manipulation of the quantum confinement potential of the QDs by an electric field of a strong THz pulse. The resulting THz......-driven quantum-confined Stark effect leads to a strong modulation of a ground-state optical absorption in the QDs. Dynamically, such a THz-induced electro-absorption modulation in QDs (near-)instantaneously follows the absolute value of the electric field of the THz pulse, providing the capability for Tbit...

  8. Dynamic Stimulation of Superconductivity With Resonant Terahertz Ultrasonic Waves

    CERN Document Server

    Kadin, Alan M

    2016-01-01

    An experiment is proposed to stimulate a superconducting thin film with terahertz (THz) acoustic waves, which is a regime not previously tested. For a thin film on a piezoelectric substrate, this can be achieved by coupling the substrate to a tunable coherent THz electromagnetic source. Suggested materials for initial tests are a niobium film on a quartz substrate, with a BSCCO intrinsic Josephson junction (IJJ) stack. This will create acoustic standing waves on the nm scale in the thin film. A properly tuned standing wave will enable electron diffraction across the Fermi surface, leading to electron localization perpendicular to the substrate. This is expected to reduce the effective dimensionality, and enhance the tendency for superconducting order parallel to the substrate, even well above the superconducting critical temperature. This enhancement can be observed by measuring the in-plane critical current and the perpendicular tunneling gap. A similar experiment may be carried out for a cuprate thin film, ...

  9. Effect of short-term exercise-heat acclimation on ventilatory and cerebral blood flow responses to passive heating at rest in humans.

    Science.gov (United States)

    Fujii, Naoto; Tsuji, Bun; Honda, Yasushi; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-09-01

    Hyperthermia induces hyperventilation and cerebral hypoperfusion in resting humans. We tested the hypothesis that short-term exercise-heat acclimation would alleviate those effects. Twenty healthy male subjects were divided into two groups that performed exercise training in the heat (TR-HEAT, n = 10) or cold (TR-COLD, n = 10). Before and after the training, the subjects in both groups participated in passive-heat tests at rest. Training was performed at 37°C (TR-HEAT) or 10°C (TR-COLD) and entailed four 20-min bouts of cycling at 50% peak oxygen uptake separated by 10-min recoveries daily for 6 consecutive days. After TR-HEAT, esophageal temperature was lowered when measured before and during passive heating, as was the esophageal temperature threshold for cutaneous active vasodilation, whereas plasma volume was increased (all P COLD (all P > 0.05). TR-HEAT had no significant effect on passive heating-induced increases in minute ventilation, even when evaluated as the esophageal temperature threshold for increases in minute ventilation and the slope relating minute ventilation to esophageal temperature (all P > 0.05). By contrast, TR-HEAT attenuated the passive heating-induced reduction in the cerebral vascular conductance index (middle cerebral artery mean blood velocity/mean arterial pressure) (all P COLD did not attenuate the increase in minute ventilation or the decrease in the cerebral vascular conductance index observed during passive heating (all P > 0.05). These data suggest that in resting heated humans, short-term heat acclimation achieved through moderate-intensity exercise training (i.e., 50% peak oxygen uptake) in the heat does not influence hyperthermia-induced hyperventilation, but it does potentially attenuate cerebral hypoperfusion. Copyright © 2015 the American Physiological Society.

  10. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip.

    Science.gov (United States)

    Yasin, Mohd Hafizi Mat; Ishak, Anuar; Pop, Ioan

    2015-12-09

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.

  11. Effects of heat stress on gene expression in eggplant ( Solanum ...

    African Journals Online (AJOL)

    In order to identify differentially expressed genes involved in heat shock response, cDNA amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time polymerase chain reaction (QPCR) were used to study gene expression of eggplant seedlings subjected to 0, 6 and 12 h at 43°C. A total of 53 of over ...

  12. Effect of heating on Maillard reactions in milk.

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    1998-01-01

    Heated milk is subject to the Maillard reaction; lactose and lysine residues in milk proteins (mainly casein) are the reactants. An overview is given of the early, advanced and final stages of the Maillard reaction as it occurs in milk. The early Maillard reaction is confined to the formation of the

  13. Effect of heat treatment temperature on microstructure and ...

    Indian Academy of Sciences (India)

    Administrator

    Keywords. Hollow carbon spheres; heat treatment; gas pressure; lithium ion battery. 1. Introduction. The development of portable devices in recent years has ..... project of Shanghai Municipal Education Commission and. Shanghai Education Development Foundation Science and. Technology (No. 09CG53), Science and ...

  14. Effect of summer climatic conditions on different heat tolerance ...

    African Journals Online (AJOL)

    The heart rate of the Friesian group was higher (P ≤ 0.05) than that of the Jersey cows at 15:00 and 17:00. Heart rate was not influenced by increasing ambient temperatures to the same extent as rectal temperature and respiration rate. Results suggest that Jersey cows display a higher heat tolerance than Friesian cows, ...

  15. Effects of chemical bonding on heat transport across interfaces

    Science.gov (United States)

    Losego, Mark D.; Grady, Martha E.; Sottos, Nancy R.; Cahill, David G.; Braun, Paul V.

    2012-06-01

    Interfaces often dictate heat flow in micro- and nanostructured systems. However, despite the growing importance of thermal management in micro- and nanoscale devices, a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump-probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold-SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.

  16. EFFECTS OF HEAT-FLOW AND HYDROTHERMAL FLUIDS FROM ...

    African Journals Online (AJOL)

    Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar ...

  17. Effect of heat moisture treatment and annealing on physicochemical ...

    African Journals Online (AJOL)

    Red sorghum starch was physically modified by annealing and heat moisture treatment. The swelling power and solubility increased with increasing temperature range (60-90°), while annealing and heatmoisture treatment decreased swelling power and solubility of starch. Solubility and swelling were pH dependent with ...

  18. Effect of heat processing on the proximate composition and energy ...

    African Journals Online (AJOL)

    Dr J. T. Ekanem

    2006-08-05

    Aug 5, 2006 ... In each of these locations, heat processing generally increased moisture content of all the samples (yam, cassava products, cocoyam and maize), but decreased dry matter, crude protein, ash, crude fat, total carbohydrate and calorific value. With the exception of moisture and ash, other nutrients were ...

  19. Effect of heating cast kafirin films on their functional properties

    CSIR Research Space (South Africa)

    Byaruhanga, YB

    2007-01-01

    Full Text Available ) and aqueous ethanol (AE), then heated using microwave energy. A power of 80 W for 2 min caused an approximately two- and fourfold increase in the tensile strength of non-plasticized and plasticized films, respectively. Film glass transition temperature...

  20. Advanced Signal Processing Techniques Applied to Terahertz Inspections on Aerospace Foams

    Science.gov (United States)

    Trinh, Long Buu

    2009-01-01

    The space shuttle's external fuel tank is thermally insulated by the closed cell foams. However, natural voids composed of air and trapped gas are found as by-products when the foams are cured. Detection of foam voids and foam de-bonding is a formidable task owing to the small index of refraction contrast between foam and air (1.04:1). In the presence of a denser binding matrix agent that bonds two different foam materials, time-differentiation of filtered terahertz signals can be employed to magnify information prior to the main substrate reflections. In the absence of a matrix binder, de-convolution of the filtered time differential terahertz signals is performed to reduce the masking effects of antenna ringing. The goal is simply to increase probability of void detection through image enhancement and to determine the depth of the void.

  1. Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Cosentino, Antonino; Jepsen, Peter Uhd

    2014-01-01

    Scientific analysis of panel paintings could provide key information to art historians and conservators about the composition and condition of the constituent layers. Knowledge of the structure, stratigraphy, and condition of the subsurface layers of these objects is highly relevant to conservation...... of subsurface 3D images and stratigraphic images (B-scans). The technique is contactless and non-invasive, and has been successfully applied to investigation of panel paintings. Regarding gilded panel paintings, the extremely high reflectivity of metals at submillimeter wavelengths generally precludes...... in the terahertz range, due to the skin effect. The thickness of gold leaf, a fraction of a micrometer, matches the skin depth of gold in the terahertz frequency range covered by THz-TDI devices. We therefore investigated and imaged subsurface features of panel paintings through gilded finishes with THz...

  2. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    Science.gov (United States)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  3. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene

    Science.gov (United States)

    Poumirol, Jean-Marie; Liu, Peter Q.; Slipchenko, Tetiana M.; Nikitin, Alexey Y.; Martin-Moreno, Luis; Faist, Jérôme; Kuzmenko, Alexey B.

    2017-03-01

    The magnetic circular dichroism and the Faraday rotation are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials, the strength and the sign of these effects can be only controlled by the field value and its orientation. Furthermore, the terahertz range is lacking materials having the ability to affect the polarization state of the light in a non-reciprocal manner. Here we demonstrate, using broadband terahertz magneto-electro-optical spectroscopy, that in graphene both the magnetic circular dichroism and the Faraday rotation can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field. In addition, we observe strong magneto-plasmonic resonances in a patterned array of graphene antidots, which potentially allows exploiting these magneto-optical phenomena in a broad THz range.

  4. A micromachined freestanding terahertz absorber with an array of metallic patches

    Directory of Open Access Journals (Sweden)

    Hamdi Torun

    2016-03-01

    Full Text Available An array of square metallic patches on a thin suspended dielectric layer is introduced as an effective terahertz absorber. The suspended structure is placed on a metalized substrate and the device exhibits metamaterial behavior at specific frequencies determined by the size of the patches. It is feasible to place patches with different sizes in an array formation for a broadband absorber. In array configuration, individual elements induce distinct resonances yielding narrow band absorption regions. Design of the absorber is described using electromagnetic simulations. The absorber structure was fabricated on a silicon wafer using standard microfabrication techniques. The characteristics of the absorber were measured using a terahertz time domain spectroscope. The measured data match well the simulations indicating strong absorption peaks in a band of 0.5-2 THz.

  5. Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region.

    Science.gov (United States)

    Fu, Xiaojian; Wu, Hongya; Xi, Xiaoqing; Zhou, Ji

    2014-01-16

    The rotational and vibrational dynamics of molecules in copper sulfate pentahydrate crystal are investigated with terahertz dielectric spectra. It is shown that the relaxation-like dielectric dispersion in the low frequency region is related to the reorientation of water molecules under the driving of terahertz electric field, whereas the resonant dispersion can be ascribed to lattice vibration. It is also found that, due to the hydrogen-bond effect, the vibrational mode at about 1.83 THz along [-111] direction softens with decreasing temperature, that is, the crystal expands in this direction when cooled. On the contrary, the mode hardens in the direction perpendicular to [-111] during the cooling process. This contributes to the further understanding of the molecular structure and bonding features of hydrate crystals.

  6. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    Science.gov (United States)

    Bartle, S. J.; Thomson, D. U.; Gehring, R.; van der Merwe, D.

    2017-11-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas, and three from the white areas. Samples were randomized and assigned to four coating treatments: (1) white hide with no coating (White), (2) black hide with no coating (Black), (3) black hide with 50% coating (Mid), and (4) black hide with 100% coating (High). Coatings were applied to the black hide samples using a hand sprayer. Lux measurements were taken using a modified lux meter at three light intensities generated with a broad spectrum, cold halogen light source. Reflectance over a wavelength range of 380 to 900 nm was measured using a spectroradiometer. The transdermal transfer of heat derived from absorbed light was measured by applying a broad spectrum, cold halogen light source to the stratum corneum (coated) side of the sample and recording the temperature of the dermis-side using a thermal camera for 10 min at 30-s intervals. At the high light level, the White, Black, Mid, and High coating treatments had different ( P White hide samples reflected 60 to 80% of the light energy. The average maximum temperatures at the dermis-side of the hides due to transferred heat were 34.5, 70.1, 55.0, and 31.7, for the White, Black, Mid, and High treatments, respectively. Reflective coatings containing titanium dioxide on cattle hides were effective in reducing light energy absorption and reduced light-derived heat transfer from the skin surface to deeper skin layers.

  7. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  8. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Science.gov (United States)

    Wen, Tong; Zhao, Yunliang; Xiao, Qihang; Ma, Qiulin; Kang, Shichang; Li, Hongqiang; Song, Shaoxian

    The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol) compared with the conventional heating (43.9 kJ/mol). However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite.

  9. Numerical Study on the Effect of Tube Rows on the Heat Transfer Characteristic of Dimpled Fin

    Directory of Open Access Journals (Sweden)

    Xuehong Wu

    2014-09-01

    Full Text Available The dimpled fin has excellent heat transfer performance and has attracted a lot of attention to apply on the fin and tube heat exchanger. A study presents to investigate the effects of number of tube rows on the air-side heat transfer characteristics of dimpled fin for velocity ranging from 1 to 3 m/s. The Q/ΔP and Q/((ΔP × V are used to evaluate the heat transfer performance of the heat exchanger. The results show that the dimpled arrangement can change the mainstream direction, increase the disturbance, and enhance the heat transfer. With the increase of the number of tube rows, the average Nusselt number decreases and Q/ΔP and Q/((ΔP × V increase gradually. Compared with the multipipe tube rows, the performance of two-row tube is better.

  10. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices....... Contaminant removal effectiveness and air change efficiency were used to evaluate ventilation effectiveness. No significant risk of thermal discomfort due to vertical air temperature differences or draught was found. When the room was heated by warm air, buoyancy forces were important for ventilation...

  11. Membrane-type Total Heat Exchanger Performance Simulation with Consideration of Entrance Effects

    Science.gov (United States)

    Duan, J. F.; Min, J. C.

    2017-11-01

    Membrane-type total heat exchanger (THX) is an air-to-air heat exchanger used to reduce the building energy consumption associated with forced ventilation by recovering both heat and moisture from ventilation air. It contains a heat/moisture exchange core made of a water vapour permeable membrane, supply outdoor air and exhaust indoor air flow through the membrane channels in the core in a crossflow manner and exchange heat and moisture across the membranes. The present work numerically investigates the airflow channel entrance effects on the THX performance. The results show that such effects on the air temperature and humidity distributions are inconspicuous and so are they on the THX effectiveness, it is therefore appropriate to use the constant Nusselt number to evaluate the THX performance.

  12. Performance analysis and parametric optimum criteria of a quantum Otto heat engine with heat transfer effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hao [Department of Physics, Nanchang University, Nanchang 330031 (China)], E-mail: ncu.wh@163.com; Liu Sanqiu; He Jizhou [Department of Physics, Nanchang University, Nanchang 330031 (China)

    2009-03-15

    The influence of both the quantum degeneracy and the finite rate heat transfer between the working substance and the cylinder wall on the optimal performance of an Otto engine cycle is investigated. Expressions for several important parameters such as the power output and efficiency are derived. By using numerical solutions, the curves of the power output and efficiency varying with the compression ratio of two isochoric processes are presented. It is found that there are optimal values of the compression ratio at which the power output and efficiency attain their maximum. In particular, the optimal performance of the cycle in strong and weak gas degeneracy and the high temperature limit are discussed in detail. The distinctions and connections between the quantum Otto engine and the classical are revealed. Moreover, the maximum power output and efficiency and the corresponding relevant parameters are calculated, and consequently, the optimization criteria of some important parameters such as the power output, efficiency and compression ratio of the working substance are obtained.

  13. Effect of heat treatment on transformation temperatures and bending properties of nickel-titanium endodontic instruments.

    Science.gov (United States)

    Yahata, Y; Yoneyama, T; Hayashi, Y; Ebihara, A; Doi, H; Hanawa, T; Suda, H

    2009-07-01

    To investigate the effect of heat treatment on the bending properties of nickel-titanium endodontic instruments in relation to their transformation behaviour. Nickel-titanium super-elastic alloy wire (1.00 mm Ø) was processed into a conical shape with a 0.30 mm diameter tip and 0.06 taper. The heat treatment temperature was set at 440 or 500 degrees C for a period of 10 or 30 min. Nonheat-treated specimens were used as controls. The phase transformation behaviour was examined using differential scanning calorimetry. A cantilever-bending test was used to evaluate the bending properties of the specimens. Data were analyzed by ANOVA and the Tukey-Kramer test (P = 0.05). The transformation temperature was higher for each heat treatment condition compared with the control. Two clear thermal peaks were observed for the heat treatment at 440 degrees C. The specimen heated at 440 degrees C for 30 min exhibited the highest temperatures for M(s) and A(f), with subsequently lower temperatures observed for specimens heated at 440 degrees C for 10 min, 500 degrees C for 30 min, 500 degrees C for 10 min, and control specimens. The sample heated at 440 degrees C for 30 min had the lowest bending load values (P treatment time was less than that of heat treatment temperature. Change in the transformation behaviour by heat treatment may be effective in increasing the flexibility of nickel-titanium endodontic instruments.

  14. Effects of heat treatment on the mechanical properties of kenaf fiber

    Energy Technology Data Exchange (ETDEWEB)

    Carada, Paulo Teodoro D. L. [Master’s student in the Graduate School of Science and Engineering, Mechanical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan); Fujii, Toru; Okubo, Kazuya [Professor in the Faculty of Science and Engineering, Department of Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan)

    2016-05-18

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  15. Heat Stress in Tunisia: Effects on dairy cows and potential means ...

    African Journals Online (AJOL)

    Thus, one of the challenges to dairy producers is heat stress. The objectives of this work were to characterize the environmental conditions to which Holstein cows are exposed in Tunisia using the Temperature Humidity Index (THI), examine heat stress effects on lactating cows and to suggest potential management ...

  16. Effect of heat treatment on wear resistance of a grinding plate ...

    African Journals Online (AJOL)

    The effects of heat treatment on the hardness and by extension the wear resistance of locally produced grinding plate of known composition were investigated. Specimens were prepared from the grinding plate and were heat treated at 840°C, 860°C and 880°C and quenched at different rate. Some of the specimens were ...

  17. Effect of weld heat input on toughness and structure of HAZ of a new ...

    Indian Academy of Sciences (India)

    Unknown

    lysed by using H-800 transmission electron microscope and electron diffraction technique. 3. Results and analysis. 3.1 Toughness and fracture morphology in the heat-affected zone. Effect of the weld heat input (E) on the impact energy in the HAZ of HQ130 super-high strength steel is shown in. *Author for correspondence ...

  18. Effects of microwave heating on the thermal states of biological tissues

    African Journals Online (AJOL)

    Effects of microwave heating on the thermal states of biological tissues. Nabil TM El-dabe, Mona AA Mohamed, Asma F El-Sayed. Abstract. A mathematical analysis of microwave heating equations in one-dimensional multi-layer model has been discussed. Maxwell's equations and transient bioheat transfer equation were ...

  19. Heat stress in wheat (Triticum aestivum L.) : Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo Martin, C.; Don, C.; Putten, van der P.E.L.

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  20. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila