WorldWideScience

Sample records for terahertz frequency detection

  1. Time-Frequency Analysis of Terahertz Radar Signals for Rapid Heart and Breath Rate Detection

    National Research Council Canada - National Science Library

    Massar, Melody L

    2008-01-01

    We develop new time-frequency analytic techniques which facilitate the detection of a person's heart and breath rates from the Doppler shift the movement of their body induces in a terahertz radar signal...

  2. Detection of Terahertz Radiation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation.......The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation....

  3. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  4. Wide-band frequency-tunable terahertz and infrared detection with graphene.

    Science.gov (United States)

    Kawano, Yukio

    2013-05-31

    We report a graphene-based frequency-selective terahertz (THz) and infrared (IR) detector. The experimental results have demonstrated that the graphene transistor under a magnetic field is capable of detecting THz and IR waves in a very wide band of frequencies (0.76-33 THz) and that the detection frequency is tuned by changing the magnetic field. We have further imaged electric potential distribution in the graphene detector and have observed local step structure associated with impurities. The THz and IR photoconductivity properties of graphene are likely to be sensitive to such potential steps.

  5. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.

    Science.gov (United States)

    Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng

    2017-06-14

    The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.

  6. Optomechanical terahertz detection with single meta-atom resonator.

    Science.gov (United States)

    Belacel, Cherif; Todorov, Yanko; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo

    2017-11-17

    Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light-matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.

  7. Integrated Arrays on Silicon at Terahertz Frequencies

    Science.gov (United States)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  8. Low-Loss Waveguides for Terahertz Frequencies

    Science.gov (United States)

    Siegel, Peter; Yeh, Cavour; Shimabukuro, Fred; Fraser, Scott

    2008-01-01

    Hollow-core, periodic bandgap (HCPBG) flexible waveguides have been proposed as a means of low-loss transmission of electromagnetic signals in the frequency range from about 300 GHz to 30 THz. This frequency range has been called the "terahertz gap" because it has been little utilized: Heretofore, there has been no way of low-loss guiding of terahertz beams other than by use of fixed-path optical beam guides with lenses and mirrors or multimode waveguides that cannot maintain mode purity around bends or modest discontinuities.

  9. Frequency-division multiplexer and demultiplexer for terahertz wireless links.

    Science.gov (United States)

    Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M

    2017-09-28

    The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.

  10. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision-ind...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions.......The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...

  11. Terahertz physics

    CERN Document Server

    Lewis, R A

    2012-01-01

    Terahertz physics covers one of the least explored but richest regions of the electromagnetic spectrum. Designed for independent learning, this is the first book to open up this exciting new field to students of science and engineering. Written in a clear and consistent style, the textbook focuses on an understanding of fundamental physical principles at terahertz frequencies and their applications. Part I outlines the foundations of terahertz science, starting with the mathematical representation of oscillations before exploring terahertz-frequency light, terahertz phenomena in matter and the terahertz interactions between light and matter. Part II covers components of terahertz technology, from sources of terahertz frequency radiation, through the manipulation of the radiation, to its detection. Part III deals with applications, including time-domain spectroscopy. Highlighting modern developments and concepts, the book is ideal for self-study. It features precise definitions, clear explanations, instructive...

  12. Lattice-induced modulators at terahertz frequencies.

    Science.gov (United States)

    Naranjo, Guillermo A; Peralta, Xomalin G

    2017-12-01

    We measured the transmission spectra of an array of split-ring resonators (SRRs) up to 10 terahertz for parallel and perpendicular polarizations. Calculations of the lattice and plasmon mode dispersion relations, in combination with electromagnetic simulations, confirm the presence of multiple higher-order lattice and plasmon modes. We modify the quality factor of higher-order plasmon resonances by modulating the lattice-plasmon mode coupling via changes in the period of the array. We also propose single frequency switches and a broadband dual-state amplitude modulator based on structured illumination that actively modifies the period of the SRR array.

  13. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-22

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  14. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-15

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  15. Detecting Molecular Rotational Dynamics Complementing the Low-Frequency Terahertz Vibrations in a Zirconium-Based Metal-Organic Framework

    Science.gov (United States)

    Ryder, Matthew R.; Van de Voorde, Ben; Civalleri, Bartolomeo; Bennett, Thomas D.; Mukhopadhyay, Sanghamitra; Cinque, Gianfelice; Fernandez-Alonso, Felix; De Vos, Dirk; Rudić, Svemir; Tan, Jin-Chong

    2017-06-01

    We show clear experimental evidence of cooperative terahertz (THz) dynamics observed below 3 THz (˜100 cm-1 ), for a low-symmetry Zr-based metal-organic framework structure, termed MIL-140A [ZrO (O2C-C 6H4-CO2) ]. Utilizing a combination of high-resolution inelastic neutron scattering and synchrotron radiation far-infrared spectroscopy, we measured low-energy vibrations originating from the hindered rotations of organic linkers, whose energy barriers and detailed dynamics have been elucidated via ab initio density functional theory calculations. The complex pore architecture caused by the THz rotations has been characterized. We discovered an array of soft modes with trampolinelike motions, which could potentially be the source of anomalous mechanical phenomena such as negative thermal expansion. Our results demonstrate coordinated shear dynamics (2.47 THz), a mechanism which we have shown to destabilize the framework structure, in the exact crystallographic direction of the minimum shear modulus (Gmin ).

  16. Terahertz imaging and spectroscopy based on hot electron bolometer (HEB) heterodyne detection

    Science.gov (United States)

    Gerecht, Eyal; You, Lixing

    2008-02-01

    Imaging and spectroscopy at terahertz frequencies have great potential for healthcare, plasma diagnostics, and homeland security applications. Terahertz frequencies correspond to energy level transitions of important molecules in biology and astrophysics. Terahertz radiation (T-rays) can penetrate clothing and, to some extent, can also penetrate biological materials. Because of their shorter wavelengths, they offer higher spatial resolution than do microwaves or millimeter waves. We are developing hot electron bolometer (HEB) mixer receivers for heterodyne detection at terahertz frequencies. HEB detectors provide unprecedented sensitivity and spectral resolution at terahertz frequencies. We describe the development of a two-pixel focal plane array (FPA) based on HEB technology. Furthermore, we have demonstrated a fully automated, two-dimensional scanning, passive imaging system based on our HEB technology operating at 0.85 THz. Our high spectral resolution terahertz imager has a total system noise equivalent temperature difference (NEΔT) value of better than 0.5 K and a spatial resolution of a few millimeters. HEB technology is becoming the basis for advanced terahertz imaging and spectroscopic technologies for the study of biological and chemical agents over the entire terahertz spectrum.

  17. Frequency Up-Conversion Photon-Type Terahertz Imager

    Science.gov (United States)

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-05-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.

  18. Retrieval of atmospheric parameters by radiometer at frequency of terahertz

    Science.gov (United States)

    Li, Jiang-man; Guo, Li-xin; Lin, Le-Ke; Li, Hai-ying; Zhao, Yi-yang; Shu, Ting-ting; Cheng, Xian-hai

    2013-08-01

    There has been intense interest in the use of millimeter wave and terahertz technology for the detection of weapons, explosives and other threats. System based on electromagnetic radiation between 30 GHz and 3 THz have advantages that radiation penetrates many common materials, wavelengths are short enough to give adequate spatial resolution and radiation at these frequencies is safe to use on people. It is also applied to the retrieval of tropospheric parameters with the ground-based radiometer system. Tropospheric temperature, humidity and cloud liquid water are key elements in meteorology. Since the 151 GHz channel strongly depends on cloud liquid water, the retrieval accuracy of atmospheric parameters is improved by the inclusion of a channel at 151 GHz. The new retrieval model which uses 123 GHz, 127 GHz and 168 GHz is proposed. Simulations of retrieval are presented based on the radiosonde dataset of Beijing China and the retrieving errors of different methods are compared.

  19. Dielectric characterization of glasses at millimeter wavelength and terahertz frequencies

    Science.gov (United States)

    Chen, Shu; Afsar, Mohammed N.

    2007-09-01

    Dielectric characterization of glasses and amorphous materials has been done with two terahertz time-domain spectroscopies at millimeter wavelength and terahertz frequencies. A quasi-optical free-space spectrometer is equipped with a backward-wave oscillator as a high power tunable source of coherent radiation and utilized in this research. The measurement technique is based on the transverse magneto-optical effect to enable the determination of the real and imaginary parts of complex dielectric permittivity of various glass specimens from 70 to 120 GHz. Above 120 GHz dispersive Fourier transform spectrometer is more effective to provide high resolution continuous spectra of dielectric permittivity up to 800 GHz. The real part of permittivity can be reproduced to 1 part in 100,000. The complex dielectric spectra of high purity fused silica glasses clearly show the existence of boson peaks at terahertz frequencies.

  20. Controlling Propagation Properties of Surface Plasmon Polariton at Terahertz Frequency

    Science.gov (United States)

    Gupta, Barun

    Despite great scientific exploration since the 1900s, the terahertz range is one of the least explored regions of electromagnetic spectrum today. In the field of plasmonics, texturing and patterning allows for control over electromagnetic waves bound to the interface between a metal and the adjacent dielectric medium. The surface plasmon-polaritons (SPPs) display unique dispersion characteristics that depend upon the plasma frequency of the medium. In the long wavelength regime, where metals are highly conductive, such texturing can create an effective medium that can be characterized by an effective plasma frequency that is determined by the geometrical parameters of the surface structure. The terahertz (THz) spectral range offers unique opportunities to utilize such materials. This thesis describes a number of terahertz plasmonic devices, both passive and active, fabricated using different techniques. As an example, inkjet printing is exploited for fabricating two-dimensional plasmonic devices. In this case, we demonstrated the terahertz plasmonic structures in which the conductivity of the metallic film is varied spatially in order to further control the plasmonic response. Using a commercially available inkjet printers, in which one cartridge is filled with conductive silver ink and a second cartridge is filled with resistive carbon ink, computer generated drawings of plasmonic structures are printed in which the individual printed dots can have differing amounts of the two inks, thereby creating a spatial variation in the conductivity. The inkjet printing technique is limited to the two-dimensional structurers. In order to expand the capability of printing complex terahertz devices, which cannot otherwise be fabricated using standard fabricating techniques, we employed 3D printing techniques. 3D printing techniques using polymers to print out the complex structures. In the realm of active plasmonic devices, a wide range of innovative approaches have been

  1. Moisture detection in composites by terahertz spectroscopy

    Science.gov (United States)

    Malinowski, Paweł; Pałka, Norbert; Opoka, Szymon; Wandowski, Tomasz; Ostachowicz, Wiesław

    2015-07-01

    The application of Glass Fibre Reinforced Polymers (GFRP) in many branches of industry has been increasing steadily. Many research works focus on damage identification for structures made out of such materials. However, not only delaminations, cracks or other damage can have a negative influence of GFRP parts performance. Previous research proved that fluid absorption influences the mechanical performance of composites. GFRP parts can be contaminated by moisture or release agent during manufacturing, while fuel, hydraulic fluid and moisture ingression into the composite can be the in-service treats. In the reported research authors focus on moisture detection. There are numerous sources of moisture such as post manufacturing NDT inspection with ultrasonics coupled by water or exposition to moisture during transportation and in service. An NDT tool used for the research is a terahertz (THz) spectrometer. The device uses an electromagnetic radiation in the terahertz range (0.1-3 THz) and allows for reflection and transmission measurements. The spectrometer is equipped with moving table that allows for XY scanning of large objects such as GFRP panels. In the conducted research refractive indices were experimentally extracted from the materials of interest (water and GFRP). Time signals as well as C-scans were analysed for samples with moisture contamination. In order to be sure that the observed effects are related to moisture contamination reference measurements were conducted. The obtained results showed that the THz NDT technique can detect moisture hidden under a GFRP with multiple layers.

  2. Analysis of photonic crystal and multi-frequency terahertz microstrip patch antenna

    International Nuclear Information System (INIS)

    Yang, Lechen; Shi, Xueshun; Chen, Kunfeng; Fu, Kai; Zhang, Baoshun

    2013-01-01

    In this paper, two-dimensional photonic crystals working at terahertz (THz) frequency is analyzed, a multi-frequency terahertz microstrip patch antenna on photonic crystal substrate is presented and its electromagnetic wave propagation phenomenon is investigated. The proposed antenna can work at five frequency points' scope at terahertz frequency regions, and the radiation efficiency is as high as ∼96%. The photonic crystal structure of the substrate is used to enhance the gain, directivity and radiation efficiency of the antenna

  3. Analysis of photonic crystal and multi-frequency terahertz microstrip patch antenna

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lechen, E-mail: yanglechen@163.com [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Science, Suzhou 215123, Jiangsu Province (China); Shi, Xueshun [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Science and Technology on Electronic Test and Measurement Laboratory, Qingdao 266555, Shandong Province (China); Chen, Kunfeng [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Fu, Kai; Zhang, Baoshun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Science, Suzhou 215123, Jiangsu Province (China)

    2013-12-15

    In this paper, two-dimensional photonic crystals working at terahertz (THz) frequency is analyzed, a multi-frequency terahertz microstrip patch antenna on photonic crystal substrate is presented and its electromagnetic wave propagation phenomenon is investigated. The proposed antenna can work at five frequency points' scope at terahertz frequency regions, and the radiation efficiency is as high as ∼96%. The photonic crystal structure of the substrate is used to enhance the gain, directivity and radiation efficiency of the antenna.

  4. The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range - A review of novel and prospective applications

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Saito, T.; Ogawa, I.; Mitsudo, S.; Tatematsu, Y. [Research Center for Development of Far Infrared Region, University of Fukui, 3-9-1 Bunkyo, 910-8507 Fukui (Japan); Sabchevski, S. [Research Center for Development of Far Infrared Region, University of Fukui, 3-9-1 Bunkyo, 910-8507 Fukui (Japan); Institute of Electronics of the Bulgarian Academy of Sciences, 72 Tzarigradsko Shose Blvd., 1784 Sofia (Bulgaria)], E-mail: sabch@ie.bas.bg

    2008-12-31

    Some recent advancements in the development of powerful high frequency gyrotrons that generate coherent radiation in the sub-terahertz and terahertz regions of the electromagnetic spectrum as well as their typical and novel applications are presented and discussed.

  5. Millimetre wave and terahertz technology for the detection of concealed threats: a review

    Science.gov (United States)

    Kemp, Michael C.

    2006-09-01

    There has been intense interest in the use of millimetre wave and terahertz technology for the detection of concealed weapons, explosives and other threats. Electromagnetic waves at these frequencies are safe, penetrate barriers and have short enough wavelengths to allow discrimination between objects. In addition, many solids including explosives have characteristic spectroscopic signatures at terahertz wavelengths which can be used to identify them. This paper reviews the progress which has been made in recent years and identifies the achievements, challenges and prospects for these technologies in checkpoint people screening, stand off detection of improvised explosive devices (IEDs) and suicide bombers as well as more specialized screening tasks.

  6. Drug detection by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Duan Ruixin; Zhu Yiming; Zhao Hongwei

    2013-01-01

    Due to unique spectral region, functional imaging ability, excellent penetration and safety characteristics of terahertz radiation, the terahertz technology rapidly becomes a vital method to detect and analyze drugs. In this paper, firstly, we identify the functional groups of anti-diabetic drugs by density functional theory (DFT), HIPHOP models and experimental results from terahertz time-domain spectroscopy measurements. Secondly, we identify four kinds of herbs of radix curcumae by using the support vector machine (SVM) analysis. Besides, we analyze the absorption of anhydrous and hydrous glucose, and determine the state of water in the crystalized D-glucose·H 2 O through the results of differential scanning calorimetry measurement. Finally, we summarize the advantages and disadvantages of terahertz time-domain spectroscopy method in drug detection and analyzing. (authors)

  7. High density terahertz frequency comb produced by coherent synchrotron radiation

    Science.gov (United States)

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-07-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10-10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  8. Terahertz NDE Application for Corrosion Detection and Evaluation under Shuttle Tiles

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  9. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air

    International Nuclear Information System (INIS)

    Zhang, Zhelin; Chen, Yanping; Yang, Liu; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Zhang, Jie; Sheng, Zhengming

    2014-01-01

    Dual-frequency terahertz radiation from air-plasma filaments produced with two-color lasers in air has been demonstrated experimentally. When a focusing lens is tilted for a few degrees, it is shown that the laser filament evolves from a single one to two sub-filaments. Two independent terahertz sources emitted from the sub-filaments with different frequencies and polarizations are identified, where the frequency of terahertz waves from the trailing sub-filament is higher than that from the leading sub-filament.

  10. Influence of absorption on stability of terahertz difference frequency generation.

    Science.gov (United States)

    Huang, Nan; Liu, Hongjun; Sun, Qibing; Wang, Zhaolu; Li, Shaopeng; Han, Jing

    2016-01-20

    This work presents numerical studies of the stability feature of terahertz difference frequency generation (THz-DFG) with a ZnGeP(2) crystal using two pump wavelengths. We found that the maximum output of a THz wave is located in the unstable output region because of the competitive equilibrium between the absorption and the gain. Furthermore, the output stability is dependent on the pump stability. Different from the results at the pump wavelength of 9.588 μm, there is neither an appropriate stable output region nor gain saturation region at the pump wavelength of 1.064 μm for a larger absorption coefficient. This work demonstrates that the stable output region of the THz wave is difficult to obtain when the pump absorption is excessively large in DFG.

  11. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].

    Science.gov (United States)

    Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui

    2010-03-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.

  12. Detection of Ionic liquid using terahertz time-domain spectroscopy

    Science.gov (United States)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  13. Single-silicon CCD-CMOS platform for multi-spectral detection from terahertz to x-rays.

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P

    2017-11-15

    Charge-coupled devices (CCDs) are a well-established imaging technology in the visible and x-ray frequency ranges. However, the small quantum photon energies of terahertz radiation have hindered the use of this mature semiconductor technological platform in this frequency range, leaving terahertz imaging totally dependent on low-resolution bolometer technologies. Recently, it has been shown that silicon CCDs can detect terahertz photons at a high field, but the detection sensitivity is limited. Here we show that silicon, complementary metal-oxide-semiconductor (CMOS) technology offers enhanced detection sensitivity of almost two orders of magnitude, compared to CCDs. Our findings allow us to extend the low-frequency terahertz cutoff to less than 2 THz, nearly closing the technological gap with electronic imagers operating up to 1 THz. Furthermore, with the silicon CCD/CMOS technology being sensitive to mid-infrared (mid-IR) and the x-ray ranges, we introduce silicon as a single detector platform from 1 EHz to 2 THz. This overcomes the present challenge in spatially overlapping a terahertz/mid-IR pump and x-ray probe radiation at facilities such as free electron lasers, synchrotron, and laser-based x-ray sources.

  14. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    Science.gov (United States)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  15. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies

    Science.gov (United States)

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-01-01

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417

  16. Miniaturized ultra-low loss subwavelength waveguide at terahertz frequency

    Science.gov (United States)

    Baradaran Ghasemi, Amir H.; Latifi, Hamid

    2016-04-01

    Compact low-loss terahertz waveguides are crucial in integrating the terahertz devices in the newly emerging field of terahertz photonics. One of the promising structures used for this purpose are photonic crystal waveguides. However, device compactness is limited due to diffraction. This study deals with the possibility of going beyond the diffraction-limited property of a photonic crystal. We demonstrate, numerically, terahertz wave-guiding with up to subwavelength confinement factor of λ 2/ (mode surface)  =  306 in a 2D structure consisting of square lattice of ionic cylinders in an air matrix. The total loss can be further mitigated due to an increase of spectral width of photonic band gap in a dispersive structure compared to that of an otherwise non-dispersive structure. According to the results, the square-lattice geometry supports TE-polarized guided modes with higher confinement factor compared with that of TM-polarized guided modes.

  17. A coherent detection technique via optically biased field for broadband terahertz radiation.

    Science.gov (United States)

    Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu

    2017-09-01

    We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.

  18. Nonlinear terahertz coherent excitation of vibrational modes of liquids.

    Science.gov (United States)

    Allodi, Marco A; Finneran, Ian A; Blake, Geoffrey A

    2015-12-21

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.

  19. Terahertz technology

    CERN Document Server

    Rostami, Ali; Baghban, Hamed

    2010-01-01

    This book presents information about Terahertz science, Terahertz photodetectors and Terahertz Lasers. A special emphasis is given to room temperature operation of long wavelength photodetectors based on novel quantum dots (Centered Defect Spherical Quantum Dots). Moreover, a complete analysis of systems based on Quantum Cascade structures to detect far infrared wavelengths is provided. Finally, the book presents Terahertz laser principles considering multi-color lasers in this range of wavelengths. It is written as a background for graduate students in the Optics field.

  20. Application of Hilbert-Huang Transform for Improved Defect Detection in Terahertz NDE of Shuttle Tiles

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Terahertz NDE is being examined as a method to inspect the adhesive bond-line of Space Shuttle tiles for defects. Terahertz signals are generated and detected, using optical excitation of biased semiconductors with femtosecond laser pulses. Shuttle tile samples were manufactured with defects that included repair regions unbond regions, and other conditions that occur in Shuttle structures. These samples were inspected with a commercial terahertz NDE system that scanned a tile and generated a data set of RF signals. The signals were post processed to generate C-scan type images that are typically seen in ultrasonic NDE. To improve defect visualization the Hilbert-Huang Transform, a transform that decomposes a signal into oscillating components called intrinsic mode functions, was applied to test signals identified as being in and out of the defect regions and then on a complete data set. As expected with this transform, the results showed that the decomposed low-order modes correspond to signal noise while the high-order modes correspond to low frequency oscillations in the signal and mid-order modes correspond to local signal oscillations. The local oscillations compare well with various reflection interfaces and the defect locations in the original signal.

  1. [The Detection of Ultra-Broadband Terahertz Spectroscopy of InP Wafer by Using Coherent Heterodyne Time-Domain Spectrometer].

    Science.gov (United States)

    Zhang, Liang-liang; Zhang, Rui; Xu, Xiao-yan; Zhang, Cun-lin

    2016-02-01

    Indium Phosphide (InP) has attracted great physical interest because of its unique characteristics and is indispensable to both optical and electronic devices. However, the optical property of InP in the terahertz range (0. 110 THz) has not yet been fully characterized and systematically studied. The former researches about the properties of InP concentrated on the terahertz frequency between 0.1 and 4 THz. The terahertz optical properties of the InP in the range of 4-10 THz are still missing. It is fairly necessary to fully understand its properties in the entire terahertz range, which results in a better utilization as efficient terahertz devices. In this paper, we study the optical properties of undoped (100) InP wafer in the ultra-broad terahertz frequency range (0.5-18 THz) by using air-biased-coherent-detection (ABCD) system, enabling the coherent detection of terahertz wave in gases, which leads to a significant improvement on the dynamic range and sensitivity of the system. The advantage of this method is broad frequency bandwidth from 0.2 up to 18 THz which is only mainly limited by laser pulse duration since it uses ionized air as terahertz emitter and detector instead of using an electric optical crystal or photoconductive antenna. The terahertz pulse passing through the InP wafer is delayed regarding to the reference pulse and has much lower amplitude. In addition, the frequency spectrum amplitude of the terahertz sample signal drops to the noise floor level from 6.7 to 12.1 THz. At the same time InP wafer is opaque at the frequencies spanning from 6.7 to 12.1 THz. In the frequency regions of 0.8-6.7 and 12.1-18 THz it has relativemy low absorption coefficient. Meanwhile, the refractive index increases monotonously in the 0.8-6.7 THz region and 12.1-18 THz region. These findings will contribute to the design of InP based on nonlinear terahertz devices.

  2. The detection of amoxicillin medicines by terahertz time-domain spectroscopy

    Science.gov (United States)

    Meng, Kun; Li, Zeren; Liu, Qiao

    2012-03-01

    Terahertz time-domain spectroscopy (THz-TDS) is a new spectroscopic technique, which improve a good complement for other spectroscopic techniques and has broad application prospects in the biomedical field. In this paper, a terahertz time-domain spectroscopy system is set up. Using this system, the amoxicillin drugs are detected, and the spectrum are analyzed.

  3. Complex extraordinary dielectric function of Mg-doped lithium niobate crystals at terahertz frequencies

    Science.gov (United States)

    Kuznetsov, K. A.; Kitaeva, G. Kh.; Kovalev, S. P.; Germansky, S. A.; Buryakov, A. M.; Tuchak, A. N.; Penin, A. N.

    2016-08-01

    We study the dispersion of the extraordinary dielectric function real and imaginary parts in the wide terahertz-frequency range of the lowest polariton branch for bulk LiNbO3 and Mg:LiNbO3 crystals. At frequencies 0.1-2.5 THz, both dispersion parts are measured by means of standard time-domain terahertz spectroscopy, and at higher frequencies up to 5.5 THz, the dielectric function real part is determined using a common scheme of spontaneous parametric down-conversion under near-forward Raman scattering by phonon polaritons. A special approach is applied for measuring of the dielectric function imaginary part at frequencies 1-3 THz, based on the analysis of visibility of three-wave second-order interference under spontaneous parametric down-conversion. The generalized approximate expressions are obtained for complex dielectric function dispersion within the lower polariton branches of LiNbO3 and Mg:LiNbO3. It is shown that the well-known decrease in terahertz-wave absorption of lithium niobate crystals under Mg-doping is caused by changes in the defect structure and reduction of coupling of the terahertz-frequency polaritons with Debye relaxational mode.

  4. Terahertz technology for imaging and spectroscopy

    Science.gov (United States)

    Crowe, T. W.; Porterfield, D. W.; Hesler, J. L.; Bishop, W. L.; Kurtz, D. S.; Hui, K.

    2006-05-01

    The terahertz region of the electromagnetic spectrum has unique properties that make it especially useful for imaging and spectroscopic detection of concealed weapons, explosives and chemical and biological materials. However, terahertz energy is difficult to generate and detect, and this has led to a technology gap in this frequency band. Nonlinear diodes can be used to bridge this gap by translating the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These terahertz components rely on planar Schottky diodes and recently developed integrated diode circuits make them easier to assemble and more robust. The new generation of terahertz sources and receivers requires no mechanical tuning, yet achieves high efficiency and broad bandwidth. This paper reviews the basic design of terahertz transmitters and receivers, with special emphasis on the recent development of systems that are compact, easy to use and have excellent performance.

  5. Sub-terahertz sound excitation and detection by a long Josephson junction

    Science.gov (United States)

    Koshelets, V. P.

    2014-06-01

    The paper reports on experimental observations of sub-terahertz sound wave generation and detection by a long Josephson junction. This effect was discovered in spectral measurements of sub-terahertz electromagnetic emission from a flux-flow oscillator (FFO) deposited on an optically polished Si substrate. The ‘back action’ of the acoustic waves generated by the FFO and reflected by the bottom surface of the Si substrate results in the appearance of resonant steps in the FFO IVCs with spacings as small as 29 nV for a 0.3 mm substrate thickness; these steps manifest themselves in a pronounced resonant structure in the emission spectra, with spacings of about 14 MHz, precisely according to the Josephson relation. The mechanism of acoustic wave generation and detection by the FFO is discussed; a possibility for employing the discovered effect for FFO frequency stabilization has been demonstrated. A simple and reliable way to suppress the superfine resonant structure has been developed and proved; this invention allows continuous frequency tuning and FFO phase locking at any desired frequency, all of which are vitally important for most applications.

  6. Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging

    Science.gov (United States)

    Karagoz, Burcu; Kamburoglu, Kıvanc; Altan, Hakan

    2017-07-01

    Dental caries in sliced samples are investigated using terahertz pulsed imaging. Frequency domain terahertz response of these structures consistent with X-ray imaging results show the potential of this technique in the detection of early caries.

  7. [Use of terahertz electromagnetic radiation at nitric oxide frequencies for the correction of thyroid functional state during stress].

    Science.gov (United States)

    Kirichuk, V F; Tsymbal, A A

    2010-01-01

    The influence of terahertz electromagnetic radiation at nitric oxide frequencies (150.176-150.664 Ghz) on the functional activity of rat thyroid gland subjected to acute immobilization stress has been studied. It is shown that terahertz radiation totally normalizes thyroid activity in stressed animals within 30 min after application.

  8. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Vijayraghavan, Karun [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); ATX Photonics, 10100 Burnet Rd., Austin, Texas 78758 (United States)

    2015-06-29

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps.

  9. See-through Detection and 3D Reconstruction Using Terahertz Leaky-Wave Radar Based on Sparse Signal Processing

    Science.gov (United States)

    Murata, Koji; Murano, Kosuke; Watanabe, Issei; Kasamatsu, Akifumi; Tanaka, Toshiyuki; Monnai, Yasuaki

    2018-02-01

    We experimentally demonstrate see-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing. The application of terahertz waves to radar has received increasing attention in recent years for its potential to high-resolution and see-through detection. Among others, the implementation using a leaky-wave antenna is promising for compact system integration with beam steering capability based on frequency sweep. However, the use of a leaky-wave antenna poses a challenge on signal processing. Since a leaky-wave antenna combines the entire signal captured by each part of the aperture into a single output, the conventional array signal processing assuming access to a respective antenna element is not applicable. In this paper, we apply an iterative recovery algorithm "CoSaMP" to signals acquired with terahertz leaky-wave radar for clutter mitigation and aperture synthesis. We firstly demonstrate see-through detection of target location even when the radar is covered with an opaque screen, and therefore, the radar signal is disturbed by clutter. Furthermore, leveraging the robustness of the algorithm against noise, we also demonstrate 3D reconstruction of distributed targets by synthesizing signals collected from different orientations. The proposed approach will contribute to the smart implementation of terahertz leaky-wave radar.

  10. Highly sensitive and selective sugar detection by terahertz nano-antennas

    Science.gov (United States)

    Lee, Dong-Kyu; Kang, Ji-Hun; Lee, Jun-Seok; Kim, Hyo-Seok; Kim, Chulki; Hun Kim, Jae; Lee, Taikjin; Son, Joo-Hiuk; Park, Q.-Han; Seo, Minah

    2015-10-01

    Molecular recognition and discrimination of carbohydrates are important because carbohydrates perform essential roles in most living organisms for energy metabolism and cell-to-cell communication. Nevertheless, it is difficult to identify or distinguish various carbohydrate molecules owing to the lack of a significant distinction in the physical or chemical characteristics. Although there has been considerable effort to develop a sensing platform for individual carbohydrates selectively using chemical receptors or an ensemble array, their detection and discrimination limits have been as high in the millimolar concentration range. Here we show a highly sensitive and selective detection method for the discrimination of carbohydrate molecules using nano-slot-antenna array-based sensing chips which operate in the terahertz (THz) frequency range (0.5-2.5 THz). This THz metamaterial sensing tool recognizes various types of carbohydrate molecules over a wide range of molecular concentrations. Strongly localized and enhanced terahertz transmission by nano-antennas can effectively increase the molecular absorption cross sections, thereby enabling the detection of these molecules even at low concentrations. We verified the performance of nano-antenna sensing chip by both THz spectra and images of transmittance. Screening and identification of various carbohydrates can be applied to test even real market beverages with a high sensitivity and selectivity.

  11. Foreign Object Detection by Sub-Terahertz Quasi-Bessel Beam Imaging

    Directory of Open Access Journals (Sweden)

    Hyang Sook Chun

    2012-12-01

    Full Text Available Food quality monitoring, particularly foreign object detection, has recently become a critical issue for the food industry. In contrast to X-ray imaging, terahertz imaging can provide a safe and ionizing-radiation-free nondestructive inspection method for foreign object sensing. In this work, a quasi-Bessel beam (QBB known to be nondiffracting was generated by a conical dielectric lens to detect foreign objects in food samples. Using numerical evaluation via the finite-difference time-domain (FDTD method, the beam profiles of a QBB were evaluated and compared with the results obtained via analytical calculation and experimental characterization (knife edge method, point scanning method. The FDTD method enables a more precise estimation of the beam profile. Foreign objects in food samples, namely crickets, were then detected with the QBB, which had a deep focus and a high spatial resolution at 210 GHz. Transmitted images using a Gaussian beam obtained with a conventional lens were compared in the sub-terahertz frequency experimentally with those using a QBB generated using an axicon.

  12. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    Science.gov (United States)

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  13. Spectral distribution of the efficiency of terahertz difference frequency generation upon collinear propagation of interacting waves in semiconductor crystals

    International Nuclear Information System (INIS)

    Orlov, Sergei N; Polivanov, Yurii N

    2007-01-01

    Dispersion phase matching curves and spectral distributions of the efficiency of difference frequency generation in the terahertz range are calculated for collinear propagation of interacting waves in zinc blende semiconductor crystals (ZnTe, CdTe, GaP, GaAs). The effect of the pump wavelength, the nonlinear crystal length and absorption in the terahertz range on the spectral distribution of the efficiency of difference frequency generation is analysed. (nonlinear optical phenomena)

  14. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    Science.gov (United States)

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  15. Terahertz imaging devices and systems, and related methods, for detection of materials

    Science.gov (United States)

    Kotter, Dale K.

    2016-11-15

    Terahertz imaging devices may comprise a focal plane array including a substrate and a plurality of resonance elements. The plurality of resonance elements may comprise a conductive material coupled to the substrate. Each resonance element of the plurality of resonance elements may be configured to resonate and produce an output signal responsive to incident radiation having a frequency between about a 0.1 THz and 4 THz range. A method of detecting a hazardous material may comprise receiving incident radiation by a focal plane array having a plurality of discrete pixels including a resonance element configured to absorb the incident radiation at a resonant frequency in the THz, generating an output signal from each of the discrete pixels, and determining a presence of a hazardous material by interpreting spectral information from the output signal.

  16. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    CERN Document Server

    Tanabé, T; Nishizawa, J I; Saitô, K; Kimura, T

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source.

  17. Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System

    Science.gov (United States)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  18. Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pengcheng Nie

    2017-12-01

    Full Text Available The terahertz (THz spectra of rapeseed leaves with different water content (WC were investigated. The transmission and absorption spectra in the range of 0.3–2 THz were measured by using THz time-domain spectroscopy. The mean transmittance and absorption coefficients were applied to analyze the change regulation of WC. In addition, the Savitzky-Golay method was performed to preprocess the spectra. Then, the partial least squares (PLS, kernel PLS (KPLS, and Boosting-PLS were conducted to establish models for predicting WC based on the processed transmission and absorption spectra. Reliable results were obtained by these three methods. KPLS generated the best prediction accuracy of WC. The prediction coefficient correlation (Rval and root mean square error (RMSEP of KPLS based on transmission were Rval = 0.8508, RMSEP = 0.1015, and that based on absorption were Rval = 0.8574, RMSEP = 0.1009. Results demonstrated that THz spectroscopy combined with modeling methods provided an efficient and feasible technique for detecting plant physiological information.

  19. Evaluation of leaf water status by means of permittivity at terahertz frequencies.

    Science.gov (United States)

    Jördens, C; Scheller, M; Breitenstein, B; Selmar, D; Koch, M

    2009-08-01

    We present an electromagnetic model of plant leaves which describes their permittivity at terahertz frequencies. The complex permittivity is investigated as a function of the water content of the leaf. Our measurements on coffee leaves (Coffea arabica L.) demonstrate that the dielectric material parameters can be employed to determine the leaf water status and, therefore, to monitor drought stress in plant leaves. The electromagnetic model consists of an effective medium theory, which is implemented by a third order extension of the Landau, Lifshitz, Looyenga model. The influence of scattering becomes important at higher frequencies and is modeled by a Rayleigh roughness factor.

  20. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    Science.gov (United States)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  1. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    Science.gov (United States)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  2. Terahertz-Frequency Spin Hall Auto-oscillator Based on a Canted Antiferromagnet

    Science.gov (United States)

    Sulymenko, O. R.; Prokopenko, O. V.; Tiberkevich, V. S.; Slavin, A. N.; Ivanov, B. A.; Khymyn, R. S.

    2017-12-01

    We propose a design of a terahertz-frequency signal generator based on a layered structure consisting of a current-driven platinum (Pt) layer and a layer of an antiferromagnet (AFM) with easy-plane anisotropy, where the magnetization vectors of the AFM sublattices are canted inside the easy plane by the Dzyaloshinskii-Moriya interaction (DMI). The dc electric current flowing in the Pt layer creates due to the spin Hall effect, a perpendicular spin current that, being injected in the AFM layer, tilts the DMI-canted AFM sublattices out of the easy plane, thus exposing them to the action of a strong internal exchange magnetic field of the AFM. The sublattice magnetizations, along with the small net magnetization vector mDMI of the canted AFM, start to rotate about the hard anisotropy axis of the AFM with the terahertz frequency proportional to the injected spin current and the AFM exchange field. The rotation of the small net magnetization mDMI results in the terahertz-frequency dipolar radiation that can be directly received by an adjacent (e.g., dielectric) resonator. We demonstrate theoretically that the radiation frequencies in the range f =0.05 - 2 THz are possible at the experimentally reachable magnitudes of the driving current density, and we evaluate the power of the signal radiated into different types of resonators. This power increases with the increase of frequency f , and it can exceed 1 μ W at f ˜0.5 THz for a typical dielectric resonator of the electric permittivity ɛ ˜10 and a quality factor Q ˜750 .

  3. Radio frequency detection assembly and method for detecting radio frequencies

    Science.gov (United States)

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  4. Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies

    Science.gov (United States)

    Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.

    2017-03-01

    Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.

  5. High Reliability Oscillators for Terahertz Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  6. Terahertz metamaterials

    Science.gov (United States)

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  7. Terahertz frequency superconductor-nanocomposite photonic band gap

    Science.gov (United States)

    Elsayed, Hussein A.; Aly, Arafa H.

    2018-02-01

    In the present work, we discuss the transmittance properties of one-dimensional (1D) superconductor nanocomposite photonic crystals (PCs) in THz frequency regions. Our modeling is essentially based on the two-fluid model, Maxwell-Garnett model and the characteristic matrix method. The numerical results investigate the appearance of the so-called cutoff frequency. We have obtained the significant effect of some parameters such as the volume fraction, the permittivity of the host material, the size of the nanoparticles and the permittivity of the superconductor material on the properties of the cutoff frequency. The present results may be useful in the optical communications and photonic applications to act as tunable antenna in THz, reflectors and high-pass filter.

  8. Invited Review Terahertz Transmission, Scattering, Reflection, and Absorption—the Interaction of THz Radiation with Soils

    Science.gov (United States)

    Lewis, R. A.

    2017-07-01

    Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.

  9. DEVELOPMENT OF A 4 K STIRLING-TYPE PULSE TUBE CRYOCOOLER FOR A MOBILE TERAHERTZ DETECTION SYSTEM

    International Nuclear Information System (INIS)

    Bradley, P. E.; Gerecht, E.; Radebaugh, R.; Garaway, I.

    2010-01-01

    We discuss in this paper the design and development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. This system integrates new heterodyne detector technology at terahertz frequencies with advancements of Stirling-type pulse tube technology that brings the advent of cooled detector sensitivities in a mobile, compact, and long duration operation system without degradation of sensitivity. To achieve this goal we reduced overall system size, input power, and temperature fluctuations and mechanical vibrations in order to maintain the detector sensitivity. The Stirling-type pulse tube cryocooler developed for this system is a hybrid design employing a He-4 pulse-tube cryocooler operating at 60 Hz and 2.5 MPa average pressure that precools a He-3 pulse tube cryocooler operating at 30 Hz and 1.0 MPa average pressure to achieve 4 K cooling for the terahertz receiver. The He-4 cryocooler employs stainless steel mesh regenerators for the first stage and ErPr spheres for the second stage, while the He-3 cryocooler employs stainless mesh for the first stage and ErPr spheres for the second stage with a layered rare-earth third stage regenerator. Design details and cooler performance goals are discussed.

  10. Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies

    DEFF Research Database (Denmark)

    Keiser, G. R.; Seren, H. R.; Strikwerda, Andrew C.

    2014-01-01

    The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists...... of a split ring resonator (SRR) array stacked above an array of closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in an increase of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field...

  11. Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection.

    Science.gov (United States)

    You, Borwen; Chen, Ching-Yu; Yu, Chin-Ping; Liu, Tze-An; Hattori, Toshiaki; Lu, Ja-Yu

    2017-04-17

    A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

  12. Flexible metamaterial absorbers for stealth applications at terahertz frequencies

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew; Fan, K.

    2012-01-01

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small...... frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial. (C)2011 Optical Society of America...

  13. All-dielectric metasurface for wavefront control at terahertz frequencies

    Science.gov (United States)

    Dharmavarapu, Raghu; Hock Ng, Soon; Bhattacharya, Shanti; Juodkazis, Saulius

    2018-01-01

    Recently, metasurfaces have gained popularity due to their ability to offer a spatially varying phase response, low intrinsic losses and high transmittance. Here, we demonstrate numerically and experimentally a silicon meta-surface at THz frequencies that converts a Gaussian beam into a Vortex beam independent of the polarization of the incident beam. The metasurface consists of an array of sub-wavelength silicon cross resonators made of a high refractive index material on substrates such as sapphire and CaF2 that are transparent at IR-THz spectral range. With these substrates, it is possible to create phase elements for a specific spectral range including at the molecular finger printing around 10 μm as well as at longer THz wavelengths where secondary molecular structures can be revealed. This device offers high transmittance and a phase coverage of 0 to 2π. The transmittance phase is tuned by varying the dimensions of the meta-atoms. To demonstrate wavefront engineering, we used a discretized spiraling phase profile to convert the incident Gaussian beam to vortex beam. To realize this, we divided the metasurface surface into eight angular sectors and chose eight different dimensions for the crosses providing successive phase shifts spaced by π/4 radians for each of these sectors. Photolithography and reactive ion etching (RIE) were used to fabricate these silicon crosses as the dimensions of these cylinders range up to few hundreds of micrometers. Large 1-cm-diameter optical elements were successfully fabricated and characterised by optical profilometry.

  14. Handbook of terahertz technologies devices and applications

    CERN Document Server

    Song, Ho-Jin

    2015-01-01

    Terahertz waves, which lie in the frequency range of 0.1-10 THz, have long been investigated in a few limited fields, such as astronomy, because of a lack of devices for their generation and detection. Several technical breakthroughs made over the last couple of decades now allow us to radiate and detect terahertz waves more easily, which has triggered the search for new uses of terahertz waves in many fields, such as bioscience, security, and information and communications technology. The book covers some of the technical breakthroughs in terms of device technologies. It discusses not only th

  15. Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality

    Science.gov (United States)

    Hirmer, Marion; Danilov, Sergey N.; Giglberger, Stephan; Putzger, Jürgen; Niklas, Andreas; Jäger, Andreas; Hiller, Karl-Anton; Löffler, Susanne; Schmalz, Gottfried; Redlich, Britta; Schulz, Irene; Monkman, Gareth; Ganichev, Sergey D.

    2012-03-01

    Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated. The measurements carried out over a wide spectral range, from visible light down to terahertz radiation. The results make it possible to find the optimum light frequency for an all-optical determination of pulpal blood flow and, consequently, for clinically diagnosis of tooth vitality.

  16. Frequency analysis of terahertz time-domain (THz-TDI) imaging of a XIX century Chinese lacquered screen

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Mogensen, J. Bornemann; Christensen, Mads Chr

    2016-01-01

    Insights about the manufacturing technique and preservation state of a precious Chinese lacquered cabinet were obtained non-invasively by terahertz time-domain imaging (THz-TDI). THz frequency analysis as well as false color rendering (FC) allowed a better discrimination of surface materials...... by means of areal mapping and contrast enhancement....

  17. Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality

    NARCIS (Netherlands)

    Hirmer, M.; Danilov, S. N.; Giglberger, S.; Putzger, J.; Niklas, A.; Jager, A.; Hiller, K. A.; Loffler, S.; Schmalz, G.; Redlich, B.; Schulz, I.; Monkman, G.; Ganichev, S. D.

    2012-01-01

    Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated. The measurements carried out over a wide spectral range, from visible light down to terahertz radiation. The results make it possible to find the optimum light frequency for an

  18. Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell

    Science.gov (United States)

    Popov, V. V.; Fateev, D. V.; Otsuji, T.; Meziani, Y. M.; Coquillat, D.; Knap, W.

    2011-12-01

    Plasmonic terahertz detection by a double-grating gate field-effect transistor structure with an asymmetric unit cell is studied theoretically. Detection responsivity exceeding 8 kV/W at room temperature in the photovoltaic response mode is predicted for strong asymmetry of the structure unit cell. This value of the responsivity is an order of magnitude greater than reported previously for the other types of uncooled plasmonic terahertz detectors. Such enormous responsivity can be obtained without using any supplementary antenna elements because the double-grating gate acts as an aerial matched antenna that effectively couples the incoming terahertz radiation to plasma oscillations in the structure channel.

  19. Bridging the terahertz gap

    International Nuclear Information System (INIS)

    Davies, Giles; Linfield, Edmund

    2004-01-01

    Over the last century or so, physicists and engineers have progressively explored and conquered the electromagnetic spectrum. Starting with visible light, we have encroached outwards, developing techniques for generating and detecting radiation at both higher and lower frequencies. And as each successive region of the spectrum has been colonized, we have developed technology to exploit the radiation found there. X-rays, for example, are routinely used to image hidden objects. Near-infrared radiation is used in fibre-optic communications and in compact-disc players, while microwaves are used to transmit signals from your mobile phone. But there is one part of the electromagnetic spectrum that has steadfastly resisted our advances. This is the terahertz region, which ranges from frequencies of about 300 GHz to 10 THz (10 x 10 sup 1 sup 2 Hz). This corresponds to wavelengths of between about 1 and 0.03 mm, and lies between the microwave and infrared regions of the spectrum. However, the difficulties involved in making suitably compact terahertz sources and detectors has meant that this region of the spectrum has only begun to be explored thoroughly over the last decade. A particularly intriguing feature of terahertz radiation is that the semiconductor devices that generate radiation at frequencies above and below this range operate in completely different ways. At lower frequencies, microwaves and millimetre- waves can be generated by 'electronic' devices such as those found in mobile phones. At higher frequencies, near-infrared and visible light are generated by 'optical' devices such as semiconductor laser diodes, in which electrons emit light when they jump across the semiconductor band gap. Unfortunately, neither electronic nor optical devices can conveniently be made to work in the terahertz region because the terahertz frequency range sits between the electronic and optical regions of the electromagnetic spectrum. Developing a terahertz source is therefore a

  20. Detection of internal fields in double-metal terahertz resonators

    DEFF Research Database (Denmark)

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei

    2017-01-01

    Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal...... electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub...

  1. Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell

    OpenAIRE

    Popov, V. V.; Fateev, D. V.; Otsuji, T.; Meziani, Y. M.; Coquillat, D.; Knap, W.

    2011-01-01

    Plasmonic terahertz detection by a double-grating gate field-effect transistor structure with an asymmetric unit cell is studied theoretically. Detection responsivity exceeding 8 kV/W at room temperature in the photovoltaic response mode is predicted for strong asymmetry of the structure unit cell. This value of the responsivity is an order of magnitude greater than reported previously for the other types of uncooled plasmonic terahertz detectors. Such enormous responsivity can be obtained wi...

  2. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies

    International Nuclear Information System (INIS)

    Yang Chun; Buldyreva, Jeanna; Gordon, Iouli E.; Rohart, Francois; Cuisset, Arnaud; Mouret, Gael; Bocquet, Robin; Hindle, Francis

    2008-01-01

    The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5-3 THz (17-100 cm -1 ) frequency range (purely rotational transitions with 5≤J≤36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere

  3. Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chun [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France); Buldyreva, Jeanna [Institut UTINAM, UMR CNRS 6213, Universite de Franche-Comte, 16, Route de Gray, 25030 Besancon Cedex (France); Gordon, Iouli E. [Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, 60 Garden Street, Cambridge, MA 02138-1516 (United States); Rohart, Francois [Laboratoire de Physique des Lasers, Atomes et Molecules, UMR CNRS 8523, Batiment P5-135, Universite de Lille 1, 59655 Villeneuve d' Ascq Cedex (France); Cuisset, Arnaud; Mouret, Gael; Bocquet, Robin [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France); Hindle, Francis [Laboratoire de Physico-Chimie de l' Atmosphere, UMR CNRS 8101, Universite du Littoral Cote d' Opale, 189A Av. Maurice Schumann, 59140 Dunkerque (France)], E-mail: francis.hindle@univ-littoral.fr

    2008-11-15

    The room-temperature nitrogen- and oxygen-broadening coefficients of hydrogen cyanide spectral lines have been measured in the 0.5-3 THz (17-100 cm{sup -1}) frequency range (purely rotational transitions with 5{<=}J{<=}36) by a continuous-wave terahertz spectrometer based on a photomixing source. An improved version of the Robert and Bonamy semiclassical formalism has been used to calculate the oxygen-broadening coefficients and resulted in a good agreement with these measurements. The nitrogen and oxygen data are combined to provide the air-broadening coefficients as used by the HITRAN database. A significant difference is observed between the measured and tabulated values for transitions with high values of the rotational quantum number. A new polynomial representation is suggested for inclusion in HITRAN. A similar polynomial expression has been derived for the nitrogen broadening to aid the studies of Titan's atmosphere.

  4. Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets

    Science.gov (United States)

    Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing

    2012-07-01

    Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.

  5. Appropriate microwave frequency selection for biasing superconducting hot electron bolometers as terahertz direct detectors

    Science.gov (United States)

    Jiang, S. L.; Li, X. F.; Jia, X. Q.; Kang, L.; Jin, B. B.; Xu, W. W.; Chen, J.; Wu, P. H.

    2017-04-01

    Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) and biased by a simple microwave (MW) source have been studied. The frequency and power of the MW are selected by measuring the MW responses of the current-voltage (I-V) curves and resistance-temperature (R-T) curves of the NbN HEBs. The non-uniform absorption theory is used to explain the current jumps in the I-V curves and the resistance jumps in the R-T curves. Compared to the thermal biasing, the MW biasing method can improve the sensitivity, make the readout system much easier and consumes less liquid helium, which is important for long lasting experiments. The noise equivalent power (NEP) of 1.6 pW Hz-1/2 and the response time of 86 ps are obtained for the detectors working at 4.2 K and 0.65 THz.

  6. Low-loss monolithic transmission lines for submillimeter and terahertz frequency applications

    Science.gov (United States)

    Engel, Andrew G., Jr.; Katehi, Linda P. B.

    1991-01-01

    The design and construction of low-loss monolithic transmission lines are critical to systems which require that terahertz-power be guided to the antenna front ends. Two types of novel monolithic guiding structures, designed for the 0.3-2.0 THz and 0.1-0.3 THz ranges, respectively, are proposed. The novel waveguides are constructed from dielectric materials and structures which are available in monolithic technology so that the integration of active devices is possible. Propagation in each of the waveguides is characterized over relevant frequency ranges by applying a mode-matching technique, which takes into account all forms of electromagnetic coupling as well as losses in the dielectrics. The structures are predicted to exhibit excellent power confinement and low losses.

  7. A Fabry-Pérot interferometer with wire-grid polarizers as beamsplitters at terahertz frequencies

    Science.gov (United States)

    Harrison, H.; Lancaster, A. J.; Konoplev, I. V.; Doucas, G.; Aryshev, A.; Shevelev, M.; Terunuma, N.; Urakawa, J.; Huggard, P. G.

    2018-03-01

    The design of a compact Fabry-Pérot interferometer (FPi) and results of the experimental studies carried out using the device are presented. Our FPi uses freestanding wire-grid polarizers (WGPs) as beamsplitters and is suitable for use at terahertz (THz) frequencies. The FPi was studied at the LUCX facility, KEK, Japan, and an 8 MeV linear electron accelerator was used to generate coherent Smith-Purcell radiation. The FPi was designed to be easy to align and reposition for experiments at linear accelerator facilities. All of the components used were required to have a flat or well understood frequency response in the THz range. The performance of the FPi with WGPs was compared to that of a Michelson interferometer and the FPi is seen to perform well. The effectiveness of the beamsplitters used in the FPi is also investigated. Measurements made with the FPi using WGPs, the preferred beamsplitters, are compared to measurements made with the FPi using silicon wafers as alternative beamsplitters. The FPi performs well with both types of beamsplitter in the frequency range used (0.3-0.5 THz). The successful measurements taken with the FPi demonstrate a compact and adaptable interferometer that is capable of analyzing THz radiation over a broad frequency range. The scheme is particularly well suited for polarization studies of THz radiation produced in an accelerator environment.

  8. Terahertz Imaging and Backscatter Radiography Probability of Detection Study for Space Shuttle Foam Inspections

    Science.gov (United States)

    Ussery, Warren; Johnson, Kenneth; Walker, James; Rummel, Ward

    2008-01-01

    This slide presentation reviews the use of terahertz imaging and Backscatter Radiography in a probability of detection study of the foam on the external tank (ET) shedding and damaging the shuttle orbiter. Non-destructive Examination (NDE) is performed as one method of preventing critical foam debris during the launch. Conventional NDE methods for inspection of the foam are assessed and the deficiencies are reviewed. Two methods for NDE inspection are reviewed: Backscatter Radiography (BSX) and Terahertz (THZ) Imaging. The purpose of the Probability of Detection (POD) study was to assess performance and reliability of the use of BSX and or THZ as an appropriate NDE method. The study used a test article with inserted defects, and a sample of blanks included to test for false positives. The results of the POD study are reported.

  9. High Reliability Oscillators for Terahertz Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  10. Enhanced terahertz detection using multiple GaAs HEMTs connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2012-07-28

    We report here, for the first time, on enhanced nonresonant detection of terahertz radiation using multiple InGaAs/GaAs high-electron-mobility transistors (HEMTs) connected in series and biased by a direct drain current. A 1.63 THz (184 mum) response is proportional to the number of detecting transistors operating in saturation region at the same gate-source bias voltage. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by radiation in channels of devices.

  11. Linearity of Air-Biased Coherent Detection for Terahertz Time-Domain Spectroscopy

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Wrisberg, Emil Astrup

    2016-01-01

    The performance of air-biased coherent detection (ABCD) in a broadband two-color laser-induced air plasma system for terahertz time-domain spectroscopy (THz-TDS) has been investigated. Fundamental parameters of the ABCD detection, including signal-to-noise ratio (SNR), dynamic range (DR......), and linearity of detection have been characterized. Moreover, the performance of a photomultiplier tube (PMT) and an avalanche photodiode (APD) as photodetector in the ABCD have been compared. We have observed nonlinear behavior of PMT detector, which leads to artificial gain factor in TDS spectroscopy. The APD...

  12. Investigation of a broadband refractory metal metamaterial absorber at terahertz frequencies.

    Science.gov (United States)

    Hu, Dan; Wang, Hongyan; Tang, Zhenjie; Zhang, Xiwei

    2016-07-01

    A broadband, polarization-independent, and wide-angle refractory metal metamaterial absorber is numerically investigated at terahertz frequencies, which consists of a periodic array of a chromium metallic loop and a chromium metallic film separated by a polyimide layer. Results show that a higher than 90% broadband absorption can be achieved for the range of frequencies from 1.00 through 2.43 THz, and the full absorption width at half-maximum can attain 110.80%, which is considerably larger than in previously reported results. Moreover, the greater than 90% broadband absorption response can still be maintained when the incidence angle increases to 45°. The physical origin of the proposed broadband absorber originates from localized surface plasmon resonances of the single metallic loop resonator. Furthermore, the designed concept also can be achieved in the visible and near-infrared region by rationally designing the dimensions of the absorber. This compact design has potential applications in stealth technology, energy harvesting, and thermal imaging.

  13. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential.

    Science.gov (United States)

    Romanenko, Sergii; Begley, Ryan; Harvey, Alan R; Hool, Livia; Wallace, Vincent P

    2017-12-01

    Since regular radio broadcasts started in the 1920s, the exposure to human-made electromagnetic fields has steadily increased. These days we are not only exposed to radio waves but also other frequencies from a variety of sources, mainly from communication and security devices. Considering that nearly all biological systems interact with electromagnetic fields, understanding the affects is essential for safety and technological progress. This paper systematically reviews the role and effects of static and pulsed radio frequencies (10 0 -10 9 Hz), millimetre waves (MMWs) or gigahertz (10 9 -10 11 Hz), and terahertz (10 11 -10 13 Hz) on various biomolecules, cells and tissues. Electromagnetic fields have been shown to affect the activity in cell membranes (sodium versus potassium ion conductivities) and non-selective channels, transmembrane potentials and even the cell cycle. Particular attention is given to millimetre and terahertz radiation due to their increasing utilization and, hence, increasing human exposure. MMWs are known to alter active transport across cell membranes, and it has been reported that terahertz radiation may interfere with DNA and cause genomic instabilities. These and other phenomena are discussed along with the discrepancies and controversies from published studies. © 2017 The Author(s).

  14. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential

    Science.gov (United States)

    Begley, Ryan; Harvey, Alan R.; Hool, Livia; Wallace, Vincent P.

    2017-01-01

    Since regular radio broadcasts started in the 1920s, the exposure to human-made electromagnetic fields has steadily increased. These days we are not only exposed to radio waves but also other frequencies from a variety of sources, mainly from communication and security devices. Considering that nearly all biological systems interact with electromagnetic fields, understanding the affects is essential for safety and technological progress. This paper systematically reviews the role and effects of static and pulsed radio frequencies (100–109 Hz), millimetre waves (MMWs) or gigahertz (109–1011 Hz), and terahertz (1011–1013 Hz) on various biomolecules, cells and tissues. Electromagnetic fields have been shown to affect the activity in cell membranes (sodium versus potassium ion conductivities) and non-selective channels, transmembrane potentials and even the cell cycle. Particular attention is given to millimetre and terahertz radiation due to their increasing utilization and, hence, increasing human exposure. MMWs are known to alter active transport across cell membranes, and it has been reported that terahertz radiation may interfere with DNA and cause genomic instabilities. These and other phenomena are discussed along with the discrepancies and controversies from published studies. PMID:29212756

  15. High-Tc superconducting Josephson mixers for terahertz heterodyne detection

    International Nuclear Information System (INIS)

    Malnou, M.; Feuillet-Palma, C.; Olanier, L.; Lesueur, J.; Bergeal, N.; Ulysse, C.; Faini, G.; Febvre, P.; Sirena, M.

    2014-01-01

    We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa 2 Cu 3 O 7 Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies f c of the junctions

  16. Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range

    International Nuclear Information System (INIS)

    Reinhard, Benjamin; Schmitt, Klemens M.; Neu, Jens; Wollrab, Viktoria; Beigang, Rene; Rahm, Marco

    2012-01-01

    We present a metamaterial-based terahertz (THz) sensor for thickness measurements of subwavelength-thin materials and refractometry of liquids and liquid mixtures. The sensor operates in reflection geometry and exploits the frequency shift of a sharp Fano resonance minimum in the presence of dielectric materials. We obtained a minimum thickness resolution of 12.5 nm (1/16 000 times the wavelength of the THz radiation) and a refractive index sensitivity of 0.43 THz per refractive index unit. We support the experimental results by an analytical model that describes the dependence of the resonance frequency on the sample material thickness and the refractive index.

  17. Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Reinhard, Benjamin; Schmitt, Klemens M.; Neu, Jens [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Wollrab, Viktoria; Beigang, Rene; Rahm, Marco [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Fraunhofer Institute for Physical Measurement Techniques IPM, 79110 Freiburg (Germany)

    2012-05-28

    We present a metamaterial-based terahertz (THz) sensor for thickness measurements of subwavelength-thin materials and refractometry of liquids and liquid mixtures. The sensor operates in reflection geometry and exploits the frequency shift of a sharp Fano resonance minimum in the presence of dielectric materials. We obtained a minimum thickness resolution of 12.5 nm (1/16 000 times the wavelength of the THz radiation) and a refractive index sensitivity of 0.43 THz per refractive index unit. We support the experimental results by an analytical model that describes the dependence of the resonance frequency on the sample material thickness and the refractive index.

  18. Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, G. E., E-mail: gefedorov@mail.ru; Stepanova, T. S.; Gazaliev, A. Sh.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. [Moscow State Pedagogical University (Russian Federation)

    2016-12-15

    Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.

  19. Integrated heterodyne terahertz transceiver

    Science.gov (United States)

    Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  20. Generating Periodic Terahertz Structures in a Relativistic Electron Beam through Frequency Down-Conversion of Optical Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Michael

    2012-07-19

    We report generation of density modulation at terahertz (THz) frequencies in a relativistic electron beam through laser modulation of the beam longitudinal phase space. We show that by modulating the energy distribution of the beam with two lasers, density modulation at the difference frequency of the two lasers can be generated after the beam passes through a chicane. In this experiment, density modulation around 10 THz was generated by down-converting the frequencies of an 800 nm laser and a 1550 nm laser. The central frequency of the density modulation can be tuned by varying the laser wavelengths, beam energy chirp, or momentum compaction of the chicane. This technique can be applied to accelerator-based light sources for generation of coherent THz radiation and marks a significant advance toward tunable narrow-band THz sources.

  1. Elliptical metasurfaces for cloaking and antenna applications at microwave and terahertz frequencies

    Science.gov (United States)

    Mehrpourbernety, Hossein

    One of the interesting applications of metamaterials is the phenomenon of electromagnetic invisibility and cloaking, which implies the suppression of bistatic scattering width of a given object, independent of incident and observation angles. In this regard, diverse techniques have been proposed to analyze and design electromagnetic cloak structures, including transformation optics, anomalous resonance methods, transmission-line networks, and plasmonic cloaking, among others. A common drawback of all these methods is that they rely on bulk materials, which are difficult to realize in practice. To overcome this issue, the mantle cloaking method has been proposed, which utilizes an ultrathin metasurface that provides anti-phase surface currents to reduce the scattering dominant mode of a given object. Recently, an analytical model has been proposed to cloak dielectric and conducting cylindrical objects realized with printed and slotted arrays at microwave frequencies. At low-terahertz (THz) frequencies, one of the promising materials to realize the required metasurface is graphene. In this regard, a graphene monolayer, characterized by inductive reactance, has been proposed to cloak dielectric planar and cylindrical objects. Then, it has been shown that a metasurface made of graphene nanopatches owns dual capacitive/inductive inductance and can be used to cloak both dielectric and conducting cylindrical objects at low-THz frequencies. So far, planar and cylindrical dielectric and conducting structures have been studied. In our study, we have extended the concept and presented an accurate analytical approach to investigate the cloaking of two-dimensional (2-D) elliptical objects including infinite dielectric elliptical cylinders using graphene monolayer; metallic elliptical cylinders, and also, as a special case, 2-D metallic strips using a nanostructured graphene patch array at low-THz frequencies. We have also obtained the results for cloaking of ellipses at

  2. Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification

    Science.gov (United States)

    Hindle, Francis; Cuisset, Arnaud; Bocquet, Robin; Mouret, Gaël

    2008-03-01

    Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H 2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength ≈200 μm of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles. To cite this article: F. Hindle et al., C. R. Physique 9 (2008).

  3. Terahertz Spectrum Analysis Based on Empirical Mode Decomposition

    Science.gov (United States)

    Su, Yunpeng; Zheng, Xiaoping; Deng, Xiaojiao

    2017-08-01

    Precise identification of terahertz absorption peaks for materials with low concentration and high attenuation still remains a challenge. Empirical mode decomposition was applied to terahertz spectrum analysis in order to improve the performance on spectral fingerprints identification. We conducted experiments on water vapor and carbon monoxide respectively with terahertz time domain spectroscopy. By comparing their absorption spectra before and after empirical mode decomposition, we demonstrated that the first-order intrinsic mode function shows absorption peaks clearly in high-frequency range. By comparing the frequency spectra of the sample signals and their intrinsic mode functions, we proved that the first-order function contains most of the original signal's energy and frequency information so that it cannot be left out or replaced by high-order functions in spectral fingerprints detection. Empirical mode decomposition not only acts as an effective supplementary means to terahertz time-domain spectroscopy but also shows great potential in discrimination of materials and prediction of their concentrations.

  4. Ultrafast far-infrared dynamics probed by terahertz pulses: A frequency-domain approach. II. Applications

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kadlec, Filip; Kadlec, Christelle; Kužel, Petr; Jungwirth, Pavel

    2005-01-01

    Roč. 122, č. 10 (2005), 104504/1-104504/8 ISSN 0021-9606 R&D Projects: GA AV ČR(CZ) KJB100100512 Institutional research plan: CEZ:AV0Z10100520 Keywords : optical pump * terahertz probe Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.138, year: 2005

  5. Resonant magnetic response of TiO.sub.2./sub. microspheres at terahertz frequencies

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kadlec, Christelle; Kadlec, Filip; Kužel, Petr; Yahiaoui, R.; Chung, U.-C.; Elissalde, C.; Maglione, M.; Mounaix, P.

    2012-01-01

    Roč. 100, č. 6 (2012), "061107-1"-"014104-4" ISSN 0003-6951 R&D Projects: GA AV ČR(CZ) IAA100100907 Institutional research plan: CEZ:AV0Z10100520 Keywords : metamaterials * terahertz spectroscopy * effective magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.794, year: 2012

  6. Terahertz ptychography.

    Science.gov (United States)

    Valzania, Lorenzo; Feurer, Thomas; Zolliker, Peter; Hack, Erwin

    2018-02-01

    We realized a phase retrieval technique using terahertz (THz) radiation as an alternative to THz digital holography, named THz ptychography. Ptychography has been used in x-ray imaging as a groundbreaking improvement of conventional coherent diffraction imaging. Here we show that ptychography can be performed at THz frequencies too. We reconstructed an amplitude and a phase object with both simulated and real data. Lateral resolution accounts to <2λ, while depth variations as low as λ/30 can be assessed.

  7. Ultrastrong light-matter coupling at terahertz frequencies with split ring resonators and inter-Landau level transitions

    Science.gov (United States)

    Scalari, G.; Maissen, C.; Hagenmüller, D.; De Liberato, S.; Ciuti, C.; Reichl, C.; Wegscheider, W.; Schuh, D.; Beck, M.; Faist, J.

    2013-04-01

    We study strong light-matter coupling at terahertz frequencies employing a system based on an array of deeply subwavelength split ring resonators deposited on top of an ensemble of modulation-doped quantum wells. By applying a magnetic field parallel to the epitaxial growth axis, at low temperatures, Landau Levels are formed. We probe the interaction of the inter-Landau level transitions with the resonators modes, measuring a normalized coupling ratio Ω/ωc=0.58 between the inter-Landau level frequency ωc and the Rabi frequency Ω of the system. The physics of the system is studied as a function of the metasurface composition and of the number of quantum wells. We demonstrate that the light-matter coupling strength is basically independent from the metamaterial lattice spacing.

  8. Terahertz bolometric detection by thermal noise in graphene field effect transistor

    Science.gov (United States)

    Mahjoub, Akram M.; Suzuki, Shinichi; Ouchi, Takahiro; Aoki, Nobuyuki; Miyamoto, Katsuhiko; Yamaguchi, Tomohiro; Omatsu, Takashige; Ishibashi, Koji; Ochiai, Yuichi

    2015-08-01

    Monolayer (MLG) and bilayer (BLG) graphene devices have been fabricated with integrated antennas and have been investigated for a wideband terahertz (THz) detection at room temperature (RT). The devices show opposite (metallic vs. semiconducting, respectively) temperature coefficients of their resistance, which enable us to achieve a reproducible THz response via bolometric heating. The bolometric nature of this response is inferred by determining the spectral density of the 1/f resistance noise exhibited by the devices, as a function of the incident THz power. With increasing power, the spectral density varies in the two devices in a manner that reflects the opposite signs of their resistance temperature coefficients. The bolometric response is furthermore confirmed for both devices by the variation of their Hooge parameter as a function of the THz power. Overall, these observations confirm the capacity of graphene devices for sensitive broadband THz detection near RT.

  9. Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube

    Science.gov (United States)

    Abouelsayed, A.; Ebrahim, M. R.; El hotaby, W.; Hassan, S. A.; Al-Ashkar, Emad

    2017-10-01

    We present terahertz spectroscopy study on spherical nanoparticles powder mixture of aluminum, alumina, and MWCNTs induced by surface mechanical attrition treatment (SMAT) of aluminum substrates. Surface alloying of AL, Al2O3 0.95% and MWCNTs 0.05% powder mixture was produced during SMAT process, where a compact surface layer of about 200 μm due to ball bombardment was produced from the mixture. Al2O3 alumina powder played a significant role in MWCNTs distribution on surface, those were held in deformation surface cites of micro-cavities due to SMAT process of Al. The benefits are the effects on resulted optical properties of the surface studied at the terahertz frequency range due to electrical isolation confinement effects and electronic resonance disturbances exerted on Al electronic resonance at the same range of frequencies. THz acoustic phonon around 0.53-0.6 THz (17-20 cm-1) were observed at ambient conditions for the spherical nanoparticles powder mixture of Al, Al2O3 and MWCNTs. These results suggested that the presence of Al2O3 and MWCNTs during SMAT process leads to the optically detection of such acoustic phonon in the THz frequency range.

  10. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Buriakov, A. M.; Bilyk, V. R.; Mishina, E. D. [Moscow Technological University “MIREA” (Russian Federation); Klimov, E. A. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Vasil’evskii, I. S. [National Research Nuclear University “MEPhI” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation)

    2017-04-15

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity of the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.

  11. Quantitative detection of melamine based on terahertz time-domain spectroscopy

    Science.gov (United States)

    Zhao, Xiaojing; Wang, Cuicui; Liu, Shangjian; Zuo, Jian; Zhou, Zihan; Zhang, Cunlin

    2018-01-01

    Melamine is an organic base and a trimer of cyanamide, with a 1, 3, 5-triazine skeleton. It is usually used for the production of plastics, glue and flame retardants. Melamine combines with acid and related compounds to form melamine cyanurate and related crystal structures, which have been implicated as contaminants or biomarkers in protein adulterations by lawbreakers, especially in milk powder. This paper is focused on developing an available method for quantitative detection of melamine in the fields of security inspection and nondestructive testing based on THz-TDS. Terahertz (THz) technology has promising applications for the detection and identification of materials because it exhibits the properties of spectroscopy, good penetration and safety. Terahertz time-domain spectroscopy (THz-TDS) is a key technique that is applied to spectroscopic measurement of materials based on ultrafast femtosecond laser. In this study, the melamine and its mixture with polyethylene powder in different consistence are measured using the transmission THz-TDS. And we obtained the refractive index spectra and the absorption spectrum of different concentrations of melamine on 0.2-2.8THz. In the refractive index spectra, it is obvious to see that decline trend with the decrease of concentration; and in the absorption spectrum, two peaks of melamine at 1.98THz and 2.28THz can be obtained. Based on the experimental result, the absorption coefficient and the consistence of the melamine in the mixture are determined. Finally, methods for quantitative detection of materials in the fields of nondestructive testing and quality control based on THz-TDS have been studied.

  12. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2010-02-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  13. Review of Near-Field Terahertz Measurement Methods and Their Applications : How to Achieve Sub-Wavelength Resolution at THz Frequencies

    NARCIS (Netherlands)

    Adam, A.J.L.

    2011-01-01

    In the last decades, many research teams working at Terahertz frequencies focused their efforts on surpassing the diffraction limit. Numerous techniques have been investigated, combining methods existing at optic wavelength with THz system such as Time Domain Spectroscopy. The actual development led

  14. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  15. Linear and nonlinear properties of chalcogenide glasses in the terahertz frequency

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Popescu, A.

    2014-01-01

    components have greatly been developed in recent years. However there is still no any non-linear device available. This is mainly due to the lack of the rigorous investigation of non-linear characteristics of materials in the THz range. We chose to investigate chalcogenide glasses due to their high nonlinear...... used a standard THz-TDS setup based on photoconductive switches while in the higher frequency domain we used an air biased coherent detection (ABCD) setup. This allowed for a wide frequency range (from 0.2 to 18 THz) investigation of the refractive index of the glasses. The nonlinear coefficient...

  16. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 117105 (Russian Federation); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Leiman, V. G. [Department of General Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 147100 (Russian Federation); Fedorov, G. [Department of General Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 147100 (Russian Federation); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Goltzman, G. N.; Titova, N. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Gayduchenko, I. A. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); National Research Center “Kurchatov Institute,” Moscow 123182 (Russian Federation); Coquillat, D.; But, D.; Knap, W. [Laboratoire Charles Coulomb UMR 5221, Universite Montpellier 2 and CNRS, F-34095, Montpellier (France); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Computer, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2016-07-28

    We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.

  17. Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Y.; Satou, A., E-mail: a-satou@riec.tohoku.ac.jp; Kobayashi, K.; Boubanga Tombet, S.; Suemitsu, T.; Otsuji, T. [Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Ducournau, G. [Institut d' Electronique, de Microélectronique et de Nanotechnologie, 59562 Villeneuve d' Ascq Cedex (France); Coquillat, D.; Knap, W. [Laboratoire Charles Coulomb, UMR 5221, Université Montpellier 2 - CNRS, F-34095 Montpellier (France); Meziani, Y. M. [Departamento de Fisica Aplicada, Universidad de Salamanca, Salamanca 37008 (Spain); Popov, V. V. [Kotelnikov Institute of Radio Engineering and Electronics, 410019 Saratov (Russian Federation)

    2014-06-23

    We report on room-temperature plasmonic detection of sub-terahertz radiation by InAlAs/InGaAs/InP high electron mobility transistors with an asymmetric dual-grating-gate structure. Maximum responsivities of 22.7 kV/W at 200 GHz and 21.5 kV/W at 292 GHz were achieved under unbiased drain-to-source condition. The minimum noise equivalent power was estimated to be 0.48 pW/Hz{sup 0.5} at 200 GHz at room temperature, which is the record-breaking value ever reported for plasmonic THz detectors. Frequency dependence of the responsivity in the frequency range of 0.2–2 THz is in good agreement with the theory.

  18. Physical Approaches to Designing a Two-Cascade Terahertz Laser Generating Difference-Frequency Radiation in a Nonlinear Optical ZnGeP2 Crystal

    Science.gov (United States)

    Gribenyukov, A. I.; Dyomin, V. V.; Polovtsev, I. G.; Yudin, N. N.

    2018-03-01

    An optical layout of a two-cascade frequency converter of the mid-IR laser radiation into the terahertz (THz) radiation is proposed. In the first stage it is assumed to convert the Tm:YLF-laser frequency in a Cr+2:ZnSe polycrystal into the radiation with the wavelength 2-3 μm. The second cascade can be presented as a parametric conversion of the frequencies of two laser sources operating in the 2-3 μm range into the THz radiation via the difference-frequency mixing in a nonlinear optical ZnGeP2 crystal. The estimates of the terahertz output signal are reported.

  19. Terahertz in-line digital holographic multiplane imaging method

    Science.gov (United States)

    Huang, Haochong; Wang, Dayong; Rong, Lu; Li, Weihua; Wang, Yunxin

    2017-05-01

    Terahertz waves of which frequency spans from 0.1 to 10 THz bridge the gap between the infrared spectrum and microwaves. Owing to the special features of terahertz wave, such as penetrability and non-ionizing, terahertz imaging technique is a very significant and important method for inspections and detections. Digital holography can reconstruct the amplitude and phase distributions of a sample without scanning and it already has many successful applications in the area of visible and infrared light. The terahertz in-line digital holographic multi-plane imaging system which is presented in this paper is the combination of a continuous-wave terahertz source and the in-line scheme of digital holography. In order to observe a three dimensional (3D) shape sample only a portion of which appears in good focus, the autofocusing algorithm is brought to the data process. The synthetic aperture method is also applied to provide the high resolution imaging effect in the terahertz waveband. Both intrinsic twin images and defocused objective images confuse the quality of the image in an individual reconstructed plane. In order to solve this issue, phase retrieval iteration algorithm is used for the reconstruction. In addition, the reconstructed amplitude image in each plane multiplies the mask of which the threshold depends on the values of the autofocusing curve. A sample with simple artificial structure is observed which verifies that the present method is an authentic tool to acquire the multi-plane information of a target in terahertz waves. It can expect a wide application in terahertz defect detecting, terahertz medical inspection and other important areas in the future.

  20. Terahertz substance imaging by waveform shaping.

    Science.gov (United States)

    Yi, Minwoo; Kim, Hyosub; Jin, Kyong Hwan; Ye, Jong Chul; Ahn, Jaewook

    2012-08-27

    Terahertz pulse shaping technique is used to adaptively design terahertz waveforms of enhanced spectral correlation to particular materials among a given set of materials. In a proof-of-principle experiment performed with a two-dimensional image target consisted of meta-materials of distinctive resonance frequencies, the as-designed waveforms are used to demonstrate terahertz substance imaging. It is hoped that this material-specific terahertz waveforms may enable single- or few-shot terahertz material classification when being used in conjunction with terahertz power measurement.

  1. Terahertz frequency metrology based on high-T sub c Josephson junctions

    CERN Document Server

    Chen, J; Wang, H B; Nakajima, K; Yamashita, T; Wu, P H

    2002-01-01

    Using YBa sub 2 Cu sub 3 O sub 7 /MgO bicrystal Josephson junctions operating between 6-77 K, we have studied their responses to monochromatic electromagnetic radiation from 50 GHz to 4.25 THz. We have obtained direct detections for radiation at 70 K from 50 GHz to 760 GHz and at 40 K from 300 GHz to 3.1 THz. This indicates that fast detectors can be realized to cover the 10:1 frequency band at one operation temperature, and about 100:1 can be covered by operating only one junction at two different temperatures. Both the highest response frequency and the maximum value of the normalized response are shown to be proportional to the I sub C R sub N product of the junction, where I sub C and R sub N are the critical current and the normal resistance of the junction, respectively.

  2. Impact of frequency and polarization diversity on a terahertz radar's imaging performance

    Science.gov (United States)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria

    2011-05-01

    The Jet Propulsion Laboratory's 675 GHz, 25 m standoff imaging radar can achieve >1 Hz real time frame rates over 40x40 cm fields of view for rapid detection of person-borne concealed weapons. In its normal mode of operation, the radar generates imagery based solely on the time-of-flight, or range, between the radar and target. With good clothing penetration at 675 GHz, a hidden object will be detectable as an anomaly in the range-to-surface profile of a subject. Here we report on results of two modifications in the radar system that were made to asses its performance using somewhat different detection approaches. First, the radar's operating frequency and bandwidth were cut in half, to 340 GHz and 13 GHz, where there potential system advantages include superior transmit power and clothing penetration, as well as a lower cost of components. In this case, we found that the twofold reduction in range and cross-range resolution sharply limited the quality of through-clothes imagery, although some improvement is observed for detection of large targets concealed by very thick clothing. The second radar modification tested involved operation in a fully polarimetric mode, where enhanced image contrast might occur between surfaces with different material or geometric characteristics. Results from these tests indicated that random speckle dominates polarimetric power imagery, making it an unattractive approach for contrast improvement. Taken together, the experiments described here underscore the primary importance of high resolution imaging in THz radar applications for concealed weapons detection.

  3. Decoupling crossover in asymmetric broadside coupled split-ring resonators at terahertz frequencies

    DEFF Research Database (Denmark)

    Keiser, G. R.; Strikwerda, Andrew; Fan, K.

    2013-01-01

    relative shift (0.375 Lo), though with an increase in the oscillator strength of the new mode. This strongly contrasts with symmetric BC-SRRs, which present only one resonance for shifts up to 0.75 Lo. Since all BC-SRRs are effectively asymmetric when placed on a substrate, an understanding of ABC......We investigate the electromagnetic response of asymmetric broadside coupled split-ring resonators (ABC-SRRs) as a function of the relative in-plane displacement between the two component SRRs. The asymmetry is defined as the difference in the capacitive gap widths (Δg) between the two resonators...... comprising a coupled unit. We characterize the response of ABC-SRRs both numerically and experimentally via terahertz time-domain spectroscopy. As with symmetric BC-SRRs (Δg=0 μm), a large redshift in the LC resonance is observed with increasing displacement, resulting from changes in the capacitive...

  4. Non-invasive detection of murals with pulsed terahertz reflected imaging system

    Science.gov (United States)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Ye, Jiasheng; Wang, Sen; Zhang, Qunxi; Zhang, Yan

    2015-11-01

    Pulsed terahertz reflected imaging technology has been expected to have great potential for the non-invasive analysis of artworks. In this paper, three types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by a pulsed terahertz reflected imaging system. These preset defects include a circular groove, a cross-shaped slit and a piece of "Y-type" metal plate built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. Additionally, three-dimensional analyses have been performed in order to reveal the internal structure of defects. Terahertz reflective imaging can be applied to the defect investigation of the murals.

  5. Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies

    Science.gov (United States)

    Liang, Lanju; Wei, Minggui; Yan, Xin; Wei, Dequan; Liang, Dachuan; Han, Jiaguang; Ding, Xin; Zhang, GaoYa; Yao, Jianquan

    2016-01-01

    A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than −10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices. PMID:27982089

  6. Imaging with terahertz radiation

    International Nuclear Information System (INIS)

    Chan, W L; Deibel, Jason; Mittleman, Daniel M

    2007-01-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies

  7. Simulation of Terahertz Frequency Sources. Polar-Optical Phonon Enhancement of Harmonic Generation in Schottky Diodes

    National Research Council Canada - National Science Library

    Gelmont, Boris

    2002-01-01

    ... polar optical vibration frequency When a high frequency input signal is applied to a frequency multiplier device polar-optical phonons can enhance the non-linearities inherent in this device, enabling...

  8. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  9. Terahertz radiation mixer

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  10. [Terahertz time-domain spectroscopy of Clenbuterol hydrochloride].

    Science.gov (United States)

    Chen, Xi-ai; Hou, Di-bo; Huang, Ping-jie; Kang, Xu-sheng; Zhang, Guang-xin; Zhou, Ze-kui

    2011-12-01

    The terahertz spectra of Clenbuterol hydrochloride in the range of 0.2 to 2.6 THz were obtained by THz time-domain spectroscopy, the absorption and refraction spectra of Clenbuterol hydrochloride was got meanwhile. The structure and vibrational frequencies of Clenbuterol molecule, Clenbuterol hydrochloride molecule and Clenbuterol hydrochloride crystal in the THz range were simulated. Based on the difference between experimental and theoretical results, the origin of the vibrational frequencies was analyzed. This study demonstrated the feasibility of time-domain terahertz spectroscopy for the identification of Clenbuterol hydrochloride and provides a new way for the detection of Clenbuterol hydrochloride.

  11. Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies

    Science.gov (United States)

    Niu, Ying Y.; Wu, Dong; Su, Yu Q.; Zhu, Hai; Wang, Biao; Wang, Ying X.; Zhao, Zi R.; Zheng, Ping; Niu, Jia S.; Zhou, Hui B.; Wei, Jian; Wang, Nan L.

    2018-01-01

    Light probe from Uv to THz is critical in photoelectronics and has great applications ranging from imaging, communication to medicine (Woodward et al 2002 Phys. Med. Biol. 47 3853-63 Pospischil et al 2013 Nat. Photon. 7 892-6 Martyniuk and Rogalski 2003 Prog. Quantum Electron. 27 59-210). However, the room temperature ultrabroadband photodetection across visible down to far-infrared is still challenging. The challenging arises mainly from the lack of suitable photoactive materials. Because that conventional semiconductors, such as silicon, have their photosensitive properties cut off by the bandgap and are transparent to spectrum at long-wavelength infrared side (Ciupa and Rogalski 1997 Opto-Electron. Rev. 5 257-66 Tonouchi 2007 Nat. Photon. 1 97-105 Sizov and Rogalski 2010 Prog. Quantum Electron. 34 278-347 Kinch 2000 J. Electron. Mater. 29 809-17). Comparatively, the dielectrics with very narrow band-gap but maintain the semiconductor-like electrical conduction would have priorities for ultrabroadband photodetection. Here we report on EuSbTe3 is highly sensitive from ultraviolet directly to terahertz (THz) at room temperature. High photoresponsivities 1-8 A W-1 reached in our prototype EuSbTe3 detectors with low noise equivalent power (NEP) recorded, for instances ~150 pW · Hz-1/2 (at λ  =  532 nm) and ~0.6 nW · Hz-1/2 (at λ  =  118.8 µm) respectively. Our results demonstrate a promising system with direct photosensitivity extending well into THz regime at room temperature, shed new light on exploring more sophisticated multi-band photoelectronics.

  12. Terahertz-frequency InN/GaN heterostructure-barrier varactor diodes

    International Nuclear Information System (INIS)

    Reklaitis, A

    2008-01-01

    Frequency multipliers based on the single-barrier and double-barrier InN/GaN heterostructure varactor diodes are suggested. The DC and large-signal AC vertical electron transport in the InN/GaN diodes are investigated by ensemble Monte Carlo simulations. It is found that InN/GaN heterostructure-barrier varactor diodes are able to operate as efficient frequency multipliers in the frequency range up to 1 THz

  13. Frequency and amplitude stabilized terahertz quantum cascade laser as local oscillator

    NARCIS (Netherlands)

    Ren, Y.; Hayton, D.J.; Hovenier, J.N.; Cui, M.; Gao, J.R.; Klapwijk, T.M.; Shi, S.C.; Kao, T.Y.; Hu, Q.; Reno, J.L.

    2012-01-01

    We demonstrate an experimental scheme to simultaneously stabilize the frequency and amplitude of a 3.5 THz third-order distributed feedback quantum cascade laser as a local oscillator. The frequency stabilization has been realized using a methanol absorption line, a power detector, and a

  14. Terahertz time-domain spectroscopy of edible oils.

    Science.gov (United States)

    Dinovitser, Alex; Valchev, Dimitar G; Abbott, Derek

    2017-06-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.

  15. Terahertz time-domain spectroscopy of edible oils

    Science.gov (United States)

    Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek

    2017-06-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.

  16. Plasma Wave Electronic Terahertz Technology

    National Research Council Canada - National Science Library

    Shur, Michael

    2003-01-01

    Plasma waves are oscillations of electron density in time and space. In deep submicron field effect transistors plasma wave frequencies lie in the terahertz range and can be tuned by applied gate bias...

  17. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip

    Science.gov (United States)

    van der Valk, N. C. J.; Planken, P. C. M.

    2002-08-01

    We report on a method to obtain a subwavelength resolution in terahertz time-domain imaging. In our method, a sharp copper tip is used to locally distort and concentrate the THz electric field. The distorted electric field, present mainly in the near field of the tip, is electro-optically measured in an (100) oriented GaP crystal. By raster scanning the tip along the surface of the crystal, we find the smallest THz spot size of 18 μm for frequencies from 0.1 to 2.5 THz. For our peak frequency of 0.15 THz, this corresponds to a resolution of λ/110. Our setup has the potential to reach a resolution down to a few μm.

  18. Influence Of Terahertz Range Electromagnetic Radiation At Molecular Spectrum Frequency Of 150+0,75 Ghz Nitric Oxide On Microcirculation Morphofunctional Disturbances In White Rats In Condition Of Acute And Prolonged Stress

    Directory of Open Access Journals (Sweden)

    M.O. Kurtukova

    2009-12-01

    Full Text Available The effect of electromagnetic radiation of terahertz range at frequency of emission and absorption molecular spectrum of 150+0,75GHz nitric oxide on morphofunctional changes of microcirculation and tissue structure in animals in condition of acute and prolonged immobilization stress has been studied. It has shown that the influence of electromagnetic waves at these frequencies causes activity decrease of hypothalamic-pituitary-adrenal and tireoyd axis of stress reaction. It has been determined that terahertz range waves at frequency of nitric oxide are liable to restore disturbances of intravascular, vascular and extravascular components of microcirculation and also have histoprotective effect

  19. Electrodynamic properties of porous PZT-Pt films at terahertz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Komandin, Gennady A.; Porodinkov, Oleg E.; Spektor, Igor E.; Volkov, Alexander A. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Vorotilov, Konstantin A.; Seregin, Dmitry S.; Sigov, Alexander S. [Moscow Technological University (MIREA), Moscow (Russian Federation)

    2017-01-15

    Electrodynamics of Si-SiO{sub 2}-TiO{sub 2}-Pt-PZT heterostructures is studied in the frequency range from 5 to 5000 cm{sup -1} by monochromatic BWO (backward wave oscillator) and infrared Fourier-transform spectroscopy techniques to derive the dielectric characteristics of the sol-gel porous ferroelectric PbZr{sub 0.48}Ti{sub 0.52}O{sub 3} films. Broad frequency band dielectric response of PZT films with different density is constructed using the oscillator dispersion models. The main contribution to the film permittivity is found to form at frequencies below 100 cm{sup -1} depending strongly and non-linearly on the film medium density. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Minimum Lens Size Supporting the Leaky-Wave Nature of Slit Dipole Antenna at Terahertz Frequency

    Directory of Open Access Journals (Sweden)

    Niamat Hussain

    2016-01-01

    Full Text Available We designed a slit dipole antenna backed by an extended hemispherical silicon lens and investigated the minimum lens size in which the slit dipole antenna works as a leaky-wave antenna. The slit dipole antenna consists of a planar feeding structure, which is a center-fed and open-ended slot line. A slit dipole antenna backed by an extended hemispherical silicon lens is investigated over a frequency range from 0.2 to 0.4 THz with the center frequency at 0.3 THz. The numerical results show that the antenna gain responses exhibited an increased level of sensitivity to the lens size and increased linearly with increasing lens radius. The lens with the radius of 1.2λo is found to be the best possible minimum lens size for a slit dipole antenna on an extended hemispherical silicon lens.

  1. [Terahertz and Infrared Spectroscopic Investigation of Cellulose].

    Science.gov (United States)

    Qiu, Guo-hua; Zhang, Le; Shentu, Nan-ying

    2016-03-01

    To investigate the Terahertz's application prospect, corn, wheat husk and reed were used to detect their Terahertz Time Domain Spectroscopy, and be compared with that of cellulose powder. The experimental results show that all of their absorption peaks exist at 1.75, 1.62, 1.1, and 0.7 THz. Absorption intensity of cellulose powder, corn, wheat husk and reed were compared in some frequencies points. It finds that corn, wheat husk and reed have higher absorption intensity than cellulose powder in early frequency domain. However, absorption intensity of cellulose powder is the strongest at 1.62 THz. Cellulose content in corn, wheat husk and reed were detected by using the method of chemical analysis. The peaks of absorption coefficient are related to their cellulose content at this frequency. It shows that plant cellulose occur lattice vibration in the frequency. Deformation, bending, flexing, and other changes appear to their functional keys. Quantum chemical calculation was carried out by using density functional theory to cellulose and the structure diagram of cellulose molecular formula was obtained. It also finds some absorption peaks exist at 0.7, 1.1, and 1.75 THz. Characterization of cellulose clusters mainly includes CH2, OH, CH, and so on. Glucose hydroxyl radical on the ring is active in the cellulose chain. Where hydroxyl related chemical reaction can occur, Hydroxyl can also be integrated into the intermolecular and intramolecular hydrogen bond. Terahertz wave can promote hydrogen bond vibration. This kind of vibration is weak in the intermolecular interaction. The vibration and rotating happen in dipole transition. The crystal lattice rotates and is absorptive in low frequency, and large molecular skeleton vibrates. All of them can show different intensity and position of the absorption peak in the terahertz band. Corn and cellulose were analyzed by infrared spectrum. The reverse and vibration mode of cellulose was discussed. The absorption peak is

  2. Hydrodynamic electronic fluid instability in GaAs MESFETs at terahertz frequencies

    Science.gov (United States)

    Li, Kang; Hao, Yue; Jin, Xiaoqi; Lu, Wu

    2018-01-01

    III–V compound semiconductor field effect transistors (FETs) are potential candidates as solid state THz emitters and detectors due to plasma wave instability in these devices. Using a 2D hydrodynamic model, here we present the numerical studies of electron fluid instability in a FET structure. The model is implemented in a GaAs MESFET structure with a gate length of 0.2 µm as a testbed by taking into account the non-equilibrium transport and multi-valley non-parabolicity energy bands. The results show that the electronic density instability in the channel can produce stable periodic oscillations at THz frequencies. Along with stable oscillations, negative differential resistance in output characteristics is observed. The THz emission energy density increases monotonically with the drain bias. The emission frequency of electron density oscillations can be tuned by both gate and drain biases. The results suggest that III–V FETs can be a kind of versatile THz devices with good tunability on both radiative power and emission frequency.

  3. Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency

    Science.gov (United States)

    Nejati, Ameneh; Sadeghzadeh, Ramezan Ali; Geran, Fatemeh

    2014-09-01

    In this paper, microstrip patch antenna with frequency selective surface (FSS) and photonic band gap (PBG) structures in the frequency range of 0.5-0.7 THz is presented for wireless communications. Proposed patch antenna is designed on a substrate with uniform and non-uniform PBG structures. Here, the effects of substrate thickness, various radii and arrangement of holes on antenna resonance in both PBG forms are studied. Near zero characteristic on uniform and non-uniform PBG substrate is compared and the results show that along with increase in hole radius, antenna operating frequency and bandwidth are increased. Also, the FSS structure is designed as a perfect absorber. Finally, by using FSS and PBG structures simultaneously, gain enhancement, increase in directivity and pattern shaping are studied at THz field. The antenna gain in final structure is increased by 2 dBi (32%) in comparison to simple form and Half-Power beam width is reduced from 100°×80° in simple form to 72°×48° by using FSS and PBG. All simulations and designs are done by Ansoft HFSS and CST Microwave Studio simulation tools with different full wave methods.

  4. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... in parallel to the control system, using different computers and additional often expensive sensors. In this paper a simple filter based algorithm is proposed to detect changes in a resonance frequency in a system, exemplified with faults resulting in changes in the resonance frequency in the wind turbine...... turbine fault detection and fault tolerant control benchmark model, in which one of the included faults results in a change in the gear box resonance frequency. This evaluation shows the potential of the proposed scheme to monitor the condition of wind turbine gear boxes in the existing control system....

  5. Terahertz wave techniques using a metal mesh for evaluating the components of the stratum corneum.

    Science.gov (United States)

    Mizukoshi, Koji; Yonekura, Kazuki; Ogura, Hidehiro; Guan, Yu; Kawase, Kodo

    2013-02-01

    Terahertz waves are located in the region of the spectrum between milliwaves and infrared. We analyzed the feasibility of terahertz spectroscopy to inspect the compositional variations of the stratum corneum (SC). We used a terahertz time-domain spectroscopy system with the metal mesh technique. To investigate whether terahertz can inspect compositional variation of SC, we measured the terahertz frequency spectra of the SC sheet that was treated with chloroform-methanol, lipid mixture, a denaturation agent, and heating with hot air. The chloroform-methanol treatment of the SC shifted the dip position, which represents a convex downward shape of the spectra, to a higher frequency. This dip shift was reversed to an untreated position by the dose-dependent application of a lipid mixture. The heating treatment of the SC shifted the dip position to a higher frequency. The same dip shift was also induced by the application of a denaturation agent to the SC. The technique using terahertz waves with a metal mesh is effective because of its simplicity and its high degree of accuracy in detecting the amount of lipid and the protein conformation state. © 2012 John Wiley & Sons A/S.

  6. Near-field probing of Mie resonances in single TiO.sub.2./sub. microspheres at terahertz frequencies

    Czech Academy of Sciences Publication Activity Database

    Mitrofanov, O.; Dominec, Filip; Kužel, Petr; Reno, J.L.; Brener, I.; Chung, U.-C.; Elissalde, C.; Maglione, M.; Mounaix, P.

    2014-01-01

    Roč. 22, č. 19 (2014), s. 23034-23042 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA14-25639S EU Projects: European Commission(XE) 607521 - NOTEDEV Institutional support: RVO:68378271 Keywords : metamaterials * near-field microscopy * resonators * terahertz imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  7. Design and measuring of a tunable hybrid metamaterial absorber for terahertz frequencies

    Science.gov (United States)

    Zhong, Min; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2018-04-01

    A tunable hybrid metamaterial absorber is designed and experimentally produced in THz band. The hybrid metamaterial absorber contains two dielectric layers: SU-8 and VO2 layers. An absorption peak reaching to 83.5% is achieved at 1.04 THz. The hybrid metamaterial absorber exhibits high absorption when the incident angle reaches to 45°. Measured results indicate that the absorption amplitude and peak frequency of the hybrid metamaterial absorber is tunable in experiments. It is due to the insulator-to-metal phase transition is achieved when the measured temperature reaches to 68 °C. Moreover, the hybrid metamaterial absorber reveals high figure of merit (FOM) value when the measured temperature reaches to 68 °C.

  8. The effect of the flexibility of hydrogen bonding network on low-frequency motions of amino acids. Evidence from Terahertz spectroscopy and DFT calculations

    Science.gov (United States)

    Li, Yin; Lukács, András; Bordács, Sándor; Móczár, János; Nyitrai, Miklós; Hebling, János

    2018-02-01

    Low-frequency modes of L-Asp and L-Asn were studied in the range from 0.1 to 3.0 THz using time-domain Terahertz spectroscopy and density functional theory calculation. The results show that PBE-D2 shows more success than BLYP-D2 in prediction of THz absorption spectra. To compare their low-frequency modes, we adopted ;vibrational character ID strips; proposed by Schmuttenmaer and coworkers [Journal of Physical Chemistry B, 117, 10444(2013)]. We found that the most intense THz absorption peaks of two compounds both involve severe distortion of their hydrogen bonding networks. Due to less rigid hydrogen bonding network in L-Asp, the side chain (carboxyl group) of L-Asp exhibits larger motions than that (carboxamide group) of L-Asn in low-frequency modes.

  9. Terahertz radiography of hazardous substances without radiation hazard; Terahertz-Radiographie riskanter Substanzen ohne Strahlengefaehrdung

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, A.; Beckmann, J.; Ewert, U.; Hentschel, M.P.; Lange, A. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2007-07-01

    A femto seconds laser pumped time-resolving terahertz spectrometer opens up completely new options in the radiographic testing of objects of unknown composition or with unknown internals. There is a wide range of applications that will improve safety and availability of the technological and staff infrastructure, from dielectric characterisation of nonmetals to the detection of the internals of nonconventional blasting and incendiary compositions. With scanning rates of currently 10 Hz and a local resolution of up to 0.3 mm, transmission radiographs with high spectral resolution can be generated in the frequency range of 0.1 - 2.2 THz. This makes it possible to distinguish between different materials, e.g. explosives, polymer composites, ceramics, and nonmetal powders. The terahertz images can be generated even through packagings. For a demonstration of the novel radiographic technique, THz topographs, e.g. for a mockup letter bomb, are discussed and compared with conventional soft X-ray radiographs. As the terahertz are not harmful physiologically, in contrast to X-rays, the are now being used by way of trial for security checks in airports. In view of the increasing technological importance of polymers and mineral materials, the use of terahertz spectroscopic imaging in non-destructive testing and characterisation is explored here. (orig.)

  10. Damping of vibrational excitations in glasses at terahertz frequency: The case of 3-methylpentane

    KAUST Repository

    Baldi, Giacomo

    2017-10-24

    We report a compared analysis of inelastic X ray scattering (IXS) and of low frequency Raman data of glassy 3-methylpentane. The IXS spectra have been analysed allowing for the existence of two distinct excitations at each scattering wavevector obtaining a consistent interpretation of the spectra. In particular, this procedure allows us to interpret the linewidth of the modes in terms of a simple model which relates them to the width of the first sharp diffraction peak in the static structure factor. In this model, the width of the modes arises from the blurring of the dispersion curves which increases approaching the boundary of the first pseudo-Brillouin zone. The position of the boson peak contribution to the density of vibrational states derived from the Raman scattering measurements is in agreement with the interpretation of the two excitations in terms of a longitudinal mode and a transverse mode, the latter being a result of the mixed character of the transverse modes away from the center of the pseudo-Brillouin zone.

  11. Detecting deception via eyeblink frequency modulation

    Directory of Open Access Journals (Sweden)

    Brandon S. Perelman

    2014-02-01

    Full Text Available To assess the efficacy of using eyeblink frequency modulation to detect deception about a third party, 32 participants were sent on a mission to deliver a package to an interviewer. 17 of the participants lied to the interviewer about the details of their mock mission and 15 responded truthfully. During the interview, eyeblink frequency data were collected via electromyography and recorded video. Liars displayed eyeblink frequency suppression while lying, while truth tellers exhibited an increase in eyeblink frequency during the mission relevant questioning period. The compensatory flurry of eyeblinks following deception observed in previous studies was absent in the present study. A discriminant function using eyeblink suppression to predict lying correctly classified 81.3% of cases, with a sensitivity of 88.2% and a specificity of 73.3%. This technique, yielding a reasonable sensitivity, shows promise for future testing as, unlike polygraph, it is compatible with distance technology.

  12. Terahertz dielectric measurements of household powders

    Science.gov (United States)

    Khan, Usman A.; Afsar, Mohammed N.

    2007-09-01

    The dielectric properties of common household powders from 0.6 to 1.2 THz are presented in this paper. Terahertz Dispersive Fourier Transform Spectroscopy was used to yield the dielectric properties of powders as a continuous function of frequency. Tests were conducted using a polarized interferometer and two cryogenically-cooled high frequency detectors. Dielectric spectroscopy was utilized to provide high-resolution and precise information on the dielectric spectra of powders including the powder's unique resonance signature. This signature can be employed to detect the presence of a hoax or harmful powder within a baggage or mail package.

  13. Terahertz Techniques

    CERN Document Server

    Bründermann, Erik; Kimmitt, Maurice FitzGerald

    2012-01-01

    Research and development in the terahertz portion of the electromagnetic spectrum has expanded very rapidly during the past fifteen years due to major advances in sources, detectors and instrumentation. Many scientists and engineers are entering the field and this volume offers a comprehensive and integrated treatment of all aspects of terahertz technology. The three authors, who have been active researchers in this region over a number of years, have designed Terahertz Techniques to be both a general introduction to the subject and a definitive reference resource for all those involved in this exciting research area.

  14. Design of radio-frequency cavities and Tera-Hertz electron injectors for advanced applications

    International Nuclear Information System (INIS)

    Seyedfakhari, Seyedmoein

    2016-06-01

    Design of three accelerator components including a buncher cavity for REGAE, a normal conducting cavity for arrival time stabilization at FLASH and ultra-fast guns for the AXSIS project is presented in this thesis. Using RF cavities caused a revolution in accelerators and made it possible to generate high energy particle beams. In advanced accelerators, cavities are not only used to increase the particle energy but they are also widely used to improve the beam quality and additionally for beam diagnostic purposes. In the present dissertation, such applications are discussed. First, design of a buncher cavity which compresses the bunch at the REGAE facility is presented. The design pursues improving the mode separation of the cavity. The simulation result illustrates that the difference between the operating mode and its adjacent mode has been increased from 2 MHz for the existing cavity to 9.5 MHz for the new design. In the second part, a normal conducting cavity is discussed, which will be used to regulate the arrival time ofthe bunches at FLASH and at the European XFEL. The designed cavity is able to correct the arrival time jitter of ± 150 fs in order to provide femtosecond precision synchronization between the electron beam and the external laser pulses. Thermal, wakefield and multipacting simulations have also been performed for the designed cavity in order to evaluate its operation efficiency. In advanced accelerators however RF cavities should be replaced by novel structures to accelerate the particles in shorter distances using higher operating frequency. To this end, ultra-fast guns are designed which will be discussed in the last part of this work. The designed guns accelerate the electrons from their rest mass up to 2 MeV using a single cycle THz signal with a total energy of 2 mJ.

  15. Terahertz Radome Inspection

    Directory of Open Access Journals (Sweden)

    Fabian Friederich

    2018-01-01

    Full Text Available Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize the composite structures for best possible radio performance. Hence, there exists a significant interest in non-destructive testing techniques, which can be used for defect inspection of radomes in field use as well as for quality inspection during the manufacturing process. Contactless millimeter-wave and terahertz imaging techniques provide millimeter resolution and have the potential to address both application scenarios. We report on our development of a three-dimensional (3D terahertz imaging system for radome inspection during industrial manufacturing processes. The system was designed for operation within a machining center for radome manufacturing. It simultaneously gathers terahertz depth information in adjacent frequency ranges, from 70 to 110 GHz and from 110 to 170 GHz by combining two frequency modulated continuous-wave terahertz sensing units into a single measurement device. Results from spiraliform image acquisition of a radome test sample demonstrate the successful integration of the measurement system.

  16. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  17. Photoinduced Nonlinear Mixing of Terahertz Dipole Resonances in Graphene Metadevices.

    Science.gov (United States)

    In, Chihun; Kim, Hyeon-Don; Min, Bumki; Choi, Hyunyong

    2016-02-17

    The first experimental demonstration of nonlinear terahertz difference-frequency generation in a hybrid graphene metadevice is reported. Decades of research have revealed that terahertz-wave generation is impossible in single-layer graphene. This limitation is overcome and nonlinear terahertz generation by ultra-short optical pulse injection is demonstrated. This device is an essential step toward atomically thin, nonlinear terahertz optoelectronic components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Detecting DNS Tunnels Using Character Frequency Analysis

    OpenAIRE

    Born, Kenton; Gustafson, David

    2010-01-01

    High-bandwidth covert channels pose significant risks to sensitive and proprietary information inside company networks. Domain Name System (DNS) tunnels provide a means to covertly infiltrate and exfiltrate large amounts of information passed network boundaries. This paper explores the possibility of detecting DNS tunnels by analyzing the unigram, bigram, and trigram character frequencies of domains in DNS queries and responses. It is empirically shown how domains follow Zipf's law in a simil...

  19. Frequency-based Vehicle Idling Detection

    OpenAIRE

    Kai-Chao Yang; Chih-Ting Kuo; Chun-Yu Chen; Chih-Chyau Yang; Chien-Ming Wu; Chun-Ming Huang

    2014-01-01

    Continuous increases in fuel prices and environmental awareness have raised the importance of reducing vehicle emissions, with many national governments passing anti-idling laws. To reduce air pollution and fuel consumption, we propose a frequency-based vehicle idling detection method to remind drivers to turn off the engine vehicle idling exceeds a certain time threshold. The method is implemented in existing handheld devices without any modification to the car or engine, making the solution...

  20. Effects of terahertz radiation at atmospheric oxygen frequency of 129 GHz on blood nitrite concentrations under conditions of different types of stress against the background of administration of nonselective inhibitor of constitutive NO-synthases.

    Science.gov (United States)

    Kirichuk, V F; Tsymbal, A A

    2012-02-01

    We studied the effect of terahertz radiation at atmospheric oxygen frequency 129 GHz on blood nitrite concentration in different types of experimental stress against the background of administration of nonselective inhibitor of constitutive NO-synthases. Normalizing effects of radiation on blood nitrite dynamics in animals with acute stress was shown after 15-min exposure and in animals with chronic stress after 30-min exposure. No positive effect of terahertz radiation was observed on altered blood nitrite concentration in male rats after preliminary administration of nonselective constitutive NO-synthase isoform inhibitor L-NAME.

  1. Embedded chemicals detection using multiple frequencies excitation

    Science.gov (United States)

    Gao, Yaohui; Chen, Meng-Ku; Yang, Chia-En; Chang, Yun-Ching; Yao, Jimmy; Cheng, Jiping; Yin, Stuart (Shizhuo)

    2010-08-01

    In this paper, recent works of buried chemical detection system by stimulating and enhancing spectroscopic signatures with multi-frequency excitations are discussed. In this detection system, those multiple excitations, including DC electric field, microwave, CO2 laser illumination and infrared radiation, are utilized and each of them plays a unique role. The Microwave could effectively increase the buried chemicals' evaporation rate from the source. The gradient DC electric field, generated by a Van De Graaff generator, not only serves as a vapor accelerator for efficiently expediting the transportation process of the vapor release from the buried chemicals, but also acts as a vapor concentrator for increasing the chemical concentrations in the detection area, which enables the trace level chemical detection. Similarly, CO2 laser illumination, which behaves as another type vapor accelerator, could also help to release the vapors adsorbed on the soil surface to the air rapidly. Finally, the stimulated and enhanced vapors released into the air are detected by the infrared (IR) spectroscopic fingerprints. Our theoretical and experimental results demonstrate that more than 20-fold increase of detection signal can be achieved by using those proposed technology.

  2. Terahertz scanning probe microscope

    NARCIS (Netherlands)

    Klapwijk, T.M.

    2014-01-01

    The invention provides aterahertz scanning probe microscope setup comprising (i) a terahertz radiation source configured to generate terahertz radiation; (ii) a terahertz lens configured to receive at least part of the terahertz radiation from the terahertz radiation source; (iii) a cantilever unit

  3. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengxiang [The Institute of Laser and Optoelectronics, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071 (China); Zhang, Xinyuan [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yan, Chao; Xu, Degang, E-mail: xudegang@tju.edu.cn; Shi, Wei; Yao, Jianquan [The Institute of Laser and Optoelectronics, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Li, Yin; Zhang, Guochun; Wu, Yicheng [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Xinzheng [The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071 (China)

    2016-01-04

    We report an experimental study on widely tunable terahertz (THz) wave difference frequency generation (DFG) with hydrogen-bonded crystals 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1). The organic crystals were pumped by a ∼1.3 μm double-pass KTiOPO{sub 4} optical parametric oscillator. A tuning range of 0.02–20 THz was achieved. OH1 crystals offer a long effective interaction length (also high output) for the generation below 3 THz, owing to the low absorption and favorable phase-matching. The highest energy of 507 nJ/pulse was generated at 1.92 THz with a 1.89-mm-thick crystal. Comprehensive explanations were provided, on the basis of theoretical calculations. Cascading phenomenon during the DFG process was demonstrated. The photon conversion efficiency could reach 2.9%.

  4. Anti-reflection coating design for metallic terahertz meta-materials

    Science.gov (United States)

    Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; Hoffmann, Matthias C.; Urazhdin, Sergei; Vavassori, Paolo; Bonetti, Stefano

    2018-02-01

    We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extended gold plates separated by a 2 $\\mu$m gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-$\\mu$m wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2\\% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.

  5. Anti-reflection coating design for metallic terahertz meta-materials.

    Science.gov (United States)

    Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; Hoffmann, Matthias C; Urazhdin, Sergei; Vavassori, Paolo; Bonetti, Stefano

    2018-02-05

    We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extended gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.

  6. Hemodynamic changes induced by preventive exposure to terahertz radiation at a frequency range corresponding to molecular emission and absorption spectrum of nitric oxide in animals under conditions of acute stress.

    Science.gov (United States)

    Kirichuck, V F; Velikanova, T S; Ivanov, A N

    2011-06-01

    We studied the influence of preventive irradiation with terahertz electromagnetic waves at frequencies corresponding to nitric oxide emission and absorption molecular spectrum (150,176-150,664 GHz) on hemodynamic parameters in arteries of albino rats upon acute immobilization stress. We showed that exposure to the specified frequencies can produce adaptogenic effect manifesting in the absence of post-stress changes in the linear, systolic, and diastolic blood flow velocities and pressure gradient in various blood vessels of experimental animals.

  7. Detection of radio frequency interference over ocean

    Science.gov (United States)

    Tian, Xiaoxu

    The geostationary satellite television (TV) signals that are reflected off the ocean surfaces could enter the AMSR-E antenna, resulting in RFI (Radio Frequency Interference) contamination in AMSR-E 10.65 and 18.7 GHz channels. If not detected, the presence of RFI signals can result in false retrievals of oceanic environmental parameters (e.g., sea surface temperature, sea surface wind speed, rain water path) from microwave imaging radiance measurements. This study first examined the geometric relationship between the RFI source, geostationary TV satellite, and AMSR-E observation. Then a normalized Principal Component Analysis (NPCA) method is proposed and applied for RFI detection over oceans in Advanced Microwave Scanning Radiometer (AMSR)-E observations. It is found that the RFI-contaminated observations on AMSR-E descending node at 10.65 and 18.7 GHz can be successively detected near coastal areas surrounding Europe and United States continents. The results yielded from the geometric examination at another angle verify those signals detected with NPCA. The proposed NPCA algorithm is applicable in an operational environment for fast data processing and data dissemination, and is different from earlier methods, which often require a priori information.

  8. Early detection of germinated wheat grains using terahertz image and chemometrics

    Science.gov (United States)

    Jiang, Yuying; Ge, Hongyi; Lian, Feiyu; Zhang, Yuan; Xia, Shanhong

    2016-02-01

    In this paper, we propose a feasible tool that uses a terahertz (THz) imaging system for identifying wheat grains at different stages of germination. The THz spectra of the main changed components of wheat grains, maltose and starch, which were obtained by THz time spectroscopy, were distinctly different. Used for original data compression and feature extraction, principal component analysis (PCA) revealed the changes that occurred in the inner chemical structure during germination. Two thresholds, one indicating the start of the release of α-amylase and the second when it reaches the steady state, were obtained through the first five score images. Thus, the first five PCs were input for the partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and back-propagation neural network (BPNN) models, which were used to classify seven different germination times between 0 and 48 h, with a prediction accuracy of 92.85%, 93.57%, and 90.71%, respectively. The experimental results indicated that the combination of THz imaging technology and chemometrics could be a new effective way to discriminate wheat grains at the early germination stage of approximately 6 h.

  9. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives

    Science.gov (United States)

    Doradla, Pallavi; Joseph, Cecil; Giles, Robert H

    2017-01-01

    Terahertz (THz) imaging is progressing as a robust platform for myriad applications in the field of security, health, and material science. The THz regime, which comprises wavelengths spanning from microns to millimeters, is non-ionizing and has very low photon energy: Making it inherently safe for biological imaging. Colorectal cancer is one of the most common causes of death in the world, while the conventional screening and standard of care yet relies exclusively on the physician’s experience. Researchers have been working on the development of a flexible THz endoscope, as a potential tool to aid in colorectal cancer screening. This involves building a single-channel THz endoscope, and profiling the THz response from colorectal tissue, and demonstrating endogenous contrast levels between normal and diseased tissue when imaging in reflection modality. The current level of contrast provided by the prototype THz endoscopic system represents a significant step towards clinical endoscopic application of THz technology for in-vivo colorectal cancer screening. The aim of this paper is to provide a short review of the recent advances in THz endoscopic technology and cancer imaging. In particular, the potential of single-channel THz endoscopic imaging for colonic cancer screening will be highlighted. PMID:28874955

  10. Large-signal characterizations of DDR IMPATT devices based on group III-V semiconductors at millimeter-wave and terahertz frequencies

    Science.gov (United States)

    Acharyya, Aritra; Mallik, Aliva; Banerjee, Debopriya; Ganguli, Suman; Das, Arindam; Dasgupta, Sudeepto; Banerjee, J. P.

    2014-08-01

    Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A comparative study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.

  11. [Application of terahertz time domain spectroscopy to explosive and illegal drug].

    Science.gov (United States)

    Liu, Gui-Feng; Zhao, Hong-Wei; Ge, Min; Wang, Wen-Feng

    2008-05-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many explosives and illicit drugs show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons, explosives and illegal drugs, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. Moreover, THz can penetrate many barrier materials, such as clothing and common packaging materials. THz technique has a great potential and advantage in antiterrorism and security inspection of explosives and illegal drugs due to the ability of high-sensitivity, nondestructive and stand-off inspection of many substances. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to explosives and illegal drugs. Studies on RDX are discussed in details and many factors affecting experiments are also introduced.

  12. [Progress of electro-optic polymer in the field of generation and detection of Terahertz waves by all-optical technique].

    Science.gov (United States)

    Wang, Xuan; Jiang, Qiang; Wang, Yue; Zhang, Wen-long; Li, Zhi-yuan

    2014-08-01

    Research on and development of the high amplitude, broadband terahertz system based on ultra-short pulse, low-power laser system is a hot spot in the field of terahertz. So far, for all the reported THz bandwidths broader than 10 THz, there always exist strong dispersion and absorption gaps associated with the lattice resonance in either the photoconductive materials or crystalline EO materials. If such THz sources and detectors are employed in spectroscopic studies, spectral information in these gaps cannot be extracted. One of the advantages of using amorphous electro-optic polymer films as THz emitters and sensors is that there is no dispersion or absorption resulting from the lattice resonance effect, making a gap-free THz spectrum possible. Another advantage of electro-optic polymer films is the ease of fabrication and handling, in contrast to the extremely thin crystalline electro-optic materials used for existing broadband THz system. In addition, we can engineer the electro-optic polymeric materials to achieve small phase mismatch and high electro-optic coefficients such that brightness and broad bandwidth of THz radiation can be obtained. In this thesis a theoretical description of electro-optic effect based on electro-optic polymer and the second- order nonlinear chromophores synthesis is reviewed. In the past 20 years, progress in electro-optic polymer in the field of generating and detecting terahertz radiation by all-optical techniques is summarized, including the terahertzs systems based on copolymer and the guest-host polymer induced by Titanium doped sapphire femtosecond laser and based on the guest-host polymer at communication wavelengths.

  13. [Terahertz time-domain spectroscopy of ractopamine hydrochloride].

    Science.gov (United States)

    Chen, Xi-ai; Huang, Ping-jie; Hou, Di-bo; Kang, Xu-sheng; Zhang, Guang-xin; Zhou, Ze-kui

    2011-03-01

    The terahertz spectra of Ractopamine hydrochloride in the range of 0.2 to 2.2 THz was obtained by THz time-domain spectroscopy, and the absorption and refraction spectra of Ractopamine hydrochloride was got meanwhile. The structure and vibrational frequencies of Ractopamine molecule in the THz range were simulated by density functional theory. The difference between experimental and theoretical results was analyzed. And assisted by Gaussian View 3.09, the origin of the vibrational frequencies was recognized. The results show that besides the intramolecular vibrations, THz absorption of Ractopamine hydrochloride originated from the intermolecular hydrogen bond network and Van der Waals force between molecules. This study demonstrated the feasibility of time-domain terahertz spectroscopy for the identification of Ractopamine hydrochloride and provided a new way for the detection of Ractopamine hydrochloride.

  14. Terahertz planar antennas for next generation communication

    CERN Document Server

    Jha, Kumud Ranjan

    2014-01-01

    This book describes various methods to enhance the directivity of  planar antennas, enabling the next generation of high frequency, wireless communication.  The authors discuss various applications to the terahertz regime of the electromagnetic spectrum, with an emphasis on gain enhancement mechanisms.  The numerical models of these antennas are presented and the analytical results are supported, using commercial simulators. The multilayer substrate microstrip transmission line at terahertz frequency is also explored and a method to obtain the various parameters of this interconnect at high frequency is described.  This book will be a valuable resource for anyone needing to explore the terahertz band gap for future wireless communication, in an effort to solve the bandwidth (spectrum scarcity) problem. • Enables development of terahertz communication systems in a license-free band of the electromagnetic spectrum; • Describes methods to design a multi-layered substrate transmission line to reduce var...

  15. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  16. Wide-aperture total absorption of a terahertz wave in a nanoperiodic graphene-based plasmon structure

    Energy Technology Data Exchange (ETDEWEB)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics, Saratov Branch (Russian Federation); Melnikova, V. S. [Saratov National Research State University (Russian Federation); Popov, V. V., E-mail: popov-slava@yahoo.co.uk [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics, Saratov Branch (Russian Federation)

    2016-11-15

    The terahertz absorption spectrum in a periodic array of graphene nanoribbons located on the surface of a dielectric substrate with a high refractive index (terahertz prism) is studied theoretically. The total absorption of terahertz radiation is shown to occur in the regime of total internal reflection of the terahertz wave from the periodic array of graphene nanoribbons, at the frequencies of plasma oscillations in graphene, in a wide range of incidence angles of the external terahertz wave even at room temperature.

  17. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  18. Inspection of plastic weld joints with terahertz imaging

    Science.gov (United States)

    Wietzke, S.; Krumbholz, N.; Jördens, C.; Baudrit, B.; Bastian, M.; Koch, M.

    2007-06-01

    Polymers cover the whole range from commodities to high-tech applications. Plastic products have also gained in importance for construction purposes. This draws the attention to joining techniques like welding. Common evaluation of the weld quality is mostly mechanical and destructive. Existing non-destructive techniques are mostly not entirely reliable or economically inefficient. Here, we demonstrate the potential of terahertz time-domain spectroscopy imaging as a non-destructive testing tool for the inspection of plastic weld joints. High-density polyethylene sheets welded in a lap joint with varying quality serve as samples for terahertz transmission measurements. Imperfections within the weld contact area can clearly be detected by displaying the transmitted intensity in a limited frequency range. Contaminations such as metal or sand are identified since they differ significantly from the polymer in the terahertz image. Furthermore, this new and promising technique is capable of detecting the boundaries of a weld contact area. Aside from revealing a contrast between a proper weld joint and no material connection, the size of an air gap between two plastic sheets can be determined by considering the characteristic frequency-dependent transmission through the structure: The spectral positions of the maxima and minima allow for the calculation of the air layer thickness.

  19. Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Planken, P.C.M.

    2002-01-01

    We report on a method to obtain a subwavelength resolution in terahertz time-domain imaging. In our method, a sharp copper tip is used to locally distort and concentrate the THz electric field. The distorted electric field, present mainly in the near field of the tip, is electro-optically measured

  20. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  1. Time-Frequency, Bi-Frequency Detection Analysis of Noise Technology Radar

    National Research Council Canada - National Science Library

    Heuschel, Eugene R

    2006-01-01

    .... This thesis examines the use of time-frequency, bi-frequency signal detection techniques to identify the parameters of the four types of continuous waveform noise radar recently reported. These include: (a) random noise, (b...

  2. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’Apuzzo, Fausto

    2014-10-11

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  3. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional rad...... information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm....

  4. Terahertz Technology: A Boon to Tablet Analysis

    Science.gov (United States)

    Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.

    2009-01-01

    The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288

  5. Practical microstructured and plasmonic terahertz waveguides

    Science.gov (United States)

    Markov, Andrey

    The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated

  6. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  7. Cooper Pair Breakup in YBCO under Strong Terahertz Fields

    OpenAIRE

    Glossner, Andreas; Zhang, Caihong; Kikuta, Shinya; Kawayama, Iwao; Murakami, Hironaru; Müller, Paul; Tonouchi, Masayoshi

    2012-01-01

    We show that strong electric fields of ~ 30 kV cm^(-1) at terahertz frequencies can significantly weaken the superconducting characteristics of cuprate superconductors. High-power terahertz time-domain spectroscopy (THz-TDS) was used to investigate the in-plane conductivity of YBa2Cu3O7-delta (YBCO) with highly intense single-cycle terahertz pulses. Even though the terahertz photon energy (~ 1.5 meV) was significantly smaller than the energy gap in YBCO (~ 20-30 meV), the optical conductivity...

  8. Investigating murals with terahertz reflective tomography

    Science.gov (United States)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Wang, Sen; Zhang, Qunxi; Ye, Jiasheng; Zhang, Yan

    2015-08-01

    Terahertz time-domain spectroscopy (THz-TDS) imaging technology has been proposed to be used in the non-invasive detection of murals. THz-TDS images provide structural data of the sample that cannot be obtained with other complementary techniques. In this paper, two types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by the terahertz reflected time domain spectroscopy imaging system. These preset defects include a leaf slice and a slit built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. With this THz tomography, different defects with the changes of optical thickness and their relative refractive index have been identified. The application of reflective pulsed terahertz imaging has been extended to the defect detection of the murals.

  9. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  10. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  11. High efficiency optoelectronic terahertz sources

    Science.gov (United States)

    Lampin, Jean-François; Peytavit, Emilien; Akalin, Tahsin; Ducournau, G.; Hindle, Francis; Mouret, Gael

    2010-08-01

    We have developed a new generation of optoelectronic large bandwidth terahertz sources based on TEM horn antennas monolithically integrated with several types of photodetectors: low-temperature grown GaAs (LTG-GaAs) planar photoconductors, vertically integrated LTG-GaAs photoconductors on silicon substrate and uni-travelling-carrier photodiodes. Results of pulsed (time-domain) and photomixing (CW, frequency domain) experiments are presented.

  12. Terahertz molecular resonance of cancer DNA.

    Science.gov (United States)

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A; Son, Joo-Hiuk

    2016-11-15

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  13. Radio Frequency Interference Suppression for Landmine Detection by Quadrupole Resonance

    Science.gov (United States)

    Liu, Guoqing; Jiang, Yi; Xiong, Hong; Li, Jian; Barrall, Geoffrey A.

    2006-12-01

    The quadrupole resonance (QR) technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives within the mine. We focus herein on the detection of TNT mines via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs). Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. The RFIs are usually colored both spatially and temporally, and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlations of the RFIs to improve the TNT detection performance.

  14. Terahertz microfluidic sensing using a parallel-plate waveguide sensor.

    Science.gov (United States)

    Astley, Victoria; Reichel, Kimberly; Mendis, Rajind; Mittleman, Daniel M

    2012-08-30

    Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials. Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides, asymmetric split-ring resonators, and photonic band gap structures integrated into parallel-plate waveguides. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc. The sensor design we use here is based on a simple parallel-plate waveguide. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index. Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can

  15. A flexible and wearable terahertz scanner

    Science.gov (United States)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  16. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    Science.gov (United States)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  17. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    Science.gov (United States)

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  18. Terahertz Array Receivers with Integrated Antennas

    Science.gov (United States)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; hide

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  19. Nonlinear terahertz superconducting plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn [Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Wang, Huabing [Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  20. Active terahertz metamaterial devices

    Science.gov (United States)

    Chen, Houtong; Padilla, Willie John; Averitt, Richard Douglas; O'Hara, John F.; Lee, Mark

    2010-11-02

    Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.

  1. People screening using terahertz technology (Invited Paper)

    Science.gov (United States)

    Baker, Colin; Tribe, William R.; Lo, Thomas; Cole, Bryan E.; Chandler, Simon; Kemp, Michael C.

    2005-05-01

    There is a need for ever more effective security screening to detect an increasing variety of threats. Many techniques employing different parts of the electromagnetic spectrum from radio up to X- and gamma-ray are in use. Terahertz radiation, which lies between microwave and infrared, is the last part to be exploited for want, until the last few years, of suitable sources and detectors. Terahertz imaging and spectroscopy has been shown to have the potential to use very low levels of this non-ionising radiation to detect and identify objects hidden under clothing. This paper describes recent work on the development of prototype systems using terahertz to provide new capabilities in people screening, both at security checkpoints and stand-off detection for remote detection of explosives and both metallic and non-metallic weapons.

  2. Broadband terahertz-power extracting by using electron cyclotron maser.

    Science.gov (United States)

    Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun

    2017-08-04

    Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.

  3. Laser frequency-offset locking based on the frequency modulation spectroscopy with higher harmonic detection

    Science.gov (United States)

    Wang, Anqi; Meng, Zhixin; Feng, Yanying

    2017-10-01

    We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.

  4. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system

    Science.gov (United States)

    Ghodsi, Hamed; Kaatuzian, Hassan

    2015-05-01

    In order to improve the performance of a pre-designed direct conversion terahertz detector which is implemented in a 0.25 μm-SiGe-BiCMOS process, we propose some slight modifications in the bipolar section of the SiGe device physical design. Comparison of our new proposed device and the previously reported device is done by SILVACO TCAD software simulation and we have used previous experimentally reported data to confirm our software simulations. Our proposed modifications in device structural design show a present device responsivity improvement of about 10% from 1 to 1.1 A/W while the bandwidth improvement is about 218 GHz. The minimum noise equivalent power at detector output is increased by about 14.3% and finally power consumption per pixel at the maximum responsivity is decreased by about 5%.

  5. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system

    International Nuclear Information System (INIS)

    Ghodsi, Hamed; Kaatuzian, Hassan

    2015-01-01

    In order to improve the performance of a pre-designed direct conversion terahertz detector which is implemented in a 0.25 μm-SiGe-BiCMOS process, we propose some slight modifications in the bipolar section of the SiGe device physical design. Comparison of our new proposed device and the previously reported device is done by SILVACO TCAD software simulation and we have used previous experimentally reported data to confirm our software simulations. Our proposed modifications in device structural design show a present device responsivity improvement of about 10% from 1 to 1.1 A/W while the bandwidth improvement is about 218 GHz. The minimum noise equivalent power at detector output is increased by about 14.3% and finally power consumption per pixel at the maximum responsivity is decreased by about 5%. (paper)

  6. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  7. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  8. [Development of Terahertz Imaging Technology in the Assessment of Burn Injuries].

    Science.gov (United States)

    Zhu, Xinjian; He, Xuan; Wang, Pin; Gao, Dandan; Qiu, Yan; He, Qinghua; Wu, Baoming

    2016-02-01

    Terahertz waves have unique properties and advantages, which makes it gain increasing attention and applications in the biomedical field. Burns is a common clinical trauma. Since the water-sensitive and non-destructive characteristics of terahertz, terahertz imaging techniques can be used to detect burns. So far, terahertz imaging technology in the assessment of burn injuries has been developed from ex vivo to in vivo, and high-resolution images can be obtained through the gauzes and plasters. In this paper, we mainly introduces the application of terahertz imaging technology and development in the assessment of burn injuries.

  9. The preparation method of terahertz monolithic integrated device

    Science.gov (United States)

    Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.

  10. Capacity analysis for high-speed terahertz wireless communications

    DEFF Research Database (Denmark)

    Dogadaev, Anton Konstantinovich; Lavrinenko, Andrei; Tafur Monroy, Idelfonso

    2012-01-01

    We report on the analytical capacity analysis of terahertz wireless communications supporting 275–325 GHz frequency band. Our goal in this paper is to provide design guidelines for close proximity links with transmission capacity beyond 100 Gbit/s.......We report on the analytical capacity analysis of terahertz wireless communications supporting 275–325 GHz frequency band. Our goal in this paper is to provide design guidelines for close proximity links with transmission capacity beyond 100 Gbit/s....

  11. Dynamic control of the flow of terahertz light

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    Guided propagation of THz light has been intensely developed recently. We describe our efforts towards dynamic, optical control of the flow of light in waveguide structures, enabling reconfigurable photonic components for the terahertz frequency range.......Guided propagation of THz light has been intensely developed recently. We describe our efforts towards dynamic, optical control of the flow of light in waveguide structures, enabling reconfigurable photonic components for the terahertz frequency range....

  12. Photonic techniques for sub-Terahertz wireless data transmission

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2015-01-01

    Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA.......Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA....

  13. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2012-01-01

    We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging.......We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging....

  14. Ultrabright continuously tunable terahertz-wave generation at room temperature.

    Science.gov (United States)

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-06-05

    The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.

  15. Correcting length-frequency distributions for imperfect detection

    Science.gov (United States)

    Breton, André R.; Hawkins, John A.; Winkelman, Dana L.

    2013-01-01

    Sampling gear selects for specific sizes of fish, which may bias length-frequency distributions that are commonly used to assess population size structure, recruitment patterns, growth, and survival. To properly correct for sampling biases caused by gear and other sources, length-frequency distributions need to be corrected for imperfect detection. We describe a method for adjusting length-frequency distributions when capture and recapture probabilities are a function of fish length, temporal variation, and capture history. The method is applied to a study involving the removal of Smallmouth Bass Micropterus dolomieu by boat electrofishing from a 38.6-km reach on the Yampa River, Colorado. Smallmouth Bass longer than 100 mm were marked and released alive from 2005 to 2010 on one or more electrofishing passes and removed on all other passes from the population. Using the Huggins mark–recapture model, we detected a significant effect of fish total length, previous capture history (behavior), year, pass, year×behavior, and year×pass on capture and recapture probabilities. We demonstrate how to partition the Huggins estimate of abundance into length frequencies to correct for these effects. Uncorrected length frequencies of fish removed from Little Yampa Canyon were negatively biased in every year by as much as 88% relative to mark–recapture estimates for the smallest length-class in our analysis (100–110 mm). Bias declined but remained high even for adult length-classes (≥200 mm). The pattern of bias across length-classes was variable across years. The percentage of unadjusted counts that were below the lower 95% confidence interval from our adjusted length-frequency estimates were 95, 89, 84, 78, 81, and 92% from 2005 to 2010, respectively. Length-frequency distributions are widely used in fisheries science and management. Our simple method for correcting length-frequency estimates for imperfect detection could be widely applied when mark–recapture data

  16. Crack Detection of Fan Blade Based on Natural Frequencies

    Directory of Open Access Journals (Sweden)

    Mengyao Yu

    2018-01-01

    Full Text Available A simple method was developed to detect damage based on a discrete mathematical model for fan blades using changes in natural frequencies combined with a fluid-structure analysis. In addition, a numerical approach was developed for the fluid-structure analysis. The results of numerical simulation provided the natural frequency data for each mode under different locations and sizes of a single crack in a blade. A fault database was built using Matlab. The damage of a blade was detected using the changes in natural frequencies. This study will assist in investigating the effect of a crack on a structure from different perspectives; the simulation results show the effectiveness of this approach.

  17. Ultrabroadband terahertz spectroscopy of chalcogenide glasses

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Bisgaard, Christer Zoffmann; Novitsky, Andrey

    2012-01-01

    Chalcogenide glasses are receiving a lot of attention due to their unique optical properties. In this paper we study the optical properties of As2S3 and GaLaS glasses in a broad terahertz (THz) frequency range (0.2-18 THz). Complex dispersion behavior with drastic changes of refractive index and ...

  18. Terahertz Plasmonic Structure With Enhanced Sensing Capabilities

    DEFF Research Database (Denmark)

    Yahiaoui, Riad; Strikwerda, Andrew C.; Jepsen, Peter Uhd

    2016-01-01

    We have designed, fabricated, and experimentally verified a highly sensitive plasmonic sensing device in the terahertz frequency range. For a proof of concept of the sensing phenomenon, we have chosen the so-called fishnet structure based on circular hole array insensitive to the polarization of ...

  19. Towards terahertz microscopy

    NARCIS (Netherlands)

    Van der Valk, N.C.J.

    2005-01-01

    Terahertz (=1012 Hz) radiation is a form of electromagnetic radiation that is at this moment used rarely for imaging purposes. However, there are indeed reasons to assume that imaging with terahertz radiation could be very useful. First, many materials, such as paper, plastics and clothing are

  20. Terahertz polarization imaging

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M.

    2005-01-01

    We present a new method to measure the polarization state of a terahertz pulse by using a modified electrooptic sampling setup. To illustrate the power of this method, we show two examples in which the knowledge of the polarization of the terahertz pulse is essential for interpreting the results:

  1. Fault detection of gearbox using time-frequency method

    Science.gov (United States)

    Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.

    2017-04-01

    This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).

  2. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  3. Active metamaterials terahertz modulators and detectors

    CERN Document Server

    Rout, Saroj

    2017-01-01

    This book covers the theoretical background and experimental methods for engineers and physicist to be able to design, fabricate and characterize terahertz devices using metamaterials. Devices utilize mainstream semiconductor foundry processes to make them for communication and imaging applications. This book will provide engineers and physicists a comprehensive reference to construct such devices with general background in circuits and electromagnetics. The authors describe the design and construction of electromagnetic (EM) devices for terahertz frequencies (108-1010cycles/sec) by embedding solid state electronic devices into artificial metamaterials where each unit cell is only a fraction of the wavelength of the incident EM wave. The net effect is an electronically tunable bulk properties with effective electric (permittivity) and magnetic (permeability) that can be utilized to make novel devices to fill the terahertz gap.

  4. [A Terahertz Spectral Database Based on Browser/Server Technique].

    Science.gov (United States)

    Zhang, Zhuo-yong; Song, Yue

    2015-09-01

    With the solution of key scientific and technical problems and development of instrumentation, the application of terahertz technology in various fields has been paid more and more attention. Owing to the unique characteristic advantages, terahertz technology has been showing a broad future in the fields of fast, non-damaging detections, as well as many other fields. Terahertz technology combined with other complementary methods can be used to cope with many difficult practical problems which could not be solved before. One of the critical points for further development of practical terahertz detection methods depends on a good and reliable terahertz spectral database. We developed a BS (browser/server) -based terahertz spectral database recently. We designed the main structure and main functions to fulfill practical requirements. The terahertz spectral database now includes more than 240 items, and the spectral information was collected based on three sources: (1) collection and citation from some other abroad terahertz spectral databases; (2) collected from published literatures; and (3) spectral data measured in our laboratory. The present paper introduced the basic structure and fundament functions of the terahertz spectral database developed in our laboratory. One of the key functions of this THz database is calculation of optical parameters. Some optical parameters including absorption coefficient, refractive index, etc. can be calculated based on the input THz time domain spectra. The other main functions and searching methods of the browser/server-based terahertz spectral database have been discussed. The database search system can provide users convenient functions including user registration, inquiry, displaying spectral figures and molecular structures, spectral matching, etc. The THz database system provides an on-line searching function for registered users. Registered users can compare the input THz spectrum with the spectra of database, according to

  5. A Frequency-Based Approach to Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Mian Zhou

    2004-06-01

    Full Text Available Research on network security and intrusion detection strategies presents many challenging issues to both theoreticians and practitioners. Hackers apply an array of intrusion and exploit techniques to cause disruption of normal system operations, but on the defense, firewalls and intrusion detection systems (IDS are typically only effective in defending known intrusion types using their signatures, and are far less than mature when faced with novel attacks. In this paper, we adapt the frequency analysis techniques such as the Discrete Fourier Transform (DFT used in signal processing to the design of intrusion detection algorithms. We demonstrate the effectiveness of the frequency-based detection strategy by running synthetic network intrusion data in simulated networks using the OPNET software. The simulation results indicate that the proposed intrusion detection strategy is effective in detecting anomalous traffic data that exhibit patterns over time, which include several types of DOS and probe attacks. The significance of this new strategy is that it does not depend on the prior knowledge of attack signatures, thus it has the potential to be a useful supplement to existing signature-based IDS and firewalls.

  6. Experimental demonstration of trapping waves with terahertz metamaterial absorbers on flexible polyimide films

    Science.gov (United States)

    Wang, Wei; Liu, Jinsong; Wang, Kejia

    2016-02-01

    We present the design, numerical simulations and experimental measurements of an asymmetric cross terahertz metamaterial absorber (MPA) on ultra-flexible polyimide film. The perfect metamaterial absorber composed of two structured metallic layers separated with a polyimide film with a total thickness of functional layers much smaller than the operational wavelength. Two distinct absorption peaks are found at resonance frequencies of 0.439THz and 0.759 THz with resonance amplitude of near unity, which are in good agreement with the simulation results. The sample is also measured by a THz-TDS imaging system to illustrate the absorption characterization. The scanning images show that the sample could act as a perfect absorber at specific resonance frequencies while a perfect reflector at off resonance frequencies. To illustrate the physical mechanism behind these spectral responses, the distribution of the power loss and surface current are also presented. The result shows that the incident wave is trapped and absorbed by the polyimide dielectric layer at different vicinities of the proposed asymmetric cross MPA for the two absorption peaks. Furthermore, the index sensing performance of the structure is also investigated, and the calculated sensitivity is 90GHz/RIU for f1 mode and 154.7GHz/RIU for f2 mode, indicating that the higher frequency resonance absorption peak has better potential applications in sensing and detection. The ultra-flexible, low cost, high intensity dual band terahertz absorbers may pave the way for designing various terahertz functional devices, such as ultrasensitive terahertz sensors, spatial light modulators and filters.

  7. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation

    Directory of Open Access Journals (Sweden)

    Rösch Markus

    2018-01-01

    Full Text Available We report on a heterogeneous active region design for terahertz quantum cascade laser based frequency combs. Dynamic range, spectral bandwidth and output power have been significantly improved with respect to previous designs. When individually operating the lasers, narrow and stable intermode beatnote indicate frequency comb operation up to a spectral bandwidth of 1.1 THz, while in a dispersion-dominated regime a bandwidth up to 1.94 THz at a center frequency of 3 THz can be reached. A self-detected dual-comb setup has been used to verify the frequency comb nature of the lasers.

  8. Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected

    International Nuclear Information System (INIS)

    Sushko, Oleksandr; Dubrovka, Rostyslav; Donnan, Robert S.

    2015-01-01

    The initial purpose of the study is to systematically investigate the solvation properties of different proteins in water solution by terahertz (THz) radiation absorption. Transmission measurements of protein water solutions have been performed using a vector network analyser-driven quasi-optical bench covering the WR-3 waveguide band (0.220–0.325 THz). The following proteins, ranging from low to high molecular weight, were chosen for this study: lysozyme, myoglobin, and bovine serum albumin (BSA). Absorption properties of solutions were studied at different concentrations of proteins ranging from 2 to 100 mg/ml. The concentration-dependent absorption of protein molecules was determined by treating the solution as a two-component model first; then, based on protein absorptivity, the extent of the hydration shell is estimated. Protein molecules are shown to possess a concentration-dependent absorptivity in water solutions. Absorption curves of all three proteins sharply peak towards a dilution-limit that is attributed to the enhanced flexibility of protein and amino acid side chains. An alternative approach to the determination of hydration shell thickness is thereby suggested, based on protein absorptivity. The proposed approach is independent of the absorption of the hydration shell. The derived estimate of hydration shell thickness for each protein supports previous findings that protein-water interaction dynamics extends beyond 2-3 water solvation-layers as predicted by molecular dynamics simulations and other techniques such as NMR, X-ray scattering, and neutron scattering. According to our estimations, the radius of the dynamic hydration shell is 16, 19, and 25 Å, respectively, for lysozyme, myoglobin, and BSA proteins and correlates with the dipole moment of the protein. It is also seen that THz radiation can serve as an initial estimate of the protein hydrophobicity

  9. Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected

    Energy Technology Data Exchange (ETDEWEB)

    Sushko, Oleksandr; Dubrovka, Rostyslav; Donnan, Robert S., E-mail: r.donnan@qmul.ac.uk [School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2015-02-07

    The initial purpose of the study is to systematically investigate the solvation properties of different proteins in water solution by terahertz (THz) radiation absorption. Transmission measurements of protein water solutions have been performed using a vector network analyser-driven quasi-optical bench covering the WR-3 waveguide band (0.220–0.325 THz). The following proteins, ranging from low to high molecular weight, were chosen for this study: lysozyme, myoglobin, and bovine serum albumin (BSA). Absorption properties of solutions were studied at different concentrations of proteins ranging from 2 to 100 mg/ml. The concentration-dependent absorption of protein molecules was determined by treating the solution as a two-component model first; then, based on protein absorptivity, the extent of the hydration shell is estimated. Protein molecules are shown to possess a concentration-dependent absorptivity in water solutions. Absorption curves of all three proteins sharply peak towards a dilution-limit that is attributed to the enhanced flexibility of protein and amino acid side chains. An alternative approach to the determination of hydration shell thickness is thereby suggested, based on protein absorptivity. The proposed approach is independent of the absorption of the hydration shell. The derived estimate of hydration shell thickness for each protein supports previous findings that protein-water interaction dynamics extends beyond 2-3 water solvation-layers as predicted by molecular dynamics simulations and other techniques such as NMR, X-ray scattering, and neutron scattering. According to our estimations, the radius of the dynamic hydration shell is 16, 19, and 25 Å, respectively, for lysozyme, myoglobin, and BSA proteins and correlates with the dipole moment of the protein. It is also seen that THz radiation can serve as an initial estimate of the protein hydrophobicity.

  10. Synthetic aperture in terahertz in-line digital holography for resolution enhancement.

    Science.gov (United States)

    Huang, Haochong; Rong, Lu; Wang, Dayong; Li, Weihua; Deng, Qinghua; Li, Bin; Wang, Yunxin; Zhan, Zhiqiang; Wang, Xuemin; Wu, Weidong

    2016-01-20

    Terahertz digital holography is a combination of terahertz technology and digital holography. In digital holography, the imaging resolution is the key parameter in determining the detailed quality of a reconstructed wavefront. In this paper, the synthetic aperture method is used in terahertz digital holography and the in-line arrangement is built to perform the detection. The resolved capability of previous terahertz digital holographic systems restricts this technique to meet the requirement of practical detection. In contrast, the experimental resolved power of the present method can reach 125 μm, which is the best resolution of terahertz digital holography to date. Furthermore, the basic detection of a biological specimen is conducted to show the practical application. In all, the results of the proposed method demonstrate the enhancement of experimental imaging resolution and that the amplitude and phase distributions of the fine structure of samples can be reconstructed by using terahertz digital holography.

  11. Terahertz plasmonic Bessel beamformer

    International Nuclear Information System (INIS)

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-01

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources

  12. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  13. Target detection using a pulsed linear frequency modulated noise waveform

    Science.gov (United States)

    Govoni, Mark A.; Li, Hongbin

    2009-05-01

    This work investigates the plausibility of target detection using a pulsed linear frequency modulated (LFM) noise waveform conglomerate. The results were generated from simulation and demonstrated that the proposed transmit waveform structure possesses the ability to successfully mask any "chirp-like" characteristic making recognition and/or corruption by unintended 2nd-party passive receivers virtually impossible. Due to the fact that the pulsed LFM noise transmit signal was digitally stored as a reference, we were able to employ classical correlation mixing techniques that enabled the target detection approach to successfully resolve targets at range in the presence of interference. In addition, the process of using various binary random signal modulation schemes for the purpose of masking conventional pulsed radar waveform is also investigated. This work describes research involving target detection using a pulsed linear frequency modulated (LFM) waveform modulated by various discrete random signals. The results include a measure of correlation assessing the effectiveness of the various random signal modulators, Monte Carlo simulations identifying the loss introduced by the random signal modulators during the transmit process, matched filter receiver analysis analytically comparing the probability of detection performance when the random signal modulators are considered, and ambiguity functions to assess the uncertainty of the transmit waveform as a function of Doppler and time.

  14. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  15. Metrology for terahertz time-domain spectrometers

    Science.gov (United States)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  16. Terahertz spectral unmixing based method for identifying gastric cancer

    Science.gov (United States)

    Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin

    2018-02-01

    At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.

  17. Nanoscale Terahertz Emission Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Kim, Hyewon; Colvin, Vicki L.

    By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate....

  18. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots

    KAUST Repository

    Toma, Andrea

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

  19. Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots.

    Science.gov (United States)

    Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo; Razzari, Luca

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

  20. Terahertz Spectroscopy and Brewster Angle Reflection Imaging of Acoustic Tiles

    Directory of Open Access Journals (Sweden)

    Patrick Kilcullen

    2017-01-01

    Full Text Available A Brewster angle reflection imaging apparatus is demonstrated which is capable of detecting hidden water-filled voids in a rubber tile sample. This imaging application simulates a real-world hull inspection problem for Royal Canadian Navy Victoria-class submarines. The tile samples represent a challenging imaging application due to their large refractive index and absorption coefficient. With a rubber transmission window at approximately 80 GHz, terahertz (THz sensing methods have shown promise for probing these structures in the laboratory. Operating at Brewster’s angle allows for the typically strong front surface reflection to be minimized while also conveniently making the method insensitive to air-filled voids. Using a broadband THz time-domain waveform imaging system (THz-TDS, we demonstrate satisfactory imaging and detection of water-filled voids without complicated signal processing. Optical properties of the tile samples at low THz frequencies are also reported.

  1. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  2. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.

    Science.gov (United States)

    Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P

    2012-01-01

    Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.

  3. Frequency of urogenital mycoplasma detection in women of Dnipropetrovsk

    Directory of Open Access Journals (Sweden)

    K. V. Bubalo

    2014-04-01

    Full Text Available The frequency of urogenital mycoplasmas detection in women of different ages was studied in culture with the help of DUO test-system in order to determine their etiological significance in the development of inflammatory processes of women urogenital tract. We identified the researched cultures Mycoplasma hominis, Ureaplasma urealyticum in the diagnostic titer >104 TEM/ml indicating severe contamination by microorganisms, and in the titer 104 TEM/ml, 104 TEM/ml was observed in 55 women (46% and 20 women (17%, respectively, and the titer of <103 CFU/ml U. urealyticum was observed in 20 women (17%, and M. hominis in 18 women (15%. Analysis of genital mycoplasmas distribution among women of different ages has shown that there was the certain correlation between the patient age and frequency of genital mycoplasmas detection: the highest detection rate was observed in women age of 24–29. The dominant pathogen of urogenital tract inflammatory processes in women in 24–29 age group is U. urealyticum. The comparison of DUO test-system and PCR data has shown that DUO test-system in culture allowed more sensitive quantitave characterization of mycoplasmas, however, for the more effective laboratory diagnostics it was necessary to use complex methods to increase the probability of pathogen detection. Incidence of mycoplasmas in women with the presence of inflammation was higher than in women having the inflammation in the genital tract. In this case, potential symptom-free carriers exist for the development of inflammation of urogenital tract of women. Scientists have proved that mycoplasma could cause vulvovaginitis, urethritis, paraurethritis, bartholinitis, adnexitis, salpingitis, endometritis, and ovaritis.

  4. Evaluation of human hairs with terahertz wave

    Science.gov (United States)

    Serita, Kazunori; Murakami, Hironaru; Kawayama, Iwao; Takahashi, Yoshinori; Yoshimura, Masashi; Mori, Yusuke; Tonouchi, Masayoshi

    2014-03-01

    Single human hairs using a scanning laser terahertz (THz) imaging system are evaluated. The system features near-field THz emission and far-field THz detection. A sample is set in the vicinity of a two-dimensional THz emitter, and an excitation laser beam is scanned over the emitter via a galvanometer. By detecting the transmitted THz wave pulses that are locally generated at the irradiation spots of the excitation laser, we can obtain the THz transmission image and the spectrum of the sample with imaging time of 47 s for 512×512 pixels and maximum resolution of ˜27 μm. Using the system, we succeeded in observing the specific features of single human hairs in both the THz transmittance spectra and transmission images; it was found that the THz transmittance spectrum of gray hair shows a tendency of increase while that of black hair shows a decrease with increasing frequency above 1.2 THz. We could also observe the change of the moisture retention in the hair, and it is found that cuticles play one of the important roles in keeping moisture inside the hair. Those obtained data indicate that our system can be useful for evaluating single human hairs and those kinds of microscale samples.

  5. Terahertz imaging of subjects with concealed weapons

    Science.gov (United States)

    Dickinson, Jason C.; Goyette, Thomas M.; Gatesman, Andrew J.; Joseph, Cecil S.; Root, Zachary G.; Giles, Robert H.; Waldman, Jerry; Nixon, William E.

    2006-05-01

    In response to the growing interest in developing terahertz imaging systems for concealed weapons detection, the Submillimeter-Wave Technology Laboratory (STL) at the University of Massachusetts Lowell has produced full-body terahertz imagery using coherent active radar measurement techniques. The proof-of-principle results were readily obtained utilizing the compact radar range resources at STL. Two contrasting techniques were used to collect the imagery. Both methods made use of in-house transceivers, consisting of two ultra-stable far-infrared lasers, terahertz heterodyne detection systems, and terahertz anechoic chambers. The first technique involved full beam subject illumination with precision azimuth and elevation control to produce high resolution images via two axis Fourier transforms. Imagery collected in this manner is presented at 1.56THz and 350GHz. The second method utilized a focused spot, moved across the target subject in a high speed two dimensional raster pattern created by a large two-axis positioning mirror. The existing 1.56THz compact radar range was modified to project a focused illumination spot on the target subject several meters away, and receive the back-reflected intensity. The process was repeated across two dimensions, and the resultant image was assembled and displayed utilizing minimal on-the-fly processing. Imagery at 1.56THz of human subjects with concealed weapons are presented and discussed for this scan type.

  6. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  7. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity.

    Science.gov (United States)

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; Jarrahi, Mona

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-the-art photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means of a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1-4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on short-carrier-lifetime substrates.

  8. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    Science.gov (United States)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  9. q-plate for the Generation of Terahertz Cylindrical Vector Beams Fabricated by 3D Printing

    Science.gov (United States)

    Hernandez-Serrano, A. I.; Castro-Camus, E.; Lopez-Mago, D.

    2017-08-01

    We present the design, fabrication, and characterization of a q-plate with continuous birefringence variation at terahertz frequencies. This q-plate was fabricated by three-dimensional printing and is a simple solution for the generation of cylindrical vector beams. This device can find a number of applications in future terahertz technologies such as telecommunications.

  10. PageRank for low frequency earthquake detection

    Science.gov (United States)

    Aguiar, A. C.; Beroza, G. C.

    2013-12-01

    We have analyzed Hi-Net seismic waveform data during the April 2006 tremor episode in the Nankai Trough in SW Japan using the autocorrelation approach of Brown et al. (2008), which detects low frequency earthquakes (LFEs) based on pair-wise waveform matching. We have generalized this to exploit the fact that waveforms may repeat multiple times, on more than just a pair-wise basis. We are working towards developing a sound statistical basis for event detection, but that is complicated by two factors. First, the statistical behavior of the autocorrelations varies between stations. Analyzing one station at a time assures that the detection threshold will only depend on the station being analyzed. Second, the positive detections do not satisfy "closure." That is, if window A correlates with window B, and window B correlates with window C, then window A and window C do not necessarily correlate with one another. We want to evaluate whether or not a linked set of windows are correlated due to chance. To do this, we map our problem on to one that has previously been solved for web search, and apply Google's PageRank algorithm. PageRank is the probability of a 'random surfer' to visit a particular web page; it assigns a ranking for a webpage based on the amount of links associated with that page. For windows of seismic data instead of webpages, the windows with high probabilities suggest likely LFE signals. Once identified, we stack the matched windows to improve the snr and use these stacks as template signals to find other LFEs within continuous data. We compare the results among stations and declare a detection if they are found in a statistically significant number of stations, based on multinomial statistics. We compare our detections using the single-station method to detections found by Shelly et al. (2007) for the April 2006 tremor sequence in Shikoku, Japan. We find strong similarity between the results, as well as many new detections that were not found using

  11. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  12. Nano metamaterials for ultrasensitive Terahertz biosensing

    OpenAIRE

    Lee, Dong-Kyu; Kang, Ji-Hun; Kwon, Junghoon; Lee, Jun-Seok; Lee, Seok; Woo, Deok Ha; Kim, Jae Hun; Song, Chang-Seon; Park, Q-Han; Seo, Minah

    2017-01-01

    As a candidate for a rapid detection of biomaterials, terahertz (THz) spectroscopy system can be considered with some advantage in non-destructive, label-free, and non-contact manner. Because protein-ligand binding energy is in the THz range, especially, most important conformational information in molecular interactions can be captured by THz electromagnetic wave. Based on the THz time-domain spectroscopy system, THz nano-metamaterial sensing chips were prepared for great enhancing of detect...

  13. Direct detector for terahertz radiation

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Shaner, Eric A [Albuquerque, NM; Allen, S James [Santa Barbara, CA

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  14. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  15. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  16. Terahertz spectroscopic investigation of Chinese herbal medicine

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiaoli; Li Jiusheng, E-mail: forever-li@126.com [Centre for THz Research, China Jiliang University, Hangzhou 310018 (China)

    2011-02-01

    The absorption spectra of panax notoginseng and glycyrrhiza in the frequency range of 0.2{approx}1.6THz has been measured with terahertz time-domin spectroscopy at room temperature. Simultaneously, the corresponding theoretical spectra were given by using density functional theory methods. It was found that the absorption peaks of the two molecules obtained by theoretical were in good agreement with the experimental results.

  17. Terahertz spectroscopic investigation of Chinese herbal medicine

    Science.gov (United States)

    Xiao-li, Zhao; Jiu-sheng, Li

    2011-02-01

    The absorption spectra of panax notoginseng and glycyrrhiza in the frequency range of 0.2~1.6THz has been measured with terahertz time-domin spectroscopy at room temperature. Simultaneously, the corresponding theoretical spectra were given by using density functional theory methods. It was found that the absorption peaks of the two molecules obtained by theoretical were in good agreement with the experimental results.

  18. First-principles study of a MXene terahertz detector.

    Science.gov (United States)

    Jhon, Y I; Seo, M; Jhon, Y M

    2017-12-21

    2D transition metal carbides, nitrides, and carbonitrides called MXenes have attracted increasing attention due to their outstanding properties in many fields. By performing systematic density functional theory calculations, here we show that MXenes can serve as excellent terahertz detecting materials. Giant optical absorption and extinction coefficients are observed in the terahertz range in the most popular MXene, namely, Ti 3 C 2 , which is regardless of the stacking degree. Various other optical properties have been investigated as well in the terahertz range for in-depth understanding of its optical response. We find that the thermoelectric figure of merit (ZT) of stacked Ti 3 C 2 flakes is comparable to that of carbon nanotube films. Based on excellent terahertz absorption and decent thermoelectric efficiency in MXenes, we finally suggest the promise of MXenes in terahertz detection applications, which includes terahertz bolometers and photothermoelectric detectors. Possible ZT improvements are discussed in large-scale MXene flake films and/or MXene-polymer composite films.

  19. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    Science.gov (United States)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  20. Graphene plasmonics for tunable terahertz metamaterials.

    Science.gov (United States)

    Ju, Long; Geng, Baisong; Horng, Jason; Girit, Caglar; Martin, Michael; Hao, Zhao; Bechtel, Hans A; Liang, Xiaogan; Zettl, Alex; Shen, Y Ron; Wang, Feng

    2011-09-04

    Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz frequency range. Here we explore plasmon excitations in engineered graphene micro-ribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons. The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13, 14). The results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials.

  1. A Complete Spectroscopic Characterization of SO and its Isotopologues up to the Terahertz Domain

    Science.gov (United States)

    Martin-Drumel, M. A.; Hindle, F.; Mouret, G.; Cuisset, A.; Cernicharo, J.

    2015-02-01

    In order to obtain accurate terahertz center frequencies for SO and its isotopologues, we have studied the absorption spectrum of SO, 34SO, and 33SO up to 2.5 THz using continuous-wave terahertz photomixing based on a frequency comb providing an accuracy down to 10 kHz. Sulfur monoxide was produced in a radio frequency discharge of air in a cell containing pure sulfur. Together with the strong absorption signal of the main isotopologue, transitions of 34SO (34S: 4.21%) and 33SO (33S: 0.75%) were observed in natural abundance. The newly observed transitions constitute an extension of the observed rotational quantum numbers of the molecule toward higher N values, allowing an improvement of the molecular parameters for the three species. An isotopically invariant fit has been performed based on pure rotational and ro-vibrational transitions of all SO isotopologues, enabling their accurate line position prediction at higher frequencies. Thanks to this new set of parameters, it is now possible to predict with very high accuracy the frequencies of the ro-vibrational lines. This should enable the research of SO in the mid-IR using ground-based IR telescopes, space-based telescope archives (Infrared Space Observatory, Spitzer), and future space missions such as the James Webb Space Telescope. This set of parameters is particularly well adapted for the detection of SO lines in O-rich evolved stars or in molecular clouds in absorption against bright IR sources.

  2. A COMPLETE SPECTROSCOPIC CHARACTERIZATION OF SO AND ITS ISOTOPOLOGUES UP TO THE TERAHERTZ DOMAIN

    International Nuclear Information System (INIS)

    Martin-Drumel, M. A.; Hindle, F.; Mouret, G.; Cuisset, A.; Cernicharo, J.

    2015-01-01

    In order to obtain accurate terahertz center frequencies for SO and its isotopologues, we have studied the absorption spectrum of SO, 34 SO, and 33 SO up to 2.5 THz using continuous-wave terahertz photomixing based on a frequency comb providing an accuracy down to 10 kHz. Sulfur monoxide was produced in a radio frequency discharge of air in a cell containing pure sulfur. Together with the strong absorption signal of the main isotopologue, transitions of 34 SO ( 34 S: 4.21%) and 33 SO ( 33 S: 0.75%) were observed in natural abundance. The newly observed transitions constitute an extension of the observed rotational quantum numbers of the molecule toward higher N values, allowing an improvement of the molecular parameters for the three species. An isotopically invariant fit has been performed based on pure rotational and ro-vibrational transitions of all SO isotopologues, enabling their accurate line position prediction at higher frequencies. Thanks to this new set of parameters, it is now possible to predict with very high accuracy the frequencies of the ro-vibrational lines. This should enable the research of SO in the mid-IR using ground-based IR telescopes, space-based telescope archives (Infrared Space Observatory, Spitzer), and future space missions such as the James Webb Space Telescope. This set of parameters is particularly well adapted for the detection of SO lines in O-rich evolved stars or in molecular clouds in absorption against bright IR sources

  3. Terahertz pulsed imaging study of dental caries

    Science.gov (United States)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  4. Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

    Science.gov (United States)

    Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi

    2016-11-01

    A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.

  5. Tunable terahertz radiation source

    Science.gov (United States)

    Boulaevskii, Lev; Feldmann, David M; Jia, Quanxi; Koshelev, Alexei; Moody, Nathan A

    2014-01-21

    Terahertz radiation source and method of producing terahertz radiation, said source comprising a junction stack, said junction stack comprising a crystalline material comprising a plurality of self-synchronized intrinsic Josephson junctions; an electrically conductive material in contact with two opposing sides of said crystalline material; and a substrate layer disposed upon at least a portion of both the crystalline material and the electrically-conductive material, wherein the crystalline material has a c-axis which is parallel to the substrate layer, and wherein the source emits at least 1 mW of power.

  6. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  7. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  8. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    KAUST Repository

    Tian, Zhen

    2013-09-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  9. Experimental imaging research on continuous-wave terahertz in-line digital holography

    Science.gov (United States)

    Huang, Haochong; Wang, Dayong; Rong, Lu; Wang, Yunxin

    2014-09-01

    The terahertz (THz) imaging is an advanced technique on the basis of the unique characteristics of terahertz radiation. Due to its noncontact, non-invasive and high-resolution capabilities, it has already shown great application prospects in biomedical observation, sample measurement, and quality control. The continuous-wave terahertz in-line digital holography is a combination of terahertz technology and in-line digital holography of which the source is a continuous-wave terahertz laser. Over the past decade, many researchers used different terahertz sources and detectors to undertake experiments. In this paper, the pre-process of the hologram is accomplished after the holograms' recording process because of the negative pixels in the pyroelectric detector and the air vibration caused by the chopper inside the camera. To improve the quality of images, the phase retrieval algorithm is applied to eliminate the twin images. In the experiment, the pin which terahertz wave can't penetrate and the TPX slice carved letters "THz" are chosen for the samples. The amplitude and phase images of samples are obtained and the twin image and noise in the reconstructed images are suppressed. The results validate the feasibility of the terahertz in-line digital holographic imaging technique. This work also shows the terahertz in-line digital holography technique's prospects in materials science and biological samples' detection.

  10. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  11. Terahertz spectroscopy of plasmonic fractals.

    Science.gov (United States)

    Agrawal, A; Matsui, T; Zhu, W; Nahata, A; Vardeny, Z V

    2009-03-20

    We use terahertz time-domain spectroscopy to study the transmission properties of metallic films perforated with aperture arrays having deterministic or stochastic fractal morphologies ("plasmonic fractals"), and compare them with random aperture arrays. All of the measured plasmonic fractals show transmission resonances and antiresonances at frequencies that correspond to prominent features in their structure factors in k space. However, in sharp contrast to periodic aperture arrays, the resonant transmission enhancement decreases with increasing array size. This property is explained using a density-density correlation function, and is utilized for determining the underlying fractal dimensionality, D(fractals relative to the transmission of the corresponding random aperture arrays is obtained, and is shown to be universal.

  12. Ultra-fast YBa{sub 2}Cu{sub 3}O{sub 7-x} direct detectors for the THz frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, Petra

    2013-07-01

    Infrared radiation up to terahertz wavelengths is extensively used in many different research areas such as spectroscopy, wireless communication and cosmology. In recent years, the development of electron storage rings emitting ultra-short, brilliant pulses in the terahertz frequency range made significant progress. For the analysis and optimization of the pulsed terahertz radiation generated by electron storage rings or other pulsed sources, ultra-fast detectors are required which are able to resolve picosecond dynamic processes directly in the time domain. In this thesis, a new direct terahertz detector technology based on the high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} has been developed which opens new routes in the analysis of ultra-fast, picosecond time-domain processes over a broad terahertz frequency range (0.07 - 2 THz) with a wide dynamic range of more than 30 dB. This was successfully demonstrated by the recording of a 17 ps wide coherent synchrotron radiation terahertz pulse at ANKA, the electron storage ring of the Karlsruhe Institute of Technology. Furthermore, for the first time clear evidences for a vortex-assisted detection mechanism in YBa{sub 2}Cu{sub 3}O{sub 7-x} thin-film detectors for pulsed photon excitations below the superconducting energy gap were found which are presented and are discussed in this work.

  13. Broadband terahertz modulator based on graphene metamaterials

    Science.gov (United States)

    Huang, Zehua; Han, Qi; Ji, Chunhui; Wang, Jun; Jiang, Yadong

    2018-03-01

    Tunable complementary split ring resonators (CSRRs) based on monolayer graphene are presented in terahertz regime. By applying different gate voltage, the Fermi level and optical conductivity of monolayer graphene pattern can be changed. Here, we employ a numerical simulation to study the interaction of light with graphene CSRRs. The results indicate that the extinction in transmission becomes stronger, and the resonance frequency presents blue shift with higher Fermi level of the graphene pattern. Three pronounced resonant peaks appear which can be modulated dynamically in the range of 1-2THz and 3-7THz, and realizing dynamic broadband terahertz modulation, the modulation depth exceeds 85% at all three resonant peaks, the highest modulation depth reaches 98.8% at 7.47THz.

  14. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...... by a classical Drude–Smith model, suitable for disorder-driven metal–insulator transitions. In this work, we explore the time evolution of the frequency dependent complex conductivity after optical injection of carriers on a picosecond time scale. Furthermore, we show the lifetime of photoconductivity...

  15. Wideband Radio Frequency Interference Detection for Microwave Radiometer Subsystem

    Data.gov (United States)

    National Aeronautics and Space Administration — Anthropogenic Radio-Frequency Interference (RFI) is threatening the quality and utility of multi-frequency passive microwave radiometry. The GPM Microwave Imager...

  16. Extending applicability of terahertz spectroscopy for biosensing

    Science.gov (United States)

    Parthasarathy, Ramakrishnan

    Terahertz (THz) vibrational resonance spectroscopy has recently emerged as a promising technique for fingerprinting biological molecules. Absorption spectra in this frequency range (0.1-10 THz) reflect molecular internal vibrations involving the weakest hydrogen bonds and/or non-bonded interactions, which are species specific. Of prime importance is improving detection sensitivity of molecules with low absorption characteristics in the THz gap. Also of importance is the characterization of biological molecules in the THz gap (10-25 cm-1) by physical parameters (refractive index and absorption coefficient) rather than sample dependent parameters (transmission, reflection) and extending spectroscopy to the low THz range where remote sensing is most viable. To address the sensitivity issue, it is shown that periodic arrays of rectangular slots with subwavelength width provide for local electromagnetic field enhancements due to edge effects in the low frequency range of interest, 10-25 cm-1 (300-750 GHz). Periodic structures of Au, doped Si and InSb were studied. InSb is confirmed to offer the highest results with the local power enhancements on the order of 1100 at frequency 14 cm -1. InSb and Si have large skin depths in the frequency range of interest and so the analysis of their structures was done through the Fourier expansion method of field diffracted from gratings. Au however has small skin depths at these frequencies compared to the thickness. Surface impedance boundary conditions were employed to model the Au structure, for which the Fourier expansion method was unsuitable owing to the huge magnitude of Au permittivity. The applications possibly include development of novel bio-sensors, with the strongly enhanced local electromagnetic fields leading to increased detection sensitivity, and monitoring biophysical processes such as DNA denaturation. Transmission and reflection data from parallel, independent experiments are utilized in the Interference

  17. Method of detecting system function by measuring frequency response

    Science.gov (United States)

    Morrison, John L [Butte, MT; Morrison, William H [Manchester, CT; Christophersen, Jon P [Idaho Falls, ID

    2012-04-03

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  18. Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.

    Science.gov (United States)

    Yang, S-H; Watts, R; Li, X; Wang, N; Cojocaru, V; O'Gorman, J; Barry, L P; Jarrahi, M

    2015-11-30

    We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.

  19. Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2).

    Science.gov (United States)

    Wang, Shengxiang; Kang, Lei; Werner, Douglas H

    2018-01-09

    Compared with natural materials, chiral metamaterials have been demonstrated with orders of magnitude stronger chiroptical response, which provides the basis for applications such as ultracompact polarization components and plasmonic-enhanced biosensing. Terahertz chiral metamaterials that allow dynamic polarization control of terahertz waves are of great practical interest, but remain extremely rare. Here, we show that hybrid metamaterials integrated with vanadium dioxide (VO 2 ) exhibiting phase transition can enable dynamically tunable chiroptical responses at terahertz frequencies. In particular, a circular dichroism of ~40° and a maximum polarization rotation of ~200°/λ are observed around 0.7 THz. Furthermore, our study also reveals that the chiroptical response from the proposed metamaterials is strongly dependent on the phase transition of VO 2 , leading to actively controllable polarization states of the transmitted terahertz waves. This work paves the way for the development of terahertz metadevices capable of enabling active polarization manipulation.

  20. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network.

    Science.gov (United States)

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki

    2017-04-06

    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  1. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2017-01-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz...... scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 10(7) times larger than steady-state currents in conventional STM are used to image...... individual atoms on a silicon surface with 0.3nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 x 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast...

  2. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.

    Science.gov (United States)

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-11-07

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300  μ W. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.

  3. Graphene based salisbury screen for terahertz absorber

    Science.gov (United States)

    Min Woo, Jeong; Kim, Min-Sik; Woong Kim, Hyun; Jang, Jae-Hyung

    2014-02-01

    A graphene-based, multiband absorber operating in terahertz (THz) frequency range was demonstrated. Graphene film was transferred onto the top of a flexible polymer substrate backed with a gold reflector. The graphene acts as a resistive film that partially attenuates and reflects THz waves. The destructive interference between THz waves reflected from graphene and backside reflector gives rise to perfect absorbance at multiple frequencies. To enhance the absorbance on/off ratio (AR), the conductivity of graphene was varied using a chemical doping method. The resulting p-doped, graphene-based THz absorber exhibited absorbance at maxima and AR higher than 0.95 and 25 dB, respectively.

  4. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  5. Continuous terahertz-wave generation using a monolithically integrated horn antenna

    Science.gov (United States)

    Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2008-09-01

    A transverse electromagnetic horn antenna is monolithically integrated with a standard ultrafast interdigitated electrode photodetector on low-temperature-grown GaAs. Continuous-wave terahertz radiation is generated at frequencies up to 2 THz with a maximum power of approximately 1 μW at 780 GHz. Experimental variations in the terahertz power as function of the frequency are explained by means of electromagnetic simulations of the antenna and the photomixer vicinity.

  6. Coherent terahertz emission from Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} intrinsic Josephson junction stacks

    Energy Technology Data Exchange (ETDEWEB)

    Rudau, Fabian; Gross, Boris; Wieland, Raphael; Judd, Thomas; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universitaet Tuebingen, Tuebingen (Germany); Kinev, Nickolay; Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, Moscow (Russian Federation); Tsujimoto, Manabu [Kyoto University, Kyoto (Japan); Ji, Min; Huang, Ya; Zhou, Xianjing; An, Deyue; Wang, Huabing [National Institute for Materials Science, Tsukuba (Japan); Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Wu, Peiheng [Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Hatano, Takeshi [National Institute for Materials Science, Tsukuba (Japan)

    2015-07-01

    Stacks of intrinsic Josephson junctions, made of the high temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, are promising candidates to be used as generators of electromagnetic waves in the terahertz regime, in principle allowing frequencies up to ∝10 THz. Ranging from 0.4 to 1 THz, coherent emission was detected from large, rectangular stacks, producing several tens of microwatt in power. Despite of several years of research, the mechanism of synchronizing all the junctions in the stack is still not fully understood. We investigated the heat distribution and electromagnetic standing waves in such stacks, as well as the generation of terahertz radiation, using a combination of electric transport measurements, direct radiation detection and low temperature scanning laser microscopy. Recent experimental results from our collaboration will be presented and compared to numerical simulations.

  7. Terahertz NDE of Stressed Composite Overwrapped Pressure Vessels - Initial Testing

    Science.gov (United States)

    Madaras, Eric I.; Seebo, Jeffrey P.; Anatasi, Robert F.

    2009-01-01

    Terahertz radiation nondestructive evaluation was applied to a set of Kevlar composite overwrapped pressure vessel bottles that had undergone a series of thermal and pressure tests to simulate stress rupture effects. The bottles in these nondestructive evaluation tests were bottles that had not ruptured but had survived various times at the elevated load and temperature levels. Some of the bottles showed evidence of minor composite failures. The terahertz radiation did detect visible surface flaws, but did not detect any internal chemical or material degradation of the thin overwraps.

  8. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We investigate the self-phase modulation (SPM) of a single-cycle terahertz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the terahertz pulse, leading to an ultrafast reduction of the plasma frequency...

  9. Correction of stress-depended changes of glucoproteid platelet receptors activity by electromagnetic radiation of terahertz range

    Directory of Open Access Journals (Sweden)

    V.F. Kirichuk

    2010-09-01

    Full Text Available The research goal is correction of stress-depended changes of glucoproteid (Gp platelet receptors activity by electromagnetic radiation of terahertz range. Influence of electromagnetic waves of terahertz range at the frequency of molecular spectrum of radiation and absorption of nitrogen oxide on lectin-induced platelet aggregation of white rats in the stressed condition was investigated

  10. All-integrated terahertz modulators

    Science.gov (United States)

    Degl'Innocenti, Riccardo; Kindness, Stephen J.; Beere, Harvey E.; Ritchie, David A.

    2018-01-01

    Terahertz (0.1-10 THz corresponding to vacuum wavelengths between 30 μm and 3 mm) research has experienced impressive progress in the last few decades. The importance of this frequency range stems from unique applications in several fields, including spectroscopy, communications, and imaging. THz emitters have experienced great development recently with the advent of the quantum cascade laser, the improvement in the frequency range covered by electronic-based sources, and the increased performance and versatility of time domain spectroscopic systems based on full-spectrum lasers. However, the lack of suitable active optoelectronic devices has hindered the ability of THz technologies to fulfill their potential. The high demand for fast, efficient integrated optical components, such as amplitude, frequency, and polarization modulators, is driving one of the most challenging research areas in photonics. This is partly due to the inherent difficulties in using conventional integrated modulation techniques. This article aims to provide an overview of the different approaches and techniques recently employed in order to overcome this bottleneck.

  11. Terahertz Technology for ESPRIT - A Far-Infrared Space Interferometer

    NARCIS (Netherlands)

    Wild, W.; de Graauw, Th.; Baryshev, A.; Baselmans, J.; Gao, J. R.; Helmich, F.; Jackson, B. D.; Koshelets, V. P.; Roelfsema, P.; Whyborn, N. D.; Yagoubov, P.

    2005-01-01

    In the Terahertz regime the angular (and sometimes spectral) resolution of observing facilities is still very restricted despite the fact that this frequency range has become of prime importance for modern astrophysics. ALMA (Atacama Large Millimeter Array) with its superb sensitivity and angular

  12. Super-terahertz heterodyne spectrometer using a quantum cascade laser

    NARCIS (Netherlands)

    Ren, Y.

    2012-01-01

    High-resolution spectroscopy at super-terahertz frequencies (2-6 THz) can play a vital role in astronomical observation and atmospheric remote sensing. It provides unique and important information on the history of our universe and its evolution, by getting into the insight of the physical and

  13. Wideband Integrated Lens Antennas for Terahertz Deep Space Investigation

    NARCIS (Netherlands)

    Yurduseven, O.

    2016-01-01

    The Terahertz (THz) band is the portion of the spectrum that covers a frequency range from 300 GHz to 3 THz. The potential of this band has been proven for numerous type of applications including medical imaging, non-destructive testing, space observation, spectroscopy and security screening, thanks

  14. Terahertz time-domain transmission and reflection spectroscopy of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Yoon; Choi, Kyu Jin; Park, Byoung Cheol; Ha, Tae Woo; Sim, Kyung Ik; Kim, Jea Hoon [Dept. of Physics, Yonsei University, Seoul (Korea, Republic of); Ha, Dong Gwang; Chang, Yonuk [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2013-03-15

    We have developed a terahertz time-domain spectroscopy (THz-TDS) system for transmission and reflection measurements of metallic thin films. Using our THz-TDS system, we studied the conventional superconductor niobium (Nb) in the normal state in the spectral range from 5 to 50 cm{sup -1}. Both the real and imaginary parts of the conductivity are acquired without Kramers-Kronig analysis. Nb exhibits a nearly frequency independent real conductivity spectrum in the terahertz range, with a very small imaginary part.

  15. Intense terahertz excitation of semiconductors

    CERN Document Server

    Ganichev, S D

    2006-01-01

    This work presents the first comprehensive treatment of high-power terahertz applications to semiconductors and low-dimensional semiconductor structures. Terahertz properties of semiconductors are in the centre of scientific activities because of the need of high-speed electronics.

  16. Superconductor terahertz metamaterial

    OpenAIRE

    Gu, Jianqiang; Singh, Ranjan; Tian, Zhen; Cao, Wei; Xing, Qirong; Han, Jiaguang; Zhang, Weili

    2010-01-01

    We characterize the behaviour of split ring resonators made up of high-transition temperature YBCO superconductor using terahertz time domain spectroscopy. The superconductor metamaterial shows sharp change in the transmission spectrum at the fundamental inductive-capacitive resonance and the dipole resonance as the temperature dips below the transition temperature. Our results reveal that the high performance of such a metamaterial is limited by material imperfections and defects such as cra...

  17. Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Lorenzen, Dennis Lund

    2014-01-01

    We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a composite with greater functional bandwidth than any terahertz (THz) metamaterial to date. Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common THz sources......, such as photoconductive antennas and difference frequency generation. The composite structure shown here expands the usable bandwidth to exceed that of current THz sources. To highlight the applicability of this combination, we demonstrate a series of bandpass filters with only a single pass band, with a central...... frequency (f) that is scalable from 0.86–8.51 THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters is demonstrated in experiment, using both air biased coherent detection and a Fourier transform infrared spectrometer (FTIR), as well as in simulation. We present...

  18. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.

    Science.gov (United States)

    Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan

    2017-06-26

    Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.

  19. Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.

    Science.gov (United States)

    Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe

    2015-12-02

    Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    International Nuclear Information System (INIS)

    Semenova, V A; Kulya, M S; Bespalov, V G

    2016-01-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm. (paper)

  1. An effective way to reduce water absorption to terahertz

    Science.gov (United States)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  2. Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation

    Science.gov (United States)

    Elarabi, A.; Yoshioka, Y.; Tsujimoto, M.; Kakeya, I.

    2017-12-01

    We propose an approach to controlling the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in a single crystalline high-temperature superconductor Bi2Sr2CaCu2O8 . Monolithic control of the surface high-frequency current distributions in the truncated square mesa structure allows us to modulate the polarization of the emitted terahertz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.

  3. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    Science.gov (United States)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  4. Increasing the frequency response of direct-detection phase-sensitive OTDR by using frequency division multiplexing

    Science.gov (United States)

    Yang, Guangyao; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2017-04-01

    The frequency division multiplexing (FDM) technique is firstly introduced into a direct-detection phase-sensitive OTDR to improve the distributed fiber acoustic sensing performance by using a frequency step sweeping laser source and a dual probe pulse scheme. By using FDM technique, a 40 kHz sampling rate to vibration is realized with a 10 km measurement range, which implies the tradeoff between the frequency response and the measurement range is broken. In experiment, a 6 kHz vibration is successfully measured.

  5. Homeland Security, Medical, Pharmaceutical and Non-destructive Testing Applications of Terahertz Radiation

    Science.gov (United States)

    Kemp, Michael

    2005-03-01

    The terahertz region of the electromagnetic spectrum (300GHz-10THz) spans the region between radio and light. Recent advances in terahertz source, detector and systems technology are enabling new applications across a number of fields, based on both terahertz imaging and spectroscopy. This paper reviews our recent work on the development of practical systems and applications in security screening for the detection of explosives and non-metallic weapons; in medical imaging for cancer detection; as well as applications in non-destructive testing and the pharmaceutical industry.

  6. Low frequency synthetic aperture sonar for detecting and classifying buried objects

    NARCIS (Netherlands)

    Hunter, A.J.; Vossen, R. van; Quesson, B.A.J.; Colin, M.E.G.D.; Zampolli, M.; Beckers, A.L.D.

    2012-01-01

    Sidescan high-frequency (HF) sonar (i.e., with frequencies higher than 100 kHz) is ideally suited for providing high-resolution images of the seafloor. However, since sound does not penetrate into the sediment at these frequencies, such systems cannot be used for the detection of buried objects,

  7. Reflection type of terahertz imaging system using a high-T{sub c} superconducting oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T.; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Marković, B.; Mirković, J. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [National Institute for Materials Science, Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-01-13

    A reflection type of imaging system is shown at sub-terahertz frequencies generated from high-T{sub c} superconducting intrinsic Josephson junction mesa structures fabricated by single crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} to demonstrate how the sub-terahertz imaging technique using monochromatic radiation is powerful and unique for the variety of practical applications. Several examples are discussed in detail and are compared to other terahertz imaging systems.

  8. Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf......Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf...

  9. Coherent terahertz emission from Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} intrinsic Josephson junction stacks

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Boris Andre

    2013-02-05

    In recent years, terahertz technology has become a rapidly growing sector, driven by the demands of a vast range of (potential) applications. The terahertz spectral range roughly spans from 300 GHz to 30 THz. In the low terahertz range, there is a lack of good and compact devices, that emit electromagnetic waves. Particularly, coherent, narrow-band and continuous-wave sources are lacking, and researchers are following many different approaches to fill this gap. The thesis at hand contributes to the exploration of one of those sources: Operating intrinsic Josephson junctions as emitters in the terahertz spectral range. Josephson junctions (JJs) work as direct current (dc) voltage to frequency converters, if operated in the resistive state. 1 mV voltage drop generates a frequency of about 484 GHz. Intrinsic Josephson junctions (IJJs) in the high temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} (BSCCO) are adequate candidates for emitting devices; the layered structure of the material intrinsically provides stacks consisting of 1.5 nm thick, nearly perfectly equal JJs. The fabrication of a series of hundreds of JJs in a stack of micrometer thickness is easily feasible, which is essential for high power frequency generation. Further, the energy gap of BSCCO is in principle large enough to allow for frequencies up to more than 10 THz. The key challenge is the synchronization of all IJJs in order to produce coherent radiation. In 2007, a research team from Argonne National Laboratories succeeded in detecting coherent terahertz radiation from more than 500 synchronized IJJs in a mesa structure. The frequencies ranged from 350 to 850 GHz with output powers up to 0.5 μW. They proposed the formation of electromagnetic standing waves in the cavity of the mesa as synchronization mechanism. Coming from the fully resistive state (nonzero voltage across all junctions), the radiation occurred in the bias regime, where groups of junctions switch back to the zero

  10. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  11. Terahertz spectroscopic investigation of human gastric normal and tumor tissues.

    Science.gov (United States)

    Hou, Dibo; Li, Xian; Cai, Jinhui; Ma, Yehao; Kang, Xusheng; Huang, Pingjie; Zhang, Guangxin

    2014-09-21

    Human dehydrated normal and cancerous gastric tissues were measured using transmission time-domain terahertz spectroscopy. Based on the obtained terahertz absorption spectra, the contrasts between the two kinds of tissue were investigated and techniques for automatic identification of cancerous tissue were studied. Distinctive differences were demonstrated in both the shape and amplitude of the absorption spectra between normal and tumor tissue. Additionally, some spectral features in the range of 0.2~0.5 THz and 1~1.5 THz were revealed for all cancerous gastric tissues. To systematically achieve the identification of gastric cancer, principal component analysis combined with t-test was used to extract valuable information indicating the best distinction between the two types. Two clustering approaches, K-means and support vector machine (SVM), were then performed to classify the processed terahertz data into normal and cancerous groups. SVM presented a satisfactory result with less false classification cases. The results of this study implicate the potential of the terahertz technique to detect gastric cancer. The applied data analysis methodology provides a suggestion for automatic discrimination of terahertz spectra in other applications.

  12. Detecting the harmonics of oscillations with time-variable frequencies

    Science.gov (United States)

    Sheppard, L. W.; Stefanovska, A.; McClintock, P. V. E.

    2011-01-01

    A method is introduced for the spectral analysis of complex noisy signals containing several frequency components. It enables components that are independent to be distinguished from the harmonics of nonsinusoidal oscillatory processes of lower frequency. The method is based on mutual information and surrogate testing combined with the wavelet transform, and it is applicable to relatively short time series containing frequencies that are time variable. Where the fundamental frequency and harmonics of a process can be identified, the characteristic shape of the corresponding oscillation can be determined, enabling adaptive filtering to remove other components and nonoscillatory noise from the signal. Thus the total bandwidth of the signal can be correctly partitioned and the power associated with each component then can be quantified more accurately. The method is first demonstrated on numerical examples. It is then used to identify the higher harmonics of oscillations in human skin blood flow, both spontaneous and associated with periodic iontophoresis of a vasodilatory agent. The method should be equally relevant to all situations where signals of comparable complexity are encountered, including applications in astrophysics, engineering, and electrical circuits, as well as in other areas of physiology and biology.

  13. Time-Frequency Learning Machines for Nonstationarity Detection Using Surrogates

    Science.gov (United States)

    Borgnat, Pierre; Flandrin, Patrick; Richard, Cédric; Ferrari, André; Amoud, Hassan; Honeine, Paul

    2012-03-01

    Time-frequency representations provide a powerful tool for nonstationary signal analysis and classification, supporting a wide range of applications [12]. As opposed to conventional Fourier analysis, these techniques reveal the evolution in time of the spectral content of signals. In Ref. [7,38], time-frequency analysis is used to test stationarity of any signal. The proposed method consists of a comparison between global and local time-frequency features. The originality is to make use of a family of stationary surrogate signals for defining the null hypothesis of stationarity and, based upon this information, to derive statistical tests. An open question remains, however, about how to choose relevant time-frequency features. Over the last decade, a number of new pattern recognition methods based on reproducing kernels have been introduced. These learning machines have gained popularity due to their conceptual simplicity and their outstanding performance [30]. Initiated by Vapnik’s support vector machines (SVM) [35], they offer now a wide class of supervised and unsupervised learning algorithms. In Ref. [17-19], the authors have shown how the most effective and innovative learning machines can be tuned to operate in the time-frequency domain. This chapter follows this line of research by taking advantage of learning machines to test and quantify stationarity. Based on one-class SVM, our approach uses the entire time-frequency representation and does not require arbitrary feature extraction. Applied to a set of surrogates, it provides the domain boundary that includes most of these stationarized signals. This allows us to test the stationarity of the signal under investigation. This chapter is organized as follows. In Section 22.2, we introduce the surrogate data method to generate stationarized signals, namely, the null hypothesis of stationarity. The concept of time-frequency learning machines is presented in Section 22.3, and applied to one-class SVM in order

  14. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

    DEFF Research Database (Denmark)

    Chen, T.; Han, Z. H.; Liu, J. J.

    2014-01-01

    We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...... exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can...

  15. Terahertz birefringence of potassium niobate crystals

    Science.gov (United States)

    Antsygin, V. D.; Mamrashev, A. A.; Nikolaev, N. A.

    2018-03-01

    We present terahertz optical properties (refractive indices and absorption coefficients) of potassium niobate crystals measured by time-domain spectroscopy in the range of 0.2-2.0 THz. We observe average refractive indices nx = 5.25, ny = 4.8, nz = 5.9 for corresponding optical axes X, Y, Z with the large birefringence of Δn = nz - ny = 1.1. We report rising absorption coefficient at higher frequencies (α ∼ 50 cm-1 at 1 THz for all three axes) while the dichroism is not pronounced. Somewhat higher absorption compared to the previous results could be attributed to some polydomain structure remaining in the crystal.

  16. Metasurfaces for Terahertz Waves Polarization Control

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Malureanu, Radu; Zalkovskij, Maksim

    in the visible, near infrared or microwave regimes these issues in principle have strong alternatives via a conventional optics or electromagnetic approaches, at terahertz (THz) frequencies metamaterials are often considered as being the unique solution for the encountered problems. Several approaches involving...... that the maximal conversion efficiency with a single metamaterial surface is 50 % in transmission and up to 90% in reflection. However, a double layer transmission converter and a single layer with a metallic mirror can have 100% polarization conversion efficiency. We tested our conclusions numerically reaching...

  17. Terahertz Mapping of Microstructure and Thickness Variations

    Science.gov (United States)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  18. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...... states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse...

  19. Equivalent circuit analysis of terahertz metamaterial filters

    KAUST Repository

    Zhang, Xueqian

    2011-01-01

    An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented. The proposed model, derived based on LMC equivalent circuits, takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance, mutual inductance, and capacitance. The model is in good agreement with the experimental measurements and full-wave simulations. Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus, quick and accurate process of designing THz device from artificial metamaterials is offered. ©2011 Chinese Optics Letters.

  20. Broadband plasmon induced transparency in terahertz metamaterials

    KAUST Repository

    Zhu, Zhihua

    2013-04-25

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. © 2013 IOP Publishing Ltd.

  1. Ultralow temperature terahertz magnetic thermodynamics of perovskite-like SmFeO3 ceramic

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Wang, Dongyang; Chi Zhang, Hao; Han, Jiaguang; Jun Cui, Tie

    2015-01-01

    The terahertz magnetic properties of perovskite-like SmFeO3 ceramic are investigated over a broad temperature range, especially at ultralow temperatures, using terahertz time-domain spectroscopy. It is shown that both resonant frequencies of quasi-ferromagnetic and quasi-antiferromagnetic modes have blue shifts with the decreasing temperature due to the enhancement of effective magnetic field. The temperature-dependent magnetic anisotropy constants are further estimated using the resonant frequencies, under the approximation of omitting the contribution of Sm3+ magnetic moments to the effective field. Specially, the effective anisotropy constants in the ca and cb planes at 3 K are 6.63 × 105 erg/g and 8.48 × 105 erg/g, respectively. This thoroughly reveals the terahertz magnetic thermodynamics of orthoferrites and will be beneficial to the application in terahertz magnetism. PMID:26424488

  2. Ultralow temperature terahertz magnetic thermodynamics of perovskite-like SmFeO3 ceramic.

    Science.gov (United States)

    Fu, Xiaojian; Zeng, Xinxi; Wang, Dongyang; Chi Zhang, Hao; Han, Jiaguang; Jun Cui, Tie

    2015-10-01

    The terahertz magnetic properties of perovskite-like SmFeO3 ceramic are investigated over a broad temperature range, especially at ultralow temperatures, using terahertz time-domain spectroscopy. It is shown that both resonant frequencies of quasi-ferromagnetic and quasi-antiferromagnetic modes have blue shifts with the decreasing temperature due to the enhancement of effective magnetic field. The temperature-dependent magnetic anisotropy constants are further estimated using the resonant frequencies, under the approximation of omitting the contribution of Sm(3+) magnetic moments to the effective field. Specially, the effective anisotropy constants in the ca and cb planes at 3 K are 6.63 × 10(5) erg/g and 8.48 × 10(5) erg/g, respectively. This thoroughly reveals the terahertz magnetic thermodynamics of orthoferrites and will be beneficial to the application in terahertz magnetism.

  3. Automatic seizure detection in SEEG using high frequency activities in wavelet domain.

    Science.gov (United States)

    Ayoubian, L; Lacoma, H; Gotman, J

    2013-03-01

    Existing automatic detection techniques show high sensitivity and moderate specificity, and detect seizures a relatively long time after onset. High frequency (80-500 Hz) activity has recently been shown to be prominent in the intracranial EEG of epileptic patients but has not been used in seizure detection. The purpose of this study is to investigate if these frequencies can contribute to seizure detection. The system was designed using 30 h of intracranial EEG, including 15 seizures in 15 patients. Wavelet decomposition, feature extraction, adaptive thresholding and artifact removal were employed in training data. An EMG removal algorithm was developed based on two features: Lack of correlation between frequency bands and energy-spread in frequency. Results based on the analysis of testing data (36 h of intracranial EEG, including 18 seizures) show a sensitivity of 72%, a false detection of 0.7/h and a median delay of 5.7 s. Missed seizures originated mainly from seizures with subtle or absent high frequencies or from EMG removal procedures. False detections were mainly due to weak EMG or interictal high frequency activities. The system performed sufficiently well to be considered for clinical use, despite the exclusive use of frequencies not usually considered in clinical interpretation. High frequencies have the potential to contribute significantly to the detection of epileptic seizures. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Investigation of Using Radio Frequency Identification (RFID) System for Gear Tooth Crack Detection

    Science.gov (United States)

    2014-06-01

    on a conveyor belt at a certain speed. When compared to the static application, moving tags spend less time in the read field and require a higher...UNCLASSIFIED UNCLASSIFIED Investigation of using Radio Frequency Identification (RFID) System for Gear Tooth Crack Detection Eric...using passive low frequency (LF) and high frequency (HF) radio frequency identification (RFID) systems as embedded sensors for early gear tooth

  5. Frequency Modulation Spectroscopy Modeling for Remote Chemical Detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.

    2000-09-30

    Frequency modulation (FM) spectroscopy techniques show promise for active infrared remote chemical sensing. FM spectroscopy techniques have reduced sensitivity to optical and electronic noise, and are relatively immune to the effects of various electronic and mechanical drifts. FM systems are responsive to sharp spectral features and can therefore reduce the effects of spectral clutter due to interfering chemicals in the plume or in the atmosphere. The relatively high modulation frequencies used for FM also reduces the effects of albedo (reflectance) and plume variations. Conventional differential absorption lidar (DIAL) systems are performance limited by the noise induced by speckle. Analysis presented in this report shows that FM based sensors may reduce the effects of speckle by one to two orders of magnitude. This can result in reduced dwell times and faster area searches, as well as reducing various forms of spatial clutter. FM systems will require a laser system that is continuously tunable at relatively high frequencies (0.1 to 20 MHz). One promising candidate is the quantum-cascade (QC) laser [1, 2]. The QC laser is potentially capable of power levels on the order of 1 Watt and frequency tuning on the order of 3 - 6 GHz, which is the performance level required for FM spectroscopy based remote sensing. In this report we describe a high-level numerical model for an FM spectroscopy based remote sensing system, and application to two unmanned airborne vehicle (UAV) scenarios. A Predator scenario operating at a slant range of 6.5 km with a 10 cm diameter telescope, and a Global Hawk scenario operating at a range of 30 km with a 20 cm diameter telescope, has been assumed to allow estimation of the performance of potential FM systems.

  6. Frequency domain diffuse fluorescence tomography for detection of deep lesions

    Science.gov (United States)

    Netz, Uwe J.; Gersonde, Ingo; Toelsner, Jan; Illing, Gerd

    2011-07-01

    In this paper we present two-dimensional phantom measurements of fluorescence light distribution in the frequency domain and reconstruction of three-dimensional fluorophore distribution. An experimental set-up was built up with two dimensional laser scanning, intensity modulation with frequencies up to 1 GHz, and two-dimensional imaging of modulated fluorescence light. Stable phantoms were developed simulating mammary tissue to perform measurements in a backscattering geometry for a variety of cylindrical fluorescence sources with different diameters, fluorophore concentrations, and surface distances at different modulation frequencies. At first calculated fluorescence light distributions from Monte-Carlo simulations was compared to measured data. In a second step from tomographic data sets of calculated fluorescent light, three-dimensional tomographic reconstructions of fluorophore distribution were performed. Finally three-dimensional tomographic reconstructions of fluorophore distribution were performed from tomographic fluorescence measurements. We found good concurrence between measured and calculated fluorescence distribution. Synthetic and real tomographic reconstruction showed good localization but underestimated the depth of fluorophore distribution.

  7. A Design of a Terahertz Microstrip Bandstop Filter with Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    Arjun Kumar

    2013-01-01

    Full Text Available A planar microstrip terahertz (THz bandstop filter has been proposed with defected ground structure with high insertion loss (S21 in a stopband of −25.8 dB at 1.436 THz. The parameters of the circuit model have been extracted from the EM simulation results. A dielectric substrate of Benzocyclobutene (BCB is used to realize a compact bandstop filter using modified hexagonal dumbbell-shape defected ground structure (DB-DGS. In this paper, a defected ground structure topology is used in a λ/4, 50 Ω microstrip line at THz frequency range for compactness. No article has been reported on the microstrip line at terahertz frequency regime using DGS topology. The proposed filter can be used for sensing and detection in biomedical instruments in DNA testing. All the simulations/cosimulations are carried out using a full-wave EM simulator CST V.9 Microwave Studio, HFSS V.10, and Agilent Design Suite (ADS.

  8. Compensation of frequency selectivity and antenna effect for the energy detection Gaussian frequency-shift keying ultra-wideband system

    Directory of Open Access Journals (Sweden)

    Song Cui

    2016-03-01

    Full Text Available The energy detection (ED Gaussian frequency-shift keying (GFSK ultra-wideband (UWB system, transmits bit 0 and 1 using different-order derivatives of the Gaussian pulse. The spectra of the two pulses are separated entirely in the frequency domain, so it generates the orthogonality of these two pulses. This orthogonality in the frequency domain makes the GFSK system more robust in multipath channels and in the presence of synchronisation errors, so it shows a better bit error rate performance than the ED pulse-position modulation UWB system. However, the effect of frequency selectivity and antenna has not been discussed in earlier publications. In this study, the authors will analyse the effect of these two factors and propose a method to compensate the effect.

  9. Materials for phantoms for terahertz pulsed imaging

    International Nuclear Information System (INIS)

    Walker, Gillian C; Berry, Elizabeth; Smye, Stephen W; Brettle, David S

    2004-01-01

    Phantoms are commonly used in medical imaging for quality assurance, calibration, research and teaching. They may include test patterns or simulations of organs, but in either case a tissue substitute medium is an important component of the phantom. The aim of this work was to identify materials suitable for use as tissue substitutes for the relatively new medical imaging modality terahertz pulsed imaging. Samples of different concentrations of the candidate materials TX151 and napthol green dye were prepared, and measurements made of the frequency-dependent absorption coefficient (0.5 to 1.5 THz) and refractive index (0.5 to 1.0 THz). These results were compared qualitatively with measurements made in a similar way on samples of excised human tissue (skin, adipose tissue and striated muscle). Both materials would be suitable for phantoms where the dominant mechanism to be simulated is absorption (∼100 cm -1 at 1 THz) and where simulation of the strength of reflections from boundaries is not important; for example, test patterns for spatial resolution measurements. Only TX151 had a frequency-dependent refractive index close to that of tissue, and could therefore be used to simulate the layered structure of skin, the complexity of microvasculature or to investigate frequency-dependent interference effects that have been noted in terahertz images. (note)

  10. Terahertz heterodyne technology for astronomy and planetary science

    NARCIS (Netherlands)

    Wild, Wolfgang

    2007-01-01

    Heterodyne detection techniques play an important role in high-resolution spectroscopy in astronomy and planetary science. In particular, heterodyne technology in the Terahertz range has rapidly evolved in recent years. Cryogenically cooled receivers approaching quantum-limited sensitivity have been

  11. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  12. Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology.

    Science.gov (United States)

    Takano, Keisuke; Yokoyama, Hiroshi; Ichii, Akira; Morimoto, Isao; Hangyo, Masanori

    2011-07-15

    Wire-grid polarizer sheets in the terahertz region have been fabricated on flexible substrates by nanoimprint technology. They show an ideal polarization property in the terahertz frequency region, whereas the cost is very low. Since the wire pitch is far smaller than the wavelength, the effective medium theory agrees well with experimental results. The effective medium theory shows the possibility of further improvement of polarization properties by selecting appropriate materials for wire grids. © 2011 Optical Society of America

  13. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian

    2013-06-21

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Investigation on Transmission Properties of Terahertz Wave Through Semiconductor Aperture

    International Nuclear Information System (INIS)

    He Xiaoyong; Cao Juncheng

    2008-01-01

    The transmission properties of terahertz (THz) wave passing through semiconductor aperture have been investigated. The dispersion relationship for surface plasmon polariton (SPP) at different temperatures has been numerically calculated. The results show that the dispersion relationship increases with the increasing of frequency and the decreasing of temperature, the thickness of slab has to be taken into consideration because of the large skin depth for semiconductor slab. In addition, the propagation constant increases with the increasing of frequency and the decreasing of temperature.

  15. FLEAD: online frequency likelihood estimation anomaly detection for mobile sensing

    NARCIS (Netherlands)

    Le Viet Duc, L Duc; Scholten, Johan; Havinga, Paul J.M.

    With the rise of smartphone platforms, adaptive sensing becomes an predominant key to overcome intricate constraints such as smartphone's capabilities and dynamic data. One way to do this is estimating the event probability based on anomaly detection to invoke heavy processes, such as switching on

  16. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high...

  17. Doppler limited rotational transitions of OH and SH radicals measured by continuous-wave terahertz photomixing

    Science.gov (United States)

    Eliet, Sophie; Martin-Drumel, Marie-Aline; Guinet, Mickaël; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud

    2011-12-01

    A continuous-wave terahertz (CW-THz) source generated by photomixing has been employed to detect and quantify radicals produced in a cold plasma probing their spin-rotation transitions. Due to their dual interest for both atmospherists and astrophysicists, the hydroxyl OH and the mercapto SH radicals have been chosen. The photomixing technique which can access the largest range of THz frequencies of any known coherent source, allowed to resolve the Doppler-limited hyperfine transitions of OH in the 2.5 THz frequency region. Line profile analysis of the hyperfine components demonstrated that OH radicals have been detected in this region at a ppm level at a temperature close to 490 K. The hyperfine structure of SH has been resolved for the first time above 1 THz. Ten new frequency transitions have been measured in the 1.3-2.6 THz frequency range using the CW-THz synthesizer based on a frequency comb. With relative uncertainties better than 10 -7, the CW-THz frequencies measured in this study are now competitive with those measured by other instruments such as frequency multiplication chains or FT-FIR spectrometers and are now capable to improve the predictions of the complete high-resolution spectra of these radicals collected in the atmospheric and astrophysical spectroscopic databases. versioncorrigeeAC 2011-07-18 17:32 2011 Arnaud Cuisset.

  18. Pattern-Directed Attention in Uncertain Frequency Detection.

    Science.gov (United States)

    1983-10-14

    investigate the cues listeners use to adjust their attentional band on a trial-by-trial basis to detect selected individual tones embedded within...patterns can influence a listener’s attention to embedded pattern components. These findings suggest that early pattern components will serve as...Lawson Programs Naval !eco’roic Systems Code 270 Comand Office of Naval Research NELEX-:,: 800 North Quincy Street :ashingtcn, D.C. 2036C Arlington, VA

  19. Terahertz and Mid Infrared

    CERN Document Server

    Shulika, Oleksiy; Detection of Explosives and CBRN (Using Terahertz)

    2014-01-01

    The reader will find here a timely update on new THz sources and detection schemes as well as concrete applications to the detection of Explosives and CBRN. Included is a method to identify hidden RDX-based explosives (pure and plastic ones) in the frequency domain study by Fourier Transformation, which has been complemented by the demonstration of improvement of the quality of the images captured commercially available THz passive cameras. The presented examples show large potential for the detection of small hidden objects at long distances (6-10 m).  Complementing the results in the short-wavelength range, laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diode and high performance DFB QCL have been demonstrated to offer excellent enabling sensor technologies for environmental monitoring, medical diagnostics, industrial and security applications.  From the new source point of view a number of systems have been presented - From superconductors to semiconductors, e.g. Det...

  20. Crack detection of arch dam using statistical neural network based on the reductions of natural frequencies

    Science.gov (United States)

    Wang, B. S.; He, Z. C.

    2007-05-01

    This paper presents the numerical simulation and the model experiment upon a hypothetical concrete arch dam for the research of crack detection based on the reduction of natural frequencies. The influence of cracks on the dynamic property of the arch dam is analyzed. A statistical neural network is proposed to detect the crack through measuring the reductions of natural frequencies. Numerical analysis and model experiment show that the crack occurring in the arch dam will reduce natural frequencies and can be detected by using the statistical neural network based on the information of such reduction.

  1. Small Displacement Detection of Biological Signals Using the Cyclic Frequency Method

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2015-01-01

    Full Text Available A new signal processing method called the Cyclic Frequency method is proposed for small displacement detection of vital signals such as heart rate and respiration using the CW radar method. We have presented experimental results of small displacement detection to confirm the validity of the method. The displacement amplitude 2.5 mm can be detected with a propagation frequency of 24.15 GHz. We may increase the propagation frequency for smaller displacement amplitude or target velocity.

  2. Terahertz imaging for styrofoam inspection

    Science.gov (United States)

    Pradarutti, B.; Riehemann, S.; Notni, G.; Tünnermann, A.

    2007-09-01

    Imaging of styrofoam with the help of ultrashort Terahertz pulses is investigated. With a combination of pulse amplitude and time delay imaging it is possible to speed up the measurement about two orders of magnitudes.

  3. Terahertz sensing in corneal tissues

    Science.gov (United States)

    Bennett, David B.; Taylor, Zachary D.; Tewari, Pria; Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Sassoon, Daniel J.; Johnson, R. Duncan; Hubschman, Jean-Pierre; Brown, Elliott R.

    2011-01-01

    This work introduces the potential application of terahertz (THz) sensing to the field of ophthalmology, where it is uniquely suited due to its nonionizing photon energy and high sensitivity to water content. Reflective THz imaging and spectrometry data are reported on ex-vivo porcine corneas prepared with uniform water concentrations using polyethylene glycol (PEG) solutions. At 79% water concentration by mass, the measured reflectivity of the cornea was 20.4%, 14.7%, 11.7%, 9.6%, and 7.4% at 0.2, 0.4, 0.6, 0.8, and 1 THz, respectively. Comparison of nine corneas hydrated from 79.1% to 91.5% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration, with a monotonically decreasing slope as the frequency increases. The THz-corneal tissue interaction is simulated with a Bruggeman model with excellent agreement. THz applications to corneal dystrophy, graft rejection, and refractive surgery are examined from the context of these measurements. PMID:21639581

  4. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  5. Polarization-stable dual-color DFB fibre laser system for CW terahertz generation

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Petersen, Jens Engholm; Jepsen, Peter Uhd

    The terahertz, or THz, frequency range represents a gap in technology as well as knowledge in the electromagnetic spectrum. The THz spectral range is here loosely defined as frequencies between 100 GHz and 10 THz. Electromagnetic waves at THz frequencies interact strongly with metals, ceramics...

  6. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.

    2015-11-12

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  7. Broadband tunable terahertz polarization converter based on graphene metamaterial

    Science.gov (United States)

    Luo, Shiwen; Li, Bin; Yu, Anlan; Gao, Jun; Wang, Xinbing; Zuo, Duluo

    2018-04-01

    We design and numerically investigate a broadband tunable terahertz polarization converter based on graphene metamaterial. The converter presents a broad conversion band with high polarization conversion ratio (>0.95) in terahertz frequency over a bandwidth which is 25.8% of the central frequency. The converter can be dynamically tuned by varying the Fermi Energy of the graphene without changing the geometric structure. The converter shows high conversion ratio for a wide range of incident angles from 0 to 40°. By the scaling of the proposed structure, the broadband properties of the converter can be easily spread to other frequency. The proposed metamaterial offers an approach in the manipulation of the light polarization and has potential applications in imaging, sensing and communications.

  8. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification in a lith......Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....

  9. Terahertz Generation & Vortex Motion Control in Superconductors

    Science.gov (United States)

    Nori, Franco

    2005-03-01

    A grand challenge is to controllably generate electromagnetic waves in layered superconducting compounds because of its Terahertz frequency range. We propose [1] four experimentally realizable devices for generating continuous and pulsed THz radiation in a controllable frequency range. We also describe [2-4] several novel devices for controlling the motion of vortices in superconductors, including a reversible rectifier made of a magnetic-superconducting hybrid structure [4]. Finally, we summarize a study [5] of the friction force felt by moving vortices. 1) S. Savel'ev, V. Yampol'skii, A. Rakhmanov, F. Nori, Tunable Terahertz radiation from Josephson vortices, preprint 2) S. Savel'ev and F. Nori, Experimentally realizable devices for controlling the motion of magnetic flux quanta, Nature Mat. 1, 179 (2002) 3) S. Savel'ev, F. Marchesoni, F. Nori, Manipulating small particles, PRL 92, 160602 (2004); B. Zhu, F. Marchesoni, F. Nori, Controlling the motion of magnetic flux quanta, PRL 92, 180602 (2004) 4) J.E. Villegas, et al., Reversible Rectifier that Controls the Motion of Magnetic Flux Quanta, Science 302, 1188 (2003) 5) A. Maeda, et al., Nano-scale friction: kinetic friction of magnetic flux quanta and charge density waves, preprint

  10. Label-free probing of genes by time-domain terahertz sensing

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, P Haring [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Brucherseifer, M [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Nagel, M [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Kurz, H [Institut fuer Halbleitertechnik, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen (Germany); Bosserhoff, A [Institut fuer Pathologie, Universitaet Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg (Germany); Buettner, R [Institut fuer Pathologie, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn (Germany)

    2002-11-07

    A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a free-space analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.

  11. Research of biological liquid albumin based on terahertz time domain spectroscopy

    Science.gov (United States)

    Yang, Shuai; Liu, Shang-jian; Zuo, Jian; Zhang, Cun-lin

    2016-11-01

    There is no corresponding fingerprint characteristic spectrum detecting complex ensemble biological samples in liquid, in the paper, such urine of kidney disease patients as samples of the research, using terahertz time-domain spectroscopy emphatically explores response characteristics of the urine albumin in the terahertz spectrum characteristics, and combined with stoichiometric method, we find a certain kind of relationship between terahertz spectrum data and the content of urine albumin, which offsets the defects of other spectroscopy in measuring liquid protein, and in accordance with hospital clinical data. This study established a semi-qualitative method of using terahertz spectroscopy in detecting non-purification of biological liquid sample, which provides a simple, nondestructive, cheap and fast reference method in identifying the early nephropathy for medical test.

  12. A COMPLETE SPECTROSCOPIC CHARACTERIZATION OF SO AND ITS ISOTOPOLOGUES UP TO THE TERAHERTZ DOMAIN

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Drumel, M. A.; Hindle, F.; Mouret, G.; Cuisset, A. [Laboratoire de Physico-Chimie de l' Atmosphère, EA 4493, Université du Littoral-Côte d' Opale, F-59140 Dunkerque (France); Cernicharo, J., E-mail: mmartin@cfa.harvard.edu [Group Molecular Astrophysics, ICMM, CSIC, C/Sor Juana Inés de la Cruz, N3, E-28049 Cantoblanco, Madrid (Spain)

    2015-02-01

    In order to obtain accurate terahertz center frequencies for SO and its isotopologues, we have studied the absorption spectrum of SO, {sup 34}SO, and {sup 33}SO up to 2.5 THz using continuous-wave terahertz photomixing based on a frequency comb providing an accuracy down to 10 kHz. Sulfur monoxide was produced in a radio frequency discharge of air in a cell containing pure sulfur. Together with the strong absorption signal of the main isotopologue, transitions of {sup 34}SO ({sup 34}S: 4.21%) and {sup 33}SO ({sup 33}S: 0.75%) were observed in natural abundance. The newly observed transitions constitute an extension of the observed rotational quantum numbers of the molecule toward higher N values, allowing an improvement of the molecular parameters for the three species. An isotopically invariant fit has been performed based on pure rotational and ro-vibrational transitions of all SO isotopologues, enabling their accurate line position prediction at higher frequencies. Thanks to this new set of parameters, it is now possible to predict with very high accuracy the frequencies of the ro-vibrational lines. This should enable the research of SO in the mid-IR using ground-based IR telescopes, space-based telescope archives (Infrared Space Observatory, Spitzer), and future space missions such as the James Webb Space Telescope. This set of parameters is particularly well adapted for the detection of SO lines in O-rich evolved stars or in molecular clouds in absorption against bright IR sources.

  13. Bilinear Time-frequency Analysis for Lamb Wave Signal Detected by Electromagnetic Acoustic Transducer

    Science.gov (United States)

    Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu

    2018-03-01

    Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.

  14. Gear-box fault detection using time-frequency based methods

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2015-01-01

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors...... in the gear-box resonance frequency can be detected. Two different time–frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen–Loeve basis. Both of them detect the gear-box fault with an acceptable detection delay of maximum 100s, which...... is neglectable compared with the fault developing time....

  15. Superiority of terahertz over infrared transmission through bandages and burn wound ointments

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Jonathan Y., E-mail: j.suen@duke.edu; Padilla, Willie J. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2016-06-06

    Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging can enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.

  16. Time-reversed lasing in the terahertz range and its preliminary study in sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yun, E-mail: shenyunoptics@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Huaqing [Department of Physics, Nanchang University, Nanchang 330031 (China); Deng, Xiaohua [Institute of Space Science and Technology, Nanchang University, Nanchang 330031 (China); Wang, Guoping [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-02-05

    Time-reversed lasing in a uniform slab and a grating structure are investigated in the terahertz range. The results show that both the uniform slab and grating can support terahertz time-reversed lasing. Nevertheless, due to the tunable effective refractive index, the grating structure can not only exhibit time-reversed lasing more effectively and flexibly than a uniform slab, but also can realize significant absorption in a broader operating frequency range. Furthermore, applications of terahertz time-reversed lasing for novel concentration/thickness sensors are preliminarily studied in a single-channel coherent perfect absorber system. - Highlights: • Time-reversed lasing are investigated in the terahertz range. • The grating structure exhibit time-reversed lasing more effectively and flexibly than a uniform slab. • THz time-reversed lasing for novel concentration/thickness sensors are studied.

  17. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  18. [Application of terahertz technology in medical testing and diagnosis].

    Science.gov (United States)

    Qi, Na; Zhang, Zhuo-Yong; Xiang, Yu-Hong

    2013-08-01

    Terahertz science and technology is increasingly emphasized in science and industry, and has progressed significantly in recent years. There is an important aspect of attention in the application of terahertz technology to medicine. The overview of the terahertz characters, terahertz spectroscopy and terahertz imaging technology is introduced. This paper focuses on reviewing the use of and research progress in terahertz spectroscopy and terahertz imaging technology in medical testing and diagnosis. Furthermore, the problems to be solved and development directions of terahertz spectroscopy and terahertz imaging technology are discussed.

  19. Broadband terahertz dynamics of propylene glycol monomer and oligomers

    Science.gov (United States)

    Koda, Shota; Mori, Tatsuya; Kojima, Seiji

    2016-12-01

    We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.

  20. Characterization of Temperature Induced Phase Transitions in the Five Polymorphic Forms of Sulfathia-zole by Terahertz Pulsed Spectroscopy and Differential Scanning Calorimetry

    DEFF Research Database (Denmark)

    Zeitler, J. Axel; Newnham, David A.; Taday, Philip F.

    2006-01-01

    The far-infrared properties of all five described polymorphic forms of the drug sulfathiazole have been studied by terahertz pulsed spectroscopy and low frequency Raman spectroscopy. The spectra of the different polymorphs are distinctly different. Terahertz pulsed spectroscopy proves to be a rapid...

  1. Miniature field deployable terahertz source

    Science.gov (United States)

    Mayes, Mark G.

    2006-05-01

    Developments in terahertz sources include compacted electron beam systems, optical mixing techniques, and multiplication of microwave frequencies. Although significant advances in THz science have been achieved, efforts continue to obtain source technologies that are more mobile and suitable for field deployment. Strategies in source development have approached generation from either end of the THz spectrum, from up-conversion of high-frequency microwave to down-conversion of optical frequencies. In this paper, we present the design of a THz source which employs an up-conversion method in an assembly that integrates power supply, electronics, and radiative component into a man-portable unit for situations in which a lab system is not feasible. This unit will ultimately evolve into a ruggedized package suitable for use in extreme conditions, e.g. temporary security check points or emergency response teams, in conditions where THz diagnostics are needed with minimal planning or logistical support. In order to meet design goals of reduced size and complexity, the inner workings of the unit ideally would be condensed into a monolithic active element, with ancillary systems, e.g. user interface and power, coupled to the element. To attain these goals, the fundamental component of our design is a THz source and lens array that may be fabricated with either printed circuit board or wafer substrate. To reduce the volume occupied by the source array, the design employs a metamaterial composed of a periodic lattice of resonant elements. Each resonant element is an LC oscillator, or tank circuit, with inductance, capacitance, and center frequency determined by dimensioning and material parameters. The source array and supporting electronics are designed so that the radiative elements are driven in-phase to yield THz radiation with a high degree of partial coherence. Simulation indicates that the spectral width of operation may be controlled by detuning of critical dimensions

  2. Design of Integrated Circuits Approaching Terahertz Frequencies

    DEFF Research Database (Denmark)

    Yan, Lei

    are designed based on the monolithic membrane supported Schottky diodes, which is under development at Chalmers University of Technology, Sweden. To simplify the baseband circuitry, the received IF signal from the subharmonic mixer is further amplified and downconverted to the DC range with a low noise...... heterodyne receivers with requirements of room temperature operation, low system complexity, and high sensitivity, monolithic integrated Schottky diode technology is chosen for the implementation of submillimeterwave components. The corresponding subharmonic mixer and multiplier for a THz radiometer system...

  3. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas.

    Science.gov (United States)

    Kaindl, R A; Carnahan, M A; Hägele, D; Lövenich, R; Chemla, D S

    2003-06-12

    Many-body systems in nature exhibit complexity and self-organization arising from seemingly simple laws. For example, the long-range Coulomb interaction between electrical charges has a simple form, yet is responsible for a plethora of bound states in matter, ranging from the hydrogen atom to complex biochemical structures. Semiconductors form an ideal laboratory for studying many-body interactions of electronic quasiparticles among themselves and with lattice vibrations and light. Oppositely charged electron and hole quasiparticles can coexist in an ionized but correlated plasma, or form bound hydrogen-like pairs called excitons. The pathways between such states, however, remain elusive in near-visible optical experiments that detect a subset of excitons with vanishing centre-of-mass momenta. In contrast, transitions between internal exciton levels, which occur in the far-infrared at terahertz (1012 s(-1)) frequencies, are independent of this restriction, suggesting their use as a probe of electron-hole pair dynamics. Here we employ an ultrafast terahertz probe to investigate directly the dynamical interplay of optically-generated excitons and unbound electron-hole pairs in GaAs quantum wells. Our observations reveal an unexpected quasi-instantaneous excitonic enhancement, the formation of insulating excitons on a 100-ps timescale, and the conditions under which excitonic populations prevail.

  4. Simulation of photoconductive antennas for terahertz radiation

    Directory of Open Access Journals (Sweden)

    Carlos Criollo

    2015-01-01

    Full Text Available Simulation of terahertz (THz emission based on PC antennas imposes a challenge to couple the semiconductor carrier phenomena, optical transport and the THz energy transport. In this paper a Multi-physics simulation for coupling these phenomena using COMSOL Multi-physics 4.3b is introduced. The main parameters of THz photoconductive (PC antenna as THz emitter have been reviewed and discussed. The results indicate the role of each parameter in the resulting photocurrent waveform and THz frequency: The radiated THz photocurrent waveform is determined by the photoconductive gap (the separation between the metallic electrodes, the incident laser illumination and the DC excitation voltage; while the THz frequency depends on the dipole length. The optimization of these parameters could enhance the emission. The simulations extend the advance of compact and cost-effective THz emitters.

  5. Vital signs detection radar using low intermediate-frequency architecture and single-sideband transmission

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Jónasson, Sævar Þór; Johansen, Tom Keinicke

    2012-01-01

    This paper presents a continuous wave vital signs detection radar that utilizes a heterodyne transceiver architecture with a 10 MHz intermediate frequency to remove both unwanted DC offsets in the electronic components and the so-called null-detection-points. For successful removal of the latter...

  6. Frequency and Angular Estimations of Detected Microwave Source using Unmanned Aerial Vehicles

    OpenAIRE

    Llamas-Garro, Ignacio; Lukin, Konstantin; de Melo, Marcos T.; Kim, Jung-Mu

    2016-01-01

    Detection of microwave signals in the battlefield or surveillance zone allows identifying enemy outposts, which may include radar or communications transmitters. This paper describes the techniques required to identify the frequency of unknown detected signals and the estimation of their incoming direction using unmanned aerial vehicles.

  7. Planar Holographic Metasurfaces for Terahertz Focusing

    Science.gov (United States)

    Kuznetsov, Sergei A.; Astafev, Mikhail A.; Beruete, Miguel; Navarro-Cía, Miguel

    2015-01-01

    Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band. PMID:25583565

  8. SOFIA/GREAT Discovery of Terahertz Water Masers

    Science.gov (United States)

    Neufeld, David A.; Melnick, Gary J.; Kaufman, Michael J.; Wiesemeyer, Helmut; Güsten, Rolf; Kraus, Alex; Menten, Karl M.; Ricken, Oliver; Faure, Alexandre

    2017-07-01

    We report the discovery of water maser emission at frequencies above 1 THz. Using the GREAT instrument on SOFIA, we have detected emission in the 1.296411 THz {8}27-{7}34 transition of water toward three oxygen-rich evolved stars: W Hya, U Her, and VY CMa. An upper limit on the 1.296 THz line flux was obtained toward R Aql. Near-simultaneous observations of the 22.23508 GHz {6}16-{5}23 water maser transition were carried out toward all four sources using the Effelsberg 100 m telescope. The measured line fluxes imply 22 GHz/1.296 THz photon luminosity ratios of 0.012, 0.12, and 0.83, respectively, for W Hya, U Her, and VY CMa, values that confirm the 22 GHz maser transition to be unsaturated in W Hya and U Her. We also detected the 1.884888 THz {8}45-{7}52 transition toward W Hya and VY CMa, and the 1.278266 THz {7}43-{6}52 transition toward VY CMa. Like the 22 GHz maser transition, all three of the THz emission lines detected here originate from the ortho-H2O spin isomer. Based upon a model for the circumstellar envelope of W Hya, we estimate that stimulated emission is responsible for ˜85% of the observed 1.296 THz line emission, and thus that this transition may be properly described as a terahertz-frequency maser. In the case of the 1.885 THz transition, by contrast, our W Hya model indicates that the observed emission is dominated by spontaneous radiative decay, even though a population inversion exists. GREAT is a development by the MPI für Radioastronomie and the KOSMA/Universität zu Köln, in cooperation with the MPI für Sonnensystemforschung and the DLR Institut für Planetenforschung.

  9. Advancements in Research on Micro-motion Feature Extraction in the Terahertz Region

    Directory of Open Access Journals (Sweden)

    Yang Qi

    2018-02-01

    Full Text Available With years of development and accumulation, a considerable amount of research has focused on micro-motion, an important auxiliary feature in radar target detection and recognition. With the recent rise of terahertz, micro-motion feature extraction in the terahertz region has increasingly highlighted its advantages. Herein, we systematically surveyed the recent research on terahertz radar micro-motion feature extraction and discussed micro-motion feature analysis, micro-motion feature extraction, and micro-motion target imaging. And then we emphatically introduced the work of our research team, including the theoretical and experimental research on micro-motion feature analysis, micro-motion feature extraction and high-resolution/high-frame micro-motion target imaging. Furthermore, we analyzed the growing trend of micro-motion feature extraction in the terahertz region, and pointed out the new technology directions worth to be studied further and the technical challenges to be solved.

  10. The dynamic process and microscopic mechanism of extraordinary terahertz transmission through perforated superconducting films.

    Science.gov (United States)

    Wu, J B; Zhang, X; Jin, B B; Liu, H T; Chen, Y H; Li, Z Y; Zhang, C H; Kang, L; Xu, W W; Chen, J; Wang, H B; Tonouchi, M; Wu, P H

    2015-10-26

    Superconductor is a compelling plasmonic medium at terahertz frequencies owing to its intrinsic low Ohmic loss and good tuning property. However, the microscopic physics of the interaction between terahertz wave and superconducting plasmonic structures is still unknown. In this paper, we conducted experiments of the enhanced terahertz transmission through a series of superconducting NbN subwavelength hole arrays, and employed microscopic hybrid wave model in theoretical analysis of the role of hybrid waves in the enhanced transmission. The theoretical calculation provided a good match of experimental data. In particular, we obtained the following results. When the width of the holes is far below wavelength, the enhanced transmission is mainly caused by localized resonance around individual holes. On the contrary, when the holes are large, hybrid waves scattered by the array of holes dominate the extraordinary transmission. The surface plasmon polaritions are proved to be launched on the surface of superconducting film and the excitation efficiency increases when the temperature approaches critical temperature and the working frequency goes near energy gap frequency. This work will enrich our knowledge on the microscopic physics of extraordinary optical transmission at terahertz frequencies and contribute to developing terahertz plasmonic devices.

  11. High-resolution reconstruction for terahertz imaging.

    Science.gov (United States)

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  12. Terahertz Wave Approach and Application on FRP Composites

    Directory of Open Access Journals (Sweden)

    Kwang-Hee Im

    2013-01-01

    Full Text Available Terahertz (THz applications have emerged as one of the most new powerful nondestructive evaluation (NDE techniques. A new T-ray time-domain spectroscopy system was utilized for detecting and evaluating orientation influence in carbon fiber-reinforced plastics (CFRPs composite laminates. Investigation of terahertz time-domain spectroscopy (THz-TDS was made, and reflection and transmission configurations were studied as a nondestructive evaluation technique. Here, the CFRP composites derived their excellent mechanical strength, stiffness, and electrical conductivity from carbon fibers. Especially, the electrical conductivity of the CFRP composites depends on the direction of unidirectional fibers since carbon fibers are electrically conducting while the epoxy matrix is not. In order to solve various material properties, the index of refraction (n and the absorption coefficient (α are derived in reflective and transmission configurations using the terahertz time-domain spectroscopy. Also, for a 48-ply thermoplastic polyphenylene-sulfide-(PPS- based CFRP solid laminate and nonconducting materials, the terahertz scanning images were made at the angles ranged from 0° to 180° with respect to the nominal fiber axis. So, the images were mapped out based on the electrical field (E-field direction in the CFRP solid laminates. It is found that the conductivity (σ depends on the angles of the nominal axis in the unidirectional fiber.

  13. Terahertz field control of interlayer transport modes in cuprate superconductors

    Science.gov (United States)

    Schlawin, Frank; Dietrich, Anastasia S. D.; Kiffner, Martin; Cavalleri, Andrea; Jaksch, Dieter

    2017-08-01

    We theoretically show that terahertz pulses with controlled amplitude and frequency can be used to switch between stable transport modes in layered superconductors, modeled as stacks of Josephson junctions. We find pulse shapes that deterministically switch the transport mode between superconducting, resistive, and solitonic states. We develop a simple model that explains the switching mechanism as a destabilization of the center-of-mass excitation of the Josephson phase, made possible by the highly nonlinear nature of the light-matter coupling.

  14. The atomic charge distribution in glasses obtained by terahertz spectroscopy

    International Nuclear Information System (INIS)

    Taraskin, S N; Simdyankin, S I; Elliott, S R

    2007-01-01

    It is demonstrated that the width of the uncorrelated atomic charge distribution can be extracted from the frequency dependence of the coupling coefficient for far-infrared absorption measured experimentally by a time-domain terahertz spectroscopy technique. This value for As 2 S 3 glass is found to be 0.12 (e). A density functional theory-based tight-binding molecular dynamics model of As 2 S 3 glass qualitatively supports these findings

  15. Complex Terahertz and Direct Current Inverse Spin Hall Effect in YIG/Cu1-xIrxBilayers Across a Wide Concentration Range.

    Science.gov (United States)

    Cramer, Joel; Seifert, Tom; Kronenberg, Alexander; Fuhrmann, Felix; Jakob, Gerhard; Jourdan, Martin; Kampfrath, Tobias; Kläui, Mathias

    2018-02-14

    We measure the inverse spin Hall effect of Cu 1-x Ir x thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu 1-x Ir x . The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.

  16. Human-robot collision detection under modeling uncertainty using frequency boundary of manipulator dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Byung Jin; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyung Pil [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-11-15

    This paper presents the development and experimental evaluation of a collision detection method for robotic manipulators sharing a workspace with humans. Fast and robust collision detection is important for guaranteeing safety and preventing false alarms. The main cause of a false alarm is modeling error. We use the characteristic of the maximum frequency boundary of the manipulator's dynamic model. The tendency of the frequency boundary's location in the frequency domain is applied to the collision detection algorithm using a band pass filter (band designed disturbance observer, BdDOB) with changing frequency windows. Thanks to the band pass filter, which considers the frequency boundary of the dynamic model, our collision detection algorithm can extract the collision caused by the disturbance from the mixed estimation signal. As a result, the collision was successfully detected under the usage conditions of faulty sensors and uncertain model data. The experimental result of a collision between a 7-DOF serial manipulator and a human body is reported.

  17. Terahertz Science, Technology, and Communication

    Science.gov (United States)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  18. Subwavelength micropillar array terahertz lasers.

    Science.gov (United States)

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2014-01-13

    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  19. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Science.gov (United States)

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  20. Proposed Sandia frequency shift for anti-islanding detection method based on artificial immune system

    Directory of Open Access Journals (Sweden)

    A.Y. Hatata

    2018-03-01

    Full Text Available Sandia frequency shift (SFS is one of the active anti-islanding detection methods that depend on frequency drift to detect an islanding condition for inverter-based distributed generation. The non-detection zone (NDZ of the SFS method depends to a great extent on its parameters. Improper adjusting of these parameters may result in failure of the method. This paper presents a proposed artificial immune system (AIS-based technique to obtain optimal parameters of SFS anti-islanding detection method. The immune system is highly distributed, highly adaptive, and self-organizing in nature, maintains a memory of past encounters, and has the ability to continually learn about new encounters. The proposed method generates less total harmonic distortion (THD than the conventional SFS, which results in faster island detection and better non-detection zone. The performance of the proposed method is derived analytically and simulated using Matlab/Simulink. Two case studies are used to verify the proposed method. The first case includes a photovoltaic (PV connected to grid and the second includes a wind turbine connected to grid. The deduced optimized parameter setting helps to achieve the “non-islanding inverter” as well as least potential adverse impact on power quality. Keywords: Anti-islanding detection, Sandia frequency shift (SFS, Non-detection zone (NDZ, Total harmonic distortion (THD, Artificial immune system (AIS, Clonal selection algorithm

  1. THz characterization and demonstration of visible-transparent/terahertz-functional electromagnetic structures in ultra-conductive La-doped BaSnO3Films.

    Science.gov (United States)

    Arezoomandan, Sara; Prakash, Abhinav; Chanana, Ashish; Yue, Jin; Mao, Jieying; Blair, Steve; Nahata, Ajay; Jalan, Bharat; Sensale-Rodriguez, Berardi

    2018-02-23

    We report on terahertz characterization of La-doped BaSnO 3 (BSO) thin-films. BSO is a transparent complex oxide material, which has attracted substantial interest due to its large electrical conductivity and wide bandgap. The complex refractive index of these films is extracted in the 0.3 to 1.5 THz frequency range, which shows a metal-like response across this broad frequency window. The large optical conductivity found in these films at terahertz wavelengths makes this material an interesting platform for developing electromagnetic structures having a strong response at terahertz wavelengths, i.e. terahertz-functional, while being transparent at visible and near-IR wavelengths. As an example of such application, we demonstrate a visible-transparent terahertz polarizer.

  2. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    Science.gov (United States)

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  3. 186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design

    Science.gov (United States)

    Kumar, Sushil; Hu, Qing; Reno, John L.

    2009-01-01

    Resonant-phonon terahertz quantum-cascade lasers operating up to a heat-sink temperature of 186 K are demonstrated. This record temperature performance is achieved based on a diagonal design, with the objective to increase the upper-state lifetime and therefore the gain at elevated temperatures. The increased diagonality also lowers the operating current densities by limiting the flow of parasitic leakage current. Quantitatively, the diagonality is characterized by a radiative oscillator strength that is smaller by a factor of two from the least of any previously published designs. At the lasing frequency of 3.9 THz, 63 mW of peak optical power was measured at 5 K, and approximately 5 mW could still be detected at 180 K.

  4. Antenna-coupled terahertz radiation from joule-heated single-wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    M. Muthee

    2011-12-01

    Full Text Available In this letter an experimental method is introduced that allows detection of terahertz (THz radiation from arrays of joule-heated Single-Walled Carbon Nanotubes (SWCNTs, by coupling this radiation through integrated antennas and a silicon lens. The radiation forms a diffraction-limited beam with a total maximum radiated power of 450 nW, significantly greater than the power estimated from Nyquist thermal noise (8 nW. The physical radiation process is unknown at this stage, but possible explanations for the high radiated power are discussed briefly. The emission has a typical bandwidth of 1.2 THz and can be tuned to different frequencies by changing the dimensions of the antennas. Arrays of the devices could be integrated in CMOS integrated circuits, and find application in THz systems, such as in near-range medical imaging.

  5. Separation of heart sound signal from noise in joint cycle frequency-time-frequency domains based on fuzzy detection.

    Science.gov (United States)

    Tang, Hong; Li, Ting; Park, Yongwan; Qiu, Tianshuang

    2010-10-01

    Noise is generally unavoidable during recordings of heart sound signal. Therefore, noise reduction is one of the important preprocesses in the analysis of heart sound signal. This was achieved in joint cycle frequency-time-frequency domains in this study. Heart sound signal was decomposed into components (called atoms) characterized by time delay, frequency, amplitude, time width, and phase. It was discovered that atoms of heart sound signal congregate in the joint domains. On the other hand, atoms of noise were dispersed. The atoms of heart sound signal could, therefore, be separated from the atoms of noise based on fuzzy detection. In a practical experiment, heart sound signal was successfully separated from lung sounds and disturbances due to chest motion. Computer simulations for various clinical heart sound signals were also used to evaluate the performance of the proposed noise reduction. It was shown that heart sound signal can be reconstructed from simulated complex noise (perhaps non-Gaussian, nonstationary, and colored). The proposed noise reduction can recover variations in the both waveform and time delay of heart sound signal during the reconstruction. Correlation coefficient and normalized residue were used to indicate the closeness of the reconstructed and noise-free heart sound signal. Correlation coefficient may exceed 0.90 and normalized residue may be around 0.10 in 0-dB noise environment, even if the phonocardiogram signal covers only ten cardiac cycles.

  6. Effects of GPR antenna configuration on subpavement drain detection based on the frequency-shift phenomenon

    Science.gov (United States)

    Bai, Hao; Sinfield, Joseph V.

    2017-11-01

    The water and clay content of subsurface soil can significantly influence the detection results obtained from ground penetrating radar (GPR). Due to the variation of the material properties underground, the center frequency of transmitted GPR signals shifts to a lower range as wave attenuation increases. Examination of wave propagation in the subsurface employing an attenuation filter based on a linear system model shows that received GPR signals will be shifted to lower frequencies than those originally transmitted. The amount of the shift is controlled by a wave attenuation factor, which is determined by the dielectric constant, electric conductivity, and magnetic susceptibility of the transmitted medium. This paper introduces a receiver-transmitter-receiver dual-frequency configuration for GPR that employs two operational frequencies for a given test - one higher and one slightly lower - to take advantage of this phenomenon to improve subpavement drain detection results. In this configuration, the original signal is transmitted from the higher frequency transmitter. After traveling through underground materials, the signal is received by two receivers with different frequencies. One of the receivers has the same higher center frequency as the transmitter, and the other receiver has a lower center frequency. This configuration can be expressed as Rx(low-frequency)-Tx(high-frequency)-Rx(high-frequency) and was applied in both laboratory experiments and field tests. Results are analyzed in the frequency domain to evaluate and compare the properties of the signal obtained by both receivers. The laboratory experiment used the configuration of Rx(400MHz)-Tx(900MHz)-Rx(900MHz). The field tests, in addition to the configuration used in the lab tests, employed another configuration of Rx(270MHz)-Tx(400MHz)-Rx(400MHz) to obtain more information about this phenomenon. Both lab and field test results illustrate the frequency-shift phenomenon described by theoretical

  7. Dynamic response and time-frequency analysis for gear tooth crack detection

    Science.gov (United States)

    Mohammed, Omar D.; Rantatalo, Matti

    2016-01-01

    Vibration health monitoring is a non-destructive technique which can be applied to detect cracks propagating in gear teeth. This paper studies gear tooth crack detection by investigating the natural frequencies and by performing time-frequency analysis of a 6 DOF dynamic gear model. The gear mesh stiffness used in the model was calculated analytically for different cases of crack sizes. The frequency response functions (FRFs) of the model were derived for healthy and faulty cases and dynamic simulation was performed to obtain the time signal responses. A new approach involving a short-time Fourier transform (STFT) was applied where a fast Fourier transform (FFT) was calculated for successive blocks with different sizes corresponding to the time segments of the varying gear mesh stiffness. The relationship between the different crack sizes and the mesh-stiffness-dependent eigenfrequencies was studied in order to detect the tooth crack and to estimate its size.

  8. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    International Nuclear Information System (INIS)

    Kim, Chihoon; Ahn, Jae Sung; Eom, Joo Beom; Ji, Taeksoo

    2017-01-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz–800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis. (paper)

  9. Terahertz superconducting plasmonic hole array.

    Science.gov (United States)

    Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Wu, Judy; Zhang, Weili

    2010-11-01

    We demonstrate a superconductor array of subwavelength holes with active thermal control over the resonant transmission induced by surface plasmon polaritons. The array was lithographically fabricated on a high-temperature yttrium barium copper oxide superconductor and characterized by terahertz time-domain spectroscopy. We observe a clear transition from a virtual excitation of the surface plasmon mode to a real surface plasmon mode. The highly controllable superconducting plasmonic crystals may find promising applications in the design of low-loss, large- dynamic-range amplitude modulation and surface-plasmon-based terahertz devices.

  10. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber by micro......We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber...

  11. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  12. A novel reduced-complexity group detection structure in MIMO frequency selective fading channels

    KAUST Repository

    Qaraqe, Khalid A.

    2010-09-01

    In this paper a novel reduced complexity detection method named modified symbol flipping method is introduced and its advantages on reducing the burden of the calculations at the receiver compared to the optimum maximum likelihood detection method on multiple input- multiple output frequency selective fading channels are explained. The initial concept of the symbol flipping method is derived from a preliminary detection scheme named bit flipping which was introduced in [1]. The detection structure employed in this paper is ing, detection, and cancellation. On the detection stage, the proposed method is employed and the results are compared to the group maximum likelihood detection scheme proposed in [2]. Simulation results show that a 6 dB performance gain can be achieved at the expense of a slight increase in complexity in comparison with the conventional symbol flipping scheme. © 2010 Crown.

  13. Multi-beam synchronous measurement based on PSD phase detection using frequency-domain multiplexing

    Science.gov (United States)

    Duan, Ying; Qin, Lan; Xue, Lian; Xi, Feng; Mao, Jiubing

    2013-10-01

    According to the principle of centroid measurement, position-sensitive detectors (PSD) are commonly used for micro displacement detection. However, single-beam detection method cannot satisfy such tasks as multi-dimension position measurement, three dimension vision reconstruction, and robot precision positioning, which require synchronous measurement of multiple light beams. Consequently, we designed PSD phase detection method using frequency-domain multiplexing for synchronous detection of multiple modulated light beams. Compared to previous PSD amplitude detection method, the phase detection method using FDM has advantages of simplified measuring system, low cost, high capability of resistance to light interference as well as improved resolution. The feasibility of multi-beam synchronous measurement based on PSD phase detection using FDM was validated by multi-beam measuring experiments. The maximum non-linearity error of the multi-beam synchronous measurement is 6.62%.

  14. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors

    Science.gov (United States)

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-01-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128

  15. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors.

    Science.gov (United States)

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-05-19

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities.

  16. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.

    Science.gov (United States)

    Khodaee, M; Banakermani, M; Baghban, H

    2015-10-10

    Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34  THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.

  17. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications

    Science.gov (United States)

    Zhu, Zhe

    2017-08-01

    The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection.

  18. Suppression of frequency locking noise in resonator fiber optic gyro by differential detection method

    Science.gov (United States)

    Feng, Lishuang; Zhi, Yinzhou; Lei, Ming; Wang, Junjie

    2014-10-01

    The performance of the resonator fiber optic gyro (RFOG) is influenced by frequency locking noise. This paper proposes a differential detection method (DDM) to suppress the frequency locking noise. First, the frequency locking noise induced by the frequency locking error is described theoretically; the description indicates that it acts as the common-mode noise in the RFOG. In the traditional signal-path detection method (SDM), there is a trade-off between suppressing the frequency locking noise and improving the gyro sensitivity. Thus, a model of the DDM is set up and analyzed. The frequency locking noise can be suppressed using the DDM by adjusting the gains of two lock-in amplifiers. Finally, the experimental setup is established, and the SDM and DDM are compared. When the tested equivalent frequency locking noise is 10.6°/h, the bias stability of the RFOG is improved from 12.9°/h to 1.1°/h by the DDM.

  19. Terahertz time-domain reflectometry of multilayered systems

    Science.gov (United States)

    Jackson, J. Bianca

    Presented in this work are applications of terahertz pulse ranging, spectroscopy and imaging to the nondestructive evaluation of three disparate multilayer systems for the detection and measurement of hidden layers, as well as the extraction of system information that will aid in its maintenance, repair or replacement. Thermal protection systems for turbine engine components were investigated. Thermal barrier coatings (TBC) and thermally-grown oxide (TGO) thicknesses were determined with 10 micron resolution using time-of-flight and refractive index calculations. Two alternative methods of monitoring TGO growth using reflection amplitudes and spectral shifts were proposed for the prediction of TBC failure. Laser-machined defects as narrow as 50 microns were resolved in one- and two-dimensional images. The light and dark rings of trees, which reflect the changes in tree growth density over the course of a year, are measurable using pulsed terahertz beams. Tree-rings of bare and painted wood specimen were laterally and axially tomographically imaged in order to facilitate the dendrochronological cross-dating of artifacts. Comparisons were made between photographs and terahertz images to demonstrate the reliability of the technique. Historically, numerous unique artworks have been lost through the act of being covered over time. Samples of paintings, drawings and mosaics were imaged beneath layers of paint and plaster using pulsed-terahertz techniques to demonstrate the efficacy of the technique for art history and restoration. Sketch materials and pigments were measured, between 0.05 and 1.0 THz, to help identify colors in spectroscopic images. Other computational and processing methods were used to optimize the distinction between color domains. Additional time-domain terahertz applications for the examination of artwork and other artifacts were proposed.

  20. Physics and applications of terahertz radiation

    CERN Document Server

    Paul, Douglas

    2014-01-01

    This book covers the latest advances in the techniques employed to manage the THz radiation and its potential uses. It has been subdivided in three sections: THz Detectors, THz Sources, Systems and Applications. These three sections will allow the reader to be introduced in a logical way to the physics problems of sensing and generation of the terahertz radiation, the implementation of these devices into systems including other components and finally the exploitation of the equipment for real applications in some different field. All of the sections and chapters can be individually addressed in order to deepen the understanding of a single topic without the need to read the whole book. The THz Detectors section will address the latest developments in detection devices based on three different physical principles: photodetection, thermal power detection, rectification. The THz Sources section will describe three completely different generation methods, operating in three separate scales: quantum cascade lasers...

  1. Spatial Terahertz Modulator

    Science.gov (United States)

    Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan

    2013-11-01

    Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.

  2. Detection of horizontal transfer of individual genes by anomalous oligomer frequencies

    Directory of Open Access Journals (Sweden)

    Elhai Jeff

    2012-06-01

    Full Text Available Abstract Background Understanding the history of life requires that we understand the transfer of genetic material across phylogenetic boundaries. Detecting genes that were acquired by means other than vertical descent is a basic step in that process. Detection by discordant phylogenies is computationally expensive and not always definitive. Many have used easily computed compositional features as an alternative procedure. However, different compositional methods produce different predictions, and the effectiveness of any method is not well established. Results The ability of octamer frequency comparisons to detect genes artificially seeded in cyanobacterial genomes was markedly increased by using as a training set those genes that are highly conserved over all bacteria. Using a subset of octamer frequencies in such tests also increased effectiveness, but this depended on the specific target genome and the source of the contaminating genes. The presence of high frequency octamers and the GC content of the contaminating genes were important considerations. A method comprising best practices from these tests was devised, the Core Gene Similarity (CGS method, and it performed better than simple octamer frequency analysis, codon bias, or GC contrasts in detecting seeded genes or naturally occurring transposons. From a comparison of predictions with phylogenetic trees, it appears that the effectiveness of the method is confined to horizontal transfer events that have occurred recently in evolutionary time. Conclusions The CGS method may be an improvement over existing surrogate methods to detect genes of foreign origin.

  3. Determination of the Boundary Transition Temperatures in Polypropylene on the Basis of Measurements in the Terahertz Band

    Science.gov (United States)

    Kitai, M. S.; Nazarov, M. M.; Nedorezova, P. M.; Shkurinov, A. P.

    2017-10-01

    We propose a method for determination of the boundary temperatures of transitions in the structure of polymers by means of analyzing the refractive index of these materials in the terahertz band. The temperatures of glass transition, crystallization, and melting are determined experimentally for isotactic and syndiotactic polypropylenes. Such polymers have low absorption coefficients in the terahertz band. The behavior of intermolecular oscillations of the macromolecules, which are active in polymer spectra in this frequency band, is analyzed.

  4. Terahertz imaging applied to cancer diagnosis

    Science.gov (United States)

    Brun, M.-A.; Formanek, F.; Yasuda, A.; Sekine, M.; Ando, N.; Eishii, Y.

    2010-08-01

    We report on terahertz (THz) time-domain spectroscopy imaging of 10 µm thick histological sections. The sections are prepared according to standard pathological procedures and deposited on a quartz window for measurements in reflection geometry. Simultaneous acquisition of visible images enables registration of THz images and thus the use of digital pathology tools to investigate the links between the underlying cellular structure and specific THz information. An analytic model taking into account the polarization of the THz beam, its incidence angle, the beam shift between the reference and sample pulses as well as multiple reflections within the sample is employed to determine the frequency-dependent complex refractive index. Spectral images are produced through segmentation of the extracted refractive index data using clustering methods. Comparisons of visible and THz images demonstrate spectral differences not only between tumor and healthy tissues but also within tumors. Further visualization using principal component analysis suggests different mechanisms as to the origin of image contrast.

  5. Strong negative terahertz photoconductivity in photoexcited graphene

    Science.gov (United States)

    Fu, Maixia; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Han, Peng; Zhang, Yan

    2018-01-01

    Terahertz (THz) response of a chemical vapor deposited graphene on a quartz substrate has been investigated by using an ultrafast optical-pump THz-probe spectroscopy. Without photoexcitation, the frequency-dependence optical conductivity shows a strong carrier response owing to the intrinsically doped graphene. Upon photoexcitation, an enhancement in THz transmission is observed and the transmission increases nonlinearly with the increase of pump power, which is rooted in a reduction of intrinsic conductivity arising from the strong enhancement of carrier scattering rather than THz emission occurrence. The modulation depth of 18.8% was experimentally achieved, which is more than four times greater than that of the previous reported. The photoinduced response here highlights the variety of response possible in graphene depending on the sample quality, carrier mobility and doping level. The graphene provides promising applications in high-performance THz modulators and THz photoelectric devices.

  6. Silicon Micromachining for Terahertz Component Development

    Science.gov (United States)

    Chattopadhyay, Goutam; Reck, Theodore J.; Jung-Kubiak, Cecile; Siles, Jose V.; Lee, Choonsup; Lin, Robert; Mehdi, Imran

    2013-01-01

    Waveguide component technology at terahertz frequencies has come of age in recent years. Essential components such as ortho-mode transducers (OMT), quadrature hybrids, filters, and others for high performance system development were either impossible to build or too difficult to fabricate with traditional machining techniques. With micromachining of silicon wafers coated with sputtered gold it is now possible to fabricate and test these waveguide components. Using a highly optimized Deep Reactive Ion Etching (DRIE) process, we are now able to fabricate silicon micromachined waveguide structures working beyond 1 THz. In this paper, we describe in detail our approach of design, fabrication, and measurement of silicon micromachined waveguide components and report the results of a 1 THz canonical E-plane filter.

  7. NATO Advanced Research Workshop on Terahertz and Mid Infrared Radiation

    CERN Document Server

    Pereira, Mauro F; Terahertz and Mid Infrared Radiation

    2011-01-01

    Terahertz (THz) and Mid-Infrared (MIR) radiation  (TERA-MIR) can be transmitted through nearly any material without causing biological harm. Novel and rapid methods of detection can be created with devices operation in these spectral ranges allowing scanning for weapons, detecting hidden explosives (including plastic landmines), controlling the quality of food and a host of other exciting applications.  This book focuses on mathematical and physical aspects of the field, on unifying these two spectral domains (THz and MIR) with regard to common sources, detectors, materials and applications, and on key interdisciplinary topics. The main THz and MIR source is the quantum cascade laser (QCL). Thus significant attention is paid to the challenge of turning this advanced technology into affordable commercial devices so as to exploit its enormous potential. However other alternatives to THz QCLs are also presented, e.g.  sub-terahertz imaging from avalanching GaAs bipolar transistors, Josephson junctions as THz ...

  8. Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends

    Science.gov (United States)

    Hochrein, Thomas

    2015-03-01

    Although a lot of work has already been done under the older terms "far infrared" or "sub-millimeter waves", the term "terahertz" stands for a novel technique offering many potential applications. The latter term also represents a new generation of systems with the opportunity for coherent, time-resolved detection. In addition to the well-known technical opportunities, an historical examination of Internet usage, as well as the number of publications and patent applications, confirms ongoing interest in this technique. These activities' annual growth rate is between 9 % and 21 %. The geographical distribution shows the center of terahertz activities. A shift from the scientific to more application-oriented research can be observed. We present a survey among worldwide terahertz suppliers with special focus on the European region and the use of terahertz systems in the field of measurement and analytical applications. This reveals the current state of terahertz systems' commercial and geographical availability as well as their costs, target markets, and technical performance. Component cost distribution using the example of an optical pulsed time-domain terahertz system gives an impression of the prevailing cost structure. The predication regarding prospective market development, decreasing system costs and higher availability shows a convenient situation for potential users and interested customers. The causes are primarily increased competition and larger quantities in the future.

  9. Synthetic Modifications In the Frequency Domain for Finite Element Model Update and Damage Detection

    Science.gov (United States)

    2017-09-01

    Aeronautical Society , 24, pp. 590–591. [23] Fritzen, C., and Kiefer, T., 1992, “Localization and Correction of Errors in Finite Element Models Based on...MODIFICATIONS IN THE FREQUENCY DOMAIN FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Ryun J. C. Konze September 2017 Thesis Advisor...FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION 5. FUNDING NUMBERS 6. AUTHOR(S) Ryun J. C. Konze 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  10. Terahertz Dynamics in Carbon Nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2012-02-01

    This NSF Partnerships for International Research and Education (PIRE) project supports a unique interdisciplinary and international partnership investigating terahertz (THz) dynamics in nanostructures. The 0.1 to 10 THz frequency range of the electromagnetic spectrum is where electrical transport and optical transitions merge, offering exciting opportunities to study a variety of novel physical phenomena in condensed matter. By combining THz technology and nanotechnology, we can advance our understanding of THz physics while improving and developing THz devices. Specifically, this PIRE research explores THz dynamics of electrons in carbon nanomaterials, namely, nanotubes and graphene --- low-dimensional, sp^2-bonded carbon systems with unique finite-frequency properties. Japan and the U.S. are global leaders in both THz research and carbon research, and stimulating cooperation is critical to further advance THz science and to commercialize products developed in the lab. However, obstacles exist for international collaboration --- primarily linguistic and cultural barriers --- and this PIRE project aims to address these barriers through the integration of our research and education programs. Our strong educational portfolio endeavours to cultivate interest in nanotechnology amongst young U.S. undergraduate students and encourage them to pursue graduate study and academic research in the physical sciences, especially those from underrepresented groups. Our award-winning International Research Experience for Undergraduates Program, NanoJapan, provides structured research internships in Japanese university laboratories with Japanese mentors --- recognized as a model international education program for science and engineering students. The project builds the skill sets of nanoscience researchers and students by cultivating international and inter-cultural awareness, research expertise, and specific academic interests in nanotechnology. U.S. project partners include Rice

  11. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Chen, Hou - Tong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  12. Physics-Based Imaging Methods for Terahertz Nondestructive Evaluation Applications

    Science.gov (United States)

    Kniffin, Gabriel Paul

    Lying between the microwave and far infrared (IR) regions, the "terahertz gap" is a relatively unexplored frequency band in the electromagnetic spectrum that exhibits a unique combination of properties from its neighbors. Like in IR, many materials have characteristic absorption spectra in the terahertz (THz) band, facilitating the spectroscopic "fingerprinting" of compounds such as drugs and explosives. In addition, non-polar dielectric materials such as clothing, paper, and plastic are transparent to THz, just as they are to microwaves and millimeter waves. These factors, combined with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the THz band uniquely suited for many NDE applications. In a typical nondestructive test, the objective is to detect a feature of interest within the object and provide an accurate estimate of some geometrical property of the feature. Notable examples include the thickness of a pharmaceutical tablet coating layer or the 3D location, size, and shape of a flaw or defect in an integrated circuit. While the material properties of the object under test are often tightly controlled and are generally known a priori, many objects of interest exhibit irregular surface topographies such as varying degrees of curvature over the extent of their surfaces. Common THz pulsed imaging (TPI) methods originally developed for objects with planar surfaces have been adapted for objects with curved surfaces through use of mechanical scanning procedures in which measurements are taken at normal incidence over the extent of the surface. While effective, these methods often require expensive robotic arm assemblies, the cost and complexity of which would likely be prohibitive should a large volume of tests be needed to be carried out on a production line. This work presents a robust and efficient physics-based image processing approach based on the mature field of parabolic equation methods, common to undersea acoustics, seismology

  13. Error Type and Lexical Frequency Effects: Error Detection in Swedish Children With Language Impairment.

    Science.gov (United States)

    Hallin, Anna Eva; Reuterskiöld, Christina

    2017-10-17

    The first aim of this study was to investigate if Swedish-speaking school-age children with language impairment (LI) show specific morphosyntactic vulnerabilities in error detection. The second aim was to investigate the effects of lexical frequency on error detection, an overlooked aspect of previous error detection studies. Error sensitivity for grammatical structures vulnerable in Swedish-speaking preschool children with LI (omission of the indefinite article in a noun phrase with a neuter/common noun, and use of the infinitive instead of past-tense regular and irregular verbs) was compared to a control error (singular noun instead of plural). Target structures involved a high-frequency (HF) or a low-frequency (LF) noun/verb. Grammatical and ungrammatical sentences were presented in headphones, and responses were collected through button presses. Children with LI had similar sensitivity to the plural control error as peers with typical language development, but lower sensitivity to past-tense errors and noun phrase errors. All children showed lexical frequency effects for errors involving verbs (HF > LF), and noun gender effects for noun phrase errors (common > neuter). School-age children with LI may have subtle difficulties with morphosyntactic processing that mirror expressive difficulties in preschool children with LI. Lexical frequency may affect morphosyntactic processing, which has clinical implications for assessment of grammatical knowledge.

  14. Detection of arc fault based on frequency constrained independent component analysis

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Xu, Renhao; Chen, Yongzhi; Yang, Jianhong; Chen, Shouhong

    2015-02-01

    Arc fault is one of the main reasons of electrical fires. As a result of weakness, randomness and cross talk of arc faults, very few of methods have been successfully used to protect loads from all arc faults in low-voltage circuits. Therefore, a novel detection method is developed for detection of arc faults. The method is based on frequency constrained independent component analysis. In the process of the method derivation, a band-pass filter was introduced as a constraint condition to separate independent components of mixed signals. In the process of the independent component separations, although the fault mixed signals were under the conditions of the strong background noise and the frequency aliasing, the effective high frequency components of arc faults could be separated by frequency constrained independent component analysis. Based on the separated components, the power spectrums of them were calculated to classify the normal and the arc fault conditions. The validity of the developed method was verified by using an arc fault experimental platform set up. The results show that arc faults of nine typical electrical loads are successfully detected based on frequency constrained independent component analysis.

  15. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    Science.gov (United States)

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  16. Tailoring the slow light behavior in terahertz metasurfaces

    International Nuclear Information System (INIS)

    Manjappa, Manukumara; Cong, Longqing; Singh, Ranjan; Chiam, Sher-Yi; Bettiol, Andrew A.; Zhang, Weili

    2015-01-01

    We experimentally study the effect of near field coupling on the transmission of light in terahertz metasurfaces. Our results show that tailoring the coupling between the resonators modulates the amplitude of resulting electromagnetically induced transmission, probed under different types of asymmetries in the coupled system. Observed change in the transmission amplitude is attributed to the change in the amount of destructive interference between the resonators in the vicinity of strong near field coupling. We employ a two-particle model to theoretically study the influence of the coupling between bright and quasi-dark modes on the transmission properties of the system and we find an excellent agreement with our observed results. Adding to the enhanced transmission characteristics, our results provide a deeper insight into the metamaterial analogues of atomic electromagnetically induced transparency and offer an approach to engineer slow light devices, broadband filters, and attenuators at terahertz frequencies

  17. Damage Detection Based on Cross-Term Extraction from Bilinear Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Ma Yuchao

    2014-01-01

    Full Text Available Abundant damage information is implicated in the bilinear time-frequency distribution of structural dynamic signals, which could provide effective support for structural damage identification. Signal time-frequency analysis methods are reviewed, and the characters of linear time-frequency distribution and bilinear time-frequency distribution typically represented by the Wigner-Ville distribution are compared. The existence of the cross-term and its application in structural damage detection are demonstrated. A method of extracting the dominant term is proposed, which combines the short-time Fourier spectrum and Wigner-Ville distribution; then two-dimensional time-frequency transformation matrix is constructed and the complete cross-term is extracted finally. The distribution character of which could be applied to the structural damage identification. Through theoretical analysis, model experiment and numerical simulation of the girder structure, the change rate of cross-term amplitude is validated to identify the damage location and degree. The effectiveness of the cross-term of bilinear time-frequency distribution for damage detection is confirmed and the analytical method of damage identification used in structural engineering is available.

  18. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  19. Noise Depression of Parasitic Capacitance for Frequency Detection of Micromechanical Bulk Disk Resonator

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Escouflaire, Marie

    2010-01-01

    A bulk disk resonator working in dynamic mode is used for mass detection. In the capacitive transduction scheme, the parasitic capacitance between the electrodes produces an anti resonance in the transmission curve, which distorts the phase shift at the resonant frequency and increases the freque...

  20. Change detection in quad and dual pol, single- and bi-frequency SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    -value are given. In a case study airborne EMISAR C- and L-band SAR images covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry data. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation...

  1. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    Science.gov (United States)

    Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)

    2009-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  2. Prospects of Frequency-Time Correlation Analysis for Detecting Pipeline Leaks by Acoustic Emission Method

    International Nuclear Information System (INIS)

    Faerman, V A; Cheremnov, A G; Avramchuk, V V; Luneva, E E

    2014-01-01

    In the current work the relevance of nondestructive test method development applied for pipeline leak detection is considered. It was shown that acoustic emission testing is currently one of the most widely spread leak detection methods. The main disadvantage of this method is that it cannot be applied in monitoring long pipeline sections, which in its turn complicates and slows down the inspection of the line pipe sections of main pipelines. The prospects of developing alternative techniques and methods based on the use of the spectral analysis of signals were considered and their possible application in leak detection on the basis of the correlation method was outlined. As an alternative, the time-frequency correlation function calculation is proposed. This function represents the correlation between the spectral components of the analyzed signals. In this work, the technique of time-frequency correlation function calculation is described. The experimental data that demonstrate obvious advantage of the time-frequency correlation function compared to the simple correlation function are presented. The application of the time-frequency correlation function is more effective in suppressing the noise components in the frequency range of the useful signal, which makes maximum of the function more pronounced. The main drawback of application of the time- frequency correlation function analysis in solving leak detection problems is a great number of calculations that may result in a further increase in pipeline time inspection. However, this drawback can be partially reduced by the development and implementation of efficient algorithms (including parallel) of computing the fast Fourier transform using computer central processing unit and graphic processing unit

  3. Instantaneous Triple-Frequency GPS Cycle-Slip Detection and Repair

    OpenAIRE

    Dai, Zhen; Knedlik, Stefan; Loffeld, Otmar

    2009-01-01

    A real-time algorithm to detect, determine, and validate the cycle-slips for triple-frequency GPS is proposed. The cycle-slip detection is implemented by simultaneously applying two geometry-free phase combinations in order to detect more insensitive cycle-slips, and it is applicable for high data rate applications. The cycle-slip determination adaptively uses the predicted phase data and the code data. LAMBDA technique is applied to search for the cycle-slip candidates. The cycle-slip valida...

  4. Resolution improvement of low frequency AC magnetic field detection for modulated MR sensors

    Science.gov (United States)

    Hu, Jinghua; Pan, Mengchun; Hu, Jiafei; Li, Sizhong; Chen, Dixiang; Tian, Wugang; Sun, Kun; Du, Qingfa; Wang, Yuan; Pan, Long; Zhou, Weihong; Zhang, Qi; Li, Peisen; Peng, Junping; Qiu, Weicheng; Zhou, Jikun

    2017-09-01

    Magnetic modulation methods especially Micro-Electro-Mechanical System (MEMS) modulation can improve the sensitivity of magnetoresistive (MR) sensors dramatically, and pT level detection of Direct Current (DC) magnetic field can be realized. While in a Low Frequency Alternate Current (LFAC) magnetic field measurement situation, frequency measurement is limited by a serious spectrum aliasing problem caused by the remanence in sensors and geomagnetic field, leading to target information loss because frequency indicates the magnetic target characteristics. In this paper, a compensation field produced with integrated coils is applied to the MR sensor to remove DC magnetic field distortion, and a LFAC magnetic field frequency estimation algorithm is proposed based on a search of the database, which is derived from the numerical model revealing the relationship of the LFAC frequency and determination factor [defined by the ratio of Discrete Fourier Transform (DFT) coefficients]. In this algorithm, an inverse modulation of sensor signals is performed to detect jumping-off point of LFAC in the time domain; this step is exploited to determine sampling points to be processed. A determination factor is calculated and taken into database to figure out frequency with a binary search algorithm. Experimental results demonstrate that the frequency measurement resolution of the LFAC magnetic field is improved from 12.2 Hz to 0.8 Hz by the presented method, which, within the signal band of a magnetic anomaly (0.04-2 Hz), indicates that the proposed method may expand the applications of magnetoresistive (MR) sensors to human healthcare and magnetic anomaly detection (MAD).

  5. Resolution improvement of low frequency AC magnetic field detection for modulated MR sensors.

    Science.gov (United States)

    Hu, Jinghua; Pan, Mengchun; Hu, Jiafei; Li, Sizhong; Chen, Dixiang; Tian, Wugang; Sun, Kun; Du, Qingfa; Wang, Yuan; Pan, Long; Zhou, Weihong; Zhang, Qi; Li, Peisen; Peng, Junping; Qiu, Weicheng; Zhou, Jikun

    2017-09-01

    Magnetic modulation methods especially Micro-Electro-Mechanical System (MEMS) modulation can improve the sensitivity of magnetoresistive (MR) sensors dramatically, and pT level detection of Direct Current (DC) magnetic field can be realized. While in a Low Frequency Alternate Current (LFAC) magnetic field measurement situation, frequency measurement is limited by a serious spectrum aliasing problem caused by the remanence in sensors and geomagnetic field, leading to target information loss because frequency indicates the magnetic target characteristics. In this paper, a compensation field produced with integrated coils is applied to the MR sensor to remove DC magnetic field distortion, and a LFAC magnetic field frequency estimation algorithm is proposed based on a search of the database, which is derived from the numerical model revealing the relationship of the LFAC frequency and determination factor [defined by the ratio of Discrete Fourier Transform (DFT) coefficients]. In this algorithm, an inverse modulation of sensor signals is performed to detect jumping-off point of LFAC in the time domain; this step is exploited to determine sampling points to be processed. A determination factor is calculated and taken into database to figure out frequency with a binary search algorithm. Experimental results demonstrate that the frequency measurement resolution of the LFAC magnetic field is improved from 12.2 Hz to 0.8 Hz by the presented method, which, within the signal band of a magnetic anomaly (0.04-2 Hz), indicates that the proposed method may expand the applications of magnetoresistive (MR) sensors to human healthcare and magnetic anomaly detection (MAD).

  6. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.

    Science.gov (United States)

    Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E

    2016-08-10

    Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.

  7. Terahertz beam switching by electrical control of graphene-enabled tunable metasurface.

    Science.gov (United States)

    Zhang, Yin; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-10-26

    Controlling the terahertz wave, especially the dynamical and full control of terahertz wavefront, is highly demanded due to the increasing development of practical devices and application systems. Recently considerable efforts have been made to fill the 'terahertz gap' with the help of artificial metamaterial or metasurface incorporated with graphene material. Here, we propose a scheme to design tunable metasurface consisting of metallic patch array on a grounded polymer substrate embedded with graphene layers to electrically control the electromagnetic beam reflection at terahertz frequency. By adjusting geometric dimension of the patch elements, 360 degree reflection phase range may be achieved, thus abrupt phase shifts can be introduced along the metasurface for tailoring the reflected wavefront. Moreover, the reflective phase gradient over the metasurface can be switched between 90 and 360 degree by controlling the Fermi energy of the embedded graphene through voltage biasing, hence dynamically switching the reflective beam directions. Numerical simulations demonstrate that either single beam or dual beam dynamically switching between normal and oblique reflection angles can be well attained at working frequency. The proposed approach will bring much freedom in the design of beam manipulation devices and may be applied to terahertz radiation control.

  8. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rood, Arthur S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National

  9. Buried Object Detection Method Using Optimum Frequency Range in Extremely Shallow Underground

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Abe, Touma

    2011-07-01

    We propose a new detection method for buried objects using the optimum frequency response range of the corresponding vibration velocity. Flat speakers and a scanning laser Doppler vibrometer (SLDV) are used for noncontact acoustic imaging in the extremely shallow underground. The exploration depth depends on the sound pressure, but it is usually less than 10 cm. Styrofoam, wood (silver fir), and acrylic boards of the same size, different size styrofoam boards, a hollow toy duck, a hollow plastic container, a plastic container filled with sand, a hollow steel can and an unglazed pot are used as buried objects which are buried in sand to about 2 cm depth. The imaging procedure of buried objects using the optimum frequency range is given below. First, the standardized difference from the average vibration velocity is calculated for all scan points. Next, using this result, underground images are made using a constant frequency width to search for the frequency response range of the buried object. After choosing an approximate frequency response range, the difference between the average vibration velocity for all points and that for several points that showed a clear response is calculated for the final confirmation of the optimum frequency range. Using this optimum frequency range, we can obtain the clearest image of the buried object. From the experimental results, we confirmed the effectiveness of our proposed method. In particular, a clear image of the buried object was obtained when the SLDV image was unclear.

  10. Design and Implementation of 1-2 GHz Stepped Frequency GPR for Buried Metal Detection

    Directory of Open Access Journals (Sweden)

    Joko Suryana

    2010-10-01

    Full Text Available In this paper, we describe the design and realization steps of 1 - 2 GHz SFGPR (Stepped Frequency Ground Penetrating Radar transceiver for metal detection under the ground. Before using prototyped GPR for detecting the metal under the ground, several of calibration processes must be performed, namely phase calibration and monocycle pulse waveform calibration. After completing the calibrations, this prototyped GPR would be ready for detecting a  hidden object such as a metal plate 5 cm under the ground in our small test range size 25 cm x 75 cm x 10 cm. From the calibration and detection results, we concluded that the prototyped SFGPR passed the technical specifications of the design and could perform the metal detection under the ground with high SNR.

  11. Imaging and Spectroscopic Sensing with Low-Repetition-Rate Terahertz Pulses and GaN TeraFET Detectors

    Science.gov (United States)

    Voß, Daniel; Zouaghi, Wissem; Jamshidifar, Mehran; Boppel, Sebastian; McDonnell, Cormac; Bain, James R. P.; Hempler, Nils; Malcolm, Graeme P. A.; Maker, Gareth T.; Bauer, Maris; Lisauskas, Alvydas; Rämer, Adam; Shevchenko, Sergey A.; Heinrich, Wolfgang; Krozer, Viktor; Roskos, Hartmut G.

    2018-03-01

    Aiming for non-destructive testing and security applications, we investigate transmission-mode imaging and spectroscopic sensing using terahertz (THz) pulses from a commercial optical parametric oscillator (OPO) in combination with THz detectors based on antenna-coupled field-effect transistors (TeraFETs). The Q-switched OPO generates quasi-continuous-wave THz pulses with a peak power of up to 1 W at a repetition rate between 12 and 90 Hz. The pulses are frequency-tunable between 0.7 and 2.6 THz with a typical linewidth of 50 GHz. We explore detection with fast GaN/AlGaN TeraFETs which hold the potential for multi-pixel and homodyne detection.

  12. Coherent source terahertz-subterahertz spectroscopy: instrumentation and physics

    Science.gov (United States)

    Gorshunov, Boris P.; Zhukova, Elena S.

    2014-03-01

    We describe instrumentation and principles of terahertz-subterahertz (THz-subTHz) spectrometers based on continuously frequency tunable coherent radiation sources - backward-wave oscillators (BWOs). The spectrometers cover frequency range from 1 cm-1 (0.03 THz) to 50 cm-1 (1.5 THz) and operate at temperatures from 2 K to 1000 K, also in magnetic fields up to 8 Tesla. We illustrate abilities of the BWO-spectroscopy by presenting some late results on dielectric, conducting, superconducting and magnetic materials.

  13. Tunable reflecting terahertz filter based on chirped metamaterial structure

    Science.gov (United States)

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  14. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    Science.gov (United States)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  15. Detection of the Third Heart Sound Based on Nonlinear Signal Decomposition and Time-Frequency Localization.

    Science.gov (United States)

    Barma, Shovan; Chen, Bo-Wei; Ji, Wen; Rho, Seungmin; Chou, Chih-Hung; Wang, Jhing-Fa

    2016-08-01

    This study presents a precise way to detect the third ( S3 ) heart sound, which is recognized as an important indication of heart failure, based on nonlinear single decomposition and time-frequency localization. The detection of the S3 is obscured due to its significantly low energy and frequency. Even more, the detected S3 may be misunderstood as an abnormal second heart sound with a fixed split, which was not addressed in the literature. To detect such S3, the Hilbert vibration decomposition method is applied to decompose the heart sound into a certain number of subcomponents while intactly preserving the phase information. Thus, the time information of all of the decomposed components are unchanged, which further expedites the identification and localization of any module/section of a signal properly. Next, the proposed localization step is applied to the decomposed subcomponents by using smoothed pseudo Wigner-Ville distribution followed by the reassignment method. Finally, based on the positional information, the S3 is distinguished and confirmed by measuring time delays between the S2 and S3. In total, 82 sets of cardiac cycles collected from different databases including Texas Heart Institute database are examined for evaluation of the proposed method. The result analysis shows that the proposed method can detect the S3 correctly, even when the normalized temporal energy of S3 is larger than 0.16, and the frequency of those is larger than 34 Hz. In a performance analysis, the proposed method demonstrates that the accuracy rate of S3 detection is as high as 93.9%, which is significantly higher compared with the other methods. Such findings prove the robustness of the proposed idea for detecting substantially low-energized S3 .

  16. Generation, detection and spectroscopic studies of high-frequency nonequilibrium phonons in crystals

    International Nuclear Information System (INIS)

    Dennis, W.M.; Yen, W.M.

    2007-01-01

    In this article we will review studies conducted in the past two decades on the dynamic properties of high-frequency (THz) phonons generated monochromatically with high power far infrared (FIR) laser pulses using defect-induced phonon absorption and detected using a vibronic sideband spectrometer fashioned after that devised by Kaplyanskii, the honoree of this special issue. The temporal and spectral evolution of the phonon signature provides information on the mechanisms that dominate the relaxation of high-frequency phonons in real crystals

  17. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  18. Squeezed light for the interferometric detection of high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Schnabel, R; Harms, J; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 10 6dB/20dB ∼ 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 x 10 -23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity

  19. Narrow-band tunable terahertz emission from ferrimagnetic Mn{sub 3-x}Ga thin films

    Energy Technology Data Exchange (ETDEWEB)

    Awari, N. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); University of Groningen, 9747 AG Groningen (Netherlands); Kovalev, S., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Fowley, C., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Green, B.; Yildirim, O.; Lindner, J.; Fassbender, J.; Deac, A. M.; Gensch, M. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Rode, K., E-mail: s.kovalev@hzdr.de, E-mail: c.fowley@hzdr.de, E-mail: rodek@tcd.ie; Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Coey, J. M. D. [CRANN, AMBER and School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Gallardo, R. A. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparíso (Chile)

    2016-07-18

    Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn{sub 3-x}Ga Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.

  20. Early Seizure Detection by Applying Frequency-Based Algorithm Derived from the Principal Component Analysis.

    Science.gov (United States)

    Lee, Jiseon; Park, Junhee; Yang, Sejung; Kim, Hani; Choi, Yun Seo; Kim, Hyeon Jin; Lee, Hyang Woon; Lee, Byung-Uk

    2017-01-01

    The use of automatic electrical stimulation in response to early seizure detection has been introduced as a new treatment for intractable epilepsy. For the effective application of this method as a successful treatment, improving the accuracy of the early seizure detection is crucial. In this paper, we proposed the application of a frequency-based algorithm derived from principal component analysis (PCA), and demonstrated improved efficacy for early seizure detection in a pilocarpine-induced epilepsy rat model. A total of 100 ictal electroencephalographs (EEG) during spontaneous recurrent seizures from 11 epileptic rats were finally included for the analysis. PCA was applied to the covariance matrix of a conventional EEG frequency band signal. Two PCA results were compared: one from the initial segment of seizures (5 sec of seizure onset) and the other from the whole segment of seizures. In order to compare the accuracy, we obtained the specific threshold satisfying the target performance from the training set, and compared the False Positive (FP), False Negative (FN), and Latency (Lat) of the PCA based feature derived from the initial segment of seizures to the other six features in the testing set. The PCA based feature derived from the initial segment of seizures performed significantly better than other features with a 1.40% FP, zero FN, and 0.14 s Lat. These results demonstrated that the proposed frequency-based feature from PCA that captures the characteristics of the initial phase of seizure was effective for early detection of seizures. Experiments with rat ictal EEGs showed an improved early seizure detection rate with PCA applied to the covariance of the initial 5 s segment of visual seizure onset instead of using the whole seizure segment or other conventional frequency bands.

  1. Terahertz computed tomography in three-dimensional using a pyroelectric array detector

    Science.gov (United States)

    Li, Bin; Wang, Dayong; Zhou, Xun; Rong, Lu; Huang, Haochong; Wan, Min; Wang, Yunxin

    2017-05-01

    Terahertz frequency range spans from 0.1 to 10 THz. Terahertz radiation can penetrate nonpolar materials and nonmetallic materials, such as plastics, wood, and clothes. Then the feature makes the terahertz imaging have important research value. Terahertz computed tomography makes use of the penetrability of terahertz radiation and obtains three-dimensional object projection data. In the paper, continuous-wave terahertz computed tomography with a pyroelectric array detectoris presented. Compared with scanning terahertz computed tomography, a pyroelectric array detector can obtain a large number of projection data in a short time, as the acquisition mode of the array pyroelectric detector omit the projection process on the vertical and horizontal direction. With the two-dimensional cross-sectional images of the object are obtained by the filtered back projection algorithm. The two side distance of the straw wall account for 80 pixels, so it multiplied by the pixel size is equal to the diameter of the straw about 6.4 mm. Compared with the actual diameter of the straw, the relative error is 6%. In order to reconstruct the three-dimensional internal structure image of the straw, the y direction range from 70 to 150 are selected on the array pyroelectric detector and are reconstructed by the filtered back projection algorithm. As the pixel size is 80 μm, the height of three-dimensional internal structure image of the straw is 6.48 mm. The presented system can rapidly reconstruct the three-dimensional object by using a pyroelectric array detector and explores the feasibility of on non-destructive evaluation and security testing.

  2. Optimising 4-D surface change detection: an approach for capturing rockfall magnitude-frequency

    Science.gov (United States)

    Williams, Jack G.; Rosser, Nick J.; Hardy, Richard J.; Brain, Matthew J.; Afana, Ashraf A.

    2018-02-01

    We present a monitoring technique tailored to analysing change from near-continuously collected, high-resolution 3-D data. Our aim is to fully characterise geomorphological change typified by an event magnitude-frequency relationship that adheres to an inverse power law or similar. While recent advances in monitoring have enabled changes in volume across more than 7 orders of magnitude to be captured, event frequency is commonly assumed to be interchangeable with the time-averaged event numbers between successive surveys. Where events coincide, or coalesce, or where the mechanisms driving change are not spatially independent, apparent event frequency must be partially determined by survey interval.The data reported have been obtained from a permanently installed terrestrial laser scanner, which permits an increased frequency of surveys. Surveying from a single position raises challenges, given the single viewpoint onto a complex surface and the need for computational efficiency associated with handling a large time series of 3-D data. A workflow is presented that optimises the detection of change by filtering and aligning scans to improve repeatability. An adaptation of the M3C2 algorithm is used to detect 3-D change to overcome data inconsistencies between scans. Individual rockfall geometries are then extracted and the associated volumetric errors modelled. The utility of this approach is demonstrated using a dataset of ˜ 9 × 103 surveys acquired at ˜ 1 h intervals over 10 months. The magnitude-frequency distribution of rockfall volumes generated is shown to be sensitive to monitoring frequency. Using a 1 h interval between surveys, rather than 30 days, the volume contribution from small (< 0.1 m3) rockfalls increases from 67 to 98 % of the total, and the number of individual rockfalls observed increases by over 3 orders of magnitude. High-frequency monitoring therefore holds considerable implications for magnitude-frequency derivatives, such as hazard return

  3. Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency

    Directory of Open Access Journals (Sweden)

    J. G. Williams

    2018-02-01

    Full Text Available We present a monitoring technique tailored to analysing change from near-continuously collected, high-resolution 3-D data. Our aim is to fully characterise geomorphological change typified by an event magnitude–frequency relationship that adheres to an inverse power law or similar. While recent advances in monitoring have enabled changes in volume across more than 7 orders of magnitude to be captured, event frequency is commonly assumed to be interchangeable with the time-averaged event numbers between successive surveys. Where events coincide, or coalesce, or where the mechanisms driving change are not spatially independent, apparent event frequency must be partially determined by survey interval.The data reported have been obtained from a permanently installed terrestrial laser scanner, which permits an increased frequency of surveys. Surveying from a single position raises challenges, given the single viewpoint onto a complex surface and the need for computational efficiency associated with handling a large time series of 3-D data. A workflow is presented that optimises the detection of change by filtering and aligning scans to improve repeatability. An adaptation of the M3C2 algorithm is used to detect 3-D change to overcome data inconsistencies between scans. Individual rockfall geometries are then extracted and the associated volumetric errors modelled. The utility of this approach is demonstrated using a dataset of  ∼  9  ×  103 surveys acquired at  ∼  1 h intervals over 10 months. The magnitude–frequency distribution of rockfall volumes generated is shown to be sensitive to monitoring frequency. Using a 1 h interval between surveys, rather than 30 days, the volume contribution from small (< 0.1 m3 rockfalls increases from 67 to 98 % of the total, and the number of individual rockfalls observed increases by over 3 orders of magnitude. High-frequency monitoring therefore holds considerable

  4. Real-time Cycle-slip Detection and Repair Algorithm of GNSS Triple-frequency Observations

    Directory of Open Access Journals (Sweden)

    LIU Liu

    2017-04-01

    Full Text Available Method of cycle-slip detection based on Geometry-free observation combinations has insensitive cycle-slip. This paper analyzes the principle of cycle-slip detection based on the geometric relationship. Then study the similarities and differences of more than one geometry free phase combinations separately. And study the effect of adding a MW(Melbourne Wübbena combination. We proposed to select GF(Geometry Free combinations by cross-sectional area. Finally BeiDou triple-frequency data have been used to validate the conclusion. We conclude that two geometry-free phase combination is the most reasonable choice for the detection of insensitive cycle-slip. And a MW combination can obviously decrease the amounts of insensitive cycle-slip. The optimized algorithm only has 1 insensitive cycle slip, and all detected cycle-slip repaired successfully.

  5. Selecting frequency feature for license plate detection based on AdaBoost

    Science.gov (United States)

    Tan, Huachun; Chen, Hao; Deng, Yafeng; Liu, Junhui

    2009-01-01

    In this paper, a new method for license plate detection based on AdaBoost is proposed. In the new method, character frequency feature, which is powerful feature for detecting license plate character, are introduced to feature pool. The frequency features obtained from the FFT of horizontal projection of binary image are selected by AdaBoost. Then, Haar-like features selected by AdaBoost are used to capture subtle structure of license plate. Furthermore, considering the characteristic of Chinese license plate that there are two types of license plate: deeper background-lighter character and lighter background-deeper character license plates, two detectors are designed to extract different license plates respectively. Experimental results show the efficiency of the proposed method.

  6. Islanding Detection of Synchronous Machine-Based DGs using Average Frequency Based Index

    Directory of Open Access Journals (Sweden)

    M. Bakhshi

    2013-06-01

    Full Text Available Identification of intentional and unintentional islanding situations of dispersed generators (DGs is one of the most important protection concerns in power systems. Considering safety and reliability problems of distribution networks, an exact diagnosis index is required to discriminate the loss of the main network from the existing parallel operation. Hence, this paper introduces a new islanding detection method for synchronous machine–based DGs. This method uses the average value of the generator frequency to calculate a new detection index. The proposed method is an effective supplement of the over/under frequency protection (OFP/UFP system. The analytical equations and simulation results are used to assess the performance of the proposed method under various scenarios such as different types of faults, load changes and capacitor bank switching. To show the effectiveness of the proposed method, it is compared with the performance of both ROCOF and ROCOFOP methods.

  7. Baseline subtraction technique in the frequency-wavenumber domain for high sensitivity damage detection.

    Science.gov (United States)

    McKeon, Peter; Yaacoubi, Slah; Declercq, Nico F; Ramadan, Salah; Yaacoubi, Weina K

    2014-02-01

    This paper suggests a method for high-sensitivity damage detection. The method is based on pitch-catch measurements of Lamb waves combined with a baseline subtraction technique in the frequency-wavenumber domain. Small amplitude converted modes, generated during the interaction of propagating waves with damage, can thus be detected with minimal a priori information regarding their expected location in the frequency-wavenumber plane. This method is applied in the present paper to a case of notches with varied depth. Finite element simulations are carried out in the temporal domain to mimic results obtainable in real-world experiments. Two cases are studied, namely when each of the two pure fundamental modes are incident on a notch. The advantages of the method are detailed. The procedure to implement this method is described in the context of Structural Health Monitoring (SHM) or Non-Destructive Testing (NDT). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Use of Time- and Frequency-Domain Approaches for Damage Detection in Civil Engineering Structures

    Directory of Open Access Journals (Sweden)

    V. H. Nguyen

    2014-01-01

    Full Text Available The aim of this paper is to apply both time- and frequency-domain-based approaches on real-life civil engineering structures and to assess their capability for damage detection. The methodology is based on Principal Component Analysis of the Hankel matrix built from output-only measurements and of Frequency Response Functions. Damage detection is performed using the concept of subspace angles between a current (possibly damaged state and a reference (undamaged state. The first structure is the Champangshiehl Bridge located in Luxembourg. Several damage levels were intentionally created by cutting a growing number of prestressed tendons and vibration data were acquired by the University of Luxembourg for each damaged state. The second example consists in reinforced and prestressed concrete panels. Successive damages were introduced in the panels by loading heavy weights and by cutting steel wires. The illustrations show different consequences in damage identification by the considered techniques.

  9. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit.

  10. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    Science.gov (United States)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  11. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    Science.gov (United States)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  12. Real-time Cycle-slip Detection and Repair Algorithm of GNSS Triple-frequency Observations

    OpenAIRE

    LIU Liu; LÜ Zhiwei; YU Xiaodong; WANG Pengxu; YANG Dongsen; ZHANG Lundong; CONG Dianwei

    2017-01-01

    Method of cycle-slip detection based on Geometry-free observation combinations has insensitive cycle-slip. This paper analyzes the principle of cycle-slip detection based on the geometric relationship. Then study the similarities and differences of more than one geometry free phase combinations separately. And study the effect of adding a MW(Melbourne Wübbena) combination. We proposed to select GF(Geometry Free) combinations by cross-sectional area. Finally BeiDou triple-frequency data h...

  13. Fourcross shaped metamaterial filters fabricated from high temperature superconducting YBCO and Au thin films for terahertz waves

    Science.gov (United States)

    Demirhan, Y.; Alaboz, H.; Nebioğlu, M. A.; Mulla, B.; Akkaya, M.; Altan, H.; Sabah, C.; Ozyuzer, L.

    2017-07-01

    In this study, we present a new, unique fourcross shaped metamaterial terahertz (THz) filter fabricated from both gold thin films and YBa2Cu3O7-d high T c superconducting thin films. A commercial electromagnetic simulation software, CST Microwave Studio, is used to design and optimize the metamaterial filter structures. The proposed fourcross shaped rectangular filter structure consists of periodic metallic rings where strip lines are located at the sides of the ring. Fourcross metamaterial filters are fabricated by using e-beam lithography and ion beam etching techniques. Terahertz time-domain spectroscopy measurements validated the design predictions for both the center frequencies and bandwidths of the resonances due to the fourcross structures. The resonance switching of the transmission spectra was investigated by lowering the temperature below the critical transition temperature. This resonance switching effect is not observed in filters made up of metals. This novel fourcross rectangular resonator with a temperature-dependent resonance behavior holds great potential for active, tunable and low loss THz devices for imaging, sensing, and detection applications.

  14. Terahertz applications: trends and challenges

    Science.gov (United States)

    Robin, Thierry; Bouye, Clementine; Cochard, Jacques

    2014-03-01

    The objective of our work [1] was to determine the opportunities and challenges for Terahertz application development for the next years with a focus on systems: for homeland security and for Non Destructive Testing (NDT). Terahertz radiation has unique abilities and has been the subject of extensive research for many years. Proven concepts have emerged for numerous applications including Industrial NDT, Security, Health, Telecommunications, etc. Nevertheless, there has been no widely deployed application and Businesses based on THz technologies are still in their infancy. Some technological, market and industrial barriers are still to be broken. We summarize the final analysis and data: study of the technology trends and major bottlenecks per application segment, main challenges to be addressed in the next years, key opportunities for THz technologies based on market needs and requirements.

  15. An automatized frequency analysis for vine plot detection and delineation in remote sensing

    OpenAIRE

    Delenne , Carole; Rabatel , G.; Deshayes , M.

    2008-01-01

    The availability of an automatic tool for vine plot detection, delineation, and characterization would be very useful for management purposes. An automatic and recursive process using frequency analysis (with Fourier transform and Gabor filters) has been developed to meet this need. This results in the determination of vine plot boundary and accurate estimation of interrow width and row orientation. To foster large-scale applications, tests and validation have been carried out on standard ver...

  16. Detection of epileptiform activity in EEG signals based on time-frequency and nonlinear analysis

    Directory of Open Access Journals (Sweden)

    Dragoljub eGajic

    2015-03-01

    Full Text Available We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using nonlinear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved.

  17. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges.

    Science.gov (United States)

    Valentín, David; Presas, Alexandre; Bossio, Matias; Egusquiza, Mònica; Egusquiza, Eduard; Valero, Carme

    2018-01-10

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.

  18. Resonant crossover of terahertz loss to the gain of a Bloch oscillating InAs/AlSb superlattice.

    Science.gov (United States)

    Savvidis, P G; Kolasa, B; Lee, G; Allen, S J

    2004-05-14

    Terahertz absorption in waveguides loaded with InAs/AlSb super-superlattice mesas reveals a frequency dependent crossover from loss to gain that is related to the Stark ladder produced by an applied dc electric field. Electric field domains appear to be suppressed in the super-superlattice composed of many very short segments of superlattice, interrupted by heavily doped InAs regions. Resonant crossover is indicated by an increase in terahertz transmission as the Stark splitting or Bloch frequency determined by the applied dc electric field exceeds the measurement frequency.

  19. Ground-plane-less bidirectional terahertz absorber based on omega resonators

    NARCIS (Netherlands)

    Balmakou, Alexei; Podalov, Maxim; Khakhomov, Sergei; Stavenga, Doekele; Semchenko, Igor

    2015-01-01

    We present a new ultrathin metamaterial that acts as a frequency-selective absorber of terahertz radiation. The absorber is a square array of pairs of omega-shaped micro-resonators made of high-ohmic-loss metal. The metamaterial provides significant suppression of transmitted and reflected radiation

  20. Terahertz multi-metal-wire hybrid-cladding hollow waveguide for refractive index sensing

    Science.gov (United States)

    Ying-Ying, Yu; Xu-You, Li; Kun-Peng, He; Bo, Sun

    2016-02-01

    We propose a design of terahertz refractive index sensing based on the multi-metal-wire (MMW) hybrid-cladding hollow waveguide. The proposed terahertz hybrid-cladding hollow waveguide comprises one air core in the center surrounding MMW surrounded dielectric. The central air core is used for filling lossless measurands and transmitting terahertz light. In particular, the refractive index sensing is realized by measuring the mode field area (MFA) variation of radially polarized mode. The modal effective refractive index, mode field intensity distribution, and mode field area properties responding to the measurand refractive indexes for different operating frequencies and structure dimensions are investigated, respectively. Simulations show that the proposed terahertz refractive index sensor can realize easily the measurement of the measurand refractive index. Meanwhile, the effects of operating frequency and structure parameters on sensitivity and measurement accuracy are also studied. In view of the trade-off between sensitivity and measurement accuracy, the reasonable choice of the operating frequency and structure parameters can optimize appropriately the sensitivity and measurement accuracy, and the sensitivity can reach approximately 0.585 mm2/RIU (RIU is short for refraction index units) with the proper frequency and structure parameter. Project supported by the National Natural Science Foundation of China (Grant No. 51309059).

  1. Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Bugay А.N.

    2015-01-01

    Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.

  2. Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures

    NARCIS (Netherlands)

    Adam, A.J.L.; Brok, J.M.; Seo, M.A.; Ahn, K.J.; Kim, D.S.; Kang, J.H.; Park, Q.H.; Nagel, M.; Planken, P.C.M.

    2008-01-01

    Using terahertz-light excitation, we have measured with sub-wavelength spatial, and sub-cycle temporal resolution the time- and frequency-dependent electric-field and surface-charge density in the vicinity of small metallic holes. In addition to a singularity like concentration of the electric field

  3. Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Cooke, David; Fujiwara, Masazumi

    2009-01-01

    We present a new method for data acquisition in time-resolved terahertz spectroscopy experiments. Our approach is based on simultaneous collection of reference and differential THz scans. Both the optical THz generation beam and the pump beam are modulated at two different frequencies that are no...

  4. A microfabricated low-profile wideband antenna array for terahertz communications.

    Science.gov (United States)

    Luk, K M; Zhou, S F; Li, Y J; Wu, F; Ng, K B; Chan, C H; Pang, S W

    2017-04-28

    While terahertz communications are considered to be the future solutions for the increasing demands on bandwidth, terahertz equivalents of radio frequency front-end components have not been realized. It remains challenging to achieve wideband, low profile antenna arrays with highly directive beams of radiation. Here, based on the complementary antenna approach, a wideband 2 × 2 cavity-backed slot antenna array with a corrugated surface is proposed. The approach is based on a unidirectional antenna with a cardiac radiation pattern and stable frequency characteristics that is achieved by integrating a series-resonant electric dipole with a parallel-resonant magnetic dipole. In this design, the slots work as magnetic dipoles while the corrugated surface radiates as an array of electric dipoles. The proposed antenna is realized at 1 THz operating frequency by stacking multiple metallized layers using the microfabrication technology. S-parameter measurements of this terahertz low-profile metallic antenna array demonstrate high efficiency at terahertz frequencies. Fractional bandwidth and gain are measured to be 26% and 14 dBi which are consistent with the simulated results. The proposed antenna can be used as the building block for larger antenna arrays with more directive beams, paving the way to develop high gain low-profile antennas for future communication needs.

  5. Wide-band continuous-wave terahertz source with a vertically integrated photomixer

    Science.gov (United States)

    Peytavit, E.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2009-10-01

    A transverse electromagnetic horn antenna is monolithically integrated with a low temperature grown GaAs vertical photodetector on a silicon substrate forming a vertically integrated photomixer. Continuous-wave terahertz radiation is generated at frequencies up to 3.5 THz with a power level reaching 20 nW around 3 THz. Microwave and material concepts allow both qualitative and quantitative explanations of the experimental results. The thin film microstrip line topology has been adapted for active devices by an Au-Au thermocompression layer transfer technique and seems to be a promising generic tool for a new generation of efficient terahertz devices.

  6. Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods.

    Science.gov (United States)

    Heimbeck, Martin S; Kim, Myung K; Gregory, Don A; Everitt, Henry O

    2011-05-09

    Terahertz digital off-axis holography is demonstrated using a Mach-Zehnder interferometer with a highly coherent, frequency tunable, continuous wave terahertz source emitting around 0.7 THz and a single, spatially-scanned Schottky diode detector. The reconstruction of amplitude and phase objects is performed digitally using the angular spectrum method in conjunction with Fourier space filtering to reduce noise from the twin image and DC term. Phase unwrapping is achieved using the dual wavelength method, which offers an automated approach to overcome the 2π phase ambiguity. Potential applications for nondestructive test and evaluation of visually opaque dielectric and composite objects are discussed. © 2011 Optical Society of America

  7. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Gapeyev, A B; Pashovkin, T N [Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region (Russian Federation); Matyunin, S N [Section of Applied Problems at the Presidium of the Russian Academy of Sciences, Moscow (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  8. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Science.gov (United States)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  9. Crystallization of amorphous lactose at high humidity studied by terahertz time domain spectroscopy

    Science.gov (United States)

    McIntosh, Alexander I.; Yang, Bin; Goldup, Stephen M.; Watkinson, Michael; Donnan, Robert S.

    2013-02-01

    We report the first use of terahertz time-domain spectroscopy (THz-TDS) to study the hydration and crystallization of an amorphous molecular solid at high humidity. Lactose in its amorphous and monohydrate forms exhibits different terahertz spectra due to the lack of long range order in the amorphous material. This difference allowed the transformation of amorphous lactose to its monohydrate form at high humidity to be studied in real time. Spectral fitting of frequency-domain data allowed kinetic data to be obtained and the crystallization was found to obey Avrami kinetics. Bulk changes during the crystallization could also be observed in the time-domain.

  10. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    Science.gov (United States)

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  11. Detection of sudden structural damage using blind source separation and time–frequency approaches

    International Nuclear Information System (INIS)

    Morovati, V; Kazemi, M T

    2016-01-01

    Seismic signal processing is one of the most reliable methods of detecting the structural damage during earthquakes. In this paper, the use of the hybrid method of blind source separation (BSS) and time–frequency analysis (TFA) is explored to detect the changes in the structural response data. The combination of the BSS and TFA is applied to the seismic signals due to the non-stationary nature of them. Firstly, the second-order blind identification technique is used to decompose the response signal of structural vibration into modal coordinate signals which will be mono-components for TFA. Then each mono-component signal is analyzed to extract instantaneous frequency of structure. Numerical simulations and a real-world seismic-excited structure with time-varying frequencies show the accuracy and robustness of the developed algorithm. TFA of extracted sources shows that used method can be successfully applied to structural damage detection. The results also demonstrate that the combined method can be used to identify the time instant of structural damage occurrence more sharply and effectively than by the use of TFA alone. (paper)

  12. A Frequency-Domain Adaptive Matched Filter for Active Sonar Detection.

    Science.gov (United States)

    Zhao, Zhishan; Zhao, Anbang; Hui, Juan; Hou, Baochun; Sotudeh, Reza; Niu, Fang

    2017-07-04

    The most classical detector of active sonar and radar is the matched filter (MF), which is the optimal processor under ideal conditions. Aiming at the problem of active sonar detection, we propose a frequency-domain adaptive matched filter (FDAMF) with the use of a frequency-domain adaptive line enhancer (ALE). The FDAMF is an improved MF. In the simulations in this paper, the signal to noise ratio (SNR) gain of the FDAMF is about 18.6 dB higher than that of the classical MF when the input SNR is -10 dB. In order to improve the performance of the FDAMF with a low input SNR, we propose a pre-processing method, which is called frequency-domain time reversal convolution and interference suppression (TRC-IS). Compared with the classical MF, the FDAMF combined with the TRC-IS method obtains higher SNR gain, a lower detection threshold, and a better receiver operating characteristic (ROC) in the simulations in this paper. The simulation results show that the FDAMF has higher processing gain and better detection performance than the classical MF under ideal conditions. The experimental results indicate that the FDAMF does improve the performance of the MF, and can adapt to actual interference in a way. In addition, the TRC-IS preprocessing method works well in an actual noisy ocean environment.

  13. Intense Terahertz Fields for Fast Energy Release

    Science.gov (United States)

    2016-11-01

    6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-17-10 Intense Terahertz Fields for Fast Energy Release...customary unit. Grant #  HDTRA 1-12-1-0044 Intense Terahertz Fields for Fast Energy Release Final Report PI: Keith A. Nelson 617-253-1423 kanelson

  14. Ultrabroadband terahertz conductivity of Si nanocrystal films

    DEFF Research Database (Denmark)

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  15. Terahertz superconducting plasmonic hole array

    OpenAIRE

    Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applicatio...

  16. An Islanding Detection Method by Using Frequency Positive Feedback Based on FLL for Single-Phase Microgrid

    DEFF Research Database (Denmark)

    Sun, Qinfei; Guerrero, Josep M.; Jing, Tianjun

    2017-01-01

    An active islanding detection method based on Frequency-Locked Loop (FLL) for constant power controlled inverter in single-phase microgrid is proposed. This method generates a phase shift comparing the instantaneous frequency obtained from FLL unit with the nominal frequency to modify the reference...

  17. Hydrophilic Solvation Dominates the Terahertz Fingerprint of Amino Acids in Water.

    Science.gov (United States)

    Esser, Alexander; Forbert, Harald; Sebastiani, Federico; Schwaab, Gerhard; Havenith, Martina; Marx, Dominik

    2018-02-01

    Spectroscopy in the terahertz frequency regime is a sensitive tool to probe solvation-induced effects in aqueous solutions. Yet, a systematic understanding of spectral lineshapes as a result of distinct solvation contributions remains terra incognita. We demonstrate that modularization of amino acids in terms of functional groups allows us to compute their distinct contributions to the total terahertz response. Introducing the molecular cross-correlation analysis method provides unique access to these site-specific contributions. Equivalent groups in different amino acids lead to look-alike spectral contributions, whereas side chains cause characteristic but additive complexities. Specifically, hydrophilic solvation of the zwitterionic groups in valine and glycine leads to similar terahertz responses which are fully decoupled from the side chain. The terahertz response due to H-bonding within the large hydrophobic solvation shell of valine turns out to be nearly indistinguishable from that in bulk water in direct comparison to the changes imposed by the charged functional groups that form strong H-bonds with their hydration shells. Thus, the hydrophilic groups and their solvation shells dominate the terahertz absorption difference, while on the same intensity scale, the influence of hydrophobic water can be neglected.

  18. One dimension high range resolution profile of terahertz radar

    Science.gov (United States)

    Liang, Meiyan; Zeng, Bangze; Zhang, Cunlin; Zhao, Yuejin

    2012-12-01

    Step frequency signal is one of the more commonly used radar signal for high range resolution, it commonly used in radar target recognition. The wavelength of Terahertz signal is shorter than that of the microwave, so it is easy to realize the high range resolution. The paper first introduces the step frequency signal to obtain the one-dimensional distance image, and analyze the principle of high resolution range profiles of step frequency radar. Then, the 0.2THz step frequency radar systems are introduced. Finally, the high resolution range profiles are achieved by the simulation of Matlab. The simulation results show that the step frequency THz radar can reach centimeter level high resolution on stationary targets. For moving targets exist distance divergence and coupling shift. With greater speed, the greater the distortion.

  19. Tunable terahertz transmission properties of aligned Ni-nanowire arrays.

    Science.gov (United States)

    Xiang, Wenfeng; Liu, Yi; Hu, Minghao; Guo, Haizhong

    2017-11-27

    Aligned Ni nanowire (NW) arrays were investigated for terahertz (THz) wave modulation. By adjusting the NW density and order of the NW arrays, the resonant frequency and intensity of the THz waves can be effectively tuned. The tuning range of the resonant frequency is about 0.29 THz, and a transmittance of less than 40% in the frequency region from 0.5 to 2 THz is achieved by changing the NW density. Although the order of the NW arrays has no influence on the resonant frequency, the transmittance can be tuned about 21%. The ability to tune the intensity and resonant frequency effectively and the ease of fabrication of the Ni-NW arrays make them the potential candidates for THz tunable filters, intensity modulators, and spatial light modulators.

  20. Controlled Terahertz Birefringence in Stretched Poly(lactic acid) Films Investigated by Terahertz Time-Domain Spectroscopy and Wide-Angle X-ray Scattering.

    Science.gov (United States)

    Iwasaki, Hotsumi; Nakamura, Madoka; Komatsubara, Nozomu; Okano, Makoto; Nakasako, Masayoshi; Sato, Harumi; Watanabe, Shinichi

    2017-07-20

    We report a correlation between the dielectric property and structure of stretched poly(lactic acid) (PLA) films, revealed by polarization-sensitive terahertz time-domain spectroscopy and two-dimensional (2D) wide-angle X-ray scattering (WAXS). The experiments evidence that the dielectric function of the PLA film becomes more anisotropic with increasing draw ratio (DR). This behavior is explained by a classical Lorentz oscillator model assuming polarization-dependent absorption. The birefringence can be systematically altered from 0 to 0.13 by controlling DR. The combination of terahertz spectroscopy and 2D WAXS measurement reveals a clear correlation between the birefringence in the terahertz frequency domain and the degree of orientation of the PLA molecular chains. These findings imply that the birefringence is a result of the orientation of the PLA chains with anisotropic macromolecular vibration modes. Because of a good controllability of the birefringence, polymer-based materials will provide an attractive materials system for phase retarders in the terahertz frequency range.

  1. Adaptive noise cancelling and time-frequency techniques for rail surface defect detection

    Science.gov (United States)

    Liang, B.; Iwnicki, S.; Ball, A.; Young, A. E.

    2015-03-01

    Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles.

  2. A technique to measure optical properties of brownout clouds for modeling terahertz propagation.

    Science.gov (United States)

    Fiorino, Steven T; Deibel, Jason A; Grice, Phillip M; Novak, Markus H; Spinoza, Julian; Owens, Lindsay; Ganti, Satya

    2012-06-01

    Brownout, the loss of visibility caused by dust resultant of helicopter downwash, is a factor in the large majority of military helicopter accidents. As terahertz radiation readily propagates through the associated dust aerosols and is attenuated by atmospheric water vapor within short distances, it can provide low-profile imaging that improves effective pilot visibility. In order to model this application of terahertz imaging, it is necessary to determine the optical properties of obscurants at these frequencies. We present here a method of empirical calculation and experimental measurement of the complex refractive index of the obscuring aerosols. Results derived from terahertz time-domain spectral measurements are incorporated into the AFIT CDE Laser Environmental Effects Definition and Reference (LEEDR) software.

  3. High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation

    KAUST Repository

    Zhang, Huifang

    2017-11-30

    Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.

  4. 36th Annual International Conference on Infrared Millimeter and Terahertz Waves

    Energy Technology Data Exchange (ETDEWEB)

    Mittleman, Daniel M. [Rice University

    2011-12-31

    The Major Topic List of the 2011 conference featured a category entitled “IR, millimeter-wave, and THz spectroscopy,” another entitled “Gyro-Oscillators and Amplifiers, Plasma Diagnostics,” and a third called “Free Electron Lasers and Synchrotron Radiation.” Topical areas of interest to meeting participants include millimeter-wave electronics, high-power sources, high-frequency communications systems, and terahertz sensing and imaging, all of which are prominent in the research portfolios of the DOE. The development and study of new materials, components, and systems for use in the IR, THz, and MMW regions of the spectrum are of significant interest as well. a series of technical sessions were organized on the following topics: terahertz metamaterials and plasmonics; imaging techniques and applications; graphene spectroscopy; waveguide concepts; gyrotron science and technology; ultrafast terahertz measurements; and quantum cascade lasers.

  5. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui

    2017-08-15

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  6. Transmission of High Frequency Vibrations in Rotating Systems. Application to Cavitation Detection in Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    David Valentín

    2018-03-01

    Full Text Available One of the main causes of damage in hydraulic turbines is cavitation. While not all cavitation appearing in a turbine is of a destructive type, erosive cavitation can severely affect the structure, thus increasing maintenance costs and reducing the remaining useful life of the machine. Of all types of cavitation, the maximum erosion occurs when clouds of bubbles collapse on the runner surface (cloud cavitation. When this occurs it is associated with a substantial increase in noise, and vibrations that are propagated everywhere throughout the machine. The generation of these cavitation clouds may occur naturally or it may be the response to a periodic pressure fluctuation, like the rotor/stator interaction in a hydraulic turbine. Erosive bubble cavitation generates high-frequency vibrations that are modulated by the shedding frequency. Therefore, the methods for the detection of erosive cavitation in hydraulic turbines are based on the measurement and demodulation of high-frequency vibrations. In this paper, the feasibility of detecting erosive cavitation in hydraulic turbines is investigated experimentally in a rotating disk system, which represents a simplified hydraulic turbine structure. The test rig used consists of a rotating disk submerged in a tank of water and confined with nearby axial and radial rigid surfaces. The excitation patterns produced by cloud cavitation are reproduced with a PZT (piezoelectric patch located on the disk. These patterns include pseudo-random excitations of different frequency bands modulated by one low carrier frequency, which model the erosive cavitation characteristics. Different types of sensors have been placed in the stationary and in the rotating parts (accelerometers, acoustic emission (AE, and a microphone in order to detect the excitation pattern. The results obtained for all the sensors tested have been compared in detail for the different excitation patterns applied to the disk. With this information

  7. Nonlinear Optical Terahertz Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...

  8. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis; Granados, Alfredo

    2014-09-01

    An analysis to detect trends in magnitude, frequency and timing of floods was conducted in Spain through nine flood indicators. A data set of gauging stations where the effect of dam regulation on flow series is negligible was obtained. Annual maximum and peaks-over-threshold series were extracted in three periods: 1942-2009, 1949-2009 and 1959-2009. A pre-whitening procedure was applied to remove serial correlation and the Mann-Kendall test selected to detect trends. A general decreasing trend in magnitude and frequency of floods was detected in the three periods, with more notable evidence in 1959-2009. An increasing trend in the timing (i.e. towards later floods) was also found in the northwest of Spain. In addition, a study to relate detected flood trends to a set of potential drivers was also conducted. Most such trends in flood series could be explained by corresponding and increasing trends in evapotranspiration that increase water losses in soils and decrease soil moisture content before the occurrence of floods.

  9. [Terahertz Spectroscopic Identification with Deep Belief Network].

    Science.gov (United States)

    Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao

    2015-12-01

    Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.

  10. Snapping shrimp noise mitigation based on statistical detection in underwater acoustic orthogonal frequency division multiplexing systems

    Science.gov (United States)

    Kim, Hyeonsu; Seo, Jongpil; Ahn, Jongmin; Chung, Jaehak

    2017-07-01

    We propose a mitigation scheme for snapping shrimp noise when it corrupts an orthogonal frequency division multiplexing (OFDM) signal in underwater acoustic communication systems. The OFDM signal distorted by the snapping shrimp noise is filtered by a band-stop filter. The snapping shrimp noises in the filtered signal are detected by a detector with a constant false alarm rate whose threshold is derived theoretically from the statistics of the background noise. The detected signals are reconstructed by a simple reconstruction method. The proposed scheme has a higher detection capability and a lower mean square error of the channel estimation for simulated data and a lower bit error rate for practical ocean OFDM data collected in northern East China Sea than the conventional noise-mitigating methods.

  11. Instantaneous Triple-Frequency GPS Cycle-Slip Detection and Repair

    Directory of Open Access Journals (Sweden)

    Zhen Dai

    2009-01-01

    Full Text Available A real-time algorithm to detect, determine, and validate the cycle-slips for triple-frequency GPS is proposed. The cycle-slip detection is implemented by simultaneously applying two geometry-free phase combinations in order to detect more insensitive cycle-slips, and it is applicable for high data rate applications. The cycle-slip determination adaptively uses the predicted phase data and the code data. LAMBDA technique is applied to search for the cycle-slip candidates. The cycle-slip validation provides strict test criteria to identify the cycle-slip candidates under low phase noise. The reliability of the proposed algorithms is tested in different simulated scenarios.

  12. Nano metamaterials for ultrasensitive Terahertz biosensing.

    Science.gov (United States)

    Lee, Dong-Kyu; Kang, Ji-Hun; Kwon, Junghoon; Lee, Jun-Seok; Lee, Seok; Woo, Deok Ha; Kim, Jae Hun; Song, Chang-Seon; Park, Q-Han; Seo, Minah

    2017-08-15

    As a candidate for a rapid detection of biomaterials, terahertz (THz) spectroscopy system can be considered with some advantage in non-destructive, label-free, and non-contact manner. Because protein-ligand binding energy is in the THz range, especially, most important conformational information in molecular interactions can be captured by THz electromagnetic wave. Based on the THz time-domain spectroscopy system, THz nano-metamaterial sensing chips were prepared for great enhancing of detection sensitivity. A metamaterial sensing chip was designed for increasing of absorption cross section of the target sample, related to the transmitted THz near field enhancement via the composition of metamaterial. The measured THz optical properties were then analyzed in terms of refractive index and absorption coefficient, and compared with simulation results. Also, virus quantification regarding various concentrations of the viruses was performed, showing a clear linearity. The proposed sensitive and selective THz detection method can provide abundant information of detected biomaterials to help deep understanding of fundamental optical characteristics of them, suggesting rapid diagnosis way especially useful for such dangerous and time-sensitive target biomaterials.

  13. Development of radio frequency interference detection algorithms for passive microwave remote sensing

    Science.gov (United States)

    Misra, Sidharth

    Radio Frequency Interference (RFI) signals are man-made sources that are increasingly plaguing passive microwave remote sensing measurements. RFI is of insidious nature, with some signals low power enough to go undetected but large enough to impact science measurements and their results. With the launch of the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite in November 2009 and the upcoming launches of the new NASA sea-surface salinity measuring Aquarius mission in June 2011 and soil-moisture measuring Soil Moisture Active Passive (SMAP) mission around 2015, active steps are being taken to detect and mitigate RFI at L-band. An RFI detection algorithm was designed for the Aquarius mission. The algorithm performance was analyzed using kurtosis based RFI ground-truth. The algorithm has been developed with several adjustable location dependant parameters to control the detection statistics (false-alarm rate and probability of detection). The kurtosis statistical detection algorithm has been compared with the Aquarius pulse detection method. The comparative study determines the feasibility of the kurtosis detector for the SMAP radiometer, as a primary RFI detection algorithm in terms of detectability and data bandwidth. The kurtosis algorithm has superior detection capabilities for low duty-cycle radar like pulses, which are more prevalent according to analysis of field campaign data. Most RFI algorithms developed have generally been optimized for performance with individual pulsed-sinusoidal RFI sources. A new RFI detection model is developed that takes into account multiple RFI sources within an antenna footprint. The performance of the kurtosis detection algorithm under such central-limit conditions is evaluated. The SMOS mission has a unique hardware system, and conventional RFI detection techniques cannot be applied. Instead, an RFI detection algorithm for SMOS is developed and applied in the angular domain. This algorithm compares

  14. Detection of High Frequency Oscillations by Hybrid Depth Electrodes in Standard Clinical Intracranial EEG Recordings

    Directory of Open Access Journals (Sweden)

    Efstathios D Kondylis

    2014-08-01

    Full Text Available High frequency oscillations (HFOs have been proposed as a novel marker for epileptogenic tissue, spurring tremendous research interest into the characterization of these transient events. A wealth of continuously recorded intracranial electroencephalographic (iEEG data is currently available from patients undergoing invasive monitoring for the surgical treatment of epilepsy. In contrast to data recorded on research-customized recording systems, data from clinical acquisition systems remain an underutilized resource for HFO detection in most centers. The effective and reliable use of this clinically obtained data would be an important advance in the ongoing study of HFOs and their relationship to ictogenesis. The diagnostic utility of HFOs ultimately will be limited by the ability of clinicians to detect these brief, sporadic, and low amplitude events in an electrically noisy clinical environment. Indeed, one of the most significant factors limiting the use of such clinical recordings for research purposes is their low signal to noise ratio, especially in the higher frequency bands. In order to investigate the presence of HFOs in clinical data, we first obtained continuous intracranial recordings in a typical clinical environment using a commercially available, commonly utilized data acquisition system and off the shelf hybrid macro/micro depth electrodes. This data was then inspected for the presence of HFOs using semi-automated methods and expert manual review. With targeted removal of noise frequency content, HFOs were detected on both macro- and micro-contacts, and preferentially localized to seizure onset zones. HFOs detected by the offline, semi-automated method were also validated in the clinical viewer, demonstrating that 1 this clinical system allows for the visualization of HFOs, and 2 with effective signal processing, clinical recordings can yield valuable information for offline analysis.

  15. Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks.

    Science.gov (United States)

    Subasi, Abdulhamit; Kiymik, M Kemal

    2010-08-01

    The electromyography (EMG) signals give information about different features of muscle function. Real-time measurements of EMG have been used to observe the dissociation between the electrical and mechanical measures that occurs with fatigue. The purpose of this study was to detect fatigue of biceps brachia muscle using time-frequency methods and independent component analysis (ICA). In order to realize this aim, EMG activity obtained from activated muscle during a phasic voluntary movement was recorded for 14 healthy young persons and EMG signals were observed in time-frequency domain for determination of fatigue. Time-frequency methods are used for the processing of signals that are non-stationary and time varying. The EMG contains transient signals related to muscle activity. The proposed method for the detection of muscle fatigue is automated by using artificial neural networks (ANN). The results show that ANN with ICA separates EMG signals from fresh and fatigued muscles, hence providing a visualization of the onset of fatigue over time. The system is adaptable to different subjects and conditions since the techniques used are not subject or workload regime specific.

  16. Influence of the electron density on the characteristics of terahertz waves generated under laser–cluster interaction

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable with the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.

  17. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  18. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  19. Terahertz absorption of lysozyme in solution

    Science.gov (United States)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2017-08-01

    Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.

  20. The present status of high-T c superconducting terahertz emitters

    Science.gov (United States)

    Kashiwagi, T.; Kubo, H.; Sakamoto, K.; Yuasa, T.; Tanabe, Y.; Watanabe, C.; Tanaka, T.; Komori, Y.; Ota, R.; Kuwano, G.; Nakamura, K.; Katsuragawa, T.; Tsujimoto, M.; Yamamoto, T.; Yoshizaki, R.; Minami, H.; Kadowaki, K.; Klemm, R. A.

    2017-07-01

    A terahertz (THz) wave emitter using the stack of intrinsic Josephson junctions present in the high-T c superconductor Bi2Sr2CaCu2O8+δ (Bi2212) has been developed. By applying a dc voltage V across the stack, the ac-Josephson effect converts this to an ac-current that emits photons at the Josephson frequency proportional to V. The Bi2212 device also behaves as and electromagnetic (EM) cavity, so depending upon the shape of the Bi2212 crystal, when the Josephson frequency matches that of a cavity resonance, the emission power is enhanced. However, the EM radiation characteristics also strongly depend upon the effects of Joule self heating of the device. In order to alleviate this Joule heating problem, we fabricated three distinct stand-alone Bi2212 sandwich device shapes, each crystal being first covered with Au on its top and bottom, and then sandwiched between sapphire plates. From our comparative studies of the three devices, we obtained important clues that could help to increase the emission power up to ∼mW and the frequency range up to several THz, as necessary for many applications such as security screening, high speed communications, medical and biological sensing, and astronomical detection, etc.