WorldWideScience

Sample records for ter-butyl ether mtbe

  1. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N.

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  2. Aquatic Life Criteria - Methyl Tertiary-Butyl Ether (MTBE)

    Science.gov (United States)

    Information pertaining to the 1999 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Methyl Tertiary-Butyl Ether (MTBE) for freshwater and salt water. Information includes the safe levels of MTBE that should protect the majority of species.

  3. Exergy Analysis of a Reactive Distillation MTBE Unit

    OpenAIRE

    Garcia, M.; Ricardo Rivero

    2001-01-01

    In this paper application of exergy analysis to the reactive distillation system of a Methyl TerButyl Ether (MTBE) production unit of a crude oil refinery is presented. In a refinery, the MTBE is obtained from methanol, and butanes (isobutylenes) produced in the fluidized catalytic cracking (FCC) unit. The reactives (isobutylenes) after purification are introduced to the main reaction system, the products of which are sent to the reactive distillation system to complete the reaction....

  4. Removal of methyl tert-butyl ether (MTBE) with Nafion.

    Science.gov (United States)

    Lien, Hsing-Lung; Zhang, Wei-Xian

    2007-06-01

    A solid organic polymer, Nafion, is tested for the removal of methyl tert-butyl ether (MTBE) in water. Nafion with perfluorosulfonic acid backbone and terminal sulfonic acid groups has a surface acidity similar to 100% sulfuric acid, and has been commonly used as a strong-acid catalyst in many organic reactions. Sorption and subsequent transformation of MTBE were observed in batch experiments. The transformation of MTBE by porous nanocomposite Nafion SAC-13 to tert-butyl alcohol (TBA), acetone, isobutene and probably methanol was found. Subsequent transformation of TBA to acetone was also observed. Results suggest that transformational pathways may include hydrolysis, dehydrogenation and oxidation. Dissolved oxygen is needed for the oxidation of isobutene to acetone. As Nafion is insoluble in water, chemically stable, and regenerable, its use in packed-bed reactors for MTBE removal looks promising.

  5. Induction of Methyl Tertiary Butyl Ether (MTBE)-Oxidizing Activity in Mycobacterium vaccae JOB5 by MTBE

    OpenAIRE

    Johnson, Erika L.; Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2004-01-01

    Alkane-grown cells of Mycobacterium vaccae JOB5 cometabolically degrade the gasoline oxygenate methyl tertiary butyl ether (MTBE) through the activities of an alkane-inducible monooxygenase and other enzymes in the alkane oxidation pathway. In this study we examined the effects of MTBE on the MTBE-oxidizing activity of M. vaccae JOB5 grown on diverse nonalkane substrates. Carbon-limited cultures were grown on glycerol, lactate, several sugars, and tricarboxylic acid cycle intermediates, both ...

  6. Vacuum ultraviolet photoionization and ab initio Investigations of methyl tert-butyl ether (MTBE) clusters and MTBE-water clusters

    Science.gov (United States)

    Di Palma, Tonia M.; Bende, Attila

    2013-03-01

    The structures and energetics of neutral, ionized and protonated methyl tert-butyl ether (MTBE) clusters and (MTBE)m(H2O)n clusters are investigated by tunable vacuum-UV photoionization mass spectrometry and DFT calculations. While the mass spectra of bare MTBE clusters show unprotonated and protonated clusters ions, the mass spectra of mixed clusters show protonated ions that exhibit magic numbers that correspond to n = m - 2 combinations. Ab initio calculations show that in the larger clusters a multiple proton transfer leads to a protonated water core where all available hydrogen bonds interact with MTBE molecules. The resulting bond structure explains the cluster stability.

  7. Risicogrenzen voor MTBE (Methyl tertiair-Butyl Ether) in bodem, sediment, grondwater, oppervlaktewater en voor drinkwaterbereiding

    NARCIS (Netherlands)

    Swartjes FA; Baars AJ; Fleuren RHLJ; Otte PF; LER

    2004-01-01

    Recentelijk is politieke commotie ontstaan ten gevolge van de mogelijke schadelijke gezondheidseffecten van Methyl tertiair-Butyl Ether (MTBE). Dit was reden voor het ministerie van VROM om het RIVM te verzoeken risicogrenzen voor MTBE in bodem, sediment, grondwater, oppervlaktewater, drinkwater en

  8. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2009-01-01

    to investigate the anaerobic biodegradability of MTBE and other gasoline ethers. Inoculums collected from various environments were used, along with different electron acceptors. Only one set of the batch experiments showed a 30-60% conversion of MTBE to tert-butyl alcohol under Fe(III)-reducing conditions...

  9. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE).

    Science.gov (United States)

    Lopes Ferreira, Nicolas; Malandain, Cédric; Fayolle-Guichard, Françoise

    2006-09-01

    Fuel oxygenates, mainly methyl tert-butyl ether (MTBE) but also ethyl tert-butyl ether (ETBE), are added to gasoline in replacement of lead tetraethyl to enhance its octane index. Their addition also improves the combustion efficiency and therefore decreases the emission of pollutants (CO and hydrocarbons). On the other hand, MTBE, being highly soluble in water and recalcitrant to biodegradation, is a major pollutant of water in aquifers contaminated by MTBE-supplemented gasoline during accidental release. MTBE was shown to be degraded through cometabolic oxidation or to be used as a carbon and energy source by a few microorganisms. We have summarized the present state of knowledge about the microorganisms involved in MTBE degradation and the MTBE catabolic pathways. The role of the different enzymes is discussed as well as the rare and recent data concerning the genes encoding the enzymes involved in the MTBE pathway. The phylogeny of the microorganisms isolated for their capacity to grow on MTBE is also described.

  10. Methyl tert-butyl ether (MTBE) in river and wastewater in Germany.

    Science.gov (United States)

    Achten, Christine; Kolb, Axel; Püttmann, Wilhelm; Seel, Peter; Gihr, Regine

    2002-09-01

    An overview of methyl tert-butyl ether (MTBE) concentrations in German river water (315 samples) and wastewater (82 samples) is given. In the agglomerated area of Frankfurt/M, several samples of surface water, wastewater, and industrial effluents were analyzed for its MTBE content from 1999 to 2001. MTBE was analyzed by a combination of headspace-solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS). Rhine and Main water concentrations of MTBE in the lower parts of the rivers were approximately 250 ng/L and 200 ng/L, respectively. The concentrations increased from the upper parts of the rivers to its mouths. Water from the Elbe, Neckar, and Weser rivers showed lower MTBE concentrations, and the ether was not detected in the Danube river. Generally, higher MTBE concentrations were detected at urban agglomerations compared to rural areas. Small urban creeks without significant industrial input showed MTBE concentrations of approximately 50 ng/L, and it was hardly detectable in small rural creeks. Higher MTBE concentrations in river water were correlated with increased concentrations of the oxygenate measured in precipitation. Most MTBE concentrations in river water fell in the range of 50-200 ng/L (32%), 10-50 ng/L (28%), and 200-1000 ng/L (26%). MTBE concentrations in German surface water and air are 3-17 times lower compared to Californian data. Wastewater samples from influents of two sewage plants showed MTBE concentrations of approximately 100-300 ng/L, and a loading of 2-37 kg/a was calculated. An eliminated MTBE percentage of roughly 30-35% of MTBE in the plants was estimated. Industrially influenced samples of river water or public wastewater and industrial effluents showed MTBE concentrations of up to 2267 ng/L and 28 microg/L, respectively. This input has not been considered before because only 1.5% of the produced amount of MTBE in Germany is used for industrial processes, but it should not be neglected because MTBE is very

  11. Exposure to methyl tert-butyl ether (MTBE) is associated with mitochondrial dysfunction in rat.

    Science.gov (United States)

    Saeedi, Arastoo; Omidi, Mahmoud; Khoshnoud, Mohammad Javad; Mohammadi-Bardbori, Afshin

    2017-05-01

    1. Methyl tert-butyl ether (MTBE) is commonly used as an octane booster and oxygenate additive to gasoline. The assumed toxic effects of MTBE on human health are a matter of great debate. Exposure to MTBE has been shown to induce oxidative damage and no mechanistic explanation is available so far. Our goals were to determine whether MTBE is a mitochondrial toxicant, if so, what mechanism(s) is involved. 2. Male Sprague-Dawley rats were received MTBE in drinking water for 3 months. At the end of treatments, animals were killed, liver and blood samples were collected for biochemical and histopathological studies, and oxidative stress biomarkers. The rat liver mitochondria were isolated and several mitochondrial indices were measured. 3. We found that zinc plasma levels were remarkably declined with MTBE and N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN; a zinc chelator) exposure. MTBE induced oxidative damage and caused mitochondrial dysfunctions in rats. Supplementation with zinc was able to protect against MTBE-induced cellular and sub-cellular toxicity. 4. Our results demonstrated that long-term exposure to MTBE is associated with zinc deficiency, oxidative stress, and mitochondrial energy failure in rat.

  12. Degradation of methyl tert-butyl ether (MTBE) in water by glow discharge plasma.

    Science.gov (United States)

    Tong, Shaoping; Ni, Yanyan; Shen, Chensi; Wen, Yuezhong; Jiang, Xuanzhen

    2011-01-01

    This study evaluated the ability of the glow discharge plasma (GDP) technique to degrade methyl tert-butyl ether (MTBE) in an aqueous solution. The results showed that a large amount of hydrogen peroxide and highly active *OH free radicals were produced during the treatment. Various experimental parameters including discharge current, initial MTBE concentration and initial pH played significant roles on MTBE degradation. In addition, Fe2+ had a catalytic effect on the degradation of MTBE, which is potentially attributable to the reaction between Fe3+ and the hydrated electron. It was also confirmed that GDP was comparable to electrocatalytic oxidation and high-density plasma and more efficient than photocatalytic degradation techniques. These results suggest that GDP may become a competitive MTBE wastewater treatment technology.

  13. Photo catalytic degradation of methyl tert-Butyl Ether (MTBE) from contaminated water: complete mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, A.; Nasseri, S.; Maleki, A.; Aghvami, T.

    2009-07-01

    Methyl tert-butyl ether (MTBE) has been commercially used as an octane enhancer to replace tetraethyl lead in gasoline since 1979. The high mobility, water solubility, and resistance to natural attenuation associated with MTBE may result in contamination of ground and surface waters. In this investigation the degradation of aqueous MTBE at relatively high concentrations was studied by UV-vis/TiO{sub 2}/O{sub 2} photo catalytic process. The effect of important operational parameters such as ph, oxygen flow, catalyst loading, and irradiation time were also studied. (Author)

  14. Biodegradation of methyl tert-butyl ether (MTBE) by Enterobacter sp. NKNU02.

    Science.gov (United States)

    Chen, Ssu Ching; Chen, Colin S; Zhan, Kai-Van; Yang, Kai-Hsing; Chien, Chih-Ching; Shieh, Bao-Sen; Chen, Wen-Ming

    2011-02-28

    We previously isolated and identified Enterobacter sp. NKNU02 as a methyl tert-butyl ether (MTBE)-degrading bacterial strain from gasoline-contaminated water. In this study, tert-butyl alcohol, acetic acid, 2-propanol, and propenoic acid were detected using gas chromatography/mass spectrometry when MTBE was degraded by rest cells of Enterobacter sp. NKNU02 cells. We also found that biodegradation of MTBE was decreased, but not totally inhibited in mixtures of benzene, toluene, ethylbenzene and xylene. The effects of MTBE on the biology of Enterobacter sp. NKNU02 were elucidated using 2D proteomic analysis. The cytoplasmic proteins isolated from these MTBE-treated and -untreated cells were carried out for proteomic analysis. Results showed that there were 6 differential protein spots and 8 differential protein spots, respectively, as compared to their corresponding control (without MTBE addition), at the indicated incubation times when 40% and 60% of 100 mg/L of MTBE had been removed, Among these proteins, nine were successfully identified with matrix-assisted laser desorption ionization-time of flight-mass spectrometry. Proteins identified included extracellular solute-binding protein, periplasmic-binding protein ytfQ, cationic amino acid ABC transporter, isocitrate dehydrogenase, cysteine synthase A, alkyl hydroperoxide reductase (AhpC), transaldolase, and alcohol dehydrogenase. Based on these differential proteins, we discuss the bacterial responses to MTBE at the molecular level. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Community characterization of anaerobic methyl tert-butyl ether (MTBE)-degrading enrichment cultures.

    Science.gov (United States)

    Youngster, Laura K G; Kerkhof, Lee J; Häggblom, Max M

    2010-05-01

    Use of the fuel oxygenate methyl tert-butyl ether (MTBE) has led to widespread environmental contamination. Anaerobic biodegradation of MTBE observed under different redox conditions is a potential means for remediation of contaminated aquifers; however, no responsible microorganisms have been identified as yet. We analyzed the bacterial communities in anaerobic-enriched cultures originating from three different contaminated sediments that have retained MTBE-degrading activity for over a decade. MTBE was transformed to tert-butyl alcohol and the methyl group used as a carbon and energy source. Terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes showed that the MTBE-utilizing microcosms established from different sediment sources had substantially different community profiles, suggesting that multiple species are capable of MTBE biodegradation. The 16S rRNA genes from one enrichment culture were cloned and sequenced. Phylogenetic analysis showed a diverse community, with phylotypes belonging to the Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Thermotogae. Continued enrichment on MTBE further reduced the community to three predominant phylotypes, as evidenced by T-RFLP analysis, which were most closely related to the Deltaproteobacteria, Firmicutes and Chloroflexi. These three common operational taxonomic units were detectable in the enrichments from Atlantic and Pacific coastal samples. Identification of the microorganisms important in mediating anaerobic MTBE transformation will provide the foundation for developing tools for site assessment and bioremediation monitoring.

  16. Methyl tert-Butyl Ether (MTBE) in Ground Water, Air, and Precipitation at North Windham, Maine

    Science.gov (United States)

    Nielsen, Martha G.; Peckenham, John M.

    2000-01-01

    Thirty-one monitoring wells in the Windham aquifer in North Windham, Maine, were sampled for methyl tert-butyl ether (MTBE) from July 1998 to May 1999. MTBE was detected in 35 percent of the wells sampled in the Windham aquifer. MTBE was detected in 64 percent of wells in the high-yielding part of the aquifer; these wells account for 82 percent of all wells with detectable MTBE. Land cover also was found to be associated with MTBE in the wells in the study area, with the urban and low-density residential areas having more MTBE than undeveloped areas. The median concentration in wells with detectable MTBE was 1.13 micrograms per liter. Air and precipitation samples were collected in North Windham along with ground-water samples. Air samples were collected every 10 days from December 1998 to July 1999 (20 samples). MTBE was present in all 20 air samples collected, at concentrations ranging from 0.03 ppbv (parts per billion by volume) to 1.0 ppbv. Before Maine opted out of the reformulated gasoline (RFG) program in the spring of 1999, median concentrations in air at the North Windham site were 0.25 ppbv. After Maine stopped using RFG, the median concentration in air dropped to 0.09 ppbv. No MTBE was detected in four samples of precipitation at North Windham. The lack of rainfall during the study period prevented the collection of an adequate number of samples, and technical difficulties negated the results of some of the analyses of the samples that were collected. Based on the equilibrium partitioning of MTBE from the air into rain, the hypothetical average concentration of MTBE in rainfall during months when recharge typically occurs (March-April and October-December) would be approximately 0.3 to 0.4 micrograms per liter during the time that RFG was being used in Maine. After the phaseout of RFG, the maximum average concentration of MTBE in rainfall during these months would be approximately 0.1 micrograms per liter. The distribution and concentrations of MTBE that

  17. Naturally occurring bacteria similar to the methyl tert-butyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater.

    Science.gov (United States)

    Hristova, Krassimira; Gebreyesus, Binyam; Mackay, Douglas; Scow, Kate M

    2003-05-01

    Methyl tert-butyl ether (MTBE) is a widespread groundwater contaminant that does not respond well to conventional treatment technologies. Growing evidence indicates that microbial communities indigenous to groundwater can degrade MTBE under aerobic and anaerobic conditions. Although pure cultures of microorganisms able to degrade or cometabolize MTBE have been reported, to date the specific organisms responsible for MTBE degradation in various field studies have not be identified. We report that DNA sequences almost identical (99% homology) to those of strain PM1, originally isolated from a biofilter in southern California, are naturally occurring in an MTBE-polluted aquifer in Vandenberg Air Force Base (VAFB), Lompoc, California. Cell densities of native PM1 (measured by TaqMan quantitative PCR) in VAFB groundwater samples ranged from below the detection limit (in anaerobic sites) to 10(3) to 10(4) cells/ml (in oxygen-amended sites). In groundwater from anaerobic or aerobic sites incubated in microcosms spiked with 10 microg of MTBE/liter, densities of native PM1 increased to approximately 10(5) cells/ml. Native PM1 densities also increased during incubation of VAFB sediments during MTBE degradation. In controlled field plots amended with oxygen, artificially increasing the MTBE concentration was followed by an increase in the in situ native PM1 cell density. This is the first reported relationship between in situ MTBE biodegradation and densities of MTBE-degrading bacteria by quantitative molecular methods.

  18. The screening of microorganisms capable of methyl tert-butyl ether (MTBE) biodegradation.

    Science.gov (United States)

    Wieczorek, Andrzej; Przybulewska, Krystyna; Karpowicz, Katarzyna; Nowak, Maciej J

    2013-01-01

    As a result of examinations carried out, 16 strains of microorganisms able to grow on mineral media with methyl tert-butyl ether as the sole source of carbon and energy were isolated. Bacteria prevailed among the isolated microorganisms. The growth of microorganisms under laboratory conditions was long and accompanied by low biomass increase. Under the conditions of the experiment, the isolated microorganisms did not show any quantitatively measurable biodegradability of methyl tert-butyl ether (MTBE) under aerobic conditions. This requires far-reaching caution with respect to trading in MTBE-modified petrols in order to protect the natural environment in Poland against contamination with that hard-to-biodegrade substance.

  19. Epidemiology, toxicokinetics, and health effects of methyl tert-butyl ether (MTBE).

    Science.gov (United States)

    Phillips, Scott; Palmer, Robert B; Brody, Aaron

    2008-06-01

    This paper reviews the published information assessing the kinetics and potential for adverse health effects related to exposure to the fuel oxygenate, methyl tert-butyl ether (MTBE). Data were obtained from previously published reports, using human data where possible. If human data were not available, animal studies were cited. The kinetic profile of MTBE in humans is similar for ingestion and inhalation. The concentrations of MTBE to which the general public is expected to be exposed are orders of magnitude below concentrations that have caused adverse health effects in animals. Controlled human studies have not replicated early epidemiology studies that suggested, but did not confirm, a possible association between MTBE exposure and nonspecific health complaints.

  20. Effects of co-substrates and inhibitors on the anaerobic O-demethylation of methyl tert-butyl ether (MTBE).

    Science.gov (United States)

    Youngster, Laura K G; Somsamak, Piyapawn; Häggblom, Max M

    2008-10-01

    Methyl tert-butyl ether (MTBE) contamination is widespread in aquifers near urban areas around the world. Since this synthetic fuel oxygenate is resistant to most physical methods of treating fuel-contaminated water, biodegradation may be a useful means of remediation. Currently, information on anaerobic MTBE degradation is scarce. Depletion has been observed in soil and sediment microcosms from a variety of locations and under several redox conditions, but the responsible organisms are unknown. We are studying anaerobic consortia, enriched from contaminated sediments for MTBE-utilizing microorganisms for over a decade. MTBE degradation occurred in the presence of other fuel components and was not affected by toluene, benzene, ethanol, methanol, or gasoline. Many aryl O-methyl ethers, such as syringic acid, that are O-demethylated by acetogenic bacteria, were also O-demethylated by the MTBE-utilizing enrichment cultures. The addition of these compounds as co-substrates increased the rate of MTBE degradation, offering a potentially useful method of stimulating the MTBE degradation rate in situ. Propyl iodide caused light-reversible inhibition of MTBE degradation, suggesting that the MTBE degradation process is corrinoid dependent. The anaerobic MTBE degradation process was not directly coupled to methanogenesis or sulfidogenesis and was inhibited by the bactericidal antibiotic, rifampicin. These results suggest that MTBE degradation is mediated by acetogenic bacteria.

  1. Risicogrenzen voor MTBE (Methyl tertiair-Butyl Ether) in bodem, sediment, grondwater, oppervlaktewater en voor drinkwaterbereiding

    NARCIS (Netherlands)

    Swartjes FA; Baars AJ; Fleuren RHLJ; Otte PF; LER

    2004-01-01

    Recently, possible unacceptable harmful effects from Methyl tertiary-Butyl Ether (MTBE) to humans raised political consternation. For this reason the Dutch Ministry of Housing, Spatial Planning and the Environment ("VROM") ordered the RIVM to derive solid risk limits for soil, sediment,

  2. Methyl tert-butyl ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: feasibility and kinetics studies.

    Science.gov (United States)

    Chen, K F; Kao, C M; Wu, L C; Surampalli, R Y; Liang, S H

    2009-07-01

    The objective of this study was to evaluate the feasibility of using ferrous ion-activated persulfate oxidation to remediate groundwater contaminated with methyl tert-butyl ether (MTBE). In this study, batch experiments were conducted to evaluate the effects of various factors on the efficiency of MTBE degradation including persulfate concentrations, ferrous ion concentrations, and persulfate coupled with hydrogen peroxide. Results show that ferrous ion-activated persulfate oxidation was capable of degrading MTBE efficiently. Persulfate and ferrous ion concentrations correlated with MTBE degradation rates. However, excess addition of ferrous ion resulted in decreased MTBE degrading rates most likely because of competition for sulfate free radicals between ferrous ion and MTBE. Two main byproducts of MTBE degradation, tert-butyl formate and tert-butyl alcohol, were detected in the experiments; both were, however, subsequently degraded. Results of sulfate analysis show that proper addition of ferrous ion could prevent unnecessary persulfate decomposition.

  3. [Degradation of methyl tert-butyl ether (MTBE) by O3/H2O2].

    Science.gov (United States)

    Hu, Qin-Hai; Mao, Ke-Hui; Zhu, Miao-Jun; Zhang, Xing-Qing; Xiong, Yun-Long; Wang, Juan

    2008-05-01

    The degradation of methyl tert-butyl ether (MTBE) in water solution has been studied using the combination of ozone/hydrogen peroxide in a bubble column. Effects of air (containing O3) currents, quantities of H2O2, initial concentrations of MTBE, pH values and temperatures on the oxidation of MTBE have been tested, and it is implicated that under the conditions of initial MTBE concentration of 10 mg x L(-1), air current of 0.5 L x min(-1), pH 6.5, 293 K and 2.4 mg x L(-1) H2O2 addition, MTBE can be reduced by 75.5% and the removal rate of COD reaches 68.0% within 30 min. The main of degradation products identified are tert-butyl formate (TBF), tert-butyl alcohol (TBA), acetone (AC) and methyl acetate (MA). On the basis of that, the probable mechanism and pathway of the oxidation of MTBE by ozone/hydrogen peroxide have been proposed.

  4. Adsorption of methyl tert-butyl ether (MTBE) from aqueous solution by porous polymeric adsorbents.

    Science.gov (United States)

    Ji, Biyan; Shao, Fei; Hu, Guanjiu; Zheng, Shourong; Zhang, Qingmei; Xu, Zhaoyi

    2009-01-15

    MTBE has emerged as an important water pollutant because of its high mobility, persistence, and toxicity. In this study, a postcrosslinked polymeric adsorbent was prepared by postcrosslinking of a commercial chloromethylated polymer, and a nonpolar porous polymer with comparable surface area and micropore volume to the postcrosslinked polymer was prepared by suspended polymerization. The postcrosslinked polymer, nonpolar porous polymer and chloromethylated polymer were characterized by N2 adsorption, FTIR and XPS analysis. Results showed that postcrosslinking reaction led to the generation of a microporous postcrosslinked polymer with BET surface area 782m2g(-1), average pore width 3.0nm and micropore volume 0.33cm3g(-1). FTIR and XPS analysis indicated the formation of surface oxygen-containing groups on the postcrosslinked polymer. The three polymers were used as adsorbents to remove aqueous methyl tert-butyl ether (MTBE). Adsorption of MTBE over the postcrosslinked polymeric adsorbent was found to follow the linear adsorption isotherm, whereas MTBE adsorption onto the nonpolar porous polymer and chloromethylated polymer followed Langmuir adsorption model. Comparison of adsorption capacities of the postcrosslinked polymer, chloromethylated polymer and nonpolar porous polymer revealed that the adsorption of MTBE from aqueous solution is dependent on both pore structure and surface chemistry of polymeric adsorbents, and the high adsorption efficiency of the postcrosslinked polymer towards MTBE is attributed to its high surface area, large micropore volume and moderate hydrophility. The process of MTBE adsorption onto the adsorbents can be well described by pseudo-second-order kinetics, and the rate of adsorption decreased at higher MTBE initial concentration.

  5. The effects of methyl tert-butyl ether (MTBE) on the male rat reproductive system.

    Science.gov (United States)

    Li, Dongmei; Yuan, Chuntao; Gong, Yi; Huang, Yufeng; Han, Xiaodong

    2008-07-01

    Methyl tert-butyl ether (MTBE) is an oxygenated compound, which has been widely used in Asia, Europe and North America. Although numerous in vitro and in vivo studies have demonstrated the carcinogenicity and the toxicity of MTBE, there is still a lack of data on reproductive system exposure of MTBE in male rodent animals. We studied subacute exposure of MTBE on the reproductive systems of male Sprague-Dawley rats. MTBE was administered to rats at dose levels of 0, 400, 800 and 1600 mg/kg/day. After 2 or 4 weeks of treatments, the rats were euthanized, and their serum, epididymis and testes were collected. Significant adverse effects in their reproductive system were observed including: a significant increase in the percentage of abnormal sperm; an irregular and disordered arrangement of the seminiferous epithelium indicated by a histopathological examination; changed serum levels of testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH); and decreased levels of mRNA and of androgen binding protein (ABP). In the oxidative stress study, results indicated an increased maleic dialdehyde (MDA) content, implying a raised peroxide level, and that the total antioxidant ability in serum was significantly increased. This finding was especially strong at 1600 mg/kg/day MTBE. In the 2-week treatment, at 1600 mg/kg/day, the mRNA level of 8-oxoguanine DNA glycosidase (OGG1) was significantly decreased, and the mRNA level of the extra-cellular form of superoxide dismutase (SOD(EX)) was significantly increased. Our experiments suggest that relatively high doses of MTBE can exert reproductive system toxicity of male rats and disturb the secretions of T, LH and FSH, possibly due to oxidative stress induced by MTBE.

  6. Degradation of a recalcitrant xenobiotic compound: methyl tert-butyl ether (MTBE) metabolism by mycobacterium austroafricanum; Degradation d'un compose xenobiotique recalcitrant: metabolisme du methyl tert-butyl ether (MTBE) par mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Francois, A.

    2002-11-01

    Methyl tert-butyl ether (MTBE) is introduced up to 15% (vol/vol) in gasoline in order to obtain a good octane number and to prevent carbon monoxide emissions. However, as a consequence of storage tanks leakage, MTBE became one of the major pollutants of aquifers because of its very low biodegradability. The present study aimed at investigating the biodegradation of MTBE by Mycobacterium austroafricanum IFP 2012. The MTBE metabolic pathway was partially elucidated owing to the identification of some intermediates (tert-butyl formate (TBF), tert-butyl alcohol (TBA), a-hydroxy-isobutyric acid and acetone) and some enzymatic activities (MTBE/TBA monooxygenase (non hemic and inducible), TBF esterase, 2-propanol: NDMA oxidoreductase and another monooxygenase involved in acetone degradation). The involvement of TBF and the requirement of cobalt could be explanations for the low natural attenuation of MTBE; whereas the methoxy group does not seem to be implicated. (author)

  7. Analysis of possible sources and pathways of methyl tertiary-butyl ether (MTBE) in the aquatic environment

    OpenAIRE

    Kolb, Axel

    2006-01-01

    In the present study possible sources and pathways of the gasoline additive methyl tertiary-butyl ether (MTBE) in the aquatic environment in Germany were investigated. The objective of the present study was to clarify some of the questions raised by a previous study on the MTBE situation in Germany. In the USA and Europe 12 million t and 3 million t of MTBE, respectively, are used as gasoline additive. The detection of MTBE in the aquatic environment and the potential risk for drinking water ...

  8. Customer exposure to MTBE, TAME, C6 alkyl methyl ethers, and benzene during gasoline refueling.

    Science.gov (United States)

    Vainiotalo, S; Peltonen, Y; Ruonakangas, A; Pfäffli, P

    1999-01-01

    We studied customer exposure during refueling by collecting air samples from customers' breathing zone. The measurements were carried out during 4 days in summer 1996 at two Finnish self-service gasoline stations with "stage I" vapor recovery systems. The 95-RON (research octane number) gasoline contained approximately 2.7% methyl tert-butyl ether (MTBE), approximately 8.5% tert-amyl methyl ether (TAME), approximately 3.2% C6 alkyl methyl ethers (C6 AMEs), and 0.75% benzene. The individual exposure concentrations showed a wide log-normal distribution, with low exposures being the most frequent. In over 90% of the samples, the concentration of MTBE was higher (range MTBE values were well below the short-term (15 min) threshold limits set for occupational exposure (250-360 mg/m3). At station A, the geometric mean concentrations in individual samples were 3.9 mg/m3 MTBE and 2. 2 mg/m3 TAME. The corresponding values at station B were 2.4 and 1.7 mg/m3, respectively. The average refueling (sampling) time was 63 sec at station A and 74 sec at station B. No statistically significant difference was observed in customer exposures between the two service stations. The overall geometric means (n = 167) for an adjusted 1-min refueling time were 3.3 mg/m3 MTBE and 1.9 mg/m3 TAME. Each day an integrated breathing zone sample was also collected, corresponding to an arithmetic mean of 20-21 refuelings. The overall arithmetic mean concentrations in the integrated samples (n = 8) were 0.90 mg/m3 for benzene and 0.56 mg/m3 for C6 AMEs calculated as a group. Mean MTBE concentrations in ambient air (a stationary point in the middle of the pump island) were 0.16 mg/m3 for station A and 0.07 mg/m3 for station B. The mean ambient concentrations of TAME, C6 AMEs, and benzene were 0.031 mg/m3, approximately 0.005 mg/m3, and approximately 0.01 mg/m3, respectively, at both stations. The mean wind speed was 1.4 m/sec and mean air temperature was 21 degreesC. Of the gasoline refueled during the

  9. Removal of Methyl Tertiary Butyl Ether (MTBE vapour from contaminated air streams using different bacterial cultures in biotrickling filter

    Directory of Open Access Journals (Sweden)

    A. Nikpey, M. Nikpey, H. Kazemian

    2006-04-01

    Full Text Available The treatment of methyl tertiary butyl ether (MTBE vapors in biotrickling filters for air pollution control was investigated using different bacterial cultures. In the first phase, reactor was inoculated by the indigenous organisms and in the next phase, an aerobic microbial consortium able to biodegrade MTBE was used for reactor bed inoculation. Result was obtained only by specific organism: reactor was able to remove MTBE,after a short adaptation phase. Laboratory scale biotrickling filters were able to degrade up to 25 g/m.h with removal efficiency of 90%. They also showed a low rate of biomass accumulation.

  10. Antichaperone activity and heme degradation effect of methyl tert-butyl ether (MTBE) on normal and diabetic hemoglobins.

    Science.gov (United States)

    Najdegerami, Ismaeil Hossein; Maghami, Parvaneh; Sheikh-Hasani, Vahid; Hosseinzadeh, Ghader; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2017-05-01

    Because of the extensive use of methyl tert-butyl ether (MTBE) as an additive to increase the octane quality of gasoline, the environmental pollution by this compound has increased in recent decades. Environmental release of MTBE may lead to its entry to the blood stream through inhalation or drinking of contaminated water, and its interactions with biological molecules such as proteins. The present study was proposed to comparatively investigate the interactions of MTBE with hemoglobin (Hb) from diabetic and nondiabetic individuals using various spectroscopic methods including UV-visible, fluorescence, chemiluminescence, and circular dichroism. These results demonstrated the effects of MTBE on heme degradation of Hb and the reaction of these degradation products with water generating reactive oxygen species. Interaction of Hb with MTBE enhanced its aggregation rate and decreased lag time, indicating the antichaperone activity of MTBE upon interaction with Hb. Furthermore, the diabetic Hb showed more severe effects of MTBE, including heme degradation, reactive oxygen species production, unfolding, and antichaperone behavior than the nondiabetic Hb. The results from molecular docking suggested that the special interaction site of MTBE in the vicinity of Hb heme group is responsible for heme degradation. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Methyl tert-butyl ether (MTBE) induced Ca(2+)-dependent cytotoxicity in isolated rabbit tracheal epithelial cells.

    Science.gov (United States)

    Wang, Yajing; Chen, Chang; Wu, Tao; Xu, Jing; Han, Xiaodong

    2008-10-01

    As a volatile synthetic organic chemical, methyl tert-butyl ether (MTBE) was the most common gasoline additive. The increasing use of MTBE raised concern over its health safety. Inhalation was the principle route of exposure for the general population. This study used a model of rabbit tracheal epithelial cells (RTEs) in primary culture to investigate the cytotoxic effects induced by MTBE and the potential mechanism. RTEs were incubated with medium alone (control), 0.5, 50, 5000ppm MTBE respectively. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo liumbromide) assay, staining with fluorescein diacetate, propidium iodide and lactate dehydrogenase leakage ratio were used to assess MTBE cytotoxicity on cells. We also observed a significant elevation in cytosolic Ca2+ by fluorescence probe Fluo-3AM at 3, 6 and 12h following exposure to MTBE. Loss of mitochondrial membrane potential (MMP) was detected following 12 and 24h treatment of NP and assessment by rhodamine 123 (Rh123) staining. Activity changes of the Ca(2+)-ATPase, Ca(2+)-Mg(2+)-ATPase following MTBE treatment displayed a similar trend, suggesting an initial elevation before 6h and subsequent dramatic decrease at 12h. Our results demonstrated that induction of cell injury, associated with mitochondrial dysfunction, and alterations in cytosolic Ca2+ in RTEs represent key mechanisms by which MTBE exerts its cytotoxic effects.

  12. Methyl tert-butyl ether in ground and surface water of the United States: National-scale relations between MTBE occurrence in surface and ground water and MTBE use in gasoline

    Science.gov (United States)

    Moran, M.J.; Clawges, R.M.; Zogorski, J.S.

    2002-01-01

    The detection frequency of methyl tert-butyl ether (MTBE) in ground and surface water of the United States is positively related to the content of MTBE in gasoline in various metropolitan areas of the U.S. The frequency of detection of MTBE is generally higher in areas that use larger amounts of MTBE in gasoline. Sampling of surface and ground water by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program between 1993 and 1998 revealed a frequent detection of low concentrations of MTBE. In this analysis, data from several national-scale gasoline surveys are examined and data from one survey that is most extensive in geographic and temporal coverage is used to relate the detection of MTBE in ground and surface water to the volumetric content of MTBE in gasoline.

  13. Methyl tert butyl ether (MTBE) is anti- angiogenic in both in vitro and in vivo mammalian model systems

    Science.gov (United States)

    Kozlosky, John; Bonventre, Josephine; Cooper, Keith

    2015-01-01

    Methyl-tertiary butyl ether (MTBE), a well known gasoline oxygenate, and FDA approved gallstone treatment, has been previously shown to specifically target teleost embryonic angiogenesis. The studies reported here were to determine if similar vascular disrupting effects occurred in higher vertebrate models. Rat brain endothelial cells were isolated and allowed to form microcapillary-like tubes on Matrigel. MTBE (0.34–34.0 mM) exposure resulted in a dose-dependent reduction of tube formation, with the LOAEL at 0.34 mM, while MTBE’s primary metabolite, tertiary butyl alcohol had no effect on tube formation. HUVECs, a primary cell line representing macrovascular cells, were able to form tubes on Matrigel in the presence of MTBE (1.25 – 80 mM), but the tubes were narrower than those formed in the absence of MTBE. In a mouse Matrigel plug implantation assay, 34.0 mM MTBE completely inhibited vessel invasion into plugs containing Endothelial Cell Growth Supplement (ECGS) compared to control plugs with ECGS alone. When timed-pregnant Fisher 344 rats were gavaged with MTBE (500–1500 mg/kg) from day 6 of organogenesis through 10 days post parturition, no organ toxicity or histological changes in pup vasculature were observed. Therefore, MTBE is anti-angiogenic at mM concentrations and therefore a potential use as an anti-angiogenic treatment for solid tumors with minimal toxicity. PMID:22407988

  14. Exposure to BTEX and Ethers in Petrol Station Attendants and Proposal of Biological Exposure Equivalents for Urinary Benzene and MTBE.

    Science.gov (United States)

    Campo, Laura; Rossella, Federica; Mercadante, Rosa; Fustinoni, Silvia

    2016-04-01

    To assess exposure to benzene (BEN) and other aromatic compounds (toluene, ethylbenzene, m+p-xylene, o-xylene) (BTEX), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE) in petrol station workers using air sampling and biological monitoring and to propose biological equivalents to occupational limit values. Eighty-nine petrol station workers and 90 control subjects were investigated. Personal exposure to airborne BTEX and ethers was assessed during a mid-week shift; urine samples were collected at the beginning of the work week, prior to and at the end of air sampling. Petrol station workers had median airborne exposures to benzene and MTBE of 59 and 408 µg m(-3), respectively, with urinary benzene (BEN-U) and MTBE (MTBE-U) of 339 and 780 ng l(-1), respectively. Concentrations in petrol station workers were higher than in control subjects. There were significant positive correlations between airborne exposure and the corresponding biological marker, with Pearson's correlation coefficient (r) values of 0.437 and 0.865 for benzene and MTBE, respectively. There was also a strong correlation between airborne benzene and urinary MTBE (r = 0.835). Multiple linear regression analysis showed that the urinary levels of benzene were influenced by personal airborne exposure, urinary creatinine, and tobacco smoking [determination coefficient (R(2)) 0.572], while MTBE-U was influenced only by personal exposure (R(2) = 0.741). BEN-U and MTBE-U are sensitive and specific biomarkers of low occupational exposures. We propose using BEN-U as biomarker of exposure to benzene in nonsmokers and suggest 1457 ng l(-1) in end shift urine samples as biological exposure equivalent to the EU occupational limit value of 1 p.p.m.; for both smokers and nonsmokers, MTBE-U may be proposed as a surrogate biomarker of benzene exposure, with a biological exposure equivalent of 22 µg l(-1) in end shift samples. For MTBE exposure, we suggest the use of MTBE-U with a biological exposure

  15. Two-year drinking water carcinogenicity study of methyl tertiary-butyl ether (MTBE) in Wistar rats.

    Science.gov (United States)

    Dodd, Darol; Willson, Gabrielle; Parkinson, Horace; Bermudez, Edilberto

    2013-07-01

    Methyl tertiary-butyl ether (MTBE) has been used as a gasoline additive to reduce tailpipe emissions and its use has been discontinued. There remains a concern that drinking water sources have been contaminated with MTBE. A two-year drinking water carcinogenicity study of MTBE was conducted in Wistar rats (males, 0, 0.5, 3, 7.5 mg ml(-1); and females, 0, 0.5, 3, and 15 mg ml(-1)). Body weights were unaffected and water consumption was reduced in MTBE-exposed males and females. Wet weights of male kidneys were increased at the end of two years of exposure to 7.5 mg ml(-1) MTBE. Chronic progressive nephropathy was observed in males and females, was more severe in males, and was exacerbated in the high MTBE exposure groups. Brain was the only tissue with a statistically significant finding of neoplasms. One astrocytoma (1/50) was found in a female rat (15 mg ml(-1)). The incidence of brain astrocytomas in male rats was 1/50, 1/50, 1/50 and 4/50 for the 0, 0.5, 3 and 7.5 mg ml(-1) exposure groups, respectively. This was a marginally significant statistical trend, but not statistically significant when pairwise comparisons were made or when multiple comparisons were taken into account. The incidence of astrocytoma fell within historical control ranges for Wistar rats, and the brain has not been identified as a target organ following chronic administration of MTBE, ethyl tert-butyl ether, or tertiary butyl alcohol (in drinking water) to mice and rats. We conclude that the astrocytomas observed in this study are not associated with exposure to MTBE. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Toxicokinetics of methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) in humans, and implications to their biological monitoring.

    Science.gov (United States)

    Vainiotalo, Sinikka; Riihimäki, Vesa; Pekari, Kaija; Teräväinen, Eija; Aitio, Antero

    2007-10-01

    Healthy male volunteers were exposed via inhalation to gasoline oxygenates methyl tert-butyl ether (MTBE) or tert-amyl methyl ether (TAME). The 4-hr exposures were carried out in a dynamic chamber at 25 and 75 ppm for MTBE and at 15 and 50 ppm for TAME. The overall mean pulmonary retention of MTBE was 43 +/- 2.6%; the corresponding mean for TAME was 51 +/- 3.9%. Approximately 52% of the absorbed dose of MTBE was exhaled within 44 hr following the exposure; for TAME, the corresponding figure was 30%. MTBE and TAME in blood and exhaled air reached their highest concentrations at the end of exposure, whereas the concentrations of the metabolites tert-butanol (TBA) and tert-amyl alcohol (TAA) concentrations were highest 0.5-1 hr after the exposure and then declined slowly. Two consecutive half-times were observed for the disappearance of MTBE and TAME from blood and exhaled air. The half-times for MTBE in blood were about 1.7 and 3.8 hr and those for TAME 1.2 and 4.9 hr. For TAA, a single half-time of about 6 hr best described the disappearance from blood and exhaled air; for TBA, the disappearance was slow and seemed to follow zero-order kinetics for 24 hr. In urine, maximal concentrations of MTBE and TAME were observed toward the end of exposure or slightly (MTBE and 0.1% of the dose of TAME was excreted unchanged in urine, whereas the urinary excretion of free TBA and TAA was 1.2% and 0.3% within 48 hr. The blood/air and oil/blood partition coefficients, determined in vitro, were 20 and 14 for MTBE and 20 and 37 for TAME. By intrapolation from the two experimental exposure concentrations, biomonitoring action limits corresponding to an 8-hr time-weighted average (TWA) exposure of 50 ppm was estimated to be 20 micro mol/L for post-shift urinary MTBE, 1 mu mol/L for exhaled air MTBE in a post-shift sample, and 30 micro mol/L for urinary TBA in a next-morning specimen. For TAME and TAA, concentrations corresponding to an 8-hr TWA exposure at 20 ppm were estimated to be

  17. Manipulation of the HIF–Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions

    Energy Technology Data Exchange (ETDEWEB)

    Bonventre, Josephine A., E-mail: josephine.bonventre@oregonstate.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Oregon State University, Department of Environmental and Molecular Toxicology, 1011 Agricultural and Life Sciences Bldg, Corvallis, OR 97331 (United States); Kung, Tiffany S., E-mail: tiffany.kung@rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); White, Lori A., E-mail: lawhite@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States); Cooper, Keith R., E-mail: cooper@aesop.rutgers.edu [Rutgers, The State University of New Jersey, Joint Graduate Program in Toxicology, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, 76 Lipman Dr., New Brunswick, NJ 08901 (United States)

    2013-12-15

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625–5 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF–Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel–Lindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF–Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: • Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. • Over expression of zebrafish vegf-a rescues MTBE

  18. Methyl tert-butyl ether (MTBE)-induced cytotoxicity and oxidative stress in isolated rat spermatogenic cells.

    Science.gov (United States)

    Li, Dongmei; Yin, Daqiang; Han, Xiaodong

    2007-01-01

    Methyl tert-butyl ether (MTBE) is a class of synthetic organic chemical. In the USA, MTBE pollution is regarded as a serious environmental problem. The objective of the present study was to investigate the cytotoxic effects and oxidative stress induced by MTBE in isolated rat spermatogenic cells. In cytotoxic experiments, spermatogenic cells isolated from the testes of adult Sprague-Dawley rats by a mechanical procedure without the use of trypsin were incubated with medium alone (control), 0.5, 5, 50 mm MTBE, respectively, for 6, 12 and 18 h. MTT assay, staining with fluorescein diacetate (FDA) and propidium iodide (PI) and flow cytometric analyses were used. In oxidative stress experiments, the spermatogenic cells were incubated with medium alone (control) and with 0.5, 50 microm, 5 mm MTBE. For 1, 2, 6, 12, 18 h incubation, ROS production was tested using a 2',7'-dichlorofluorescein diacetate (DCHF-DA) probe; for 1, 3, 6, 12, 18 h incubation, cytosolic superoxide dismutase (SOD) and extracellular SOD (SOD(EX)) activity was assessed; and for 18 h incubation, lipid peroxidation was assessed. The results showed that MTBE at high doses significantly decreased the spermatogenic cell viability and increased plasma membrane damage and the ratio of necrotic cells compared with the control. Assessment of the MTBE-induced oxidative stress revealed that MTBE increased the production of reactive oxygen species (ROS) and enhanced lipid peroxidation. In addition, although SOD(EX) activity increased at a high dose level, cytosolic SOD activity decreased. These results suggest that an increase of MTBE-induced ROS production and an enhancement of membrane lipid peroxidation may play an important role in its cytotoxicity in isolated rat spermatogenic cells. Copyright 2006 John Wiley & Sons, Ltd.

  19. Manipulation of the HIF-Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions.

    Science.gov (United States)

    Bonventre, Josephine A; Kung, Tiffany S; White, Lori A; Cooper, Keith R

    2013-12-15

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625-5mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF-Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10mM exposed embryos, and ISV lesions were reduced 24% in 5mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel-Lindau protein, significantly reduced CCV lesions by 35% in 10mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF-Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. © 2013.

  20. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    Science.gov (United States)

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m 3 ). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    Science.gov (United States)

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  2. [Methyl tert-butyl ether (MTBE) in atmosphere of the Pearl River Delta, China].

    Science.gov (United States)

    Wang, Bo-guang; Shao, Min; Zhang, Yuan-hang; Lü, Wan-Ming; Zhou, Yan

    2007-07-01

    The concentration of methyl tert-butyl ether (MTBE) and its spatio-temporal distribution were researched in atmosphere of the Pearl River Delta (PRD) by sampling with air sampling canisters and analyzing with pre-concentrator and gas chromatograph-mass spectrum instrument. The results showed that 1) MTBE could be prevalently checked in atmosphere of traffic area, industrial area, residential area and commercial area of the PRD, and its range of hourly average concentration in the long-term observation was from 0 - 1.250 microg m(-3), the summer had more serious pollution than the spring, and urban was the central area of high MTBE concentration, and suburban in the downwind was obviously polluted by the urban air. 2) During the enhanced observation in summertime, the diurnal average concentration of Guangzhou urban site was (1.520 +/- 0.370) microg m(-3), which was about 7 times of Huadou site in the downwind of Guangzhou and over 100 times of Conghua site in the background of Guangzhou. In urban, 2 peak values appeared in the period of 10:00 - 12:00 and 16:00 - 18:00 respectively, and the nighttime had the lowest average concentration, but the suburban in the downwind had the peak value in the nighttime. 3) During the enhanced observation in wintertime, the diurnal average concentration of Guangzhou urban site was (0.950 +/- 0.240) microg m(-3), which was 3.6 times of Xinken site in the downwind of Guangzhou. Several peak values appeared on the diurnal variation, the high concentration period of urban was in 18:00 - 22:00, and that of suburban was in 04:00 - 10:00 of the next day. 4) When it was weak sunshine, the concentration of MTBE beside the urban traffic roadside was decreasing with the height increasing, but when it was strong sunshine, it was increasing with the height increasing. So, except the original emission from the automobiles, MTBE still had the secondary pollution sources formed by air photochemical reaction.

  3. Cytotoxicity and oxidative stress study in cultured rat Sertoli cells with methyl tert-butyl ether (MTBE) exposure.

    Science.gov (United States)

    Li, Dongmei; Liu, Qin; Gong, Yi; Huang, Yufeng; Han, Xiaodong

    2009-04-01

    Cultured Sertoli cells were tested for their cytotoxicity and oxidative stress induced by methyl tert-butyl ether (MTBE) which has been extensively used as a gasoline additive. In cytotoxic experiments, Sertoli cells were cultured with medium alone (control), 5, 500, or 50,000 microM MTBE. Lactate dehydrogcnase (LDH) leakage assay, staining with fluorescein diacetate (FDA) and propidium iodide (PI), and flow cytometric analyses were used. In oxidative stress experiments, Sertoli cells were cultured with medium alone (control), 0.5, 50, or 5000 microM MTBE. The production of reactive oxygen species (ROS), maleic dialdehyde (MDA) content and the level of superoxide dismutase (SOD) activity in cell supernatants were measured. Meanwhile, the expression level of 8-oxoguanine DNA glycosidase (OGG1) and extracellular form of superoxide dismutase (SOD(EX)) in Sertoli cells were determined by RT-PCR. We also compared the current findings with the previous findings in rat spermatogenic cells exposed to MTBE. The present data indicate that high dose MTBE may exert a direct toxic effect on Sertoli cells. Oxidative stress induced by MTBE is a possible mechanism of cytotoxicity.

  4. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    Science.gov (United States)

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Energy analysis for the production of biodiesel in a spiral reactor using supercritical tert-butyl methyl ether (MTBE).

    Science.gov (United States)

    Farobie, Obie; Matsumura, Yukihiko

    2015-11-01

    In this study, energy analysis was conducted for the production of biodiesel in a spiral reactor using supercritical tert-butyl methyl ether (MTBE). This study aims to determine the net energy ratio (NER) and energy efficiency for the production of biodiesel using supercritical MTBE and to verify the effectiveness of the spiral reactor in terms of heat recovery efficiency. The analysis results revealed that the NER for this process was 0.92. Meanwhile, the energy efficiency was 0.98, indicating that the production of biodiesel in a spiral reactor using supercritical MTBE is an energy-efficient process. By comparing the energy supply required for biodiesel production between spiral and conventional reactors, the spiral reactor was more efficient than the conventional reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Occurrence of methyl tert-butyl ether (MTBE) in riverbank fiftered water and drnking water produced by riverbank filtration. 2.

    Science.gov (United States)

    Achten, Christine; Kolb, Axel; Püttmann, Wilhelm

    2002-09-01

    Bank filtration of river or lake water represents an efficient and natural purification process used for the drinking water production in many countries and at an amount of about 15-16% in Germany. From experiences over decades particularly at the river Rhine and Elbe, it is known that the occurrence of persistent pollutants in river water can represent a problem for the quality of drinking water produced by bank filtration. The common detection of the gasoline additive methyl tert-butyl ether (MTBE) in drinking water and the announced phase-out of the oxygenate in the U.S. show that MTBE can contaminate large water amounts due to its physicochemical properties. The MTBE situation in the U.S differs from Europe, and significantly lower concentrations in the German environment can be expected. Average MTBE concentrations of 200-250 ng/L in the Lower Main and Lower Rhine river in 2000/2001 were reported. At two sites at the Lower Rhine and Lower Main rivers MTBE concentrations in bank filtered water (n = 22), recovering well water, raw water, and drinking water produced by the water utility at the Lower Rhine site (n = 30) and tap water at Frankfurt/M City (n = 13) were analyzed from 1999 to 2001. Sample analysis is performed by a combination of headspace-solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS) with a detection limit of 10 ng/L and a relative standard deviation of 11%. At the Lower Rhine site up to 80 m from the river an average MTBE concentration of 88 ng/L in riverbank filtered water, recovering well water, and raw water (n = 7) and of 43-110 ng/L in drinking water (n = 3) result. At the Lower Main site up to 400 m from the river MTBE concentrations from 52 to 250 ng/L (n = 7) were measured. Tap water samples at Frankfurt/M (mean of 35 ng/L, maximum of 71 ng/L) were in the same range as MTBE amounts in drinking water at the Lower Rhine site. Measured MTBE amounts eliminated by bank filtration at the Lower Rhine site

  7. Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2.

    Science.gov (United States)

    Hu, Qinhai; Zhang, Chunlong; Wang, Zhirong; Chen, Yan; Mao, Kehui; Zhang, Xingqing; Xiong, Yunlong; Zhu, Miaojun

    2008-06-15

    Two UV-based advanced oxidation processes (AOPs), UV/H2O2 and UV/TiO2, were tested in batch reactor systems to evaluate the removal efficiencies and optimal conditions for the photodegradation of methyl tert-butyl ether (MTBE). The optimal conditions at an initial MTBE concentration of 1 mM ([MTBE]0=1 mM) were acidic and 15 mM H2O2 in UV/H2O2 system, and pH 3.0 and 2.0 g/l TiO2 in UV/TiO2 suspended slurries system under 254-nm UV irradiation. Under the optimal conditions, MTBE photodegradation during the initial period of 60 min in UV/H2O2 and UV/TiO2 systems reached 98 and 80%, respectively. In both systems, MTBE photodegradation decreased with increasing [MTBE]0. While MTBE photodegradation rates increased with increasing dosage of H2O2 (5-15 mM) and TiO2 (0.5-3 g/l), further increase in the dosage of H2O2 (20 mM) or TiO2 (4 g/l) adversely reduced the MTBE photodegradation. Pseudo first-order kinetics with regard to [MTBE] can be used to describe the MTBE photodegradation in both systems. The pseudo first-order rate constants linearly increased with the increase in the molar ratio of [H2O2]0 to [MTBE]0 in UV/H2O2 system and linearly increased with the decrease in [MTBE]0 in UV/TiO2 system.

  8. The application of silicalite-1/fly ash cenosphere (S/FAC) zeolite composite for the adsorption of methyl tert-butyl ether (MTBE).

    Science.gov (United States)

    Lu, Jia; Xu, Fang; Wang, Deju; Huang, Jue; Cai, Weimin

    2009-06-15

    Silicalite-1/fly ash cenosphere (S/FAC) zeolite composite has been applied for batch adsorption of methyl tert-butyl ether (MTBE) from water systems. Here the key experimental conditions, including the ratio of initial MTBE concentration to the amount weight of S/FAC, adsorption time and temperature, have been discussed in detail. The results show that approximately 93-95% MTBE could be adsorbed with initial concentration of MTBE solution 1000 microg l(-1). The column flow-through experiments also prove the high capacity of S/FAC composite for MTBE removal. The distinct advantages of S/FAC zeolite composite as adsorbent lie in (1) enhanced adsorption rate and capacity based on hierarchical micro and meso/macroporosity of S/FAC; (2) more easily operation and recycling process by assembly of nano-sized silicalite-1 zeolite on FAC support.

  9. Disturbance of zinc and glucose homeostasis by methyl tert-butyl ether (MTBE); evidence for type 2 diabetes.

    Science.gov (United States)

    Saeedi, Arastoo; Fardid, Reza; Khoshnoud, Mohammad Javad; Kazemi, Elaheh; Omidi, Mahmoud; Mohammadi-Bardbori, Afshin

    2017-06-01

    1. The prevalence of diabetes and the other metabolic disorders has noticeably increased worldwide. A causal link between increasing risk of type 2 diabetes and exposure to environmental pollutants has been reported. 2. We hypothesized that exposure to methyl tert-butyl ether (MTBE), an oxygenate additive to gasoline would hinder zinc and glucose homeostasis in rats. 3. Male Sprague-Dawley rats received MTBE in drinking water for 90 days. At the end of the treatment, pancreas and blood samples were collected for biochemical and molecular examinations. Expression of four candidate genes, including Insulin1, Insulin2, MT1A, SLC30A8 by Real-Time Quantitative PCR (Q-PCR) as well as biochemical parameters, including fasting blood glucose (FBS), triglycerides (TG), cholesterol (CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), copper (Cu(2+)) and calcium (Ca(2+)) levels as well as High-sensitive C-reactive protein were assessed as endpoints. 4. This study suggested that MTBE exposure can be associated with disruption in zinc homeostasis and glucose tolerance.

  10. Concentrations and potential health risks of methyl tertiary-butyl ether (MTBE) in air and drinking water from Nanning, South China.

    Science.gov (United States)

    Zhang, Li'e; Qin, Jian; Zhang, Zhiyong; Li, Qin; Huang, Jiongli; Peng, Xiaowu; Qing, Li; Liang, Guiqiang; Liang, Linhan; Huang, Yuman; Yang, Xiaobo; Zou, Yunfeng

    2016-01-15

    Levels of methyl tertiary-butyl ether (MTBE) in occupational air, ambient air, and drinking water in Nanning, South China, were investigated, and then their potential health risks to occupational workers and the general public were evaluated. Results show that the MTBE concentration in occupational air from 13 service stations was significantly higher than that in ambient air from residential areas (pwater samples from household taps yielded detectable MTBE in the range of 0.04-0.33 μg/L, which is below the US drinking water standard of 20-40 μg/L. The non-carcinogenic risk of MTBE from air inhalation may be negligible because the calculated hazard quotient was less than 1. The mean MTBE lifetime cancer risk was within the acceptable limit of 1 × 10(-6) to 1 × 10(-4), but the lifetime cancer risk of refueling workers in the urban service station at the 95th percentile slightly exceeded the maximum acceptable carcinogen risk (1 × 10(-4)), indicating the potential carcinogenic health effects on the population highly exposed to MTBE in this region. The hazard index and carcinogenic risk of MTBE in drinking water were significantly lower than the safe limit of US Environmental Protection Agency, suggesting that drinking water unlikely poses significant health risks to the residents in Nanning. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Toxicity of methyl tertiary-butyl ether (MTBE) following exposure of Wistar Rats for 13 weeks or one year via drinking water.

    Science.gov (United States)

    Bermudez, Edilberto; Willson, Gabrielle; Parkinson, Horace; Dodd, Darol

    2012-09-01

    Thirteen-week and one-year toxicity studies of methyl tertiary-butyl ether (MTBE) administered in drinking water to Wistar rats were conducted. Male and female rats were exposed to MTBE in drinking water at 0.5, 3, 7.5 and 15 mg ml(-1) for 13 weeks and at 0.5, 3 and 7.5 (males) or 0.5, 3 and 15 mg ml(-1) (females) for 1 year. Body weights were reduced only in males following 13 weeks of exposure. Reduced water consumption and urine output were observed in males and females exposed to MTBE. Kidney cell replication and α(2u)-globulin levels in males were increased at 1 and 4 weeks of MTBE exposure and tubular cell regeneration was increased in male kidneys exposed to MTBE concentrations of 7.5 mg ml(-1) or greater for 13 weeks. Wet weights of male kidneys were increased following 13 weeks, 6 months and 1 year of exposure to MTBE concentrations of 7.5 mg ml(-1) or greater. Kidney wet weights were increased in females at MTBE concentrations of 15 mg ml(-1) for 13 weeks. Tertiary-butyl alcohol blood levels increased linearly with dose in males and females following 1 year of exposure. Chronic progressive nephropathy (CPN), of minimal to mild severity, increased in males, but not females, with 1 year of MTBE exposure. In summary, exposure of Wistar rats to MTBE in the drinking water resulted in minimal exposure-related effects including limited renal changes in male rats suggestive of α(2u)-globulin nephropathy following 13 weeks of exposure and an exacerbation of CPN in males at the end of 1 year of exposure. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Using groundwater age distributions to understand changes in methyl tert-butyl ether (MtBE) concentrations in ambient groundwater, northeastern United States

    Science.gov (United States)

    Lindsey, Bruce; Ayotte, Joseph; Jurgens, Bryant; DeSimone, Leslie

    2017-01-01

    Temporal changes in methyl tert-butyl ether (MtBE) concentrations in groundwater were evaluated in the northeastern United States, an area of the nation with widespread low-level detections of MtBE based on a national survey of wells selected to represent ambient conditions. MtBE use in the U.S. peaked in 1999 and was largely discontinued by 2007. Six well networks, each representing specific areas and well types (monitoring or supply wells), were each sampled at 10 year intervals between 1996 and 2012. Concentrations were decreasing or unchanged in most wells as of 2012, with the exception of a small number of wells where concentrations continue to increase. Statistically significant increasing concentrations were found in one network sampled for the second time shortly after the peak of MtBE use, and decreasing concentrations were found in two networks sampled for the second time about 10 years after the peak of MtBE use. Simulated concentrations from convolutions of estimates for concentrations of MtBE in recharge water with age distributions from environmental tracer data correctly predicted the direction of MtBE concentration changes in about 65 percent of individual wells. The best matches between simulated and observed concentrations were found when simulating recharge concentrations that followed the pattern of national MtBE use. Some observations were matched better when recharge was modeled as a plume moving past the well from a spill at one point in time. Modeling and sample results showed that wells with young median ages and narrow age distributions responded more quickly to changes in the contaminant source than wells with older median ages and broad age distributions. Well depth and aquifer type affect these responses. Regardless of the timing of decontamination, all of these aquifers show high susceptibility for contamination by a highly soluble, persistent constituent.

  13. IRIS Toxicological Review and Summary Documents for Methyl Tert-Butyl Ether (MTBE)

    Science.gov (United States)

    MTBE is a volatile organic chemical used to oxygenate gasoline. Oxygenated gasoline improves the exhaust emissions from gasoline engines. Since 1992 it has been used to comply with the Federal Reformulated Gasoline (begun in 1995) and Wintertime Oxygenated Fuel (begun in 1992) p...

  14. REMOVAL OF METHYL TERTIARY BUTYL ETHER (MTBE) FROM GROUNDWATER USING PHOTOCATALYSIS

    Science.gov (United States)

    The potential of photocatalysis was determined for treating MTBE-contaminated drinking water supplies. Two liquid-phase systems, a falling film reactor, and a solar degradation system, are being evaluated. We are also conducting a gas-phase treatment method to simulate an integra...

  15. The effect of loading palladium on zinc oxide on the photocatalytic degradation of methyl tert-butyl ether (MTBE) in water.

    Science.gov (United States)

    Seddigi, Zaki S; Ahmed, Saleh A; Ansari, Shahid P; Yarkandi, Naeema H; Danish, Ekram; Alkibash, Abdullah Abu; Oteef, Mohammed D Y; Ahmed, Shakeel

    2014-01-01

    A series of heterogeneous catalysts was prepared by doping zinc oxide with different palladium loadings in the range of 0.5%-1.5%. The prepared catalysts were characterized by SEM, TEM and XRD. These catalysts were applied to study the degradation of Methyl tert-Butyl Ether (MTBE). An amount of 100 mg of each of these catalysts was added to an aqueous solution of 100 ppm of MTBE. The resulting mixtures were irradiated with UV light for a period of 5 h. A 99.7% removal of MTBE was achieved in the case of the zinc oxide photocatalyst particles doped with 1% Pd. The photoreaction was found to be a first-order one. © 2014 The American Society of Photobiology.

  16. Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl tert-butyl ether (MTBE) by UV/H2O2 process.

    Science.gov (United States)

    Salari, D; Daneshvar, N; Aghazadeh, F; Khataee, A R

    2005-10-17

    During the last two decades, methyl tert-butyl ether (MTBE) has been widely used as an additive to gasoline (up to 15%) both to increase the octane number and as a fuel oxygenate to improve air quality by reducing the level of carbon monoxide in vehicle exhausts. The present work mainly deals with photooxidative degradation of MTBE in the presence of H2O2 under UV light illumination (30W). We studied the influence of the basic operational parameters such as initial concentration of H2O2 and irradiation time on the photodegradation of MTBE. The oxidation rate of MTBE was low when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The addition of proper amount of hydrogen peroxide improved the degradation, while the excess hydrogen peroxide could quench the formation of hydroxyl radicals (OH). The semi-log plot of MTBE concentration versus time was linear, suggesting a first order reaction. Therefore, the treatment efficiency was evaluated by figure-of-merit electrical energy per order (E(Eo)). Our results showed that MTBE could be treated easily and effectively with the UV/H2O2 process with E(Eo) value 80 kWh/m3/order. The proposed model based on artificial neural network (ANN) could predict the MTBE concentration during irradiation time in optimized conditions. A comparison between the predicted results of the designed ANN model and experimental data was also conducted.

  17. Comparison of Biostimulation versus Bioaugmentation with Bacterial Strain PM1 for Treatment of Groundwater Contaminated with Methyl Tertiary Butyl Ether (MTBE)

    Science.gov (United States)

    Smith, Amanda E.; Hristova, Krassimira; Wood, Isaac; Mackay, Doug M.; Lory, Ernie; Lorenzana, Dale; Scow, Kate M.

    2005-01-01

    Widespread contamination of groundwater by methyl tertiary butyl ether (MTBE) has triggered the exploration of different technologies for in situ removal of the pollutant, including biostimulation of naturally occurring microbial communities or bioaugmentation with specific microbial strains known to biodegrade the oxygenate. After laboratory studies revealed that bacterial strain PM1 rapidly and completely biodegraded MTBE in groundwater sediments, the organism was tested in an in situ field study at Port Hueneme Naval Construction Battalion Center in Oxnard, California. Two pilot test plots (A and B) in groundwater located down-gradient from an MTBE source were intermittently sparged with pure oxygen. Plot B was also inoculated with strain PM1. MTBE concentrations up-gradient from plots A and B initially varied temporally from 1.5 to 6 mg MTBE/L. Six months after treatment began, MTBE concentrations in monitoring wells down-gradient from the injection bed decreased substantially in the shallow zone of the ground-water in plots A and B, thus even in the absence of the inoculated strain PM1. In the deeper zone, downstream MTBE concentrations also decreased in plot A and to a lesser extent in plot B. Difficulties in delivery of oxygen to the deeper zone of plot B, evidenced by low dissolved oxygen concentrations, were likely responsible for low rates of MTBE removal at that location. We measured the survival and movement of strain PM1 in groundwater samples using two methods for detection of DNA sequences specific to strain PM1: TaqMan quantitative polymerase chain reaction, and internal transcribed spacer region analysis. A naturally occurring bacterial strain with > 99% 16S rDNA sequence similarity to strain PM1 was detected in groundwater collected at various locations at Port Hueneme, including outside the plots where the organism was inoculated. Addition of oxygen to naturally occurring microbial populations was sufficient to stimulate MTBE removal at this site

  18. Biodegradation of Methyl Tertiary Butyl Ether (MTBE by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays.

    Directory of Open Access Journals (Sweden)

    Guadalupe Alfonso-Gordillo

    Full Text Available This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.

  19. Biodegradation of Methyl Tertiary Butyl Ether (MTBE) by a Microbial Consortium in a Continuous Up-Flow Packed-Bed Biofilm Reactor: Kinetic Study, Metabolite Identification and Toxicity Bioassays.

    Science.gov (United States)

    Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo

    2016-01-01

    This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.

  20. Modeling Of A Reactive Distillation Column: Methyl Tertiary Butyl Ether (Mtbe Simulation Studies

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Saaid Abdul Rahman Mohamed and Subhash Bhatia

    2012-10-01

    Full Text Available A process simulation stage-wise reactive distillation column model formulated from equilibrium stage theory was developed. The algorithm for solving mathematical model represented by sets of differential-algebraic equations was based on relaxation method. Numerical integration scheme based on backward differentiation formula was selected for solving the stiffness of differential-algebraic equations. Simulations were performed on a personal computer (PC Pentium processor through a developed computer program using FORTRAN90 programming language. The proposed model was validated by comparing the simulated results with the published simulation results and with the pilot plant data from the literature. The model was capable of predicting high isobutene conversion for heterogeneous system, as desirable in industrial MTBE production process. The comparisons on temperature profiles, liquid composition profile and operating conditions of reactive distillation column also showed promising results. Therefore the proposed model can be used as a tool for the development and simulation of reactive distillation column.Keywords: Modeling, simulation, reactive distillation, relaxation method, equilibrium stage, heterogeneous, MTBE

  1. Pyrolysis of methyl tert-butyl ether (MTBE). 2. Theoretical study of decomposition pathways.

    Science.gov (United States)

    Zhang, Taichang; Zhang, Lidong; Wang, Jing; Yuan, Tao; Hong, Xin; Qi, Fei

    2008-10-23

    The thermal decomposition pathways of MTBE have been investigated using the G3B3 method. On the basis of the experimental observation and theoretical calculation, the pyrolysis channels are provided, especially for primary pyrolysis reactions. The primary decomposition pathways include formation of methanol and isobutene, CH4 elimination, H2 elimination and C-H, C-C, C-O bond cleavage reactions. Among them, the formation channel of methanol and isobutene is the lowest energy pathway, which is in accordance with experimental observation. Furthermore, the secondary pyrolysis pathways have been calculated as well, including decomposition of tert-butyl radical, isobutene, methanol and acetone. The radicals play an important role in the formation of pyrolysis products, for example, tert-butyl radical and allyl radical are major precursors for the formation of allene and propyne. Although some isomers (isobutene and 1-butene, allene and propyne, acetone and propanal) are identified in our experiment, these isomerization reaction pathways occur merely at the high temperature due to their high activation energies. The theoretical calculation can explain the experimental results reported in part 1 and shed further light on the thermal decomposition pathways.

  2. gamma-Aminobutyric acid(A) (GABA(A)) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of methyl tert-butyl ether (MTBE)-induced impairment of spatial memory.

    Science.gov (United States)

    Zheng, Gang; Zhang, Wenbin; Zhang, Yun; Chen, Yaoming; Liu, Mingchao; Yao, Ting; Yang, Yanxia; Zhao, Fang; Li, Jingxia; Huang, Chuanshu; Luo, Wenjing; Chen, Jingyuan

    2009-04-15

    Experimental and occupational exposure to methyl tert-butyl ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA(A) receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA(A) receptor alpha1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA(A) receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  3. Effect of oral methyl-t-butyl ether (MTBE) on the male mouse reproductive tract and oxidative stress in liver

    Science.gov (United States)

    de Peyster, Ann; Rodriguez, Yvonne; Shuto, Rika; Goldberg, Beck; Gonzales, Frank; Pu, Xinzhu; Klaunig, James E.

    2015-01-01

    MTBE is found in water supplies used for drinking and other purposes. These experiments follow up on earlier reports of reproductive tract alterations in male mice exposed orally to MTBE and explored oxidative stress as a mode of action. CD-1 mice were gavaged with 400–2000 mg/kg MTBE on days 1, 3, and 5, injected ip with hCG (2.5 IU/g) on day 6, and necropsied on day 7. No effect was seen in testis histology or testosterone levels. Using a similar dosing protocol, others had initially reported disruption of seminiferous tubules in MTBE–gavaged mice, although later conclusions published were consistent with our findings. Another group had also reported testicular and other reproductive system abnormalities in male BALB/c mice exposed for 28 days to 80–8000 ug/ml MTBE in drinking water. We gave these MTBE concentrations to adult mice for 28 days and juvenile mice for 51 days through PND 77. Evidence of oxidative stress was examined in liver homogenates from the juvenile study using MDA, TEAC and 8OH2hG as endpoints. MTBE exposures at the levels examined indicated no significant changes in the male mouse reproductive tract and no signs of hepatic oxidative stress. This appears to be the first oral MTBE exposure of juvenile animals, and also the first to examine potential for MTBE to cause oxidative stress in vivo using a typical route of human exposure. PMID:18824092

  4. Pyrolysis of methyl tert-butyl ether (MTBE). 1. Experimental study with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization.

    Science.gov (United States)

    Zhang, Taichang; Wang, Jing; Yuan, Tao; Hong, Xin; Zhang, Lidong; Qi, Fei

    2008-10-23

    An experimental study of methyl tert-butyl ether (MTBE) pyrolysis (3.72% MTBE in argon) has been performed at low pressure (267 Pa) within the temperature range from 700 to 1420 K. The pyrolysis process was detected with the tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry (MBMS). About thirty intermediates are identified from near-threshold measurements of photoionization mass spectrum and photoionization efficiency spectrum. Among them, H2, CO, CH4, CH3OH and C4H8 are the major pyrolysis products. The radicals such as methyl, methoxy, propargyl, allyl, C4H5 and C4H7 are detected. The isomers of pyrolysis products are identified as well, i.e., propyne and allene, 1,2,3-butatriene and vinylacetylene, isobutene and 1-butene, propanal and acetone. Furthermore, the mole fractions of the pyrolysis products have been evaluated under various temperatures. Meanwhile, the initial formation temperatures of different pyrolysis products can be obtained. This work is anticipated to present a new experimental method for pyrolysis study and help understand the pyrolysis and combustion chemistry of MTBE and other oxygenated fuels.

  5. Methyl tert-butyl ether (MTBE) and other volatile organic compounds in lakes in Byram Township, Sussex County, New Jersey, summer 1998

    Science.gov (United States)

    Baehr, Arthur L.; Zapecza, Otto S.

    1998-01-01

     Water samples were collected from four lakes in Byram Township, Sussex County, N.J., in the summer of 1998 as part of an investigation of the occurrence of volatile organic compounds (VOCs) in domestic wells of lakeside communities. Cranberry Lake and Lake Lackawanna are surrounded by densely populated communities where the use of gasoline-powered watercraft is prevalent, and water is supplied by lakeside wells. Forest Lake is surrounded by a densely populated community where the use of gasoline-powered watercraft is prohibited. Stag Pond is privately owned, is situated in a sparsely populated area, and is not navigated by gasoline-powered watercraft. Samples were collected from Cranberry Lake in early summer and again in late summer 1998. Concentrations of the gasoline oxygenate methyl tert-butyl ether (MTBE) ranged from 1.6 to 15.0 µg/L (micrograms per liter) on June 24 and decreased with depth. The depth-related concentration gradient is attributed to density stratification caused by the temperature gradient that is present in the lake during the early summer. MTBE concentrations ranged from 7.4 to 29.0 µg/L on September 8 and were uniform with depth, as was water temperature, indicating that the lake was vertically mixed. On the basis of these concentration profiles, the mass of MTBE in Cranberry Lake was estimated to be 15 kilograms on June 24 and 27 kilograms on September 8. These mass estimates are equal to the amount of MTBE in 52 and 95 gallons, respectively, of gasoline that contains 10 percent MTBE by volume. Concentrations of another gasoline oxygenate, tert-amyl-methyl ether (TAME), ranged from 0.07 to 0.43 µg/L on June 24 and from 0.2 to 0.69 µg/L on September 8. The highest concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) were 0.18, 1.2, 0.18, and 0.97 µg/L, respectively, on June 24. All BTEX concentrations in Cranberry Lake on September 8 were less than 0.2 µg/L.

  6. Preparation and characterization of Pd doped ceria–ZnO nanocomposite catalyst for methyl tert-butyl ether (MTBE) photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Seddigi, Zaki S. [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Bumajdad, Ali [Chemistry Department, Faculty of Science, Kuwait University (Kuwait); Ansari, Shahid P. [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Ahmed, Saleh A., E-mail: saleh_63@hotmail.com [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Danish, Ekram Y. [Chemistry Department, King Abdulaziz University, Jeddah (Saudi Arabia); Yarkandi, Naeema H. [Chemistry Department, Umm Al-Qura University, Makkah (Saudi Arabia); Ahmed, Shakeel [Center for Refining and Petrochemicals, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2014-01-15

    Highlights: • Novel Pd supported ceria–ZnO photocatalysts were prepared with different amounts of palladium. • The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. • Near complete removal of MTBE was achieved using 1% Pd doped ceria–ZnO catalyst and UV irradiation. • Highest rate constant was obtained in case of 1% Pd doped ceria–ZnO catalyst. • Shape and size of pores are important factors for high photoactivity of catalyst. -- Abstract: A series of binary oxide catalysts (ceria–ZnO) were prepared and doped with different amounts of palladium in the range of 0.5%–1.5%. The prepared catalysts were characterized by SEM, TEM, XRD and XPS, as well as by N{sub 2} sorptiometry study. The XPS results confirmed the structure of the Pd CeO{sub 2−x}-ZnO. The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. These photocatalyst efficiently degrade a 100 ppm aqueous solution of MTBE upon UV irradiation for 5 h in the presence of 100 mg of each of these photocatalysts. The removal of 99.6% of the MTBE was achieved with the ceria–ZnO catalyst doped with 1% Pd. In addition to the Pd loading, the N{sub 2} sorptiometry study introduced other factors that might affect the catalytic efficiency is the catalyst average pore sizes. The photoreaction was determined to be a first order reaction.

  7. ADVANCED OXIDATION PROCESSES (AOPS) FOR DESTRUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE -AN UNREGULATED CONTAMINANT) IN DRINKING WATER

    Science.gov (United States)

    Advanced oxidation processes (AOPs) provide a promising treatment option for the destruction of MTBE directly in surface and ground waters. An ongoing study is evaluating the ability of three AOPs; hydrogen peroxide/ozone (H2O2/ O3), ultraviolet irradiation/ozone (UV/O3) and ultr...

  8. Mechanistic considerations for the degradation of methyl tert-butyl ether (MTBE) by sonolysis: effect of argon vs. oxygen saturated solutions.

    Science.gov (United States)

    Kim, Duk Kyung; O'Shea, Kevin E; Cooper, William J

    2012-07-01

    The ultrasonic degradation mechanism of methyl tert-butyl ether (MTBE) in aqueous solution is complex because of the competition between hydroxyl radical attack, pyrolysis, and hydrolysis reactions. A detailed investigation of degradation pathways using sonolysis has been performed using reaction byproducts identification. The observed bi-product distributions are rationalized in terms of hydroxyl radical (()OH) mediated processes and pyrolysis. The role of oxygen mediated and pyrolytic pathways were assessed using O(2) and Ar saturated solutions. Chemical destruction by sonolysis is often rationalized using hydroxyl radical chemistry. Pyrolysis is unique to this advanced oxidation process, and is important in the case of MTBE because it transfers into the cavitating bubbles. While α-hydrogen abstraction by ()OH and low temperature pyrolysis was important, it was also shown that β-hydrogen abstraction leads, in some cases, to the same reaction byproducts, which emphasized the importance of α-hydrogen abstraction. High temperature pyrolysis resulted in minor degradation reactions based on the formation of reaction by-products. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Preparation and characterization of Pd doped ceria-ZnO nanocomposite catalyst for methyl tert-butyl ether (MTBE) photodegradation.

    Science.gov (United States)

    Seddigi, Zaki S; Bumajdad, Ali; Ansari, Shahid P; Ahmed, Saleh A; Danish, Ekram Y; Yarkandi, Naeema H; Ahmed, Shakeel

    2014-01-15

    A series of binary oxide catalysts (ceria-ZnO) were prepared and doped with different amounts of palladium in the range of 0.5%-1.5%. The prepared catalysts were characterized by SEM, TEM, XRD and XPS, as well as by N2 sorptiometry study. The XPS results confirmed the structure of the Pd CeO2-x-ZnO. The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. These photocatalyst efficiently degrade a 100ppm aqueous solution of MTBE upon UV irradiation for 5h in the presence of 100mg of each of these photocatalysts. The removal of 99.6% of the MTBE was achieved with the ceria-ZnO catalyst doped with 1% Pd. In addition to the Pd loading, the N2 sorptiometry study introduced other factors that might affect the catalytic efficiency is the catalyst average pore sizes. The photoreaction was determined to be a first order reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Evaluation and Optimization of MTBE Biodegradation in Aquifers, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Legler, T; Balser, L; Koester, C; Wilson, W

    2004-02-13

    This study was focused on meeting the following objectives concerning the process of methyl tertiary butyl ether (MTBE) biodegradation, with the goal of optimizing this process in situ: 1. Assess whether intrinsic bioattenuation of MTBE is feasible under aerobic conditions across several contaminated sites. 2. Determine the effect of co-contaminants, specifically water-soluble gasoline components (most notably benzene, toluene, ethylbenzene and xylenes [BTEX]) on MTBE biodegradation. 3. Determine whether microbial and/or chemical factors contribute to different MTBE degradative activities. 4. Isolate and characterize MTBE-degrading microorganisms from sediments in which MTBE biodegradation was observed.

  11. Factors influencing biological treatment of MTBE contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Hines Jr., Robert D.; Cockrum, Dirk K.; Kilkenny, Scott T.

    2001-09-14

    Methyl tert-butyl ether (MTBE) contamination has complicated the remediation of gasoline contaminated sites. Many sites are using biological processes for ground water treatment and would like to apply the same technology to MTBE. However, the efficiency and reliability of MTBE biological treatment is not well documented. The objective of this study was to examine the operational and environmental variables influencing MTBE biotreatment. A fluidized bed reactor was installed at a fuel transfer station and used to treat ground water contaminated with MTBE and gasoline hydrocarbons. A complete set of chemical and operational data was collected during this study and a statistical approach was used to determine what variables were influencing MTBE treatment efficiency. It was found that MTBE treatment was more sensitive to up-set than gasoline hydrocarbon treatment. Events, such as excess iron accumulation, inhibited MTBE treatment, but not hydrocarbon treatment. Multiple regression analysis identified biomass accumulation and temperature as the most important variables controlling the efficiency of MTBE treatment. The influent concentration and loading of hydrocarbons, but not MTBE, also impacted MTBE treatment efficiency. The results of this study suggest guidelines for improving MTBE treatment. Long cell retention times in the reactor are necessary for maintaining MTBE treatment. The onset of nitrification only occurs when long cell retention times have been reached and can be used as an indicator in fixed film reactors that conditions favorable to MTBE treatment exist. Conversely, if the reactor can not nitrify, it is unlikely to have stable MTBE treatment.

  12. Paenibacillus etheri sp. nov., able to growth on media supplemented with methyl tert-butyl ether (MTBE) isolated from hydrocarbon contaminated soil.

    Science.gov (United States)

    Guisado, Isabel M; Purswani, Jessica; González-López, Jesús; Pozo, Clementina

    2015-11-26

    A bacterial strain designated as strain SH7T was isolated from the hydrocarbon contaminated soil of a pilot plant (Granada, Spain). The strain was selected for its capacity to growth in media supplemented with methyl tert-butyl ether (MTBE) as sole energy and carbon source. Strain SH7T was a Gram-stain-positive, facultatively anaerobic, spore-forming, rod-shaped bacterium. Phylogenetic analysis using 16S rRNA gene sequences showed that strain SH7T belongs to a cluster comprising species of the genus Paenibacillus and was closely related to Paenibacillus borealis DSM 13188T (97%) and Paenibacillus odorifer DSM 15391T (98%). DNA-DNA hybridization tests showed low relatedness of the strain SH7T with Paenibacillus borealis (16.9±1.5%) and Paenibacillus odorifer (16.6±2.1%) respectively. The cell wall contained meso-diaminopimelic acid. The predominant respiratory quinone was MK-7, anteiso-C15:0 (32.9%) and C16:0 (29.0%) were the predominant cellular fatty acids. Phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and three unknown aminophospholipids were the major phospholipids. The DNA G+C content was 44.3 mol%. The data obtained in this study indicate that the SH7Tstrain represents a novel species of the genus Paenibacillus, for which the name Paenibacillus etheri sp. nov. is proposed. The type strain is SH7T (= CECT 8558T =DSM 29760T).

  13. Reassessment of MTBE cancer potency considering modes of action for MTBE and its metabolites.

    Science.gov (United States)

    Bogen, Kenneth T; Heilman, Jacqueline M

    2015-01-01

    A 1999 California state agency cancer potency (CP) evaluation of methyl tert-butyl ether (MTBE) assumed linear risk extrapolations from tumor data were plausible because of limited evidence that MTBE or its metabolites could damage DNA, and based such extrapolations on data from rat gavage and rat and mouse inhalation studies indicating elevated tumor rates in male rat kidney, male rat Leydig interstitial cells, and female rat leukemia/lymphomas. More recent data bearing on MTBE cancer potency include a rodent cancer bioassay of MTBE in drinking water; several new studies of MTBE genotoxicity; several similar evaluations of MTBE metabolites, formaldehyde, and tert-butyl alcohol or TBA; and updated evaluations of carcinogenic mode(s) of action (MOAs) of MTBE and MTBE metabolite's. The lymphoma/leukemia data used in the California assessment were recently declared unreliable by the U.S. Environmental Protection Agency (EPA). Updated characterizations of MTBE CP, and its uncertainty, are currently needed to address a variety of decision goals concerning historical and current MTBE contamination. To this end, an extensive review of data sets bearing on MTBE and metabolite genotoxicity, cytotoxicity, and tumorigenicity was applied to reassess MTBE CP and related uncertainty in view of MOA considerations. Adopting the traditional approach that cytotoxicity-driven cancer MOAs are inoperative at very low, non-cytotoxic dose levels, it was determined that MTBE most likely does not increase cancer risk unless chronic exposures induce target-tissue toxicity, including in sensitive individuals. However, the corresponding expected (or plausible upper bound) CP for MTBE conditional on a hypothetical linear (e.g., genotoxic) MOA was estimated to be ∼2 × 10(-5) (or 0.003) per mg MTBE per kg body weight per day for adults exposed chronically over a lifetime. Based on this conservative estimate of CP, if MTBE is carcinogenic to humans, it is among the weakest 10% of chemical

  14. Study of Methyl tert-butyl Ether (MTBE Photocatalytic Degradation with UV/TiO2-ZnO-CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohsen Mansouri

    2017-01-01

    Full Text Available In this study, the TiO2-ZnO-CuO nanoparticles were primed by sol-gel method characterized by X-ray diffraction (XRD and Scanning Electron Microscopy (SEM, for degradation of MTBE solution in water. The effectiveness of the treatment method applied for the degradation of MTBE based on an advanced photocatalytic oxidation process was investigated. The three various key parameters were optimized using response surface modeling namely: pH, TiO2-ZnO-CuO concentration and the initial MTBE concentrations. The optimized values were obtained at the PH (7, TiO2-ZnO-CuO concentration (1.49 g/L, and the initial MTBE concentration (31.46 mg/L. Finally, kinetics reaction of degradtion MTBE was carried in the optimum conditions.

  15. Simulation of methyl tert-butyl ether (MTBE) transport to ground water from immobile sources of gasoline in the vadose zone

    Science.gov (United States)

    Lahvis, M.A.; Rehmann, L.C.

    1999-01-01

    The mathematical model, R-UNSAT, developed to simulate the transport of benzene and MTBE in representative sand and clay hydrogeologic systems was evaluated. The effects on groundwater were simulated for small, chronic-, and single-volume releases of gasoline trapped in unsaturated soil. Hydrocarbon biodegradation was simulated by using a dual Monod-type kinetics model that includes oxygen and the reactive constituents. MTBE was assumed to be non-reactive. For MTBE, infiltration had the greatest effect on transport to groundwater. Infiltration also affected mass losses of MTBE to the atmosphere, particularly, in fine-grained soils. Depth to groundwater and soil type primarily affected travel times of MTBE to groundwater, but could affect mass-loading rates to groundwater if infiltration is insignificant. For benzene, transport to groundwater was significant only if the depth to the water table was MTBE by more than two orders of magnitude. Thus, water that recharges an aquifer beneath a spill can be enriched in MTBE relative to benzene when compared to the composition of water in equilibrium with gasoline.

  16. Water Quality and Occurrence of Methyl Tert-Butyl Ether (MTBE) and Other Fuel-Related Compounds in Lakes and Ground Water at Lakeside Communities in Sussex and Morris Counties, New Jersey, 1998-1999

    Science.gov (United States)

    Baehr, Arthur L.; Reilly, Timothy J.

    2001-01-01

    Densely populated communities surround many of the larger lakes in northwestern New Jersey. These communities derive most of their water supply from wells. The lakes can be navigated by gasoline-powered watercraft, can be in various stages of eutrophication, may contain pathogens associated with bathing and waterfowl, and are periodically subjected to chemical applications to control aquatic plant growth. Another feature that contributes to water-quality concerns in lakeside communities is the widespread use of septic tanks. Concentrations of methyl tert-butyl ether (MTBE), a gasoline oxygenate, in samples from Cranberry Lake and Lake Lackawanna ranged from 20 to 30 ug/L (micrograms per liter) and 5 to 14 ug/L during the summers of 1998 and 1999, respectively. These levels were persistent throughout the depth of the lakes when mixing conditions were present. MTBE concentrations in samples from the top 20 feet of Lake Hopatcong during summer 1999 were about 10 ug/L and about 2 to 3 ug/L in samples below 20 feet. The source of the MTBE in the lakes was determined to be gasoline-powered watercraft. Other constituents of gasoline--tertiary amyl methyl ether (TAME) and benzene, toluene, ethylbenzene, and xylenes (BTEX)--were detected in the lakes but at much lower concentrations than MTBE. Ambient ground-water quality at Cranberry Lake and Lake Lackawanna appears to be affected by the use of gasoline-powered watercraft. MTBE was detected in water samples from 13 of the 14 wells sampled at Cranberry Lake in fall 1998 and summer 1999. The wells were selected to monitor ambient ground-water quality and had no history of contamination. In ground-water samples collected during fall 1998, MTBE concentrations ranged from 0.12 to 19.8 ug/L, and the median concentration was 0.43 ug/L. In samples from summer 1999, MTBE concentrations ranged from 0.14 to 13.2 ug/L, and the median concentration was 0.38 ug/L. MTBE was detected in samples from four of the five wells at Lake

  17. Biodegradation of MTBE in reactors

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin

    2007-01-01

    The fuel oxygenate methyl tert-butyl ether (MTBE) was first introduced in the 1970’s to improve gasoline combustion efficiency and reduce emission of harmful gases. However, it has caused groundwater contamination in Denmark and in many locations worldwide through accidental releases from leaking...... anaerobic conditions. Overall, the studies showed that despite the effects of competition, fixed film bioreactors can be successfully applied to remove MTBE from ground water to meet the current Danish drinking water regulatory requirement of 5 ppb or even lower....... underground gasoline storage tanks and pipelines. Both laboratory experiments and mathematical computer models were used to acquire knowledge on the scientific and engineering aspects related to the use of bioreactors for removal of MTBE from contaminated groundwater. Results from kinetic parameter...

  18. Sludge Recycle of Wastewater Treatment Plant via its Application as Powdered Activated Carbon for Removal of Methyl Tertiary-Butyl Ether (MTBE from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MR Zare

    2016-05-01

    Full Text Available Introduction: Nowadays, application of MTBE due to its physical and chemical characteristics including high solubility in water has been increased, resulting in its release into the water resources. On other hand, waste activated sludge derived from municipal wastewater treatment plant (MWTP contains high amount of carbon. Therefore, this study aimed to provide the activated carbon via sludge of MWTP as well as to evaluate its efficiency for MTBE removal. Methods: The effect of some parameters such as kind of activator, pH (2-10, contact time (0-240min, adsorbent dose (2-6g/L and initial concentration of MTBE (20-70mg/L was investigated on MTBE adsorption via activated carbon, after preparation of coal from wastewater sludge and activation of this coal via 3 molar solution of H2PO4,  and KOH as well as 5 molar solution of ZnCl2. MTBE concentration in solution was determined via Gas-Chromatography instrument. The obtained experimental data were modeled by adsorption model of Freundlich and Langmuir. Results: The maximum adsorbed MTBE per gram of activated carbon was obtained when the ZnCL2 was used as an activator; however, there was no statistically significant difference among different activators. In addition, maximum removal efficiency (about 50% was obtained in acidic pH of 4, 6g/L of activated carbon and 20mg/L of MTBE concentration. Results of adsorption isotherm showed that Freundlich adsorption model had a better compliance with the experimental data. Conclusion: Regarding the problems associated with sludge disposal of wastewater treatment plant, recycling of this sludge, as an adsorbent, can eliminate most of these problems. As a result, the economical features with respect to industrial scale application and the efficiency of this substance in removal of other pollutants are recommended to be investigated.

  19. BIODEGRADATION OF MTBE BY A MICROORGANISM CONSORTIUM

    Directory of Open Access Journals (Sweden)

    M. Alimohammadi, A. R. Mesdaghinia, M. Mahmoodi, S. Nasseri, A. H. Mahvi and J. Nouri

    2005-10-01

    Full Text Available Methyl Tert-Butyl Ether (MTBE is one of the ether oxygenates which its use has been increased within the last twenty years. This compound is produced from isobutylene and methanol reaction that is used as octane index enhancer and also increases dissolved oxygen in gasoline and decreases carbon monoxide emission in four phased motors because of better combustion of gasoline. High solubility in water (52 g/L, high vapor pressure (0.54 kg/cm3, low absorption to organic carbon of soil and presence of MTBE in the list of potentially-carcinogens of U.S EPA has made its use of great concern. The culture media used in this study was Mineral Salt Medium (MSM. The study lasted for 236 days and in three different concentrations of MTBE of 200, 5 and 0.8 mg/L. A control sample was also used to compare the results. This research studied the isolation methods of microbial consortium in the MTBE polluted soils in Tehran and Abadan petroleum refinery besides MTBE degradation. The results showed the capability of bacteria in consuming MTBE as carbon source. Final microbial isolation was performed with several microbial passages as well as keeping consortium in a certain amount of MTBE as the carbon source.

  20. Visible-light-induced photocatalysis of low-level methyl-tertiary butyl ether (MTBE) and trichloroethylene (TCE) using element-doped titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wan-Kuen; Yang, Chang-Hee [Department of Environmental Engineering, Kyungpook National University, Sankeokdong, Bukgu, Daegu 702-701 (Korea)

    2010-04-15

    While the photocatalytic degradation of various volatile organic compounds in conjunction with UV light has been widely reported, visible-light-induced photocatalytic degradation of low-levels of the pollutants MTBE and TCE, which have been linked to potential adverse health effects, is rarely reported. The present study examined whether visible-light-activated S- or N-doped TiO{sub 2} photocatalytic technology can be used to control indoor concentrations of MTBE and TCE. This study consists of the characterization of the doped TiO{sub 2} powders, as well as an investigation of their photocatalytic activities. In regards to both powders, a shift of the absorbance spectrum towards the visible light region was observed. An activity test suggested that these photocatalysts exhibited reasonably high degradation efficiencies towards MTBE and TCE under visible light irradiation. The degradation efficiencies of MTBE and TCE by S- and N-doped photocatalysts exceeded 75 and 80%, respectively, at input concentrations (IC) of 0.1 ppm. Degradation efficiency was dependent on both IC and relative humidity. TCE could enhance the degradation efficiency of MTBE even under visible-light irradiation. The estimated mineralization efficiencies (MEs) were comparable to those of previous studies conducted with UV/TiO{sub 2} systems. Similar to the relative degradation efficiencies, the ME of TCE was higher in comparison to that of MTBE. The CO production measured during the photocatalytic processes represented a negligible addition to indoor CO levels. These results suggest that visible-light-activated S- and N-doped TiO{sub 2} photocatalysts may prove a useful tool in the effort to improve indoor air quality. (author)

  1. ADVANCED OXIDATION PROCESS TECHNOLOGY (ULTRAVIOLET RADIATION/OZONE TREATMENT) FOR REMOVAL OF METHYL TERTIARY BUTYL ETHER (MTBE) IN GROUND WATER SUPPLIES.

    Science.gov (United States)

    U.S. EPA’s Office of Research and Development in Cincinnati, Ohio has been testing and evaluating MTBE removal in dechlorinated tap water using three oxidant combinations: hydrogen peroxide/ozone, ultraviolet irradiation (UV)/ozone, and UV/ozone/hydrogen peroxide. Pilot-scale st...

  2. DEGRADATION OF MTBE USING FENTON REAGENT

    Directory of Open Access Journals (Sweden)

    A. Khavanin, S. M. Mousavian, S. B. Mortazavi, A. Rezaee and H. Asiliyan

    2005-07-01

    Full Text Available Methyl tertiary-butyl ether (MTBE has been commonly used as a fuel additive because of its many favorable properties that allow it to improve fuel combustion. Unfortunately, increased production and use have led to its introduction into the water supplies. Accordingly, research studies have been initiated to investigate the treatment of contaminated water. Degradation of MTBE in aqueous solution by Fenton reagent (Fe2+ and H2O2 was investigated. This study used Fenton reagent to oxidize MTBE with an attempt to explore the behavior of MTBE decomposition and measure how factors such as pH, [H2O2] and [Fe2+] may influence the degradation of MTBE, and finally the optimum conditions were obtained. Under optimum conditions of 50 mL H2O2, 0.65 g/L Fe2+, pH=3-4 and room temperature, the initial 1000 mg/L MTBE solution was reduced by 99% within 120 min. The results showed that application of Fenton reagent was an effective method for degradation of MTBE.

  3. Bioremediation treatment of MTBE and ETBE in contaminated soils

    Directory of Open Access Journals (Sweden)

    Alissara Reungsang

    2006-07-01

    Full Text Available Three Methyl Tertiary Butyl Ether (MTBE degradative consortia were isolated from gasoline-contaminated soil namely: mKMS, mKGS1 and mKGS2. These consortia were tested for the ability to degrade Ethyl Tertiary Butyl Ether (ETBE at the concentration of 100 mg/L and to degrade a mixture of MTBE and ETBE in the Nutrient Broth (NB media at the concentration of 50 mg/L each. The results showed that mKGS1 was the best degraders in which 74% of MTBE, 25% of ETBE and 16% of MTBE and 23% of ETBE in the mixture were degraded, within 30 days. mKGS1 was then further used in the bioaugmentation and biostimulation experiments. Degradation of MTBE increased from 34% to 61% after 70 days when mKGS1 was amended in soil mixed with the combination of MTBE and ETBE (at 50 mg/L each. However, mKGS1 did not significantly help the ETBE degradation when it was amended in soil (biostimulation technique. One percent glucose significantly stimulated the degradation of MTBE by the indigenous microorganisms. The presence of mKGS1 and an addition of 1% glucose as extra carbon source improved the degradation of MTBE, from 42 to 51%, suggesting mKGS1 played an important role in the degradation of MTBE.

  4. Conversion of methanol and isobutanol to MTBE

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1993-09-24

    Full Text Available Over the resin catalyst Amberlyst 15, and under our reaction conditions, the yield of MTBE (methyl tert-butyl ether), from the reaction of methanol and isobutene, is at a maximum in the temperature rang of 40-60-degrees-C. Slightly higher...

  5. Methyl tert-butyl ether (MTBE) detected in abnormally high concentrations in postmortem blood and urine from two persons found dead inside a car containing a gasoline spill.

    Science.gov (United States)

    Karinen, Ritva; Vindenes, Vigdis; Morild, Inge; Johnsen, Lene; Le Nygaard, Ilah; Christophersen, Asbjørg S

    2013-09-01

    Two deep frozen persons, a female and a male, were found dead in a car. There had been an explosive fire inside the car which had extinguished itself. On the floor inside the car were large pools of liquid which smelled of gasoline. The autopsy findings and routine toxicological analyses could not explain the cause of death. Carboxyhemoglobin levels in the blood samples were gasoline as a fuel oxygenate. Gasoline poisoning is likely to be the cause of the death in these two cases, and MTBE can be a suitable marker of gasoline exposure, when other volatile components have vaporized. © 2013 American Academy of Forensic Sciences.

  6. Kinematic Viscosities for Ether + Alkane Mixtures: Experimental Results and UNIFAC-VISCO Parameters

    Science.gov (United States)

    Bandrés, I.; Lahuerta, C.; Villares, A.; Martín, S.; Lafuente, Carlos

    2008-04-01

    Kinematic viscosities for the binary mixtures of diisopropylether, dibutylether or methyl ter-butyl ether with 3-methylpentane, hexane or heptane have been measured at 283.15 K, 298.15 K, and 313.15 K. The experimental values have been correlated by the McAllister equation. Using these results, new UNIFAC-VISCO parameters, Oether-CH2 and Oether-CH3, have been calculated.

  7. Evaluation of volatilization as a natural attenuation pathway for MTBE

    Science.gov (United States)

    Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.

    2004-01-01

    Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m-2/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.

  8. Comparison of an ability to degrade MTBE between mixed culture and monoculture isolated from gasoline contaminated soil

    Directory of Open Access Journals (Sweden)

    Wanpen Virojanakud

    2004-02-01

    Full Text Available Methyl tertiary butyl ether (MTBE is an oxygenated compound used to enhance the octane index of gasoline and replace lead in gasoline. MTBE can reduce air pollution but causes water pollution due to its high water solubility and low sorption to soil and thus can easily contaminate the environment. Biodegradation is one of the promising techniques to reduce MTBE contaminated in the environment and MTBE degrader was proposed as an efficient method used to degrade MTBE. In this study, MTBE degraders were isolated from gasoline contaminated soil and then were evaluated with the hypothesis that MTBE degraders could improve biodegradation of MTBE in soil and mixed culture could degrade MTBE more rapidly than monoculture. Gasoline contaminated soil samples were taken from retail gas stations and a motorcycle repair shop in Khon Kaen University. Isolation of MTBE degrader was conducted by using Basal Salt Medium (BSM containing 200 mg/L of MTBE as a carbon source. Mixed culture of MTBE degrader was successfully isolated under aerobic condition. Morphology study was conducted by streaking isolated mixed culture in solid medium, agar slant and identifying the cells shape under a microscope. It was found that this mixed culture was a gram negative bacteria with 7 different isolates. A comparison of the ability to degrade MTBE between mixed culture and monoculture was investigated in BSM containing 100 mg/L of MTBE. The results indicated that a mixed culture degraded MTBE more rapidly than monoculture i.e. 20% within 14 days. Monoculture, J4 and J7, were the most rapid MTBE degraders among the other monocultures in which they degraded 14% of MTBE in 14 days while monoculture J15 could degrade only 1% of MTBE.This preliminary result suggests that mixed cultures degrade MTBE more efficiently than monoculture.

  9. Iron Amendment and Fenton Oxidation of MTBE-Spent Granular Activated Carbon

    Science.gov (United States)

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves Fe amendment to the GAC to catalyze H2O2 reactions and to enhance the rate of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, fer...

  10. Persulfate Oxidation of MTBE- and Chloroform-Spent Granular Activated Carbon

    Science.gov (United States)

    Activated persulfate (Na2S2O8) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H2O2–persulfate binary mixtur...

  11. Fenton-like Degradation of MTBE: Effects of Iron Counter Anion and Radical Scavengers

    Science.gov (United States)

    Fenton-driven oxidation of Methyl tert-butyl ether (MTBE) (0.11-0.16 mM) in batch reactors containing ferric iron (5 mM), hydrogen peroxide (H2O2) (6 mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the form of iron (Fe) (Fe2(...

  12. Field Treatment of MTBE-Contaiminated Groundwater Using Ozone/UV Oxidation

    Science.gov (United States)

    Methyl-tertiary butyl ether (MTBE) is often found in groundwater as a result of gasoline spills and leaking underground storage tanks. An extrapolation of occurrence data in 2008 estimated at least one detection of MTBE in approximately 165 small and large public water systems se...

  13. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter...

  14. Exceptionally Long MTBE Plumes of the Past Have Greatly Diminished.

    Science.gov (United States)

    McDade, James M; Connor, John A; Paquette, Shawn M; Small, Julia M

    2015-01-01

    Studies published in the late 1990s and early 2000s identified the presence of exceptionally long methyl tert-butyl ether (MTBE) plumes (more than 600 m or 2000 feet) in groundwater and have been cited in technical literature as characteristic of MTBE plumes. However, the scientific literature is incomplete in regard to the subsequent behavior and fate of these MTBE plumes over the past decade. To address this gap, this issue paper compiles recent groundwater monitoring records for nine exceptional plumes that were identified in prior studies. These nine sites exhibited maximum historical MTBE groundwater plume lengths ranging from 820 m (2700 feet) to 3200 m (10,500 feet) in length, exceeding the lengths of 99% of MTBE plumes, as characterized in multiple surveys at underground storage tank sites across the United States. Groundwater monitoring data compiled in our review demonstrate that these MTBE plumes have decreased in length over the past decade, with five of the nine plumes exhibiting decreases of 75% or more compared to their historical maximum lengths. MTBE concentrations within these plumes have decreased by 93% to 100%, with two of the nine sites showing significant decreases (98% and 99%) such that the regulatory authority has subsequently designated the site as requiring no further action. © 2015 The Authors. Groundwater published by Wiley Periodicals,Inc. on behalf of National Ground Water Association.

  15. Low-temperature MTBE biodegradation in aquifer sediments with a history of low, seasonal ground water temperatures

    Science.gov (United States)

    Bradley, P.M.; Landmeyer, J.E.

    2006-01-01

    Sediments from two shallow, methyl tert-butyl ether (MTBE)-contaminated aquifers, with mean ground water temperatures ???10??C, demonstrated significant mineralization of [U-14C] MTBE to 14CO 2 at incubation temperatures as low as 4??C. These results indicate that microbial degradation can continue to contribute to the attenuation of MTBE in ground water under wintertime, low-temperature conditions. ?? 2006 National Ground Water Association.

  16. TREATMENT OF MTBE-CONTAMINATED WATERS WITH FENTON'S REAGENT

    Science.gov (United States)

    Methyl tertiary-butyl ether (MTBE) has been commonly used as a fuel additive because of its many favorable properties that allow it to improve fuel combustion and reduce resulting concentrations of carbon monoxide and unburnt hydrocarbons. Unfortuantely, increased production a...

  17. Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site

    Science.gov (United States)

    Chen, K. F.; Kao, C. M.; Chen, T. Y.; Weng, C. H.; Tsai, C. T.

    2006-06-01

    An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous microorganisms would

  18. Effects of MTBE blended diesel fuel on diesel combustion and emissions; MTBE kongo keiyu ga diesel nensho haiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shundo, S.; Yokota, H.; Kakegawa, T. [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    The effects of MTBE (Methyl-t-butyl ether) blended diesel fuel on diesel combustion and emissions were studied. In conventional diesel combustion, the testing mode was carried out in conformity with the Japanese 13 mode. Furthermore, this fuel was applied to a new combustion system (Homogeneous Charge Intelligent Multiple Injection). MTBE blended diesel fuel is more effective in the case of new combustion system and very low NOx, PM capability is suggested. 6 refs., 6 figs., 2 tabs.

  19. Ignition delay and soot oxidative reactivity of MTBE blended diesel fuel

    KAUST Repository

    Yang, Seung Yeon

    2014-04-01

    Methyl tert-butyl ether (MTBE) was added to diesel fuel to investigate the effect on ignition delay and soot oxidative reactivity. An ignition quality tester (IQT) was used to study the ignition propensity of MTBE blended diesel fuels in a reactive spray environment. The IQT data showed that ignition delay increases linearly as the MTBE fraction increases in the fuel. A four-stroke single cylinder diesel engine was used to generate soot samples for a soot oxidation study. Soot samples were pre-treated using a tube furnace in a nitrogen environment to remove any soluble organic fractions and moisture content. Non-isothermal oxidation of soot samples was conducted using a thermogravimetric analyzer (TGA). It was observed that oxidation of \\'MTBE soot\\' started began at a lower temperature and had higher reaction rate than \\'diesel soot\\' across a range of temperatures. Several kinetic analyses including an isoconversional method and a combined model fitting method were carried out to evaluate kinetic parameters. The results showed that Diesel and MTBE soot samples had similar activation energy but the pre-exponential factor of MTBE soot was much higher than that of the Diesel soot. This may explain why MTBE soot was more reactive than Diesel soot. It is suggested that adding MTBE to diesel fuel is better for DPF regeneration since an MTBE blend can significantly influence the ignition characteristics and, consequently, the oxidative reactivity of soot. Copyright © 2014 SAE International.

  20. Fate of MTBE and DCPD Compounds Relative to BTEX in Gasoline-Contaminated Aquifers

    Directory of Open Access Journals (Sweden)

    L. Olivella

    2002-01-01

    Full Text Available The aim of this communication is to provide preliminary results on MTBE monitoring, and at the same time to propose some new tracers of gasoline pollution in groundwater. An overview is presented on benzene-toluene-ethylbenzene-xylene (BTEX, methyl tertiary-butyl ether (MTBE, and dicyclopentadienes (DCPD contents in gasoline formulations. Their specific fate in gasoline-contaminated aquifers are consistent with their physical-chemical properties.

  1. National survey of MTBE and other VOCs in community drinking-water sources

    Science.gov (United States)

    Clawges, Rick M.; Rowe, Barbara L.; Zogorski, John S.

    2001-01-01

    Methyl tert-butyl ether (MTBE) is a volatile organic compound (VOC) that is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The chemical properties and widespread use of MTBE can result in contamination of private and public drinking-water sources. MTBE contamination is a concern in drinking water because of the compound's low taste and odor threshold and potential human-health effects.

  2. Benzene and MTBE Sorption in Fine Grain Sediments

    Science.gov (United States)

    Leal-Bautista, R. M.; Lenczewski, M. E.

    2003-12-01

    The practice of adding methyl tert-butyl ether (MTBE) to gasoline started in the late 1970s and increased dramatically in the 1990s. MTBE first was added as a substitute for tetra-ethyl lead then later as a fuel oxygenate. Although the use of MTBE has resulted in significant reduction in air pollution, it has become a significant groundwater contaminant due to its high solubility in water, high environmental mobility, and low potential for biodegradation. A recent report (1999-2001) by the Metropolitan Water District of Southern California in collaboration with United State Geological Survey and the Oregon Health and Science University found that MTBE was the second most frequent detected volatile organic compound in groundwater. In Illinois, MTBE has been found in 26 of the 1,800 public water supplies. MTBE has also been blended in Mexico into two types of gasoline sold in the country by the state oil company (PEMEX) but is not monitored in groundwater at this time. Early research on MTBE considered it unable to adsorb to soils and sediments, however, by increasing the organic matter and decreasing the size of the grains (silts or clays) this may increase sorption. The objective of this study is to determine if fine grained materials have the potential for sorption of MTBE due to its high specific surface area (10-700 m 2/g) and potentially high organic matter (0.5-3.8%). The experiment consisted of sorption isotherms to glacial tills from DeKalb, Illinois and lacustrine clays from Chalco, Mexico. Experiments were performed with various concentrations of MTBE and benzene (10, 50, 100, 500 and 1000 ug/L) at 10° C and 25° C. Results showed a range of values for the distribution coefficient (Kd, linear model). At 10° C the Kd value for MTBE was 0.187 mL/g for lacustrine clay while the glacial loess had a value of 0.009 mL/g. The highest Kd values with MTBE were 0.2859 mL/g for organic rich lacustrine clays and 0.014 mL/g for glacial loess at 25° C. The highest

  3. Application of first order kinetics to characterize MTBE natural attenuation in groundwater

    Science.gov (United States)

    Metcalf, Meredith J.; Stevens, Graham J.; Robbins, Gary A.

    2016-04-01

    Methyl tertiary butyl ether (MTBE) was a gasoline oxygenate that became widely used in reformulated gasoline as a means to reduce air pollution in the 1990s. Unfortunately, many of the underground storage tanks containing reformulated gasoline experienced subsurface releases which soon became a health concern given the increase in public and private water supplies containing MTBE. Many states responded to this by banning the use of MTBE as an additive, including Connecticut. Although MTBE dissipates by natural attenuation, it continues to be prevalent in groundwater long after the Connecticut ban in 2004. This study estimated the rate of the natural attenuation in groundwater following the Connecticut ban by evaluating the MTBE concentration two years prior to and two years after the MTBE ban at eighty-three monitoring wells from twenty-two retail gasoline stations where MTBE contamination was observed. Sites chosen for this study had not undergone active remediation ensuring no artificial influence to the natural attenuation processes that controls the migration and dissipation of MTBE. Results indicate that MTBE has dissipated in the natural environment, at more than 80% of the sites and at approximately 82% of the individual monitoring wells. In general, dissipation approximated first order kinetics. Dissipation half-lives, calculated using concentration data from the two year period after the ban, ranged from approximately three weeks to just over seven years with an average half-life of 7.3 months with little variability in estimates for different site characteristics. The accuracy of first order estimates to predict further MTBE dissipation were tested by comparing predicted concentrations with those observed after the two year post-ban period; the predicted concentrations closely match the observed concentrations which supports the use of first order kinetics for predictions of this nature.

  4. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    Science.gov (United States)

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    1999-01-01

    Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  5. MTBE: effects on soil and groundwater resources

    National Research Council Canada - National Science Library

    Jacobs, James J; Guertin, Jacques; Herron, Christy

    2001-01-01

    ... Properties of MTBE); Dr. Jacques Guertin, Toxicologist/ Chemist (Toxicity, Health Effects, and Taste and Odor Thresholds of MTBE; Appendix I, Toxicity of MTBE: Human Health Risk Calculations); Fred Stanin, Hydrogeologist (Transport and Fate of MTBE in the Environment); Dr. Paul Fahrenthold, Remediation Engineer/Chemist (Detection and Treatment of M...

  6. Hypothesis-driven weight of evidence analysis to determine potential endocrine activity of MTBE.

    Science.gov (United States)

    de Peyster, Ann; Mihaich, Ellen

    2014-08-01

    Endocrine-related endpoints in animals have been reported to respond to high doses of methyl tertiary-butyl ether (MTBE), however, a systematic and transparent evaluation of endocrine potential has not been published. Resolving whether MTBE exhibits endocrine activity is important given regulatory and public interest in endocrine disrupting substances and their potential for causing adverse effects in humans or wildlife. A weight-of-evidence (WoE) analysis was conducted, focusing on hypotheses related to the potential for MTBE to interact with estrogen, androgen, and thyroid pathways, and steroidogenesis. To reach scientifically justified conclusions based on the totality of evidence, this WoE procedure involved a semi-quantitative relevance weighting of each endpoint for each hypothesis and systematic consideration of each endpoint in various study designs. This procedure maximized use of an extensive body of relevant and reliable literature on MTBE with evidence supporting or opposing a given mode of action hypothesis. Evaluating the strength and consistency of observations from many MTBE studies also provided a way to assess whether high doses used in experiments with MTBE confound identification of direct endocrine system responses. Based on results of studies using mammalian and fish models and in vitro screening assays, this WoE assessment reveals that MTBE lacks direct endocrine activity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Fate of MTBE relative to benzene in a gasoline-contaminated aquifer (1993-98):

    Science.gov (United States)

    Landmeyer, James E.; Chapelle, Francis H.; Bradley, Paul M.; Pankow, James F.; Church, Clinton D.; Tratnyek, Paul G.

    1998-01-01

    Methyl tert-butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.

  8. The fate of MtBE during Fenton-like treatments through laboratory scale column tests

    Science.gov (United States)

    Piscitelli, Daniela; Zingaretti, Daniela; Verginelli, Iason; Gavasci, Renato; Baciocchi, Renato

    2015-12-01

    In Situ Chemical Oxidation (ISCO) based on the Fenton's process is a proven technology for the treatment of groundwater contaminated by organic compounds. Nevertheless, the application of this treatment process to methyl tert-butyl ether (MtBE) is questioned, as there are concerns about its capacity to achieve complete mineralization. Many existing studies have focused on water contaminated by MtBE and are thus not representative of in situ treatments since they do not consider the presence of soil. In this work, the effectiveness of a Fenton-like process for MtBE treatment was proven in soil column tests performed at operating conditions (i.e., oxidant and contaminant concentration and flow rates) resembling those typically used for in situ applications. No MtBE by-products were detected in any of the tested conditions, thus suggesting that the tert-butyl group of MtBE was completely degraded. A mass balance based on the CO2 produced was used as evidence that most of the MtBE removed was actually mineralized. Finally, the obtained results show that preconditioning of soil with a chelating agent (EDTA) significantly enhanced MtBE oxidation.

  9. Effect of H2 and redox condition on biotic and abiotic MTBE transformation

    Science.gov (United States)

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2006-01-01

    Laboratory studies conducted with surface water sediment from a methyl tert-butyl ether (MTBE)-contaminated site in South Carolina demonstrated that, under methanogenic conditions, [U-14C] MTBE was transformed to 14C tert-butyl alcohol (TBA) with no measurable production of 14CO2. Production of TBA was not attributed to the activity of methanogenic microorganisms, however, because comparable transformation of [U-14C] MTBE to 14C-TBA also was observed in heat-sterilized controls with dissolved H2 concentrations > 5 nM. The results suggest that the transformation of MTBE to TBA may be an abiotic process that is driven by biologically produced H2 under in situ conditions. In contrast, mineralization of [U-14C] MTBE to 14CO2 was completely inhibited by heat sterilization and only observed in treatments characterized by dissolved H2 concentrations MTBE transformation is influenced by in situ H2 concentrations and that in situ H2 concentrations may be an useful indicator of MTBE transformation pathways in ground water systems.

  10. Employing response surface analysis using for photocatalytic degradation of MTBE by nanoparticles

    Directory of Open Access Journals (Sweden)

    Hossein Lotfi

    2017-04-01

    Full Text Available Since groundwaters are a major source of drinking water, their pollution with organic contaminants such as methyl tertiary-butyl ether (MTBE is a very significant issue. Hence, this research investigated the photocatalytic degradation of MTBE in an aqueous solution of TiO2-ZnO-CoO nanoparticle under UV irradiation. In order to optimize photocatalytic degradation, response surface methodology was applied to assess the effects of experimental variables such as catalyst loading, initial concentration of MTBE and pH on the dye removal efficiency. The optimal condition to achieve the best degradation for the initial concentration of 30.58 mg/L of MTBE was found at a pH of 7.68 and a catalyst concentration of 1.68 g/L after 60 min.

  11. Distribution of methyl tert-butyl ether (MTBE) and selected water-quality constituents in the surficial aquifer at the Dover National Test Site, Dover Air Force Base, Delaware, 2001

    Science.gov (United States)

    Stewart, Marie; Guertal, William R.; Barbaro, Jeffrey R.; McHale, Timothy J.

    2004-01-01

    A joint study by the Dover National Test Site, Dover Air Force Base, Delaware, and the U.S. Geological Survey was conducted from June 27 through July 18, 2001, to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site. This report provides a summary assessment of the distribution of methyl tert-butyl ether and a preliminary screening of selected constituents that may affect natural attenuation and remediation demonstrations at the Dover National Test Site. The information gathered during this study is designed to assist potential remedial investigators who are considering conducting a methyl tert-butyl ether remedial demonstration at the test site. In addition, the study supported a planned enhanced bioremediation demonstration and assisted the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. A direct-push drill rig was used to collect a total of 147 ground-water samples (115 VOC samples and 32 quality-assurance samples) at varying depths. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloro-ethene, 1.14 micrograms per liter of trichloro-ethene, 2.65 micrograms per liter of tetrachloro-ethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest concentrations of methyl tert-butyl ether were detected in the surficial aquifer from ?4.6 to 6.4 feet mean sea level; however, methyl tert

  12. Cometabolism of methyl tert-butyl ether by a new microbial consortium ERS.

    Science.gov (United States)

    Li, Shanshan; Li, Danni; Yan, Wei

    2015-07-01

    The release of methyl tert-butyl-ether (MTBE) into the environment has increased the worldwide concern about the pollution of MTBE. In this paper, a microbial consortium was isolated from the soil sample near an oil station, which can degrade MTBE directly with a low biomass yield and MTBE degrading efficiency. Further research has indicated that this consortium can degrade MTBE efficiently when grown on n-octane as the cometabolic substrate. The results of 16S rDNA based on phylogenetic analysis of the selected operating taxonomic units (OTUs) involved in the consortium revealed that one OTU was related to Pseudomonas putida GPo1, which could cometabolically degrade MTBE on the growth of n-octane. This may help explain why n-octane could be the optimal cometabolic substrate of the consortium for MTBE degradation. Furthermore, the degradation of MTBE was observed along with the consumption of n-octane. Different K s values for MTBE were observed for cells grown with or without n-octane, suggesting that different enzymes are responsible for the oxidation of MTBE in cells grown on n-octane or MTBE. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism.

  13. Biodegradation of gasoline ether oxygenates.

    Science.gov (United States)

    Hyman, Michael

    2013-06-01

    Ether oxygenates such as methyl tertiary butyl ether (MTBE) are added to gasoline to improve fuel combustion and decrease exhaust emissions. Ether oxygenates and their tertiary alcohol metabolites are now an important group of groundwater pollutants. This review highlights recent advances in our understanding of the microorganisms, enzymes and pathways involved in both the aerobic and anaerobic biodegradation of these compounds. This review also aims to illustrate how these microbiological and biochemical studies have guided, and have helped refine, molecular and stable isotope-based analytical approaches that are increasingly being used to detect and quantify biodegradation of these compounds in contaminated environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    Science.gov (United States)

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  15. SUMMARY OF WORKSHOP ON BIODEGRADATION OF MTBE FEBRUARY 1-3, 2000

    Science.gov (United States)

    A workshop on biodegradation of methyl tert butyl ether (MTBE) contaminated soils and groundwater was held in Cincinnati, Ohio, February 1-2, 2000, and was sponsored by the USEPA's NRMRL and the American Petroleum Institute. Researchers in academia, industry, and government were ...

  16. De aanwezigheid van methyl tert-butylether (MTBE) in drinkwater en drinkwaterbronnen

    NARCIS (Netherlands)

    Morgenstern PP; Korte GAL de; Hogendoorn EA; Versteegh JFM; LWD; IEM

    2002-01-01

    In 2001 the National Institute for Public Health and the Environment (RIVM) in the Netherlands conducted a drinking water measurement programme in co-operation with the Netherlands Waterworks Association (VEWIN) for methyl tert-butyl ether (MTBE) in drinking water and the corresponding sources. This

  17. TREATMENT OF METHYL TERT-BUTYL ETHER CONTAMINATED WATER USING PHOTOCATALYSIS

    Science.gov (United States)

    The feasibility of photo-oxidation treatment of methyl tert-butyl ether (MTBE) in water was investigated in three ways, 1) using a slurry falling film photo-reactor, 2) a batch solar reactor system, and 3) a combination of air-stripping and gas phase photooxidation system. MTBE-c...

  18. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms

    Science.gov (United States)

    Shah, Nadeem W.; Thornton, Steven F.; Bottrell, Simon H.; Spence, Michael J.

    2009-01-01

    The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O 2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O 2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O 2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O 2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites

  19. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater

    Science.gov (United States)

    Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora

    2014-01-01

    Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320

  20. Laboratory and numerical investigations of air sparging using MTBE as a tracer

    DEFF Research Database (Denmark)

    Mortensen, A. P.; Jensen, Karsten Høgh; Sonnenborg, T. O.

    2000-01-01

    Air sparging experiments were conducted in a laboratory column to investigate air now and mass transfer behavior in different types of sand at different air injection rates. Methyl tertiary butyl ether (MTBE) was applied as a tracer, and by measuring the volatilization and the mean air content...... during the experiments, the air flow pattern and its influence on mass transfer were assessed. The experimental results showed large differences among the sand types. In fine sand, the mean air content was high and the volatilization of MTBE was rapid with total recovery after a few hours. In coarse sand......, the mean air content was low and the volatilization of MTBE was limited. The results indicate two different air flow distributions. In fine-grained materials, a uniform air distribution can be expected compared to coarse-grained materials where isolated air channels will limit the mass transfer. Afterwards...

  1. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites.

    Science.gov (United States)

    Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E

    2015-01-01

    Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends. © 2014 GSI Environmental Inc. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  2. Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions.

    Science.gov (United States)

    Youngster, Laura K G; Rosell, Mònica; Richnow, Hans H; Häggblom, Max M

    2010-09-01

    The fuel oxygenate, methyl tert-butyl ether (MTBE), although now widely banned or substituted, remains a persistent groundwater contaminant. Multidimensional compound-specific isotope analysis (CSIA) of carbon and hydrogen is being developed for determining the extent of MTBE loss due to biodegradation and can also potentially distinguish between different biodegradation pathways. Carbon and hydrogen isotopic fractionation factors were determined for MTBE degradation in aerobic and anaerobic laboratory cultures. The carbon isotopic enrichment factor (epsilonC) for aerobic MTBE degradation by a bacterial consortium containing the aerobic MTBE-degrading bacterium, Variovorax paradoxus, was -1.1 +/- 0.2 per thousand and the hydrogen isotope enrichment factor (epsilonH) was -15 +/- 2 per thousand. This corresponds to an approximated lambda value (Lambda = epsilonH/epsilonC) of 14. Carbon isotope enrichment factors for anaerobic MTBE-degrading enrichment cultures were -7.0 +/- 0.2 per thousand and did not vary based on the original inoculum source, redox condition of the enrichment, or supplementation with syringic acid as a co-substrate. The hydrogen enrichment factors of cultures without syringic acid were insignificant, however a strong hydrogen enrichment factor of -41 +/- 3 per thousand was observed for cultures which were fed syringic acid during MTBE degradation. The Lambda = 6 obtained for NYsyr cultures might be diagnostic for the stimulation of anaerobic MTBE degradation by methoxylated compounds by an as yet unknown pathway and mechanism. The stable-isotope enrichment factors determined in this study will enhance the use of CSIA for monitoring anaerobic and aerobic MTBE biodegradation in situ.

  3. Occurrence and transport of MTBE in a contaminated groundwater plume from Duesseldorf

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, M.; Lacorte, S.; Barcelo, D. [Dept. of Environmental Chemistry, Barcelona (Spain); Rohns, H.P.; Forner, C. [Stadtwerke Duesseldorf AG (Germany)

    2003-07-01

    In a contaminated site of Duesseldorf (middle-west of Germany), a one-year monitoring program has been carried to determine the presence and evolution of some gasoline additives in groundwater. The origin of contamination was a spill or underground storage tank leakage from a gas station. The target compounds were: methyl tert-butyl ether (MTBE), its main degradation products, tert-butyl alcohol (TBA) and tert-butyl formate (TBF); other gasoline additives, oxygenate dialkyl ethers: ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME) and diisopropyl ether (DIPE); aromatics: benzene, toluene, ethylbenzene and xylenes (BTEX) and other compounds causing odor events in groundwater such as dicyclopentadiene (DCPD) and trichloroethylene (TCE). Purge and trap coupled to gas chromatography - mass spectrometry (P and T-GC/MS) method was used for the simultaneous determination of the above mentioned compounds and permitted to detect concentrations at ng/L (ppt) or sub-ppb concentrations. All samples analysed contained MTBE at levels varied between 0.05 -645 {micro}g/L (ppb). Three contaminated hot spots were identified with levels up to US. Environmental Protection Agency drinking water advisory (20 - 40 {micro}g/L) and one of them doubling Danish suggested toxicity level of 350 {micro}g/L. Samples with high levels of MTBE contained 0.1 - 440 {micro}g/L of TBA, indicating (but not proving) in situ degradation of parent compound. In all cases, BTEX were at low concentrations or not detected showing less solubility and persistence than MTBE.

  4. The role of mesopores in MTBE removal with granular activated carbon.

    Science.gov (United States)

    Redding, Adam M; Cannon, Fred S

    2014-06-01

    This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data. Copyright

  5. MTBE; to what extent will past releases contaminate community water supply wells?(Brief Article)

    Science.gov (United States)

    Johnson, Richard; Pankow, James; Bender, David A.; Price, Curtis; Zogorski, John S.

    2000-01-01

    The increasing frequency of detection of the widely used gasoline additive methyl tertbutyl ether (MTBE) in both ground- and surface waters is receiving much attention from the media, environmental scientists, state environmental agencies, and federal agencies. At the national level, the September 15,1999, Report of the Blue Ribbon Panel on Oxygenates in Gasoline (i) )tates that between 5 and 10% of community drinking water supplies in high MTBE use areas show at least detectable concentrations of MTBE, and about 1% of those systems are characterized by levels of this compound that are above 20 pg/L. In Maine, a desire to determine the extent of MTBE contamination led to a 1998 study (2) that revealed that this compound is found at levels above 0.1 pg/L in 16% of 951 randomly selected household wells and in 16% of the 793 community water systems tested in that state (37 wells were not tested). The study also suggested that between 1400 and 5200 household wells may have levels above 35 pg/L, although no community water supplies were found to be above that concentration. For comparison, Maryland, New Hampshire, New York, and California have set MTBE remediation "action levels" at or below 20 pg/L, and EPA has set its advisory level for taste and odor at 20-40 pg/L (3).

  6. MTBE, TBA, and TAME attenuation in diverse hyporheic zones

    Science.gov (United States)

    Landmeyer, J.E.; Bradley, P.M.; Trego, D.A.; Hale, K.G.; Haas, J.E.

    2010-01-01

    Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U- 14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation. ?? 2009 National Ground Water Association.

  7. Evaluation of the intrinsic mtbe biodegradation potential in MTBE-contaminated soils.

    Science.gov (United States)

    Moreels, D; Bastiaens, L; Merckx, R; Ollevier, F; Diels, L; Springael, D

    2001-01-01

    MTBE has only recently being used as an octane enhancer in gasoline in Europe and is considered as a more recent groundwater contaminant on this continent. In this study we examined if during the recent contamination history, European MTBE contaminated aquifers had developed MTBE degrading microbial communities. Different MTBE contaminated and non-contaminated aquifers and soils were tested for their intrinsic biodegradation potential. The role of the oxygen concentration, the availability of nutrients and the influence of the presence of a co-contaminant like benzene on the MTBE biodegradation capabilities of the indigenous microorganisms were examined. All studied soil samples showed degradation of benzene under all tested conditions. On the other hand only one aquifer showed the capacity to degrade MTBE as demonstrated by the disappearance of MTBE and the production of TBA, the main degradation product of MTBE.

  8. ANAEROBIC DEGRADATION OF MTBE TO TBA IN GROUND WATER AT GASOLINE SPILL SITES IN ORANGE COUNTY, CALIFORNIA

    Science.gov (United States)

    Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...

  9. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China

    National Research Council Canada - National Science Library

    Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang

    2016-01-01

    Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk...

  10. Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media

    Science.gov (United States)

    Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.

    2011-11-01

    A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.

  11. Simultaneous Removal of MTBE and Benzene from Contaminated Groundwater Using Ultraviolet-Based Ozone and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Bassam S. Tawabini

    2014-01-01

    Full Text Available Efficiency of ultraviolet-ozone (UV/O3 and ultraviolet-hydrogen peroxide (UV/H2O2 processes was investigated for simultaneous removal of methyl tertiary butyl ether (MTBE and benzene from contaminated ground water. The photoreactor employed housed 15-watt low pressure (LP and 150-watt medium pressure (MP mercury UV lamps. Oxidation of contaminants was studied at two different levels of ozone and hydrogen peroxide. Brackish groundwater samples were spiked with MTBE and benzene up to a concentration of 500 μg L−1. Removal potential was evaluated at different parameters such as UV type and intensity and peroxide and ozone dosages, as well as contact time. Results indicated that no removal of the contaminants was attained when treated with hydrogen peroxide or ozone alone. However, about 50% and 30% removal of MTBE were achieved in 30 minutes when irradiated with MP-UV and LP-UV lamps, respectively. On the other hand, UV/H2O2 process was found to be superior in removal of MTBE (90% in 10 min. and benzene (95% in 5 min. compared to UV/O3 process. Furthermore, removal of benzene was comparatively easier than MTBE in both approaches. It is hence concluded that higher UV intensities and elevated doses of H2O2 accelerate simultaneous removal of MTBE and benzene from water.

  12. Competitive and hindering effects of natural organic matter on the adsorption of MTBE onto activated carbons and zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Hung, H.W.; Lin, T.F.; Baus, C.; Sacher, F.; Brauch, H.J. [National Cheng Kung University, Tainan (Taiwan). Dept. of Environmental Engineering

    2005-12-15

    Equilibrium and kinetic adsorption of methyl tert-butyl ether (MTBE) onto three coal-based activated carbons, one coconut-based activated carbon, and two zeolites are elucidated in this study. Natural organic matter (NOM) and MTBE competed for the adsorption of activated carbons to different extents. The Ideal Adsorbed Solution Theory (lAST) combined with the equivalent background compound (EBC) model can adequately describe the NOM competition and predict the isotherms of MTBE onto the activated carbons. No competitive adsorption was observed for one of the zeolites, mordenite, due to the molecular effect. Besides, the aperture size, and the SiO{sub 2}/Al{sub 2}O3 ratio of the zeolite may also play an important role in the adsorption of MTBE from the aqueous phase. The surface diffusion model accurately simulated the transport of MTBE within the adsorbents employed in different water matrices. For all the activated carbons tested, the surface diffusivity of MTBE in natural water was nearly equal to that in deionized water, indicating that no apparently hindering effect occurs. A much slower adsorption kinetic of mordenite in natural water was observed since the opening apertures on mordenite may be appreciably hindered and blocked by NOM.

  13. Bio-MTBE. A new option to fulfil biofuel quota for gasoline; Bio-MTBE. Eine neue Option zur Erfuellung der Biokraftstoffquote in Ottokraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Oliver M.; Schade, Arnd; Locher, Annette [Evonik Industries AG, Essen (Germany)

    2013-05-15

    To meet the legally required bio-fuel quota in gasoline, an alternative to the ethanol blend E10 is nowavailable for nearly one year. Evonik Industries has introduced a bio-version of methyl tert-butyl ether (MTBE), an anti-knock agent, on the market. Chemically, both products are identical, because in production methanol is exchanged for bio-methanol. Bio-methanol is produced from raw glycerine, which arises as a byproduct from biodiesel production. This makes bio-MTBE an ideal bio-fuel component as defined by the EU's Renewable Energy Directive: Fuel components made from waste and residues are ''double counted'' regarding their bio-energy content. The product is widely used in the German and Dutch markets. In both countries, bio- MTBE is legally recognized as a bio-fuel component fulfilling double counting requirements. In the meantime, also other European countries have been introducing double counting for second-generation biofuel components. The EU Commission proposed to allow components based on residual materials to be calculated fourfold in the future. Should this be the case, bio-MTBE would become significantly more valuable. (orig.)

  14. Biodegradation of methyl tert-butyl ether by Kocuria sp.

    Directory of Open Access Journals (Sweden)

    Kiković Dragan D.

    2012-01-01

    Full Text Available Methyl tert-butyl ether (MTBE has been used to replace the toxic compounds from gasoline and to reduce emission of air pollutants. Due to its intensive use, MTBE has become one of the most important environment pollutants. The aim of this paper is isolation and identification of the bacteria from wastewater sample of “HIP Petrohemija” Pančevo (Serbia, capable of MTBE biodegradation. The results of the investigation showed that only the bacterial isolate 27/1 was capable of growth on MTBE. The result of sequence analyzes of 16S rDNA showed that this bacterial isolate belongs to the Kocuria sp. After the incubation period of 86 days, the degradation rates of initial MTBE concentration of 25 and 125 μg/ml were 55 and 36%, respectively. These results indicated that bacteria Kocuria sp. is successfully adapted on MTBE and can be potentially used in bioremediation of soils and waters contaminated with MTBE.

  15. Toxicity of methyl tertiary butyl ether to Daphnia magna and photobacterium phosphoreum

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Lin, Y.J. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States)

    1995-10-01

    Methyl tertiary butyl ether (MTBE) is a liquid organic compound added to gasoline to increase its oxygen content and to reduce the emission of carbon monoxide during combustion in many urban areas. In order to meet the 1990 Clean Air Act amendments, gasoline must contain 2.7% oxygen (by weight) or 15% (by volume) of MTBE in gasoline to meet the regulations for the control of carbon monoxide emissions. Health effects caused by inhalation of MTBE include headaches, dizziness, irritated eyes and nausea; MTBE is one of cancer--causing chemicals. Intracaval injection of MTBE (0.2 mg/kg) caused the highest mortality (100%) in rats. General anesthetic effect induced by MTBE was found at or above 1200 mg/kg body weight; Rosenkranz and Klopman (1991) predicted that MTBE is neither a genotoxicant nor a carcinogen. Nevertheless, the safety of using MTBE in oxygenated fuels is now being questioned from its potential as groundwater pollutant. This study measures the toxicity of MTBE to Daphnia magna and Photobacterium phosphoreum. 13 refs.

  16. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  17. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    Energy Technology Data Exchange (ETDEWEB)

    Arletti, Rossella, E-mail: rossella.arletti@unito.it [Department of Earth Sciences, University of Torino Via Valperga Caluso 35, I-10125, Torino (Italy); Martucci, Annalisa; Alberti, Alberto [Department of Earth Sciences, University of Ferrara, Via G. Saragat 1, I-44100, Ferrara (Italy); Pasti, Luisa; Nassi, Marianna [Department of Chemistry, University of Ferrara, Via L. Borsari 26, I-44100 Ferrara (Italy); Bagatin, Roberto [Research Centre for Non-Conventional Energy-Istituto ENI Donegani, Environmental Technologies, Via Fauser 4, I-28100 Novara (Italy)

    2012-10-15

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.

  18. Occurrence of the gasoline oxygenate MTBE and BTEX compounds in municipal stormwater in the United States, 1991-95

    Science.gov (United States)

    Delzer, G.C.; Zogorski, J.S.; Lopes, T.J.

    1997-01-01

    The U.S. Geological Survey (USGS) sampled stormwater in 16 cities and metropolitan areas that are required to obtain permits to discharge stormwater from their municipal storm-sewer system into surface water. Concentrations of 62 volatile organic compounds (VOCs), including methyl tert-butyl ether (MTBE) and BTEX (benzene, toluene, ethylbenzene, and total xylene) compounds, were measured in 592 stormwater samples collected in these cities and metropolitan areas from 1991 through 1995. MTBE was the seventh most frequently detected VOC in municipal stormwater. In decreasing order, the most frequently detected VOCs were toluene, total xylene, chloroform, total trimethylbenzene, tetrachloroethene, and naphthalene. MTBE was detected in 6.9 percent (41 of 592) of stormwater samples collected. When detected, concentrations of MTBE ranged from 0.2 to 8.7 micrograms per liter (??g/L), with a median of 1.5 ??g/L. All detections of MTBE were less than the lower limit of the U.S. Environmental Protection Agency's (USEPA) draft drinking water lifetime health advisory (20 ??g/L). Eighty-three percent of all detections of MTBE in stonnwater were in samples collected during October through March of each year (1991-95), which corresponds with the expected seasonal use of oxygenated gasoline in areas where carbon monoxide exceeds established air-quality standards. The median concentration of MTBE and benzene for all samples was statistically different and higher in samples collected during October through March than samples collected during April through September. Sixty-six percent of all MTBE: detections occurred with BTEX compounds, and a proportionate increase in concentrations was found when these compounds occurred together. Detected concentrations of toluene and total xylene ranged from 0.2 to 6.6 ??g/L and 0.2 to 15 ??g/L with median concentrations of 0.3 and 0.4 ??g/L, respectively.

  19. Anaerobic biodegradation of methyl tert-butyl ether and tert-butyl alcohol in petrochemical wastewater.

    Science.gov (United States)

    Ghasemian, Mohammad; Amin, Mohammad Mehdi; Morgenroth, Eberhard; Jaafarzadeh, Neemat

    2012-09-01

    A laboratory-scale anaerobic sequencing batch reactor was used to evaluate treatment of a synthetic substrate mixture representing petrochemical wastewater containing methyl tert-butyl ether (MTBE), ethanol and acetic acid. Influent MTBE concentrations were 5, 10 and 50 mg/l (corresponding to MTBE loading rates of 0.2, 0.4 and 2 mg/l.d) with overall organic loading rates (OLRs) of 1.51, 3.23 and 3.25 g COD/1.d, respectively. These OLRs resulted in removal efficiencies for MTBE of 78%, 98% and 88%. Removal efficiencies for chemical oxygen demand were 85% and 90% with influent MTBE concentrations of 5 and 10mg/l, but were significantly reduced to 72% with influent MTBE concentrations of 50mg/l. During all reactor runs, effluent concentrations oftert-butyl alcohol (TBA) were below the detection limit. Batch degradation of the organic substrate mixture demonstrated initial inhibitory effects when exposed to MTBE concentrations of 50 mg/l and complete inhibition with MTBE concentrations above 2000 mg/l. It is interesting to note that in batch tests using MTBE as the sole organic substrate (initial MTBE concentrations of 50, 100 and 200 mg/l), the specific methanogenic activity decreased to below detection within the first 96 hours, but following a 72-hour lag phase the methane production increased again. Based on low volatile fatty acid (VFA) concentration, disappearance of TBA peaks and no findings of any other intermediate via gas chromatography/mass spectrometry, while the MTBE concentration is still high, it can be suggested that during the batch tests the breakdown of gas production and the following lag phase were the direct effect of higher MTBE concentrations (more than 50 mg/l) and not because of the TBA or VFA accumulations.

  20. Monitoring of the gasoline oxygenate MTBE and BTEX compounds in groundwater in Catalonia (northeast Spain).

    Science.gov (United States)

    Fraile, J; Niñerola, J M; Olivella, L; Figueras, M; Ginebreda, A; Vilanova, M; Barceló, D

    2002-05-08

    Headspace (HS) gas chromatography with flame ionisation detection (HS-GC-FID) and purge and trap (P) gas chromatography-mass spectrometry (P) were used for the determination of methyl-tert-butyl ether (MTBE) and benzene, toluene, and xylenes (BTEX) in groundwater. In this work, we present the first data on the levels of MTBE and BTEX in different groundwater wells in the area of Catalonia (northeast Spain). This monitoring campaign corresponded to 28 groundwater wells that were located near petrol service stations, oil refinery storage tanks, and/or chemical industry at different locations of Catalonia during the period of 1998/1999. The levels of MTBE detected varied between 4-300 microg/l, but two sites had MTBE levels up to 3 and 13 mg/l. In many cases, the BTEX levels were below 1 microg/l, whereas 7 sites had levels varying from 19 microg/l up to 3 mg/l. Most of them were related to leakage from underground tanks in petrol service stations, while the remaining three corresponded respectively to chemical industrial pollution of undetermined origin and to a leak from high-ground petrol tanks in petrochemical refinery factories. The aquifers involved were constituted by detritus coarse materials, sands, and conglomerates. Piezometric levels were roughly comprised between 3 and 40 m, and permeability (K) and transmissivity (T) values were estimated from field measurements. The MTBE/BTEX ratio was also calculated and reached values up to 250. These values were expected, since if we consider that spilled oxygenated gasoline is the source of well contamination and based on solubility considerations alone, the MTBE source concentrations would be about 200 times higher than any BTEX compounds.

  1. REMOVAL OF MTBE FROM WATER WITH ZEOLITES

    Science.gov (United States)

    MTBE has impacted public drinking water wells from releases of gasoline making the water non-potable. MTBE is highly soluble in water, has a low volatility, does not adsorb strongly to soil, and is not thought to be easily biodegradable. Traditional methods of removing organics ...

  2. Microbial degradation of MTBE in reactors

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2007-01-01

    , toluene, ethylbenzene and xylenes, may reduce the removal rates of MTBE, or prevent its removal in reactors. With mathematical modelling, the long startup time required for some MTBE degrading reactors could be predicted. Long startup times of up to 200 days were due to the low maximum growth rate...... findings were: membrane bioreactors and fluidized bed reactors had the highest volumetric removal rates of all reactors studied, in the order of 1 000 mg/(l d); competition for oxygen, nutrients and occupancy between MTBE degraders and oxidisers of co-contaminants such as, ammonium and the group of benzene...... of the MTBE degraders, in the order of 0.1 d−1 or less, at 25 °C. However, despite this, high volumetric MTBE removal rates were found to be possible after the startup period when the biomass concentration reached a steady state....

  3. Monitoring of the Gasoline Oxygenate MTBE and BTEX Compounds in Groundwater in Catalonia (Northeast Spain

    Directory of Open Access Journals (Sweden)

    J. Fraile

    2002-01-01

    Full Text Available Headspace (HS gas chromatography with flame ionisation detection (HS-GC-FID and purge and trap (P gas chromatography-mass spectrometry (P were used for the determination of methyl-tert-butyl ether (MTBE and benzene, toluene, and xylenes (BTEX in groundwater. In this work, we present the first data on the levels of MTBE and BTEX in different groundwater wells in the area of Catalonia (northeast Spain. This monitoring campaign corresponded to 28 groundwater wells that were located near petrol service stations, oil refinery storage tanks, and/or chemical industry at different locations of Catalonia during the period of 1998/1999. The levels of MTBE detected varied between 4—300 μg/l, but two sites had MTBE levels up to 3 and 13 mg/l. In many cases, the BTEX levels were below 1 μg/l, whereas 7 sites had levels varying from 19 μg/l up to 3 mg/l. Most of them were related to leakage from underground tanks in petrol service stations, while the remaining three corresponded respectively to chemical industrial pollution of undetermined origin and to a leak from high-ground petrol tanks in petrochemical refinery factories. The aquifers involved were constituted by detritus coarse materials, sands, and conglomerates. Piezometric levels were roughly comprised between 3 and 40 m, and permeability (K and transmissivity (T values were estimated from field measurements.

  4. Artificial Neural Network Approach to Predict Biodiesel Production in Supercritical tert-Butyl Methyl Ether

    OpenAIRE

    Obie Farobie; Nur Hasanah

    2016-01-01

    In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE). The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time) were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict b...

  5. Biodegradation of methyl t-butyl ether by pure bacterial cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mo, K. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences; Lora, C.O. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences; Wanken, A.E. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences; Javanmardian, M. [Amoco Research Center, Naperville, IL (United States); Yang, X. [Amoco Research Center, Naperville, IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

    1997-08-01

    Three pure bacterial cultures degrading methyl t-butyl ether (MTBE) were isolated from activated sludge and fruit of the Gingko tree. They have been classified as belonging to the genuses Methylobacterium, Rhodococcus, and Arthrobacter. These cultures degraded 60 ppm MTBE in 1-2 weeks of incubation at 23-25 C. The growth of the isolates on MTBE as sole carbon source is very slow compared with growth on nutrient-rich medium. Uniformly-labeled [{sup 14}C]MTBE was used to determine {sup 14}CO{sub 2} evolution. Within 7 days of incubation, about 8% of the initial radioactivity was evolved as {sup 14}CO{sub 2}. These strains also grow on t-butanol, butyl formate, isopropanol, acetone and pyruvate as carbon sources. The presence of these compounds in combination with MTBE decreased the degradation of MTBE. The cultures pregrown on pyruvate resulted in a reduction in {sup 14}CO{sub 2} evolution from [{sup 14}C]MTBE. The availability of pure cultures will allow the determination of the pathway intermediates and the rate-limiting steps in the degradation of MTBE. (orig.)

  6. HIGH ENERGY ELECTRON INJECTION (E-BEAM) TECHNOLOGY FOR THE EX-SITU TREATMENT OF MTBE-CONTAMINATED GROUNDWATER INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation Report documents the results of a demonstration of the high-energy electron injection (E-Beam) technology in application to groundwater contaminated with methyl t-butyl ether (MtBE) and with benzene, toluene, ethylbenzene, and xylenes (BTEX)....

  7. Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1.

    Science.gov (United States)

    Smith, Christy A; Hyman, Michael R

    2004-08-01

    The alkane hydroxylase enzyme system in Pseudomonas putida GPo1 has previously been reported to be unreactive toward the gasoline oxygenate methyl tert-butyl ether (MTBE). We have reexamined this finding by using cells of strain GPo1 grown in rich medium containing dicyclopropylketone (DCPK), a potent gratuitous inducer of alkane hydroxylase activity. Cells grown with DCPK oxidized MTBE and generated stoichiometric quantities of tert-butyl alcohol (TBA). Cells grown in the presence of DCPK also oxidized tert-amyl methyl ether but did not appear to oxidize either TBA, ethyl tert-butyl ether, or tert-amyl alcohol. Evidence linking MTBE oxidation to alkane hydroxylase activity was obtained through several approaches. First, no TBA production from MTBE was observed with cells of strain GPo1 grown on rich medium without DCPK. Second, no TBA production from MTBE was observed in DCPK-treated cells of P. putida GPo12, a strain that lacks the alkane-hydroxylase-encoding OCT plasmid. Third, all n-alkanes that support the growth of strain GPo1 inhibited MTBE oxidation by DCPK-treated cells. Fourth, two non-growth-supporting n-alkanes (propane and n-butane) inhibited MTBE oxidation in a saturable, concentration-dependent process. Fifth, 1,7-octadiyne, a putative mechanism-based inactivator of alkane hydroxylase, fully inhibited TBA production from MTBE. Sixth, MTBE-oxidizing activity was also observed in n-octane-grown cells. Kinetic studies with strain GPo1 grown on n-octane or rich medium with DCPK suggest that MTBE-oxidizing activity may have previously gone undetected in n-octane-grown cells because of the unusually high K(s) value (20 to 40 mM) for MTBE.

  8. Roles of back diffusion and biodegradation reactions in sustaining MTBE/TBA plumes in alluvial media

    Science.gov (United States)

    Mackay, D. M.; Rasa, E.

    2011-12-01

    A plume of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted above regulatory concentration goals for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. Two-dimensional reactive transport simulations of MTBE and TBA along the plume centerline were conducted for a 20-year period following the spill. As previously reported by Rasa et al. (2011), these analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. After 2004, TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly reduced the time for MTBE and TBA concentrations to reach regulatory goals by limiting the chemical mass available for back diffusion to the aquifer. We have extended that prior work; using the same reaction and diffusion parameters, we explored the sensitivity of the results to thicknesses of the alluvial layers in order to determine under what sets of conditions a reaction zone accessed only by vertical diffusion through a silt from an underlying contaminated aquifer can significantly affect time to achievement of compliance goals within the aquifer.

  9. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Scott G. Huling; Patrick K. Jones; Tony R. Lee [U.S. Environmental Protection Agency, Ada, OK (United States). Office of Research and Development, National Risk Management Research Laboratory

    2007-06-01

    Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was accomplished through the addition of iron (Fe) and hydrogen peroxide (H{sub 2}O{sub 2}) (15.9 g/L; pH 3). The GAC used was URV, a bituminous-coal based carbon. The Fe concentration in GAC was incrementally varied (1020-25 660 mg/kg) by the addition of increasing concentrations of Fe solution (FeSO4{center_dot}7H{sub 2}O). MTBE degradation in Fe-amended GAC increased by an order of magnitude over Fe-unamended GAC and H{sub 2}O{sub 2} reaction was predominantly (99%) attributed to GAC-bound Fe within the porous structure of the GAC. Imaging and microanalysis of GAC particles indicated limited penetration of Fe into GAC. The optimal Fe concentration was 6710 mg/kg (1020 mg/kg background; 5690 mg/kg amended Fe) and resulted in the greatest MTBE removal and maximum Fe loading oxidation efficiency (MTBE oxidized (g)/Fe loaded to GAC(mg/Kg)). At lower Fe concentrations, the H{sub 2}O{sub 2} reaction was Fe limited. At higher Fe concentrations, the H{sub 2}O{sub 2} reaction was not entirely Fe limited, and reductions in GAC surface area, GAC pore volume, MTBE adsorption, and Fe loading oxidation efficiency were measured. Results are consistent with nonuniform distribution of Fe, pore blockage in H{sub 2}O{sub 2} transport, unavailable Fe, and limitations in H{sub 2}O{sub 2} diffusive transport, and emphasize the importance of optimal Fe loading. 22 refs., 6 figs., 2 tabs.

  10. N–H•••O hydrogen bonding. An FT-IR, NIR study of N-methylformamide–ether systems

    Directory of Open Access Journals (Sweden)

    BRANISLAV JOVIĆ

    2010-02-01

    Full Text Available This paper reports the results of an FT-IR and NIR study of N-methylformamide in carbon tetrachloride solution in presence of ethers as the O--electron donors, i.e., diethyl ether (DEE, diisopropyl ether (DiPE, methyl t--butyl ether (MtBE, dibutyl ether (DBE, dipentyl ether (DPE, tetrahydro-furan (THF and tetrahydropyran (THP. The spectroscopic characteristics of the N–H•••O hydrogen bonded complexes are given. In addition, the equilibrium constants for 1:1 complex formation were determined at 25 °C using Mid-IR and NIR measurements.

  11. FIELD OBSERVATIONS TO RECOGNIZE THE NATURAL BIODEGRADATION OF MTBE

    Science.gov (United States)

    At some gasoline spill sites (perhaps a third of sites nationwide) MTBE in ground water has been biologically degraded to TBA. This natural biodegradation of MTBE contributes to the natural attenuation of MTBE, but it produces TBA as a potential contaminant. Under ordinary cond...

  12. Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-09-01

    Full Text Available Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE, which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8, accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA. When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition.

  13. Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies

    Science.gov (United States)

    Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.

    2010-01-01

    Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106

  14. The study of binding of methyl tert-butyl ether to human telomeric G-quadruplex and calf thymus DNA by gas chromatography, a thermodynamic discussion.

    Science.gov (United States)

    Ghasemi, Sahar; Ahmadi, Farhad

    2014-11-15

    Methyl-tert-butyl ether (MTBE) is widely used as an antiknock additive for increasing octane number of gasoline. Recently, the in vivo studies demonstrated that MTBE has genotoxic potential and able to form adducts with DNA. In the work, the interactions of MTBE with calf thymus DNA (ct-DNA) and the Na(+) form of G-quadruplex DNA (wtTel22) were studied by using of head space-solid phase microextraction technique coupled to gas chromatography. The binding equilibrium constants were measured through the equilibriums of a four phase system. In addition, the MTBE Henry's law constants for two different buffers in the temperature range of 283-303K were measured. Thermodynamic studies revealed that the complexation of MTBE to both DNAs is enthalpy favored and entropy disfavored. The thermodynamic results revealed that MTBE may have interaction with ct-DNA via the minor groove of DNA. Also, MTBE may be complexed into the basket of G-quadruplex structure. In addition, the low difference in the binding constants of MTBE for both different DNA targets may confirm that MTBE is poorly selective for different conformations of DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Common Myths, Misconceptions and Assumptions About Mtbe: Where Are We Now?

    Science.gov (United States)

    Woodward, R. E.

    Critical review of twelve (12) myths and misconceptions about MTBE reveals they were conceived to rationalize early field observations and/or incomplete data sets. Closer scrutiny, in light of recent laboratory investigations, field data, case studies and world literature, indicates the myths are unsubstantiated misconceptions and as- sumptions about the behavior of ether oxygenates in the environment. Commonly held myths focus on four general areas of fuel and fuel oxygenates management: stor- age/dispensing, hydrology, remediation and health effects. Storage/dispensing mis- conceptions address materials stability to ethers in fuel and the environmental foren- sics of fuel systems failure. Groundwater and hydrology myths deal with plume dy- namics and the impact of fuel on drinking water resources. Remediation myths focus on the performance of traditional hydrocarbon remediation technologies, recent de- velopments in biodegradation and natural attenuation, drivers of remedial design and remediation costs. Health effects myths address both acute and chronic exposure risk evaluations by national and international health agencies. MTBE is manageable by the same processes and precautions used for gasoline and other fuel hydrocarbons.

  16. Evaluation of UV/O 3 process for removal of methyl tertiary-butyl ether in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2012-01-01

    Full Text Available Aims: In the present investigation, the methyl tertiary-butyl ether (MTBE removal efficiency from the synthetic solutions by the means of advanced oxidation process of UV/O 3 was studied. Materials and Methods: To study the efficiency of process, the following variables were studied: ozone concentration, pH, MTBE initial concentration, and radiation duration. As The radiation source, a Mercury vapor UV lamp with moderate pressure (400W was used which was immersed vertically in the solution containing MTBE, in a glass reactor (Volume: 2 L. Results: The results showed that the efficiency of UV radiation and ozone alone in 50 mg/L concentration and pH: 7 on MTBE removal was 4 and 53%, respectively. The UV/O 3 compound process removal efficiency in 60 minutes was 63%. The pH played a significant role in the process, as with the increase in pH, the removal rate increased as well. The removal rates for the initial concentrations of 10, 20, 50, and 100 mg/L of MTBE were 98, 81.5, 72.8, and 63.8%, respectively. Conclusion: The results of the present survey indicated that the efficiency of the UV/O 3 combination process was more than ultraviolet (UV and Ozone alone. In the UV/O 3 combination process, the MTBE removal efficiency increased as the O 3 concentration and pH increased, while the efficiency decreased as the MTBE concentration decreased.

  17. Adsorption of methyl tert-butyl ether using granular activated carbon : equilibrium and kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.Z.; Chen, J.M. [Zhejiang Univ. of Technology, Hangzhou (China). College of Biological and Environmental Engineering; Zhang, J.X. [Yuhuan County Environmental Protection Bureau, Yuhuan (China)

    2010-04-01

    Methyl tert-butyl ether (MTBE) is used in gasoline as a replacement for lead in order to promote combustion efficiency. However, MTBE is one of the most frequently detected underground water pollutants caused by leaks in underground fuel storage tanks, and has been classified as a potential human carcinogen. This study investigated that adsorption of MTBE through a granular activated carbon filter. Pseudo-first order, pseudo-second order equation and intraparticle diffusion equation kinetic models were used to predict the constant rate of adsorption. The study showed that the pseudo-second order model accurately described the adsorption kinetics for the removal of MTBE from an aqueous solution onto granular activated carbon. The Lagergren first-order rate constant k{sub 1} and the pseudo-second order rate constant k{sub 2} decreased with initial increases of MTBE. A Boyd plot was used to demonstrate that external mass transfer is the principal rate-limiting step during the initial stages of adsorption. Results of the study indicated that granular activated carbon is an effective adsorbent for MTBE. 34 refs., 2 tabs., 7 figs.

  18. Kinetics of Methyl t-Butyl Ether Cometabolism at Low Concentrations by Pure Cultures of Butane-Degrading Bacteria

    Science.gov (United States)

    Liu, Catherine Y.; Speitel, Gerald E.; Georgiou, George

    2001-01-01

    Butane-oxidizing Arthrobacter (ATCC 27778) bacteria were shown to degrade low concentrations of methyl t-butyl ether (MTBE; range, 100 to 800 μg/liter) with an apparent half-saturation concentration (Ks) of 2.14 mg/liter and a maximum substrate utilization rate (kc) of 0.43 mg/mg of total suspended solids per day. Arthrobacter bacteria demonstrated MTBE degradation activity when grown on butane but not when grown on glucose, butanol, or tryptose phosphate broth. The presence of butane, tert-butyl alcohol, or acetylene had a negative impact on the MTBE degradation rate. Neither Methylosinus trichosporium OB3b nor Streptomyces griseus was able to cometabolize MTBE. PMID:11319100

  19. Characterization of Sulfur Compounds in MTBE

    Directory of Open Access Journals (Sweden)

    Mingqing Wu

    2015-01-01

    Full Text Available A study is carried out on chemical constitution of sulfur compounds in MTBE and their formation mechanisms. These sulfur compounds are classified into three types: common sulfur compounds, newly formed sulfur compounds, and high boiling sulfur compounds. Common sulfur compounds which include mercaptans, low molecule sulfides and disulfides, are directly from C4, one of the stocks for production of MTBE. The newly formed sulfur compounds, with one sulfur atom and five or more total carbon atoms in one molecule, are mainly tert-butyl methyl sulfide and tert-butyl ethyl sulfide, thioetherification products of thiols with butenes. Many high boiling sulfur compounds, including polysulfides such as dimethyl trisulfide, multisulfur heterocyclic compounds such as 3,5-dimethyl-1,2,4-trithiolane, and oxygen-containing sulfur compounds such as 2-methoxy-3-methylthio-butane, are also found newly formed in the processes of LPG refining and succedent etherification reaction for producing MTBE. Polysulfides are additional products of elemental sulfur to disulfides, and other high boiling sulfur compounds may be formed by thiols reacting with dienes.

  20. Trends in Methyl tert-Butyl Ether Concentrations in Private Wells in Southeast New Hampshire: 2005 to 2015.

    Science.gov (United States)

    Flanagan, Sarah M; Levitt, Joseph P; Ayotte, Joseph D

    2017-02-07

    In southeast New Hampshire, where reformulated gasoline was used from the 1990s to 2007, methyl tert-butyl ether (MtBE) concentrations ≥0.2 μg/L were found in water from 26.7% of 195 domestic wells sampled in 2005. Ten years later in 2015, and eight years after MtBE was banned, 10.3% continue to have MtBE. Most wells (140 of 195) had no MtBE detections (concentrations MtBE concentrations increased in 4 wells, decreased in 47 wells, and did not change in 4 wells. On average, MtBE concentrations decreased 65% among 47 wells whereas MtBE concentrations increased 17% among 4 wells between 2005 and 2015. The percent change in detection frequency from 2005 to 2015 (the decontamination rate) was lowest (45.5%) in high-population-density areas and in wells completed in the Berwick Formation geologic units. The decontamination rate was the highest (78.6%) where population densities were low and wells were completed in bedrock composed of granite, metamorphic, and mafic rocks. Wells in the Berwick Formation are characteristically deeper and have lower yields than wells in other rock types and have shallower overburden cover, which may allow for more rapid transport of MtBE from land-surface releases. Low-yielding, deep bedrock wells may require large contributing areas to achieve adequate well yield, and thus have a greater chance of intercepting MtBE, in addition to diluting contaminants at a slower rate and thus requiring more time to decontaminate.

  1. Rendimento térmico e emissões de contaminantes atmosféricos de gasolinas formuladas com etanol, MBTE e TAEE Thermal yield and emission of atmospheric contaminants from gasolines formulated with ethanol, MTBE and TAEE

    Directory of Open Access Journals (Sweden)

    Rosângela da Silva

    2008-01-01

    Full Text Available The specific consumption and carbon monoxide (CO and nitrogen oxide (NO emissions from gasolines formulated with ethanol, methyl tert-butyl ether (MTBE and tert-amyl ethyl ether (TAEE were evaluated in the rich, stoichiometric and lean-burn regions during the operation of an Otto-cycle engine. The use of ethanol as an additive presented high specific consumption, while gasoline formulated with TAEE showed low specific consumption with the engine operating under lean-burn conditions. The ethers evaluated here presented a low percentage of CO in the rich-burn region when compared with ethanol.

  2. Location of MTBE and toluene in the channel system of the zeolite mordenite: Adsorption and host-guest interactions

    Science.gov (United States)

    Arletti, Rossella; Martucci, Annalisa; Alberti, Alberto; Pasti, Luisa; Nassi, Marianna; Bagatin, Roberto

    2012-10-01

    This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determined by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water.

  3. Field Confirmation and Monitoring Tools for Aerobic Bioremediation of TBA and MTBE

    Science.gov (United States)

    North, K.; Rasa, E.; Mackay, D. M.; Scow, K. M.; Hristova, K. R.

    2009-12-01

    We have been investigating in situ biotreatment of an existing tert-butyl alcohol (TBA) plume at Vandenberg AFB by recirculation/oxygenation and evaluating monitoring tools for microbial community composition and activity inside and outside of the treatment zone. Results indicate that recirculation/oxygenation by two pairs of recirculation wells is effective at adding oxygen and decreasing methyl tert-butyl ether (MTBE) and TBA concentrations to detection limits along the flowpaths predicted. Compound-specific isotope analyses (CSIA) of groundwater and microbial community analyses (extraction and analysis of DNA) of groundwater and sediments are underway for sampling locations along flowpaths inside and outside of the treatment zone to seek confirmation of in situ biodegradation. We are also evaluating a novel approach to compare the performance of microbial “traps” in characterizing microbial communities: groundwater from the aerobic treatment zone is extracted, separated and directed to multiple chambers located in an air-conditioned ex situ experimental setup. The “traps” under evaluation are in separate chambers; influent and effluent are monitored. The traps being evaluated include Bio-Trap® housings containing Bio-Sep® beads baited with MTBE or TBA labeled with 13C and various unbaited materials. Insights from the various monitoring approaches will be discussed and compared.

  4. Production d'isobutène de haute pureté par décomposition du MTBE High-Purity Isobutene Production from Mtbe

    Directory of Open Access Journals (Sweden)

    Meunier P. B.

    2006-11-01

    Full Text Available La décomposition du MTBE en isobutène et méthanol s'accompagne de réactions secondaires (oligomérisation de l'isobutène, hydratation de l'isobutène, déshydratation du méthanol. Les différents types de catalyseurs utilisés, les mécanismes et les cinétiques suggérés, ainsi que les sites actifs et les espèces adsorbées proposés dans la littérature sont examinés dans le cas de la réaction principale, et des réactions secondaires. La formulation du catalyseur et la nature des sites actifs (Brönsted, Lewis ont une incidence particulière sur la réaction. Les données de la littérature portent essentiellement sur des catalyseurs de type résines présentant une acidité de Brönsted. Sur catalyseurs de type oxydes il apparaît que les sites acides de Lewis, catalysent la réaction principale, tandis que les réactions secondaires sont essentiellement dues à la présence d'acidité de Brönsted. Un contrôle de l'acidité des formulations catalytiques est nécessaire afin de minimiser les réactions secondaires, et de produire de l'isobutène très pur. Under suitable conditions, methyl-tert-butyl ether (MTBE is decomposed into isobutene (C4H8 and methanol (CH3OH. This decomposition is a reversible endothermic chemical reaction ((*** = 15. 6 kcal/mol in the gas phase. When this reaction is situated downstream from MTBE synthesis from a C4 cut, this results in the separation of the different isomers in this cut by a less costly method than the one now used, which consists of concentrated sulfuric-acid extraction. The isobutene obtained by MTBE decomposition is very pure and meets the specifications required for subsequent polymerization into butyl rubber or methyl methacrylate. The MTBE decomposition reaction is accompanied by secondary reactions such as the oligomerization of isobutene (mainly the formation of dimers, the dehydration of methanol into dimethylether, and the hydration of isobutene into tert-butyl alcohol. MTBE

  5. Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tang, G.H. [Xian Medical Univ. (China); Shen, Y.; Shen, H.M. [National Univ. of Singapore (Singapore)] [and others

    1996-12-31

    Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

  6. Degradation of aqueous methyl tert-butyl ether by photochemical, biological, and their combined processes

    Directory of Open Access Journals (Sweden)

    Azadeh Asadi

    2006-01-01

    Full Text Available The degradation of aqueous methyl tert-butyl ether (MTBE at relatively high concentrations was investigated by various photo-induced oxidation processes such as UV/H2O2 and UV/TiO2 as well as biological processes and their combination. It was shown that the degradation of MTBE by UV/H2O2 and TiO2 photocatalytic followed a first-order model with apparent rate constant of 1.31×10−1 and 1.21×10−2 min-1, respectively. It was observed that UV/H2O2/TiO2 process did not have any advantages over each of the other processes alone. The biodegradation of methyl tert-butyl ether (MTBE was evaluated using aerobic mixed culture with three different approaches, including ultimate biological oxygen demand (BODU assessment, nonacclimated, and acclimated mixed cultures. The apparent rate constant for the biodegradation of MTBE by nonacclimated mixed culture was 4.36×10−2 day-1. It was shown that the acclimatization of the mixed cultures enhanced the rate of biodegradation of MTBE to 3.24×10−1mg L-1h-1. Finally, the effects of the photocatalytic pretreatment of aqueous MTBE on its subsequent biological treatment were studied. It was observed that the rate of bioreaction was not enhanced and the photocatalytic pretreatment had adverse effects on its biological treatment so that the apparent rate constant decreased to 2.83×10−1 mg L-1h-1.

  7. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China

    Directory of Open Access Journals (Sweden)

    Dalin Hu

    2016-02-01

    Full Text Available Methyl tertiary butyl ether (MTBE, a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet  little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01 and both were lower than 50 ppm (an occupational threshold limit value. The calculated cancer risks (CRs at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.

  8. Speciated hydrocarbon and carbon monoxide emissions from an internal combustion engine operating on methyl tertiary butyl ether-containing fuels.

    Science.gov (United States)

    Poulopoulos, S G; Philippopoulos, C J

    2001-07-01

    In the present work, engine and tailpipe (after a three-way catalytic converter) emissions from an internal combustion engine operating on two oxygenated blend fuels [containing 2 and 11% weight/weight (w/w) methyl tertiary butyl ether (MTBE)] and on a nonoxygenated base fuel were characterized. The engine (OPEL 1.6 L) was operated under various conditions, in the range of 0-20 HP. Total unburned hydrocarbons, carbon monoxide, methane, hexane, ethylene, acetaldehyde, acetone, 2-propanol, benzene, toluene, 1,3-butadiene, acetic acid, and MTBE were measured at each engine operating condition. As concerns the total HC emissions, the use of MTBE was beneficial from 1.90 to 3.81 HP, which were by far the most polluting conditions. Moreover, CO emissions in tailpipe exhaust were decreased in the whole operation range with increasing MTBE in the fuel. The greatest advantage of MTBE addition to gasoline was the decrease in ethylene, acetaldehyde, benzene, toluene, and acetic acid emissions in engine exhaust, especially when MTBE content in the fuel was increased to 11% w/w. In tailpipe exhaust, the catalyst operation diminished the observed differences. Ethylene, methane, and acetaldehyde were the main compounds present in exhaust gases. Ethylene was easily oxidized over the catalyst, while acetaldehyde and methane were quite resistant to oxidation.

  9. MTBE in groundwater and surface water and its consequences for water supply; Vorkommen von MTBE in Grund- und Oberflaechengewaessern - Bedeutung fuer die Wasserversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, F. [DVGW-Technologiezentrum Wasser (TZW), Karlsruhe (Germany)

    2002-07-01

    The contribution presents data on MTBE concentrations in groundwater and surface water. This is followed by a discussion of the consequences of MTBE burdens for freshwater supply, especially in cases where filtrates from river banks are used. (orig.) [German] Ich moechte meinen Vortrag in zwei Teile gliedern. Zum einen werde ich Daten praesentieren zum Vorkommen von MTBE in Grund- und Oberflaechengewaessern. Anschliessend moechte ich dann speziell auf die Bedeutung von MTBE fuer die Trinkwasserversorgung, insbesondere bei der Nutzung von Uferfiltrat, eingehen. (orig.)

  10. An ex situ evaluation of TBA- and MTBE-baited bio-traps

    Science.gov (United States)

    North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.

    2013-01-01

    Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that

  11. Artificial Neural Network Approach to Predict Biodiesel Production in Supercritical tert-Butyl Methyl Ether

    Directory of Open Access Journals (Sweden)

    Obie Farobie

    2016-05-01

    Full Text Available In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE. The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict biodiesel yield conducted under supercritical MTBE condition. The result shows that artificial neural network is a powerful tool for modeling and predicting biodiesel yield conducted under supercritical MTBE condition that was proven by a high value of coefficient of determination (R of 0.9969, 0.9899, and 0.9658 for training, validation, and testing, respectively. Using this approach, the highest biodiesel yield was determined of 0.93 mol/mol (corresponding to the actual biodiesel yield of 0.94 mol/mol that was achieved at 400 °C, under the reactor pressure of 10 MPa, oil-to-MTBE molar ratio of 1:40 within 15 min of reaction time.

  12. Determination of fuel ethers in water by membrane extraction ion mobility spectrometry.

    Science.gov (United States)

    Holopainen, Sanna; Nousiainen, Marjaana; Sillanpää, Mika

    2013-03-15

    Fuel oxygenates are environmentally detrimental compounds due to their rapid migration to groundwater. Fuel oxygenates have been reported to cause taste and odour problems in drinking water, and they also have long-term health effects. Feasible analytical methods are required to observe the presence of fuel oxygenates in drinking and natural water. The authors studied ion mobility spectrometry (IMS) to determinate isomeric fuel ether oxygenates; ethyl tert-butyl ether (ETBE), diisopropyl ether (DIPE), and tert-amyl methyl ether (TAME), separated from aqueous matrices with a pervaporation membrane module. Methyl tert-butyl ether (MTBE) was also membrane extracted and detected with IMS. The authors demonstrated that fuel ethers (MTBE, ETBE, DIPE, and TAME) can be quantified at μg/L level with membrane extraction IMS. A membrane extraction module coupled to IMS is a time and cost effective analysis method because sampling can be performed in a single procedure and from different natural water matrices within a few minutes. Consequently, IMS combined with membrane extraction is suitable not only for waterworks and other online applications but also in the field monitoring the quality of drinking and natural water. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. HIGH LEVELS OF MONOAROMATIC COMPOUNDS LIMIT THE USE OF SOLID-PHASE MICROEXTRACTION OF METHYL TERTIARY BUTYL ETHER AND TERTIARY BUTYL ALCOHOL

    Science.gov (United States)

    Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...

  14. Oksigenat Methyl Tertiary Buthyl Ether Sebagai Aditif Octane Booster Bahan Bakar Motor Bensin

    OpenAIRE

    Philip Kristanto

    2002-01-01

    Oxygenates Methyl Tertiary Buthyl Ether (MTBE), as an alternative substance for Tetra Ethyl Lead (TEL), which is used as substance to increase octane number gasoline fuel. However, need to be tested how its concentration influence about octane number, volatility fuel and engine performance. For engines with carburettor, the liquid fuel must be volatile enough to produce a combustible fuel vapour air mixture at intake temperature and to produce completely fuel vapour air mixture inside the cyl...

  15. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    Science.gov (United States)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did

  16. MONITORED NATURAL ATTENUATION OF MTBE AS A RISK MANAGEMENT OPTION AT LEAKING UNDERGROUND STORAGE TANK SITES

    Science.gov (United States)

    This report reviews the current state of knowledge on the transport and fate of MTBE in ground water, with emphasis on the natural processes that can be used to manage the risk associated with MTBE in ground water or that contributes to natural attenuation of MTBE as a remedy. I...

  17. Ethyleneglycol ethers (ethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether acetate, diethyleneglycol monomethyl ether, diethyleneglycol monoethyl ether and diethyleneglycol monobutyl ether).

    NARCIS (Netherlands)

    Maclaine Pont, M.A.

    1996-01-01

    The committee recommends the following exposure limits as concentrations in air averaged over 8 hours (8 h TWA): - ethyleneglycol monomethyl ether: 1 mg/m3 (0.3 ppm) - ethyleneglycol monomethyl ether acetate: 1.5 mg/3 (0.3 ppm) - diethyleneglycol monomethyl ether: 45 mg/m3 (9 ppm) - diethyleneglycol

  18. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2017-01-01

    Full Text Available Methyl tert-butyl ether (MTBE has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC. A polypyrrole (PPy-modified GAC composite (PPy/GAC was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR and Brunauer-Emmett-Teller (BET surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation, the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.

  19. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability.

    Science.gov (United States)

    Li, Shanshan; Qian, Keke; Wang, Shan; Liang, Kaiqiang; Yan, Wei

    2017-01-24

    Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation), the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration MTBE degradation in these biofilm reactors.

  20. Response surface analysis of photocatalytic degradation of methyl tert-butyl ether by core/shell Fe3O4/ZnO nanoparticles.

    Science.gov (United States)

    Safari, Mojtaba; Rostami, Mohammad Hossein; Alizadeh, Mehriana; Alizadehbirjandi, Atefeh; Nakhli, Seyyed Ali Akbar; Aminzadeh, Reza

    2014-01-06

    The degradation of methyl tert-butyl ether (MTBE) was investigated in the aqueous solution of coated ZnO onto magnetite nanoparticale based on an advanced photocatalytic oxidation process. The photocatalysts were synthesized by coating of ZnO onto magnetite using precipitation method. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibration sample magnetometer (VSM). Besides, specific surface area was also determined by BET method. The four effective factors including pH of the reaction mixture, Fe3O4/ZnO magnetic nanoparticles concentration, initial MTBE concentration and molar ratio of [H2O2]/ [MTBE] were optimized using response surface modeling (RSM). Using the four-factor-three-level Box-Behnken design, 29 runs were designed considering the effective ranges of the influential factors. The optimized values for the operational parameters under the respective constraints were obtained at PH of 7.2, Fe3O4/ZnO concentration of 1.78 g/L, initial MTBE concentration of 89.14 mg/L and [H2O2]/ [MTBE] molar ratio of 2.33. Moreover, kinetics of MTBE degradation was determined under optimum condition. The study about core/shell magnetic nanoparticles (MNPs) recycling were also carried out and after about four times, the percentage of the photocatalytic degradation was about 70%.

  1. Volatile Fuel Hydrocarbons and MTBE in the Environment

    Science.gov (United States)

    Cozzarelli, I. M.; Baehr, A. L.

    2003-12-01

    Petroleum hydrocarbons (hydrocarbons that result from petroleum products such as oil, gasoline, or diesel fuel) are among the most commonly occurring and widely distributed contaminants in the environment. Volatile hydrocarbons are the lighter fraction of the petroleum hydrocarbons and, together with fuel oxygenates, are most often released from crude oil and liquid petroleum products produced from crude oil. The demand for crude oil stems from the world's ever-growing energy need. From 1970 to 1999, primary energy production of the world grew by 76% (Energy Information Administration, 2001), with fossil fuels (crude oil, natural gas, and coal) accounting for ˜85% of all energy produced worldwide (Figure 1). World crude oil production reached a record 68 million barrels (bbl) per day (1.08×1010 L d-1) in 2000. The world's dependence on oil as an energy source clearly is identified as contributing to global warming and worsening air and water quality. (7K)Figure 1. World primary energy production by source from 1970 to 1999 (Energy Information Administration, 2001). Petroleum products are present in Earth's subsurface as solids, liquids, or gases. This chapter presents a summary of the environmental problems and issues related to the use of liquid petroleum, or oil. The focus is on the sources of volatile hydrocarbons and fuel oxygenates and the geochemical behavior of these compounds when they are released into the environment. Although oxygenates currently in commercial use include compounds other than methyl t-butyl ether (MTBE), such as ethanol (ETOH), most of the information presented here focuses on MTBE because of its widespread occurrence. The environmental impact of higher molecular weight hydrocarbons that also originate from petroleum products is described in (Chapter 9.13, Abrajano et al.).Crude oil occurs within the Earth and is a complex mixture of natural compounds composed largely of hydrocarbons containing only hydrogen and carbon atoms. The minor

  2. Toxicity and biofilm-based selection for methyl tert-butyl ether bioremediation technology.

    Science.gov (United States)

    Guisado, I M; Purswani, J; Catón-Alcubierre, L; González-López, J; Pozo, C

    2016-12-01

    Extractive membrane biofilm reactor (EMBFR) technology offers productive solutions for volatile and semi-volatile compound removal from water bodies. In this study, the bacterial strains Paenibacillus etheri SH7(T) (CECT 8558), Agrobacterium sp. MS2 (CECT 8557) and Rhodococcus ruber strains A5 (CECT 8556), EE6 (CECT 8612) and EE1 (CECT 8555), previously isolated from fuel-contaminated sites, were tested for adherence on tubular semipermeable membranes in laboratory-scale systems designed for methyl tert-butyl ether (MTBE) bioremediation. Biofilm formation on the membrane surface was evaluated through observation by field-emission scanning electron microscope (FESEM) as well as the acute toxicity (as EC50) of the bacterial growth media. Moreover, extracellular polymeric substance (EPS) production for each strain under different MTBE concentrations was measured. Strains A5 and MS2 were biofilm producers and their adherence increased when the MTBE flowed through the inner tubular semipermeable membrane. No biofilm was formed by Paenibacillus etheri SH7(T), nevertheless, the latter and strain MS2 exhibited the lowest toxicity after growth on the EMBFR. The results obtained from FESEM and toxicity analysis demonstrate that bacterial strains R. ruber EE6, A5, P. etheri SH7(T) and Agrobacterium sp. MS2 could be excellent candidates to be used as selective inocula in EMBFR technology for MTBE bioremediation.

  3. Preparation of mesoporous alumina films by anodization: Effect of pretreatments on the aluminum surface and MTBE catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, A.L., E-mail: avazquezd@ipn.m [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Carrera, R. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Arce, E. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Castillo, N. [CINVESTAV, Departamento de Fisica. Av. IPN 2508, 07360, Mexico, D.F (Mexico); Castillo, S. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Moran-Pineda, M. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico)

    2009-08-26

    Mesoporous materials are both scientifically and technologically important because of the presence of voids of controllable dimensions at atomic, molecular, and nanometric scales. Over the last decade, there has been both an increasing interest and research effort in the synthesis and characterization of these types of materials. The purposes of this work are to study the physical and chemical changes in the properties of mesoporous alumina films produced by anodization in sulphuric acid by different pretreatments on the aluminium surface such as mechanical polishing [MP] and electropolishing [EP]; and to compare their properties such as morphology, structure and catalytic activity with those present in commercial alumina. The morphologic and physical characterizations of the alumina film samples were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical evaluations were performed by the oxidation of methyl-tert-butyl-ether (MTBE) at 400 deg. C under O{sub 2}/He oxidizing conditions (Praxair, 2.0% O{sub 2}/He balance). According to the results, the samples that presented higher activities than those in Al{sub 2}O{sub 3}/Al [MP] and commercial alumina in the MTBE oxidation (69%), were those prepared by Al{sub 2}O{sub 3}/Al [EP]. The average mesoporous diameter was 17 nm, and the morphological shape was equiaxial; thus, that pore distribution was the smallest of all with a homogeneous distribution.

  4. Effects of pH on the Kinetics of Methyl Tertiary Butyl Ether Degradation by Oxidation Process (H2O2/Nano Zero-Valent Iron/Ultrasonic

    Directory of Open Access Journals (Sweden)

    Samaei

    2015-07-01

    Full Text Available Background In advanced oxidation processes, pH has a significant effect on the removal efficiency of organic compounds. This study examined the effect of pH changes on the removal efficiency and kinetics of methyl tertiary butyl ether (MTBE concentration in aquatic environment. Objectives The primary objective of this study was to evaluate the effect of pH changes on removal kinetics of the mentioned compound, using H2O2/nZVI (nano zero-valent iron/ultrasonic process, and its impact on the reaction rate. Materials and Methods In order to create the right conditions for oxidation, first of all iron nanoparticles combined with H2O2 oxidizer were synthesized, and then they were subjected to ultrasound waves and used in MTBE oxidation. In MTBE removal via H2O2/nZVI/Ultrasonic process, the effects of some parameters such as contact time (2 to 60 minutes, concentration of hydrogen peroxide (5 to 20 mL/L, concentrations of nZVI (0.15 to 0.45 g/L, MTBE concentrations (50 to 750 mg/L, and pH (2 to 9 were investigated. MTBE concentration analysis was performed using gas chromatography (GC. Results According to this study, the best removal efficiency of 50 mg/L MTBE concentration in 89.56% under oxidation condition occurred when H2O2 level equals to 10 mL/L, nZVI is 0.25 g/L at pH 3.5. The results showed that the increase or decrease of pH from 3.5 results in a loss of oxidation efficiency as well as reduction in the amount of kap. In addition, the logarithmic changes curve of MTBE concentration showed that MTBE oxidation in H2O2/nZVI/ultrasonic method follows pseudo first order reactions. Conclusions Changes of pH could remarkably affect the efficiency and oxidation rate of MTBE. In particular, the amount of kap in terms of oxidation declines substantially by moving away from the optimum pH range. In this study, pH 3.5 was considered as the optimal pH in H2O2/nZVI/ultrasonic oxidation process, with the elimination of about 89.56% of the high MTBE

  5. NATURAL ATTENUATION OF MTBE IN THE SUBSURFACE UNDER METHANOGENIC CONDITIONS

    Science.gov (United States)

    This case study was conducted at the former Fuel Farm Site at the U.S.Coast Guard Support Center at Elizabeth City, North Carolina. The study is intended to answer the following questions. Can MTBE be biodegraded under methanogenic conditions in ground water that was contaminated...

  6. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  7. The interactions of methyl tert-butyl ether on high silica zeolites: a combined experimental and computational study.

    Science.gov (United States)

    Sacchetto, V; Gatti, G; Paul, G; Braschi, I; Berlier, G; Cossi, M; Marchese, L; Bagatin, R; Bisio, C

    2013-08-28

    In this work, the interactions of methyl tert-butyl ether (MTBE) on different dealuminated high silica zeolites were studied by means of both experimental and computational approaches. Zeolites with different textural and surface features were selected as adsorbents and the effect of their physico-chemical properties (i.e. pore size architecture and type and amount of surface OH sites) on sorption capacity were studied. High silica mordenite (MOR) and Y zeolites (both with a SiO2/Al2O3 ratio of 200) and ZSM-5 solid (SiO2/Al2O3 ratio of 500) were selected as model sorbents. By combining FTIR and SS-NMR (both (1)H and (13)C CPMAS NMR) spectroscopy it was possible to follow accurately the MTBE adsorption process on highly defective MOR characterized by a high concentration of surface SiOH groups. The adsorption process is found to occur in different steps and to involve isolated silanol sites, weakly interacting silanols, and the siloxane network of the zeolite, respectively. H-bonding and van der Waals interactions occurring between the mordenite surface and MTBE molecules were modeled by DFT calculations using a large cluster of the MOR structure where two adjacent side-pockets were fused in a large micropore to simulate a dealumination process leading to silanol groups. This is the locus where MTBE molecules are more strongly bound and stabilized. FTIR spectroscopy and gravimetric measurements allowed determination of the interaction strength and sorption capacities of all three zeolites. In the case of both Y and MOR zeolites, medium-weak H-bonding with isolated silanols (both on internal and external zeolite surfaces) and van der Waals interactions are responsible for MTBE adsorption, whereas ZSM-5, in which a negligible amount of surface silanol species is present, displays a much lower amount of adsorbed MTBE retained mainly through van der Waals interactions with zeolite siloxane network.

  8. Ether: a forgotten addiction.

    Science.gov (United States)

    Krenz, Sonia; Zimmermann, Grégoire; Kolly, Stéphane; Zullino, Daniele Fabio

    2003-08-01

    Among abused inhalants, ether has recently received little attention. The case of a patient suffering from ether dependence is reported. Whereas several features of DSM-IV dependence were fulfilled, no physical withdrawal signs were observed.

  9. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply

    Science.gov (United States)

    Schmidt, Radomir; Klemme, David A.; Scow, Kate; Hristova, Krassimira

    2012-01-01

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, E. coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. PMID:22321859

  10. High octane ethers from synthesis gas-derived alcohols. Final technical report, September 25, 1990--December 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.

    1994-05-01

    The objective of the research was to develop the methodology for the catalytic synthesis of ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been previously demonstrated by us to occur over superacid catalysts to yield MIBE and smaller amounts of MTBE at moderate pressures and a mixture of methanol and isobutene at low pressures. A wide range of organic resin catalysts and inorganic oxide and zeolite catalysts have been investigated for activity and selectivity in directly coupling alcohols, principally methanol and isobutanol, to form ethers and in the dehydration of isobutanol to isobutene in the presence of methanol. All of these catalysts are strong acids, and it was found that the organic and inorganic catalysts operate in different, but overlapping, temperature ranges, i.e. mainly 60--120{degrees}C for the organic resins and 90--175{degrees}C for the inorganic catalysts. For both types of catalysts, the presence of strong acid centers is required for catalytic activity, as was demonstrated by lack of activity of fully K{sup +} ion exchanged Nafion resin and zirconia prior to being sulfated by treatment with sulfuric acid.

  11. Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems.

    Science.gov (United States)

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H

    2011-02-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.

  12. Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems▿ †

    Science.gov (United States)

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.

    2011-01-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686

  13. Retrofit of an MTBE-unit to ETBE

    Energy Technology Data Exchange (ETDEWEB)

    Rix, A.; Peters, U. [Degussa GmbH, Marl (Germany)

    2007-07-01

    New European policies on renewable fuels have created substantial market pressure to increase the share of bio-fuels. For blending in gasoline, ETBE formed by etherification of isobutene with bio-ethanol is an interesting alternative to direct blending of bio-ethanol. Since the physical properties of methanol and ethanol - and consequently MTBE and ETBE - are quite similar, MTBE-plants can be retrofitted for ETBE-production. Experience from a retrofit-project at Marl is presented. In an integrated C4-plant, isobutene removal is one the most important tasks of the etherification unit to purify the raffinate 2 stream for butene-1 production. Compared to MTBE, reaction rate and equilibrium constant are lower and suitable means of maintaining isobutene conversion on former levels must be found. Furthermore, the extraction of excess alcohol and its recovery by distillation is more difficult. The ethanol-water azeotrope formed on top of the alcohol recovery column has to undergo a further drying process. Alternatives for ethanol drying have been evaluated and performance data for a membrane process is presented. (orig.)

  14. Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study

    Science.gov (United States)

    MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...

  15. De aanwezigheid van methyl tert-butylether (MTBE) in drinkwater en drinkwaterbronnen

    NARCIS (Netherlands)

    Morgenstern PP; de Korte GAL; Hogendoorn EA; Versteegh JFM; LWD; IEM

    2002-01-01

    Het RIVM heeft in samenwerking met VEWIN in 2001 een meetprogramma uitgevoerd voor de stof methyl tert-butylether (MTBE) in drinkwater en drinkwaterbronnen. In de periode juni/juli 2001 is een orieenterend meetprogramma uitgevoerd. De concentratie MTBE in ruwwater van 22 pompstations (in totaal

  16. An efficient and highly selective ortho-tert-butylation of p-cresol with methyl tert-butyl ether catalyzed by sulfonated ionic liquids

    Directory of Open Access Journals (Sweden)

    Alamdari Reza Fareghi

    2014-01-01

    Full Text Available A novel series of sulfonic acid-functionalized ionic liquids (SFILs was found to act as efficient catalysts for ortho-tert-butylation of p-cresol with methyl tert-butyl ether (MTBE as the tert-butylating agent without an added solvent. The mono o-tert-butylated product was obtained in up to 80.4% isolated yield and 95.2% selectivity under such green conditions. No O-tert-butylated byproducts were formed.

  17. Modeling the competitive effect of ammonium oxidizers and heterotrophs on the degradation of MTBE in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    growing MTBE degraders and the co-contaminant oxidizers prevented MTBE's degradation when oxygen was limited. In this event, the co-contaminant oxidizers out-competed the MTBE degraders in the reactor's biofilm. However, if the oxygen supply was sufficient, MTBE would be fully degraded after the zone...... where the co-contaminants were oxidized. The results of the model further indicate that contradicting findings in the literature about the effects of BTEX on the degradation of MTBE are mainly due to differences in the study methodologies. Effects such as short-term toxicity of BTEX and the lack...

  18. Determination of fuel dialkyl ethers and BTEX in water using headspace solid-phase microextraction and gas chromatography-flame ionization detection.

    Science.gov (United States)

    Arambarri, Idoia; Lasa, Maitena; Garcia, Rosa; Millán, Esmeralda

    2004-04-16

    A simple procedure for the determination of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), ethyl butyl ether (EBE), tert-amyl methyl ether (TAME), benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using headspace (HS) solid-phase microextraction (HS-SPME) was developed. The analysis was carried out by gas chromatography (GC) equipped with flame ionization detector (FID) and 100% dimethylpolysiloxane fused capillary column. A 2 Plackett-Burman design for screening and a central composite design (CCD) for optimizing the significant variables were applied. Fiber type, extraction temperature, sodium chloride concentration, and headspace volume were the significant variables. A 65 microm poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) SPME fiber, 10 degrees C, 300 g/l, and 20 ml of headspace (in 40 ml vial) were respectively chosen for the best extraction response. An extraction time of 10 min was enough to extract the ethers and BTEX. The relative standard deviation (R.S.D.) for the procedure varied from 2.6 (benzene) to 8.5% (ethylbenzene). The method detection limits (MDLs) found were from 0.02 (toluene, ethylbenzene, and xylenes) to 1.1 microg/l (MTBE). The optimized method was applied to the analysis of the rivers, marinas and fishing harbors surface waters from Gipuzkoa (North Spain). Three sampling were done in 1 year from June 2002 to June 2003. Toluene was the most detected analyte (in 90% of the samples analyzed), with an average concentration of 0.56 microg/l. MTBE was the only dialkyl ether detected (in 15% of the samples) showing two high levels over 400 microg/l that were related to accidental fuel spill.

  19. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.; Ong, H.Y.; Kok, P.W. [and others

    1996-12-31

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  20. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    Proton-conducting membranes of organic–inorganic (sulfonated poly (ether ether ketone)/phosphated zirconia nanoparticles) composite were prepared by incorporating various ratios of phosphated zirconia nanoparticles (ZP) in sulfonated poly (ether ether ketone) (SPEEK). SPEEK/ZP showed an improvement of ...

  1. Ether formulations of relativity

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, M.C.

    1980-12-01

    Contemporary ether theories are surveyed and criticized, especially those formally identical to orthodox Relativity. The historical development of Relativity, Special and General, in terms of an ether, is briefly indicated. Classical interpretations of Generalized Relativity using ether are compared to Euclidean formulations using a background space. The history of a sub-group of theories, formulating a 'new' Relativity involving modified transforms, is outlined. According to the theory with which they agree, recent supposed detections of drift are classified and criticized. Cosmological evidence suggesting an ether is mentioned. Only ether theories formally identical to Relativity have been published in depth. They stand criticized as being contrary to the positivist spirit. The history of mechanical analogues is traced, from Hartley's representing gravitating matter as spherical standing waves, to recent suggestions that vortex-sponge might model electromagnetic, quantum, uncertainty and faster-than-light phenomena. Contemporary theories are particular physical theories, themselves 'second interpretations' of a primary mathematical model. Mechanical analogues are auxiliary, not necessary, to other theory, disclosing relationships between classical and non-classical descriptions of assemblies charging state. The ether-relativity polemic, part of a broader dispute about relativity, is founded on mistaken conceptions of the roles of mathematical and physical models, mechanical analogues; and a distored view of history, which indicates that ether theories have become relativistic. 103 references.

  2. Biodegradation of MTBE by indigenous aquifer microorganisms under artificial oxic conditions

    Science.gov (United States)

    Landmeyer, J.E.; Bradley, P.M.

    2001-01-01

    Oxygen in the form of a metal peroxide slurry (MgO2 and water) was added to an anoxic part of a gasoline-contaminated aquifer in South Carolina to test the hypothesis that artificial oxic conditions will lead to MTBE biodegradation by indigenous microorganisms in anoxic, gasoline-contaminated aquifers. The slurry slowly released dissolved oxygen upon hydrolysis with groundwater, and was a proprietary mixture consisting of ??? 25-35 wt % MgO2. Significant natural attenuation of MTBE could occur if the oxygen limitations naturally associated with gasoline releases could be removed, either under natural conditions where discharging anoxic groundwater comes into contact with oxygen, or artificial conditions where oxygen could be added to aquifers containing milligram per liter concentrations of MTBE. This final solution might be an effective strategy for intercepting characteristically long MTBE plumes, particularly at those sites not characterized by groundwater discharge to land surface.

  3. Pervaporation and vapour permeation of methanol and MTBE through a microporous methylated silica membrane

    NARCIS (Netherlands)

    de Bruijn, F.T.

    2006-01-01

    The combination of conventional unit operations with pervaporation or vapour permeation membrane separation processes offers opportunities for process intensification in terms of augmenting capacity and decreasing energy consumption of conventional unit operations. The MTBE production process is an

  4. Effects of volatilization on carbon and hydrogen isotope ratios of MTBE.

    Science.gov (United States)

    Kuder, Tomasz; Philp, Paul; Allen, Jon

    2009-03-15

    Contaminant attenuation studies utilizing CSIA (compound-specific isotope analysis) routinely assume that isotope effects (IEs) result only from degradation. Experimental results on MTBE behavior in diffusive volatilization and dynamic vapor extraction show measurable changes in the isotope ratios of the MTBE remaining in the aqueous or nonaqueous phase liquid (NAPL) matrix. A conceptual model for interpretation of those IEs is proposed, based on the physics of liquid-air partitioning. Normal or inverse IEs were observed for different volatilization scenarios. The range of carbon enrichment factors (epsilon) was from +0.7 per thousand (gasoline vapor extraction) to -1 per thousand (diffusive volatilization of MTBE from gasoline), the range of hydrogen epsilon was from +7 per thousand (gasoline vapor extraction) to -12 per thousand (air sparging of aqueous MTBE). The observed IEs are lower than those associated with MTBE degradation. However, under a realistic scenario for MTBE vapor removal, their magnitude is within the detection limits of CSIA. The potential for interference of those IEs is primarily in confusing the interpretation of samples with a small extent of fractionation and where only carbon CSIA data are available. The IEs resulting from volatilization and biodegradation, respectively, can be separated by combined carbon and hydrogen 2D-CSIA.

  5. Method detection limit determination and application of a convenient headspace analysis method for methyl tert-butyl ether in water.

    Science.gov (United States)

    O'Neill, Dennis T; Rochette, Elizabeth A; Ramsey, Philip J

    2002-11-15

    Methyl tert-butyl ether (MTBE) is a common groundwater contaminant, introduced to the environment by leaking petroleum storage tanks, urban runoff, and motorized watercraft. In this study. a simplified (static) headspace analysis method was adapted for determination of MTBE in water samples and soil water extracts. The MDL of the headspace method was calculated to be 2.0 microg L(-1) by the EPA single-concentration design method(1) and 1.2 microg L(-1) by a calibration method developed by Hubaux and Vos (Hubaux, A.; Vos, G. Anal. Chem. 1970,42, 849-855). The MDL calculated with the Hubaux and Vos method was favored because it considers both a true positive and a false positive. The static headspace method was applied to analysis of a tap water sample and a monitoring well sample from a gasoline service station, a river sample, and aqueous extracts from soil excavated during removal of a leaking underground storage tank (LUST). The water samples examined in this study had MTTBE concentrations ranging from 6 to 19 microg L(-1). Aqueous extracts of a soil sample taken from the LUST site had 8 microg L(-1) MTBE.

  6. National survey of Methyl tert-Butyl Ether and other Volatile Organic Compounds in drinking-water sources: Results of the random source-water survey

    Science.gov (United States)

    Grady, Stephen J.

    2002-01-01

    Methyl tert-butyl ether (MTBE) was detected in source water used by 8.7 percent of randomly selected community water systems (CWSs) in the United States at concentrations that ranged from 0.2 to 20 micrograms per liter (?g/L). The Random Survey conducted by the U.S. Geological Survey, in cooperation with the Metropolitan Water District of Southern California and the Oregon Health & Science University, was designed to provide an assessment of the frequency of detection, concentration, and distribution of MTBE, three other ether gasoline oxygenates, and 62 other volatile organic compounds (VOCs) in ground- and surface-water sources used for drinking-water supplies. The Random Survey was the first of two components of a national assessment of the quality of source water supplying CWSs sponsored by the American Water Works Association Research Foundation. A total of 954 CWSs were selected for VOC sampling from the population of nearly 47,000 active, self-supplied CWSs in all 50 States, Native American Lands, and Puerto Rico based on a statistical design that stratified on CWS size (population served), type of source water (ground and surface water), and geographic distribution (State).At a reporting level of 0.2 ?g/L, VOCs were detected in 27 percent of source-water samples collected from May 3, 1999 through October 23, 2000. Chloroform (in 13 percent of samples) was the most frequently detected of 42 VOCs present in the source-water samples, followed by MTBE. VOC concentrations were generally less than 10 ?g/L?95 percent of the 530 detections?and 63 percent were less than 1.0 ?g/L. Concentrations of 1,1-dichloroethene, tetrachloroethene, trichloroethene, vinyl chloride, and total trihalomethanes (TTHMs), however, exceeded drinking-water regulations in eight samples.Detections of most VOCs were more frequent in surface-water sources than in ground-water sources, with gasoline compounds collectively and MTBE individually detected significantly more often in surface

  7. Kinetic Analysis of the Gas-Phase Reactions of Methyl Tert-Butyl Ether with the OH Radical in the Presence of NOx

    Directory of Open Access Journals (Sweden)

    Pimentel André Silva

    1998-01-01

    Full Text Available An explicit chemical mechanism for the reaction of methyl tert-butyl ether (MTBE with OH radicals in NOx-air systems, was simulated by solving the corresponding ordinary differential equations using Runge-Kutta-4-semi-implicit method. The simulated results are consistent with the published experimental data and the model accounts for all the major pathways by which MTBE reacts in NOx-air systems. An eigenvalue-eigenvector analysis is used to extract meaningful kinetic information from linear sensitivity coefficients computed for all species of the chemical mechanism at several time points. This method is used to get an objective condition for constructing a minimal reaction set. Also, a classic method called rate of production analysis (ROPA was used for the study of the reactions relevance. Using the principal component information as well as the rate of production analysis the main paths of reaction are identified and discussed.

  8. [Determination of the migration of bisphenol diglycidyl ethers from food contact materials by high performance chromatography-tandem mass spectrometry coupled with multi-walled carbon nanotubes solid phase extraction].

    Science.gov (United States)

    Wu, Xinhua; Ding, Li; Li, Zhonghai; Zhang, Yanli; Liu, Xiaoxia; Wang, Libing

    2010-11-01

    A comprehensive analytical method based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for measuring 6 exogenous endocrine disruptors--bisphenol diglycidyl ethers, including bisphenol A diglycidyl ether (BADGE), bisphenol A glycidyl (2,3-dihydroxypropyl) ether (BADGE x H2O), bisphenol A glycidyl (3-chloro-2-hydroxypropyl) ether ( BADGE x HCl), bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE x H2O x HCl), bisphenol F diglycidyl ether (BFDGE) and bisphenol F bis (3-chloro-2-hydroxypropyl) ether (BFDGE x 2HCl). The samples were extracted with methyl tert-butyl ether (MTBE) by ultrasonic wave assistant extraction. The extracts were cleaned up and concentrated on multi-walled carbon nanotubes (MWCNTs). The target compounds were analyzed by HPLC-MS/MS under positive ion mode using a COSMOSIL C18 column as analytical column. Under the optimal conditions, the calibration curves showed a good linearity in the concentration range of 1.0-100.0 microg/L for 6 target compounds. The correlation coefficients (r2) were higher than 0.999 1. Recoveries of 6 analytes at three spiked levels ranged from 78.6% to 89.9%, with relative standard deviations (RSDs) less than 10%. The detection limits of the method ranged from 0.5 to 1.5 microg/L. The method is sensitive and simple, and is suitable for the rapid determination of the migration of bisphenol diglycidyl ethers from food contact materials.

  9. Cation permeable membranes from blends of sulfonated poly(ether ether ketone) and poly (ether sulfone)

    NARCIS (Netherlands)

    Wilhelm, F.G.; Punt, Ineke G.M.; van der Vegt, N.F.A.; Strathmann, H.; Wessling, Matthias

    2002-01-01

    Sulfonated poly(aryl ether ether ketone), S-PEEK, is blended with non-sulfonated poly(ether sulfone) (PES) to adjust the properties of ion permeable and ion selective membranes. In this study, membranes are prepared from blends with (i) a S-PEEK content between 10 and 100 wt.% using one S-PEEK batch

  10. Ether space-time & cosmology

    CERN Document Server

    Levy, Joseph

    2008-01-01

    The aim of this first volume of papers is to examine the different paths by which the modern ether concept has been developed and to highlight the part it plays in major departments of 21st century physics. The evidence for its existence is reviewed, and it is hoped, widespread misconceptions concerning ether are corrected. It is anticipated that the emerging modern concept of ether will play a fundamental part in the development of 21st century physical science.

  11. USING DIRECT-PUSH TOOLS TO MAP HYDROSTRATIGRAPHY AND PREDICT MTBE PLUME DIVING

    Science.gov (United States)

    MTBE plumes have been documented to dive beneath screened intervals of conventional monitoring well networks at a number of LUST sites. This behavior makes these plumes difficult both to detect and remediate. Electrical conductivity logging and pneumatic slug testing performed in...

  12. Natural Attenuation of Chlorinated Solvents and Fuel Components (BTEX and MTBE) in Ground Water

    Science.gov (United States)

    Monitored Natural Attenuation is widely used in the USA to deal with ground water contamination from fuel components such as the BTEX compounds or MTBE or TBA and from chlorinated solvents such as PCE, TCE, and TCA. This presentation reviews the theory and practice of MNA in the...

  13. DEMONSTRATION OF THE HIPOX ADVANCED OXIDATION TECHNOLOGY FOR THE TREATMENT OF MTBE-CONTAMINATED GROUNDWATER

    Science.gov (United States)

    The HiPOx technology is an advanced oxidation process that incorporates high-precision delivery of ozone and hydrogen peroxide to chemically destroy organic contaminants with the promise of minimizing bromate formation. A MTBE-contaminated groundwater from the Ventura County Nav...

  14. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation.

    Science.gov (United States)

    Gonzalez-Olmos, Rafael; Kopinke, Frank-Dieter; Mackenzie, Katrin; Georgi, Anett

    2013-03-05

    Several zeolites were evaluated as adsorbents for the removal of MTBE from water in a screening process. It was observed that the SiO2/Al2O3 molar ratio is a decisive factor for the adsorption properties, at least in the case of ZSM5 zeolites. ZSM5 zeolites with SiO2/Al2O3 ratios >200 were found to provide the best sorption properties for MTBE. To design a combined sorption/reaction method, regeneration of the loaded zeolites by selected advanced oxidation processes (AOP) was studied: (1) Fenton treatment using H2O2 with dissolved iron salts and (2) heterogeneous Fenton-like oxidation with Fe immobilized on the zeolites. The first was ineffective in regenerating loaded zeolites. However, heterogeneous catalysis using Fe species immobilized on the zeolite by liquid ion exchange was markedly more effective. Although these hydrophobic zeolites have a low ion exchange capacity, resulting in iron loadings of ≤ 0.09 wt %, it was possible to obtain sufficiently active catalysts. Hydrophobic Fe-zeolites can therefore be regarded as promising materials for the removal of MTBE from water, since they allow the combination of efficient adsorption and oxidative degradation of MTBE by H2O2. In contrast to the homogeneous catalysis by dissolved iron ions, these heterogeneous catalysts work at near-neutral pH and can be easily reused. Fe-zeolites as adsorbents/catalysts showed a good stability in both batch and column experiments.

  15. Relationship between Methyl Tertiary Butyl Ether Exposure and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Petrol Station Attendants in Southern China

    Directory of Open Access Journals (Sweden)

    Jianping Yang

    2016-09-01

    Full Text Available Methyl tertiary butyl ether (MTBE—A well known gasoline additive substituting for lead alkyls—causes lipid disorders and liver dysfunctions in animal models. However, whether MTBE exposure is a risk factor for non-alcoholic fatty liver disease (NAFLD remains uncertain. We evaluate the possible relationship between MTBE exposure and the prevalence of NAFLD among 71 petrol station attendants in southern China. The personal exposure concentrations of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS. NAFLD was diagnosed by using abdominal ultrasonography according to the guidelines for the diagnosis and treatment of NAFLD suggested by the Chinese Hepatology Association. Demographic and clinical characteristics potentially associated with NAFLD were investigated. Mutivariate logistic regression analysis was applied to measure odds ratios and 95% confidence intervals (CI. The result showed that the total prevalence of NAFLD was 15.49% (11/71 among the study subjects. The average exposure concentrations of MTBE were 292.98 ± 154.90 μg/m3 and 286.64 ± 122.28 μg/m3 in NAFLD and non-NAFLD groups, respectively, and there was no statistically significant difference between them (p > 0.05. After adjusting for age, gender, physical exercise, body mass index (BMI, systolic blood pressure (SBP, diastolic blood pressure (DBP, alanine aminotransferase (ALT, white blood cell (WBC, total cholesterol (TC, triglycerides (TG, low-density lipoprotein (LDL, and high-density lipoprotein (HDL, the odds ratios were 1.31 (95% CI: 0.85–1.54; p > 0.05, 1.14 (95% CI: 0.81–1.32; p > 0.05, 1.52 (95% CI: 0.93–1.61; p > 0.05 in the groups (including men and women with exposure concentrations of MTBE of 100–200 μg/m3, 200–300 μg/m3, and ≥300 μg/m3, respectively, as compared to the group (including men and women ≤100 μg/m3. Our investigation indicates that exposure to MTBE does not seem to be a significant risk factor for the prevalence of

  16. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high...... amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine...... in ether lipid metabolism and intracellular ether lipid trafficking....

  17. 21 CFR 868.5420 - Ether hook.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ether hook. 868.5420 Section 868.5420 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a device that fits inside a patient's mouth and that is intended to deliver vaporized ether. (b) Classification...

  18. Ether the nothing that connects everything

    CERN Document Server

    Milutis, Joe

    2006-01-01

    In Ether, the histories of the unseen merge with discussions of the technology of electromagnetism. Navigating more than three hundred years of the ether''s cultural and artistic history, Joe Milutis reveals its continuous reinvention and tangible impact without ever losing sight of its ephemeral, elusive nature. The true meaning of ether, Milutis suggests, may be that it can never be fully grasped.

  19. An extractive membrane biofilm reactor as alternative technology for the treatment of methyl tert-butyl ether contaminated water.

    Science.gov (United States)

    Guisado, I M; Purswani, J; González-López, J; Pozo, C

    2016-09-01

    Among the strategies developed for contaminated groundwater bioremediation, those based on the use of bacteria adhering to inert supports and establishing biofilms have gained great importance in this field. Extractive membrane biofilm reactor (EMBFR) technology offers productive solutions for the removal of volatile and semi-volatile compounds. EMBFR technology is based on the use of extractive semipermeable membranes through which contaminants migrate to the biological compartment in which microorganisms with pollutant biotransformation and/or mineralization capacities can grow, forming an active biofilm on the membrane surface. The objective of this study was to assess the use of three bacterial strains (Paenibacillus sp. SH7 CECT 8558, Agrobacterium sp. MS2 CECT 8557, and Rhodococcus ruber EE6 CECT 8612), as inoculum in a lab-scale EMBFR running for 28 days under aerobic conditions to eliminate methyl tert-butyl ether (MTBE) from water samples. Three different hydraulic retention times (1, 6, and 12 h) were employed. MTBE degradation values were determined daily by a gas GC-MS technique, as well as suspended bacterial growth. The biofilm established by the bacterial strains on the semipermeable membrane was detected by Field-Emission Scanning Electron Microscopy (FESEM) at the end of each experiment. The acute toxicity of the treated effluents and biomedium was determined by Microtox(©) assay (EC50 ).The results achieved from the MTBE degradation, biofilm formation, and toxicity analysis indicated that bacterial strains MS2 and EE6 were the best options as selective inoculum, although further research is needed, particularly with regard to their possible use as a mixed culture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1238-1245, 2016. © 2016 American Institute of Chemical Engineers.

  20. Rearrangements of Cycloalkenyl Aryl Ethers

    Directory of Open Access Journals (Sweden)

    Mercedesz Törincsi

    2016-04-01

    Full Text Available Rearrangement reactions of cycloalkenyl phenol and naphthyl ethers and the acid-catalyzed cyclization of the resulting product were investigated. Claisen rearrangement afforded 2-substituted phenol and naphthol derivatives. Combined Claisen and Cope rearrangement resulted in the formation of 4-substituted phenol and naphthol derivatives. In the case of cycloocthylphenyl ether the consecutive Claisen and Cope rearrangements were followed by an alkyl migration. The mechanism of this novel rearrangement reaction is also discussed.

  1. Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Eva M., E-mail: eva.seeger@ufz.de [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Kuschk, Peter; Fazekas, Helga [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Hoelderlinstr. 12, 72074 Tuebingen (Germany); Kaestner, Matthias [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-12-15

    In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m{sup 2}/d, 97/112 mg/m{sup 2}/d, and 1167/1342 mg/m{sup 2}/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique. - Highlights: > BTEX compounds contaminated groundwater can be efficiently treated by CWs. > The removal efficiency depended on CW type, season and contaminant. > The plant root mat revealed better treatment results than the gravel filter CW. > Best results achieved by the plant root mat (99% benzene concentration decrease). > Stable isotope analysis and MPN indicated high benzene remediation potential. - Gravel bed constructed wetlands and a plant root mat system efficiently eliminated fuel hydrocarbons (benzene, MTBE) and ammonia-N from groundwater at a pilot-scale.

  2. Synthesis and Characterization of a Gasoline Oxygenate, Ethyl tert-Butyl Ether

    Science.gov (United States)

    Donahue, Craig J.; D'Amico, Teresa; Exline, Jennifer A.

    2002-06-01

    A laboratory procedure involving the synthesis and characterization of ethyl tert-butyl ether (ETBE) is described. This experiment has been used in a general chemistry sequence that includes a section on organic chemistry, but is also well suited for an introductory organic chemistry laboratory course. ETBE is prepared by the acid-catalyzed reaction of tert-butyl alcohol with ethyl alcohol. The product is recovered as a low-boiling azeotrope and purified by liquid liquid extraction with water. By using gas chromatography and IR spectroscopy to examine both the crude and the purified products, students can see how much the purity of their sample improves. They can also appreciate the value of these methods (especially GC) as tools to establish purity. Student results are presented. The use of ETBE and its more prominent cousin methyl tert-butyl ether (MTBE) as gasoline oxygenates has become very controversial because they have polluted underground water supplies. This lab permits students to prepare a compound that has a real use and regularly makes headlines in the news. This lab experiment is part of an effort to develop a general chemistry sequence for engineering students using the theme of "Chemistry and the Automobile".

  3. Comparative Environmental Performance of Two-Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Triproplyene Glycol Monomethyl Ether (TGME)

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Marchetti, A.A.

    2001-10-01

    Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.

  4. Recent Advances of Poly(ether-ether) and Poly(ether-ester) Block Copolymers in Biomedical Applications.

    Science.gov (United States)

    He, Zhi-Yao; Shi, Kun; Wei, Yu-Quan; Qian, Zhi-Yong

    2016-01-01

    Poly(ether-ether) and poly(ether-ester) block copolymers have been widely applied in biomedical fields over two decades due to their good safety and biocompatibility. Poly(ethylene glycol), poly(ethylene glycol)-poly(propylene glycol) and poly(lactic-co-glycolic acid) have been approved as excipients by Food and Drug Administration. Because of the broad perspective in biomedical fields, many novel poly(etherether) and poly(ether-ester) block copolymers have been developed for drug delivery, gene therapy and tissue engineering in recent years. This review focuses on active targeting theranostic systems, gene delivery systems and tissue engineering based on poly(ether-ether) and poly(ether-ester) block copolymers. We perform a structured search of bibliographic databases for peer-reviewed scientific reports using a focused review question and inclusion/exclusion criteria. The literatures related to the topics of this review are cataloged according to the developed copolymers or their applications such as active targeting theranostic systems, gene delivery systems and tissue engineering. Some important advances and new trends are summarized in this review. Some commercial poly(ether-ether) copolymers have been used as excipients for drug research and development. Amphiphilic and biodegradable poly(ether-ester) diblock copolymers are capable of formulating biomedical nanoparticulate theranostic systems, and targeting moiety-functionalized poly(ether-ester) diblock copolymers will be further developed and applied in biomedical nanotechnology fields in the near future. Meanwhile, triblock or multiblock poly(ether-ether) and poly(ether-ester) copolymers with environmentsensitive properties are suitable for gene delivery and tissue engineering. Poly(ether-ether) and poly(ether-ester) copolymers are being extensively applied in active targeting theranostic systems, gene delivery systems and tissue engineering. Biodegradable, environment-sensitive and targeting moiety

  5. Filtrasorb® 400, aktiv-kul til on-site rensning af MTBE-forurenet grundvand : detailundersøgelse

    DEFF Research Database (Denmark)

    Loll, P.; Larsen, C.; Møldrup, Per

    2003-01-01

    MTBE-sorptionskapaciteten er undersøgt for 15 forskellige kommercielle produkter. Det er konkluderet, at Filtrasorbeport 400 aktiv kul er det økonomisk set mest favorable produkt til rensning af MTBE-forurenet grundvand. Filtrasorbeport 400 er undersøgt under forhold, der kan have betydning...

  6. Exogenous ether lipids predominantly target mitochondria.

    Directory of Open Access Journals (Sweden)

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  7. Monovalent cation selective crown ether containing poly(arylene ether ketone)/SPEEK blend membranes

    NARCIS (Netherlands)

    Tas, Sinem; Zoetebier, Bram; Hempenius, Mark A.; Vancso, Gyula J.; Nijmeijer, Dorothea C.

    2016-01-01

    Blend membranes of sulfonated poly(ether ether ketone) (SPEEK) and poly(arylene ether ketone) (PAEK) derivatives containing crown ether units in the main chain (CPAEK) were prepared and characterized in terms of water swelling and ion exchange capacity (IEC). The miscibility of the polymers was

  8. Successful treatment of an MTBE-impacted aquifer using a bioreactor self-colonized by native aquifer bacteria

    Science.gov (United States)

    Hicks, Kristin A.; Nickelsen, Michael G.; Boyle, Susan L.; Baker, Jeffrey M.; Tornatore, Paul M.; Hristova, Krassimira R.; Scow, Kate M.

    2014-01-01

    A field-scale fixed bed bioreactor was used to successfully treat an MTBE-contaminated aquifer in North Hollywood, CA without requiring inoculation with introduced bacteria. Native bacteria from the MTBE-impacted aquifer rapidly colonized the bioreactor, entering the bioreactor in the contaminated groundwater pumped from the site, and biodegraded MTBE with greater than 99 % removal efficiency. DNA sequencing of the 16S rRNA gene identified MTBE-degrading bacteria Methylibium petroleiphilum in the bioreactor. Quantitative PCR showed M. petroleiphilum enriched by three orders of magnitude in the bioreactor above densities pre-existing in the groundwater. Because treatment was carried out by indigenous rather than introduced organisms, regulatory approval was obtained for implementation of a full-scale bioreactor to continue treatment of the aquifer. In addition, after confirmation of MTBE removal in the bioreactor to below maximum contaminant limit levels (MCL; MTBE = 5 μg L−1), treated water was approved for reinjection back into the aquifer rather than requiring discharge to a water treatment system. This is the first treatment system in California to be approved for reinjection of biologically treated effluent into a drinking water aquifer. This study demonstrated the potential for using native microbial communities already present in the aquifer as an inoculum for ex-situ bioreactors, circumventing the need to establish non-native, non-acclimated and potentially costly inoculants. Understanding and harnessing the metabolic potential of native organisms circumvents some of the issues associated with introducing non-native organisms into drinking water aquifers, and can provide a low-cost and efficient remediation technology that can streamline future bioremediation approval processes. PMID:23613160

  9. Production d'isobutène de haute pureté par décomposition du MTBE High-Purity Isobutene Production from Mtbe

    OpenAIRE

    Meunier P. B.; Chaumette P.

    2006-01-01

    La décomposition du MTBE en isobutène et méthanol s'accompagne de réactions secondaires (oligomérisation de l'isobutène, hydratation de l'isobutène, déshydratation du méthanol). Les différents types de catalyseurs utilisés, les mécanismes et les cinétiques suggérés, ainsi que les sites actifs et les espèces adsorbées proposés dans la littérature sont examinés dans le cas de la réaction principale, et des réactions secondaires. La formulation du catalyseur et la nature des sites actifs (Brönst...

  10. 40 CFR 721.3437 - Dialkyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl ether. 721.3437 Section 721... Dialkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkyl ether (PMN P-93-1308) is subject to reporting under this section...

  11. 40 CFR 721.3374 - Alkylenediolalkyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylenediolalkyl ether. 721.3374... Substances § 721.3374 Alkylenediolalkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an alkylenediolalkyl ether (PMN P-93-362) is subject to...

  12. 40 CFR 721.3380 - Anilino ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Anilino ether. 721.3380 Section 721... Anilino ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as anilino ether (P-83-910) is subject to reporting under this section for...

  13. 40 CFR 721.3364 - Aliphatic ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under this...

  14. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  15. Electrochemical degradation of methyl tert-butyl ether

    Directory of Open Access Journals (Sweden)

    Aleksandr B. Velichenko

    2014-12-01

    Full Text Available In this paper, we have examined the performance of PbO2 anodes in the EC degradation of MTBE. It was shown that electrochemical oxidation of MTBE at lead dioxide anodes is effective method of anodic conversion of the organic pollutant to acetic acid as untoxic product. Proposed method is formally reagent treatment of water at the same time it does not need addition of any reagent in reaction media. All needed reagents formed directly from the solvent (water thanks to electrochemical reactions. According to obtained data the main electrochemical stages of the process of anodic conversion of MTBE are formation of hydroxyl-radicals and molecular oxygen. Then formed compounds take part in stages of chemical MTBE oxidation and intermediate species that led to deeper oxidation to form acetic acid as the result. Proposed mechanism of MTBE electrochemical oxidation is in satisfactory agreement with experimental data. Dependence of MTBE conversion rate from the nature of micro-doped and composite lead dioxide anodes is explained by difference in hydroxyl-radical bond strength with an electrode surface that determined it reaction ability in secondary chemical reactions of organic compounds oxidation.

  16. Start-up of world's largest isobutane dehydrogenation plant for MTBE production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A. (Saudi European Petrochemical Co. Ibn Zahr, Al-Sinaiyah (Saudi Arabia)); Al-Bassam, A.M. (Saudi Basic Industries Corp., Riyadh (Saudi Arabia)); Draus, J.L. (ABB Lummus Crest, Inc., Bloomfield, NJ (United States))

    1994-01-01

    Ibn Zahr's second CATOFIN[reg sign] dehydrogenation unit started on schedule with an exceptionally smooth and fast start-up. The success of the start-up can be attributed to many factors, including: competent and experienced commissioning and operations teams from both the owner and licensor (ABB Lummus Crest); well proven CATOFIN technology; and vendor representation on site. All process guarantees were met in a test run completed three weeks after the start-up. Ibn Zahr chose the CATOFIN process to produce isobutylene feed for both of their MTBE plants located in the Al Jubail Industrial City in the Kingdom of Saudi Arabia. The first CATOFIN plant came on stream in 1988 producing 320,000 MTA of isobutylene. The second CATOFIN plant is the largest dehydrogenation unit in the world, producing 452,000 MTA of isobutylene. It came on stream in October, 1993. With the two CATOFIN plants, Ibn Zahr has a combined MTBE production of 1,200,000 MTA (equivalent to 30,000 BPSD). This paper describes the successful start-up of Ibn Zahr's second CATOFIN plant.

  17. ENVIROGEN PROPANE BIOSTIMULATION TECHNOLOGY FOR THE IN-SITU TREATMENT OF MTBE-CONTAMINATED GROUND WATER INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The primary objective of the Biostimulation Technology Evaluation was to determine if biodegradation was occurring in a ground-water Test Plot to a sufficient degree to reduce intrinsic MTBE to the State of California's treatability criteria of 5 mg/L or below. The evaluation wa...

  18. Remediation of groundwater contaminated with MTBE and benzene: the potential of vertical-flow soil filter systems

    NARCIS (Netherlands)

    Afferden, M. van; Rahman, K.Z.; Mosig, P.; De Biase, C.; Thullner, M.; Oswald, S.E.; Müller, R.A.

    2011-01-01

    Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long

  19. Odour and flavour thresholds of gasoline additives (MTBE, ETBE and TAME) and their occurrence in Dutch drinking water collection areas

    NARCIS (Netherlands)

    van Wezel, A.; Puijker, L.; Vink, C.; Versteegh, A.; de Voogt, P.

    2009-01-01

    The use of ETBE (ethyl-tert-butylether) as gasoline additive has recently grown rapidly. Contamination of aquatic systems is well documented for MTBE (methyl-tert-butylether), but less for other gasoline additives. Due to their mobility they may easily reach drinking water collection areas. Odour

  20. Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico

    Science.gov (United States)

    EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water softene...

  1. Automatic construction and validation of models of combustion of alkanes and ethers; Construction automatique et validation de modeles cinetiques de combustion d'alcanes et d'ethers

    Energy Technology Data Exchange (ETDEWEB)

    Glaude, P.A.

    1999-07-01

    The reformulation of fuels for the abatement of pollutants emission requires the construction of detailed chemical models of the combustion of hydrocarbons. The manual writing of these chemical mechanisms is complex. Thus, an automatic generator of alkanes and ethers combustion models has been developed. The models include a base of the small species reactions, a detailed and exhaustive primary mechanism of the reagents consumption and a simplified secondary mechanism. The necessary kinetic and thermodynamic data are supplied. Beside this computer code development, the kinetic schemes and the velocity constants used have been defined. The validations of this system were performed with the simulation of the combustion of n-butane, n-heptane and iso-octane, pure and in mixtures, of n-octane and n-decane for the alkanes. MTBE, ETBE and their mixtures with n-heptane were studied in the case of ethers. The analysis of the models allows to show the expert-system characteristic of the generator by proposing a-priori simplification rules for the mechanisms. The reaction ways of the different species are studied, together with the formation of the products. The most sensible parameters of the models and the reactions that determine the global behaviour of the chemical systems are examined. Finally, some explanations are proposed to explain the differences in the behaviour of molecules, in particular with respect to self-ignition. (J.S.)

  2. Use of Methyl Tert-Butyl Ether for the Treatment of Refractory Intrahepatic Biliary Strictures and Bile Casts: A Modern Perspective

    Directory of Open Access Journals (Sweden)

    Gregory Kim

    2015-01-01

    Full Text Available Cholelithiasis is a prevalent problem in the United States with 14% or more adults affected. Definitive treatment of cholelithiasis is cholecystectomy. When cholecystectomy yields minimal resolution treatment options include expectant management of asymptomatic gallstones or endoscopic retrograde cholangiopancreatogram. We present a case of intrahepatic biliary casts where surgical option was not possible, interventional radiology was unsuccessful, and methyl tert-butyl ether was used to dissolve the biliary obstruction. Dissolution therapy of gallstones was first reported in 1722 when Vollisnieri used turpentine in vitro. While diethyl ether has excellent solubilizing capacity, its low boiling point limited its use surgically as it vaporizes immediately. Diethyl ether can expand 120-fold during warming to body temperature after injection into the biliary system making it impractical for routine use. The use of dissolution is out of favor due to the success of laparoscopic cholecystectomy. Epidemiological studies have shown the general population should have minimal concerns from passive exposure. Dissolution using MTBE remains a viable option if surgical or endoscopic options are not available. However, because of risks involved to both the patient and the staff, careful multidisciplinary team approach must be undertaken to minimize the risks and provide the best possible care to the patient.

  3. Pulse radiolysis study of reactions of alkyl and alkylperoxy radicals originating from methyl tert-butyl ether in the gas phase

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Ellermann, T.

    1995-01-01

    UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm, sigma(R) = (2.6 +/- 0.4) X...... 10(-18) cm(2) molecule(-1) and sigma(RO2) = (4.1 +/- 0.6) X 10(-18) cm(2) molecule(-1) (base e). The rate constant for the self-reaction of the alkyl radicals is (2.5 +/- 1.1) X 10(-11) cm(3) molecule(-1) s(-1). The rate constants for reaction of the alkyl radicals with molecular oxygen...

  4. Impact of activation methods on persulfate oxidation of methyl tert-butyl ether.

    Science.gov (United States)

    Deng, Dayi; Peng, Libin; Guan, Mengyun; Kang, Yuan

    2014-01-15

    To provide guidance on the selection of proper persulfate processes for the remediation of MTBE contaminated groundwater, MTBE aqueous solutions were treated with three common field persulfate processes including heat activated persulfate, Fe(III)-EDTA activated persulfate and alkaline persulfate, respectively. The results were compared with MTBE oxidation by Fenton's reagent and persulfate alone at 25°C. The impact of the activating conditions on the fate of MTBE and its daughter products was investigated. Heat activation at 40°C offered the most rapid removal of MTBE and its daughter products, while Fe(III)-EDTA activation showed higher efficiency of MTBE removal but low removal efficiency of its daughter products. On the other hand, alkaline persulfate showed slower kinetics for the removal of MTBE and less accumulation of the daughter products. Furthermore, tert-butyl alcohol and acetone were observed as the main purgeable daughter products along with a small amount of tert-butyl formate in persulfate oxidation of MTBE, while tert-butyl formate, tert-butyl alcohol and acetone were the main products in Fenton oxidation. Mechanistic analysis suggests that degradation of MTBE by persulfate most likely happens via non-oxygen demand pathways, different from the dominant oxygen demand degradation pathways observed in Fenton oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketones and Linear Poly(ether ketones

    Directory of Open Access Journals (Sweden)

    Atsushi Morikawa

    2016-02-01

    Full Text Available Poly(ether ether ketone dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyldiphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyldiphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy-3,5-bis(4-fluorobenzoylbenzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketones having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  6. Conformational Study of Dibenzyl Ether

    Science.gov (United States)

    Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    Understanding the initial stages of polycyclic aromatic hydrocarbon (PAH) aggregation, the onset of soot formation, is an important goal on the pathway to cleaner combustion processes. PAHs with short alkyl chains, present in fuel-rich combustion environments, can undergo reactions that will chemically link aromatic rings together. One such example of a linked diaryl compound is dibenzyl ether, C_{6}H_{5}-CH_{2}-O-CH_{2}-C_{6}H_{5}. The -CH_{2}-O-CH_{2}- linkage has a length and flexibility well-suited to forming a π-stacked conformation between the two phenyl rings. In this talk, we will explore the single-conformation spectroscopy of dibenzyl ether under jet-cooled conditions in the gas phase. Laser-induced fluorescence, chirped pulse Fourier transform microwave (8-18 GHz region), and single-conformation infrared spectroscopy in the alkyl CH stretch region were all carried out on the molecule, thereby interrogating its full array of electronic, vibrational and rotational degrees of freedom. This work is the first step in a broader study to determine the extent of π-stacking in linked aryl compounds as a function of linkage and PAH size.

  7. 27 CFR 21.108 - Ethyl ether.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not more...

  8. The synthesis of cholesteryl alkyl ethers.

    Science.gov (United States)

    Halperin, G; Gatt, S

    1980-01-01

    Seventeen cholesteryl alkyl ethers were synthesized through alcoholysis of cholesterol p-toluenesulfonate. This method was found superior to the etherification of sodium or potassium cholesterylate with alkyl halides or methanesulfonates, especially for the preparation of long-chain unsaturated aklyl ethers of [7(m)-3H]cholesterol of high specific activity.

  9. Atmospheric lifetimes of selected fluorinated ether compounds

    DEFF Research Database (Denmark)

    Heathfield, A.E.; Anastasi, C.; Pagsberg, Palle Bjørn

    1998-01-01

    Atmospheric lifetimes have been estimated for a selection of ethers, the latter representing a class of compounds being considered as replacements for chlorofluorocarbons. The estimates are based on laboratory measurements of rate constants for the reaction of the OH radical with the ethers......, and a comparison with the behaviour of methyl chloroform in the atmosphere. The lifetimes for the ethers ranged from a few hours to half a year, significantly lower than those of chlorofluorocarbons and other replacements being considered. (C) 1998 Elsevier Science Ltd. All rights reserved....

  10. Clinical comparison of ethyl acetate and diethyl ether in the formalin-ether sedimentation technique.

    OpenAIRE

    Erdman, D D

    1981-01-01

    A substitute for the volatile solvent diethyl ether has been actively sought for the Formalin-ether sedimentation technique. Ethyl acetate has recently been shown to be a comparable substitute. In an effort to verify these findings and evaluate ethyl acetate under clinical conditions, comparison studies with 62 fresh human stool specimens were performed. Parallel concentrates with diethyl ether and ethyl acetate were prepared for each specimen, and the quantity and appearance of recovered par...

  11. Wet Air Oxidation of Methyl-tertiary-butyl-ether (MTBE) in a fixed bed tubular reactor over a Ruthenium-Cerium/Alumina catalyst

    OpenAIRE

    El Khoury, Alexis; Bejjany, Bouchra; Debacq, Marie; Porte, Catherine

    2004-01-01

    International audience; Treatment of polluted industrial wastes is one of the challenging research topics that occupy an important position in various chemical processes. Among the various types of processes which can be used for treating aqueous wastes polluted with organic matter, the biological and chemical treatments, as well as the incineration are the most commonly used techniques. Each of the mentioned techniques can be used separately or combined with other procedures in order to opti...

  12. Activity relationships for aromatic crown ethers

    CERN Document Server

    Wilson, M J

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities...

  13. Isomerization of allyl ethers initiated by lithium diisopropylamide.

    Science.gov (United States)

    Su, Chicheung; Williard, Paul G

    2010-12-03

    Lithium diisopropylamide (LDA) promotes virtually quantitative conversion of allylic ethers to (Z)-propenyl ethers. It was discovered that allylic ethers can be isomerized efficiently with very high stereoselectivity to (Z)-propenyl ethers by LDA in THF at room temperature. The reaction time for the conversion increases with more sterically hindered allylic ethers. Different amides were also compared with LDA for their ability to effect this isomerization.

  14. CALB-Catalyzed Two-Step Alcoholytic Desymmetrization of 3-Methylglutaric Diazolides in MTBE.

    Science.gov (United States)

    Wu, Ting-Yi; Lai, Yuan-Rong; Tsai, Shau-Wei

    2017-12-15

    Optically pure 3-substituted glutarates can be prepared from the alcoholic ring-opening of cyclic anhydride derivatives, esterification of 3-substituted glutaric acid, and hydrolysis, alcoholysis, aminolysis, and ammonolysis of the diester derivatives via hydrolases or organocatalysts. Unfortunately, most of them mainly focus on the first-step desymmetrization, leading to the difficulty on producing optically pure enantiomers. As a general trend in lipase-catalyzed desymmetrization of 3-methylglutarates, poorer enantiomeric excesses with lower chemical yields were found, as the methyl substituent is relatively small to induce a high enzyme stereodiscrimination. The two-step desymmetrization for CALB-catalyzed alcoholysis of 3-methylglutaric di-1,2,4-triazolide 1a in anhydrous MTBE is first developed to increase the enzyme activity in each reaction step. The enantioselectivity for the second-step kinetic resolution is furthermore improved by using 3-methylglutaric dipyrazolide 1b as the substrate. The kinetic and thermodynamic analysis is, moreover, addressed for shedding insights into the desymmetrization process.

  15. Final report on the safety assessment of PPG-2 methyl ether, PPG-3 methyl ether, and PPG-2 methyl ether acetate.

    Science.gov (United States)

    Robinson, Valerie; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2009-01-01

    PPG-2 methyl ether, PPG-3 methyl ether, and PPG-2 methyl ether acetate are used in cosmetics as fragrance ingredients and/or solvents at concentrations of 0.4% to 2%. Propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure, but the inhalation toxicity of PPG-2 methyl ether vapor, for example, is low. Aerosols, such as found with hair sprays, produce particle sizes that are not respirable. Because these ingredients are highly water-soluble, they are likely to be absorbed through the human skin only at slow rates, resulting in low blood concentrations and rapid removal by the kidney. These ingredients are not genotoxic and are not reproductive or developmental toxicants. Overall the data are sufficient to conclude that PPG-2 methyl ether, PPG-3 methyl ether, and PPG-2 methyl ether acetate are safe as used in cosmetics.

  16. Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media

    NARCIS (Netherlands)

    Dalwani, M.R.; Bargeman, Gerrald; Hosseiny, Seyed Schwan; Schwan Hosseiny, Seyed; Boerrigter, M.E.; Wessling, Matthias; Benes, Nieck Edwin

    2011-01-01

    Several thin film composite nanofiltration membranes have been prepared by spin coating a sulfonated poly(ether ether ketone) solution on a polyethersulfone support, followed by thermal treatment. The most optimal developed nanofiltration membrane shows a clean water permeance of ∼4.5 L m−2 h−1

  17. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  18. [Biodegradation of methyl tert-butyl ether by stabilized immobilized Methylibium petroleiphilum PM1 cells and its biodegradation kinetics analysis].

    Science.gov (United States)

    Cheng, Zhuo-wei; Fu, Ling-xiao; Jiang, Yi-feng; Chen, Jian-meng; Zhang, Rong

    2011-05-01

    Methylibium petroleiphilum PM1, which is capable of degrading methyl tert-butyl ether (MTBE) , was immobilized in calcium alginate gel beads. Several methods were explored to increase the strength of these gel beads. The central composite design analysis indicated that the introduction of 0.2 mol x L(-1) Ca2+ into the crosslinking solution, 1.38 mmol x L(-1) Ca2+ into the growth medium and 0.1% polyethyleneimine (PEI) as the chemical crosslinking agent could increase the stability of the Ca-alginate gel beads with no loss of biodegradation activity. The stabilized immobilized cells could be used 400 h continuously with no breakage and no bioactivity loss. Examination of scanning electron microscope demonstrated that a membrane surrounding the gel beads was formed and the cells could grow and breed well in the stabilized calcium alginate gel beads. Kinetic analysis of the gel bead-degradation indicated that the rate-limiting step was biochemical process instead of intraparticle diffusion process. The diameter of 3 mm affected the biodegradability less while high concentration of PEI induced much more serious mass transfer restraint.

  19. Atmospheric degradation of 2-chloroethyl vinyl ether, allyl ether and allyl ethyl ether: Kinetics with OH radicals and UV photochemistry.

    Science.gov (United States)

    Antiñolo, M; Ocaña, A J; Aranguren, J P; Lane, S I; Albaladejo, J; Jiménez, E

    2017-08-01

    Unsaturated ethers are oxygenated volatile organic compounds (OVOCs) emitted by anthropogenic sources. Potential removal processes in the troposphere are initiated by hydroxyl (OH) radicals and photochemistry. In this work, we report for the first time the rate coefficients of the gas-phase reaction with OH radicals (k OH ) of 2-chloroethyl vinyl ether (2ClEVE), allyl ether (AE), and allyl ethyl ether (AEE) as a function of temperature in the 263-358 K range, measured by the pulsed laser photolysis-laser induced fluorescence technique. No pressure dependence of k OH was observed in the 50-500 Torr range in He as bath gas, while a slightly negative T-dependence was observed. The temperature dependent expressions for the rate coefficients determined in this work are: The estimated atmospheric lifetimes (τ OH ) assuming k OH at 288 K were 3, 2, and 4 h for 2ClEVE, AE and AEE, respectively. The kinetic results are discussed in terms of the chemical structure of the unsaturated ethers by comparison with similar compounds. We also report ultraviolet (UV) and infrared (IR) absorption cross sections (σ λ and σ(ν˜), respectively). We estimate the photolysis rate coefficients in the solar UV actinic region to be less than 10 -7 s -1 , implying that these compounds are not removed from the atmosphere by this process. In addition, from σ(ν˜) and τ OH , the global warming potential of each unsaturated ether was calculated to be almost zero. A discussion on the atmospheric implications of the titled compounds is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of Ethanol and Methyl-tert-Butyl Ether on Monoaromatic Hydrocarbon Biodegradation: Response Variability for Different Aquifer Materials Under Various Electron-Accepting Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Aguilar, G L; Fernandez-Sanchez, J M; Kane, S R; Kim, D; Alvarez, P J

    2003-10-06

    Aquifer microcosms were used to determine how ethanol and methyl-tert-butyl ether (MtBE) affect monoaromatic hydrocarbon degradation under different electron-accepting conditions commonly found in contaminated sites experiencing natural attenuation. Response variability was investigated by using aquifer material from four sites with different exposure history. The lag phase prior to BTEX (benzene, toluene, ethylbenzene, and xylenes) and ethanol degradation was typically shorter in microcosms with previously contaminated aquifer material, although previous exposure did not always result in high degradation activity. Toluene was degraded in all aquifer materials and generally under a broader range of electron-accepting conditions compared to benzene, which was degraded only under aerobic conditions. MtBE was not degraded within 100 days under any condition, and it did not affect BTEX or ethanol degradation patterns. Ethanol was often degraded before BTEX compounds, and had a variable effect on BTEX degradation as a function of electron-accepting conditions and aquifer material source. An occasional enhancement of toluene degradation by ethanol occurred in denitrifying microcosms with unlimited nitrate; this may be attributable to the fortuitous growth of toluene-degrading bacteria during ethanol degradation. Nevertheless, experiments with flow-through aquifer columns showed that this beneficial effect could be eclipsed by an ethanol-driven depletion of electron acceptors, which significantly inhibited BTEX degradation and is probably the most important mechanism by which ethanol could hinder BTEX natural attenuation. A decrease in natural attenuation could increase the likelihood that BTEX compounds reach a receptor as well as the potential duration of exposure.

  1. Inhalation anaesthesia: from diethyl ether to xenon.

    Science.gov (United States)

    Bovill, J G

    2008-01-01

    Modern anaesthesia is said to have began with the successful demonstration of ether anaesthesia by William Morton in October 1846, even though anaesthesia with nitrous oxide had been used in dentistry 2 years before. Anaesthesia with ether, nitrous oxide and chloroform (introduced in 1847) rapidly became commonplace for surgery. Of these, only nitrous oxide remains in use today. All modern volatile anaesthetics, with the exception of halothane (a fluorinated alkane), are halogenated methyl ethyl ethers. Methyl ethyl ethers are more potent, stable and better anaesthetics than diethyl ethers. They all cause myocardial depression, most markedly halothane, while isoflurane and sevoflurane cause minimal cardiovascular depression. The halogenated ethers also depress the normal respiratory response to carbon dioxide and to hypoxia. Other adverse effects include hepatic and renal damage. Hepatitis occurs most frequently with halothane, although rare cases have been reported with the other agents. Liver damage is not caused by the anaesthetics themselves, but by reactive metabolites. Type I hepatitis occurs fairly commonly and takes the form of a minor disturbance of liver enzymes, which usually resolves without treatment. Type II, thought to be immune-mediated, is rare, unpredictable and results in a severe fulminant hepatitis with a high mortality. Renal damage is rare, and was most often associated with methoxyflurane because of excessive plasma fluoride concentrations resulting from its metabolism. Methoxyflurane was withdrawn from the market because of the high incidence of nephrotoxicity. Among the contemporary anaesthetics, the highest fluoride concentrations have been reported with sevoflurane, but there are no reports of renal dysfunction associated with its use. Recently there has been a renewed interest in xenon, one of the noble gases. Xenon has many of the properties of an ideal anaesthetic. The major factor limiting its more widespread is the high cost, about

  2. A technique to anesthetize turtles with ether.

    Science.gov (United States)

    Belló, A A; Belló-Klein, A

    1991-10-01

    A technique to anesthetize turtles with ether is presented, in which a plastic cannula is passed through the glottis into the trachea. This procedure avoids apnea and allows ether vapours obtained from a chamber to be introduced, by the animal respiratory movements or by means of a pump, into the animal lungs. The anesthesia is rapidly obtained and lasts from 45-90 minutes. The time of recovery from anesthesia ranged from 60-90 minutes. With this technique no deaths were observed and the same animal could be anesthetized repeatedly.

  3. Synthesis of alkynyl ethers and low-temperature sigmatropic rearrangement of allyl and benzyl alkynyl ethers.

    Science.gov (United States)

    Sosa, Juan R; Tudjarian, Armen A; Minehan, Thomas G

    2008-11-06

    Alpha-alkoxy ketones 3 can be transformed into 1-alkynyl ethers 5 by a two-step procedure involving formation of the enol triflate or phosphate and base-induced elimination. Performing the same reaction sequence with allylic alcohols (R2OH, R2 = allyl) furnishes instead gamma,delta-unsaturated carboxylic acid derivatives 6, derived from [3,3]-sigmatropic rearrangement of the intermediate allyl alkynyl ethers at -78 degrees C and trapping of the subsequently formed ketene with nucleophiles (Nu-H). Benzyl alkynyl ether 5 (R2 = benzyl) rearranges to indanone 7 upon heating to 60 degrees C.

  4. Synthesis of Alkynyl Ethers and Low Temperature Sigmatropic Rearrangement of Allyl and Benzyl Alkynyl Ethers

    Science.gov (United States)

    Sosa, Juan R.; Tudjarian, Armen A.; Minehan, Thomas G.

    2009-01-01

    α–Alkoxy ketones 3 can be transformed into 1-alkynyl ethers 5 by a two-step procedure involving formation of the enol triflate or phosphate and base-induced elimination. Performing the same reaction sequence with allylic alcohols (R2OH, R2 = allyl) furnishes instead γ,δ-unsaturated carboxylic acid derivatives 6, derived from [3,3]-sigmatropic rearrangement of the intermediate allyl alkynyl ethers at −78 °C and trapping of the subsequently formed ketene with nucleophiles (Nu-H). Benzyl alkynyl ether 5 (R2 = benzyl) rearranges to indanone 7 upon heating to 60 °C. PMID:18847213

  5. Syntheses of Diazadithiacrown Ethers Containing Two 8-Hydroxyquinoline Side Arms

    National Research Council Canada - National Science Library

    Song, H

    2001-01-01

    Ten new diazadithiacrown ethers containing two 8-hydroxyquinoline (HQ) sidearms attached through the HQ 7-positions and four new diazadithiacrown ethers containing two HQ sidearms attached through the HQ 2-positions have been prepared...

  6. IRIS Toxicological Review of Decabromodiphenyl Ether (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Toxicological Review of Decabromodiphenyl Ether: in support of the Integrated Risk Information System (IRIS). The updated Summary for Decabromodiphenyl Ether and accompanying toxicological review have been added to the IRIS Da...

  7. Innovative Protocols for in SITU MTBE Degradation by Using Molecular Probes-An Enhanced Chemical-Bio Oxidation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-20

    In situ chemical oxidation (ISCO) is a common technology to cleanup petroleum hydrocarbon-contaminated soils and groundwater. Sodium percarbonate (SPC) is an oxidant which is activated by iron (Fe) to produce Fenton-like reactions. Western Research Institute, in conjunction with Regenesis and the U.S. Department of Energy, conducted a study that investigated the performance of a 'safe' oxidant, SPC, to cleanup groundwater and soils contaminated with petroleum hydrocarbons and associated contaminants (e.g., MTBE). Results from a field pilot test in Frenchglen, Oregon showed VOC concentrations in groundwater decreased substantially within 2 weeks after injecting activated SPC (RegenOx). A protocol was established for determining RegenOx TOD in soils and groundwater. Total oxidant demand tests were necessary to determine the correct dosage of RegenOx to apply in the field and sufficiently degrade the contaminants of concern. Bench studies with RegenOx showed this technology was effective in degrading diesel fuel and 1,4-dioxane. The Fe-silica activator (RegenOx Part B) was tested with another oxidant, sodium persulfate. Bench tests results showed the combination of sodium persulfate and RegenOx Part B was effective in reducing PCE, MTBE, benzene, and n-heptane concentrations in water. Overall, the results of this project indicated that most petroleum contaminants in soil and groundwater can be sufficiently degraded using the RegenOx technology.

  8. 40 CFR 721.3486 - Polyglycerin mono(4-nonylphenyl) ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyglycerin mono(4-nonylphenyl) ether... Substances § 721.3486 Polyglycerin mono(4-nonylphenyl) ether. (a) Chemical substance and significant new uses...-nonylphenyl) ether (PMN P-94-2230) is subject to reporting under this section for the significant new uses...

  9. 40 CFR 721.3500 - Perhalo alkoxy ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Perhalo alkoxy ether. 721.3500 Section... Substances § 721.3500 Perhalo alkoxy ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perhalo alkoxy ether (PMN P-83-1227) is...

  10. 46 CFR 151.50-42 - Ethyl ether.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethyl ether. 151.50-42 Section 151.50-42 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-42 Ethyl ether. (a)(1) Gravity tanks... liquid. (g) Precautions shall be taken to prevent the contamination of ethyl ether by strong oxidizing...

  11. 40 CFR 721.3435 - Butoxy-substituted ether alkane.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butoxy-substituted ether alkane. 721... Substances § 721.3435 Butoxy-substituted ether alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as butoxy-substituted ether alkane...

  12. 40 CFR 799.4440 - Triethylene glycol monomethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Triethylene glycol monomethyl ether... REQUIREMENTS Specific Chemical Test Rules § 799.4440 Triethylene glycol monomethyl ether. (a) Identification of test substance. (1) Triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) shall be tested in...

  13. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl ether...

  14. 40 CFR 721.3550 - Dipropylene glycol dimethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dipropylene glycol dimethyl ether. 721... Substances § 721.3550 Dipropylene glycol dimethyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as dipropylene glycol dimethyl ether (PMN P-93...

  15. 40 CFR 721.3420 - Brominated arylalkyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated arylalkyl ether. 721.3420... Substances § 721.3420 Brominated arylalkyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated arylalkyl ether (P-83-906) is...

  16. 40 CFR 721.10069 - Ether amine phosphonate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ether amine phosphonate (generic). 721... Substances § 721.10069 Ether amine phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as ether amine phosphonate (PMN P...

  17. 40 CFR 721.3465 - Stilbene diglycidyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Stilbene diglycidyl ether. 721.3465... Substances § 721.3465 Stilbene diglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as stilbene diglycidyl ether (PMN P-96-1427) is subject to...

  18. 40 CFR 721.3438 - Chlorohydroxyalkyl butyl ether (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chlorohydroxyalkyl butyl ether... Specific Chemical Substances § 721.3438 Chlorohydroxyalkyl butyl ether (generic). (a) Chemical substance... chlorohydroxyalkyl butyl ether (PMN P-99-1295) is subject to reporting under this section for the significant new use...

  19. 21 CFR 520.1846 - Polyoxyethylene (23) lauryl ether blocks.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Polyoxyethylene (23) lauryl ether blocks. 520.1846... Polyoxyethylene (23) lauryl ether blocks. (a) Specifications. Each molasses-based block contains 2.2 percent polyoxyethylene (23) lauryl ether. (b) Sponsor. See No. 067949 in § 510.600(c) of this chapter. (c) Conditions of...

  20. 40 CFR 721.3520 - Aliphatic polyglycidyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polyglycidyl ether. 721.3520... Substances § 721.3520 Aliphatic polyglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance aliphatic polyglycidyl ether (PMN P-89-1036) is subject to...

  1. 40 CFR 721.3430 - 4-Bromophenyl phenyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 4-Bromophenyl phenyl ether. 721.3430... Substances § 721.3430 4-Bromophenyl phenyl ether. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance 4-bromophenyl phenyl ether (CAS No. 101-55-3) is subject to reporting...

  2. Hydrolysis of tert-butyl formate: Kinetics, products, and implications for the environmental impact of methyl tert-butyl ether

    Science.gov (United States)

    Church, Clinton D.; Pankow, James F.; Tratnyek, Paul G.

    1999-01-01

    Asessing the environmental fate of methyl tert-butyl ether (MTBE) has become a subject of renewed interest because of the large quantities of this compound that are being used as an oxygenated additive in gasoline. Various studies on the fate of MTBE have shown that it can be degraded to tert-butyl formate (TBF), particularly in the atmosphere. Although it is generally recognized that TBF is subject to hydrolysis, the kinetics and products of this reaction under environmentally relevant conditions have not been described previously. In this study, we determined the kinetics of TBF hydrolysis as a function of pH and temperature. Over the pH range of 5 to 7, the neutral hydrolysis pathway predominates, with kN = (1.0 ± 0.2) × 10−6/s. Outside this range, strong pH effects were observed because of acidic and basic hydrolyses, from which we determined that kA = (2.7 ± 0.5) × 10−3/(M·s) and kB = 1.7 ± 0.3/(M·s). Buffered and unbuffered systems gave the same hydrolysis rates for a given pH, indicating that buffer catalysis was not significant under the conditions tested. The activation energies corresponding to kN, kA, and kBwere determined to be 78 ± 5, 59 ± 4, and 88 ±11 kJ/mol, respectively. In all experiments, tert-butyl alcohol was found at concentrations corresponding to stoichiometric formation from TBF. Based on our kinetics data, the expected half-life for hydrolysis of TBF at pH = 2 and 4°C (as per some standard preservation protocols for water sampling) is 6 h. At neutral pH and 22°C, the estimated half-life is 5 d, and at pH = 11 and 22°C, the value is only 8 min.

  3. Biosynthesis of archaeal membrane ether lipids

    NARCIS (Netherlands)

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether

  4. Children's exposure to polybrominated diphenyl ethers

    NARCIS (Netherlands)

    Zuurbier, M.; Leijs, M.; Schoeters, G.; Tusscher, G. Ten; Koppe, J.G.

    2006-01-01

    Background: Polybrominated biphenyl ethers (PBDEs), a class of brominated flame retardants, are frequently used in consumer products. PBDEs levels in environmental and human samples have increased in recent decades. Children are exposed to PBDEs through diet, mainly through fish, meat and milk.

  5. The Lubrication Qualities of Dimethyl Ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Sorenson, Spencer C; Jakobsen, J.

    2002-01-01

    Dimethyl Ether (DME) has been recognised as a clean alternative for diesel oil for some years now. Fuelling diesel engines with DME solves their two most significant problems: The emission of particulate matter is virtually eliminated and the level of NOx can be reduced considerably by exhaust gas......, as the clean emission advantage obtained when using DME will be lost....

  6. Ion-Selective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, Sinem; Zoetebier, Bram; Sardan Sukas, Ö.; Bayraktar, Muharrem; Hempenius, Mark A.; Vancso, Gyula J.; Nijmeijer, Dorothea C.

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  7. Preparation and characterization of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.H.; Krupenko, O.; Krupenko, O.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Wessling, Matthias

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly

  8. INFLUENCE OF THE ISOBUTENE METHANOL RATIO AND OF THE METHYL TERT-BUTYL ETHER CONTENT ON THE REACTION-RATE OF THE SYNTHESIS OF METHYL TERT-BUTYL ETHER

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The forward reaction rate constant of the MtBE synthesis was determined for different reaction mixture compositions. The forward rate constant decreases continuously with increasing isobutene/methanol ratio, while an increase in reaction rate constant is observed with an increasing amount of MtBE in

  9. Kinetics and Photodegradation Study of Aqueous Methyl tert-Butyl Ether Using Zinc Oxide: The Effect of Particle Size

    Directory of Open Access Journals (Sweden)

    Zaki S. Seddigi

    2013-01-01

    Full Text Available Zinc oxide of different average particle sizes 25 nm, 59 nm, and 421 nm as applied in the photodegradation of MTBE. This study was carried out in a batch photoreactor having a high pressure mercury lamp. Zinc oxide of particle size of 421 nm was found to be the most effective in degrading MTBE in an aqueous solution. On using this type of ZnO in a solution of 100 ppm MTBE, the concentration of MTBE has decreased to 5.1 ppm after a period of five hours. The kinetics of the photocatalytic degradation of MTBE was found to be a first order reaction.

  10. Ether bridge formation in loline alkaloid biosynthesis

    Science.gov (United States)

    Pan, Juan; Bhardwaj, Minakshi; Faulkner, Jerome R.; Nagabhyru, Padmaja; Charlton, Nikki D.; Higashi, Richard M.; Miller, Anne-Frances; Young, Carolyn A.; Grossman, Robert B.; Schardl, Christopher L.

    2014-01-01

    Lolines are potent insecticidal agents produced by endophytic fungi of cool-season grasses. These alkaloids are composed of a pyrrolizidine ring system and an uncommon ether bridge linking carbons 2 and 7. Previous results indicated that 1-aminopyrrolizidine was a pathway intermediate. We used RNA interference to knock down expression of lolO, resulting in the accumulation of a novel alkaloid identified as exo-1-acetamidopyrrolizidine based on high-resolution MS and NMR. Genomes of endophytes differing in alkaloid profiles were sequenced, revealing that those with mutated lolO accumulated exo-1-acetamidopyrrolizidine but no lolines. Heterologous expression of wild-type lolO complemented a lolO mutant, resulting in the production of N-acetylnorloline. These results indicated that the non-heme iron oxygenase, LolO, is required for ether bridge formation, probably through oxidation of exo-1-acetamidopyrrolizidine. PMID:24374065

  11. Synthesis of New Liquid Crystalline Diglycidyl Ethers

    Directory of Open Access Journals (Sweden)

    Issam Ahmed Mohammed

    2012-01-01

    Full Text Available The phenolic Schiff bases I–VI were synthesized by condensation reactions between various diamines, namely o-dianisidine, o-tolidine and ethylenediamine with vanillin or p-hydroxybenzaldehyde and subsequent reactions between these phenolic Schiff bases and epichlorohydrin to produce new diglycidyl ethers Ia–VIa. The structures of these compounds were confirmed by CHN, FT-IR, 1H-NMR, and 13C-NMR spectroscopy. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC and polarizing optical microscopy (POM. All the diglycidyl ethers prepared exhibit nematic mesophases, except for Va and VIa, which did not show any transition mesophases, but simply flow to liquids.

  12. Influência da acidez na síntese do MTBE sobre zeólitas Beta modificadas

    Directory of Open Access Journals (Sweden)

    Adriano Morales Gonzales

    2001-05-01

    Full Text Available No presente trabalho, estudou-se a reação de síntese do MTBE sobre zeólitas Beta desaluminizadas e lixiviadas. A desaluminização hidrotérmica e térmica da zeólita HBeta levou a catalisadores menos ativos devido à diminuição do concentração total de sítios ácidos de Brönsted. Além disso, verificou-se que a eliminação das espécies de alumínio extra-rede na amostra HBeta por tratamento ácido levou a uma diminuição na atividade catalítica da zeólita, mesmo esta apresentando uma maior concentração de sítios ácidos de Brönsted. Isto sugere que espécies de alumínio extra-rede catiônicas altamente dispersas interagem com as hidroxilas da rede zeolítica, gerando sítios de Brönsted com atividade catalítica aumentada. Deste modo, a zeólita HBeta apresentou rendimento máximo em MTBE a 70oC, sendo este superior ao mostrado pelo catalisador comercial (resina Amberlyst 15 e pelas demais zeólitas estudadas, nas condições de reação utilizadas

  13. Model for Photodegradation of Polybrominated Diphenyl Ethers

    Czech Academy of Sciences Publication Activity Database

    Veselý, M.; Vajglová, Zuzana; Kotas, Petr; Křišťál, Jiří; Ponec, Robert; Jiřičný, Vladimír

    2015-01-01

    Roč. 22, č. 7 (2015), s. 4949-4963 ISSN 0944-1344 R&D Projects: GA ČR GA104/09/0880; GA ČR(CZ) GAP105/12/0664 Institutional support: RVO:67985858 ; RVO:67179843 Keywords : polybrominated diphenyl ethers * photodegradation model * quantum chemical calculation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.760, year: 2015

  14. Alkyl aryl ethers in lignite solubilization

    Energy Technology Data Exchange (ETDEWEB)

    Mustral, A.M.; Cebolla, V.L.; Gavilan, J.M.

    1985-03-01

    The FT-I.R. and /sup 1/H N.M.R. spectroscopic analyses of oils or maltenes from a Spanish lignite (Utrillas, Teruel), are reported. These oils were obtained by depolymerization with alkyl aromatic ethers (anisole, 3-methyl anisole and 1,3-dimethoxybenzene) catalyzed by Lewis acids ZnCl/sub 2/, AlCl/sub 3/, SbCl/sub 3/ and BF/sub 3/ (as boron trifluoride etherate), at atmospheric pressure and temperatures <220/sup 0/C. Bands due to aromatic ethers in the I.R. and N.M.R. spectra of the oils obtained by depolymerization indicate solvent incorporation. Oils obtained by direct lignite extraction showed 25% aromatic H and some H /sub i/ (approx. = 3%) without OH groups. These appeared in some oils obtained by depolymerization with AlCl/sub 3/ and were due to secondary reactions with the aromatic extract. Oils derived from processes with good yields showed increases in aromaticity. The extent of substitution of aromatic rings in oils obtained by depolymerization was less than for oils directly extracted. All the oils studied show a low degree of condensation.

  15. Nikola Tesla, the Ether and his Telautomaton

    Science.gov (United States)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  16. From ether theory to ether theology: Oliver Lodge and the physics of immortality.

    Science.gov (United States)

    Raia, Courtenay Grean

    2007-01-01

    This article follows the development of physicist Oliver Lodge's religio-scientific worldview, beginning with his reticent attraction to metaphysics in the early 1880s to the full formulation of his "ether theology" in the late 1890s. Lodge undertook the study of psychical phenomena such as telepathy, telekinesis, and "ectoplasm" to further his scientific investigations of the ether, speculating that electrical and psychical manifestations were linked phenomena that described the deeper underlying structures of the universe, beneath and beyond matter. For Lodge, to fully understand the ether was to force from the universe an ultimate Revelation, and psychical research, as the most modern and probatory science, was poised to replace religion as the means of that disclosure. (c) 2007 Wiley Periodicals, Inc.

  17. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and P...

  18. Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazoles for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Zilu Yao

    2017-11-01

    Full Text Available γ-(2,3-epoxypropoxy propyltrimethoxysilane (KH-560 was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole (SPEKEBI as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs. Systematical measurements including Fourier transform infrared (FT-IR, scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane.

  19. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  20. Synthesis and Antiplasmodial Activity of EG-Artemisinin Ethers and ...

    African Journals Online (AJOL)

    The aim of this study was to synthesize a series of ethylene glycol (EG) ethers and quinoline hybrids of the antimalarial drug artemisinin and to evaluate their antimalarial activity in vitro against Plasmodium falciparum strains. The ethers were synthesized in a one-step process by coupling ethylene glycol (EG) moieties of ...

  1. 40 CFR 721.825 - Certain aromatic ether diamines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Certain aromatic ether diamines. 721.825 Section 721.825 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Substances § 721.825 Certain aromatic ether diamines. (a) Chemical substances and significant new uses...

  2. Synthesis and bioactivity of rotenone oxime O -ether derivatives ...

    African Journals Online (AJOL)

    A series of rotenone oxime O-ether derivatives were synthesized and characterized. All compounds were tested for their insecticidal, miticidal and fungicidal activities against the selected pests and compared with those of rotenone. The results of biological tests show that the rotenone oxime O-ether derivatives have ...

  3. 29 CFR 1915.1008 - bis-Chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false bis-Chloromethyl ether. 1915.1008 Section 1915.1008 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1008 bis-Chloromethyl ether. Note: The requirements applicable to shipyard employment under this...

  4. 29 CFR 1915.1006 - Methyl chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Methyl chloromethyl ether. 1915.1006 Section 1915.1006 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Hazardous Substances § 1915.1006 Methyl chloromethyl ether. Note: The requirements applicable to shipyard...

  5. 29 CFR 1926.1108 - bis-Chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false bis-Chloromethyl ether. 1926.1108 Section 1926.1108 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-Chloromethyl ether. Note: The requirements applicable to construction work under this section are identical to...

  6. 29 CFR 1910.1008 - bis-Chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false bis-Chloromethyl ether. 1910.1008 Section 1910.1008 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... bis-Chloromethyl ether. See § 1910.1003, 13 carcinogens. ...

  7. 29 CFR 1910.1006 - Methyl chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Methyl chloromethyl ether. 1910.1006 Section 1910.1006 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Substances § 1910.1006 Methyl chloromethyl ether. See § 1910.1003, 13 carcinogens. ...

  8. 29 CFR 1926.1106 - Methyl chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Methyl chloromethyl ether. 1926.1106 Section 1926.1106 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1106 Methyl chloromethyl ether. Note: The requirements applicable to construction work under this...

  9. Synthesis and Biophysical Characterization of Chlorambucil Anticancer Ether Lipid Prodrugs

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Christensen, Mikkel Stochkendahl; Ruysschaert, Tristan

    2009-01-01

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability...

  10. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  11. Formation and Structural Analysis of Novel Dibornyl Ethers

    African Journals Online (AJOL)

    PROF P.T. KAYE

    stereochemistry of novel dibornyl ethers, obtained by acid-catalysed condensation of camphor-derived α-hydroxybornanones. Keywords Dibornyl ethers; structure analysis; camphor derivatives. The results of some of our previous studies on the use of camphor-derived chiral auxiliaries in asymmetric synthesis1,2 indicated ...

  12. Ether in the developing world: rethinking an abandoned agent.

    Science.gov (United States)

    Chang, Connie Y; Goldstein, Elisabeth; Agarwal, Nitin; Swan, Kenneth G

    2015-10-16

    The first true demonstration of ether as an inhalation anesthetic was on October 16, 1846 by William T.G. Morton, a Boston dentist. Ether has been replaced completely by newer inhalation agents and open drop delivery systems have been exchanged for complicated vaporizers and monitoring systems. Anesthesia in the developing world, however, where lack of financial stability has halted the development of the field, still closely resembles primitive anesthetics. In areas where resources are scarce, patients are often not given supplemental intraoperative analgesia. While halothane provides little analgesia, ether provides excellent intra-operative pain control that can extend for several hours into the postoperative period. An important barrier to the widespread use of ether is availability. With decreasing demand, production of the inexpensive inhalation agent has fallen. Ether is inexpensive to manufacture, and encouraging increased production at a local level would help developing nations to cut costs and become more self-sufficient.

  13. Synthesis of poly(arylene ether ketone)s bearing skeletal crown ether units for cation exchange membranes

    NARCIS (Netherlands)

    Zoetebier, Bram; Tas, Sinem; Vancso, Gyula J.; Nijmeijer, Dorothea C.; Hempenius, Mark A.

    2015-01-01

    Poly(arylene ether ketone)s (PAEKs) are the most commonly known high-performance materials used for ion exchange and fuel cell membranes. Described here is the design of novel sulfonated PAEKs (SPAEKs) and nonsulfonated PAEKs containing crown ether units in the main chain, which can be used in

  14. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  15. [Recent development of research on the biotribology of carbon fiber reinforced poly ether ether ketone composites].

    Science.gov (United States)

    Chen, Yan; Pan, Yusong

    2014-12-01

    Carbon fiber reinforced poly ether ether ketone (CF/PEEK) composite possesses excellent biocompatible, biomechanical and bioribological properties. It is one of the most promising implant materials for artificial joint. Many factors influence the bioribological properties of CF/PEEK composites. In this paper, the authors reviewed on the biotribology research progress of CF/PEEK composites. The influences of various factors such as lubricant, reinforcement surface modification, functional particles, friction counterpart and friction motion modes on the bio-tribological properties of CF/PEEK composites are discussed. Based on the recent research, the authors suggest that the further research should be focused on the synergistic effect of multiple factors on the wear and lubrication mechanism of CF/PEEK.

  16. Modification of Poly(ether ether ketone Polymer for Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Devesh Shukla

    2013-01-01

    Full Text Available Polyelectrolyte membrane (PEM is an important part of PEM fuel cell. Nafion is a commercially known membrane which gives the satisfactory result in PEM fuel cell operating at low temperature. Present research paper includes functionalization of Poly(ether ether ketone (PEEK polymer with phosphonic acid group. The functionalization was done with the help of nickel-based catalyst. Further, the polymer was characterized by the FTIR, EDAX, DSC, TGA, and 1H NMR, and it was found that PEEK polymer was functionalized with phosphonic acid group with good thermal stability in comparison to virgin PEEK. Finally, the thin films of functionalized polymer were prepared by solution casting method, and proton conductivity of film samples was measured by impedance spectra whose value was found satisfactory with good thermal stability in comparison to commercially available Nafion membrane.

  17. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  18. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, V.S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Ruffmann, B.; Vetter, S.; Nunes, S.P. [GKSS Research Centre, Max-Planck Str., 21502 Geesthacht (Germany)

    2006-05-05

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion{sup (R)} 112 was used as reference material. DMFC tests were also performed at 50{sup o}C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion{sup (R)} 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD=71% showed to have similar performance, or even better, as that of Nafion{sup (R)} 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD=52%. (author)

  19. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  20. Characterization of Microsolvated Crown Ethers from Broadband Rotational Spectroscopy

    Science.gov (United States)

    Perez, Cristobal; Schnell, Melanie; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    Since they were first synthetized, crown ethers have been extensively used in organometallic chemistry due to their unparalleled binding selectivity with alkali metal cations. From a structural point of view, crown ethers are heterocycles containing oxygen and/or other heteroatoms, although the most common ones are formed from ethylene oxide unit. Crown ethers are conventionally seen as being hydrophilic inside and hydrophobic outside when the structures found for the metal cation complexes are considered. However, crown ethers are extremely flexible and in isolation may present a variety of stable conformations so that their structure may be easily adapted in presence of a strong ligand as an alkali metal cation minimize the energy of the resulting complex. Water can be considered a soft ligand which interacts with crown ethers through moderate hydrogen bonds. It is thus interesting to investigate which conformers are selected by water to form complexes, the preferred interaction sites and the possible conformational changes due to the presence of one or more water molecules. Previous studies identified microsolvated crown ethers but in all cases with a chromophore group attached to the structure. Here we present a broadband rotational spectroscopy study of microsolvated crown ethers produced in a pulsed molecular jet expansion. Several 1:1 and 1:2 crown ether:water aggregates are presented for 12-crown-4, 15-crown-5 and 18-crown-6. Unambiguous identification of the structures has been achieved using isotopic substitution within the water unit. The subtle changes induced in the structures of the crown ether monomer upon complexation and the hydrogen-bonding network that hold them together will be also discussed. F. Gámez, B. Martínez-Haya, S. Blanco,J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2014, 14 12912-12918 V. A. Shubert, C.W. Müller and T. Zwier, J. Phys. Chem. A 2009, 113 8067-8079

  1. Enzymatic network for production of ether amines from alcohols

    DEFF Research Database (Denmark)

    Palacio, Cyntia M.; Crismaru, Ciprian G.; Bartsch, Sebastian

    2016-01-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production...... of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed...

  2. 21 CFR 177.1970 - Vinyl chloride-lauryl vinyl ether copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-lauryl vinyl ether copolymers. 177...-lauryl vinyl ether copolymers. The vinyl chloride-lauryl vinyl ether copolymers identified in paragraph... section vinyl chloride-lauryl vinyl ether copolymers consist of basic copolymers produced by the...

  3. Evaluation of crystallization kinetics of poly (ether-ketone-ketone and poly (ether-ether-ketone by DSC

    Directory of Open Access Journals (Sweden)

    Gibran da Cunha Vasconcelos

    2010-08-01

    Full Text Available The poly (aryl ether ketones are used as matrices in advanced composites with high performance due to its high thermal stability, excellent environmental performance and superior mechanical properties. Most of the physical, mechanical and thermodynamic properties of semi-crystalline polymers depend on the degree of crystallinity and morphology of the crystalline regions. Thus, a study on the crystallization process promotes a good prediction of how the manufacturing parameters affect the developed structure, and the properties of the final product. The objective of this work was to evaluate the thermoplastics polymers PEKK e PEEK by DSC, aiming to obtain the relationship between kinetics, content, nucleation and geometry of the crystalline phases, according to the parameters of the Avrami and Kissinger models. The analysis of the Avrami exponents obtained for the studied polymers indicates that both showed the formation of crystalline phases with heterogeneous nucleation and growth geometry of the type sticks or discs, depending on the cooling conditions. It was also found that the PEEK has a higher crystallinity than PEKK.

  4. The zeolite mediated isomerization of allyl phenyl ether

    Science.gov (United States)

    Pebriana, R.; Mujahidin, D.; Syah, Y. M.

    2017-04-01

    Allyl phenyl ether is an important starting material in organic synthesis that has several applications in agrochemical industry. The green transformation of allyl phenyl ether assisted by heterogeneous catalyst is an attractive topic for an industrial process. In this report, we investigated the isomerization of allyl phenyl ether by heating it in zeolite H-ZSM-5 and Na-ZSM-5. The conversion of allyl phenyl ether (neat) in H-ZSM-5 was 67% which produced 40% of 2-allylphenol, 17% of 2-methyldihydrobenzofuran, and other product (4:1.7:1), while in Na-ZSM-5 produced exclusively 2-allylphenol with 52% conversion. These results showed that zeolite properties can be tuned to give a selective transformation by substitution of metal ion into the zeolite interior.

  5. Formation and Structural Analysis of Novel Dibornyl Ethers

    African Journals Online (AJOL)

    PROF P.T. KAYE

    . SHORT COMMUNICATION. Formation and Structural Analysis of Novel Dibornyl Ethers. Perry T. Kaye*, Andrew R. Duggan, Joseph M. Matjila, Warner E. Molema, and. Swarnam S. Ravindran. Department of Chemistry, Rhodes University, Grahamstown, ...

  6. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    Science.gov (United States)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  7. Catalytic rearrangement of the chloroallyl ethers of p-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.A.; Bunina-Krivorukova, L.I.; Levashova, V.I.

    1986-07-20

    The rearrangement of a series of p-cresol ethers (..beta..- and ..gamma..-chloro-, ..beta gamma..- and ..beta gamma..,..gamma..-trichloroallyl), catalyzed by boron trifluoride etherate, was studied. Increase in the number of chlorine atoms in the allyl unit of the ether hinders the rearrangement, and its mechanism changes in the investigated series of ethers from intramolecular (3,3)-sigmatropic (with inversion of the allyl unit) to intermolecular, which corresponds to electrophilic substitution in the aromatic ring (without inversion). The presence of the chlorine atom at the ..beta.. position of the allyl unit promotes rearrangement by a concerted intramolecular mechanism, while a chlorine atom at the ..gamma.. position promotes rearrangement by an intermolecular stage mechanism. Two chlorine atoms at the ..gamma.. position give rise mainly to the intermolecular rearrangement path.

  8. Spatial trends of polybrominated diphenyl ether (PBDE) congeners

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spatial trends of polybrominated diphenyl ether (PBDE) congeners were analyzed in young of the year bluefish collected along the U.S. Atlantic coastline from...

  9. Evaluation of polybrominated diphenyl ethers in sediment of Lagos ...

    African Journals Online (AJOL)

    user

    Polybrominated diphenyl ethers (PBDEs) are additive flame retardants that are present in many commercial ... recent monitoring study conducted by United States Fish and Wildlife Service, Division of Environmental .... building materials, electronic products manufacturing factories) Oworonsoki and Agboyin stations were.

  10. POLYBROMINATED DIPHENYL ETHERS IN HOUSE DUST AND CLOTHES DRYER LINT

    Science.gov (United States)

    Polybrominated diphenyl ether (PBDE) flame retardants are now considered ubiquitous and persistent pollutants. Few studies have examined the concentrations of these chemicals in the home and here we report measurements of PBDEs in house dust samples collected from the Washington...

  11. Thermally reversible cross-linked poly(ether-urethanes

    Directory of Open Access Journals (Sweden)

    V. Gaina

    2013-07-01

    Full Text Available Cross-linked poly(ether-urethanes were prepared by Diels-Alder (DA reaction of the furan-containing poly(ether-urethane to bismaleimides and showed thermal reversibility evidenced by differential scanning calorimetry and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR-FTIR. The furan-containing poly(ether-urethanes were synthesized by the polyaddition reaction of 1,6-hexamethylene diisocyanate (HMDI or 4,4'- dibenzyl diisocyanate (DBDI to poly(tetramethylene ether glycol (PTMEG having Mn = 250, 650, 1000, 1500 and 2000 and 2-[N,N-bis(2-methyl-2-hydroxyethylamino]furfuryl as chain extender by the solution prepolymer method. The molar ratio of isocyanate: PTMEG:chain extender varied from 2:1:1 to 4:1:3, which produces a molar concentration of furyl group ranging between 3.65•10–4 and 1.25•10–3 mol/g.

  12. Nickel-catalyzed direct synthesis of dialkoxymethane ethers

    Indian Academy of Sciences (India)

    catalyzed direct synthesis of dialkoxymethane ethers. MURUGAN SUBARAMANIAN ABHIJIT BERA BHAGAVATULA L V PRASAD EKAMBARAM BALARAMAN. RAPID COMMUNICATION Volume 129 Issue 8 August 2017 pp 1153-1159 ...

  13. Synthesis and Antiplasmodial Activity of EG-Artemisinin Ethers and ...

    African Journals Online (AJOL)

    NICO

    capillary temperature of 180 °C and discharge Current at 10 uA. 2.2. Synthetic Procedures. 2.2.1. Synthesis of EG Ethers of Artemisinin 3–8. The synthesis of EG ethers of artemisinin (Scheme 1) was achieved by using with slight modifications the general method reported by Li et al.18, and described as follows: to a solution.

  14. Impaired neurotransmission in ether lipid-deficient nerve terminals

    OpenAIRE

    Brodde, Alexander; Teigler, Andre; Brugger, Britta; Lehmann, Wolf D.; Wieland, Felix; Berger, Johannes; Just, Wilhelm W.

    2012-01-01

    Isolated defects of ether lipid (EL) biosynthesis in humans cause rhizomelic chondrodysplasia punctata type 2 and type 3, serious peroxisomal disorders. Using a previously described mouse model [Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., and Just, W.W. (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet., 12, 1881–1895], we investigated ...

  15. Accelerated Expansion as Predicted by an Ether Theory of Gravitation

    OpenAIRE

    Arminjon, Mayeul

    1999-01-01

    Cosmology is investigated within a new, scalar theory of gravitation, which is a preferred-frame bimetric theory with flat background metric. Before coming to cosmology, the motivation for an " ether theory " is exposed at length; the investigated concept of ether is presented: it is a compressible fluid, and gravity is seen as Archimedes' thrust due to the pressure gradient in that fluid. The construction of the theory is explained and the current status of the experimental confrontation is ...

  16. Marine Sponge Dysidea herbacea revisited: Another Brominated Diphenyl Ether

    Directory of Open Access Journals (Sweden)

    Bruce F. Bowden

    2005-03-01

    Full Text Available Abstract: A pentabrominated phenolic diphenyl ether (1 that has not previously been reported from marine sources has been isolated from Dysidea herbacea collected at Pelorus Island, Great Barrier Reef, Australia. The structure was determined by comparison of NMR data with those of known structurally-related metabolites. NMR spectral assignments for (1 are discussed in context with those of three previously reported isomeric pentabrominated phenolic diphenyl ethers.

  17. Effects of the ether phospholipid AMG-PC on mast cells are similar to that of the ether lipid AMG but different from that of the analogue hexadecylphosphocholine

    DEFF Research Database (Denmark)

    Grosman, Nina

    1991-01-01

    Farmakologi, ether phospholipid, hexacylphosphocholine, miltefosine, protein kinase C, AMG-PC(alkyl-methyl-glycero-phosphocholine), Histamine release, mast cell......Farmakologi, ether phospholipid, hexacylphosphocholine, miltefosine, protein kinase C, AMG-PC(alkyl-methyl-glycero-phosphocholine), Histamine release, mast cell...

  18. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang, E-mail: zhangpolyu@aliyun.com

    2016-06-10

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC{sub m}E{sub n}VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C{sub 16}E{sub 1}VE), ethylene glycol octadecyl ether vinyl ether (C{sub 18}E{sub 1}VE), diethylene glycol hexadecyl ether vinyl ether (C{sub 16}E{sub 2}VE) and diethylene glycol octadecyl ether vinyl ether (C{sub 18}E{sub 2}VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC{sub 16}E{sub 1}VE, PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are in a hexagonal lattice, and the onset temperatures for melting of PC{sub 16}E{sub 1}VE, PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC{sub 16}E{sub 1}VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are higher than 300 °C; on the contrary, it’s 283 °C for PC{sub 16}E{sub 1}VE. Using a weak polarity, flexible alkyl ether chain (-OCH{sub 2}CH{sub 2}O-) as a spacer to link the main chain and side chain

  19. Review on Modification of Sulfonated Poly (-ether-ether-ketone Membranes Used as Proton Exchange Membranes

    Directory of Open Access Journals (Sweden)

    Xiaomin GAO

    2015-11-01

    Full Text Available The proton exchange membrane fuel cell (PEMFC is a type of modern power, but the traditional proton exchange membranes (PEM of PEMFC are limited by high methanol permeability and water uptake. Poly-ether-ether-ketone (PEEK is a widely used thermoplastic with good cost-effective property. Sulfonated poly (-ether-ether-ketone (SPEEK has high electric conductivity and low methanol permeability, as well as comprehensive property, which is expected to be used as PEMs. However, the proton exchange ability, methanol resistance, mechanical property and thermal stability of SPEEK are closely related to the degree of sulfonation (DS of SPEEK membranes. Additionally, the proton conductivity, methanol permeability, and stability of SPEEK membranes applied in various conditions need to be further improved. In this paper, the research into modification of SPEEK membranes made by SPEEK and other polymers, inorganic materials are introduced. The properties and modification situation of the SPEEK and the composite membranes, as well as the advantages and disadvantages of membranes prepared by different materials are summarized. From the results we know that, the methanol permeability of SPEEK/PES-C membranes is within the order of magnitude, 10-7cm2/s. The proton conductivity of the SPPESK/SPEEK blend membrane reaches 0.212 S cm-1 at 80 °C. The cross-linked SPEEK membranes have raised thermal and dimensional stability. The non-solvent caused aggregation of the SPEEK ionomers. The proton conductivity of SPEEK/50%BMIMPF6/4.6PA membrane maintains stable as 2.0 x 10-2S cm-1 after 600 h at 160 °C. Incorporation of aligned CNT into SPEEK increases the proton conductivity and reduces the methanol permeability of the composite membranes. The PANI improves the hydrothermal stability. More proton transfer sites lead to a more compact structure in the composite membranes. According to the results, the proton exchange capacity, water uptake, and conductivity of

  20. Nonlinear dielectric effect in supercritical diethyl ether.

    Science.gov (United States)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J; Martinez-Garcia, Julio Cesar

    2014-09-07

    Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (T(C)) and ψ ≈ 0.6 remote from T(C). This can be linked to the emergence of the mean-field behavior in the immediate vicinity of T(C), contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.

  1. Emergent gravity and ether-drift experiments

    Science.gov (United States)

    Consoli, M.; Pappalardo, L.

    2010-11-01

    According to several authors, gravity might be a long-wavelength phenomenon emerging in some ‘hydrodynamic limit’ from the same physical, flat-space vacuum viewed as a form of superfluid medium. In this framework, light might propagate in an effective acoustic geometry and exhibit a tiny anisotropy that could be measurable in the present ether-drift experiments. By accepting this view of the vacuum, one should also consider the possibility of sizeable random fluctuations of the signal that reflect the stochastic nature of the underlying ‘quantum ether’ and could be erroneously interpreted as instrumental noise. To test the present interpretation, we have extracted the mean amplitude of the signal from various experiments with different systematics, operating both at room temperature and in the cryogenic regime. They all give the same consistent value {< A rangle ={mathcal O}(10^{-15})} which is precisely the magnitude expected in an emergent-gravity approach, for an apparatus placed on the Earth’s surface. Since physical implications could be substantial, it would be important to obtain more direct checks from the instantaneous raw data and, possibly, with new experimental set-ups operating in gravity-free environments.

  2. Dimethyl ether (DME) as an alternative fuel

    Science.gov (United States)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  3. Keeping ether "en-vogue": the role of Nathan Cooley Keep in the history of ether anesthesia.

    Science.gov (United States)

    Guralnick, Walter C; Kaban, Leonard B

    2011-07-01

    In this report, we explore the little known role of Dr Nathan Cooley Keep in the dissemination of ether anesthesia in Boston. Keep was a prominent Boston dentist who, for a short time, taught and employed both William Morton and Horace Wells. He used ether anesthesia for a variety of dental and other surgical procedures requiring pain control. Keep administered ether to anesthetize Henry Wadsworth Longfellow's wife during the delivery of their daughter. This was the first use of ether for obstetric anesthesia. Dr Keep was also the first Dean of the Harvard Dental School and convinced the Massachusetts General Hospital to appoint a dentist to the staff of the hospital for the first time. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    Science.gov (United States)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  5. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Science.gov (United States)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and 1H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 °C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 × 10 4 S s cm -3, which indicates that it is a suitable candidate for applications in direct methanol fuel cells.

  6. Copoly(arlene ether)s containing pendant sulfonic acid groups as proton exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Kim, Dae Sik [CANADA NRC; Robertson, Gilles [CANADA NRC; Guiver, Michael [CANADA NRC

    2008-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The P AE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sP AE and sP AEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC{sub v}(wet) (volume-based, wet state)) of 1.77 and 2.55 meq./cm{sup 3}, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5-51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the area of outstanding properties in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based). Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  7. The Effects of Sulfonated Poly(ether ether ketone Ion Exchange Preparation Conditions on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Rebecca S. L. Yee

    2013-08-01

    Full Text Available A low cost cation exchange membrane to be used in a specific bioelectrochemical system has been developed using poly(ether ether ketone (PEEK. This material is presented as an alternative to current commercial ion exchange membranes that have been primarily designed for fuel cell applications. To increase the hydrophilicity and ion transport of the PEEK material, charged groups are introduced through sulfonation. The effect of sulfonation and casting conditions on membrane performance has been systematically determined by producing a series of membranes synthesized over an array of reaction and casting conditions. Optimal reaction and casting conditions for producing SPEEK ion exchange membranes with appropriate performance characteristics have been established by this uniquely systematic experimental series. Membrane materials were characterized by ion exchange capacity, water uptake, swelling, potential difference and NMR analysis. Testing this extensive membranes series established that the most appropriate sulfonation conditions were 60 °C for 6 h. For mechanical stability and ease of handling, SPEEK membranes cast from solvent casting concentrations of 15%–25% with a resulting thickness of 30–50 µm were also found to be most suitable from the series of tested casting conditions. Drying conditions did not have any apparent impact on the measured parameters in this study. The conductivity of SPEEK membranes was found to be in the range of 10−3 S cm−1, which is suitable for use as a low cost membrane in the intended bioelectrochemical systems.

  8. Interface and properties of inorganic fullerene tungsten sulphide nanoparticle reinforced poly (ether ether ketone) nanocomposites

    Science.gov (United States)

    Wang, Nannan; Yang, Zhuxian; Wang, Yuan; Thummavichai, Kunyapat; Xia, Yongde; Ghita, Oana; Zhu, Yanqiu

    We report a simple and effective method to fabricate PEEK (poly ether ether ketone)/IF-WS2 (Inorganic Fullerene Tungsten Sulphide) nanocomposites with IF-WS2 content up to 8 wt%. We have used electron microscopies to characterise the morphology and structural features of the nancomposites, and FTIR and XPS to show that some chemical interface bondings were formed between the PEEK and IF-WS2. We demonstrate that the resulting PEEK/IF-WS2 nanocomposites showed an extraordinary 190% increase in thermal conductivity, 50 °C higher in degradation temperature, and mild improvements in strength and hardness. The increased degradation activation energy from 64 to 76 kJ/mol for neat PEEK and PEEK/IF-WS2 nanocomposites, respectively, is attributed to the synergistic interface between the PEEK matrix and IF-WS2 nanoparticles. The enhancements in both the mechanical and thermal properties will significantly expand the capacities of PEEK-based nanocomposites towards applications where thermal conductivity and stability are important.

  9. Evaluation of workers exposed to ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate.

    Science.gov (United States)

    Park, Jiyoung; Yoon, Chungsik; Byun, Hyaejeong; Kim, Yangho; Park, Donguk; Ha, Kwonchul; Lee, Sang man; Park, Sungki; Chung, Eunkyo

    2012-01-01

    Ethylene glycol monomethyl ether (EGME) and ethylene glycol monomethyl ether acetate (EGMEA) are widely used in industries as solvents for coatings, paint and ink, but exposure data are limited because they are minor components out of mixed solvents, as well as because of inconsistency in desorption solvent use. The objective of this study was to investigate the worker exposure profile of EGME and EGMEA. Our study investigated 27 workplaces from June to September 2008 and detected EGME and EGMEA in 20 and 13, respectively. Both personal and area sampling were conducted using a charcoal tube to collect EGME and EGMEA. Gas chromatography with a flame ionization detector was used to analyze these compounds after desorption using a mixture of methylene chloride and methanol. The arithmetic mean concentrations of EGME and EGMEA during periods of full work shifts were 2.59 ppm and 0.33 ppm, respectively. The exposure levels were lower than the Korean Ministry of Labor (MOL) OEL (5 ppm) but higher than the ACGIH TLV (0.1 ppm). In general, the working environments were poor and required much improvement, including the use of personal protective equipment. Only 50% of the workplaces had local exhaust ventilation systems in operation. The average capture velocity of the operating local exhaust ventilation systems was 0.27 m/s, which did not meet the legal requirement of 0.5 m/s. Educating workers to clearly understand the handling and use of hazardous chemicals and improving working conditions are strongly suggested.

  10. Rheological, mechanical and tribological properties of carbon-nanofibre reinforced poly (ether ether ketone composites

    Directory of Open Access Journals (Sweden)

    Volker Altstaedt

    2003-12-01

    Full Text Available Poly(ether ether ketone nanocomposites containing vapour-grown carbon nanofibres (CNF were produced using standard polymer processing techniques. At high shear rates no significant increase in resin viscosity was observed. Nevertheless, the addition of the CNFs results in a higher melt strength at 360°C. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres in the polymer matrix. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% whilst matrix ductility was maintained up to 10 wt%. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry was used to investigate crystallization kinetics and degree of crystallinity. The CNFs were found not to act as nucleating sites. Furthermore, unidirectional sliding tests against two different counterpart materials (100Cr6 martensitic bearing steel, X5CrNi18-10 austenitic stainless steel were performed. The carbon nanofibres were found to reduce the wear rate of PEEK significantly.

  11. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, Petra, E-mail: petra.bombach@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany); Nägele, Norbert [Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23" a, E-09001 Burgos (Spain); Rosell, Mònica [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès s/n, 08028 Barcelona (Spain); Richnow, Hans H. [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Fischer, Anko [Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany)

    2015-04-09

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [{sup 13}C{sub 6}]-ETBE (BACTRAP{sup ®}s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant {sup 13}C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation.

  12. Microwave-assisted extraction for the simultaneous determination of Novolac glycidyl ethers, bisphenol A diglycidyl ether, and its derivatives in canned food using HPLC with fluorescence detection.

    Science.gov (United States)

    Zhang, Hong; Xue, Ming; Lu, Yanbin; Dai, Zhiyuan; Wang, Honghai

    2010-02-01

    A microwave-assisted extraction (MAE) protocol and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of bisphenol F diglycidyl ether (Novolac glycidyl ether 2-Ring), Novolac glycidyl ether 3-Ring, Novolac glycidyl ether 4-Ring, Novolac glycidyl ether 5-Ring, Novolac glycidyl ether 6-Ring, bisphenol A diglycidyl ether, bisphenol A (2,3-dihydroxypropyl) glycidyl ether, bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether, bisphenol A bis(3-chloro-2-hydroxypropyl) ether, bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether in canned fish and meat. After being optimized in terms of solvents, microwave power and irradiation time, MAE was selected to carry out the extraction of ten target compounds. Analytes were purified by poly(styrene-co-divinylbenzene) SPE columns and determined by HPLC-fluorescence detection. LOD varied from 0.79 to 3.77 ng/g for different target compounds based on S/N=3; LOQ were from 2.75 to 10.92 ng/g; the RSD for repeatability were <8.64%. The analytical recoveries ranged from 70.46 to 103.44%. This proposed method was successfully applied to 16 canned fish and meat, and the results acquired were in good accordance with the studies reported. Compared with the conventional liquid-liquid extraction and ultrasonic extraction, the optimized MAE approach gained the higher extraction efficiency (20-50% improved).

  13. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Science.gov (United States)

    2010-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  14. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dae Sik, Kim [Los Alamos National Laboratory; Yu Seung, Kim [Los Alamos National Laboratory; Gilles, Robertson [CANADA-NRC; Guiver, Michael D [CANADA-NRC

    2009-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and P AEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (OS) of 1.0 had high ion exchange capacities (IEC{sub v})(wet) (volume-based, wet state) of 1.77 and 2.55 meq./cm3, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5 -51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the upper left-hand corner in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  15. Polydopamine-functionalized poly(ether ether ketone) tube for capillary electrophoresis-mass spectrometry.

    Science.gov (United States)

    Zhou, Wei; Zhang, Wenpeng; Liu, Yikun; Yu, Xinhong; Chen, Zilin

    2017-09-22

    Capillary electrophoresis-mass spectrometry (CE-MS) is a hyphenated technique that combines the advantages like low sample consumption, high separation efficiency, short analytical time in CE and high sensitivity, powerful molecular structure elucidation in MS. Polyimide-coated fused silica capillary has become the most dominant capillary for CE, but it suffers from swelling and aminolysis of polyimide coating when treated with organic solvents and alkaline buffer in the CE-MS interface in which the polyimide coating at the end of the capillary is exposed to the solution, and this phenomenon can result in current instability, irregular electrospray and clogging at outlet after prolonged use. In this work, poly(ether ether ketone) (PEEK) capillary was explored as separation capillary for CE-MS. The problems like swelling and aminolysis of polyimide coating were solved due to the high thermal and chemical stability of PEEK material. After modification with polydopamine, PEEK capillary (PD-PEEK) can generate adjustable electroosmotic flow and provide good separation selectivity. The zwitterion polymer of polydopamine can provide cathodic electroosmotic flow (EOF) at high pH value (pH ≥ 5) and anodic EOF at low pH value (pH ≤ 4), and the EOF mobility can also be adjusted by controlling the modification time of polydopamine. Good separation performance was obtained in the analysis for several classes of compounds including amino acids, phenols and plant hormones at rational EOF direction. Repeatability of the PD-PEEK capillary was studied, with relative standard deviations for intra-day, inter-day runs and between tubes less than 4.94%. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s

    Science.gov (United States)

    Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.

    2017-11-01

    Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.

  17. Thermolysis of phenethyl phenyl ether: a model for ether linkages in lignin and low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C.; Malcolm, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Division of Chemistry and Analytical Science

    1995-10-06

    The thermolysis of phenethyl phenyl ether (PPE) was studied at 330-425{degree}C to resolve the discrepancies in the reported mechanisms of this important model of the beta-ether linkage found in lignin and low rank coal. Cracking of PPE proceeded by two competitive pathways that produced styrene plus phenol and two previously undetected products, benzaldehyde plus toluene. The ratio of these pathways, defined as the alpha/beta selectivity, was 3.1 +/- 0.3 at 375{degree}C and independent of the PPE concentration. Thermolysis of PPE in tetralin, a model hydrogen donor solvent, increased the alpha/beta selectivity to 7 and accelerated the formation of secondary products. All the data were consistent with a free-radical chain mechanism for the decomposition of PPE. Styrene and phenol are produced by hydrogen abstraction at the alpha-carbon, beta-scission to form styrene and the phenoxy radical, followed by hydrogen abstraction. Benzaldehyde and toluene are formed by hydrogen abstraction at the beta-carbon, 1,2-phenyl migration from oxygen to carbon, beta-scission to form benzaldehyde, and the benzyl radical followed by hydrogen abstraction. Thermochemical kinetic estimates indicate that product formation is controlled by the relative rate of hydrogen abstraction at the alpha- and beta-carbons by the phenoxy radical (dominant) and benzyl radical (minor) since beta-scission and 1,2-phenyl migration are fast relative to hydrogen abstraction. Thermolysis of PhCD{sub 2}CH{sub 2}OPh and PhCH{sub 2}CD{sub 2}OPh was consistent with the previous results, indicating that there was no significant contribution of a concerted retro-ene pathway to the thermolysis of PPE.

  18. Enzymatic network for production of ether amines from alcohols.

    Science.gov (United States)

    Palacio, Cyntia M; Crismaru, Ciprian G; Bartsch, Sebastian; Navickas, Vaidotas; Ditrich, Klaus; Breuer, Michael; Abu, Rohana; Woodley, John M; Baldenius, Kai; Wu, Bian; Janssen, Dick B

    2016-09-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed for reactions containing 10 mM alcohol and up to 280 mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up. Biotechnol. Bioeng. 2016;113: 1853-1861. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Kinetics and mechanism of thermolysis of dibenzyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Korobov, V.Yu.; Grigorieva, E.N.; Senko, O.V.; Kalechitz, I.V.

    1988-10-01

    The kinetics of thermolysis of dibenzyl ether in tetralin have been studied at 350-410 degrees C in a hydrogen atmosphere at 8.5 MPa pressure. A kinetic model has been proposed that satisfactorily describes the process and takes into account both the known transformation of ethers into toluene and benzaldehyde and the direct destruction of ether to benzene and toluene with elimination of CO and secondary conversions of benzaldehyde. It has been shown that at lower temperatures the first reaction prevails whereas at higher temperatures both reactions become competitive. The kinetic parameters support an intramolecular rearrangement as a pathway of the first reaction and a radical mechanism as a pathway of the second. 16 refs., 4 figs., 1 tab.

  20. Coal liquefaction model studies: free radical chain decomposition of diphenylpropane, dibenzyl ether, and phenyl ether via. beta. -scission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gillert, K.E. (Indiana Univ., Bloomington); Gojewski, J.J.

    1982-12-03

    The thermal decompositions to 1,3-diphenylpropane (1), dibenzyl ether (2), and phenethyl phenyl ether (3) have been found to proceed by free radical chain processes. 1 gave toluene and styrene with a reaction order of 1.55, E/sub A/ = 51.4 kcal/mol, and log A = 12.5. The reaction could be initiated by benzyl phenyl ether but not by 1,2-diphenylethane. 2 gave toluene and benzaldehyde with a reaction order of 1.43,E/sub A/ = 48 kcal/mol, and log A = 12.6. The reaction could be initiated with benzyl phenyl ether. 3 gave phenol and styrene with a reaction order of 1.21, E/sub A/ = 50.3 kcal/mol, and log A =12.3. The reaction could be initiated by benzyl phenyl ether. All of the data are consistent with free radical processes with the reaction order determined by the termination reaction. No evidence for concerted reactions has been found.

  1. A local-ether model of propagation of electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Su, C.C. [Dept. of Electrical Engineering, National Tsinghua University, Hsinchu (Taiwan)

    2001-07-01

    It is pointed out that the classical propagation model can be in accord with the Sagnac effect due to earth's rotational and orbital motions in the high-precision GPS (global positioning system) and interplanetary radar, if the reference frame of the classical propagation medium is endowed with a switchability according to the location of the wave. Accordingly, it is postulated that, as in the obsolete theory, electromagnetic waves propagate via a medium like the ether. However, the ether is not universal. It is proposed that in the region under sufficient influence of the gravity due to the earth, the sun, or another celestial body, there forms a local ether, which in turn is stationary with respect to the gravitational potential of the respective body. For earthbound and interplanetary propagation, the medium is stationary in a geocentric and a heliocentric inertial frame, respectively. An electromagnetic wave propagates at a constant speed with respect to the associated local ether, independent of the motions of source and receiver. Based on this local-ether model of wave propagation, a wide variety of earthbound, interplanetary, and interstellar propagation phenomena are accounted for. Strong evidence of this new classical model is its consistent account of the Sagnac effect due to earth's motions among GPS, the intercontinental microwave link, and the interplanetary radar. Moreover, as examined within the present precision, this model is still in accord with the Michelson-Morley experiment. To test the local-ether propagation model, a one-way-link rotor experiment is proposed. (orig.)

  2. [Effect of ether and fluorothane on higher nervous activity].

    Science.gov (United States)

    Batrak, G E; Zakopka, V M

    1978-01-01

    Tests conducted with dogs by using Pavlov's method of conditioned reflexes (salivation procedure) showed fluothane to act on the central nervous system 3 times as strong as does ether. This is confirmed by a longer time necessary for the higher nervous system to normalize. Thus, awakening of the animals after the ether anesthesia, the re-establishment of the conditioned reflex activity supervened by the 7th day on the average, whereas, after the fluothane anesthesia, this occurred only on the 24th day.

  3. A crown ether appended super gelator with multiple stimulus responsiveness.

    Science.gov (United States)

    Dong, Shengyi; Zheng, Bo; Xu, Donghua; Yan, Xuzhou; Zhang, Mingming; Huang, Feihe

    2012-06-26

    A crown ether appended super gelator is designed and synthesized. It can gel a variety of organic solvents and shows excellent gelation properties with both low critical gelation concentration and short gelation time. Due to the introduction of the crown ether moiety and a secondary ammonium unit, the supramolecular gels show reversible gel-sol transitions. The supramolecular gels can also be molded into shape-persistent and free-standing objects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Science.gov (United States)

    2010-10-01

    ... bisulfide) and ethyl ether. 151.50-40 Section 151.50-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... ether. (a) The provisions of this section are applicable if specifically referenced in the Special... disulfide (carbon bisulfide) and § 151.50-42 for ethyl ether shall also be observed. ...

  5. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Science.gov (United States)

    2011-11-09

    ... AGENCY 40 CFR Part 180 Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether... residues of methacrylic acid-methyl methacrylate- polyethylene glycol monomethyl ether methacrylate graft... permissible level for residues of methacrylic acid-methyl methacrylate-polyethylene glycol monomethyl ether...

  6. 40 CFR 721.3845 - Alkyl substituted aromatic glycidyl ether (generic).

    Science.gov (United States)

    2010-07-01

    ... ether (generic). 721.3845 Section 721.3845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3845 Alkyl substituted aromatic glycidyl ether (generic). (a) Chemical... as alkyl substituted aromatic glycidyl ether (PMN P-97-661) is subject to reporting under this...

  7. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  8. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Science.gov (United States)

    2010-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject to...

  9. 75 FR 4288 - Oxirane, 2-Methyl-, Polymer with Oxirane, Dimethyl Ether; Tolerance Exemption

    Science.gov (United States)

    2010-01-27

    ... AGENCY 40 CFR Part 180 Oxirane, 2-Methyl-, Polymer with Oxirane, Dimethyl Ether; Tolerance Exemption... oxirane, dimethyl ether (CAS Reg. No. 61419-46-3); minimum number average molecular weight (in AMW) 2,800... oxirane, dimethyl ether (CAS Reg. No. 61419-46-3) on food or feed commodities. DATES: This regulation is...

  10. Ionic crosslinking of imidazolium functionalized poly(aryl ether ketone) by sulfonated poly(ether ether ketone) for anion exchange membranes.

    Science.gov (United States)

    Xu, Yixin; Ye, Niya; Zhang, Dengji; Yang, Jingshuai; He, Ronghuan

    2017-07-01

    Two N3-substituted imidazoles 1,2-dimethylimidazole and 1-butyl-2-methylimidazole were chosen to functionalize poly(aryl ether ketone), respectively. The generated imidazolium cations could electrostatically react with sulfonate ions of the sulfonated poly(ether ether ketone) forming the ionic crosslinking structure of the membranes. The changes in crosslinking degree and the alkyl chain-length on N3 site of the imidazoliums could highly affect the properties of the anion exchange membranes (AEMs). The AEMs functionalized by 1-butyl-2-methylimidazole exhibited superior properties compared to those functionalized by 1,2-dimethylimidazole according to the tolerance tests of the AEMs towards hot alkaline solutions. After exposed to 1M KOH at 80°C for 200h, the 1-butyl-2-methylimidazole modified AEMs maintained the ion exchange capacity of above 85%, the conductivity of about 70%, and the tensile stress at break of around 80%, respectively. The hydrophile-lipophile balance of the polymer membranes was calculated and proposed to better understand the correlation between structures and properties of the AEMs. The degradation of the imidazolium functional groups of the AEMs under the attack of hydroxide ions was evidenced by FT-IR analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Evaluation of polybrominated diphenyl ethers in sediment of Lagos ...

    African Journals Online (AJOL)

    user

    Certain pollutants, particularly synthetic organic compounds have given rise to important environmental concerns. New organic pollutants especially polybrominated diphenyl ether (PBDEs) employed in electronic equipment and in some household items as flame retardants are now finding their way into the aquatic ...

  12. Formation and Structural Analysis of Novel Dibornyl Ethers | Kaye ...

    African Journals Online (AJOL)

    One- and two-dimensional NMR spectroscopy has been used to establish the regio- and stereochemistry of novel dibornyl ethers, obtained by acid-catalysed condensation of camphor-derived a-hydroxybornanones. South African Journal of Chemistry Vol.55 2002: 111-118 ...

  13. Infrared Spectroscopy of Divalent Zinc and Cadmium Crown Ether Systems

    NARCIS (Netherlands)

    Cooper, T. E.; Carl, D. R.; Oomens, J.; Steill, J. D.; Armentrout, P. B.

    2011-01-01

    The gas-phase structures of transition-metal dication (Zn2+ and Cd2+) complexes with varying sized crown ethers, 12-crown-4 (12c4), 15-crown-5 (15c5), and 18-crown-6 (18c6), are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and quantum mechanical calculations. The

  14. Ether lipids of planktonic archae in the marine water column

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hoefs, M.J.L.; Schouten, S.; King, L.L.; Wakeham, S.G.; Leeuw, J.W. de

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize

  15. Photodegradation of poly(ether sulphone). Part 2

    DEFF Research Database (Denmark)

    Norrman, K.; Krebs, Frederik C

    2004-01-01

    The photodegradation of poly(ether sulphone) (PES) was investigated systematically by time-of-flight SIMS (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The effect of varying the irradiation dose, wavelength and the atmosphere was studied along with mechanistic photooxidation studies using...

  16. Synthesis and reduction of 2-nitroalkyl polysaccharide ethers

    NARCIS (Netherlands)

    Heeres, A.; Spoelma, F.F.; Doren, H.A. van; Gotlieb, K.F.; Bleeker, I.P.; Kellogg, R.M.

    2000-01-01

    Several 2-nitroalkyl polysaccharide ethers (from pullulan (1), guar (2), agarose (3), inulin (4), cellulose (5), Na-α-polyglucuronate (6) and hydroxyethyl cellulose (7)) were synthesized by reaction with 2-nitro-1-alkenes (2-nitro-1-propene and 2-nitro-1-butene) formed in situ from 2-nitroalkyl

  17. Synthesis and reduction of 2-nitroalkyl polysaccharide ethers

    NARCIS (Netherlands)

    Heeres, A; Spoelma, FF; van Doren, HA; Gotlieb, KF; Bleeker, IP; Kellogg, RM

    Several 2-nitroalkyl polysaccharide ethers (from pullulan (1), guar (2), agarose (3), inulin (4), cellulose (5), Na-alpha-polyglucuronate (6) and hydroxyethyl cellulose (7)) were synthesized by reaction with 2-nitro-1-alkenes (2-nitro-1-propene and 2-nitro-1-butene) formed in situ from 2-nitroalkyl

  18. Comparative evaluation of direct stool smear and Formol-ether ...

    African Journals Online (AJOL)

    Cryptosporidium is a common cause of diarrhoea in patients with Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS). Unfortunately this pathogen is not often checked for in Microbiology laboratories because the formol-ether stool concentration method for identification of Cryptosporidium is ...

  19. Binary mixtures of carbon dioxide and dimethyl ether as alternative ...

    African Journals Online (AJOL)

    Vapor-liquid equilibrium (VLE) data were predicted for the binary mixture of carbon dioxide (CO2) and dimethyl ether (DME) at ten temperatures ranging from 273.15 to 386.56 K and pressure upto 7.9 MPa to observe this mixture's potential of COP enhancement and capacity modulation as a working fluid in a refrigeration ...

  20. Acute toxicities of diethyl ether and ethanol extracted Nerium ...

    African Journals Online (AJOL)

    A four-day static renewal acute toxicity test was performed to determine the LC50 value of ethanol and diethyl ether extracted Nerium indicum leaf for the freshwater fish, Heteropneustes fossilis. The LC50 values, their upper and lower confidence limits and slope functions were calculated. The LC50 values for ethanol ...

  1. Evaluation of polybrominated diphenyl ethers in sediment of Lagos ...

    African Journals Online (AJOL)

    user

    environmental concerns. New organic pollutants especially polybrominated diphenyl ether (PBDEs) employed in electronic equipment and in some household items as flame retardants are now finding their way into the aquatic environment as components of waste discharge into the water body. These highly hazardous ...

  2. Lithium air batteries having ether-based electrolytes

    Science.gov (United States)

    Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2016-10-25

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  3. Li-air batteries having ether-based electrolytes

    Science.gov (United States)

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  4. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Directory of Open Access Journals (Sweden)

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  5. Dimethyl ether in diesel engines - progress and perspectives

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    2001-01-01

    A review of recent developments related to the use of dimethyl ether (DME) in engines is presented Research work discussed is in the areas of engine performance and emissions, fuel injection systems, spray and ignition delay, and detailed chemical kinetic modeling. DME's properties and safety...

  6. Bio-inspired ion selective crown-ether polymer membranes

    NARCIS (Netherlands)

    Tas, Sinem

    2016-01-01

    Development of unctional membranes that are capable of selectively recognizing and transporting ions have key importance for the recovery and separation of specific icons (e.d. K+, Li+, Na+) from multicomponent mixtures. In this thesis, new membrane materials based on crown ether-metal ion

  7. Preparation and Characterization of Water-Soluble Xylan Ethers

    Directory of Open Access Journals (Sweden)

    Kay Hettrich

    2017-03-01

    Full Text Available Xylan is a predominant hemicellulose component that is found in plants and in some algae. This polysaccharide is made from units of xylose (a pentose sugar. One promising source of xylan is oat spelt. This feedstock was used for the synthesis of two xylan ethers. To achieve water soluble products, we prepared dihydroxypropyl xylan as a non-ionic ether on the one hand, and carboxymethyl xylan as an ionic derivative on the other hand. Different preparation methods like heterogeneous, pseudo-homogeneous, and homogeneous syntheses were compared. In the case of dihydroxypropyl xylan, the synthesis method did not significantly affect the degree of substitution (DS. In contrast, in the case of carboxymethyl xylan, clear differences of the DS values were found in dependence on the synthesis method. Xylan ethers with DS values of >1 could be obtained, which mostly show good water solubility. The synthesized ionic, as well as non-ionic, xylan ethers were soluble in water, even though the aqueous solutions showed slight turbidity. Nevertheless, stable, transparent, and stainable films could be prepared from aqueous solutions from carboxymethyl xylans.

  8. Why do crown ethers activate enzymes in organic solvents?

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2002-01-01

    One of the major drawbacks of enzymes in nonaqueous solvents is that their activity is often dramatically low compared to that in water. This limitation can be largely overcome by crown ether treatment of enzymes. In this paper, we describe a number of carefully designed new experiments that have

  9. Binding of ether and carbonyl oxygens to lithium ion

    Energy Technology Data Exchange (ETDEWEB)

    Blint, R.J. [Physical Chemistry Dept., Warren, MI (United States)

    1994-12-31

    The electrolyte for a lithium battery is a lithium salt (e.g. lithium Perchlorate) dissolved in an organic solvent or a mixture of organic solvents. The conductivity in these electrolytes is ionic and needs to be as high as possible to efficiently remove energy from the battery. The diffusion coefficient of the solvated ion in liquid electrolytes is inversely dependent on the radius of the salvation sphere. Consequently conductivity will increase with a decrease in the size of the salvation shell. The size of the salvation shell is determined by the size and coordination number of the solvent molecules. The types of organic solvents in electrolytes used in lithium battery applications are usually differentiated based on their perceived solvation properties. These solvents are often small, oxygen containing organic molecules which move with the Li{sup +} ions. This paper calculates the binding energies of some of these solvents to Li{sup +} using molecular quantum mechanics (MQM) techniques. The binding energies of the various solvents to Li{sup +} may determine which solvents will be preferentially bound to the ion. In liquid organic electrolytes, then, it will be the identity of the solvent and the coordination number which most affect the conductivity; the binding energies determine both of these properties. Carbonyl oxygens which occur in formaldehyde, acetaldehyde, acetone, ethylene carbonate and propylene carbonate have different Li{sup +} bonding properties than do the ether oxygens which occur in water, dimethyl ether and diethyl ether. Polymer solvents for the lithium salts such as the polyethers have chains which are too long to move with the binding energies then serve as the basis for a different Li{sup +} transport. Dimethyl ether and diethyl ether serve both as solvents and models for the polyethers.

  10. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  11. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  12. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  13. Coal liquefaction model studies: free radical chain decomposition of diphenylpropane, dibenzyl ether, and phenyl ether via. beta. -scission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, K.E.; Gajewski, J.J.

    1982-01-01

    The thermal decompositions of 1,3-diphenylpropane (1), dibenzyl ether (2), and phenethyl phenyl ether (3) have been found to proceed by free radical chain processes. 1 gave toluene and styrene with a reaction order of 1.55, E/sub A/ = 51.4 kcal/mol, and log A = 12.5. The reaction could be initiated by benzyl phenyl ether but not by 1,2-diphenylethane. 2 gave toluene and benzaldehyde with a reaction order of 1.43, E/sub A/ = 48 kcal/mol, and log A = 12.6. The reaction could be initiated with benzyl phenyl ether. 3 gave phenol and styrene with a reaction order of 1.21, E/sub A/ = 50.3 kcal/mol, and log A = 12.3. The reaction could be initiated by benzyl phenyl ether. All of the data are consistent with free radical chain processes with the reaction order determined by the termination reaction. No evidence for concerted reactions has been found. The thermal chemistry of three-atom links is best described by free radical chain processes. The products are consistent with a free radical chain process involving a ..beta..-scission reaction, and the reaction orders range between first and three-halves order depending upon the nature of the chain termination reaction. Activation parameters are readily estimated from thermochemical kinetic data on the individual reactions with log A approx. = 12 and E/sub A/approx. = 50 kcal/mol. Unlike the one- and two-atom linkages, reactions of the three-atom linkages are promoted by free radical initiators. The potential for inhibition of free radical chains also exists and is currently being studied. 4 tables.

  14. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Science.gov (United States)

    2010-07-01

    ... glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). 721.6980... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). (a) Chemical substance and significant new uses subject to...

  15. [Ethylene glycol and propylene glycol ethers - Reproductive and developmental toxicity].

    Science.gov (United States)

    Starek-Świechowicz, Beata; Starek, Andrzej

    2015-01-01

    Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively) are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  16. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Gagik Torosyan

    2011-12-01

    Full Text Available It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30% in general with allyl phenyl ether (1 with 80% yields. At 600 K is obtained allylphenyl ether, at 700 K beginning the formation of allyl phenols, which is the result of direct C-allylation of the aromatic ring. It has been investigated the possibility of Claisen rearrangement in the same conditions. All of that are established by gas-liquid chromatography and liquid chromatography data.

  17. Ether and ester derivatives of the perborate icosahedron

    Science.gov (United States)

    Hawthorne, M. Frederick; Peymann, Toralf; Maderna, Andreas

    2003-12-16

    New boron icosahedral ethers and esters formed from Cs.sub.2 [closo-B.sub.12 (OH).sub.12 ],; Cs[closo-1-H-1-CB.sub.11 (OH).sub.11 ]; and closo-1,12-H.sub.2 -1,12-C.sub.2 B.sub.10 (OH).sub.10 are disclosed. Also set forth are their preparation by reacting the icosahedral boranes [closo-B.sub.12 H.sub.12 ].sup.2-, [closo-1-CB.sub.11 H.sub.12 ].sup.- and closo-1,12-(CH.sub.2 OH).sub.2 -1,12-C.sub.2 B.sub.10 H.sub.10 with an acid anhdride or acid chloride to form the ester or an alkylating agent to form the ether.

  18. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    OpenAIRE

    Gagik Torosyan; Dezy Hovhannisyan

    2011-01-01

    It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30%) in general with allyl phenyl ether (1) with 80% yields. At 600 K is obtained allylphenyl e...

  19. Solution of a gallstone with methyl-tertiary butyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Brambs, H.J.; Roeren, T.; Holstege, A.; Raedecke, J.

    1987-08-01

    Methyl-t-butyl ether is a new agent to dissolve gallstones. The substance proves to be very successful and acts very rapidly. A percutaneous transhepatic drainage supplies an adequate access route to dissolve calculi within the bile ducts. We report the case of a patient where before insertion of an internal stent a stone in the common bile duct was dissolved within 3 1/2 hours.

  20. Patch test with ether extracts in salicaceae allergy

    Directory of Open Access Journals (Sweden)

    Sawhney M

    2002-01-01

    Full Text Available A total of 23 cases suggestive of airborne contact dermatitis were patch tested with ether extracts of flowers and leaves of populus sp. and salix sp. in a study conducted in Ladakh at an altitude of 3445 meters above sea level. Overall positivity was found in 12 (52.17%, with populus sp. alone in 7 (30. 43%, salix sp. alone in 4 17.39% and to both in one (8.33%.

  1. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    OpenAIRE

    Pedersen, Troels Dyhr; Schramm, Jesper

    2011-01-01

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio...

  2. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  3. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat

    2013-01-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20.

  4. Selective cytotoxic activity of new lipophilic hydroxytyrosol alkyl ether derivatives.

    Science.gov (United States)

    Calderón-Montaño, José Manuel; Madrona, Andrés; Burgos-Morón, Estefanía; Orta, Manuel Luis; Mateos, Santiago; Espartero, José Luis; López-Lázaro, Miguel

    2013-05-29

    Recent data suggest that hydroxytyrosol, a phenolic compound of virgin olive oils, has anticancer activity. This communication reports the synthesis of decyl and hexadecyl hydroxytyrosyl ethers, as well as the cytotoxic activity of hydroxytyrosol and a series of seven hydroxytyrosol alkyl ether derivatives against A549 lung cancer cells and MRC5 non-malignant lung fibroblasts. Hydroxytyrosyl dodecyl ether (HTDE) showed the highest selective cytotoxicity, and possible mechanisms of action were investigated; results suggest that HTDE can moderately inhibit glycolysis, induce oxidative stress, and cause DNA damage in A549 cells. The combination of HTDE with the anticancer drug 5-fluorouracil induced a synergistic cytotoxicity in A549 cancer cells but not in non-malignant MRC5 cells. HTDE also displayed selective cytotoxicity against MCF7 breast cancer cells versus MCF10 normal breast epithelial cells in the 1-30 μM range. These results suggest that the cytotoxicity of HTDE is more potent and selective than that of parent compound hydroxytyrosol.

  5. Quantum mechanistic insights on aryl propargyl ether Claisen rearrangement.

    Science.gov (United States)

    Srinivasadesikan, Venkatesan; Dai, Jiun-Kuang; Lee, Shyi-Long

    2014-06-28

    The mechanism of aryl propargyl ether Claisen rearrangement in gas and solvent phase was investigated using DFT methods. Solvent phase calculations are carried out using N,N-diethylaniline as a solvent in the PCM model. The most favorable pathways involve a [3,3]-sigmatropic reaction followed by proton transfer in the first two steps and then deprotonation or [1,5]-sigmatropic reaction. Finally, cyclization yields benzopyran or benzofuran derivatives. The [3,3]-sigmatropic reaction is the rate-determining step for benzopyran and benzofuran with ΔG(‡) value of 38.4 and 37.9 kcal mol(-1) at M06/6-31+G**//B3LYP/6-31+G* level in gas and solvent phase, respectively. The computed results are in good agreement with the experimental results. Moreover, it is found that the derivatives of aryl propargyl ether proceeded Claisen rearrangement and the rate-determining step may be shifted from the [3,3]-sigmatropic reaction to the tautomerization step. The NBO analysis revealed that substitution of the methyl groups on the aliphatic segment has decreased the stabilization energy E(2) and favors the aryl propargyl ether Claisen rearrangement.

  6. Poly (ether ether ketone) membranes for fuel cells; Membranas de poli (eter eter cetona) sulfonado para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D., E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Hui, Wang S. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Oliveira, Vivianna S. de [Escola Tecnica Rezende-Rammel, Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  7. Valorisation de la coupe C4 de vapocraquage via l'hydrogénation du butadiène, l'isomérisation des butènes et la métathèse, en MTBE ou en propylène Upgrading the C4 Cut from Steam Cracking via the Hydrogenation of Butadiene, the Isomerization of Butenes and Metathesis Into Mtbe Or Propylene

    Directory of Open Access Journals (Sweden)

    Chaumette S.

    2006-11-01

    Full Text Available Le surplus de butadiène au niveau mondial contraint les pétrochimistes à recycler la coupe C4 au vapocraqueur. De plus en plus, le butadiène est hydrogéné avant de recraquer toute la coupe. Une fois hydrogénée, cette coupe peut être beaucoup mieux valorisée, soit en MTBE avec isomérisation des n-butènes (procédé ISO-4, soit en propylène et MTBE en utilisant le procédé META-4. L'étude technico-économique montre que cette dernière voie offre la meilleure rentabilité (TRI = 21,5 %. Si le vapocraqueur est intégré à une raffinerie, les butènes peuvent également être transformés en alkylats ou en MTBE, pour répondre à une demande en octane ou en oxygénés pour les carburants. Ces diverses voies de valorisation sont plus intéressantes que la production de MTBE à partir des butanes via la déshydrogénation de l'isobutane ou que la production du propylène par déshydrogénation du propane. Une étude de sensibilité aux différents prix des produits envisagés permet d'établir des courbes d'isorentabilités, délimitant des zones de prix favorables à l'un ou l'autre des produits, pris deux à deux. The evolution of the outlets for C4 cuts from steam cracking shows quite contradictory results. On one hand, European and Asian petrochemists are more constrained to recycle this type of effluent, which contains butadiene and isobutene, to the steam cracker. Likewise, the demand for isobutene for MTBE production is such that it has to be produced by the dehydrogenation of isobutane. This situation is effectively caused by the surplus of butadiene, a by-product of ethylene, and for which the demand is not increasing as fast as the demand for ethylene. To improve cracking performances during the recycling of the C4 Cut, butadiene is more and more selectively hydrogenated. Under these conditions, rather than cracking it, the new processes could make it possible to better upgrade it. Indeed, after selective hydrogenation, most

  8. Thermochemical properties and bond dissociation enthalpies of 3- to 5-member ring cyclic ether hydroperoxides, alcohols, and peroxy radicals: cyclic ether radical + (3)O(2) reaction thermochemistry.

    Science.gov (United States)

    Auzmendi-Murua, Itsaso; Bozzelli, Joseph W

    2014-05-01

    The formation of cyclic ethers is a major product in the oxidation of hydrocarbons, and the oxidation of biomass derived alcohols. Cyclic ethers are formed in the initial reactions of alkyl radicals with dioxygen in combustion and precombustion processes that occur at moderate temperatures. They represent a significant part of the oxygenated pollutants found in the exhaust gases of engines. Cyclic ethers can also be formed from atmospheric reactions of olefins. Additionally, cyclic ethers have been linked to the formation of the secondary organic aerosol (SOA) in the atmosphere. In combustion and thermal oxidation processes these cyclic ethers will form radicals that react with (3)O2 to form peroxy radicals. Density functional theory and higher level ab initio calculations are used to calculate thermochemical properties and bond dissociation enthalpies of 3 to 5 member ring cyclic ethers (oxirane, yC2O, oxetane, yC3O, and oxolane, yC4O), corresponding hydroperoxides, alcohols, hydroperoxy alkyl, and alkyl radicals which are formed in these oxidation reaction systems. Trends in carbon-hydrogen bond dissociation energies for the ring and hydroperoxide group relative to ring size and to distance from the ether group are determined. Bond dissociation energies are calculated for use in understanding effects of the ether oxygen in the cyclic ethers, their stability, and kinetic properties. Geometries, vibration frequencies, and enthalpies of formation, ΔH°f,298, are calculated at the B3LYP/6-31G(d,p), B3LYP/6-31G(2d,2p), the composite CBS-QB3, and G3MP2B3 methods. Entropy and heat capacities, S°(T) and Cp°(T) (5 K ≤ T ≤ 5000), are determined using geometric parameters and frequencies from the B3LYP/6-31G(d,p) calculations. The strong effects of ring strain on the bond dissociation energies in these peroxy systems are also of fundamental interest. Oxetane and oxolane exhibit a significant stabilization, 10 kcal mol(-1), lower ΔfH°298 when an oxygen group is on

  9. Correspondence by Charles T. Jackson containing the earliest known illustrations of a Morton ether inhaler.

    Science.gov (United States)

    Haridas, Rajesh P; Bause, George S

    2013-11-01

    A letter, dated December 1, 1846, from Charles T. Jackson, MD, to Josiah D. Whitney contains a previously unreported description of a Morton ether inhaler and the only known contemporaneous hand-drawn illustrations of this type of ether inhaler. This letter and 2 other known letters on ether anesthesia were probably carried from Boston, MA, to Liverpool, United Kingdom, on the same paddle steamer (Acadia) that carried the well-known letter from Jacob Bigelow, MD, to Francis Boott, MD.

  10. Evaluation of alternariol and alternariol methyl ether for mutagenic activity in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Davis, V.M.; Stack, M.E. (Food and Drug Administration, Washington, DC (United States))

    1994-10-01

    Alternariol and alternariol methyl ether were tested in the Ames Salmonella typhimurium assay, and both were shown, with and without metabolic activation, to be nonmutagenic to strains TA98 and TA100. The finding of other investigators that alternariol methyl ether is weakly mutagenic to Ta98 without metabolic activation could have resulted from the presence of a small amount of one of the highly mutagenic altertoxins in the alternariol methyl ether originally tested. 9 refs., 3 figs., 1 tab.

  11. Polyaza crown ether as non-nucleosidic building blocks in DNA-conjugates

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Madsen, Rasmus K

    2007-01-01

    The synthesis of amphiphilic polyaza crown ether monomers X (palmityl-substituted), Y (cholesteryl-substituted) and Z (dipalmityl-subtituted) and their incorporation into oligonucleotides are described. Their effects on thermal duplex stability were investigated by UV melting curve analysis....... Thermal denaturation experiments showed remarkable stabilization of dsDNA by polyaza crown ether monomers when incorporated in opposite positions. The series of polyaza crown ether monomers (X, Y, and Z) with different lipophilicity showed a trend of increased stability of the corresponding ds......DNA with increasing lipophilicity of the polyaza crown ether monomer....

  12. On the radiation stability of crown ethers in ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Shkrob, I.; Marin, T.; Dietz, M. (Chemical Sciences and Engineering Division); (Benedictine Univ.); (Univ. of Wisconsin at Milwaukee)

    2011-04-14

    Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an IL matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a 'radioprotective' effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime.

  13. Electrochemical Study of Diphenyl Ether Derivatives Used as Herbicides

    Directory of Open Access Journals (Sweden)

    Amira Zaouak

    2011-01-01

    Full Text Available The electrochemical behaviour of five nitro diphenyl ethers used as herbicides is investigated in acetonitrile. A detailed study by cyclic voltammetry and exhaustive electrolysis is carried out for the anodic oxidation of 2-Chloro-6-nitro-3-phenoxyaniline (aclonifen and shows that the major oxidation product is a dimeric compound. A mechanistic scheme involving a coupling process is postulated for the electrochemical oxidation of this compound. Furthermore, the use of differential pulse voltammetry on a glassy carbon electrode permits the selective determination of aclonifen. The limit of detection is 0.6 μg/mL.

  14. Density measurements of compressed-liquid dimethyl ether + pentane mixtures.

    Science.gov (United States)

    Outcalt, Stephanie L; Lemmon, Eric W

    2016-01-01

    Compressed-liquid densities of three compositions of the binary mixture dimethyl ether (CAS No. 115-10-6) + pentane (CAS No. 109-66-0) have been measured with a vibrating U-tube densimeter. Measurements were made at temperatures from 270 K to 390 K with pressures from 1.0 MPa to 50 MPa. The overall combined uncertainty (k=2) of the density data is 0.81 kg·m-3. Data presented here have been used to improve a previously formulated Helmholtz energy based mixture model. The newly derived parameters are given.

  15. Dimethyl ether production from methanol and/or syngas

    Science.gov (United States)

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  16. A new diphenyl ether from Phoma sp. strain, SHZK-2.

    Science.gov (United States)

    Fang, M J; Fang, H; Li, W J; Huang, D M; Wu, Z; Zhao, Y F

    2012-01-01

    A new diphenyl ether methyl 2-(2-formyl-3-hydroxy-5-methylphenoxy)-5-hydroxy-3-methoxybenzoate (3), together with four known compounds, asterric acid (1), methyl asterrate (2), 9(Z),12(Z)-nonadecadienoic acid (4) and orsellinic acid (5), were isolated from the Phoma sp. strain SHZK-2, which was isolated from a polluted environment in southern China. The structures of these compounds were determined by spectroscopic methods. Cytotoxicities of compounds against HEPG2 cell and Raji cell lines were preliminarily evaluated by the MTT method.

  17. Chemistry and properties of new poly(arylene ether imidazoles)

    Science.gov (United States)

    Connell, J. W.; Hergenrother, P. M.

    1990-01-01

    As part of a program to develop high-temperature high-performance structural resins for aerospace applications, the chemistry and properties of new poly(arylene ether imidazoles) were investigated. The polymers were prepared by the nucleophilic displacement reaction of aromatic bis(imidazolephenols) with activated aromatic difluoro compounds. The amorphous thermoplastic polymers exhibited glass transition temperatures from 230 to 301 C, inherent viscosities from 0.46 to 1.46 dL/g, and number-average molecular weights as high as 59,300 g/mole. The polymers exhibit good toughness, adhesive, composite, and film properties. The chemical, physical, and mechanical properties of these materials are discussed.

  18. Synthesis of hydroxy thio-ether derivatives of vegetable oil.

    Science.gov (United States)

    Sharma, Brajendra K; Adhvaryu, A; Erhan, S Z

    2006-12-27

    Bio-based additives are desirable commodities due to their eco-friendly nature. These additives can demonstrate physical and chemical properties comparable to those of conventional mineral oil-based products. Sulfur incorporated triacylglycerol can function as an antiwear/antifriction additive for lubricants. The synthesis of four useful hydroxy thio-ether derivatives of vegetable oils, from commercially available epoxidized soybean oil and common organic thiols, is reported in this paper. The common thiols used herein were 1-butanethiol, 1-decanethiol, 1-octadecanethiol, and cyclohexyl mercaptan. Currently, there is no reported literature describing the synthesis of hydroxy thio-ether derivatives of vegetable oil. The reaction was monitored, and products were confirmed by NMR and FTIR spectroscopies. Experimental conditions involving various thiols, solvent, catalyst amount, time, and temperature were optimized for research quantity and laboratory scale-up. The synthetic process retains the vegetable oil structure, eliminates polyunsaturation in the molecule, and adds polar functional groups on triacylglycerol. These products can be used as agriculturally-based antiwear additives for lubricant applications.

  19. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed an......V higher than that of methanol, indicating less fuel crossover.......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  20. Ether-Bond-Containing Ionic Liquids as Supercapacitor Electrolytes.

    Science.gov (United States)

    Rennie, Anthony J R; Sanchez-Ramirez, Nédher; Torresi, Roberto M; Hall, Peter J

    2013-09-05

    Electrochemical capacitors (ECs) are electrical energy storage devices that have the potential to be very useful in a wide range of applications, especially where there is a large disparity between peak and average power demands. The use of ionic liquids (ILs) as electrolytes in ECs can increase the energy density of devices; however, the viscosity and conductivity of ILs adversely influence the power density of the device. We present experimental results where several ILs containing different cations have been employed as the electrolyte in cells containing mesoporous carbon electrodes. Specifically, the behavior of ILs containing an ether bond in an alkyl side chain are compared with those of a similar structure and size but containing purely alkyl side chains. Using electrochemical impedance spectroscopy and constant current cycling, we show that the presence of the ether bond can dramatically increase the specific capacitance and reduce device resistance. These results have the important implication that such ILs can be used to tailor the physical properties and electrochemical performance of IL-based electrolytes.

  1. Molecular dynamics simulations of ether- and ester-linked phospholipids.

    Science.gov (United States)

    Kruczek, James; Saunders, Matthew; Khosla, Meghna; Tu, Yicheng; Pandit, Sagar A

    2017-12-01

    Dissimilarities in the bulk structure of bilayers composed of ether- vs ester-linked lipids are well-established; however, the atomistic interactions responsible for these differences are not well known. These differences are important in understanding of why archaea have a different bilayer composition than the other domains of life and why humans have larger concentrations of plasmalogens in specialized membranes? In this paper, we simulate two lipid bilayers, the ester linked dipalmitoylphosphatidylcholine (DPPC) and the ether lined dihexadecylphosphatidylcholine (DHPC), to study these variations. The structural analysis of the bilayers reveals that DPPC is more compressible than DHPC. A closer examination of dipole potential shows DHPC, despite having a smaller dipole potential of the bilayer, has a higher potential barrier than DPPC at the surface. Analysis of water order and dynamics suggests DHPC has a more ordered, less mobile layer of water in the headgroup. These results seem to resolve the issue as to whether the decrease in permeability of DHPC is due to of differences in minimum area per lipid (A0) or diffusion coefficient of water in the headgroup region (Dhead) (Guler et al., 2009) since we have shown significant changes in the order and mobility of water in that region. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. a Physical Random Signal in Ether-Drift Experiments

    Science.gov (United States)

    Consoli, M.; Pluchino, A.

    2015-01-01

    In ether-drift experiments, one usually assumes that the oscopic Earth's motion should be detectable in the laboratory from the time dependence of the data. Therefore a stochastic signal, which does not exhibit the smooth modulations expected from the Earth's rotation, tends to be considered as a spurious instrumental effect. The real situation, however, might be more subtle if the hypothetical ether (i.e. the physical vacuum) resembles a turbulent fluid where large-scale and small-scale motions are only indirectly related. In this case, the data might contain a genuine stochastic component. To test this scenario, a numerical simulation was performed to estimate the signal by assuming i) an `emergent-gravity' picture and ii) a simple model of statistically isotropic and homogeneous turbulence. In this framework, the present data become consistent with velocity fluctuations whose absolute scale is determined by the Earth's cosmic motion with respect to the CMB (projected in the plane of the interferometer at the latitude of the laboratory). Therefore the Earth's motion, although undetectable from the naive time dependence of the data, could nevertheless show up in their statistical distributions. In particular, the predicted non-gaussian nature of the instantaneous data could be tested with the forthcoming generation of precise cryogenic experiments, with potentially important implications for our understanding of both gravity and relativity.

  3. Synthesis of Novel Bibrachial Lariat Ethers (BiBLEs) Containing [1,2 ...

    African Journals Online (AJOL)

    NICO

    Introduction. The first synthetic crown ether was discovered by Pederson.1. Since then, various structural changes have been made to the basic crown ether skeleton in an attempt to enhance the selectivity of these rings and the capacity of complexation with metal ions. When hard and soft donor atoms were added into the ...

  4. The kinetics of 1,4-butanediol diglycidyl ether crosslinking of dermal sheep collagen

    NARCIS (Netherlands)

    Zeeman, R.; Dijkstra, Pieter J.; van Wachem, Pauline B.; van Luyn, Marja J.A.; Hendriks, Marc; Cahalan, Patrick T.; Feijen, Jan

    2000-01-01

    Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified with glycidyl isopropyl ether (PGE). The reduction in amine groups as a function of time was followed to study the overall reaction kinetics of collagen with either BDDGE or PGE. Linearization of the

  5. The kinetics of 1,4-butanediol diglycidyl ether crosslinking of dermal sheep collagen

    NARCIS (Netherlands)

    Zeeman, R; Dijkstra, PJ; van Wachem, PB; van Luyn, MJA; Hendriks, M; Cahalan, PT; Feijen, J

    2000-01-01

    Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified with glycidyl isopropyl ether (PGE). The reduction in amine groups as a function of time was followed to study the overall reaction kinetics of collagen with either BDDGE or PGE;. Linearization of the

  6. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    Science.gov (United States)

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  7. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium.

    Science.gov (United States)

    Patel, R; Hou, C T; Felix, A

    1976-01-01

    Metal-chelating or -binding agents inhibited the oxidation of dimethyl ether and methane, but not methanol, by cell suspensions of Methylococcus capsulatus and Methylosinus trichosporium. Evidence suggests that the involvement of metal-containing enzymatic systems in the initial step of oxidation of dimethyl ether and methane. PMID:4428

  8. Mild Ti-mediated transformation of t-butyl thio-ethers into thio-acetates.

    Science.gov (United States)

    Pijper, Thomas C; Robertus, Jort; Browne, Wesley R; Feringa, Ben L

    2015-01-07

    We report a straightforward method for the rapid conversion of thio-ethers to thio-acetates using TiCl4, in good to excellent yields. The reaction conditions tolerate a variety of functional groups, including halide, nitro, ether, thiophene and acetylene functionalities. A catalytic variant of this reaction is also described.

  9. The antifungal activity of methanol and ether extracts of the leaves of ...

    African Journals Online (AJOL)

    user

    extracts from the leaves of Leonotis nepetafolia showed that they contain quinones, saponosides, flavonoids and tannins. The high amount of quinones was remarked in both methanol and ether extracts while saponins were more well extracted by methanol compared to ether. Tannins and flavonoids found in methanol ...

  10. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... ether, and ethylene oxide. 721.7000 Section 721.7000 Protection of Environment ENVIRONMENTAL PROTECTION... ethylene oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  11. Development and validation of a congener-specific photodegradation model for polybrominated diphenyl ethers

    NARCIS (Netherlands)

    Zeng, X.; Simonich, S.L.M.; Robrock, K.R.; Korytar, P.; Alvarez-Cohen, L.; Barofsky, D.F.

    2008-01-01

    With the phaseout of the manufacture of some polybrominated diphenyl ether ( PBDE) formulations, namely penta-brominated diphenyl ether (BDE) and octa-BDE, and the continued use of the deca-BDE formulation, it is important to be able to predict the photodegradation of the more highly brominated

  12. 77 FR 39236 - Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether...

    Science.gov (United States)

    2012-07-02

    ... AGENCY Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether... ``Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether Flame... nanomaterial case study and the workshop process that the draft document will be used in for identifying and...

  13. Interactions between ether phospholipids and cholesterol as determined by scattering and molecular dynamics simulations.

    Science.gov (United States)

    Pan, Jianjun; Cheng, Xiaolin; Heberle, Frederick A; Mostofian, Barmak; Kučerka, Norbert; Drazba, Paul; Katsaras, John

    2012-12-27

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol's molecular interactions with ether lipids as determined using a combination of small-angle neutron and X-ray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup's phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

  14. Interactions between Ether Phospholipids and Cholesterol as Determined by Scattering and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianjun [ORNL; Cheng, Xiaolin [ORNL; Heberle, Frederick A [ORNL; Mostofian, Barmak [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Drazba, Paul [ORNL; Katsaras, John [ORNL

    2012-01-01

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol s molecular interactions with ether lipids as determined using a combination of small-angle neutron and Xray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup s phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

  15. Crown ether activation of cross-linked subtilisin Carlsberg crystals in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Sakodinskaya, I.K.; Sakodinskaya, Inna K.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    The activity of cross-linked subtilisin Carlsberg crystals in the catalysis of peptide bond formation can be significantly enhanced by pretreatment of the enzyme crystals with crown ethers. Soaking of the enzyme crystals in a solution of crown ether in acetonitrile followed by evaporation of the

  16. The antifungal activity of methanol and ether extracts of the leaves of ...

    African Journals Online (AJOL)

    The antifungal test of the crude methanol and the crude ether extracts was realized and revealed that crude methanol extract was more active than crude ether extract on Candida albicans and Malassezia fulfur growth. The minimum inhibitor concentration (MIC) of the crude methanol extract were 4.12 mg/ml and 2.38 mg/ml ...

  17. Sulfonated poly(ether ether ketone), an ion conducting polymer, as alternative polymeric membrane for the construction of anion-selective electrodes

    OpenAIRE

    González Bellavista, Anna; Macanás de Benito, Jorge; Muñoz Tapia, Maria; Fàbregas Martínez, Esteve

    2007-01-01

    A novel arrangement for polymeric membranes used in anion-selective electrodes is presented. Sulfonated poly(ether ether ketone) (SPEEK), an ion conducting polymer has been used as a polymeric matrix to build an anion-selective electrode (ISE). A NO3--ISE has been chosen as a model electrode to study the efficiency of the polymeric membrane. The effect of membrane composition and polymer compatibility with the electro-active components was investigated. The polymer matrix showed good mechanic...

  18. Accumulation of long-chain bases in yeast promotes their conversion to a long-chain base vinyl ether[S

    Science.gov (United States)

    Martínez-Montañés, Fernando; Lone, Museer A.; Hsu, Fong-Fu; Schneiter, Roger

    2016-01-01

    Long-chain bases (LCBs) are the precursors to ceramide and sphingolipids in eukaryotic cells. They are formed by the action of serine palmitoyl-CoA transferase (SPT), a complex of integral membrane proteins located in the endoplasmic reticulum. SPT activity is negatively regulated by Orm proteins to prevent the toxic overaccumulation of LCBs. Here we show that overaccumulation of LCBs in yeast results in their conversion to a hitherto undescribed LCB derivative, an LCB vinyl ether. The LCB vinyl ether is predominantly formed from phytosphingosine (PHS) as revealed by conversion of odd chain length tracers C17-dihydrosphingosine and C17-PHS into the corresponding LCB vinyl ether derivative. PHS vinyl ether formation depends on ongoing acetyl-CoA synthesis, and its levels are elevated when the LCB degradative pathway is blocked by deletion of the major LCB kinase, LCB4, or the LCB phosphate lyase, DPL1. PHS vinyl ether formation thus appears to constitute a shunt for the LCB phosphate- and lyase-dependent degradation of LCBs. Consistent with a role of PHS vinyl ether formation in LCB detoxification, the lipid is efficiently exported from the cells. PMID:27561298

  19. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    Science.gov (United States)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  20. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  1. Identification of oxygenated ions in premixed flames of dimethyl ether and oxygen

    DEFF Research Database (Denmark)

    Frøsig Østergaard, L.; Egsgaard, H.; Hammerum, S.

    2003-01-01

    The structure of characteristic flame-ions in premixed flames of dimethyl ether and oxygen was studied by ion-molecule reactions with ammonia and collision activation with argon. The results obtained show that the flame-ions m/z 45 and m/z 47 are the methoxymethyl cation, CH3OCH2+, and protonated...... dimethyl ether, (CH3)(2)OH+. The flame-ion m/z 61 is a mixture of the trimethyloxonium ion, (CH3)(3)O+ and lesser amounts of protonated methyl formate and/or protonated ethyl methyl ether. The viability of an ionic mechanism to soot formation for dimethyl ether-oxygen flames is discussed on the background...... of ions present in the dimethyl ether flames and the reactivity of the ions....

  2. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  3. Effect of surface finishing on friction and wear of Poly-Ether-Ether-Ketone (PEEK under oil lubrication

    Directory of Open Access Journals (Sweden)

    Thiago Fontoura de Andrade

    Full Text Available Abstract The tribological properties of poly-ether-ether-ketone (PEEK containing 30% of carbon fiber were studied in an oil-lubricated environment and different surface finishing of the metallic counterbody. Four different finishing processes, commonly used in the automotive industry, were chosen for this study: turning, grinding, honing and polishing. The test system used was tri-pin on disc with pins made of PEEK and counterbody made of steel; they were fully immersed in ATF Dexron VI oil. Some test parameters were held constant, such as the apparent pressure of 2 MPa, linear velocity of 2 m/s, oil temperature at 85 °C, and the time - 120 minutes. The lubrication regime for the apparent pressure of 1 MPa to 7 MPa range was also studied at different sliding speeds. A direct correlation was found between the wear rate, friction coefficient and the lubrication regime, wherein wear under hydrodynamic lubrication was, on average, approximately 5 times lower, and the friction coefficient 3 times lower than under boundary lubrication.

  4. 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether and ATP ether. Affinity reagents for labeling ATPases.

    Science.gov (United States)

    Chuan, H; Wang, J H

    1988-09-15

    The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether (FDNP-ADP) and 3'-O-(5-fluoro-2,4-dinitrophenyl)ATP ether (FDNP-ATP) were synthesized and characterized. FDNP[14C]ADP was found to label the active site of mitochondrial F1-ATPase slowly at room temperature but with high specificity. F1 was effectively protected from the labeling reagent by ATP or ADP. An average number of 1.3 covalent label per F1 is sufficient for 100% inhibition of the ATPase. About 73% of the radioactive label was found covalently attached to beta subunits, 9% on alpha, practically none on gamma, delta, and epsilon. Cleavage of the labeled enzyme by pepsin and sequencing of the major radioactive peptide showed that the labeled amino acid residue in beta subunit was Lys beta 162. These results show that Lys beta 162 is indeed at the active site of F1 as assumed in the recently proposed models (Fry, D. C., Kuby, S. A., and Mildvan, A. S. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 907-911; Duncan, I. M., Parsonage, D., and Senior, A. E. (1986) FEBS Lett. 208, 1-6).

  5. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  6. Nanocomposite Based on Functionalized Gold Nanoparticles and Sulfonated Poly(ether ether ketone Membranes: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-03-01

    Full Text Available Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS, were synthesized inside a swollen sulfonated poly(ether ether ketone membrane (sPEEK. The formation of the Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK membrane, showed the plasmon resonance λmax at about 520 nm, which remained stable over a testing period of three months. The size distribution of the nanoparticles was assessed, and the sPEEK membrane roughness, both before and after the synthesis of nanoparticles, was studied by AFM. The XPS measurements confirm Au-3MPS formation in the sPEEK membrane. Moreover, AFM experiments recorded in fluid allowed the production of images of the Au-3MPS@sPEEK composite in water at different pH levels, achieving a better understanding of the membrane behavior in a water environment; the dynamic hydration process of the Au-3MPS@sPEEK membrane was investigated. These preliminary results suggest that the newly developed nanocomposite membranes could be promising materials for fuel cell applications.

  7. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    Science.gov (United States)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  8. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Science.gov (United States)

    2010-07-01

    ... alkanediol di-gly-cidyl ether. 721.7260 Section 721.7260 Protection of Environment ENVIRONMENTAL PROTECTION... di-gly-cidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The... ether (PMN P-89-810) is subject to reporting under this section for the significant new uses described...

  9. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Science.gov (United States)

    2010-07-01

    ..., mono(3,5,5,-trimethylhexyl) ether. 721.522 Section 721.522 Protection of Environment ENVIRONMENTAL...,5,5,-trimethylhexyl) ether. (a) Chemical substance and significant new uses subject to reporting. (1...,-trimethylhexyl) ether (PMN P-99-0669; CAS No. 204336-40-3) is subject to reporting under this section for the...

  10. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli

    2017-11-20

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl-3-methylimidalzolium thiocyanate ([EMIM]SCN), 1-butyl-3-methylimidalzolium thiocyanate ([BMIM]SCN), and 1-ethyl-3-methylimidalzolium acetate ([EMIM]OAc). The following polymer solution parameters were evaluated to optimize the manufacture: Gibbs free energy of mixing (G), intrinsic viscosity ([]) and hydrodynamic diameter. Membranes with sponge-like structure and narrow pore size distribution were obtained from solutions in [EMIM]SCN. They were tested for separation of proteins and deoxyribonucleic acids (DNA). Due to the polymer stability, we foresee that applications in more demanding chemical separations would be possible. [EMIM]SCN was 96 % purified and recovered after the membrane fabrication, contributing to the sustainability of the whole manufacturing process.

  11. Probing supramolecular complexation of cetylpyridinium chloride with crown ethers

    Science.gov (United States)

    Saha, Subhadeep; Roy, Mahendra Nath

    2017-11-01

    Supramolecular complexations of cetylpyridinium chloride with three comparable cavity dimension based crown ethers, namely, dibenzo-18-crown-6, 18-crown-6 and dicyclohexano-18-crown-6 have been explored and adequately compared in acetonitrile with the help of conductivity in a series of temperatures to reveal the stoichiometry of the three host-guest complexes. Programme based mathematical treatment of the conductivity data affords association constants for complexations from which the thermodynamic parameters were derived for better comprehension about the process. The interactions at molecular level have been explained and decisively discussed by means of FT-IR and 1H NMR spectroscopic studies that demonstrate H-bond type interactions as the primarily force of attraction for the investigated supramolecular complexations.

  12. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    an increase in engine power. The use of methanol for combustion phasing control was tested successfully in a large diesel engine with common rail, in which the piston bowls were widened to give a compression ratio of 14.5. This compression ratio still allows DI CI operation with DME, but requires...... in the combustion chamber and hence the noise emitted from the engine. The study showed that minimum exposure of the cylinder liner is critical in reducing the transmitted noise. The effect of splitting the chamber into smaller volumes was tested, by shaping piston crowns with cavities. It was found that piston......This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...

  13. Polybrominated diphenyl ethers in Mississippi River suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Raff, J.; Hites, R. [Indiana Univ., Bloomington, IN (United States)

    2004-09-15

    The Mississippi River Basin drains water from 41% of the conterminous U.S. and is a valuable resource that supplies food, transportation, and irrigation to more than 95 million people of the region. Discharge and runoff from industry, agriculture, and population centers have increased the loads of anthropogenic organic compounds in the river. There has been growing concern over the rising levels of polybrominated diphenyl ethers (PBDEs) in air, sediment, biota, and humans, but there have been no studies to measure the concentrations of these chemicals in North America's largest river system. The goal of this study was to investigate the occurrence of PBDEs (15 congeners including BDE-209) and to identify possible sources within the Mississippi River Basin. We found PBDEs to be widespread throughout the region, rivaling PCBs in their extent and magnitude of contamination. We have also calculated the total amount of PBDEs released to the Gulf of Mexico in 2002.

  14. (R,R-Disynephrine ether bis(hydrogen sulfate

    Directory of Open Access Journals (Sweden)

    William Arbuckle

    2009-08-01

    Full Text Available The asymmetric unit of the title compound [systematic name: (R,R-2,4-bis(4-hydroxyphenyl-N,N′-dimethyl-3-oxapentane-1,5-diammonium bis(hydrogen sulfate], C18H26N2O32+·2HSO4−, contains one half-cation and one hydrogen sulfate anion. The cation has crystallographically imposed twofold symmetry with the rotation axis passing through the central ether O atom. Hydrogen bonds between the hydroxy group and amine H atoms of the cation to two hydrogen sulfate anions link the three ions in a ring motif. A three-dimensional network is accomplished by additional O—H...O hydrogen bonds between the anions and by N—H...O hydrogen bonds between the cations. Disorder with equally occupied sites affects the H-atom position in the anion.

  15. Poly(phenylene ether Based Amphiphilic Block Copolymers

    Directory of Open Access Journals (Sweden)

    Edward N. Peters

    2017-09-01

    Full Text Available Polyphenylene ether (PPE telechelic macromonomers are unique hydrophobic polyols which have been used to prepare amphiphilic block copolymers. Various polymer compositions have been synthesized with hydrophilic blocks. Their macromolecular nature affords a range of structures including random, alternating, and di- and triblock copolymers. New macromolecular architectures can offer tailored property profiles for optimum performance. Besides reducing moisture uptake and making the polymer surface more hydrophobic, the PPE hydrophobic segment has good compatibility with polystyrene (polystyrene-philic. In general, the PPE contributes to the toughness, strength, and thermal performance. Hydrophilic segments go beyond their affinity for water. Improvements in the interfacial adhesion between polymers and polar substrates via hydrogen bonding and good compatibility with polyesters (polyester-philic have been exhibited. The heterogeneity of domains in these PPE based block copolymer offers important contributions to diverse applications.

  16. Biosynthetic Origin of the Ether Ring in Platensimycin.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Manoogian, Karina; Shen, Ben

    2016-12-28

    Platensimycin (PTM) and platencin (PTN) are highly functionalized bacterial diterpenoid natural products that target bacterial and mammalian fatty acid synthases. PTM and PTN feature varying diterpene-derived ketolides that are linked to the same 3-amino-2,4-dihydroxybenzoic acid moiety. As a result, PTM is a selective inhibitor for FabF/FabB, while PTN is a dual inhibitor of FabF/FabB and FabH. We previously determined that the PTM cassette, consisting of five genes found in the ptm, but not ptn, gene cluster, partitions the biosynthesis of the PTM and PTN diterpene-derived ketolides. We now report investigation of the PTM cassette through the construction of diterpene production systems in E. coli and genetic manipulation in the PTM-PTN dual overproducer Streptomyces platensis SB12029, revealing two genes, ptmT3 and ptmO5, that are responsible for the biosynthetic divergence between the PTM and PTN diterpene-derived ketolides. PtmT3, a type I diterpene synthase, was determined to be a (16R)-ent-kauran-16-ol synthase, the first of its kind found in bacteria. PtmO5, a cytochrome P450 monooxygenase, is proposed to catalyze the formation of the characteristic 11S,16S-ether ring found in PTM. Inactivation of ptmO5 in SB12029 afforded the ΔptmO5 mutant SB12036 that accumulated nine PTM and PTN congeners, seven of which were new, including seven 11-deoxy-16R-hydroxy-PTM congeners. The two fully processed PTM analogues showed antibacterial activities, albeit lower than that of PTM, indicating that the ether ring, or minimally the stereochemistry of the hydroxyl group at C-16, is crucial for the activity of PTM.

  17. The ether lipid precursor hexadecylglycerol protects against Shiga toxins.

    Science.gov (United States)

    Bergan, Jonas; Skotland, Tore; Lingelem, Anne Berit Dyve; Simm, Roger; Spilsberg, Bjørn; Lindbäck, Toril; Sylvänne, Tuulia; Simolin, Helena; Ekroos, Kim; Sandvig, Kirsten

    2014-11-01

    Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, DL-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC₅₀) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50-70% of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70% of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.

  18. Impaired neurotransmission in ether lipid-deficient nerve terminals.

    Science.gov (United States)

    Brodde, Alexander; Teigler, Andre; Brugger, Britta; Lehmann, Wolf D; Wieland, Felix; Berger, Johannes; Just, Wilhelm W

    2012-06-15

    Isolated defects of ether lipid (EL) biosynthesis in humans cause rhizomelic chondrodysplasia punctata type 2 and type 3, serious peroxisomal disorders. Using a previously described mouse model [Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., and Just, W.W. (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet., 12, 1881-1895], we investigated the effect of EL deficiency in isolated murine nerve terminals (synaptosomes) on the pre-synaptic release of the neurotransmitters (NTs) glutamate and acetylcholine. Both Ca(2+)-dependent exocytosis and Ca(2+)-independent efflux of the transmitters were affected. EL-deficient synaptosomes respire at a reduced rate and exhibit a lowered adenosin-5'-triphosphate/adenosine diphosphate (ATP/ADP) ratio. Consequently, ATP-driven processes, such as synaptic vesicle cycling and maintenance of Na(+), K(+) and Ca(2+) homeostasis, might be disturbed. Analyzing reactive oxygen species in EL-deficient neural and non-neural tissues revealed that plasmalogens (PLs), the most abundant EL species in mammalian central nervous system, considerably contribute to the generation of the lipid peroxidation product malondialdehyde. Although EL-deficient tissue contains less lipid peroxidation products, fibroblasts lacking ELs are more susceptible to induced oxidative stress. In summary, these results suggest that due to the reduced energy state of EL-deficient tissue, the Ca(2+)-independent efflux of NTs increases while the Ca(2+)-dependent release declines. Furthermore, lack of PLs is mainly compensated for by an increase in the concentration of phosphatidylethanolamine and results in a significantly lowered level of lipid peroxidation products in the brain cortex and cerebellum.

  19. Evaluating the swelling, erosion, and compaction properties of cellulose ethers.

    Science.gov (United States)

    Ghori, Muhammad U; Grover, Liam M; Asare-Addo, Kofi; Smith, Alan M; Conway, Barbara R

    2018-02-01

    Swelling, erosion, deformation, and consolidation properties can affect the performance of cellulose ethers, the most commonly used matrix former in hydrophilic sustained tablet formulations. The present study was designed to comparatively evaluate the swelling, erosion, compression, compaction, and relaxation properties of the cellulose ethers in a comprehensive study using standardised conditions. The interrelationship between various compressional models and the inherent deformation and consolidation properties of the polymers on the derived swelling and erosion parameters are consolidated. The impact of swelling (K w ) on erosion rates (K E ) and the inter-relationship between Heckel and Kawakita plasticity constants was also investigated. It is evident from the findings that the increases in both substitution and polymer chain length led to higher K w , but a lower K E ; this was also true for all particle size fractions regardless of polymer grade. Smaller particle size and high substitution levels tend to increase the relative density of the matrix but reduce porosity, yield pressure (P y ), Kawakita plasticity parameter (b -1 ) and elastic relaxation. Both K W versus K E (R 2  = 0.949-0.980) and P y versus. b -1 correlations (R 2  = 0.820-0.934) were reasonably linear with regards to increasing hydroxypropyl substitution and molecular size. Hence, it can be concluded that the combined knowledge of swelling and erosion kinetics in tandem with the in- and out-of-die compression findings can be used to select a specific polymer grade and further to develop and optimize formulations for oral controlled drug delivery applications.

  20. EXPOSURE TO ETHYLENE GLYCOL MONOBUTYL ETHER AND RELATED WORKERS HABITS IN AN INK FACTORY

    Directory of Open Access Journals (Sweden)

    W. C. Lin, H. Y. Chang, F. H. Chang

    2008-01-01

    Full Text Available Forty six workers from an ink factory were included in this study, in which, passive badge sampler and questionnaire interview were used to assess the concentrations of airborne exposure to ethylene glycol monobutyl ether during work shifts and to understand the subjects' working habits. The geometric mean value (95% confidence interval of the airborne ethylene glycol monobutyl ether concentrations was 0.12(0.08-0.19ppm, with a range of <0.02-1.82ppm. The exposure group was exposed to statistically significantly higher ethylene glycol monobutyl ether concentrations than the control group (geometric mean value: 0.14vs. 0.03ppm; P=0.017. Some chromatograms showed that subjects were co-exposed to m-xylene, ethylene glycol monomethyl ether, and ethylene glycol monoethyl ether acetate. According to the completed questionnaires, subjects might also be exposed to 1,2,4,5-tetramethylbenzene, propylene glycol ethers, ethanol, 1,2,4-trimethylbenzene, methanol and diisononyl phthalate. This study also suggests that, the Taiwan occupational time-weighted average level of ethylene glycol monobutyl ether be reconsidered with a view to being lowered.

  1. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities.

    Science.gov (United States)

    Lou, Jingfeng; Yu, Ruiting; Wang, Xiaohan; Mao, Ziling; Fu, Linyun; Liu, Yang; Zhou, Ligang

    2016-01-01

    One bioactive compound, identified as alternariol 9-methyl ether, was isolated from the crude extract of the endophytic fungus Alternaria sp. Samif01 residing in the roots of Salvia miltiorrhiza Bunge. Alternariol 9-methyl ether was active against bacteria with minimum inhibitory concentration values ranging from 25 to 75μg/mL and median inhibitory concentration (IC50) values ranging from 16.00 to 38.27μg/mL. The IC50 value of alternariol 9-methyl ether against spore germination of Magnaporthe oryzae was 87.18μg/mL. Alternariol 9-methyl ether also showed antinematodal activity against Bursaphelenchus xylophilus and Caenorhabditis elegans with IC50 values of 98.17μg/mL and 74.62μg/mL, respectively. This work is the first report on alternariol 9-methyl ether and its biological activities from the endophytic fungus Alternaria sp. Samif01 derived from S. miltiorrhiza Bunge. The results indicate the potential of Alternaria sp. Samif01 as a source of alternariol 9-methyl ether and also support that alternariol 9-methyl ether is a natural compound with high potential bioactivity against microorganisms. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. The Preparation and Intramolecular Radical Cyclisation Reactions of Chiral Oxime Ethers

    Directory of Open Access Journals (Sweden)

    Booth Susan E.

    1998-01-01

    Full Text Available Chiral oxime ether 2 and Oxime ester 4 have been prepared by alkylation and esterification of the oxime 1. Racemic hydroxylamine 6 and chiral hydroxylamine 10 have been synthesised from N-hydroxysuccinimide and the corresponding alcohol in the presence of diethylazodicarboxylate, the two products were converted into the oxime ethers 7 and 11 respectively. The intramolecular radical cyclisation reactions of these oxime ethers and esters has been studied, successful reaction was observed to produce alkyl hydroxylamines 3, 8 and 12.

  3. FT-IR and NIR spectroscopic investigation of hydrogen bonding in indole-ether systems

    Science.gov (United States)

    Kordić, B.; Kovačević, M.; Sloboda, T.; Vidović, A.; Jović, B.

    2017-09-01

    This paper reports FTIR and NIR spectroscopic study of hydrogen bonding between indole and different ethers in carbon tetrachloride. With increase in ether concentration increase in intensity of red-shifted band, and decrease of intensity of monomer band has been observed. The FTIR and NIR spectroscopic characteristics for N-H⋯O hydrogen bonded complexes and also the equilibrium constants for 1:1 complex formation are given. Influence of structural differences of ethers on hydrogen bonding was investigated using Taft equation. Good correlation has been obtained.

  4. Amination of ethers using chloramine-T hydrate and a copper(I) catalyst.

    Science.gov (United States)

    Albone, David P; Challenger, Stephen; Derrick, Andrew M; Fillery, Shaun M; Irwin, Jacob L; Parsons, Christopher M; Takada, Hiroya; Taylor, Paul C; Wilson, D James

    2005-01-07

    Amination of C-H bonds activated by ether oxygen atoms is facile with chloramine-T as nitrene source and copper(I) chloride in acetonitrile as catalyst. For cyclic ethers the hemiaminal products are generally stable and can be isolated pure. For acyclic ethers, the hemiaminal products, as expected, fragment with elimination of alcohol to yield imines. When activation of benzylic positions is remote through a conjugated system, stable benzylamine derivatives are isolated. Mechanistic studies are consistent with concerted insertion of an electrophilic nitrenoid into the C-H bond in the rate-determining step, though in an asynchronous manner with a more activated substrate.

  5. State of the water in crosslinked sulfonated poly(ether ether ketone). Two-dimensional differential scanning calorimetry correlation mapping

    Energy Technology Data Exchange (ETDEWEB)

    Al Lafi, Abdul G. [Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Hay, James N., E-mail: cscientific9@aec.org.sy [The School of Metallurgy and Materials, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-07-20

    Highlights: • 2D-DSC mapping was applied to analyze the heat flow responses of hydrated crosslinked sPEEK. • Two types of loosely bond water were observed. • The first was bond to the sulfonic acid groups and increased with ion exchange capacity. • The second was attributed to the polar groups introduced by ions irradiation and increased with crosslinking degree. • DSC combined with 2D mapping provides a powerful tool for polymer structural determination. - Abstract: This paper reports the first application of two-dimensional differential scanning calorimetry correlation mapping, 2D-DSC-CM to analyze the heat flow responses of sulphonated poly(ether ether ketone), sPEEK, films having different ion exchange capacity and degrees of crosslinks. With the help of high resolution and high sensitivity of 2D-DSC-CM, it was possible to locate two types of loosely bound water within the structure of crosslinked sPEEK. The first was bound to the sulfonic acid groups and dependent on the ion exchange capacity of the sPEEK. The second was bound to other polar groups, either introduced by irradiation with ions and dependent on the crosslinking degree or present in the polymer such as the carbonyl groups or terminal units. The results suggest that the ability of the sulfonic acid groups in the crosslinked sPEEK membranes to adsorb water molecules is increased by crosslinking, probably due to the better close packing efficiency of the crosslinked samples. DSC combined with 2D correlation mapping provides a fast and powerful tool for polymer structural determination.

  6. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Kimball S.; Hirth, Thomas [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany); Schiestel, Thomas, E-mail: Thomas.Schiestel@igb.fraunhofer.de [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany)

    2011-05-25

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 {+-} 2.6 kJ mol{sup -1}. High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  7. Ether-bond-containing ionic liquids and the relevance of the ether bond position to transport properties.

    Science.gov (United States)

    Monteiro, Marcelo J; Camilo, Fernanda F; Ribeiro, Mauro C C; Torresi, Roberto M

    2010-10-07

    The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide, [BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide [BMMor][Tf(2)N]. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed H(R) values for [EtO(CH(2))(2)MMor][Tf(2)N].

  8. Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with {beta}-cyclodextrin: Unusual behavior of 4-aminodiphenyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Enoch, Israel V. Muthu Vijayan [Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu (India); Swaminathan, Meenakshisundaram [Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu (India)], E-mail: chemsam@yahoo.com

    2007-12-15

    The fluorescence characteristics of diphenyl ether (DPE), 2-aminodiphenyl ether (2ADPE) and 4-aminodiphenyl ether (4ADPE) and prototropic behavior of 2ADPE and 4ADPE on inclusion complexation with {beta}-cyclodextrin have been investigated. DPE forms 1:1 complex whereas 2ADPE and 4ADPE form 1:2 complex with {beta}-CDx. The fluorimetric and prototropic behaviors of 4ADPE in {beta}-CDx are different from those in aqueous solution. The dual fluorescence of 4ADPE in {beta}-CDx is found to be due to twisted intramolecular charge transfer (TICT) character induced by inclusion complexation. The two equilibria viz. monocation{r_reversible}monocation solvent exciplex{r_reversible}neutral reported for 4ADPE in aqueous solution are not observed in presence of {beta}-CDx. The ground and excited state pK{sub a} values for monocation-neutral equilibrium of 2ADPE and 4ADPE have been reported.

  9. ETHER: HISTORICAL IMPORTANCE IN SCIENCE AND APPROACH THE TEXTBOOK OF SECONDARY EDUCATION

    National Research Council Canada - National Science Library

    J. C. B. Soares; E. P. Soares; J. A. Pereira

    2016-01-01

    This article aimed to conduct a brief rereading as the importance of the ether, from its earliest conception to the present within a historical context to the current scientific knowledge development...

  10. Fluorinated 5- and 7-membered carbacycle motifs by reaction of difluorocarbene with acetylene ethers.

    Science.gov (United States)

    Chia, Poh Wai; Bello, Davide; Slawin, Alexandra M Z; O'Hagan, David

    2013-03-18

    The reaction of acetylene ethers with difluorocarbene (CF(2)), generated from the Ruppert-Prakash reagent, unexpectedly gave rise to co-produced fluorinated bicyclic [2.1.1]-hex-2-ene and cyclohepta-1,4-diene ring products.

  11. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    Science.gov (United States)

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch......-clamp assay and in [(3)H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site...... of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  13. Elton Romeo Smilie, the not-quite discoverer of ether anesthesia.

    Science.gov (United States)

    Stone, Martha E; Meyer, Marlene R; Alston, Theodore A

    2010-01-01

    Like William T.G. Morton, Elton Romeo Smilie (1819-1889) was raised in Massachusetts, attended medical school in New England, practiced dentistry there, strove for clinical invention, and moved to Boston. In October 1846, both announced that inhaled ethereal preparations achieved reversible insensibility in surgical patients. Smilie published a report in the Boston Med Surg J 3 wk before Bigelow used that forum to broadcast Morton's Ether Day. Smilie's preparation was an ethereal tincture of opium, and, as he mistakenly believed the opium to be volatile and important, he ceded priority to Morton for ether anesthesia. The two authors collaborated on chloroform, but Smilie soon headed off in the Gold Rush to California. It is tempting to speculate that Charles T. Jackson and Morton were indebted in part to Smilie.

  14. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (External Review Draft)

    Science.gov (United States)

    EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database.

  15. Santonic acid: Zn-HCl-ether reduction and ceric ammonium nitrate oxidation.

    Science.gov (United States)

    Fondekar, Kamlesh Pai; Malik, Bhiwa; Paknikar, Shashikumar Keshav

    2014-01-01

    Reduction of santonic acid using Zn-HCl-ether yielded succinic anhydride derivatives via pinacolisation followed by rearrangement, whereas oxidation of santonic acid using ceric ammonium nitrate afforded five oxidative decarboxylation products. Dedicated to Prof. TBH McMurry.

  16. Miconidin and miconidin methyl ether from Primula obconica Hance: new allergens in an old sensitizer

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Andersen, Klaus Ejner

    2006-01-01

    Several chemical and clinical observations have suggested the presence of at least one more allergen in addition to primin in Primula obconica. The aim of this study was to investigate the allergenicity of the primin precursor miconidin and the related miconidin methyl ether, both isolated from P....... obconica. 12 primin-positive persons were patch tested with miconidin 0.01% petrolatum (pet.), miconidin in 96% ethanol incorporated into 0.01% pet., and miconidin methyl ether 1.0% pet. All persons were positive to miconidin 0.01% pet., with the strength of reactions very similar to those...... of the individual primin reactions, and remained inexplicably negative while testing with miconidin in 96% ethanol and pet., while miconidin methyl ether elicited 7 positive reactions. Although both miconidin and miconidin methyl ether may be allergenic only due to their conversion to primin in the skin...

  17. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland

    DEFF Research Database (Denmark)

    Bossi, Rossana; Vorkamp, Katrin; Skov, Henrik

    2016-01-01

    Atmospheric concentrations of organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and neutral per- and polyfluoroalkyl substances (PFAS) have been measured at Villum Research Station, Station Nord (North Greenland) in the period 2008–2013. Atmospheric concentrations of OCPs...

  18. Ethereal C–O Bond Cleavage Mediated by Ni(0)-Ate Complex: A DFT Study

    National Research Council Canada - National Science Library

    Kojima, Kumiko; Yang, Ze-Kun; Wang, Chao; Uchiyama, Masanobu

    2017-01-01

    Density functional theory calculations were performed to explore the mechanism of Ni-catalyzed cross-coupling reactions involving organo-lithium and -zinc reagents through ethereal C–O bond cleavage...

  19. Exposure of German residents to ethylene and propylene glycol ethers in general and after cleaning scenarios.

    Science.gov (United States)

    Fromme, H; Nitschke, L; Boehmer, S; Kiranoglu, M; Göen, T

    2013-03-01

    Glycol ethers are a class of semi-volatile substances used as solvents in a variety of consumer products like cleaning agents, paints, cosmetics as well as chemical intermediates. We determined 11 metabolites of ethylene and propylene glycol ethers in 44 urine samples of German residents (background level study) and in urine samples of individuals after exposure to glycol ethers during cleaning activities (exposure study). In the study on the background exposure, methoxyacetic acid and phenoxyacetic acid (PhAA) could be detected in each urine sample with median (95th percentile) values of 0.11 mgL(-1) (0.30 mgL(-1)) and 0.80 mgL(-1) (23.6 mgL(-1)), respectively. The other metabolites were found in a limited number of samples or in none. In the exposure study, 5-8 rooms were cleaned with a cleaner containing ethylene glycol monobutyl ether (EGBE), propylene glycol monobutyl ether (PGBE), or ethylene glycol monopropyl ether (EGPE). During cleaning the mean levels in the indoor air were 7.5 mgm(-3) (EGBE), 3.0 mgm(-3) (PGBE), and 3.3 mgm(-3) (EGPE), respectively. The related metabolite levels analysed in the urine of the residents of the rooms at the day of cleaning were 2.4 mgL(-1) for butoxyacetic acid, 0.06 mgL(-1) for 2-butoxypropionic acid, and 2.3 mgL(-1) for n-propoxyacetic acid. Overall, our study indicates that the exposure of the population to glycol ethers is generally low, with the exception of PhAA. Moreover, the results of the cleaning scenarios demonstrate that the use of indoor cleaning agents containing glycol ethers can lead to a detectable internal exposure of residents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Carbamate-directed benzylic lithiation for the diastereo- and enantioselective synthesis of diaryl ether atropisomers

    Directory of Open Access Journals (Sweden)

    Abigail Page

    2011-09-01

    Full Text Available Diaryl ethers carrying carbamoyloxymethyl groups may be desymmetrised enantio- and diastereoselectively by the use of the sec-BuLi–(−-sparteine complex in diethyl ether. Enantioselective deprotonation of one of the two benzylic positions leads to atropisomeric products with ca. 80:20 e.r.; an electrophilic quench typically provides functionalised atropisomeric diastereoisomers in up to 97:3 d.r.

  1. Water-Filled Telescopes and the Pre-History of Fresnel's Ether Dragging

    DEFF Research Database (Denmark)

    Pedersen, Kurt Møller

    2000-01-01

    The idea of measuring stellar aberration with a water-filled telescope was entertained from the middle of the 18th century by Thomas Melvill, Patrick Wilson, Roger Joseph Boscovich, and John Robison. I shall discuss their ideas as well as those discussed by Thomas Young, Francois Arago, and Augus...... for the ether dragging, the ether being the very subtle medium through which light propagates....

  2. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  3. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.

  4. Rotational Spectra of Halogenated Ethers Used as Volatile Anaesthetics

    Science.gov (United States)

    Vega-Toribio, Alicia; Lesarri, Alberto; Suenram, Richard D.; Grabow, Jens-Uwe

    2009-06-01

    Following previous microwave investigations by Suenram et al., we will report on the rotational spectrum of several halogenated ethers used as volatile anaesthetics, including sevoflurane ((CF_3)_2CH-O-CH_2F), isoflurane (CF_3CHCl-O-CHF_2), enflurane (CHFClCF_2-O-CHF_2) and methoxyflurane (CHCl_2CF_2-O-CH_3). This study has been conducted in the 6-18 GHz centimetre-wave region using Balle-Flygare-type FT-microwave spectroscopy. The results will include the analysis of the rotational spectra of minor species in natural abundance (^{13}C and ^{18}O in some cases), structural calculations and auxiliary ab initio modelling. The conformational and structural conclusions will be compared with previous gas-phase electron diffraction and solid-state X-ray diffraction analysis. R. D. Suenram, D. J. Brugh, F. J. Lovas and C. Chu, 51st OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 1999, RB07

  5. Maternal-infant transfer of polybrominated diphenyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T.; Fujimine, Y.; Watanabe, S. [Otsuka Pharmaceutical Co., Ltd., Tokushima (Japan); Nakamura, Y. [SRL Nishinihon, Fukuoka (Japan); Shimomura, H. [Shimomura OBGY Clinic, Fukuoka (Japan); Nagayama, J. [Kyushu Univ., Fukuoka (Japan)

    2004-09-15

    Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants (BFRs) in plastics of automobiles, textile industry, television, personal computer, electronic appliances etc. The amount of production world-wide has reached 40,000 tons in 1992. In 1992 world-wide production of PBDEs reached 40,000 tons raising serious concern over the dangers of environmental pollution by BFRs. The toxicity of PBDEs was reported to be an antagonist of thyroid-hormone (T4) and inhibition to aryl hydrocarbon (Ah) receptor. Since PBDEs are structurally similar to PCBs and therefore they work as an antagonist. Polychlorinated biphenyl (PCBs) demonstrate biological stability and high lipophilicity. As a result, PCBs used in the past and released into the environment, have been transmitted through the food chain and accumlated in the human body over time. In Japan, approximately 58,000 tons of PCBs were produced with the grade name of Kanechlor in between 1954 and 1971. In this study, all PCB congeners and 25 PBDE congeners (17, 25, 28, 30, 32, 33, 35, 37, 47, 49, 66, 71, 75, 77, 85, 99, 100, 116, 119, 126, 138, 153, 154, 155, 166) were analyzed by the method that combines high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS). The purpose of this study was to investigate whether congener-specific PCBs and PBDEs were transferred from pregnant women to their infants.

  6. Phthalates and polybrominated diphenyl ethers in retail stores

    Science.gov (United States)

    Xu, Ying; Liang, Yirui; Urquidi, Jorge R.; Siegel, Jeffrey A.

    2014-04-01

    Retail stores contain a wide range of products that can emit a variety of indoor pollutants. Among these chemicals, phthalate esters and polybrominated diphenyl ethers (PBDEs) are two important categories, because they are extensively used as additives in consumer products and associated with serious health concerns. This study measured six phthalate and 14 PBDE compounds inside of 12 retail stores in Texas and Pennsylvania, U.S. Phthalates and PBDEs were widely found in the retail environment, indicating that they are ubiquitous indoor air pollutants. DEP, DnBP, and DEHP were the most abundant phthalates, with DnBP showing the highest concentration (0.23 ± 0.36 μg m-3). PBDEs were dominated by BDE-28, -99, and -209, having concentrations as high as 0.85 ± 1.99 ng m-3 (BDE-99). The levels of phthalates and PBDEs measured in this study are comparable to concentrations found in previous investigations of residential buildings, with phthalates showing lower concentrations and PBDEs exhibiting higher concentrations in retail stores. The potential co-occurrence of phthalates was not as strong as that of PBDEs, suggesting that phthalates might have more diverse sources. Whole building emission rates were calculated and showed similar patterns of variations as indoor air concentrations, suggestion the diversity of indoor sources of phthalates and PBDEs in retail environments.

  7. The effect of ether anesthesia on fin-clipping rate

    Science.gov (United States)

    Eschmeyer, Paul H.

    1953-01-01

    As part of an experimental program to learn the effects of stocking lake trout (Salvelinus namaycush) in Lake Superior, 141, 392 fingerlings were marked at the Charlevoix (Michigan) Station of the U.S. Fish and Wildlife Service in October 1952. The adipose fin was removed from all fish, the right pelvic from the remainder. A random sample of 2, 417 of the fish showed an average total length of 4.0 inches (range, 2.7 to 5.4). The mean weight of all fish marked was slightly less than one-third ounce (49 fish per pound). The local women, none of whom had previous experience in the work, were employed to mark the fish. Bone-cutting forceps were used for excision of the fins, and each worker wore a bobbinet glove to facilitate handling of the fish. On alternate days the fish were anesthetized with ether before marking, to determine the effect of its use on the fin-clipping rate.

  8. Theoretical investigations on direct photolysis mechanisms of polychlorinated diphenyl ethers.

    Science.gov (United States)

    Wang, Se; Hao, Ce; Gao, Zhanxian; Chen, Jingwen; Qiu, Jieshan

    2014-09-01

    Polychlorinated diphenyl ethers (PCDEs) are a focus of current environmental concern as a group of ubiquitous potential persistent organic pollutants. There are still significant gaps in our knowledge concerning the photolysis mechanisms of PCDEs. In this study, the direct photolysis mechanisms of PCDEs were investigated by density functional theory. The direct photolysis of PCDEs has three potential reaction pathways including photodechlorination, C-O bond photodissociation, and PCDFs formation. Taking a representative PCDE (i.e., CDE8) for example, we found that C-Cl bond dissociation is the rate-determining step for the photodechlorination. Chlorobenzene is predicted to be photoproduct of CDE8 through the photodissociation of the C-O bond. Furthermore, the calculated mean bond dissociation energies of both C-Cl and C-O bonds of 20 PCDEs decrease with the increased degree of chlorination. It is also found that the photoactivity of PCDEs increases with an increase of chlorination degree by evaluating the average charge of Cl atoms and mean bond dissociation energies of C-Cl and C-O bonds from reaction thermodynamics. Our findings provided a new insight into the mechanisms of direct photolysis of PCDEs, which may be useful in the future in utilizing quantum chemistry calculation in investigating the behavior and fate of organic pollutants in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Isolation of Ether-Resistant Enteroviruses from Sewage: Methodology

    Science.gov (United States)

    Duff, Michael F.

    1970-01-01

    Experiments were conducted to determine whether polio type 1 (Mahoney and coxsackie A8 viruses adsorb onto cotton fibers of sewer swabs. Negative results were obtained. It has been shown that viruses may exist in sewage as free virus particles or as bound (adsorbed) virus particles. The sewer-swab method of sampling is superior because it filters out the bound virus over several days; when collected, it represents a catch (grab) sample at that particular time which may or may not contain free virus. A simple method for the preparation of sewage inocula for virus isolations is described which samples the bound virus fraction. Only ether-resistant viruses can be isolated, and an ultracentrifuge is not required. By this method, an isolation rate between 60 and 80% of positive sewer swabs can be achieved. Corresponding figures of 84 and 96% were achieved by concentration of sewer-swab eluates with an ultracentrifuge. Quantitative studies showed that the virus concentration in raw sewage can be as high as one infectious particle per 0.5 ml. PMID:4313310

  10. Preparation and evaluation of some amide ether carboxylate surfactants

    Directory of Open Access Journals (Sweden)

    M.M.A. El-Sukkary

    2012-06-01

    Full Text Available A homologous series of new mild surfactants, namely: Alkyl amide ether carboxylates surfactants (AEC RCO–NHCH2CH2O (CH2CH2O6CH2COONa, were synthesized by esterification, amidation, ethoxylation and carboxymethylation reaction steps of fatty acids (Lauric, Myristic, palmitic, stearic, oleic or linoleic. The chemical structures of the prepared compounds were confirmed using different spectroscopic techniques, FTIR spectroscopy, mass spectra and HNMR. The surface properties including surface and interfacial tensions, foaming height, emulsification power, calcium ion stability, stability to hydrolysis and critical micelle concentration (cmc were determined. The study of their surface properties showed their stability in hard water and in acidic and alkaline media. These compounds have high calcium ion stability. The low foaming power could have an application in the dyeing auxiliary industry. The lower values of the interfacial tension values indicate the ability of using these surfactants in several applications as corrosion inhibitors and biocides. The data revealed various advantages and potentials as a main surfactant as well as co- surfactants.

  11. Crown ethers and phase transfer catalysis in polymer science

    CERN Document Server

    Carraher, Charles

    1984-01-01

    Phase transfer catalysis or interfacial catalysis is a syn­ thetic technique involving transport of an organic or inorganic salt from a solid or aqueous phase into an organic liquid where reaction with an organic-soluble substrate takes place. Over the past 15 years there has been an enormous amount of effort invested in the development of this technique in organic synthe­ sis. Several books and numerous review articles have appeared summarizing applications in which low molecular weight catalysts are employed. These generally include either crown ethers or onium salts of various kinds. While the term phase transfer catalysis is relatively new, the concept of using a phasetrans­ fer agent (PTA) is much older~ Both Schnell and Morgan employed such catalysts in synthesis of polymeric species in the early 1950's. Present developments are really extensions of these early applications. It has only been within the last several years that the use of phase transfer processes have been employed in polymer synthesis...

  12. Study of liver function and expression of some detoxification genes in the male rats exposed to methyl-tertiary butyl ether

    Directory of Open Access Journals (Sweden)

    Ahmad Ali Badr

    2016-10-01

    Conclusion: The present study revealed that exposure to MTBE has significant effect on the increasing of serum albumin and total protein, and it has no effect on the mRNA levels of the Gstt1, Gstm1, and Gstp1 genes.

  13. Effect of decabromodiphenyl ether (BDE 209) and dibromodiphenyl ether (BDE 15) on soil microbial activity and bacterial community composition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lu, E-mail: liulu519@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Zhu Wei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Xiao Lin, E-mail: xiaolin@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Yang Liuyan, E-mail: yangly@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2011-02-15

    There is now increasing concern regarding the effect of polybrominated diphenyl ethers (PBDEs) on the environment. These compounds are widely used as fire retardants and by the electronic industry. Our study examined the effects of adding different doses of BDE 15 and BDE 209 on the soil microbial activities and function by using denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and soil enzymatic activity analyses. Soils were spiked with 1, 10, and 100 mg kg{sup -1} BDE 209 and BDE 15, respectively, and incubated for up to 180 days. No degradation of BDE 209 was observed; however, about 40% of the added BDE 15 underwent declining extractable concentration. Bacterial counts were significantly higher in the microcosms amended with BDE 15, while the suppression effect increased as the BDE 209 concentration increased. Pseudomonas, Bacillus and uncultured bacteria dominated the bacterial communities in all soil treatments, and PCA analysis showed that high doses of BDE 209 and BDE 15 altered the soil microbial community structure. This study provides new information on the effect of higher and lower PBDEs on the soil microbial community in an aerobic environment.

  14. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)

    Science.gov (United States)

    Li, Zhen; Jiang, Zhongyi; Tian, Huimin; Wang, Siwen; Zhang, Bei; Cao, Ying; He, Guangwei; Li, Zongyu; Wu, Hong

    2015-08-01

    The development of alkaline anion exchange membrane (AEM) with both high ion conductivity and stabilities is of great significance for fuel cell applications. In this study, a facile acid-base blending method is designed to improve AEM performances. Basic imidazolium-functionalized poly (ether ether ketone) with a high functionalization degree is employed as polymer matrix to pursue high ion-exchange capacity (IEC) as well as high hydroxide conductivity, meanwhile acidic sulfonated poly (ether ether ketone) (SPEEK) is employed as the cross-linking agent to enhance the stabilities of the blend membranes. Particularly, an in-situ Menshutkin/crosslinking method is exploited to prevent the flocculation in the preparation process of blend membranes. As a result, dense and defect-free blend membranes are obtained. The blend membranes exhibit high level of IEC up to 3.15 mmol g-1, and consequently possess elevated hydroxide conductivity up to 31.59 mS cm-1 at 30 °C. In addition, benefiting from the strong electrostatic interaction introduced by the acid-base blending, the stabilities and methanol resistance of blend membranes are enhanced.

  15. Block copolymers of poly(vinyl ethers) and poly(ethylene glycol) by means of the living cationic polymerization of vinyl ethers

    NARCIS (Netherlands)

    Loontjens, Ton; Derks, Frank; Kleuskens, Engelien

    1992-01-01

    If living poly(vinyl ethers) are terminated with a large excess of methanol, containing aqueous ammonia, well-defined products are obtained. If only a slight excess of methanol is used, aldehydes and coupling products are formed. However, termination with an excess of a hydroxy terminated polymer is

  16. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  17. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements.

    Science.gov (United States)

    Jun, Jungho; Yeom, Hyu-Suk; An, Jun-Hyun; Shin, Seunghoon

    2013-01-01

    Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion-dipole pair.

  18. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  19. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on

  20. Polybrominated diphenyl ether flame retardants in the North American environment.

    Science.gov (United States)

    Hale, Robert C; Alaee, Mehran; Manchester-Neesvig, Jon B; Stapleton, Heather M; Ikonomou, Michael G

    2003-09-01

    North America consumes over half of the world's production of polybrominated diphenyl ether (PBDE) flame retardants. About 98% of global demand for the Penta-BDE mixture, the constituents of which are the most bioaccumulative and environmentally widespread, resides here. However, research on the environmental distribution of PBDEs in North America has lagged behind that in Northern Europe. Examination of available governmentally maintained release data suggests that Deca-BDE use in the US substantially exceeds that in Canada. Penta-BDE use probably follows a similar pattern. PBDE demand in Mexico is uncertain, but is assumed to be comparatively modest. Recent research examining air, water, sediment, sewage sludge and aquatic biota suggests that Penta-BDE constituents are present in geographically disparate locations in the US and Canada. The less brominated congeners have been observed in areas distant from their known use or production, e.g. the Arctic. PBDEs have been detected in low concentrations in North American air, water and sediment, but much higher levels in aquatic biota. Increased burdens as a function of position in the food web have been noted. PBDE concentrations in US and Canadian sewage sludges appear to be at least 10-fold greater than European levels and may be a useful barometer of release. In general, PBDE concentrations in environmental media reported in North America are comparable or exceed those observed elsewhere in the world. In contrast to Europe, environmental burdens are increasing over time here, consistent with the greater consumption of the commercial mixtures. However, data remain relatively scarce. Deca-BDE in the North American environment appears largely restricted to points of release, e.g. urban areas and those where PBDE-containing sewage sludges have been applied. This lack of redistribution is likely due to its extremely low volatility and water solubility. Penta-BDE and Deca-BDE products are used in different applications