WorldWideScience

Sample records for tephritid fruit flies

  1. The cryptochrome (cry) Gene and a Mating Isolation Mechanism in Tephritid Fruit Flies

    OpenAIRE

    An, Xin; Tebo, Molly; Song, Sunmi; Frommer, Marianne; Raphael, Kathryn A.

    2004-01-01

    Two sibling species of tephritid fruit fly, Bactrocera tryoni and Bactrocera neohumeralis, are differentiated by their time of mating, which is genetically determined and requires interactions between the endogenous circadian clock and light intensity. The cryptochrome (cry) gene, a light-sensitive component of the circadian clock, was isolated in the two Bactrocera species. The putative amino acid sequence is identical in the two species. In the brain, in situ hybridization showed that cry i...

  2. Host status of Vaccinium reticulatum (Ericaceae) to invasive tephritid fruit flies in Hawaii.

    Science.gov (United States)

    Follett, Peter A; Zee, Francis T

    2011-04-01

    Ohelo (Vaccicinium reticulatum Small) (Ericaceae) is a native Hawaiian plant that has commercial potential in Hawaii as a nursery crop to be transplanted for berry production or for sale as a potted ornamental. No-choice infestation studies were conducted to determine whether ohelo fruit are hosts for four invasive tephritid fruit fly species. Ohelo berries were exposed to gravid female flies ofBactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), Bactrocera cucurbitae Coquillet (melon fly),or Bactrocera latifrons (Hendel) in screen cages outdoors for 24 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Only B. dorsalis successfully attacked and developed in ohelo berries. In total, 1570 berries produced 10 puparia, all of which emerged as adults, for a fruit infestation rate of 0.0064% and an average of 0.0053 puparia per gram of fruit. By comparison, papaya fruit used as controls produced an average of 1.44 B. dorsalis puparia per g of fruit. Ohelo berry is a marginal host for B. dorsalis and apparently a nonhost for C. capitata, B. cucurbitae, and B. latifrons. Commercial plantings of ohelo will rarely be attacked by fruit flies in Hawaii.

  3. New sanitation techniques for controlling tephritid fruit flies (Diptera ...

    African Journals Online (AJOL)

    They are, in order of effectiveness, placing cull fruit in augmentoria, burying the fruit 0.46 m under ground, or placing fruit on screen under and 0.7 m beyond the fruit pile. Journal of Applied Sciences and Environmental Management Vol 9(2) 2005: 5-14. http://dx.doi.org/10.4314/jasem.v9i2.17284 · AJOL African Journals ...

  4. Generic phytosanitary radiation treatment for tephritid fruit flies provides quarantine security for Bactrocera latifrons (Diptera: Tephritidae).

    Science.gov (United States)

    Follett, Peter A; Phillips, Thomas W; Armstrong, John W; Moy, James H

    2011-10-01

    Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a quarantine pest of several solanaceous crops and tropical fruits that are treated using irradiation before export from Hawaii to the U.S. mainland. A dose of 150 Gy is approved as a generic irradiation treatment for tephritid fruit flies, but no confirmation of efficacy has been reported for B. latifrons. Dose response of B. latifrons was used to determine the most tolerant life stage and identify a dose that prevents adult emergence. Data indicated doses (plus 95% confidence limits) required to prevent adult emergence of 13.4 (10.0-29.6), 17.5 (14.4-24.8), and 88.1 (68.0-133.8) Gy for eggs, first instars and third instars, respectively. In large-scale confirmatory tests of the most radiotolerant life stage, a radiation dose of 150 Gy applied to B. latifrons late third instars in bell peppers (Capsicum annuum L.) resulted in no survival to the adult stage of 157,112 individuals, a treatment efficacy consistent with Probit 9-level mortality. The relative radiotolerance of melon fly Bactrocera cucurbitae Coquillet, and B. latifrons also was tested using a diagnostic radiation dose of 30 Gy. In diet, a mean of 6.9% of irradiated B. cucurbitae third instars developed to the adult stage, whereas no B. latifrons third instars developed to adults. In papaya, Carica papaya L., fruit, a mean of 3.3% of irradiated B. cucurbitae third instars developed to the adult stage, whereas 0.5% B. latifrons third instars developed to adults. This report supports the use of a generic radiation dose of 150 Gy in quarantine scenarios to control tephritid fruit flies on fresh commodities.

  5. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival.

    Science.gov (United States)

    Piper, Alexander M; Farnier, Kevin; Linder, Tomas; Speight, Robert; Cunningham, John Paul

    2017-09-01

    Yeast-insect interactions have been well characterized in drosophilid flies, but not in tephritid fruit flies, which include many highly polyphagous pest species that attack ripening fruits. Using the Queensland fruit fly (Bactrocera tryoni) as our model tephritid species, we identified yeast species present in the gut of wild-collected larvae and found two genera, Hanseniaspora and Pichia, were the dominant isolates. In behavioural trials using adult female B. tryoni, a fruit-agar substrate inoculated with Pichia kluyveri resulted in odour emissions that increased the attraction of flies, whereas inoculation with Hanseniaspora uvarum, produced odours that strongly deterred flies, and both yeasts led to decreased oviposition. Larval development trials showed that the fruit-agar substrate inoculated with the 'deterrent odour' yeast species, H. uvarum, resulted in significantly faster larval development and a greater number of adult flies, compared to a substrate inoculated with the 'attractive odour' yeast species, P. kluyveri, and a yeast free control substrate. GC-MS analysis of volatiles emitted by H. uvarum and P. kluyveri inoculated substrates revealed significant quantitative differences in ethyl-, isoamyl-, isobutyl-, and phenethyl- acetates, which may be responsible for the yeast-specific olfactory responses of adult flies. We discuss how our seemingly counterintuitive finding that female B. tryoni flies avoid a beneficial yeast fits well with our understanding of female choice of oviposition sites, and how the contrasting behavioural effects of H. uvarum and P. kluyveri raises interesting questions regarding the role of yeast-specific volatiles as cues to insect vectors. A better understanding of yeast-tephritid interactions could assist in the future management of tephritid fruit fly pests through the formulation of new "attract and kill" lures, and the development of probiotics for mass rearing of insects in sterile insect control programs.

  6. Plant-Mediated Female Transcriptomic Changes Post-Mating in a Tephritid Fruit Fly, Bactrocera tryoni

    Science.gov (United States)

    van der Burg, Chloé A; Qin, Yujia; Cameron, Stephen L; Clarke, Anthony R; Prentis, Peter J

    2018-01-01

    Abstract Female post-mating behaviors are regulated by complex factors involving males, females, and the environment. In insects, plant secondary compounds that males actively forage for, may indirectly modify female behaviors by altering male behavior and physiology. In the tephritid fruit fly, Bactrocera tryoni, females mated with males previously fed on plant-derived phenylpropanoids (=“lures” based on usage in tephritid literature), have longer mating refractoriness, greater fecundity, and reduced longevity than females mated with non-lure fed males. This system thus provides a model for studying transcriptional changes associated with those post-mating behaviors, as the genes regulating the phenotypic changes are likely to be expressed at a greater magnitude than in control females. We performed comparative transcriptome analyses using virgin B. tryoni females, females mated with control males (control-mated), and females mated with lure-fed males (lure-mated). We found 331 differentially expressed genes (DEGs) in control-mated females and 80 additional DEGs in lure-mated females. Although DEGs in control-mated females are mostly immune response genes and chorion proteins, as reported in Drosophila species, DEGs in lure-mated females are titin-like muscle proteins, histones, sperm, and testis expressed proteins which have not been previously reported. While transcripts regulating mating (e.g., lingerer) did not show differential expression in either of the mated female classes, the odorant binding protein Obp56a was down-regulated. The exclusively enriched or suppressed genes in lure-mated females, novel transcripts such as titin and histones, and several taxa-specific transcripts reported here can shed more light on post-mating transcriptional changes, and this can help understand factors possibly regulating female post-mating behaviors. PMID:29220418

  7. Plant-Mediated Female Transcriptomic Changes Post-Mating in a Tephritid Fruit Fly, Bactrocera tryoni.

    Science.gov (United States)

    Kumaran, Nagalingam; van der Burg, Chloé A; Qin, Yujia; Cameron, Stephen L; Clarke, Anthony R; Prentis, Peter J

    2018-01-01

    Female post-mating behaviors are regulated by complex factors involving males, females, and the environment. In insects, plant secondary compounds that males actively forage for, may indirectly modify female behaviors by altering male behavior and physiology. In the tephritid fruit fly, Bactrocera tryoni, females mated with males previously fed on plant-derived phenylpropanoids (="lures" based on usage in tephritid literature), have longer mating refractoriness, greater fecundity, and reduced longevity than females mated with non-lure fed males. This system thus provides a model for studying transcriptional changes associated with those post-mating behaviors, as the genes regulating the phenotypic changes are likely to be expressed at a greater magnitude than in control females. We performed comparative transcriptome analyses using virgin B. tryoni females, females mated with control males (control-mated), and females mated with lure-fed males (lure-mated). We found 331 differentially expressed genes (DEGs) in control-mated females and 80 additional DEGs in lure-mated females. Although DEGs in control-mated females are mostly immune response genes and chorion proteins, as reported in Drosophila species, DEGs in lure-mated females are titin-like muscle proteins, histones, sperm, and testis expressed proteins which have not been previously reported. While transcripts regulating mating (e.g., lingerer) did not show differential expression in either of the mated female classes, the odorant binding protein Obp56a was down-regulated. The exclusively enriched or suppressed genes in lure-mated females, novel transcripts such as titin and histones, and several taxa-specific transcripts reported here can shed more light on post-mating transcriptional changes, and this can help understand factors possibly regulating female post-mating behaviors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species

    OpenAIRE

    Gilchrist, Anthony Stuart; Shearman, Deborah CA; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-01-01

    Background The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despit...

  9. The cryptochrome (cry) gene and a mating isolation mechanism in tephritid fruit flies.

    Science.gov (United States)

    An, Xin; Tebo, Molly; Song, Sunmi; Frommer, Marianne; Raphael, Kathryn A

    2004-12-01

    Two sibling species of tephritid fruit fly, Bactrocera tryoni and Bactrocera neohumeralis, are differentiated by their time of mating, which is genetically determined and requires interactions between the endogenous circadian clock and light intensity. The cryptochrome (cry) gene, a light-sensitive component of the circadian clock, was isolated in the two Bactrocera species. The putative amino acid sequence is identical in the two species. In the brain, in situ hybridization showed that cry is expressed in the lateral and dorsal regions of the central brain where PER immunostaining was also observed and in a peripheral cell cluster of the antennal lobes. Levels of cry mRNA were analyzed in whole head, brain, and antennae. In whole head, cry is abundantly and constantly expressed. However, in brain and antennae the transcript cycles in abundance, with higher levels during the day than at night, and cry transcripts are more abundant in the brain and antennae of B. neohumeralis than in that of B. tryoni. Strikingly, these results are duplicated in hybrid lines, generated by rare mating between B. tryoni and B. neohumeralis and then selected on the basis of mating time, suggesting a role for the cry gene in the mating isolation mechanism that differentiates the species.

  10. Transcriptome of the egg parasitoid Fopius arisanus, an important biocontrol tool for Tephritid fruit fly suppression

    Science.gov (United States)

    Background The Braconoid wasp Fopius arisanus (Sonan) has been utilized for biological control of the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis), both phytophagous fruit flies pest of economic importance in Hawaii. We have sequenced and assembled t...

  11. The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation.

    Science.gov (United States)

    Morrow, J L; Frommer, M; Shearman, D C A; Riegler, M

    2015-08-01

    Tephritid fruit fly species display a diversity of host plant specialisation on a scale from monophagy to polyphagy. Furthermore, while some species prefer ripening fruit, a few are restricted to damaged or rotting fruit. Such a diversity of host plant use may be reflected in the microbial symbiont diversity of tephritids and their grade of dependency on their microbiomes. Here, we investigated the microbiome of six tephritid species from three genera, including species that are polyphagous pests (Bactrocera tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Ceratitis capitata) and a monophagous specialist (Bactrocera cacuminata). These were compared with the microbiome of a non-pestiferous but polyphagous tephritid species that is restricted to damaged or rotting fruit (Dirioxa pornia). The bacterial community associated with whole fruit flies was analysed by 16S ribosomal DNA (rDNA) amplicon pyrosequencing to detect potential drivers of taxonomic composition. Overall, the dominant bacterial families were Enterobacteriaceae and Acetobacteraceae (both Proteobacteria), and Streptococcaceae and Enterococcaceae (both Firmicutes). Comparisons across species and genera found different microbial composition in the three tephritid genera, but limited consistent differentiation between Bactrocera species. Within Bactrocera species, differentiation of microbial composition seemed to be influenced by the environment, possibly including their diets; beyond this, tephritid species identity or ecology also had an effect. The microbiome of D. pornia was most distinct from the other five species, which may be due to its ecologically different niche of rotting or damaged fruit, as opposed to ripening fruit favoured by the other species. Our study is the first amplicon pyrosequencing study to compare the microbiomes of tephritid species and thus delivers important information about the turnover of microbial diversity within and between fruit fly species and their potential

  12. The scarlet eye colour gene of the tephritid fruit fly: Bactrocera tryoni and the nature of two eye colour mutations.

    Science.gov (United States)

    Zhao, J T; Bennett, C L; Stewart, G J; Frommer, M; Raphael, K A

    2003-06-01

    A homologue of the Drosophila melanogaster eye-colour gene, scarlet (st), has been isolated from the genome of the tephritid fruit fly, Bactrocera tryoni. The comparison of the B. tryoni and D. melanogaster scarlet gene shows 71.2% and 79.3% sequence identity at the DNA and the derived amino acid level, respectively. Two allelic eye-colour mutations of B. tryoni, orange-eyes and lemon-eyes, have been recovered and found to be colocalized with the st gene. The st gene sequence in the two mutant strains has been examined for DNA sequence changes and expression levels.

  13. Tropical tephritid fruit fly community with high incidence of shared Wolbachia strains as platform for horizontal transmission of endosymbionts.

    Science.gov (United States)

    Morrow, J L; Frommer, M; Shearman, D C A; Riegler, M

    2014-12-01

    Wolbachia are endosymbiotic bacteria that infect 40-65% of arthropod species. They are primarily maternally inherited with occasional horizontal transmission for which limited direct ecological evidence exists. We detected Wolbachia in 8 out of 24 Australian tephritid species. Here, we have used multilocus sequence typing (MLST) to further characterize these Wolbachia strains, plus a novel quantitative polymerase chain reaction method for allele assignment in multiple infections. Based on five MLST loci and the Wolbachia surface protein gene (wsp), five Bactrocera and one Dacus species harboured two identical strains as double infections; furthermore, Bactrocera neohumeralis harboured both of these as single or double infections, and sibling species B. tryoni harboured one. Two Bactrocera species contained Wolbachia pseudogenes, potentially within the fruit fly genomes. A fruit fly parasitoid, Fopius arisanus shared identical alleles with two Wolbachia strains detected in one B. frauenfeldi individual. We report an unprecedented high incidence of four shared Wolbachia strains in eight host species from two trophic levels. This suggests frequent exposure to Wolbachia in this tropical tephritid community that shares host plant and parasitoid species, and also includes species that hybridize. Such insect communities may act as horizontal transmission platforms that contribute to the ubiquity of the otherwise maternally inherited Wolbachia. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Resveratrol modifies tephritid fruit fly response to nutritional and radiation stress

    Science.gov (United States)

    Resveratrol is a recently discovered compound. Three concentrations (50, 100, 200 µM) of resveratrol were evaluated against Bactrocera dorsalis and B. cucurbitae by incorporating resveratrol into fruit fly liquid larval diet under the following conditions: 1) with or without wheat germ oil (WGO) in ...

  15. Resveratrol modifies tephritid fruit fly response to radiation but not nutritional stress.

    Science.gov (United States)

    Chang, Chiou Ling; Follett, Peter

    2012-04-01

    Resveratrol (3,5,4'-trihydroxystilbene) is a polyphenol compound found in many plants and fruits that has antioxidant and radioprotective properties. Two model invertebrates, Bactrocera dorsalis (oriental fruit fly) and B. cucurbitae (melon fly) (Diptera: Tephritidae), were studied to determine if the addition of resveratrol to an artificial diet could modify their response to radiation and nutritional stress. Resveratrol at concentrations of 0, 50, 100, or 200 μM of was incorporated into a liquid larval fruit fly diet. Third instars were treated with: (i) A radiation dose of 30 Gy (radiation stress), (ii) a wheat germ oil-deficient diet (nutritional stress), or (iii) left untreated as a control. The addition of resveratrol to the diet partially mitigated the adverse effects of radiation on several life history parameters. In B. cucurbitae, a significantly higher 49-53% of adults could fly when 50-200 μM resveratrol was added to the diet compared with 32% in irradiated flies reared without resveratrol. B. cucurbitae egg hatch in irradiated insects improved significantly from 46 to 66% with the addition of 50 μM resveratrol. In irradiated B. dorsalis, adult emergence was significantly improved from 12 to 29% with the addition of 100 μM resveratrol. Resveratrol did not mediate any of the negative effects of a wheat germ oil-deficient diet in either species. Resveratrol has potential as a means to partially mitigate the adverse effects of radiation treatment under the conditions tested. This study is the first to show that resveratrol can have radioprotective effects in invertebrates.

  16. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species.

    Science.gov (United States)

    Gilchrist, Anthony Stuart; Shearman, Deborah C A; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-12-20

    The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. We produced a draft de novo genome assembly of Australia's major tephritid pest species, Bactrocera tryoni. The male genome (650-700 Mbp) includes approximately 150 Mb of interspersed repetitive DNA sequences and 60 Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA

  17. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.

    Science.gov (United States)

    Piñero, Jaime C; Souder, Steven K; Vargas, Roger I

    2017-01-01

    Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.

  18. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.

    Directory of Open Access Journals (Sweden)

    Jaime C Piñero

    Full Text Available Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus cucurbitae (Coquillett (Diptera: Tephritidae was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya. It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.

  19. Temporal Overlap and Co-Occurrence in a Guild of Sub-Tropical Tephritid Fruit Flies.

    Directory of Open Access Journals (Sweden)

    Gleidyane N Lopes

    Full Text Available Studies of community assembly have emphasized snapshot comparisons of spatially replicated samples from "natural" assemblages. Agro-ecosystems are characterized by relatively little habitat heterogeneity and no dispersal barriers for actively flying insects. Therefore, dynamic patterns of species segregation and aggregation are more likely to reflect the direct or indirect effects of species interactions. We studied the temporal organization of a guild of 21 congeneric species of Anastrepha that colonized fruit orchards in Monte Alegre do Sul, São Paulo, Brazil. This assemblage also included the introduced Mediterranean fruit fly Ceratitis capitata. One hundred six consecutive weekly censuses (11 Jan 2002-16 Jan 2004 of flies in guava, loquat, and peach orchards revealed a pattern of minimum abundance during the coldest months of each year (June and July and a maximum abundance during periods of flowering and fruit ripening. Overall, phenological overlap was greater than expected by chance. However, conditioned on the pattern of seasonal abundances, temporal occurrence and abundance matrices exhibited patterns of significant species segregation and anti-nestedness. In each year, the 3 orchards contained a small number of species pairs that exhibited statistically significant temporal segregation or aggregation. Most aggregated and segregated pairs reflected seasonal shifts in species presences that were not related to variation in air temperature. Most of the significant pairwise associations involved C. capitata: 8 of the 11 segregated pairs and 2 of the 7 aggregated pairs. These results suggest that species interactions between introduced and native species can be an important determinant of species associations in agro-ecosystems.

  20. The period gene in two species of tephritid fruit fly differentiated by mating behaviour.

    Science.gov (United States)

    An, X; Wilkes, K; Bastian, Y; Morrow, J L; Frommer, M; Raphael, K A

    2002-10-01

    The period gene is important for the generation and maintenance of biological rhythms. It served as an ideal candidate for the investigation of the mating time isolation between two sibling Queensland fruit fly species, Bactrocera tryoni and Bactrocera neohumeralis. We have isolated the homologues of the period gene in the two species, and show that their putative amino acid sequences are identical. No length polymorphism was detected in the Thr-Gly repeat region. per mRNA expression, assayed in light-dark diurnal conditions, displayed circadian oscillation in both the head and abdomen of B. tryoni and B. neohumeralis, with the same cycling phase. An alternatively spliced intron was identified in the 3' untranslated region. The effect of temperature on the splicing and mRNA expression was examined.

  1. Purification and partial characterization of an entomopoxvirus (DlEPV from a parasitic wasp of tephritid fruit flies

    Directory of Open Access Journals (Sweden)

    Pauline O. Lawrence

    2002-05-01

    Full Text Available An insect poxvirus [entomopoxvirus (EPV] occurs in the poison gland apparatus of female Diachasmimorpha longicaudata , a parasitic wasp of the Caribbean fruit fly, Anastrepha suspensa and other tephritid fruit flies. The DlEPV virion is 250-300 nm in diameter, has a "bumpy" appearance and a unipartite double stranded DNA genome of 290-300 kb. DlEPV DNA restriction fragment profiles differed from those reported for Amsacta moorei EPV (AmEPV and Melanoplus sanguinipes EPV (MsEPV, the only two EPVs whose genomes have been sequenced, and from those reported for vaccinia (Vac, a vertebrate poxvirus (chordopoxvirus, ChPV. Blast search and ClustalW alignment of the amino acids deduced from the 2316 nucleotides of a DlEPV DNA fragment cloned from an EcoR1 genomic library revealed 75-78% homology with the putative DNA-directed RNA polymerases of AmEPV, MsEPV, and two ChPV homologs of the Vac J6R gene. Of the deduced 772 amino acids in the DlEPV sequence, 28.4% are conserved/substituted among the four poxviruses aligned, 12.9% occur in at least one EPV, 6.5% in at least one ChPV, 3.1 % in at least one EPV and one ChPV, and 49.1% occur only in DlEPV. Although the RI-36-1 fragment represents a portion of the gene, it contains nucleotides that encode the NADFDGDE consensus sequence of known DNA-directed RNA polymerases. Western blots using a mouse polyclonal anti-DlEPV serum recognized six major protein bands in combined fractions of sucrose-purified DlEPV, at least one band in homogenates of male and female wasps, and at least two bands in host hemolymph that contained DlEPV virions. A digoxigenin-labeled DlEPV genomic DNA probe recognized DNA in dot-blots of male and female wasps. These results confirm that DlEPV is a true EPV and probably a member of the Group C EPVs. Unlike other EPVs, DlEPV does not express the spheroidin protein. Since it also replicates in both the wasp and fly, members of two different insect Orders, DlEPV may represent a new EPV

  2. Biological Control of Tephritid Fruit Flies in Argentina: Historical Review, Current Status, and Future Trends for Developing a Parasitoid Mass-Release Program

    Directory of Open Access Journals (Sweden)

    Sergio M. Ovruski

    2012-09-01

    Full Text Available In Argentina there are two tephritid fruit fly species of major economic and quarantine importance: the exotic Ceratitis capitata that originated from Southeast Africa and the native Anastrepha fraterculus. In recent years, the use of fruit fly parasitoids as biocontrol agents has received renewed attention. This increasing interest has recently led to the establishment of a program for the mass rearing of five million Diachasmimorpha longicaudata parasitoids per week in the BioPlanta San Juan facility, San Juan, Argentina. The first augmentative releases of D. longicaudata in Argentina are currently occurring on commercial fig crops in rural areas of San Juan as part of an integrated fruit fly management program on an area-wide basis. In this context, research is ongoing to assess the suitability of indigenous parasitoid species for successful mass rearing on larvae of either C. capitata or A. fraterculus. The purpose of this article is to provide a historical overview of the biological control of the fruit fly in Argentina, report on the strategies currently used in Argentina, present information on native parasitoids as potential biocontrol agents, and discuss the establishment of a long-term fruit fly biological control program, including augmentative and conservation modalities, in Argentina’s various fruit growing regions.

  3. Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata

    Science.gov (United States)

    Gomulski, Ludvik M; Dimopoulos, George; Xi, Zhiyong; Soares, Marcelo B; Bonaldo, Maria F; Malacrida, Anna R; Gasperi, Giuliano

    2008-01-01

    Background The medfly, Ceratitis capitata, is a highly invasive agricultural pest that has become a model insect for the development of biological control programs. Despite research into the behavior and classical and population genetics of this organism, the quantity of sequence data available is limited. We have utilized an expressed sequence tag (EST) approach to obtain detailed information on transcriptome signatures that relate to a variety of physiological systems in the medfly; this information emphasizes on reproduction, sex determination, and chemosensory perception, since the study was based on normalized cDNA libraries from embryos and adult heads. Results A total of 21,253 high-quality ESTs were obtained from the embryo and head libraries. Clustering analyses performed separately for each library resulted in 5201 embryo and 6684 head transcripts. Considering an estimated 19% overlap in the transcriptomes of the two libraries, they represent about 9614 unique transcripts involved in a wide range of biological processes and molecular functions. Of particular interest are the sequences that share homology with Drosophila genes involved in sex determination, olfaction, and reproductive behavior. The medfly transformer2 (tra2) homolog was identified among the embryonic sequences, and its genomic organization and expression were characterized. Conclusion The sequences obtained in this study represent the first major dataset of expressed genes in a tephritid species of agricultural importance. This resource provides essential information to support the investigation of numerous questions regarding the biology of the medfly and other related species and also constitutes an invaluable tool for the annotation of complete genome sequences. Our study has revealed intriguing findings regarding the transcript regulation of tra2 and other sex determination genes, as well as insights into the comparative genomics of genes implicated in chemosensory reception and

  4. Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata

    Directory of Open Access Journals (Sweden)

    Bonaldo Maria F

    2008-05-01

    Full Text Available Abstract Background The medfly, Ceratitis capitata, is a highly invasive agricultural pest that has become a model insect for the development of biological control programs. Despite research into the behavior and classical and population genetics of this organism, the quantity of sequence data available is limited. We have utilized an expressed sequence tag (EST approach to obtain detailed information on transcriptome signatures that relate to a variety of physiological systems in the medfly; this information emphasizes on reproduction, sex determination, and chemosensory perception, since the study was based on normalized cDNA libraries from embryos and adult heads. Results A total of 21,253 high-quality ESTs were obtained from the embryo and head libraries. Clustering analyses performed separately for each library resulted in 5201 embryo and 6684 head transcripts. Considering an estimated 19% overlap in the transcriptomes of the two libraries, they represent about 9614 unique transcripts involved in a wide range of biological processes and molecular functions. Of particular interest are the sequences that share homology with Drosophila genes involved in sex determination, olfaction, and reproductive behavior. The medfly transformer2 (tra2 homolog was identified among the embryonic sequences, and its genomic organization and expression were characterized. Conclusion The sequences obtained in this study represent the first major dataset of expressed genes in a tephritid species of agricultural importance. This resource provides essential information to support the investigation of numerous questions regarding the biology of the medfly and other related species and also constitutes an invaluable tool for the annotation of complete genome sequences. Our study has revealed intriguing findings regarding the transcript regulation of tra2 and other sex determination genes, as well as insights into the comparative genomics of genes implicated in

  5. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    Transformer (tra) is a double-switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and trans...

  6. Wolbachia pseudogenes and low prevalence infections in tropical but not temperate Australian tephritid fruit flies: manifestations of lateral gene transfer and endosymbiont spillover?

    Science.gov (United States)

    Morrow, Jennifer L; Frommer, Marianne; Royer, Jane E; Shearman, Deborah C A; Riegler, Markus

    2015-09-18

    Maternally inherited Wolbachia bacteria infect many insect species. They can also be transferred horizontally into uninfected host lineages. A Wolbachia spillover from an infected source population must occur prior to the establishment of heritable infections, but this spillover may be transient. In a previous study of tephritid fruit fly species of tropical Australia we detected a high incidence of identical Wolbachia strains in several species as well as Wolbachia pseudogenes. Here, we have investigated this further by analysing field specimens of 24 species collected along a 3,000 km climate gradient of eastern Australia. Wolbachia sequences were detected in individuals of nine of the 24 (37 %) species. Seven (29 %) species displayed four distinct Wolbachia strains based on characterisation of full multi locus sequencing (MLST) profiles; the strains occurred as single and double infections in a small number of individuals (2-17 %). For the two remaining species all individuals had incomplete MLST profiles and Wolbachia pseudogenes that may be indicative of lateral gene transfer into host genomes. The detection of Wolbachia was restricted to northern Australia, including in five species that only occur in the tropics. Within the more widely distributed Bactrocera tryoni and Bactrocera neohumeralis, Wolbachia also only occurred in the north, and was not linked to any particular mitochondrial haplotypes. The presence of Wolbachia pseudogenes at high prevalence in two species in absence of complete MLST profiles may represent footprints of historic infections that have been lost. The detection of identical low prevalence strains in a small number of individuals of seven species may question their role as reproductive manipulator and their vertical inheritance. Instead, the findings may be indicative of transient infections that result from spillover events from a yet unknown source. These spillover events appear to be restricted to northern Australia, without

  7. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Peng, Wei; Zheng, Wenping; Handler, Alfred M; Zhang, Hongyu

    2015-12-01

    Transformer (tra) is a switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and transformer-2 (tra-2) genes were isolated and characterized in Bactrocera dorsalis (Hendel), one of the most destructive agricultural insect pests in many Asian countries. Two male-specific and one female-specific isoforms of B. dorsalis transformer (Bdtra) were identified. The presence of multiple TRA/TRA-2 binding sites in Bdtra suggests that the TRA/TRA-2 proteins are splicing regulators promoting and maintaining, epigenetically, female sex determination by a tra positive feedback loop in XX individuals during development. The expression patterns of female-specific Bdtra transcripts during early embryogenesis shows that a peak appears at 15 h after egg laying. Using dsRNA to knock-down Bdtra expression in the embryo and adult stages, we showed that sexual formation is determined early in the embryo stage and that parental RNAi does not lead to the production of all male progeny as in Tribolium castaneum. RNAi results from adult abdominal dsRNA injections show that Bdtra has a positive influence on female yolk protein gene (Bdyp1) expression and fecundity.

  8. Release and establishment of the parasitoid Diachasmimorpha kraussii against the tephritid fruit fly Bactrocera latifrons in Hawaii.

    Science.gov (United States)

    Bokonon-Ganta, Aimé H; McQuate, Grant T; Messing, Russell H; B Jang, Eric

    2013-01-01

    Diachasmimorpha kraussii (Fullaway) (Hymenoptera: Braconidae) was first released against Bactrocera latifrons (Hendel) (Diptera: Tephritidae) in Hawaii in March 2003. Over a three month period, eight releases, totaling 7,696 females and 3,968 males, were made in a turkeyberry, Solanum torvum Swartz (Solanales: Solanaceae) patch known to have a well established B. latifrons population. The establishment of D. kraussii was assessed through fruit collections conducted over a three-year period beyond the last release. D. kraussii was recovered 2 weeks, 31 months, and 39 months after the last parasitoid release, with collections not only from the release site, but also from a control site about 5.0 km distance from the release site. Recovery from fruit collections three years after the last parasitoid release confirmed that D. kraussii had become established in Hawaii. Parasitism rates were low, only 1.0-1.4%, compared to rates of 2.8-8.7% for the earlier established egg-larval parasitoid, Fopius arisanus (Sonan).

  9. Release and Establishment of the Parasitoid Diachasmimorpha kraussii Against the Tephritid Fruit Fly Bactrocera latifrons in Hawaii

    Science.gov (United States)

    Bokonon-Ganta, Aimé H.; McQuate, Grant T.; Messing, Russell H.; B. Jang, Eric

    2013-01-01

    Diachasmimorpha kraussii (Fullaway) (Hymenoptera: Braconidae) was first released against Bactrocera latifrons (Hendel) (Diptera: Tephritidae) in Hawaii in March 2003. Over a three month period, eight releases, totaling 7,696 females and 3,968 males, were made in a turkeyberry, Solanum torvum Swartz (Solanales: Solanaceae) patch known to have a well established B. latifrons population. The establishment of D. kraussii was assessed through fruit collections conducted over a three-year period beyond the last release. D. kraussii was recovered 2 weeks, 31 months, and 39 months after the last parasitoid release, with collections not only from the release site, but also from a control site about 5.0 km distance from the release site. Recovery from fruit collections three years after the last parasitoid release confirmed that D. kraussii had become established in Hawaii. Parasitism rates were low, only 1.0–1.4%, compared to rates of 2.8–8.7% for the earlier established egg-larval parasitoid, Fopius arisanus (Sonan). PMID:23879328

  10. Confidence limits and sample size for determining nonhost status of fruits and vegetables to tephritid fruit flies as a quarantine measure.

    Science.gov (United States)

    Follett, Peter A; Hennessey, Michael K

    2007-04-01

    Quarantine measures including treatments are applied to exported fruit and vegetable commodities to control regulatory fruit fly pests and to reduce the likelihood of their introduction into new areas. Nonhost status can be an effective measure used to achieve quarantine security. As with quarantine treatments, nonhost status can stand alone as a measure if there is high efficacy and statistical confidence. The numbers of insects or fruit tested during investigation of nonhost status will determine the level of statistical confidence. If the level of confidence of nonhost status is not high, then additional measures may be required to achieve quarantine security as part of a systems approach. Certain countries require that either 99.99 or 99.9968% mortality, as a measure of efficacy, at the 95% confidence level, be achieved by a quarantine treatment to meet quarantine security. This article outlines how the level of confidence in nonhost status can be quantified so that its equivalency to traditional quarantine treatments may be demonstrated. Incorporating sample size and confidence levels into host status testing protocols along with efficacy will lead to greater consistency by regulatory decision-makers in interpreting results and, therefore, to more technically sound decisions on host status.

  11. The interplay among dietary fat, sugar, protein and açai (Euterpe oleracea Mart.) pulp in modulating lifespan and reproduction in a Tephritid fruit fly

    OpenAIRE

    Liedo, Pablo; Carey, James R.; Ingram, Donald K.; Zou, Sige

    2012-01-01

    Macronutrient balance is a critical contributor in modulating lifespan and health. Consumption of diets rich in fruits and vegetables provides numerous health benefits. The interactions among macronutrients and botanicals and how they influence aging and health remain elusive. Here we employed a nutritional geometry approach to investigate the interplay among dietary fat, sugar, protein and antioxidant- and polyphenolic-rich freeze-dried açai pulp in modulating lifespan and reproductive outpu...

  12. Susceptibility of low-chill blueberry cultivars to Mediterranean fruit fly, oriental fruit fly, and melon fly (Diptera: Tephritidae).

    Science.gov (United States)

    Follett, Peter A; Zee, Francis T; Hamasaki, Randall T; Hummer, Kim; Nakamoto, Stuart T

    2011-04-01

    No-choice tests were conducted to determine whether fruit of southern highbush blueberry, Vaccinium corymbosum L., hybrids are hosts for three invasive tephritid fruit flies in Hawaii. Fruit of various blueberry cultivars was exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Each of the 15 blueberry cultivars tested were infested by oriental fruit fly and Mediterranean fruit fly, confirming that these fruit flies will oviposit on blueberry fruit and that blueberry is a suitable host for fly development. However, there was significant cultivar variation in susceptibility to fruit fly infestation. For oriental fruit fly, 'Sapphire' fruit produced an average of 1.42 puparia per g, twice as high as that of the next most susceptible cultivar 'Emerald' (0.70 puparia per g). 'Legacy', 'Biloxi', and 'Spring High' were least susceptible to infestation, producing only 0.20-0.25 oriental fruit fly puparia per g of fruit. For Mediterranean fruit fly, 'Blue Crisp' produced 0.50 puparia per g of fruit, whereas 'Sharpblue' produced only 0.03 puparia per g of fruit. Blueberry was a marginal host for melon fly. This information will aid in development of pest management recommendations for blueberry cultivars as planting of low-chill cultivars expands to areas with subtropical and tropical fruit flies. Planting of fruit fly resistant cultivars may result in lower infestation levels and less crop loss.

  13. Mortality in Tephritid Fruit Fry Puparia and Adults Caused by ...

    African Journals Online (AJOL)

    The objective of the study was to evaluate entomopathogenic fungi isolated from the soils of Mauritius as biocontrol agents of fruit flies. The pathogenicity of six isolates of M. anisopliae, three isolates of B. bassiana and one isolate of P. fumosoroseus were determined for late third-instar larvae, puparia and emerging adults ...

  14. Host Plants of the Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann), version 3.5

    Science.gov (United States)

    Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), commonly known as the Mediterranean fruit fly, is a tephritid fruit fly species native to Africa but now found in every country surrounding the Mediterranean Sea, in Central and South America, in Australia, in Hawaii and in other oceanic islands...

  15. Mating Reverses Actuarial Aging in Female Queensland Fruit Flies

    OpenAIRE

    Yap, Sarsha; Fanson, Benjamin G.; Taylor, Phillip W.

    2015-01-01

    Animals that have a long pre-reproductive adult stage often employ mechanisms that minimize aging over this period in order to preserve reproductive lifespan. In a remarkable exception, one tephritid fruit fly exhibits substantial pre-reproductive aging but then mitigates this aging during a diet-dependent transition to the reproductive stage, after which life expectancy matches that of newly emerged flies. Here, we ascertain the role of nutrients, sexual maturation and mating in mitigation o...

  16. Lateralisation of aggressive displays in a tephritid fly

    Science.gov (United States)

    Benelli, Giovanni; Donati, Elisa; Romano, Donato; Stefanini, Cesare; Messing, Russell H.; Canale, Angelo

    2015-02-01

    Lateralisation (i.e. different functional and/or structural specialisations of the left and right sides of the brain) of aggression has been examined in several vertebrate species, while evidence for invertebrates is scarce. In this study, we investigated lateralisation of aggressive displays (boxing with forelegs and wing strikes) in the Mediterranean fruit fly, Ceratitis capitata. We attempted to answer the following questions: (1) do medflies show lateralisation of aggressive displays at the population-level; (2) are there sex differences in lateralisation of aggressive displays; and (3) does lateralisation of aggression enhance fighting success? Results showed left-biased population-level lateralisation of aggressive displays, with no consistent differences among sexes. In both male-male and female-female conflicts, aggressive behaviours performed with left body parts led to greater fighting success than those performed with right body parts. As we found left-biased preferential use of body parts for both wing strikes and boxing, we predicted that the left foreleg/wing is quicker in exploring/striking than the right one. We characterised wing strike and boxing using high-speed videos, calculating mean velocity of aggressive displays. For both sexes, aggressive displays that led to success were faster than unsuccessful ones. However, left wing/legs were not faster than right ones while performing aggressive acts. Further research is needed on proximate causes allowing enhanced fighting success of lateralised aggressive behaviour. This is the first report supporting the adaptive role of lateralisation of aggressive displays in insects.

  17. Host plants of Carambola fruit fly, Bactrocera carambolae Drew & Hancock(Diptera:Tephritidae);and provisional list of suitable host plants of Carambola fruit fly,(Bactrocera(Bactrocera) carambolae Drew & Hancock(Diptera:Tep

    Science.gov (United States)

    Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae), commonly known as the carambola fruit fly, is native to Southeast Asia, but has extended its geographic range to several countries in South America. As with other tephritid fruit fly species, establishment of B.carambolae in areas where it...

  18. How functional genomics will impact fruit fly pest control: the example of the Mediterranean fruit fly, Ceratitis capitata

    Science.gov (United States)

    2014-01-01

    The highly invasive agricultural insect pest Ceratitis capitata (Diptera: Tephritidae) is the most thoroughly studied tephritid fruit fly at the genetic and molecular levels. It has become a model for the analysis of fruit fly invasions and for the development of area-wide integrated pest management (AW-IPM) programmes based on the environmentally-friendly Sterile Insect Technique (SIT). Extensive transcriptome resources and the recently released genome sequence are making it possible to unravel several aspects of the medfly reproductive biology and behaviour, opening new opportunities for comparative genomics and barcoding for species identification. New genes, promotors and regulatory sequences are becoming available for the development/improvement of highly competitive sexing strains, for the monitoring of sterile males released in the field and for determining the mating status of wild females. The tools developed in this species have been transferred to other tephritids that are also the subject of SIT programmes. PMID:25471105

  19. The mitochondrial genome of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae): Complete DNA sequence, genome organization, and phylogenetic analysis with other tephritids using next generation DNA sequencing.

    Science.gov (United States)

    Choudhary, Jaipal S; Naaz, Naiyar; Prabhakar, Chandra S; Rao, Mathukumalli Srinivasa; Das, Bikash

    2015-09-15

    Mitochondrial genome can provide information for genomic structure as well as for phylogenetic analysis and evolutionary biology. The complete 15,935 bp mitochondrial genome of Bactrocera zonata (Diptera: Tephritidae), is assembled from Illumina MiSeq read data. The mitogenome information for B. zonata was compared to the homologous sequences of other tephritids. Annotation indicated that the structure and orientation of 13 protein coding genes (PCGs), 22 tRNA and 2 rRNA sequences were typical of, and similar to, the ten closely related tephritid species. The nucleotide composition shows heavily biased toward As and Ts accounting 73.34% and exhibits a slightly positive AT skew, which is similar to other known tephritid species. All PCGs are initiated by ATN codons, except for cox1 with TCG and atp8 with GTG. Nine PCGs use a common stop codon of TAA or TAG, whereas the remaining four use an incomplete termination codon T or TA likely to be completed by adenylation. All tRNAs have the typical clover-leaf structure, with an exception for trnS((AGN)). Four short intergenic spacers showed high degree of conservation among B. zonata and other ten tephritids. A poly(T) stretch at the 5' end followed by [TA(A)]n-like stretch and a tandem repeats of 39 bp has been observed in CR. The analysis of gene evolutionary rate revealed that the cox1 and atp6 exhibits lowest and highest gene substitution rates, respectively than other genes. The phylogenetic relationships based on Maximum Likelihood method using all protein-coding genes and two ribosomal RNA genes confirmed that B. zonata is closely related to Bactrocera correcta, Bactrocera carambolae, Bactrocera papayae, and Bactrocera philippinensis and Bactrocera dorsalis belonging to B. dorsalis species complex forms a monophyletic clade, which is in accordance with the traditional morphological classification and recent molecular works. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Natural Field Infestation of and by Oriental Fruit Fly, (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Grant T McQuate

    2017-07-01

    Full Text Available Mango, Mangifera indica (Anacardiaceae, is a crop cultivated pantropically. There are, however, many other Mangifera spp (“mango relatives” which have much more restricted distributions and are poorly known but have potential to produce mango-like fruits in areas where mangoes do not grow well or could be tapped in mango breeding programs. Because of the restricted distribution of many of the Mangifera spp, there has also been limited data collected on susceptibility of their fruits to infestation by tephritid fruit flies which is important to know for concerns both for quality of production and for quarantine security of fruit exports. Here, we report on natural field infestation by the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae, of two mango relatives native to Indonesia: Mangifera casturi and Mangifera lalijiwa . Rates of infestation of fruits of these two Mangifera spp by tephritid fruit flies have not previously been reported.

  1. Barcoding Queensland Fruit Flies (Bactrocera tryoni): impediments and improvements.

    Science.gov (United States)

    Blacket, Mark J; Semeraro, Linda; Malipatil, Mallik B

    2012-05-01

    Identification of adult fruit flies primarily involves microscopic examination of diagnostic morphological characters, while immature stages, such as larvae, can be more problematic. One of the Australia's most serious horticultural pests, the Queensland Fruit Fly (Bactrocera tryoni: Tephritidae), is of particular biosecurity/quarantine concern as the immature life stages occur within food produce and can be difficult to identify using morphological characteristics. DNA barcoding of the mitochondrial Cytochrome Oxidase I (COI) gene could be employed to increase the accuracy of fruit fly species identifications. In our study, we tested the utility of standard DNA barcoding techniques and found them to be problematic for Queensland Fruit Flies, which (i) possess a nuclear copy (a numt pseudogene) of the barcoding region of COI that can be co-amplified; and (ii) as in previous COI phylogenetic analyses closely related B. tryoni complex species appear polyphyletic. We found that the presence of a large deletion in the numt copy of COI allowed an alternative primer to be designed to only amplify the mitochondrial COI locus in tephritid fruit flies. Comparisons of alternative commonly utilized mitochondrial genes, Cytochrome Oxidase II and Cytochrome b, revealed a similar level of variation to COI; however, COI is the most informative for DNA barcoding, given the large number of sequences from other tephritid fruit fly species available for comparison. Adopting DNA barcoding for the identification of problematic fly specimens provides a powerful tool to distinguish serious quarantine fruit fly pests (Tephritidae) from endemic fly species of lesser concern. © 2012 Blackwell Publishing Ltd.

  2. An area wide control of fruit flies in Mauritius

    Energy Technology Data Exchange (ETDEWEB)

    Sookar, P.; Permalloo, S.; Gungah, B.; Alleck, M.; Seewooruthun, S.I.; Soonnoo, A.R., E-mail: ento@intnet.m, E-mail: moa-entomology@mail.gov.m [Ministry of Agro Industry and Fisheries Reduit, Republic of Mauritius (Mauritius)

    2006-07-01

    An area-wide National Fruit Fly Control Programme (NFFCP) was initiated in 1994, funded by the European Union until 1999 and now fully financed by the Government of Mauritius. The NFFCP targets some 75,000 backyard fruit trees owners mainly. The bait application and male annihilation techniques (BAT e MAT) are currently being applied against the fruit flies attacking fleshy fruits and are targeting selected major fruit growing areas in the north, north-east, central and western parts of the island. Successful control has been achieved using these two techniques as demonstrated by trap catches and fruit samplings. The level of fruit fly damage to fruits has been reduced. Presently, the bait-insecticide mixture is being supplied free of charge to the public. The current status of the area-wide suppression programme is such that continuous use of BAT/MAT is a never ending process and as such is not viable. In this context, a TC project on Feasibility studies for integrated use of sterile insect technique for area wide tephritid fruit fly control.Studies are also being carried out on mass rearing of the peach fruit fly for small scale trials on SIT so as to eventually integrate this control method in our area-wide control programme. (author)

  3. Learning from the Fruit Fly

    Science.gov (United States)

    Bierema, Andrea; Schwartz, Renee

    2016-01-01

    The fruit fly ("Drosophila melanogaster") is an ideal subject for studying inheritance patterns, Mendel's laws, meiosis, Punnett squares, and other aspects of genetics. Much of what we know about genetics dates to evolutionary biologist Thomas Hunt Morgan's work with mutated fruit flies in the early 1900s. Many genetic laboratories…

  4. Evolution, Fruit Flies and Gerontology

    Indian Academy of Sciences (India)

    Evolution, Fruit Flies and Gerontology. Evolutionary Biology Helps Unravel the Mysteries of Ageing. Amitabh Joshi. In the past decade or so, genetic theories of the evolution of ageing and studies on populations of fruit flies (Dro- sophila spp.) in the laboratory have provided a new per- spective on the phenomenon of ageing ...

  5. Do Fruit Ripening Volatiles Enable Resource Specialism in Polyphagous Fruit Flies?

    Science.gov (United States)

    Cunningham, John Paul; Carlsson, Mikael A; Villa, Tommaso F; Dekker, Teun; Clarke, Anthony R

    2016-09-01

    Frugivorous tephritid fruit flies have lineages with high levels of host generalism. These insects use olfaction to locate fruits, but how they are able to recognize the odors of so many different host species is poorly understood. We used a series of behavioral experiments to investigate the role of fruit ripening volatiles as host cues in the Queensland fruit fly, Bactrocera tryoni (Froggatt), a polyphagous pest in Australia. Odors of mature guava (Psidium guajava) attracted female and male flies more strongly than three other ripening stages and guava pulp. We analyzed volatiles from guava odor and selected eleven compounds, all of which elicited an electrophysiological response in the antenna of female flies. Three of these, ethyl acetate, ethyl butyrate, and ethyl propionate, were released at the highest rates from the most attractive ripening stage. In behavioral trials, these three esters were not attractive individually, whereas a combination was necessary and sufficient in attracting female flies. The three-component blend was as attractive as the entire 11-component blend, which without these key volatiles was not attractive. Moreover, injecting low ranking hosts (squash and cucumber) with the three volatiles increased attraction in ovipositing female flies. These fruit flies are classed as generalists, but like many polyphagous insects they could be regarded as resource specialists, preferring specific plant reproductive stages with predictable odor cues. Exploring olfaction from this perspective could improve our understanding of host choice in polyphagous insects, and the selection of volatiles to be used as attractants in insect pest management.

  6. Antennal responses of West Indian and Caribbean fruit flies (Diptera: Tephritidae) to ammonium bicarbonate and putrescine lures

    Science.gov (United States)

    Efforts to monitor and detect tephritid fruit flies in the genus Anastrepha currently involve MultiLure traps baited with two food-based synthetic attractants; ammonium acetate and putrescine (1,4-diaminobutane). These baits are used in Central America, Florida, Texas, and the Caribbean, each region...

  7. Mating Reverses Actuarial Aging in Female Queensland Fruit Flies.

    Directory of Open Access Journals (Sweden)

    Sarsha Yap

    Full Text Available Animals that have a long pre-reproductive adult stage often employ mechanisms that minimize aging over this period in order to preserve reproductive lifespan. In a remarkable exception, one tephritid fruit fly exhibits substantial pre-reproductive aging but then mitigates this aging during a diet-dependent transition to the reproductive stage, after which life expectancy matches that of newly emerged flies. Here, we ascertain the role of nutrients, sexual maturation and mating in mitigation of previous aging in female Queensland fruit flies. Flies were provided one of three diets: 'sugar', 'essential', or 'yeast-sugar'. Essential diet contained sugar and micronutrients found in yeast but lacked maturation-enabling protein. At days 20 and 30, a subset of flies on the sugar diet were switched to essential or yeast-sugar diet, and some yeast-sugar fed flies were mated 10 days later. Complete mitigation of actuarial aging was only observed in flies that were switched to a yeast-sugar diet and mated, indicating that mating is key. Identifying the physiological processes associated with mating promise novel insights into repair mechanisms for aging.

  8. Mating Reverses Actuarial Aging in Female Queensland Fruit Flies.

    Science.gov (United States)

    Yap, Sarsha; Fanson, Benjamin G; Taylor, Phillip W

    2015-01-01

    Animals that have a long pre-reproductive adult stage often employ mechanisms that minimize aging over this period in order to preserve reproductive lifespan. In a remarkable exception, one tephritid fruit fly exhibits substantial pre-reproductive aging but then mitigates this aging during a diet-dependent transition to the reproductive stage, after which life expectancy matches that of newly emerged flies. Here, we ascertain the role of nutrients, sexual maturation and mating in mitigation of previous aging in female Queensland fruit flies. Flies were provided one of three diets: 'sugar', 'essential', or 'yeast-sugar'. Essential diet contained sugar and micronutrients found in yeast but lacked maturation-enabling protein. At days 20 and 30, a subset of flies on the sugar diet were switched to essential or yeast-sugar diet, and some yeast-sugar fed flies were mated 10 days later. Complete mitigation of actuarial aging was only observed in flies that were switched to a yeast-sugar diet and mated, indicating that mating is key. Identifying the physiological processes associated with mating promise novel insights into repair mechanisms for aging.

  9. Comparison of brown sugar, hot water, and salt methods for detecting western cherry fruit fly (Diptera: Tephritidae) larvae in sweet cherry

    Science.gov (United States)

    Brown sugar or hot water methods have been developed to detect larvae of tephritid fruit flies in post-harvest fruit in order to maintain quarantine security. It would be useful to determine if variations of these methods can yield better results and if less expensive alternatives exist. This stud...

  10. Quantifying individual fruit fly consumption with Anastrepha suspensa (Diptera: Tephritidae).

    Science.gov (United States)

    Nigg, H N; Schumann, R A; Yang, J J; Yang, L K; Simpson, S E; Etxeberria, E; Burns, R E; Harris, D L; Fraser, S

    2004-12-01

    We needed a technique to compare the consumption of baits by individual Carribbean fruit fly, Anastrepha suspensa (Loew). By improving consumption and determining individual dose, we could lower pesticide concentration while retaining bait/pesticide efficacy and potentially reduce the environmental impact of fruit fly bait/pesticide eradication methods. We report here a precise dye-based technique for the quantification of consumption by individual adult A. suspensa fruit flies. Fluorescein, measured at 491 nm, and cresol red, measured at 573 nm, were efficiently extracted with 0.1 M NaOH and quantified with a spectrophotometer. The lower limit for this method with 0.1% dye concentration is 300 nl consumed by an individual fly. Dye movement to the hindgut and possible defecation occurred in approximately 4 h; maximum ingestion occurred in approximately 1 h. Maximum experimental time is limited to 4 h. Flies preferred feeding upside down compared with right side up when given a choice; consumption was equal when flies were given no choice of feeding position. Thus, maximum bait/pesticide efficacy might be achieved with an upside-down presentation. Regurgitation led to a 100% overestimation of actual consumption with the J-tube presentation of food. Our individual fly consumption technique will be useful in comparing consumption in phagostimulant studies, estimating dose in oral toxicity tests, differentiating behavioral and physiological resistance in toxicant studies, ultimately leading to improved bait/pesticide methods and reduced environmental impact of area wide fruit fly eradication programs. This technique could be applied to studies of tephritid consumption, to the consumption of other insects, and to regurgitation studies.

  11. The host marking pheromone application on the management of fruit flies - a review

    Directory of Open Access Journals (Sweden)

    Márcio Alves Silva

    2012-12-01

    Full Text Available The aim of this work was to review the role of the host marking pheromone (HMP and its application in integrated management programs for the fruit flies. Initially the oviposition behavior of tephritids has been analyzed with emphasis on Ceratitis capitata. The deposition of HMP, which consists in the last stage of the oviposition behavior has been characterized and discussed about evolutive aspects and the biological meaning of the tephritidae communication through the HMP. Finally, the perspectives on the use of HMP in the integrated management of fruit flies have been discussed.

  12. Assessment of Navel oranges, Clementine tangerines and Rutaceous fruits as hosts of Bactrocera cucurbitae and Bactrocera latifrons (Diptera: Tephritidae)

    Science.gov (United States)

    Export of Citrus spp., widely cultivated throughout the tropics and subtropics, may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. Two tephritid fruit fly species whose geographic ranges have...

  13. Generic ionizing radiation quarantine treatments against fruit flies (Diptera: Tephritidae) proposed.

    Science.gov (United States)

    Hallman, Guy J; Loaharanu, Paisan

    2002-10-01

    Tephritid fruit flies comprise the most important group of quarantined pests of fresh produce. Most quarantine treatments of fresh agricultural commodities are directed against these pests, and considerable effort in detection, trapping, and population control is expended worldwide to prevent these pests from invading new territories. Ionizing radiation has been studied for 70 yr for its possible use as a quarantine treatment against fruit flies, but has only been applied commercially on a limited basis since 1995. The treatment has great potential and will probably be used extensively in the future as it is tolerated by more species of fruits than any other major treatment. The U.S. Department Agriculture, Animal and Plant Health Inspection Service only recently proposed allowing irradiation for fresh agricultural imports from other countries, and other countries are studying proposals to do likewise. In 1991, the International Consultative Group on Food Irradiation recommended a generic dose against all tephritid fruit flies of 150 Gy. This article examines the literature dealing with irradiation quarantine treatments against fruit flies and recommends minimum absorbed doses of 70 Gy for Anastrepha spp., 101 Gy for Bactrocera jarvisi and B. tryoni, and 150 Gy for all Tephritidae except when fruits have been stored in hypoxic atmospheres.

  14. Subtropical Fruit Fly Invasions into Temperate Fruit Fly Territory in California's San Joaquin Valley

    Science.gov (United States)

    Subtropical fruit fly species including peach fruit fly, Bactrocera zonata (Saunders); melon fly, B. cucurbitae (Coquillett); oriental fruit fly, B. dorsalis (Hendel); and Mediterranean fruit fly, Ceratitis capitata Weidemann, have been detected in the past decade in the San Joaquin Valley of Califo...

  15. The South African fruit fly action plan: area-wide suppression and exotic species surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Brian N., E-mail: barnesb@arc.agric.z [ARC Infruitec-Nietvoorbij Institute for Fruit, Vine and Wine, Stellenbosch (South Africa); Venter, Jan-Hendrik, E-mail: janhendrikv@nda.agric.z [Directorate Plant Health, Pretoria (South Africa)

    2006-07-01

    Two species of tephritid fruit flies of economic importance, Mediterranean fruit fly (Medfly, Ceratitis capitata [Wiedemann]) and Natal fruit fly (C. rosa Karsch) cause economic losses in the South African deciduous fruit industry of approximately US$3 million per annum. A third species, marula fruit fly, C. cosyra (Walker), causes damage to citrus and sub-tropical fruits in the north-eastern part of the country. In 1999 a sterile insect technique (SIT) programme against Medfly was initiated over 10,000 ha of table grapes with a goal of cost-effective, ecologically compatible suppression of Medfly. The SIT programme was extended to two other fruit production areas in 2004. Although results in all three SIT areas have been mixed, populations of wild Medflies, as well as associated pesticide usage and control costs, have been reduced since the start of sterile fly releases. Reasons for the partial degree of success and the relatively slow expansion of Medfly SIT to other areas include economic, operational and cultural factors, as well as certain fruit production practices. Before fruit fly-free areas can be created, deficiencies in the ability to mass-rear Natal fruit fly need to be overcome so that an SIT programme against this species can be initiated. Any fruit fly suppression or eradication campaign will be severely compromised by any introductions into South Africa of exotic fruit fly species. The risk of such introductions is increasing as trade with and travel to the country increases. A Plant Health Early Warning Systems Division has been initiated to formulate fruit fly detection and action plans. Melon fly (Bactrocera cucurbitae [Coquillett]), Asian fruit fly (B. invadens Drew, Tsurutu and White) and peach fruit fly (B. zonata [Saunders]), which are all well established in parts of Africa and/or Indian Ocean islands, have been identified as presenting the highest risk for entering and becoming established in South Africa. An exotic fruit fly surveillance

  16. Genetic consequences of domestication and mass rearing of pest fruit fly Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Gilchrist, A S; Cameron, E C; Sved, J A; Meats, A W

    2012-06-01

    Tephritid fruit flies, an important pest of horticulture worldwide, are increasingly targeted for control or eradication by large-scale releases of sterile flies of the same species. For each species treated, strains must be domesticated for mass rearing to provide sufficiently large numbers of individuals for releases. Increases in productivity of domesticated tephritid strains are well documented, but there have been few systematic studies of the genetic consequences of domestication in tephritids. Here, we used nine DNA microsatellite markers to monitor changes in genetic diversity during the early generations of domestication in replicated lines of the fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). The observed changes in heterozygosity and allelic richness were compared with the expected changes in heterozygosity generated by a stochastic simulation including genetic drift but not selection. The results showed that repeatable genetic bottlenecks occur in the early generations and that selection occurs in the later generations. Furthermore, using the same simulation, we show that there is inadvertent selection for increased productivity for the entire life on a mass-rearing colony, in addition to intentional selection for increased productivity. That additional selection results from the common practice of establishing the next generation of the breeding colony from a small proportion of one day's pupae collection (the pupal raffle). That selection occurs during all generations and acts only on fecundity variation. Practical methods to counter that unavoidable loss of genetic diversity during the domestication process in B. tryoni are discussed.

  17. Fruit Flies Help Human Sleep Research

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Fruit Flies Help Human Sleep Research Past Issues / Summer ... courtesy of NIGMS Neuroscientist Chiara Cirelli uses experimental fruit flies to study sleep. Although it may be ...

  18. Evolution, Fruit Flies and Gerontology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 11. Evolution, Fruit Flies and Gerontology Evolutionary Biology Helps Unravel the ... Author Affiliations. Amitabh Joshi1. Animal Behaviour Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bangalore 560 064, India ...

  19. Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).

    Science.gov (United States)

    Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H

    2013-04-01

    Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.

  20. Two new species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae reared from fruit-infesting tephritid (Diptera hosts in Kenya

    Directory of Open Access Journals (Sweden)

    Robert Wharton

    2009-09-01

    Full Text Available Two species of opiine Braconidae, reared from fruit-infesting Tephritidae in Kenya, are described. Psyttalia masneri sp. n. was reared from fruits of Dracaena fragrans (L. Ker Gawl. (Liliaceae infested with Taomyia marshalli Bezzi in western Kenya. Psyttalia masneri is the only opiine braconid known to attack members of the genus Taomyia. Unusual morphological features of P. masneri and its host are detailed. Psyttalia halidayi sp. n. was reared from fruits of Lettowianthus stellatus Diels (Annonaceae infested with Ceratitis rosa Karsch in coastal Kenya. Psyttalia halidayi is morphologically similar to several described species of Psyttalia that have previously been used in the biological control of tephritid pests. Unlike these other species, P. halidayi can attack and successfully develop on C. rosa, a serious pest of cultivated fruits. A list of valid species in Psyttalia is provided, along with comments on species groups and host records.

  1. Sublethal Effects in Pest Management: A Surrogate Species Perspective on Fruit Fly Control

    Directory of Open Access Journals (Sweden)

    John E. Banks

    2017-07-01

    Full Text Available Tephritid fruit flies are economically important orchard pests globally. While much effort has focused on controlling individual species with a combination of pesticides and biological control, less attention has been paid to managing assemblages of species. Although several tephritid species may co-occur in orchards/cultivated areas, especially in mixed-cropping schemes, their responses to pesticides may be highly variable. Furthermore, predictive efforts about toxicant effects are generally based on acute toxicity, with little or no regard to long-term population effects. Using a simple matrix model parameterized with life history data, we quantified the responses of several tephritid species to the sublethal effects of a toxicant acting on fecundity. Using a critical threshold to determine levels of fecundity reduction below which species are driven to local extinction, we determined that threshold levels vary widely for the three tephritid species. In particular, Bactrocera dorsalis was the most robust of the three species, followed by Ceratitis capitata, and then B. cucurbitae, suggesting individual species responses should be taken into account when planning for area-wide pest control. The rank-order of susceptibility contrasts with results from several field/lab studies testing the same species, suggesting that considering a combination of life history traits and individual species susceptibility is necessary for understanding population responses of species assemblages to toxicant exposure.

  2. Automated Surveillance of Fruit Flies

    Directory of Open Access Journals (Sweden)

    Ilyas Potamitis

    2017-01-01

    Full Text Available Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study.

  3. Automated locomotor activity monitoring as a quality control assay for mass-reared tephritid flies.

    Science.gov (United States)

    Dominiak, Bernard C; Fanson, Benjamin G; Collins, Samuel R; Taylor, Phillip W

    2014-02-01

    The Sterile Insect Technique (SIT) requires vast numbers of consistently high quality insects to be produced over long periods. Quality control (QC) procedures are critical to effective SIT, both providing quality assurance and warning of operational deficiencies. We here present a potential new QC assay for mass rearing of Queensland fruit flies (Bactrocera tryoni Froggatt) for SIT; locomotor activity monitoring. We investigated whether automated locomotor activity monitors (LAMs) that simply detect how often a fly passes an infrared sensor in a glass tube might provide similar insights but with much greater economy. Activity levels were generally lower for females than for males, and declined over five days in the monitor for both sexes. Female activity levels were not affected by irradiation, but males irradiated at 60 or 70 Gy had reduced activity levels compared with unirradiated controls. We also found some evidence that mild heat shock of pupae results in adults with reduced activity. LAM offers a convenient, effective and economical assay to probe such changes. © 2013 Society of Chemical Industry.

  4. A role for copula duration in fertility of Queensland fruit fly females mated by irradiated and unirradiated males.

    Science.gov (United States)

    Collins, Samuel R; Pérez-Staples, Diana; Taylor, Phillip W

    2012-11-01

    Females of many tephritid fruit flies can mate more than once, and can store ejaculates from multiple males. As well as being an important element of reproductive biology, multiple mating by females is of particular relevance for sterile insect technique programs used to control major tephritid pests. Here we investigate the consequences of multiple mating on fertility of Queensland fruit fly (Bactrocera tryoni) females sequentially mated to irradiated ('sterile') and unirradiated ('normal') males. Females mated by two normal males showed persistent high fertility whereas females mated by two sterile males showed persistent low fertility. Despite lack of association between copula duration and sperm number, fertility of females mated to a normal and then a sterile male increased with duration of the first copulation and decreased with duration of the second. Fertility of females mated to a sterile male and then a normal male was not influenced by duration of the first copulation but increased with duration of the second. These findings reveal a need for increased attention to how factors other than sperm number influence post-copulatory sexual selection in tephritid flies, and in particular how copula duration is linked to sperm storage and usage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Stochastic Fractal Based Multiobjective Fruit Fly Optimization

    Directory of Open Access Journals (Sweden)

    Zuo Cili

    2017-06-01

    Full Text Available The fruit fly optimization algorithm (FOA is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve the convergence performance of the fruit fly optimization algorithm. To deal with multiobjective optimization problems, the Pareto domination concept is integrated into the selection process of fruit fly optimization and a novel multiobjective fruit fly optimization algorithm is then developed. Similarly to most of other multiobjective evolutionary algorithms (MOEAs, an external elitist archive is utilized to preserve the nondominated solutions found so far during the evolution, and a normalized nearest neighbor distance based density estimation strategy is adopted to keep the diversity of the external elitist archive. Eighteen benchmarks are used to test the performance of the stochastic fractal based multiobjective fruit fly optimization algorithm (SFMOFOA. Numerical results show that the SFMOFOA is able to well converge to the Pareto fronts of the test benchmarks with good distributions. Compared with four state-of-the-art methods, namely, the non-dominated sorting generic algorithm (NSGA-II, the strength Pareto evolutionary algorithm (SPEA2, multi-objective particle swarm optimization (MOPSO, and multiobjective self-adaptive differential evolution (MOSADE, the proposed SFMOFOA has better or competitive multiobjective optimization performance.

  6. MicroRNAs in the oriental fruit fly, Bactrocera dorsalis: extending Drosophilid miRNA conservation to the Tephritidae.

    Science.gov (United States)

    Calla, Bernarda; Geib, Scott M

    2015-10-05

    The oriental fruit fly, Bactrocera dorsalis, is an important plant pest species in the family Tephritidae. It is a phytophagous species with broad host range, and while not established in the mainland United States, is a species of great concern for introduction. Despite the vast amount of information available from the closely related model organism Drosophila melanogaster, information at the genome and transcriptome level is still very limited for this species. Small RNAs act as regulatory molecules capable of determining transcript levels in the cells. The most studied small RNAs are micro RNAs, which may impact as much as 30 % of all protein coding genes in animals. We have sequenced small RNAs (sRNAs) from the Tephritid fruit fly, B. dorsalis (oriental fruit fly), specifically sRNAs corresponding to the 17 to 28 nucleotides long fraction of total RNA. Sequencing yielded more than 16 million reads in total. Seventy five miRNAs orthologous to known miRNAs were identified, as well as five additional novel miRNAs that might be specific to the genera, or to the Tephritid family. We constructed a gene expression profile for the identified miRNAs, and used comparative analysis with D. melanogaster to support our expression data. In addition, several miRNA clusters were identified in the genome that show conservancy with D. melanogaster. Potential targets for the identified miRNAs were also searched. The data presented here adds to our growing pool of information concerning the genome structure and characteristics of true fruit flies. It provides a basis for comparative studies with other Dipteran and within Tephritid species, and can be used for applied research such as in the development of new control strategies based on gene silencing and transgenesis.

  7. Susceptibility of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae pupae to entomopathogenic nematodes

    Directory of Open Access Journals (Sweden)

    Torrini Giulia

    2017-09-01

    Full Text Available The olive fruit fly Bactrocera oleae is one of the most serious and economically damaging insects worldwide, affecting the quality and quantity of both olive oil and table olives. Laboratory bioassays were conducted for the first time to evaluate the susceptibility of B. oleae pupae to two entomopathogenic nematodes (EPN species, Steinernema carpocapsae and Heterorhabditis bacteriophora. The nematodes tested caused pupal mortality of 62.5% and 40.6%, respectively. The most noteworthy result was obtained with S. carpocapsae which was able to infect 21.9% of the emerged adults. Since this tephritid fly spent several months in the soil as pupa, the use of EPNs could be a promising method to control this pest.

  8. To catch a fly: landing and capture of ceratitis capitata in a Jackson trap with and without an insecticide

    Science.gov (United States)

    Attractant-based traps are a cornerstone of detection, delimitation and eradication programs for tephritid fruit flies and other pests. The ideal trap and lure combination has high attraction (it brings pest tephritids to the trap from a distance) and high capture efficiency (it has a high probabili...

  9. Combined effects of dietary yeast supplementation and methoprene treatment on sexual maturation of Queensland fruit fly.

    Science.gov (United States)

    Collins, Samuel R; Reynolds, Olivia L; Taylor, Phillip W

    2014-02-01

    Yeast hydrolysate supplements promote maturation of many tephritid flies targeted for control using the sterile insect technique (SIT), including Queensland fruit fly (Bactrocera tryoni; 'Q-fly'). Recently, application of the juvenile hormone analogue methoprene has been demonstrated to further promote maturation in some species. We here investigate the separate and combined effects of yeast hydrolysate and methoprene treatment on sexual maturation of sterile male and female Q-flies. Two methods of applying methoprene solution were used; topical application to adults and dipping of pupae. Consistent with previous studies, access to yeast hydrolysate greatly increased maturation of both male and female Q-flies. Maturation was further promoted by methoprene treatment, with similar effects evident for males and females and for both application methods. For flies provided access to yeast hydrolysate supplements, methoprene treatment advanced maturation by approximately 2days. No effects of diet or methoprene treatment were found on timing of copulation or copula duration. Countering the positive effects on sexual maturation, dipping of pupae in methoprene/acetone solution did diminish emergence rates and flight ability indices, and increased rates of wing deformity. Promising results of the present study encourage further investigation of treatment methods that maximise maturation while minimising detrimental effects on other aspects of fly quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Contrasting brood-sex ratio flexibility in two opiine (Hymenoptera: Braconidae) parasitoids of tephritid (Diptera) fruit files

    Science.gov (United States)

    Mass-rearing of fruit fly parasitoids for augmentative release would be more economical if production could be biased towards females. If sex ratios are ever to be manipulated under rearing conditions it is important to determine if, then understand why, sex ratio flexibility exists. Unequal brood-s...

  11. Application of Nuclear Techniques to Improve the Mass Production and Management of Fruit Fly Parasitoids

    Directory of Open Access Journals (Sweden)

    Jorge Hendrichs

    2012-10-01

    Full Text Available The use of irradiated hosts in mass rearing tephritid parasitoids represents an important technical advance in fruit fly augmentative biological control. Irradiation assures that fly emergence is avoided in non-parasitized hosts, while at the same time it has no appreciable effect on parasitoid quality, i.e., fecundity, longevity and flight capability. Parasitoids of fruit fly eggs, larvae and pupae have all been shown to successfully develop in irradiated hosts, allowing a broad range of species to be shipped and released without post-rearing delays waiting for fly emergence and costly procedures to separate flies and wasps. This facilitates the early, more effective and less damaging shipment of natural enemies within hosts and across quarantined borders. In addition, the survival and dispersal of released parasitoids can be monitored by placing irradiated sentinel-hosts in the field. The optimal radiation dosages for host-sterility and parasitoid-fitness differ among species, and considerable progress has been made in integrating radiation into a variety of rearing procedures.

  12. Suppression of cuelure attraction in male Queensland fruit flies provided raspberry ketone supplements as immature adults.

    Directory of Open Access Journals (Sweden)

    Humayra Akter

    Full Text Available Tephritid fruit flies are amongst the most damaging insect pests of horticulture globally. Some of the key fruit fly species are managed using the sterile insect technique (SIT, whereby millions of sterile males are released to suppress reproduction of pest populations. Male annihilation technique (MAT, whereby sex specific lures are used to attract and kill males, is often used to reduce wild male numbers before SIT programs commence, providing released sterile males an increased numerical advantage. Overall program efficacy might be improved if MAT could be deployed simultaneously with SIT, continuously depleting fertile males from pest populations and replacing them with sterile males. However, such 'male replacement' requires a means of suppressing attraction of released sterile males to lures used in MAT. Previous studies have found that exposure of some fruit flies to lure compounds as mature adults can suppress subsequent response to those lures, raising the possibility of pre-release treatments. However, this approach requires holding flies until after maturation for treatment and then release. The present study takes a novel approach of exposing immature adult male Queensland fruit flies (Bactrocera tryoni, or 'Qfly' to raspberry ketone (RK mixed in food, forcing these flies to ingest RK at ages far younger than they would naturally. After feeding on RK-supplemented food for two days after emergence, male Qflies exhibited a reduction in attraction to cuelure traps that lasted more than 20 days. This approach to RK exposure is compatible with current practises, in which Qflies are released as immature adults, and also yields advantages of accelerated reproductive development and increased mating propensity at young ages.

  13. Suppression of cuelure attraction in male Queensland fruit flies provided raspberry ketone supplements as immature adults.

    Science.gov (United States)

    Akter, Humayra; Adnan, Saleh; Morelli, Renata; Rempoulakis, Polychronis; Taylor, Phillip W

    2017-01-01

    Tephritid fruit flies are amongst the most damaging insect pests of horticulture globally. Some of the key fruit fly species are managed using the sterile insect technique (SIT), whereby millions of sterile males are released to suppress reproduction of pest populations. Male annihilation technique (MAT), whereby sex specific lures are used to attract and kill males, is often used to reduce wild male numbers before SIT programs commence, providing released sterile males an increased numerical advantage. Overall program efficacy might be improved if MAT could be deployed simultaneously with SIT, continuously depleting fertile males from pest populations and replacing them with sterile males. However, such 'male replacement' requires a means of suppressing attraction of released sterile males to lures used in MAT. Previous studies have found that exposure of some fruit flies to lure compounds as mature adults can suppress subsequent response to those lures, raising the possibility of pre-release treatments. However, this approach requires holding flies until after maturation for treatment and then release. The present study takes a novel approach of exposing immature adult male Queensland fruit flies (Bactrocera tryoni, or 'Qfly') to raspberry ketone (RK) mixed in food, forcing these flies to ingest RK at ages far younger than they would naturally. After feeding on RK-supplemented food for two days after emergence, male Qflies exhibited a reduction in attraction to cuelure traps that lasted more than 20 days. This approach to RK exposure is compatible with current practises, in which Qflies are released as immature adults, and also yields advantages of accelerated reproductive development and increased mating propensity at young ages.

  14. Reconstructing the behavior of walking fruit flies

    Science.gov (United States)

    Berman, Gordon; Bialek, William; Shaevitz, Joshua

    2010-03-01

    Over the past century, the fruit fly Drosophila melanogaster has arisen as almost a lingua franca in the study of animal behavior, having been utilized to study questions in fields as diverse as sleep deprivation, aging, and drug abuse, amongst many others. Accordingly, much is known about what can be done to manipulate these organisms genetically, behaviorally, and physiologically. Most of the behavioral work on this system to this point has been experiments where the flies in question have been given a choice between some discrete set of pre-defined behaviors. Our aim, however, is simply to spend some time with a cadre of flies, using techniques from nonlinear dynamics, statistical physics, and machine learning in an attempt to reconstruct and gain understanding into their behavior. More specifically, we use a multi-camera set-up combined with a motion tracking stage in order to obtain long time-series of walking fruit flies moving about a glass plate. This experimental system serves as a test-bed for analytical, statistical, and computational techniques for studying animal behavior. In particular, we attempt to reconstruct the natural modes of behavior for a fruit fly through a data-driven approach in a manner inspired by recent work in C. elegans and cockroaches.

  15. The fruit flies (Tephritidae) of Ontario

    Science.gov (United States)

    Thirteen species of Tephritidae are newly recorded from Ontario, and alternative format keys are provided to the 31 genera and 72 species of fruit fly now known from, or likely to occur, in the province. Standard dichotomous keys to genera, and simplified field keys to genera and species are provide...

  16. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    OpenAIRE

    Raphael, Kathryn A; Shearman, Deborah CA; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control ...

  17. Fruit flies (Diptera, Tephritidae and their parasitoids on cultivated and wild hosts in the Cerrado-Pantanal ecotone in Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Tiago Ledesma Taira

    2013-09-01

    Full Text Available Fruit flies (Diptera, Tephritidae and their parasitoids on cultivated and wild hosts in the Cerrado-Pantanal ecotone in Mato Grosso do Sul, Brazil. Information on frugivorous flies in cultivated or wild host plants and their parasitoids in the Cerrado-Pantanal ecotone in Aquidauana, Mato Grosso do Sul is presented and discussed. Fruit fly samples were collected weekly in specific fruit trees, and McPhail® traps were installed in the same trees for a period of two years. The fruit flies infested ripe and unripe fruits of Averrhoa carambola L., Schoepfia sp., Psidium guajava L. and Pouteria torta (Mart. Radlk and mature fruits of Anacardium occidentale L. and Inga laurina (Sw. Willd. Nineteen fruit fly species were obtained with the combination of sampling methods (collecting fruits and trapping, nine of them obtained with both methods, five found only in fruits and five only in traps. This is the first record of Anastrepha striata Schiner in a species of Sapotaceae, as well as for A. castanea Norrbom and A. daciformes Bezzi in Schoepfia sp. (Olacaceae, and for A. distincta Greene in fruits of P. guajava in the state of Mato Grosso do Sul. Fruit collections simultaneously associated with capture of fruit flies by McPhail traps in the same host plants are essential to understand the diversity of fruit flies and their relationship with hosts and parasitoids. Species of Braconidae and Pteromalidae were recovered, where Doryctobracon areolatus (Szépligeti was the most abundant parasitoid in larvae of tephritids infesting both cultivated and wild host fruits.

  18. Annotated world bibliography of host plants of the melon fly, Bactrocera cucurbitae (Cocquillett) (Diptera:Tephritidae)

    Science.gov (United States)

    The melon fly, Bactrocera cucurbitae(Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with ...

  19. Diversity of fruit fly species (Diptera: Tephritidae) associated with ...

    African Journals Online (AJOL)

    The fruit fly detection trapping showed that Bactrocera invadens Drew Tsuruta & White followed by Dacus bivittatus (Bigot), was the most predominant species recorded in Citrus orchards. Bactrocera cucurbitae (Coquillett) was also recorded along with six species of Ceratitis. From all fruits sampled, the emerged fruit fly ...

  20. Functional Morphology of the Mouthparts of the Adult Mediterranean Fruit Fly, Ceratitis capitata

    Science.gov (United States)

    Coronado-Gonzalez, Pablo A.; Vijaysegaran, S.; Robinson, Alan S.

    2008-01-01

    Food-based attractants incorporating an insecticide are an important component of area-wide control programmes for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). This study was carried out to understand the feeding mechanism of adults of this species. Mouthparts of C. capitata are similar in general structure to those of another Tephritid genus, Bactrocera, and have specific structural modifications that determine what adult flies can ingest. The labellum has a series of fine tube-like structures, called pseudotracheae, on its inner surface. Each pseudotrachea leads from the outer margin of the labellum and ends at the prestomum to the oral opening. The pseudotracheae contain fine micropores about 0.5µm in size. During feeding, the oral opening is never exposed to the feeding substrate but the portions of the opposing labellar lobes proximal to the oral opening are flexed against each other and distal portions of the opposing labellar lobes are opened and pressed flat against the feeding substrate or surface. The prestomal spines at the base of each pseudotrachea interlock to form a barrier across the oral opening. Thus entry of large particles directly into the crop and gut through the oral opening is prevented by flexure of the opposing labellar lobes against each other and the interlocking prestomal spines across the oral opening. Only liquids and suspended particles less than 0.5µm in size are sucked through the micropores into the lumen of the pseudotracheae and then pass into the food canal and into the crop and gut. The pseudotracheae of adult C. capitata, particularly along the middle portion of the labellum, have prominent blade-like projections that Bactrocera do not have. These projections are probably an ancestral condition as they were not observed to use them to abrade the plant or feeding surface as has been reported for species in the Tephritid genus, Blepharoneura.

  1. Mating Reverses Actuarial Aging in Female Queensland Fruit Flies

    National Research Council Canada - National Science Library

    Yap, Sarsha; Fanson, Benjamin G; Taylor, Phillip W

    2015-01-01

    ..., after which life expectancy matches that of newly emerged flies. Here, we ascertain the role of nutrients, sexual maturation and mating in mitigation of previous aging in female Queensland fruit flies...

  2. The Use of Weaver Ants in the Management of Fruit Flies in Africa

    DEFF Research Database (Denmark)

    Vayssières, Jean-François; Offenberg, Hans Joachim; Sinzogan, Antonio

    2016-01-01

    cient predators of arthropods in perennial tropical tree crops; their presence also acts as a deterrent to insect herbivores, particularly tephritid female fruit fl ies, due to the semiochemicals they produce. Emerging African markets for organic and sustainably- managed fruits and nuts have encouraged...

  3. Host plants of Melon Fly, Bactrocera cucurbitae(Coquillett)(Diptera:Tephritidae); and provisional list of suitable host plants of the Melon Fly, Bactrocera(Zeugodacus)cucurbitae(Coquillett)(Diptera:Tephritidae),Version 2.0

    Science.gov (United States)

    The melon fly, Bactrocera cucurbitae (Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with...

  4. Microsatellite analysis of the Queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae) indicates spatial structuring: implications for population control.

    Science.gov (United States)

    Yu, H; Frommer, M; Robson, M K; Meats, A W; Shearman, D C; Sved, J A

    2001-04-01

    The population structure of a tephritid pest species, the Queensland fruit fly Bactrocera tryoni (Froggatt), has been analysed over a five year period (1994-1998), using six microsatellites. Adult fly samples were collected to cover most regions of eastern and central Australia where the flies are regularly found. Tests for heterogeneity indicated that flies within geographically defined regions were homogeneous. The samples were allocated into five regions, including one very large region, Queensland, which encompasses that portion of the fly's range where breeding can occur year-round. With one exception, the collections from different regions were homogeneous between years, showing a fairly static distribution of the species. However, differences between regions were highly significant. The one case of a change in frequency between years indicated a gradual replacement of flies in a marginal region by flies from the main part of the range. The finding of stability in the distribution of a highly mobile insect is of interest, potentially also for other species which have expanded beyond their native range. It is argued that a contributing reason for this stability may be adaptation to different climatic regimes, and that strategies for control based on this hypothesis afford a reasonable chance of success.

  5. Ultrastructure of male reproductive accessory glands and ejaculatory duct in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Radhakrishnan, Preethi; Marchini, Daniela; Taylor, Phillip W

    2009-05-01

    Ultrastructure of male reproductive accessory glands and ejaculatory duct in the Queensland fruit fly (Q-fly), Bactrocera tryoni, were investigated and compared with those of other tephritid flies. Male accessory glands were found to comprise one pair of mesodermic glands and three pairs of ectodermic glands. The mesodermic accessory glands consist of muscle-lined, binucleate epithelial cells, which are highly microvillated and extrude electron-dense secretions by means of macroapocrine transport into a central lumen. The ectodermic accessory glands consist of muscle-lined epithelial cells which have wide subcuticular cavities, lined with microvilli. The electron-transparent secretions from these glands are first extruded into the cavities and then forced out through small pores of the cuticle into the gland lumen. Secretions from the two types of accessory glands then flow into the ejaculatory duct, which is highly muscular, with epithelial cells rich in rough endoplasmic reticulum and lined with a thick, deeply invaginated cuticle. While there are some notable differences, reproductive accessory glands of male Q-flies generally resemble those of the olive fruitfly, Bactrocera oleae, and to a lesser extent the Mediterranean fruit fly, Ceratitis capitata.

  6. Honey bee foraging preferences, effects of sugars, and fruit fly toxic bait components.

    Science.gov (United States)

    Mangan, Robert L; Moreno, Aleena Tarshis

    2009-08-01

    Field tests were carried out to evaluate the repellency of the Dow AgroSciences fruit fly toxic bait GF-120 (NF Naturalyte) to domestic honey bees (Apis mellifera L.). GF-120 is an organically registered attractive bait for tephritid fruit flies composed of spinosad, hydrolyzed protein (Solulys), high-fructose corn syrup (ADM CornSweet 42 high-fructose corn syrup, referred to as invertose sugar or invertose here), vegetable oils, adjuvants, humectants, and attractants. Tests were carried out with non-Africanized honey bees in February and March 2005 and 2007 during periods of maximum hunger for these bees. In all tests, bees were first trained to forage from plates of 30% honey-water (2005) or 30% invertose (2007). In 2005 bees were offered choices between honey-water and various bait components, including the complete toxic bait. In 2007, similar tests were performed except bees were attracted with 30% invertose then offered the bait components or complete bait as no-choice tests. Initially, the 2005 tests used all the components of GF-120 except the spinosad as the test bait. After we were convinced that bees would not collect or be contaminated by the bait, we tested the complete GF-120. Behavior of the bees indicated that during initial attraction and after switching the baits, the bait components and the complete bait were repellent to honey bees, but the honey-water remained attractive. Invertose was shown to be less attractive to bees, addition of Solulys eliminated almost all bee activity, and addition of ammonium acetate completely eliminated feeding in both choice and no-choice tests. These results confirm previous tests showing that bees do not feed on GF-120 and also show that honey bees are repelled by the fruit fly attractant components of the bait in field tests.

  7. Control of the olive fruit fly using genetics-enhanced sterile insect technique

    Directory of Open Access Journals (Sweden)

    Ant Thomas

    2012-06-01

    Full Text Available Abstract Background The olive fruit fly, Bactrocera oleae, is the major arthropod pest of commercial olive production, causing extensive damage to olive crops worldwide. Current control techniques rely on spraying of chemical insecticides. The sterile insect technique (SIT presents an alternative, environmentally friendly and species-specific method of population control. Although SIT has been very successful against other tephritid pests, previous SIT trials on olive fly have produced disappointing results. Key problems included altered diurnal mating rhythms of the laboratory-reared insects, resulting in asynchronous mating activity between the wild and released sterile populations, and low competitiveness of the radiation-sterilised mass-reared flies. Consequently, the production of competitive, male-only release cohorts is considered an essential prerequisite for successful olive fly SIT. Results We developed a set of conditional female-lethal strains of olive fly (named Release of Insects carrying a Dominant Lethal; RIDL®, providing highly penetrant female-specific lethality, dominant fluorescent marking, and genetic sterility. We found that males of the lead strain, OX3097D-Bol, 1 are strongly sexually competitive with wild olive flies, 2 display synchronous mating activity with wild females, and 3 induce appropriate refractoriness to wild female re-mating. Furthermore, we showed, through a large proof-of-principle experiment, that weekly releases of OX3097D-Bol males into stable populations of caged wild-type olive fly could cause rapid population collapse and eventual eradication. Conclusions The observed mating characteristics strongly suggest that an approach based on the release of OX3097D-Bol males will overcome the key difficulties encountered in previous olive fly SIT attempts. Although field confirmation is required, the proof-of-principle suppression and elimination of caged wild-type olive fly populations through OX3097D

  8. Dispersal capacity of fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae in irrigated coffee plantations

    Directory of Open Access Journals (Sweden)

    Maria Gisely Camargos

    2016-06-01

    Full Text Available ABSTRACT Diachasmimorpha longicaudata is an Old World parasitoid of tephritid fruit flies that was widely introduced in the Americas to control pest species such as the Mediterranean fruit fly Ceratitis capitata. Augmentative releases in irrigated coffee plantations in semiarid regions of Brazil are under consideration and dispersal capacity of D. longicaudata in this habitat are important to develop release strategies. Approximately 2,000 individuals of D. longicaudata (5 to 7 days old were released in the center of a fruiting coffee plantation every two weeks from Dec. 2009 to Apr. 2010. Dispersal from the central release point was monitored to the north, south, east, west, northeast, northwest, southeast and southwest at 11 distances, beginning at 4.6 m and ending at 90 m from the release point. At each point, a parasitism unit (approximately 120 larvae of C. capitata in the 3rd instar wrapped in voile fabric and 10 coffee beans were collected. The average dispersion distance and dispersion area were estimated by the model proposed by Dobzhansky and Wright (1943. The average dispersion distances were 27.06 m (as estimated by fruit collection and 33.11 m (as estimated by oviposition traps. The average dispersion areas were 1,315.25 m2 and 1,752.45 m2 originating from the collection of beans and parasitism units, respectively. Cohorts of 2,000 adult D. longicaudata released at six points ha−1 are estimated to result in sufficient colonization to exert significant control of Ceratitis capitata.

  9. Biodiversity and Bionomics for Fruit Flies ( Diptera: Tephritidae ) in ...

    African Journals Online (AJOL)

    The invasive fruit fly, Bactrocera invadens Drew, Tsuruta and White is the key pest in the low and medium altitude areas. On the other hand, the Natal fruit fly, Ceratitis rosa Karsch is the key frugivorous pest in the high altitude areas. Other native species like C. capitata (Wiedemann) and Ceratitis cosyra (Walker) were less ...

  10. Assessment of invasive fruit fly fruit infestation and damage in Cabo ...

    African Journals Online (AJOL)

    Fruit flies are among the most important pests of fruits and vegetables in the world. The invasive fruit fly Bactrocera invadens (Diptera: Tephritidae) was first detected in Africa in 2003 in Kenya. In Mozambique, it was first recorded in 2007 in Niassa Province. Direct damage due to B. invadens attack in African countries varies ...

  11. Distribution of olive fruit fly in California based on fruit infestations since the 1998 invasion

    Science.gov (United States)

    Olive fruit fly, Bactrocera oleae (Rossi), was first discovered in Los Angeles, California in 1998. Eradication and containment programs were immediately initiated, but within four years the olive pest was detected throughout the state. Olive fruit fly is not tolerated in canned fruit, and the insec...

  12. Seminal fluids mediate sexual inhibition and short copula duration in mated female Queensland fruit flies.

    Science.gov (United States)

    Radhakrishnan, Preethi; Taylor, Phillip W

    2007-07-01

    Molecules in male seminal fluid transferred to female insects during mating can have potent effects on their subsequent sexual and reproductive behaviour. Like many other tephritids, female Queensland fruit flies (Bactrocera tryoni) typically have diminished sexual receptivity after their first mating. Also, copulations of females that do remate tend to be shorter than those of virgins. We here find that virgin females injected with small doses (0.1, 0.2 or 0.5 male equivalents) of extracts from the male reproductive tract accessory tissues, which consist of male accessory glands, ejaculatory apodeme and ejaculatory duct (AG/EA/ED), have diminished receptivity and short copula duration very similar to naturally mated females. In contrast, virgin females injected with saline or with high doses of AG/EA/ED (1 or 2 male equivalents) that likely exceed the range of natural variation retain the higher levels of sexual receptivity and longer copulations of un-injected virgins. We conclude that reduced sexual receptivity and shorter copulations of mated female Q-flies are mediated by products in the male seminal fluid derived from the male reproductive tract accessory tissues.

  13. 76 FR 18419 - Movement of Hass Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist

    Science.gov (United States)

    2011-04-04

    ...) Ministry of Agriculture & Technical Department Peruvian Hass Avocado Growers Association (ProHass), Nonhost...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Parts 301 and 319 RIN 0579-AD34 Movement of Hass Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist AGENCY...

  14. 76 FR 26654 - Movement of Hass Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist

    Science.gov (United States)

    2011-05-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE... Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist AGENCY: Animal and... regarding the movement of fresh Hass variety avocados. This action will allow interested persons additional...

  15. Biological control of olive fruit fly (Diptera: Tephritidae) by releases of Psyttalia cf. concolor (Hymenoptera: Braconidae) in California, parasitoid longevity in presence of the host, and host status of Walnut Husk Fly

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Victoria Y., E-mail: vyokoyama@fresno.ars.usda.go [U.S. Department of Agriculture (USDA/ARS/SJVASC), Parlier, CA (United States). Agricultural Research Service. Subtropical Horticulture Research Station; Rendon, Pedro A., E-mail: prendon@aphisguate.co [U.S. Department of Agriculture (USDA/APHIS), Guatemala City (Guatemala). Center for Plant Health Science and Technology. Animal and Plant Health Inspection.; Sivinski, John, E-mail: jsivinski@gainesville.usda.ufl.ed [U.S. Department of Agriculture (USDA/ARS/CMAVE), Gainesville, FL (United States). Agricultural Research Service. Center for Medical, Agricultural and Veterinary Entomology

    2006-07-01

    The larval parasitoid, Psyttalia cf. concolor, collected from tephritids infesting coffee in Kenya and reared on Mediterranean fruit fly, Ceratitis capitata Weidemann, in Guatemala by USDA-APHIS, PPQ, was imported into California for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europaea. Free releases of the parasitoids were made in olive trees infested with olive fruit fly at a coastal and inland valley location during the fall and early winter of 2005. The relative humidity during the releases was significantly higher at the coastal location. Mean percentage parasitism ranged from 0.5 to 4 and 1.5 to 30 at the coastal and inland valley locations respectively, based on same season recovery of the F1 generation. One parasitoid was found in infested olives in the next crop of the following year in San Jose. Survival of the parasitoid in the greenhouse in the presence of olive fruit fly infested olives was not significantly different than in the presence of non-infested olives. The greatest number of progeny was produced from female parasitoids that were 12-16 d old. In laboratory tests, a few individuals of the parasitoid successfully completed one life cycle in walnut husk fly, Rhagoletis completa Cresson, infested English walnuts, Juglans regia L. (author)

  16. The genome of the Queensland fruit fly Bactrocera tryoni contains multiple representatives of the mariner family of transposable elements.

    Science.gov (United States)

    Green, C L; Frommer, M

    2001-08-01

    Representatives of five distinct types of transposable elements of the mariner family were detected in the genomes of the Queensland fruit fly Bactrocera tryoni and its sibling species Bactrocera neohumeralis by phylogenetic analysis of transposase gene fragments. Three mariner types were also found in an additional tephritid, Bactrocera jarvisi. Using genomic library screening and inverse PCR, full-length elements representing the mellifera subfamily (B. tryoni.mar1) and the irritans subfamily (B. tryoni.mar2) were isolated from the B. tryoni genome. Nucleotide consensus sequences for each type were derived from multiple defective copies. Predicted transposase sequences share approximately 23% amino acid identity. B. tryoni.mar1 elements have an estimated copy number of about 900 in the B. tryoni genome, whereas B. tryoni.mar2 element types appear to be present in low copy number.

  17. Identification of Male- and Female-Specific Olfaction Genes in Antennae of the Oriental Fruit Fly (Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available The oriental fruit fly (Bactrocera dorsalis is a species of tephritid fruit fly, endemic to Southeast Asia but also introduced to many regions of the US, and it is one of the major pest species with a broad host range of cultivated and wild fruits. Although males of B. dorsalis respond strongly to methyl eugenol and this is used for monitoring and estimating populations, the molecular mechanism of the oriental fruit fly olfaction has not been elucidated yet. Therefore, in this project, using next generation sequencing technologies, we sequenced the transcriptome of the antennae of male and female adults of B. dorsalis. We identified a total of 20 candidate odorant binding proteins (OBPs, 5 candidate chemosensory proteins (CSPs, 35 candidate odorant receptors (ORs, 12 candidate ionotropic receptors (IRs and 4 candidate sensory neuron membrane proteins (SNMPs. The sex-specific expression of these genes was determined and a subset of 9 OR genes was further characterized by qPCR with male and female antenna, head, thorax, abdomen, leg and wing samples. In the male antennae, 595 genes showed a higher expression, while 128 genes demonstrated a higher expression in the female antennae. Interestingly, 2 ORs (BdorOR13 and BdorOR14 were highly and specifically expressed in the antennae of males, and 4 ORs (BdorOR13, BdorOR16, BdorOR18 and BdorOR35 clustered with DmOR677, suggesting pheromone reception. We believe this study with these antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs can play an important role in the detection of pheromones and general odorants, and so in turn our data improve our current understanding of insect olfaction at the molecular level and provide important information for disrupting the behavior of the oriental fruit fly using chemical communication methods.

  18. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.)

    OpenAIRE

    Lehmann, Fritz-Olaf; Dickinson, Michael H.; Staunton, Jocelyn

    2000-01-01

    By simultaneously measuring carbon dioxide release, water loss and flight force in several species of fruit flies in the genus Drosophila, we have investigated respiration and respiratory transpiration during elevated locomotor activity. We presented tethered flying flies with moving visual stimuli in a virtual flight arena, which induced them to vary both flight force and energetic output. In response to the visual motion, the flies altered their energetic output as measured by changes in ca...

  19. Effective chemical control of fruit flies (Diptera: Tephritidae) pests in ...

    African Journals Online (AJOL)

    Fruit flies are major pest in West Africa. In Côte-d'Ivoire, they caused heavy losses. Thus, preventive measures are taken to reduce their damage. The objective was to evaluate the effectiveness of Success Appat® and Proteus 170 O-TEQ against fruit. Traps baited with sexual attractants were set in mango orchards and their ...

  20. Classical olfactory conditioning in the oriental fruit fly, Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Jia Li Liu

    Full Text Available The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME, a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.

  1. Oral and Topical Toxicity of Fipronil to Melon Fly and Oriental Fruit Fly (Diptera: Tephritidae)

    Science.gov (United States)

    BACKGROUND: The objective of this study was to develop basic oral and topical toxicity data for Fipronil in Solulys protein bait to wild melon fly, Bactrocera cucurbitae (Coquillett) and the oriental fruit fly, Bactrocera dorsalis (Hendel). RESULTS: For the oral study, both females and males were ...

  2. Melon Fly, (Diptera: Tephritidae, Infestation in Host Fruits in the Southwestern Islands of Japan before the Initiation of Island-wide Population Suppression, as Recorded in Publications of Japanese Public Institutions

    Directory of Open Access Journals (Sweden)

    Grant T. Mcquate

    2015-01-01

    Full Text Available Bactrocera cucurbitae (Coquillett is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern Islands of Japan. It was subsequently eradicated from these islands by an eradication program that extended from 1972 to 1993. As part of an effort to develop a worldwide database on the status of fruits as hosts of melon fly, the infestation data gathered from host fruits collected in this eradication program, before the initiation of suppression activities, are summarized here. Bactrocera cucurbitae infestation was documented in 24 plant taxa of four plant families (Caricaceae, Cucurbitaceae, Moraceae, and Solanaceae, with the following four new hosts identified: Ficus erecta Thunb., F. pumila L. (Moraceae, Solanum erianthum D. Don (Solanaceae, and Zehneria liukiuensis Jeffrey ex Walker (Cucurbitaceae.

  3. Biological meaning of the methyl eugenol to fruit flies

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, S.; Subahar, S

    1998-12-16

    The objective of this research is to test a hypothesis whether methyl eugenol has a benefit in sexual selection of fruit flies and to find at what age the male flies respond to methyl eugenol. This test was conducted using carambola fruit fly (Bractocera carambolae) at Inter University Center for Life Science of ITB. The results of the tests are summarized as follows ; 1. Males started to respond to methyl eugenol at the age of 11 days old and the maximum number of males were recorded on 14 and 15 days old. 2. Most of the carambola fruit fly start to respond to methyl eugenol before they become sexually mature. 3. A very small percentage of newly emerged males (less than 1%) survive to mate with females during treatment with methyl eugenol. Methyl eugenol has benefit in sexual selection of carabola fruit fly, i.e., males responded to methyl eugenol before they engage in sexual activities, while females responded to methyl eugenol only when males started their mating activities. (author)

  4. Infestação de cafeeiros por moscas-das-frutas (Diptera: Tephritidae): espécies associadas e parasitismo natural na região sudoeste da Bahia, Brasil Infestation of coffee plantation by fruit flies (Diptera: Tephritidae): associated species and natural parasitism on the Midwest region of Bahia, Brazil La infestación de plantas de café por las moscas de las frutas (Diptera: Tephritidae): las especies asociadas y el parasitismo en la región Suroeste de Bahía, Brasil

    OpenAIRE

    Carlos Alberto Souza Torres; Maria Aparecida Castellani; Raquel Pérez Maluf; José Carlson Gusmão Silva; Antonio Souza Nascimento; Abel Rebouças São José; Aldenise Alves Moreira; Ricardo Falcão de Sá

    2010-01-01

    Fruit flies (Diptera: Tephritidae), the main plague on the global fruitculture, assumed great importance in coffee plantation, since they determine early fall of fruits, increase on the amount of floaters and lost on the dink’s quality. The South-west of the state of Bahia has important fruitculture and coffee plantations, and there are gaps in knowledge about bioecology of tephritid that can support actions of management of these plagues. This work had as objectives ...

  5. Population Dynamics of the Mediterranean Fruit Fly in Montenegro

    Directory of Open Access Journals (Sweden)

    Sanja Radonjić

    2013-01-01

    Full Text Available Population dynamics of the Mediterranean fruit fly was studied along Montenegro seacoast. Tephri traps baited with 3 component female-biased attractants were used in 11 different localities to monitor the fruit fly population in commercial citrus orchards, mixed-fruit orchards, and in backyards. From 2008–2010, the earliest captures were recorded no earlier than July. In 2011, the first adult fly was detected in mid-June. Low captures rates were recorded in July and August (below 0.5 flies per trap per day; FTD and peaked from mid-September to the end of October of each year. Our results indicate fluctuation of fly per trap per day depending on dates of inspection and locality, with significant differences in the adult population density. A maximum population was always reached in the area of Budva-Herceg Novi with an FTD of 66.5, 89.5, 71.63, and 24.64 (from 2008–2011 respectively. Fly activity lasts from mid-June/early-July to end December, with distinct seasonal variation in the population.

  6. Incidence and composition of Ceratitid fruit flies in wild coffee ...

    African Journals Online (AJOL)

    Incidence and composition of fruit flies were studied at afromontane rainforests of southwestern Ethiopia: Yayu, Berhane-kontir and Bonga forest which are located in Illubabor, Benchi- Maji and Kefa zones, respectively. Based on ecological descriptions of forest coffee population, each forest locality was stratified into three ...

  7. Chemosensory processing in the fruit fly, Drosophila melanogaster ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 30; Issue 5. Chemosensory processing in the fruit fly, ... B C Chandra1 Sandeep Singh2. Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA; Department of Entomology, Ohio State University, Columbus, OH 43210, USA ...

  8. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.).

    Science.gov (United States)

    Lehmann, F O; Dickinson, M H; Staunton, J

    2000-05-01

    By simultaneously measuring carbon dioxide release, water loss and flight force in several species of fruit flies in the genus Drosophila, we have investigated respiration and respiratory transpiration during elevated locomotor activity. We presented tethered flying flies with moving visual stimuli in a virtual flight arena, which induced them to vary both flight force and energetic output. In response to the visual motion, the flies altered their energetic output as measured by changes in carbon dioxide release and concomitant changes in respiratory water loss. We examined the effect of absolute body size on respiration and transpiration by studying four different-sized species of fruit flies. In resting flies, body-mass-specific CO(2) release and water loss tend to decrease more rapidly with size than predicted according to simple allometric relationships. During flight, the mass-specific metabolic rate decreases with increasing body size with an allometric exponent of -0.22, which is slightly lower than the scaling exponents found in other flying insects. In contrast, the mass-specific rate of water loss appears to be proportionately greater in small animals than can be explained by a simple allometric model for spiracular transpiration. Because fractional water content does not change significantly with increasing body size, the smallest species face not only larger mass-specific energetic expenditures during flight but also a higher risk of desiccation than their larger relatives. Fruit flies lower their desiccation risk by replenishing up to 75 % of the lost bulk water by metabolic water production, which significantly lowers the risk of desiccation for animals flying under xeric environmental conditions.

  9. Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata.

    Directory of Open Access Journals (Sweden)

    Paolo Siciliano

    Full Text Available The Mediterranean fruit fly, Ceratitis capitata (medfly, is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats. Chemosensory behaviour plays an important role in many crucial stages in the life of this insect, such as the detection of pheromone cues during mate pursuit and odorants during host plant localisation. Thus, the analysis of the chemosensory gene repertoire is an important step for the interpretation of the biology of this species and consequently its invasive potential. Moreover, these genes may represent ideal targets for the development of novel, effective control methods and pest population monitoring systems. Expressed sequence tag libraries from C. capitata adult heads, embryos, male accessory glands and testes were screened for sequences encoding putative odorant binding proteins (OBPs. A total of seventeen putative OBP transcripts were identified, corresponding to 13 Classic, three Minus-C and one Plus-C subfamily OBPs. The tissue distributions of the OBP transcripts were assessed by RT-PCR and a subset of five genes with predicted proteins sharing high sequence similarities and close phylogenetic affinities to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs were characterised in greater detail. Real Time quantitative PCR was used to assess the effects of maturation, mating and time of day on the transcript abundances of the putative PBPRP genes in the principal olfactory organs, the antennae, in males and females. The results of the present study have facilitated the annotation of OBP genes in the recently released medfly genome sequence and represent a significant contribution to the characterisation of the medfly chemosensory repertoire. The identification of these medfly OBPs/PBPRPs permitted evolutionary and functional comparisons with homologous sequences from other tephritids of the genera

  10. Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Siciliano, Paolo; Scolari, Francesca; Gomulski, Ludvik M; Falchetto, Marco; Manni, Mosè; Gabrieli, Paolo; Field, Linda M; Zhou, Jing-Jiang; Gasperi, Giuliano; Malacrida, Anna R

    2014-01-01

    The Mediterranean fruit fly, Ceratitis capitata (medfly), is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats. Chemosensory behaviour plays an important role in many crucial stages in the life of this insect, such as the detection of pheromone cues during mate pursuit and odorants during host plant localisation. Thus, the analysis of the chemosensory gene repertoire is an important step for the interpretation of the biology of this species and consequently its invasive potential. Moreover, these genes may represent ideal targets for the development of novel, effective control methods and pest population monitoring systems. Expressed sequence tag libraries from C. capitata adult heads, embryos, male accessory glands and testes were screened for sequences encoding putative odorant binding proteins (OBPs). A total of seventeen putative OBP transcripts were identified, corresponding to 13 Classic, three Minus-C and one Plus-C subfamily OBPs. The tissue distributions of the OBP transcripts were assessed by RT-PCR and a subset of five genes with predicted proteins sharing high sequence similarities and close phylogenetic affinities to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs) were characterised in greater detail. Real Time quantitative PCR was used to assess the effects of maturation, mating and time of day on the transcript abundances of the putative PBPRP genes in the principal olfactory organs, the antennae, in males and females. The results of the present study have facilitated the annotation of OBP genes in the recently released medfly genome sequence and represent a significant contribution to the characterisation of the medfly chemosensory repertoire. The identification of these medfly OBPs/PBPRPs permitted evolutionary and functional comparisons with homologous sequences from other tephritids of the genera Bactrocera and

  11. Sniffing Out Chemosensory Genes from the Mediterranean Fruit Fly, Ceratitis capitata

    Science.gov (United States)

    Siciliano, Paolo; Scolari, Francesca; Gomulski, Ludvik M.; Falchetto, Marco; Manni, Mosè; Gabrieli, Paolo; Field, Linda M.; Zhou, Jing-Jiang; Gasperi, Giuliano; Malacrida, Anna R.

    2014-01-01

    The Mediterranean fruit fly, Ceratitis capitata (medfly), is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats. Chemosensory behaviour plays an important role in many crucial stages in the life of this insect, such as the detection of pheromone cues during mate pursuit and odorants during host plant localisation. Thus, the analysis of the chemosensory gene repertoire is an important step for the interpretation of the biology of this species and consequently its invasive potential. Moreover, these genes may represent ideal targets for the development of novel, effective control methods and pest population monitoring systems. Expressed sequence tag libraries from C. capitata adult heads, embryos, male accessory glands and testes were screened for sequences encoding putative odorant binding proteins (OBPs). A total of seventeen putative OBP transcripts were identified, corresponding to 13 Classic, three Minus-C and one Plus-C subfamily OBPs. The tissue distributions of the OBP transcripts were assessed by RT-PCR and a subset of five genes with predicted proteins sharing high sequence similarities and close phylogenetic affinities to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs) were characterised in greater detail. Real Time quantitative PCR was used to assess the effects of maturation, mating and time of day on the transcript abundances of the putative PBPRP genes in the principal olfactory organs, the antennae, in males and females. The results of the present study have facilitated the annotation of OBP genes in the recently released medfly genome sequence and represent a significant contribution to the characterisation of the medfly chemosensory repertoire. The identification of these medfly OBPs/PBPRPs permitted evolutionary and functional comparisons with homologous sequences from other tephritids of the genera Bactrocera and

  12. Fruit flies (Diptera: Tephritidae associated to native fruit of Spondias spp. (Anacardiaceae and Ximenia americana L. (Olacaceae and their parasitoids in the State of Piaui, Brazil

    Directory of Open Access Journals (Sweden)

    Almerinda Amélia Rodrigues Araújo

    2014-09-01

    Full Text Available This work aims to identify the species of fruit flies and their parasitoids associated to native fruit of Spondias spp. (caja S. mombin L., umbu-caja Spondias sp., umbu S. tuberosa Arr. Câm. and wild plum Ximenia americana L., in the State of Piaui, Brazil. Samples (63 of fruits were collected from November 2009 to July 2010, totalizing 4,495 fruits and 46,906 kg. It was possible to obtain 10,617 puparia, from which 4,497 tephritids and 1,118 braconid parasitoids emerged. Regarding Spondias spp., the highest occurrence was Anastrepha obliqua (Macquart, with 100% for umbu and umbu-caja. Caja presented an average of 99.52% of A. obliqua, 0.46% of Anastrepha fraterculus (Wied. and 0.97% of Ceratitis capitata (Wied.. Wild plum percentages were 97.83% for A. alveata Stone and 2.17% for A. fraterculus. Infestation rates were 429.2, 178.4, 158.9 and 43.3 puparia/kg in umbu-caja, caja, wild plum and umbu, respectively. Pupal viability was 77.8%, 69.3%, 52.5% and 41.1% to umbu, wild plum, umbu-caja and caja, respectively. By analyzing the sample parasitoids, the percentage was 21.39% for the Doryctobracon areolatus (Szépligeti species and 78.61% for Opius bellus Gahan. For the first time, it was recorded in Brazil X. americana as a host to A. alveata, as well as D. aleolatus and O. bellus as parasitoids of A. obliqua and A. alveata in Piaui.

  13. Oviposition of fruit flies (Diptera: Tephritidae and its relation with the pericarp of citrus fruits

    Directory of Open Access Journals (Sweden)

    N. P. Dias

    2017-10-01

    Full Text Available Abstract Fruit flies (Diptera: Tephritidae represent a threat to fruit growing worldwide, mainly the citrus culture, however, biological studies show that fruit flies are not perfectly adapted to this host. This study investigated oviposition of Anastrepha fraterculus (Wiedemann, 1830 and Ceratitis capitata (Wiedemann, 1824 and its relation with the pericarp of citrus fruits. We evaluated the relationship between depth of oviposition of A. fraterculus and C. capitata and epicarp thickness of orange [Citrus sinensis (L. Osbeck] ‘Navelina’ and tangerine [C. reticulata (L.] ‘Clemenules’ and the influence of fruit mesocarp of tangerine ‘Clemenules’ on oviposition of these species. The study was conducted under controlled conditions of temperature (25 ± 2 °C, relative humidity (70 ± 10% RH and photophase (12 h. A. fraterculus and C. capitata laid their eggs in the flavedo region of orange ‘Navelina’ and between the albedo and flavedo of tangerine ‘Clemenules’. When fruits with mesocarp exposed were offered, there was no oviposition by both fruit fly species. The results show that epicarp thickness of citrus fruits did not influence oviposition of A. fraterculus and C. capitata as oviposition did not occur only in the presence of the mesocarp, suggesting that other factors are involved in oviposition of these species.

  14. Protein:carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast:sugar ratios.

    Science.gov (United States)

    Fanson, Benjamin G; Taylor, Phillip W

    2012-12-01

    Dietary restriction extends life span across a vast diversity of taxa, but significant challenges remain in elucidating the underlying mechanisms. Distinguishing between caloric and nutrient effects is an essential step. Recent studies with Drosophila and tephritid fruit flies have reported increased life span as dietary yeast-to-sugar ratios decreased and these effects have been attributed to changes in protein-to-carbohydrate (P:C) ratios of the diets rather than calories. However, yeast is a complex mix of macronutrients and micronutrients, and hence changes in yeast content of the diet necessarily alters other nutrients in lockstep. To explicitly test whether studies using yeast are justified in attributing results to diet protein content rather than correlated nutrients, we developed a chemically defined diet allowing manipulation of just the ratio of protein (free amino acids) to carbohydrate (sucrose) levels of diets while holding other nutrients constant. Mated, female Queensland fruit flies (Q-flies) were fed 1 of 18 diets varying in P:C ratios and diet concentration. Diet consumption, egg production, and life span were recorded for each fly. In close concordance with recent studies using yeast diets, flies had increased life span as P:C ratios decreased, and caloric restriction did not extend life span. Similarly, egg production was maximized on high P:C ratios, but lifetime egg production was maximized on intermediate P:C ratios, indicating a life history trade-off between life span and egg production rate. Finally, Q-flies adjusted their diet intake in response to P:C ratios and diet concentration. Our results substantiate recent claims that P:C ratios significantly modulate life span in flies.

  15. Economics of Surveillance: a Bioeconomic Assessment of Queensland Fruit Fly

    OpenAIRE

    White, Benedict; Sadler, Rohan; Florec, Veronique; Dominiak, Bernie

    2012-01-01

    Regional management of endemic pests of trade significance typically requires a surveillance system, border controls, eradication protocols and conditions for market closure and reopening. An example is the systems for managing Queensland fruit fly (Qfly) in south east Australia where the preferred approach for intensive production areas is an Area Wide Management (AWM) scheme. An AWM, such as the Greater Sunraysia PFA (GSPFA) in northern Victoria and western New South Wales, depends for its ...

  16. Different behaviours elicited by CO2 in fruit fly larvae

    OpenAIRE

    Martins, Nuno Pimpão Santos, 1987-

    2010-01-01

    Tese de mestrado. Biologia (Biologia Evolutiva e do Desenvolvimento). Universidade de Lisboa, Faculdade de Ciências, 2010 CO2 molecules are present almost everywhere and have many biological roles, special as environmental cues or metabolic products of animals. Due to its importance, many insect species are able to sense its presence and concentration. In animals this molecule elicits appetitive behaviours, like moths and mosquitoes. On others, like fruit flies of the Drosophila melanogast...

  17. Field Evaluation of Melolure, a Formate Analogue of Cuelure, and Reassessment of Fruit Fly Species Trapped in Sydney, New South Wales, Australia.

    Science.gov (United States)

    Dominiak, Bernard C; Campbell, Angus J; Jang, Eric B; Ramsey, Amanda; Fanson, Benjamin G

    2015-06-01

    In Australia, tephritids are usually attracted to either cuelure or methyl eugenol. Methyl eugenol is a very effective lure, but cuelure is less effective likely due to low volatility. A new formate analogue of cuelure, melolure, has increased volatility, resulting in improved efficacy with the melon fruit fly, Bactrocera cucurbitae Coquillett. We tested the efficacy of melolure with fruit fly species in Sydney as part of the National Exotic Fruit Fly Monitoring programme. This monitoring programme has 71 trap sites across Sydney, with each trap site comprising separate Lynfield traps containing either cuelure, methyl eugenol, or capilure lure. In 2008, an additional Lynfield trap with melolure plugs was added to seven sites. In 2009 and 2010, an additional Lynfield trap with melolure wicks was added to 11 trap sites and traps were monitored fortnightly for 2 yr. Capture rates for melolure traps were similar to cuelure traps for Dacus absonifacies (May) and Dacus aequalis (Coquillet), but melolure traps consistently caught fewer Bactrocera tryoni (Froggatt) than cuelure traps. However, trap sites with both a cuelure and melolure traps had increased capture rates for D. absonifacies and D. aequalis, and a marginally significant increase for B. tryoni. Melolure plugs were less effective than melolure wicks, but this effect may be related to lure concentration. The broader Bactrocera group species were attracted more to cuelure than melolure while the Dacus group species were attracted more to melolure than cuelure. There is no benefit in switching from cuelure to melolure to monitor B. tryoni, the most important fruit fly pest in Australia. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The value of patch-choice copying in fruit flies.

    Directory of Open Access Journals (Sweden)

    Shane Golden

    Full Text Available Many animals copy the choices of others but the functional and mechanistic explanations for copying are still not fully resolved. We relied on novel behavioral protocols to quantify the value of patch-choice copying in fruit flies. In a titration experiment, we quantified how much nutritional value females were willing to trade for laying eggs on patches already occupied by larvae (social patches. Females were highly sensitive to nutritional quality, which was positively associated with their offspring success. Females, however, perceived social, low-nutrition patches (33% of the nutrients as equally valuable as non-social, high-nutrition ones (100% of the nutrients. In follow-up experiments, we could not, however, either find informational benefits from copying others or detect what females' offspring may gain from developing with older larvae. Because patch-choice copying in fruit flies is a robust phenomenon in spite of potential costs due to competition, we suggest that it is beneficial in natural settings, where fruit flies encounter complex dynamics of microbial communities, which include, in addition to the preferred yeast species they feed on, numerous harmful fungi and bacteria. We suggest that microbial ecology underlies many cases of copying in nature.

  19. Chromatic cues to trap the oriental fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Wu, Wen-Yen; Chen, Yu-Po; Yang, En-Cheng

    2007-05-01

    Various colors have been used as visual cues to trap insect pests. For example, yellow traps for monitoring and control of the oriental fruit fly (Bactrocera dorsalis) have been in use for a very long time. However, the chromatic cue of using color traps has never been meticulously investigated. In this study, the spectral sensitivities of the photoreceptors in the compound eyes of B. dorsalis were measured intracellularly, and the theory of receptor quantum catch was applied to study the chromatic cue of fly attracting. Responses to five wavelength categories with peak wavelengths of 370, 380, 490, and 510 nm, and one with dual peaks at 350 and 490 nm were recorded. Based on spectral sensitivities, six colored papers were chosen to test the color preference of the fly, and an additional UV preference test was done to confirm the effect of the UV stimuli. It was concluded that UV and green stimuli (spectra: 300-380 nm and 500-570 nm) would enhance the attractiveness of a colored paper to the oriental fruit fly, and blue stimuli (380-500 nm) would diminish the attractiveness.

  20. The constraints of body size on aerodynamics and energetics in flying fruit flies: an integrative view.

    Science.gov (United States)

    Lehmann, Fritz-Olaf

    2002-01-01

    Reynolds number and thus body size may potentially limit aerodynamic force production in flying insects due to relative changes of viscous forces on the beating wings. By comparing four different species of fruit flies similar in shape but with different body mass, we have investigated how small insects cope with changes in fluid mechanical constraints on power requirements for flight and the efficiency with which chemical energy is turned into aerodynamic flight forces. The animals were flown in a flight arena in which stroke kinematics, aerodynamic force production, and carbon dioxide release were measured within the entire working range of the flight motor. The data suggest that during hovering performance mean lift coefficient for flight is higher in smaller animals than in their larger relatives. This result runs counter to predictions based on conventional aerodynamic theory and suggests subtle differences in stroke kinematics between the animals. Estimates in profile power requirements based on high drag coefficient suggest that among all tested species of fruit flies elastic energy storage might not be required to minimize energetic expenditures during flight. Moreover, muscle efficiency significantly increases with increasing body size whereas aerodynamic efficiency tends to decrease with increasing size or Reynolds number. As a consequence of these two opposite trends, total flight efficiency tends to increase only slightly within the 6-fold range of body sizes. Surprisingly, total flight efficiency in fruit flies is broadly independent of different profile power estimates and typically yields mean values between 2-4%.

  1. Sexual selection in true fruit flies (Diptera: Tephritidae): transcriptome and experimental evidences for phytochemicals increasing male competitive ability.

    Science.gov (United States)

    Kumaran, Nagalingam; Prentis, Peter J; Mangalam, Kalimuthu P; Schutze, Mark K; Clarke, Anthony R

    2014-09-01

    In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms. © 2014 John Wiley & Sons Ltd.

  2. Assessment of Navel Oranges, Clementine Tangerines, and Rutaceous Fruits as Hosts of Bactrocera cucurbitae and Bactrocera latifrons (Diptera: Tephritidae).

    Science.gov (United States)

    McQuate, Grant T; Follett, Peter A; Liquido, Nicanor J; Sylva, Charmaine D

    2015-01-01

    Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett), and Bactrocera latifrons (Hendel). In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges (Citrus sinensis [L.] Osbeck) and Clementine tangerines (C. reticulata L. var. Clementine), but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae, including heat and cold treatments and systems approaches, are discussed.

  3. Oviposition deterrents for the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) from fly faeces extracts.

    Science.gov (United States)

    Arredondo, J; Díaz-Fleischer, F

    2006-02-01

    After oviposition, females of the Mediterranean fruit fly Ceratitis capitata Wiedemann deposit a host-marking pheromone on the fruit surface that deters oviposition by conspecifics. Methanolic extracts of fruit fly faeces elicit a similar deterrent effect. The results of laboratory and field experiments using raw methanolic extracts of C. capitata faeces as an oviposition deterrent are reported. Laboratory bioassays revealed a significant positive relationship between concentration of faeces and the inhibition of oviposition responses by C. capitata. Treatment of halves of coffee bushes with methanolic extracts containing 0.1, 1.0 and 10 mg faeces ml(-1) resulted in a significant reduction of infestation only at the highest concentration (P=0.03). Treatment of blocks of coffee bushes with an extract of 10 mg faeces ml(-1) resulted in an 84% reduction in infestation by C. capitata in sprayed plants and a 56% reduction in adjacent untreated coffee bushes surrounding treated plots, probably due to the deterrent effect of host-marking pheromone on fly oviposition. We conclude that faeces contain oviposition deterrent substances that effectively reduce fruit infestations by C. capitata, suggesting a clear potential for the use of this infochemical in integrated management programmes targeted at this pest.

  4. Indigenous weaver ants and fruit fly control in Tanzanian smallholder mango production

    DEFF Research Database (Denmark)

    Kirkegaard, Nina; Offenberg, Hans Joachim; Msogoya, T. J.

    2016-01-01

    The presence of weaver ant colonies can reduce fruit fly oviposition in mango production and can be effective as a fruit fly control strategy. Patrolling ants may disturb landing flies and may also deposit repellent compounds on to the fruits. This control strategy is being applied to export-orie...... linked to the presence of weaver ants that have insect-repellent properties ascribed to them but did reveal that ripening fruits emit increasing amounts of ethyl crotonate, a known attractant for gravid fruit flies....

  5. Male Fruit Fly, Bactrocera tau (Diptera; Tephritidae) attractants from Elsholtzia pubescens Bth

    NARCIS (Netherlands)

    Hasyim, A.; Muryati,; Mizu Istianto,; Kogel, de W.J.

    2007-01-01

    Studies on the ability of different plant extracts to attract male fruit flies indicated that an extract of Elsholtzia pubescens attracted male Bactrocera tau fruit flies in Passion fruit orchards in West Sumatra, Indonesia. Analyses of the plant extract showed that the major compound present was

  6. Fruit fly infestation in mango: A threat to the Horticultural sector in ...

    African Journals Online (AJOL)

    ACSS

    Fruit flies (Diptera: Tephtritidae) are one of the most important insect pests to fruits worldwide. In Uganda, fruit flies have inflicted considerable yield losses especially in mangos (Mangifera indica L.), However, there has been no recent assessment of the associated economic damage impact despite the outcries from the ...

  7. Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight

    Science.gov (United States)

    Miller, Mark S.; Keller, Tony S.

    2008-05-01

    The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.

  8. Complete Mitochondrial Genome of Three Bactrocera Fruit Flies of Subgenus Bactrocera (Diptera: Tephritidae and Their Phylogenetic Implications.

    Directory of Open Access Journals (Sweden)

    Hoi-Sen Yong

    Full Text Available Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs, 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp was longer than those of B. melastomatos (15,954 bp and B. umbrosa (15,898 bp. This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa. Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8, which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3 and nad6 (NADH dehydrogenase subunit 6 genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine-loop was absent in trnF (phenylalanine and DHU (dihydrouracil-loop was absent in trnS1 (serine S1. In B. umbrosa, trnN (asparagine, trnC (cysteine and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes, with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.

  9. Complete Mitochondrial Genome of Three Bactrocera Fruit Flies of Subgenus Bactrocera (Diptera: Tephritidae) and Their Phylogenetic Implications.

    Science.gov (United States)

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Eamsobhana, Praphathip; Suana, I Wayan

    2016-01-01

    Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.

  10. Seasonal changes in english walnut (Juglans regia L.) (Juglandaceae), fruit properties and host use patterns by Rhagoletis zoqui (Diptera: Tephritidae)

    Science.gov (United States)

    Rhagoletis zoqui Bush is a Neosubtropical, univoltine, frugivorous tephritid fly that exploits both native Juglans spp. and the introduced, Palearctic English walnut, Juglans regia. The seasonal development of commercial J. regia fruit and the pattern of host exploitation by R. zoqui were tracked ov...

  11. Toxicity of fruit fly baits to beneficial insects in citrus

    Directory of Open Access Journals (Sweden)

    J.P. Michaud

    2003-03-01

    Full Text Available Two fruit fly baits, Nu-Lure®/malathion and GF-120 (Spinosad® were evaluated in the laboratory for non-target impacts on beneficial insects. Nu-Lure/malathion proved attractive and toxic to adults and larvae of the coccinellid species, Curinus coeruleus Mulsant, Cycloneda sanguinea L. and Harmonia axyridis Pallas, a lacewing species, Chrysoperla rufilabris Burmeister. The coccinellids Olla v-nigrum Mulsant, Scymnus sp. and nymphs of the insidious flower bug, Orius insidiosus (Say did not succumb to Nu-Lure baits, even in no-choice situations. Nu-Lure was also attractive and lethal to adults of two aphidophagous flies; Leucopis sp. and the syrphid fly Pseudodorus clavatus (F.. Both Nu-Lure and GF-120 caused significant mortality to the parasitoid wasps, Aphytis melinus De Bach and Lysiphlebus testaceipes Cresson, within 24 h of exposure. However, GF-120 caused no significant mortality to any coccinellid in either choice or no-choice situations, despite considerable consumption of baits. Adults of P. clavatus tended to avoid GF-120, although mortality was significant in no-choice tests. Although larvae and adults of the lacewing C. rufilabris consumed GF-120, mortality was delayed; adults died 48 -96 h post-exposure and those exposed as larvae died two weeks later in the pupal stage. The Nu-Lure bait did not appear palatable to any of the insects, but the high concentration of malathion (195,000 ppm caused rapid mortality to susceptible insects. Nu-Lure bait without malathion also caused significant mortality to flies and lacewings in cage trials. Although GF-120 bait appeared more benign overall, further research efforts are warranted to increase its selectivity for target fly species and reduce its attractiveness to parasitoids and lacewings. I conclude that the Florida "fly free zone" protocol in its current form is not compatible with an IPM approach to commercial citrus production.

  12. Toxicity of fruit fly baits to beneficial insects in citrus.

    Science.gov (United States)

    Michaud, J.P.

    2003-01-01

    Two fruit fly baits, Nu-Lure®/malathion and GF-120 (Spinosad®) were evaluated in the laboratory for non-target impacts on beneficial insects. Nu-Lure/malathion proved attractive and toxic to adults and larvae of the coccinellid species, Curinus coeruleus Mulsant, Cycloneda sanguinea L. and Harmonia axyridis Pallas, a lacewing species, Chrysoperla rufilabris Burmeister. The coccinellids Olla v-nigrum Mulsant, Scymnus sp. and nymphs of the insidious flower bug, Orius insidiosus (Say) did not succumb to Nu-Lure baits, even in no-choice situations. Nu-Lure was also attractive and lethal to adults of two aphidophagous flies; Leucopis sp. and the syrphid fly Pseudodorus clavatus (F.). Both Nu-Lure and GF-120 caused significant mortality to the parasitoid wasps, Aphytis melinus De Bach and Lysiphlebus testaceipes Cresson, within 24 h of exposure. However, GF-120 caused no significant mortality to any coccinellid in either choice or no-choice situations, despite considerable consumption of baits. Adults of P. clavatus tended to avoid GF-120, although mortality was significant in no-choice tests. Although larvae and adults of the lacewing C. rufilabris consumed GF-120, mortality was delayed; adults died 48 -96 h post-exposure and those exposed as larvae died two weeks later in the pupal stage. The Nu-Lure bait did not appear palatable to any of the insects, but the high concentration of malathion (195,000 ppm) caused rapid mortality to susceptible insects. Nu-Lure bait without malathion also caused significant mortality to flies and lacewings in cage trials. Although GF-120 bait appeared more benign overall, further research efforts are warranted to increase its selectivity for target fly species and reduce its attractiveness to parasitoids and lacewings. I conclude that the Florida “fly free zone” protocol in its current form is not compatible with an IPM approach to commercial citrus production. PMID:15841224

  13. The importance of yeasts in the ecology and control of the Queensland fruit fly

    OpenAIRE

    Alexander M Piper

    2017-01-01

    Queensland fruit fly (Bactrocera tryoni) is a major orchard pest in Australia. Adult flies lay their eggs into ripe fruit, resulting in larval infestation and the spread of bacterial and fungal rots. The role of these microbes in fruit fly ecology is only now being elucidated, with much of the emphasis to date focusing on bacterial communities. In our study, we explored the diversity of yeast species associated with B. tryoni adults and larvae. We found larvae were highly assoc...

  14. Queensland fruit fly virus, a probable member of the Picornaviridae.

    Science.gov (United States)

    Bashiruddin, J B; Martin, J L; Reinganum, C

    1988-01-01

    A picornavirus was isolated from various life stages of the Queensland fruit fly, Dacus tryoni. This virus, Queensland fruit fly virus (QFFV) has virions with a diameter of 30 nm and a sedimentation coefficient of 178 S. One third of the particles in preparations were empty capsids or natural top component (NTC) with a sedimentation coefficient of 95 S. The buoyant density (rho) of virions and NTC in CsCl was 1.34 and 1.30 g/ml respectively; small amounts of a dense component (rho = 1.45 g/ml) were also detected. The capsid contained three major protein species of molecular weight (mol.wt.) 41,700, 36,500, and 31,300, in approximately equimolar proportions. NTC contained three major species of mol. wt. 44,700, 41,700, and 31,300. The nucleic acid present only in the bottom component virions was RNA and comprised about 30% of the particle weight and had a mol. wt of 2.88 kd, contained a poly(A) tract, and had a base ratio: G = 20; A = 32; C = 15; U = 33. The mol. wt. of the virion was estimated to be approximately equal to 9.5 kd. When virions were heated at 56 degrees C and above, they converted into artificial top component (ATC), which had the same protein composition as the virion when analysed by SDS-PAGE. In immunodiffusion tests the virions and NTC were indistinguishable, but a minor difference in antigenicity was detected between the virions and ATC. Virions were stable between pH 3 and 9 inclusive, and between 5 and 7 in the presence of 0.14 M NaCl. Immunodiffusion tests showed that QFFV was serologically unrelated to a range of picornaviruses as well as an unclassified virus isolated from the Mediterranean fruit fly, Ceratitis capitata. The data show that QFFV is probably a member of the Picornaviridae, genus Enterovirus.

  15. Epithelial self-organization in fruit fly embryogenesis

    Science.gov (United States)

    Hutson, M. Shane

    2010-03-01

    During fruit fly embryogenesis, there are several morphogenetic events in which sheets of epithelial cells expand, contract and bend due to coordinated intra- and intercellular forces. This tissue-level reshaping is accompanied by changes in the shape and arrangement of individual cells -- changes that can be measured quantitatively and dynamically using modern live-cell imaging techniques. Such data sets represent rich targets for computational modeling of self-organization; however, reproducing the observed cell- and tissue-level reshaping is not enough. The inverse problem of using cell shape changes to determine cell-level forces is ill-posed -- yielding non-unique solutions that cannot discriminate between active changes in cell shape and passive deformation. These non-unique solutions can be tested experimentally using in vivo laser-microsurgery -- i.e., cutting a targeted region of an epithelium and carefully tracking the temporal and spatial dependence of the subsequent strain relaxation. This technique uses a variety of incisions (hole, line or closed curve) to probe different aspects of epithelial mechanics: the local mesoscopic strain; the distribution of intracellular forces; changes in the cell-level power-law rheology; and the question of active versus passive deformation. I will discuss my group's work using laser-microsurgery to investigate two morphogenetic events in fruit fly embryogenesis: germband retraction and dorsal closure. In both cases, we find a substantial active mechanical role for the amnioserosa -- an epithelium that undergoes apoptosis near the end of embryogenesis and makes no part of the fly larva -- in reshaping an adjacent epithelium that becomes the larval epidermis. In these examples, self-organization of the fly embryo relies not only on self-organization of individual tissues, but also on the mechanical interactions between tissues.

  16. Antenna Design by Means of the Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Lucas Polo-López

    2018-01-01

    Full Text Available In this work a heuristic optimization algorithm known as the Fruit fly Optimization Algorithm is applied to antenna design problems. The original formulation of the algorithm is presented and it is adapted to array factor and horn antenna optimization problems. Specifically, it is applied to the array factor synthesis of uniformly-fed, non-equispaced arrays and to the profile optimization of multimode horn antennas. Several numerical examples are presented and the obtained results are compared with those provided by a deterministic optimization based on a simplex method and another well-known heuristic approach, the Genetic Algorithm.

  17. Diets based on soybean protein for Mediterranean fruit fly

    Energy Technology Data Exchange (ETDEWEB)

    Sobrinho, Raimundo Braga [Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, CEP 60511-110 Fortaleza, CE (Brazil)]. E-mail: braga@cnpat.embrapa.br; Caceres, Carlos; Islam, Amirul; Wornoayporn, Vivat [Food and Agriculture Organization (FAO), International Atomic Energy Agency (IAEA), Agriculture and Biotechnology Laboratory, A-2444 Seibersdorf (Austria)]. E-mail: C.Caceres@iaea.org; Enkerlin, Walter [Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria)]. E-mail: W.Enkerlin@iaea.org

    2006-04-15

    The objective of this work was to develop suitable and economic diets for mass rearing Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Diets containing sugar beet bagasse, wheat bran, brewer yeast, and others with wheat bran and palletized soybean protein from Brazil were tested. Diets based on soybean protein have shown promising results regarding pupal recovery, pupal weight and adult emergence. Soybean bagasse in the form of pellets with 60% of protein can be a very important substitute for other expensive sources of protein. (author)

  18. Survival and development of immature stages of the Mediterranean fruit fly (Diptera: Tephritidae) in citrus fruit.

    Science.gov (United States)

    Papachristos, Dimitrios P; Papadopoulos, Nikos T; Nanos, George D

    2008-06-01

    We studied, under laboratory conditions, the performance of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), immature stages in intact whole fruit of three sweet orange varieties, lemon, and bitter oranges. Both citrus variety and fruit part (flavedo, albedo, and pulp) had strong effects on larval performance, smaller effects on pupae, and no effects on eggs. Fruit peel was the most critical parameter for larval development and survival, drastically affecting larval survival (inducing very high mortality rates). Among fruit regions, survival of larvae placed in flavedo was zero for all varieties tested except for bitter orange (22.5% survival), whereas survival in albedo was very low (9.8-17.4%) for all varieties except for bitter orange (76%). Survival of pupae obtained from larvae placed in the above-mentioned fruit regions was high for all varieties tested (81.1-90.7%). Fruit pulp of all citrus fruit tested was favorable for larval development. The highest survival was observed on bitter oranges, but the shortest developmental times and heaviest pupae were obtained from orange cultivars. Pulp chemical properties, such as soluble solid contents, acidity, and pH had rather small effects on larval and pupal survival and developmental time (except for juice pH on larvae developmental duration), but they had significant effects on pupal weight.

  19. Evaluation of imported parasitoid fitness for biocontrol of olive fruit fly in California olives

    Science.gov (United States)

    A parasitoid, Psyttalia humilis (Silvestri), was reared on irradiated Mediterranean fruit fly (Medfly), Ceratitis capitata (Weidemann), at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala, and imported into California for biological control of olive fruit ...

  20. Seasonal occurrence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) in southern Syria

    National Research Council Canada - National Science Library

    Mohammed Mansour; Fater Mohamad

    2016-01-01

      Population fluctuations of the Mediterranean fruit fly (medfly), [Ceratitis capitata], were investigated between 1999 and 2001 at several locations representing fruit production areas in the southern part of Syria...

  1. Diversity and seasonality of fruit flies (Diptera: Tephritidae and Lonchaeidae and their parasitoids (Hymenoptera: Braconidae and Figitidae in orchards of guava, loquat and peach

    Directory of Open Access Journals (Sweden)

    MF. Souza-Filho

    Full Text Available This work was carried out in orchards of guava progenies, and loquat and peach cultivars, in Monte Alegre do Sul, SP, Brazil, in 2002 and 2003. Guavas and loquats were bagged and unbagged bi-weekly and weekly, respectively, for assessment of the infestation period. Peach was only bagged weekly. The assays started when the fruits were at the beginning of development, but still green. Ripe fruits were taken to the laboratory and placed individually into plastic cups. McPhail plastic traps containing torula yeast were hung from January 2002 to January 2004 to assess the fruit fly population in each orchard, but only the Ceratitis capitata population is here discussed. Five tephritid species were reared from the fruits: Anastrepha bistrigata Bezzi, A. fraterculus (Wiedemann, A. obliqua (Macquart, A. sororcula Zucchi, and C. capitata, in addition to six lonchaeid species: Neosilba certa (Walker, N. glaberrima (Wiedemann, N. pendula (Bezzi, N. zadolicha McAlpine and Steyskal, Neosilba sp. 4, and Neosilba sp. 10 (both species are in the process of being described by P. C. Strikis, as well as some unidentified Neosilba species. Ten parasitoid species were obtained from fruit fly puparia, of which five were braconids: Asobara anastrephae (Muesebeck, Doryctobracon areolatus (Szépligeti, D. brasiliensis (Szépligeti, Opius bellus Gahan, and Utetes anastrephae (Viereck, and five figitids: Aganaspis pelleranoi (Brèthes, Dicerataspis grenadensis Ashmead, Lopheucoila anastrephae (Rhower, Leptopilina boulardi (Barbotin, Carlton and Kelner-Pillaut, and Trybliographa infuscata Diaz, Gallardo and Uchôa. Ceratitis capitata showed a seasonal behavior with population density peaking at the second semester of each year. Anastrepha and Neosilba species remained in the orchards throughout both years.

  2. Diversity and seasonality of fruit flies (Diptera: Tephritidae and Lonchaeidae) and their parasitoids (Hymenoptera: Braconidae and Figitidae) in orchards of guava, loquat and peach

    Energy Technology Data Exchange (ETDEWEB)

    Souza-Filho, M.F.; Raga, A. [Instituto Biologico, Campinas, SP (Brazil)], e-mail: miguelf@biologico.sp.gov.br; Azevedo-Filho, J.A. [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Monte Alegre do Sul, SP (Brazil). Polo Regional do Leste Paulista; Strikis, P.C. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Biologia. Dept. de Parasitologia; Guimaraes, J.A. [EMBRAPA Agroindustria Tropical, Fortaleza, CE (Brazil); Zucchi, R.A. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Entomologia, Fitopatologia e Zoologia Agricola

    2009-02-15

    This work was carried out in orchards of guava progenies, and loquat and peach cultivars, in Monte Alegre do Sul, SP, Brazil, in 2002 and 2003. Guavas and loquats were bagged and unbagged bi-weekly and weekly, respectively, for assessment of the infestation period. Peach was only bagged weekly. The assays started when the fruits were at the beginning of development, but still green. Ripe fruits were taken to the laboratory and placed individually into plastic cups. McPhail plastic traps containing torula yeast were hung from January 2002 to January 2004 to assess the fruit fly population in each orchard, but only the Ceratitis capitata population is here discussed. Five tephritid species were reared from the fruits: Anastrepha bistrigata Bezzi, A. fraterculus (Wiedemann), A. obliqua (Macquart), A. sororcula Zucchi, and C. capitata, in addition to six lonchaeid species: Neosilba certa (Walker), N. glaberrima (Wiedemann), N. pendula (Bezzi), N. zadolicha McAlpine and Steyskal, Neosilba sp. 4, and Neosilba sp. 10 (both species are in the process of being described by P. C. Strikis), as well as some unidentified Neosilba species. Ten parasitoid species were obtained from fruit fly puparia, of which five were braconids: Asobara anastrephae (Muesebeck), Doryctobracon areolatus (Szepligeti), D. brasiliensis (Szepligeti), Opius bellus Gahan, and Utetes anastrephae (Viereck), and five figitids: Aganaspis pelleranoi (Brethes), Dicerataspis grenadensis Ashmead, Lopheucoila anastrephae (Rhower), Leptopilina boulardi (Barbotin, Carlton and Kelner-Pillaut), and Trybliographa infuscata Diaz, Gallardo and Uchoa. Ceratitis capitata showed a seasonal behavior with population density peaking at the second semester of each year. Anastrepha and Neosilba species remained in the orchards throughout both years. (author)

  3. Assessment of Attractiveness of Plants as Roosting Sites for the Melon Fly, Bactrocera cucurbitae, and Oriental Fruit Fly, Bactrocera dorsalis

    Science.gov (United States)

    McQuate, Grant T.; Vargas, Roger I.

    2007-01-01

    The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae

  4. Floral synomone of a wild orchid, Bulbophyllum cheiri, lures Bactrocera fruit flies for pollination.

    Science.gov (United States)

    Tan, Keng-Hong; Nishida, Ritsuo; Toong, Yock-Chai

    2002-06-01

    The major fruit fly attractant component in the floral fragrance of Bulbophyllum cheiri (fruit fly orchid) is methyl eugenol (ME). In the lowland rain forest of Malaysia, the solitary and nonresupinate flowers of the fruit fly orchid attract only males of the ME-sensitive fruit fly species (Bactrocera carambolae, B. papayae. and B. umbrosa. During the morning, the fruit fly orchid flower is visited by many fruit flies, which can sometimes cover the whole flower. The number of visitors dwindles in the afternoon. Headspace analysis of the flower shows a high ME peak in the morning, a small one between 12:00 and 14:00 hr, and no detectable ME peak after 14:00 hr. The process of pollination in the wild is initiated by attraction of fruit flies to floral ME. The flower, with the aid of its specialized hinged see-saw lip (labellum), temporarily traps (feed on the floral attractant found on surfaces of petals, sepals, and lip. The pollinaria borne by two wild B. papayae males (caught on and near the fruit fly orchid flower) are identical in morphology and structure with those obtained from the flower. Many of the B. papayae males (17 of 22 analyzed) attracted to the fruit fly orchid already possessed both ME metabolites, trans-coniferyl alcohol and 2-allyl-4,5-dimethoxyphenol, in their rectal glands. indicating that they had previously consumed ME. In this orchid-fruit fly association, both organisms gain direct reproductive benefits: the orchid flower gets pollinated without having to offer nectar, while the fruit fly boosts its pheromone and defense system, as well as its sexual competitiveness by feeding on the ME produced by the flower.

  5. Detection of Mango Infested with Fruit Fly Eggs and Larvae by Infrared Imaging and Discriminant Analysis

    Science.gov (United States)

    Fruit fly infestation causes significant loss of perishable products around the world and is an economic threat to growers, processors, and exporters. A rapid, economical, and non-destructive technique for detection of fruit fly infestation is reported based on hyperspectral imaging and discriminant...

  6. Laboratory evaluation for a potential birth control diet for fruit fly sterilization insect technique (SIT)

    Science.gov (United States)

    A potential fruit fly steilizing diet was evaluated on fertility, mating, survival, and protein anaylsis for fruit fly species in Hawaii. Insects were continuously fed an agar diet with lufenuron(LFN) for an initial 7d after emergence and then switched to a control diet to simulate the actual field ...

  7. Molecular architecture of the fruit fly's airway epithelial immune system

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2008-09-01

    Full Text Available Abstract Background Airway epithelial cells not only constitute a physical barrier, but also the first line of defence against airborne pathogens. At the same time, they are constantly exposed to reactive oxygen species. Therefore, airway epithelia cells have to possess a sophisticated innate immune system and a molecular armamentarium to detoxify reactive oxygen species. It has become apparent that deregulation of epithelial innate immunity is a major reason for the development of chronic inflammatory lung diseases. To elucidate the molecular architecture of the innate immune system of airway epithelial cells, we choose the fruit fly Drosophila melanogaster as a model, because it has the simplest type of airways, consisting of epithelial cells only. Elucidating the structure of the innate immune system of this "airway epithelial cell culture" might enable us to understand why deregulatory processes in innate immune signalling cascades lead to long lasting inflammatory events. Results All airway epithelial cells of the fruit fly are able to launch an immune response. They contain only one functional signal transduction pathway that converges onto NF-κB factors, namely the IMD-pathway, which is homologous to the TNF-α receptor pathway. Although vital parts of the Toll-pathway are missing, dorsal and dif, the NF-κB factors dedicated to this signalling system, are present. Other pathways involved in immune regulation, such as the JNK- and the JAK/STAT-pathway, are completely functional in these cells. In addition, most peptidoglycan recognition proteins, representing the almost complete collection of pattern recognition receptors, are part of the epithelial cells equipment. Potential effector molecules are different antimicrobial peptides and lysozymes, but also transferrin that can inhibit bacterial growth through iron-depletion. Reactive oxygen species can be inactivated through the almost complete armamentarium of enzymatic antioxidants that

  8. Mate choice in fruit flies is rational and adaptive

    Science.gov (United States)

    Arbuthnott, Devin; Fedina, Tatyana Y.; Pletcher, Scott D.; Promislow, Daniel E. L.

    2017-01-01

    According to rational choice theory, beneficial preferences should lead individuals to sort available options into linear, transitive hierarchies, although the extent to which non-human animals behave rationally is unclear. Here we demonstrate that mate choice in the fruit fly Drosophila melanogaster results in the linear sorting of a set of diverse isogenic female lines, unambiguously demonstrating the hallmark of rational behaviour, transitivity. These rational choices are associated with direct benefits, enabling males to maximize offspring production. Furthermore, we demonstrate that female behaviours and cues act redundantly in mate detection and assessment, as rational mate choice largely persists when visual or chemical sensory modalities are impaired, but not when both are impaired. Transitivity in mate choice demonstrates that the quality of potential mates varies significantly among genotypes, and that males and females behave in such a way as to facilitate adaptive mate choice. PMID:28094789

  9. Three promising fungal strains pathogenic to fruit flies

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, T.; Praveena, R.; Babu, Kavitha; Naseema, A.; Anitha, N. [College of Agriculture, Kerala (India)

    2006-07-01

    Pathogenicity of the fungi Paecilomyces lilacinus, isolated from Bactrocera cucurbitae, and Aspergillus candidus, isolated from B. dorsalis, was tested. Cross infectivity of P. lilacinus on B. dorsalis and A. candidus on B. cucurbitae and cross infectivity of a local isolate of B. bassiana from bhindi leaf roller (Sylepta derogata) on fruit flies (B. cucurbitae and B. dorsalis ) were also studied. These fungi were new records in these hosts. P. lilacinus at 109 spores / ml caused 96.67% and 100 % cumulative mortality in fruit flies on the second and on the third days. LC50 values of P. lilacinus on B. cucurbitae were 5.0 x 106, 8.0 x 105, 7.0 x 105 spores/ ml on second, third and fourth day, respectively. The fungus was found to cross infect B. dorsalis. LC50 values of A. candidus on B. cucurbitae were 1.29 x 108, 1.22 x 107, 2.27 x 106 spores / ml on third, fourth and fifth day, respectively. The fungus was found to be cross infective to B. cucurbitae. B. bassiana at 109 spores/ ml on B. dorsalis was found to cause 70%, 80% and 90% mortality on fourth, fifth and sixth day. LC50 values of B. bassiana on B. dorsalis were 7.0 x 108, 2.0 x 107, 5.0 x 106 spores/ ml on third, fourth and fifth day ,respectively . Formulation of P. lilacinus as wettable powder and granules and B. bassiana as wettable powder, were also prepared and their efficacy was tested on hosts. (author)

  10. Role of edaphic arthropods on the biological control of the olive fruit fly (Bactrocera oleae)

    OpenAIRE

    Dinis, Ana Maria de Sousa Pereira

    2014-01-01

    The olive fruit fly, Bactrocera oleae (Rossi) is a major pest of the olive tree. A great part of its life cycle is spent inside the olive fruit, which hinders the action of natural enemies. However, pupation usually occurs on the ground, which makes this stage more vulnerable to predation by edaphic arthropods. In this context, with the present work, it was studied the role of the edaphic arthropods on the biological control of olive fruit fly. Under laboratory conditions, Calathus granatensi...

  11. Carbohydrate Diet and Reproductive Performance of a Fruit Fly Parasitoid, Diachasmimorpha tryoni

    OpenAIRE

    Zamek, Ashley Louisa; Reynolds, Olivia Louise; Mansfield, Sarah; Micallef, Jessica Louise; Gurr, Geoff Michael

    2013-01-01

    Augmentative releases of parasitoid wasps are often used successfully for biological control of fruit flies in programs worldwide. The development of cheaper and more effective augmentative releases of the parasitoid wasp Diachasmimorpha tryoni (Cameron) (Hymenoptera: Braconidae) may allow its use to be expanded to cover Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a serious pest of many vegetables and most fruit production in Australia. This demands a fuller und...

  12. Susceptibility of 15 mango (Sapindales: Anacardiaceae) cultivars to the attack by Anastrepha ludens and Anastrepha obliqua (Diptera:Tephritidae) and the role of underdeveloped fruit as pest reservoirs: management implications

    Science.gov (United States)

    We evaluated the susceptibility of 15 mango cultivars to the attack of Anastrepha ludens and A. obliqua, the main Tephritid pests of this crop in Mexico. In a field experiment, bagged, fruit-bearing branches were exposed to gravid females of both fly species. Infestation rates, developmental time,...

  13. Whole genome sequencing of the Braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest Tepritid fruit flies

    Science.gov (United States)

    The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis}). The goal of this study was to dev...

  14. USE OF METHYL EUGENOL SOLUTION AND RED GUAVA EXTRACT FOR FRUIT FLY CONTROL

    Directory of Open Access Journals (Sweden)

    Sulistiya

    2016-01-01

    Full Text Available One of the constraints increase fruit production in Indonesia is the fruit fly pests. The introduction of fruit fly pest attack prevention using attractant methyl eugenol is considered expensive and troublesome. Therefore, researchers are interested in doing this experiment. Objective: (1 determine the volume of a solution of methyl eugenol most appropriate in the fruit fly trap to get optimum results. (2 determine the most appropriate time of application. Conducted experiments using attractant methyl eugenol is mixed into the guava fruit extract. Research conducted in the guava orchard belonging to farmers in the village Sumberagung, Jetis, Bantul begins July through September 2015. The research used randomized block design factorial design with two treatment factors. The first factor is the concentration of the solution Petrogenol which consists of three levels, repeated five times. Data were analyzed by F test, if they depict real effect, continued treatment mean comparison test using HSD test at five percent level. Conclusions (1 The solution Methyl eugenol is a fruit fly attractant potential in the control of fruit flies in the crop guava. (2 The concentration of Methyl eugenol 0.60 ml per 100 ml guava fruit extract with the application time of 10 days is more effective to trap fruit flies in guava crop

  15. Effect of plant chemicals on the behavior of the Mediterranean fruit fly

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, N.T., E-mail: nikopap@uth.g [University of Thessaly (Greece). Dept. of Crop Production and Rural Environment. Lab. of Entomology and Agricultural Zoology; Kouloussis, N.A.; Katsoyannos, B.I. [University of Thessaloniki, Thessaloniki (Greece). School of Agriculture

    2006-07-01

    A review of current information on the relation between plant chemicals and the Mediterranean fruit fly is presented. The influence of age and adult physiology on the response of med flies to plant chemicals is studied. The effect of plant chemicals on med fly behavior during host finding, mating and oviposition is analysed. The possible influence of plant chemicals on the dispersion patterns and spatial distribution of the fly is also addressed. (MAC)

  16. First survey of fruit fly (Diptera: Tephritidae and parasitoid diversity among myrtaceae fruit across the state of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Lidia Nogueira Silva

    2011-09-01

    Full Text Available The objective of this study was to evaluate the diversity of fruit fly (Diptera: Tephritidae species that use myrtaceous fruit, particularly guava, as hosts in several localities in the state of Bahia and to determine the infestation rates, pupal viability rates, and fruit fly-parasitoid associations. Sampling of myrtaceous fruit was carried out in 24 municipalities in different regions in the state of Bahia. Four fruit fly species, Anastrepha fraterculus, Anastrepha zenildae, Anastrepha sororcula, and Ceratitis capitata were obtained from the collected fruit. Three parasitoid species (Hymenoptera: Braconidae emerged from Anastrepha larvae/pupae, Doryctobracon areolatus, Utetes anastrephae, and Asobara anastrephae. Doryctobracon areolatus emerged from A. fraterculus, A. sororcula and A. zenildae; Utetes anastrephae emerged from A. fraterculus and A. zenildae; and Asobara anastrephae emerged from A. fraterculus. Fruit fly and myrtaceous fruit associations are reported for the first time in several municipalities in the state of Bahia. A. zenildae was found infesting Syzygium malaccense for the first time in Brazil.

  17. Grapefruit as a host for the West Indian fruit fly (Diptera: Tephritidae).

    Science.gov (United States)

    Mangan, Robert L; Thomas, Donald B; Moreno, Aleena Tarshis; Robacker, David

    2011-02-01

    The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.

  18. A novel attractant for Mexican fruit fly,Anastrepha ludens, from fermented host fruit.

    Science.gov (United States)

    Robacker, D C; Moreno, A M; Garcia, J A; Flath, R A

    1990-10-01

    Chemicals from fermented chapote fruit were identified and evaluated as attractants for hungry adult Mexican fruit flies in laboratory and greenhouse bioassays. Twenty-eight chemicals identified from an attractive gas-chromatography fraction were as attractive as a chapote volatiles extract (CV) when mixed in the same amounts found in CV. Sixteen of the chemicals were slightly attractive to flies when tested individually. A mixture containing 15 of the chemicals by design and the 16th as an impurity, in arbitrary concentrations, was at least as attractive as the original CV. In a series of experiments, the number of chemicals was reduced to three by elimination of unnecessary components. The three-component mixture retained the attractiveness of the 15-component mixture. The three chemicals were 1,8-cineole, ethyl hexanoate, and hexanol (CEH). Attractiveness of the three-chemical mixture was equal to the sum of the attractiveness of the three individual components, suggesting that each chemical binds to a different receptor type that independently elicits partial attraction behavior. Optimal ratios were 10∶1∶1 of the three chemicals, respectively. Optimal test quantities ranged between 0.4-4Μg of 1,8-cineole and 40-400 ng each of ethyl hexanoate and hexanol applied to filter paper in the laboratory bioassays. A neat 10∶1∶1 mixture of the chemicals was 1.8 times more attractive than aqueous solutions ofTorula dried yeast and borax to starved 2-day-old flies when the lures were tested in competing McPhail traps in a large greenhouse cage.

  19. Transcriptome analysis of the oriental fruit fly (Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Guang-Mao Shen

    Full Text Available BACKGROUND: The oriental fruit fly, Bactrocera dorsalis (Hendel, is one of the most economically important pests in the world, causing serious damage to fruit production. However, lack of genetic information on this organism is an obstacle to understanding the mechanisms behind its development and its ability to resist insecticides. Analysis of the B. dorsalis transcriptome and its expression profile data is essential to extending the genetic information resources on this species, providing a shortcut that will support studies on B. dorsalis. METHODOLOGY/PRINCIPAL FINDINGS: We performed de novo assembly of a transcriptome using short read sequencing technology (Illumina. The results generated 484,628 contigs, 70,640 scaffolds, and 49,804 unigenes. Of those unigenes, 27,455 (55.13% matched known proteins in the NCBI database, as determined by BLAST search. Clusters of orthologous groups (COG, gene orthology (GO, and the Kyoto Encyclopedia of Genes and Genomes (KEGG annotations were performed to better understand the functions of these unigenes. Genes related to insecticide resistance were analyzed in additional detail. Digital gene expression (DGE libraries showed differences in gene expression profiles at different developmental stages (eggs, third-instar larvae, pupae, and adults. To confirm the DGE results, the expression profiles of six randomly selected genes were analyzed. CONCLUSION/SIGNIFICANCE: This transcriptome greatly improves our genetic understanding of B. dorsalis and makes a huge number of gene sequences available for further study, including both genes of known importance and genes of unknown function. The DGE data provide comprehensive insight into gene expression profiles at different developmental stages. This facilitates the study of the role of each gene in the developmental process and in insecticide resistance.

  20. Actin Genes in the Mediterranean Fruit Fly, Ceratitis Capitata

    Science.gov (United States)

    Haymer, D. S.; Anleitner, J. E.; He, M.; Thanaphum, S.; Saul, S. H.; Ivy, J.; Houtchens, K.; Arcangeli, L.

    1990-01-01

    We have undertaken the study of actin gene organization and expression in the genome of the Mediterranean fruit fly (medfly), Ceratitis capitata. Actin genes have been extensively characterized previously in a wide range of eukaryotic organisms, and they have valuable properties for comparative studies. These genes are typically highly conserved in coding regions, represented in multiple copies per genome and regulated in expression during development. We have isolated a gene in the medfly using the cloned Drosophila melanogaster 5C actin gene as a probe. This medfly gene detects abundant messages present during late larval and late pupal development as well as in thoracic and leg tissue preparations from newly emerged adults. This pattern of expression is consistent with what has been seen for actin genes in other organisms. Using either the D. melanogaster 5C actin gene or the medfly gene as a probe identifies five common cross reacting Eco RI fragments in genomic DNA, but only under less than fully stringent hybridization conditions. PMID:1692797

  1. A normative theory of forgetting: lessons from the fruit fly.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2014-06-01

    Full Text Available Recent experiments revealed that the fruit fly Drosophila melanogaster has a dedicated mechanism for forgetting: blocking the G-protein Rac leads to slower and activating Rac to faster forgetting. This active form of forgetting lacks a satisfactory functional explanation. We investigated optimal decision making for an agent adapting to a stochastic environment where a stimulus may switch between being indicative of reward or punishment. Like Drosophila, an optimal agent shows forgetting with a rate that is linked to the time scale of changes in the environment. Moreover, to reduce the odds of missing future reward, an optimal agent may trade the risk of immediate pain for information gain and thus forget faster after aversive conditioning. A simple neuronal network reproduces these features. Our theory shows that forgetting in Drosophila appears as an optimal adaptive behavior in a changing environment. This is in line with the view that forgetting is adaptive rather than a consequence of limitations of the memory system.

  2. Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata

    National Research Council Canada - National Science Library

    Siciliano, Paolo; Scolari, Francesca; Gomulski, Ludvik M; Falchetto, Marco; Manni, Mosè; Gabrieli, Paolo; Field, Linda M; Zhou, Jing-Jiang; Gasperi, Giuliano; Malacrida, Anna R

    2014-01-01

    The Mediterranean fruit fly, Ceratitis capitata (medfly), is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats...

  3. Two Virtual Labs to Study Genetic Inheritance in the Fruit Fly

    Directory of Open Access Journals (Sweden)

    Robin Herlands Cresiski

    2013-03-01

    Full Text Available A comparative review of two virtual labs to study genetic inheritance in the fruit fly: Virtual Courseware for Inquiry-based Science Education - Drosophila and Virtual Genetics Laboratory II (UMass Boston.

  4. A Plain English Map of the Chromosomes of the Fruit Fly Drosophila Melanogaster.

    Science.gov (United States)

    Offner, Susan

    1996-01-01

    Presents a plain English map of the chromosomes of the fruit fly that contains genes from very different kinds of studies. Represents the work of nearly a century by thousands of researchers using a tremendous variety of techniques. (JRH)

  5. Anti-Aging Effect of Riboflavin Via Endogenous Antioxidant in Fruit fly Drosophila Melanogaster.

    Science.gov (United States)

    Zou, Y-X; Ruan, M-H; Luan, J; Feng, X; Chen, S; Chu, Z-Y

    2017-01-01

    This study investigated the effect of riboflavin on aging in Drosophila melanogaster (fruit fly). Experimental study. Naval Medical Research Institute. Fruit fly Drosophila melanogaster. After lifelong supplement of riboflavin, the lifespan and the reproduction of fruit flies were observed. Hydrogen peroxide (H2O2) was used to mimic oxidative stress damage to fruit flies and the survival time was recorded. The activity of copper-zinc-containing superoxide dismutase (SOD1), manganese containing SOD (SOD2) and catalase (CAT) and lipofuscin (LF) content were determined. Riboflavin significantly prolonged the lifespan (Log rank χ2=16.677, Panti-oxidative stress pathway involving enhancing the activity of SOD1 and CAT and inhibiting LF accumulation. Riboflavin deserves more attention for slowing human aging.

  6. Pictorial keys for predominant Bactrocera and Dacus fruit flies (Diptera: Tephritidae) of north western Himalaya

    OpenAIRE

    C. S. Prabhakar; Pankaj Sood; P. K. Mehta

    2012-01-01

    A pictorial key for 13 species of fruit flies under 2 genera namely Bactrocera and Dacus of subfamily Dacinae (Diptera: Tephritidae) is presented in this paper based on actual photographs of fruit flies collected from north western Himalaya of India during 2009-2010. Among these, Bactrocera diversa (Coquillett), Bactrocera scutellaris (Bezzi), Bactrocera tau (Walker), Bactrocera cucurbitae (Coquillett), Bactrocera zonata (Saunders), Bactrocera correcta (Bezzi), Bactrocera dorsalis (Hendel), B...

  7. Control of Cherry Leaf Spot and Cherry Fruit Fly at Sour Cherry

    Directory of Open Access Journals (Sweden)

    Maria BOROVINOVA

    2015-06-01

    Full Text Available The investigations were made in the experimental sour cherry orchard from the Institute of Agriculture, Kyustendil, Bulgaria, during the period 2010-2014, in order to compare conventional and integrated sour cherry protection against cherry leaf spot and cherry fruit fly. Two variants were investigated, with two different treatment approaches for the control of cherry leaf spot and cherry fruit fly. Variant 1 – cherry leaf spot was controlled by protective treatments with dodin and tebuconazole + trifloxystrobin and cherry fruit fly was controlled by treatments with deltametrin and thiacloprid, independently of density. Variant 2 - cherry leaf spot was controlled by post-infection (curative treatments with tebuconazole + trifloxystrobin and cherry fruit fly was controlled by treatments based on biological threshold: 10-11 cherry fruit fly females caught in traps up to the moment for chemical treatment. It was established that Blumeriella japii can be successfully controlled by post-infection treatments and by this the number of insecticide treatments was reduced. The treatments against cherry fruit fly can be avoided or reduced when the attack control is based on the biological threshold established in the studied area.

  8. Raspberry Ketone Trifluoroacetate, a new attractant for the Queensland fruit fly (Bactrocera tryoni (Froggatt))

    Science.gov (United States)

    The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...

  9. Influence of different tropical fruits on biological and behavioral aspects of the Mediterranean fruit fly Ceratitis capitata (Wiedemann (Diptera, Tephritidae

    Directory of Open Access Journals (Sweden)

    Anne M. Costa

    2011-09-01

    Full Text Available Influence of different tropical fruits on biological and behavioral aspects of the Mediterranean fruit fly Ceratitis capitata (Wiedemann (Diptera, Tephritidae. Studies on Ceratitis capitata, a world fruit pest, can aid the implementation of control programs by determining the plants with higher vulnerability to attacks and plants able to sustain their population in areas of fly distribution. The objective of the present study was to evaluate the influence of eight tropical fruits on the following biological and behavioral parameters of C. capitata: emergence percentage, life cycle duration, adult size, egg production, longevity, fecundity, egg viability, and oviposition acceptance. The fruits tested were: acerola (Malpighia glabra L., cashew (Anacardium occidentale L., star fruit (Averrhoa carambola L., guava (Psidium guajava L., soursop (Annona muricata L., yellow mombin (Spondias mombin L., Malay apple (Syzygium malaccense L., and umbu (Spondias tuberosa L.. The biological parameters were obtained by rearing the recently hatched larvae on each of the fruit kinds. Acceptance of fruits for oviposition experiment was assessed using no-choice tests, as couples were exposed to two pieces of the same fruit. The best performances were obtained with guava, soursop, and star fruit. Larvae reared on cashew and acerola fruits had regular performances. No adults emerged from yellow mombin, Malay apple, or umbu. Fruit species did not affect adult longevity, female fecundity, or egg viability. Guava, soursop, and acerola were preferred for oviposition, followed by star fruit, Malay apple, cashew, and yellow mombin. Oviposition did not occur on umbu. In general, fruits with better larval development were also more accepted for oviposition.

  10. RNAi-Mediated Knock-Down of transformer and transformer 2 to Generate Male-Only Progeny in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Liu, Guiqing; Wu, Qiang; Li, Jianwei; Zhang, Guifen; Wan, Fanghao

    2015-01-01

    The transformer (tra) gene appears to act as the genetic switch that promotes female development by interaction with the transformer2 (tra-2) gene in several dipteran species including the Medfly, housefly and Drosophila melanogaster. In this study, we describe the isolation, expression and function of tra and tra-2 in the economically important agricultural pest, the oriental fruit fly, Bactrocera dorsalis (Hendel). Bdtra and Bdtra-2 are similar to their homologs from other tephritid species. Bdtra demonstrated sex-specific transcripts: one transcript in females and two transcripts in males. In contrast, Bdtra-2 only had one transcript that was common to males and females, which was transcribed continuously in different adult tissues and developmental stages. Bdtra-2 and the female form of Bdtra were maternally inherited in eggs, whereas the male form of Bdtra was not detectable until embryos of 1 and 2 h after egg laying. Function analyses of Bdtra and Bdtra-2 indicated that both were indispensable for female development, as nearly 100% males were obtained with embryonic RNAi against either Bdtra or Bdtra-2. The fertility of these RNAi-generated males was subsequently tested. More than 80% of RNAi-generated males could mate and the mated females could lay eggs, but only 40-48.6% males gave rise to progeny. In XX-reversed males and intersex individuals, no clear female gonadal morphology was observed after dissection. These results shed light on the development of a genetic sexing system with male-only release for this agricultural pest.

  11. Integrated Management of European Cherry Fruit Fly Rhagoletis cerasi (L.: Situation in Switzerland and Europe

    Directory of Open Access Journals (Sweden)

    Jürg Grunder

    2012-10-01

    Full Text Available The European cherry fruit fly, Rhagoletis cerasi (L. (Diptera: Tephritidae, is a highly destructive pest. The low tolerance for damaged fruit requires preventive insecticide treatments for a marketable crop. The phase-out of old insecticides threatens cherry production throughout the European Union (EU. Consequently, new management techniques and tools are needed. With the increasing number of dwarf tree orchards covered against rain to avoid fruit splitting, crop netting has become a viable, cost-effective method of cherry fruit fly control. Recently, a biocontrol method using the entomopathogenic fungus Beauveria bassiana has been developed for organic agriculture. However, for most situations, there is still a lack of efficient and environmentally sound insecticides to control this pest. This review summarizes the literature from over one hundred years of research on R. cerasi with focus on the biology and history of cherry fruit fly control as well as on antagonists and potential biocontrol organisms. We will present the situation of cherry fruit fly regulation in different European countries, give recommendations for cherry fruit fly control, show gaps in knowledge and identify future research opportunities.

  12. A Systems Approach to Mitigate Oriental Fruit Fly Risk in ‘Sharwil’ Avocados Exported From Hawaii

    Science.gov (United States)

    Avocados, Persea americana Miller, grown in Hawaii cannot be exported to the United States mainland without quarantine treatment for melon fly, oriental fruit fly, and Mediterranean fruit fly. The most widely grown cultivar of avocado in Hawaii is ‘Sharwil’. ‘Sharwil’, like other avocado varieties, ...

  13. Seasonal occurrence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824 (Diptera: Tephritidae in southern Syria

    Directory of Open Access Journals (Sweden)

    Mansour Mohammed

    2016-09-01

    Full Text Available Population fluctuations of the Mediterranean fruit fly (medfly, Ceratitis capitata, were investigated between 1999 and 2001 at several locations representing fruit production areas in the southern part of Syria (Damascus Ghota, Zabadani, Sargaiah, Rankus, Orneh and Ain Al-Arab. Medfly adults were monitored weekly all year around using Jackson traps baited with trimedlure dispensers. Larvae were also sampled in Damascus Ghota by collecting fruits from ripe or ripening fruit trees and recording the number of larvae emerged from these fruits. In addition, suspected overwintering refuges were sampled at weekly intervals during the three coldest months of the year (December – February and the number of collected larvae was recorded. The results of trap catches and fruit sampling studies showed a similar pattern of occurrence of medfly populations in the study areas, particularly in Damascus Ghota, during the three years of the study. In Damascus Ghota, flies were caught continuously from early June to late December with some variability between years. Two distinct periods of high fly activity were observed: the first one occurred in August and the second in November with a much higher amplitude. In general, seasonal fluctuations in the pattern of occurrence were influenced by differences in temperature and abundance of preferred host fruits. Traps on fig Ficus carica and oriental persimmon Diospyros kaki trees caught the highest numbers of flies, and fruits collected from these trees showed the highest level of infestation, reaching 100% for fig fruit late in the season. Sampling fruits (in Damascus Ghota from trees during the three coldest months of the year showed that a small population of medfly larvae was able to survive winter conditions in prickly pear Opuntia vulgaris fruit left on the trees. In the other areas of the study (Zabadani, Sargaiah, Rankus, Orneh and Ain Al-Arab, only a few flies were caught.

  14. Indigenous weaver ants and fruit fly control in Tanzanian smallholder mango production

    DEFF Research Database (Denmark)

    Kirkegaard, Nina; Offenberg, Joachim; Msogoya, Theodosy

    2016-01-01

    ants. During ripening the fruits emit ethyl crotonate, an attractant and ovipositing stimulant for fruit flies. These data suggest that, for the specific cultivation conditions and uncontrolled ant populations, visual deterrence has a limited, benefit and there is no contributory, deterrent effect...

  15. Mediterranean fruit fly on Mimusops zeyheri indigenous to South Africa: a threat to the horticulture industry.

    Science.gov (United States)

    Dube, Zakheleni P; Mashela, Phatu W; Mathabatha, Raesibe V

    2016-08-01

    Claims abound that the Transvaal red milkwood, Mimusops zeyheri, indigenous to areas with tropical and subtropical commercial fruit trees and fruiting vegetables in South Africa, is relatively pest free owing to its copious concentrations of latex in the above-ground organs. On account of observed fruit fly damage symptoms, a study was conducted to determine whether M. zeyheri was a host to the notorious quarantined Mediterranean fruit fly (Ceratitis capitata). Fruit samples were kept for 16-21 days in plastic pots containing moist steam-pasteurised growing medium with tops covered with a mesh sheath capable of retaining emerging flies. Microscopic diagnosis of the trapped flies suggested that the morphological characteristics were congruent with those of C. capitata, which was confirmed through cytochrome c oxidase I (COI) gene sequence alignment with a 100% bootstrap value and 99% confidence probability when compared with those from the National Centre for Biotechnology Information database. This study demonstrated that M. zeyheri is a host of C. capitata. Therefore, C. capitata from infestation reservoirs of M. zeyheri fruit trees could be a major threat to the tropical and subtropical fruit industries in South Africa owing to the fruit-bearing nature of the new host. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Cryopreservation of embryos of the Mediterranean fruit fly Ceratitis capitata Vienna 8 Genetic Sexing Strain

    Science.gov (United States)

    The Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM) approaches with a sterile insect technique (SIT) component have been used to control populations of this pest in an effective and e...

  17. Identification of the ubiquitous antioxidant tripeptide glutathione as a fruit fly semiochemical

    Science.gov (United States)

    Many insects mark their oviposition sites with a host marking pheromone (HMP) to deter other females from over-exploiting these sites for egg-laying. Previous studies have identified and used HMPs to manage certain fruit fly species. However, few examples are known for African indigenous fruit flie...

  18. Evidence for potential of managing some African fruit fly species (Diptera: Tephritidae) using the mango fruit fly host-marking pheromone.

    Science.gov (United States)

    Kachigamba, Donald L; Ekesi, Sunday; Ndungu, Mary W; Gitonga, Linus M; Teal, Peter E A; Torto, Baldwyn

    2012-12-01

    We investigated conspecific and heterospecific oviposition host discrimination among four economically important fruit fly pests of mango in Africa (Ceratitis capitata, Wiedemann; C. fasciventris, Bezzi; C. rosa, Karsch, and C. cosyra, Walker) with regard to host-marking behavior and fecal matter aqueous solutions. The objective of the study was to get insight into the potential of managing these pests using the host-marking technique. Observations were done on mango slices marked by the flies and treated with aqueous solutions of fecal matter of the flies, respectively. In both host-marking and fecal matter experiments, C. cosyra, which is the most destructive species of the four on mango, was exceptional. It only discriminated against hosts treated with its fecal matter but with lower sensitivity while C. capitata and C.fasciventris discriminated against hosts marked by it or treated with its fecal matter and with higher sensitivity. Our results provide evidence for potential of managing some of the major fruit fly species infesting mango in Africa using the host-marking pheromone of the mango fruit fly, C. cosyra.

  19. Evidence for potential of managing some african fruit fly species (Diptera: Tephritidae) using the mango fruit fly host-marking pheromone

    Science.gov (United States)

    We investigated conspecific and heterospecific oviposition host discrimination among four economically important fruit fly pests of mango in Africa (Ceratitis capitata, Wiedemann; C. fasciventris, Bezzi; C. rosa, Karsch, and C. cosyra, Walker) with regard to host-marking behavior and fecal matter aq...

  20. Raspberry Ketone Trifluoroacetate, a New Attractant for the Queensland Fruit Fly, Bactrocera Tryoni (Froggatt).

    Science.gov (United States)

    Siderhurst, Matthew S; Park, Soo J; Buller, Caitlyn N; Jamie, Ian M; Manoukis, Nicholas C; Jang, Eric B; Taylor, Phillip W

    2016-02-01

    Queensland fruit fly, Bactrocera tryoni (Q-fly), is a major pest of horticultural crops in eastern Australia. Lures that attract male Q-fly are important for detection of incursions and outbreaks, monitoring of populations, and control by mass trapping and male annihilation. Cuelure, an analog of naturally occurring raspberry ketone, is the standard Q-fly lure, but it has limited efficacy compared with lures that are available for some other fruit flies such as methyl eugenol for B. dorsalis. Melolure is a more recently developed raspberry ketone analog that has shown better attraction than cuelure in some field studies but not in others. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroacetate (RKTA), has been developed as a potential improvement on cuelure and melolure. RKTA placed on laboratory cages containing 2-week-old Q-flies elicited strong behavioral responses from males. Quantification of Q-fly responses in these cages, using digital images to estimate numbers of flies aggregated near different lures, showed RKTA attracted and arrested significantly more flies than did cuelure or melolure. RKTA shows good potential as a new lure for improved surveillance and control of Q-fly.

  1. A genomic perspective to assessing quality of mass-reared SIT flies used in Mediterranean fruit fly (Ceratitis capitata) eradication in California

    Science.gov (United States)

    2014-01-01

    Background Temperature sensitive lethal (tsl) mutants of the tephritid C. capitata are used extensively in control programs involving sterile insect technique in California. These flies are artificially reared and treated with ionizing radiation to render males sterile for further release en masse into the field to compete with wild males and disrupt establishment of invasive populations. Recent research suggests establishment of C. capitata in California, despite the fact that over 250 million sterile flies are released weekly as part of the state’s preventative program. In this project, genome-level quality assessment was performed, measured as expression differences between the Vienna-7 tsl mutants used in SIT programs and wild flies. RNA-seq was performed to provide a genome-wide map of the messenger RNA populations in C. capitata, and to investigate significant expression changes in Vienna-7 mass reared flies. Results Flies from the Vienna-7 colony showed a markedly reduced abundance of transcripts related to visual and chemical responses, including light stimuli, neural development and signaling pathways when compared to wild flies. In addition, genes associated with muscle development and locomotion were shown to be reduced. This suggests that the Vienna-7 line may be less competitive in mating and host plant finding where these stimuli are utilized. Irradiated flies showed several transcripts representing stress associated with irradiation. Conclusions There are significant changes at the transcriptome level that likely alter the competitiveness of mass reared flies and provide justification for pursuing methods for strain improvement, increasing competitiveness of mass-reared flies, or exploring alternative SIT approaches to increase the efficiency of eradication programs. PMID:24495485

  2. Quarantine security of bananas at harvest maturity against Mediterranean and Oriental fruit flies (Diptera: Tephritidae) in Hawaii.

    Science.gov (United States)

    Armstrong, J W

    2001-02-01

    Culled bananas (dwarf 'Brazilian', 'Grand Nain', 'Valery', and 'Williams') sampled from packing houses on the islands of Hawaii, Kauai, Maui, Molokai, and Oahu identified specific "faults" that were at risk from oriental fruit fly, Bactrocera dorsalis (Hendel), infestation. Faults at risk included bunches with precociously ripened bananas, or bananas with tip rot, fused fingers, or damage that compromised skin integrity to permit fruit fly oviposition into fruit flesh. No Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or melon fly, B. cucurbitae (Coquillett), infestations were found in culled banana samples. Field infestation tests indicated that mature green bananas were not susceptible to fruit fly infestation for up to 1 wk past the scheduled harvest date when attached to the plant or within 24 h after harvest. Recommendations for exporting mature green bananas from Hawaii without risk of fruit fly infestation are provided. The research reported herein resulted in a USDA-APHIS protocol for exporting mature green bananas from Hawaii.

  3. Genetic characterization of Bactrocera fruit flies (Diptera: Tephritidae) from Northeastern India based on DNA barcodes.

    Science.gov (United States)

    Manger, Arpana; Behere, G T; Firake, D M; Sharma, Bhagawati; Deshmukh, N A; Firake, P D; Azad Thakur, N S; Ngachan, S V

    2017-07-31

    The Northeastern region of India, one of the mega biodiversity hot spots has enormous potential for the production of fruits and vegetables. Fruit flies of the genus Bactrocera Macquart are important pests of fruits and vegetables, and one of the limiting factors in successful production of these commodities. The relationship among some of the species is unclear due to their high molecular and morphological similarities. Moreover, due to the significant morphological resemblance between fruit fly species, reliable identification is very difficult task. We genetically characterized 10 fruit fly species of the genus Bactrocera by using standard DNA barcoding region of COI gene. The characterization and identification of eight species were straight forward. This study was unable to establish the molecular identity of Bactrocera sp. 2. Within the 547 bp region of partial COI gene, there were 157 variable sites of which 110 sites were parsimony informative, 153 were synonymous substitutions and 4 were non-synonymous substitutions. The estimate of genetic divergence among the ten species was in the range of 0-21.9% and the pairwise genetic distance of Bactrocera. (Bactrocera) dorsalis (Hendel) with B. (B.) carambolae was only 0.7%. Phylogenetic analysis formed separate clades for fruit and vegetable infesting fruit flies. B. (B.) aethriobasis Hardy, B. (B.) thailandica and B. (B.) tuberculata (Bezzi) have been reported for the first time from the Northeastern India. The information generated from this study would certainly have implications for pest management, taxonomy, quarantine and trade.

  4. The exploration of fruit flies Bactrocera (Diptera:Tephritidae and its parasitoid in Madura Island regions

    Directory of Open Access Journals (Sweden)

    Tjipto Haryono

    2016-07-01

    Full Text Available Madura is enriched by great diversity despite of its infertile natural condition. This condition influences fruit flies existence and diversity. Purpose of this study was to investigate the diversity and distribution of fruit flies with their host in Madura region. Sampling methods in this study were fruit host collection (rearing and trapping using Steiner-type trap that were set in 48 locations in several villages in Bangkalan, Sampang, Pamekasan, and Sumenep regencies. Steiner traps were combined with 2 different attractants, such as methyl eugenol (ME and Cue Lure (CL. There were 5 species of fruit flies obtained from trapping and rearing, namely Bactrocera carambolae, B. papayae, B. umbrosa, B. albistrigata, and B. cucurbitae. Results indicate that the distribution, diversity, and abundance of fruit flies were influenced by the diversity of fruit host, air temperature, and relative air humidity. It is also identified two species of parasitoid imago from rotten fruits collection, namely Biosteres vandenboschi and Fopius arisanus. Keywords: distribution, Bactrocera, parasitoid

  5. Neuronal encoding of sound, gravity, and wind in the fruit fly.

    Science.gov (United States)

    Matsuo, Eriko; Kamikouchi, Azusa

    2013-04-01

    The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they 'freeze' in place. Based on recent studies, Johnston's hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston's organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.

  6. Medhost: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), version 3.0

    Science.gov (United States)

    The Mediterranean fruit fly (Medfly), Ceratitis capitata (Wiedemann), causes direct damage to fruits and vegetables through oviposition and larval feeding. Rigorous quarantine procedures are currently enforced to prevent domestic and transnational spread of Medfly. Accessible and reliable informatio...

  7. Study on Disinfestation of Fruit Fly (Bactrocera dorsalis using Vapor Heat Treatment on Gedong Gincu Mango

    Directory of Open Access Journals (Sweden)

    Rokhani Hasbullah

    2009-04-01

    Full Text Available Since the prohibition of chemical method for insect disinfestations processes such as ethylene dibromide in 1984, heat treatment method was developed as quarantine technology. One of the heat treatment methods is vapor heat treatment (VHT. The objectives of this research were to study mortality of fruit fly (Bactrocera dorsalis and to study the responses of VHT on quality of gedong gincu mango. Fruit fly mortality due to heat has been investigated by immersing fruit fly eggs into heated water at temperatures of 40, 43, 46 and 49OC for 30 minutes immersed, also at temperature of 46OC for 5, 10, 15, 20, 25 and 30 minutes. Gedong gincu mangoes were treated at temperature 46.5OC for 0, 10, 20, and 30 minutes. The results showed that mortality has been achieved 100% at temperature more than and equal to 43OC for 30 minutes and at temperature 46OC for more than and equal to 10 minutes. The VHT has significantly and fungi population although without adversely affecting to the fruit quality and there were no significant change in the fruit weight loss, hardness, color, soluble solid content, water content, vitamin C and organoleptic test. VHT at temperature 46.5OC for 20 up to 30 minutes were effective to kill fruit flies inside mangoes and were able to maintaining mango quality during storage.

  8. Salicylic Acid Induces Changes in Mango Fruit that Affect Oviposition Behavior and Development of the Oriental Fruit Fly, Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Kamala Jayanthi Pagadala Damodaram

    Full Text Available The Oriental fruit fly, Bactrocera dorsalis (Hendel is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of 'natural plant defenses' by phytohormones. In this study, we investigated the effect of salicylic acid (SA treatment of mango fruit (cv. Totapuri on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT, polyphenoloxidase (PPO and peroxidase (POD. In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis.

  9. Pitch Perfect: How Fruit Flies Control their Body Pitch Angle

    CERN Document Server

    Whitehead, Samuel C; Canale, Luca; Cohen, Itai

    2015-01-01

    Flapping insect flight is a complex and beautiful phenomenon that relies on fast, active control mechanisms to counter aerodynamic instability. To directly investigate how freely-flying D. melanogaster control their body pitch angle against such instability, we perturb them using impulsive mechanical torques and film their corrective maneuvers with high-speed video. Combining experimental observations and numerical simulation, we find that flies correct for pitch deflections of up to 40 degrees in 29 +/- 8 ms by bilaterally modulating their wings' front-most stroke angle in a manner well-described by a linear proportional-integral (PI) controller. Flies initiate this corrective process after only 10 +/- 2 ms, indicating that pitch stabilization involves a fast reflex response. Remarkably, flies can also correct for very large-amplitude pitch perturbations--greater than 150 degrees--providing a regime in which to probe the limits of the linear-response framework. Together with previous studies regarding yaw an...

  10. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila

    Directory of Open Access Journals (Sweden)

    Dennis Pauls

    2014-06-01

    Full Text Available More than a decade has passed since the release of the Drosophila melanogaster genome and the first predictions of fruit fly regulatory peptides (neuropeptides and peptide hormones. Since then, mass spectrometry-based methods have fuelled the chemical characterisation of regulatory peptides, from 7 Drosophila peptides in the pre-genomic area to more than 60 today. We review the development of fruit fly peptidomics, and present a comprehensive list of the regulatory peptides that have been chemically characterised until today. We also summarise the knowledge on peptide processing in Drosophila, which has strongly profited from a combination of MS-based techniques and the genetic tools available for the fruit fly. This combination has a very high potential to study the functional biology of peptide signalling on all levels, especially with the ongoing developments in quantitative MS in Drosophila.

  11. Use of Beauveria bassiana and Metarhizium anisopliae for fruit fly control: a novel approach

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Jorge; Liedo, Pablo, E-mail: jtoledo@ecosur.m [El Colegio de la Frontera Sur, Chiapas (Mexico). Dept. de Entomologia Tropical; Flores, Salvador; Montoya, Pablo [Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA), Chiapas (Mexico). Subdireccion de Desarrollo de Metodos; Campos, Sergio E.; Villasenor, Antonio [Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA), Chiapas (Mexico). Programa Moscamed. Direccion de Operaciones de Campo

    2006-07-01

    The potential of two species of entomopathogenic fungi, Beauveria bassiana (Bals.) and Metarhizium anisopliae (Met.) Sorokin, as practical fruit fly biocontrol agents is studied. These natural inhabitants of soil are found infecting a wide range of insect species that spend at least one stage of their life cycle in the soil. Sterile flies are used as vectors of the infection. A summary of results from different laboratory and field cage experiments is presented. (MAC)

  12. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae)

    OpenAIRE

    Narit Thaochan; Richard A.I. Drew; Anuchit Chinajariyawong; Anurag Sunpapao; Chaninun Pornsuriya

    2015-01-01

    The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt), was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria w...

  13. Mitotic and polytene chromosome analyses in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Zhao, J T; Frommer, M; Sved, J A; Zacharopoulou, A

    1998-08-01

    The Queensland fruit fly, Bactrocera tryoni, like the Mediterranean fruit fly, Ceratitis capitata, has a diploid complement of 12 chromosomes, including five pairs of autosomes and a XX/XY sex chromosome pair. Characteristic features of each chromosome are described. Chromosomal homology between B. tryoni and C. capitata has been determined by comparing chromosome banding pattern and in situ hybridisation of cloned genes to polytene chromosomes. Although the evidence indicates that a number of chromosomal inversions have occurred since the separation of the two species, synteny of the chromosomes appears to have been maintained.

  14. Pitch perfect: how fruit flies control their body pitch angle.

    Science.gov (United States)

    Whitehead, Samuel C; Beatus, Tsevi; Canale, Luca; Cohen, Itai

    2015-11-01

    Flapping insect flight is a complex and beautiful phenomenon that relies on fast, active control mechanisms to counter aerodynamic instability. To directly investigate how freely flying Drosophila melanogaster control their body pitch angle against such instability, we perturbed them using impulsive mechanical torques and filmed their corrective maneuvers with high-speed video. Combining experimental observations and numerical simulation, we found that flies correct for pitch deflections of up to 40 deg in 29±8 ms by bilaterally modulating their wings' front-most stroke angle in a manner well described by a linear proportional-integral (PI) controller. Flies initiate this corrective process only 10±2 ms after the perturbation onset, indicating that pitch stabilization involves a fast reflex response. Remarkably, flies can also correct for very large-amplitude pitch perturbations--greater than 150 deg--providing a regime in which to probe the limits of the linear-response framework. Together with previous studies regarding yaw and roll control, our results on pitch show that flies' stabilization of each of these body angles is consistent with PI control. © 2015. Published by The Company of Biologists Ltd.

  15. Fruit flies learn to avoid odours associated with virulent infection.

    Science.gov (United States)

    Babin, Aurélie; Kolly, Sylvain; Schneider, Franziska; Dolivo, Vassilissa; Zini, Marco; Kawecki, Tadeusz J

    2014-03-01

    While learning to avoid toxic food is common in mammals and occurs in some insects, learning to avoid cues associated with infectious pathogens has received little attention. We demonstrate that Drosophila melanogaster show olfactory learning in response to infection with their virulent intestinal pathogen Pseudomonas entomophila. This pathogen was not aversive to taste when added to food. Nonetheless, flies exposed for 3 h to food laced with P. entomophila, and scented with an odorant, became subsequently less likely to choose this odorant than flies exposed to pathogen-laced food scented with another odorant. No such effect occurred after an otherwise identical treatment with an avirulent mutant of P. entomophila, indicating that the response is mediated by pathogen virulence. These results demonstrate that a virulent pathogen infection can act as an aversive unconditioned stimulus which flies can associate with food odours, and thus become less attracted to pathogen-contaminated food.

  16. A benefit cost analysis on management strategies for Queensland Fruit Fly: methods and observations

    OpenAIRE

    Harvey, Sallyann; Fisher, Bill; Larson, Kristoffer; Malcolm, Bill

    2010-01-01

    The Queensland Fruit Fly (QFF) — Bactrocera tryoni — poses a significant threat to horticultural production in Victoria causing losses of fruit and jeopardising access to interstate and international markets. The Victorian Government implements and largely funds an area freedom program to manage QFF. Concern about the record number of outbreaks in 2007-08 and the escalating costs of maintaining the current management regime, led the Victorian Department of Primary Industries to review the pro...

  17. Biological and Cultural Control of Olive Fruit Fly in California---Utilization of Parasitoids from USDA-APHIS-PPQ, Guatemala

    Science.gov (United States)

    The parasitoid Psytallia cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly larvae at the USDA-APHIS-PPQ, Petapa Quarantine Laboratory in Guatemala and shipped to the USDA-ARS, Parlier, for wide-spread release and biological control of olive fruit fly in California. As many as 3...

  18. Mango resistance to fruit flies. II - resistance of the alfa cultivar

    Energy Technology Data Exchange (ETDEWEB)

    Rossetto, C.J.; Bortoletto, N., E-mail: rossetto@iac.sp.gov.b [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Votuporanga, SP (Brazil). Polo Regional do Noroeste Paulista; Walder, J.M.M.; Mastrangelo, T. de A., E-mail: jmwalder@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Carvalho, C.R.L.; Castro, J.V. de, E-mail: climonta@iac.sp.gov.b, E-mail: josalba@iac.sp.gov.b [Instituto Agronomico de Campinas, SP (Brazil); Pinto, A.C. de Q. [EMBRAPA, Brasilia, DF (Brazil); Cortelazzo, A.L., E-mail: angelo@unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Biologia

    2006-07-01

    The percentage of infested mango fruits of five selected mango varieties was evaluated during three years under field conditions. Three varieties with field resistance to fruit flies had less then 10% of fruits infested. Tommy Atkins, the susceptible commercial check, had 42,9% and the susceptible check had 98.9 % of infested fruits. The three field resistant varieties plus the susceptible commercial check, Tommy Atkins, were further tested in laboratory, under caged conditions, with artificial infestation of Anastrepha obliqua. The attempts of oviposition and the number of pupae developed from each fruit were evaluated. Under caged conditions, the cultivar Alfa maintained its field resistance and Espada Stahl and IAC 111 lost the field resistance and were as susceptible as Tommy Atkins. The attempts of oviposition were positively and highly correlated with the number of pupae developed in the fruits. Non preference for oviposition was confirmed as the main mechanism of resistance of mango fruits to fruit flies. In the absence of a more susceptible variety (no choice test) the cultivar Alfa has kept the resistance (author)

  19. Development of improved attractants and their integration into fruit fly management programmes

    Energy Technology Data Exchange (ETDEWEB)

    Sookar, P.; Permalloo, S.; Alleck, M.; Seewooruthun, S.I., E-mail: ento@intnet.m, E-mail: moa-entomology@mail.gov.m [Ministry of Agro Industry and Fisheries, Reduit (Mauritius)

    2006-07-01

    Fruit flies are major constraint to fruit production in Mauritius. The peach fruit fly, Bactrocera zonata (Saunders), the natal fly, Ceratitis rosa (Karsch), the medfly, C. capitata (Wiedmann) are the main pests of fleshy fruits. Fruit fly trapping trials were conducted in backyards to find the most effective combination of attractant and lures for females. There were two separate trapping trials, carried out in two different localities during the period November 2004 to March 2005. In the first trial, the attractants in different combinations were tested in International Pheromone McPhail Trap (IPMT). The attractants were as follows: three patches containing Ammonium Acetate (AA) + Trimethylamine (TMA) + Putrescine (PT); Two patches of AA ; two patches of AA + one patch of PT ; two patches of AA + one patch of TMA; one patch of solbait; torula tablets; protein hydrolysate and GF120. Water and Triton B were used as retention device in traps baited with the patches. In the first trial, all treatments were equally effective in the capture of either female B. zonata or female C. capitata with the exception of protein hydrolysate and GF120 which trapped fewer numbers of flies. In the second trapping trial, additional trap types and lure combinations were assessed. The three component lure (AA + PT + TMA with water/Triton as retention device in IPMT) and the trap baited with Waste Brewer's Yeast captured significantly more female flies followed by IPMT with AA + PT + TMA / Sticky insert and the Easy trap. In all trials, females accounted for more than 75% of the catches. (author)

  20. Ovipositional behaviour of two mango fruit fly species (Diptera ...

    African Journals Online (AJOL)

    The tritrophic interactions between mangoes (Mangifera indica), two frugivorous fly species of great economic significance, Bactrocera invadens and Ceratitis cosyra, and weaver ants (Oecophylla longinoda) were studied in Benin. We investigated whether Oecophylla cues affect B. invadens and C. cosyra oviposition ...

  1. Population fluctuation of adult males of the fruit fly, Bactrocera tau Walker (Diptera: Tephritidae) in passion fruit orchards in relation to abiotic factors and sanitation

    NARCIS (Netherlands)

    Hasyim, A.; Muryati, M.; Kogel, de W.J.

    2008-01-01

    Fruit fly (Bactrocera tau) is the most destructive pest on some fruits in Indonesia. Monitoring of the pest population is essential as one of the procedures in the IPM concept. The study aimed to investigate the seasonal fluctuation of adult males of B. tau and their damage on passion fruits in

  2. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Narit Thaochan

    2015-12-01

    Full Text Available The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering and Bactrocera tryoni (Froggatt, was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria which was prominent in all clones. The total bacterial community consisted of Proteobacteria (more than 75% of clones, except in the crop of B. cacuminata where more than 50% of clones belonged to Firmicutes. Firmicutes gave the number of the secondary community structure in the fly’s gut. Four orders, Alpha-, Beta-, Delta- and Gammaproteobacteria and the phyla Firmicutes and Actinobacteria were found in both fruit fly species, while the order Epsilonproteobacteria and the phylum Bacteroidetes were found only in B. tryoni. Two phyla, Actinobacteria and Bacteroidetes, were rare and less frequent in the flies. There was a greater diversity of bacteria in the crop of the two fruit fly species than in the midgut. The midgut of B. tryoni females and the midgut of B. cacuminata males had the lowest bacterial diversity.

  3. Phylogeography of West Indian fruit fly, Anastrepha obliqua, inferred with mtDNA sequencing

    Science.gov (United States)

    Anastrepha obliqua (Macquart) (Diptera: Tephritidae), the West Indian fruit fly, is a frugivorous pest that occasionally finds its way to commercial growing areas outside its native distribution. It inhabits areas in Mexico, Central and South America, and the Caribbean, with occasional infestations...

  4. First record of the fruit fly Bactrocera (Bactrocera) nigrofemoralis White & Tsuruta(Diptera: Tephritidae) in Bangladesh

    Science.gov (United States)

    The presence of the fruit fly Bactrocera (Bactrocera) nigrofemoralis White & Tsuruta was recorded in Bangladesh for the first time. B.nigrofemoralis was captured in traps baited with sweet orange oil and cue-lure at the Atomic Energy Research Establishment campus, Ganak bari, Savar, Dhaka, Banglades...

  5. Pest fruit fly (Diptera: Tephritidae) in northwestern Australia: one species or two?

    Science.gov (United States)

    Cameron, E C; Sved, J A; Gilchrist, A S

    2010-04-01

    Since 1985, a new and serious fruit fly pest has been reported in northwestern Australia. It has been unclear whether this pest was the supposedly benign endemic species, Bactrocera aquilonis, or a recent introduction of the morphologically near-identical Queensland fruit fly, B. tryoni. B. tryoni is a major pest throughout eastern Australia but is isolated from the northwest region by an arid zone. In the present study, we sought to clarify the species status of these new pests using an extensive DNA microsatellite survey across the entire northwest region of Australia. Population differentiation tests and clustering analyses revealed a high degree of homogeneity within the northwest samples, suggesting that just one species is present in the region. That northwestern population showed minimal genetic differentiation from B. tryoni from Queensland (FST=0.015). Since 2000, new outbreaks of this pest fruit fly have occurred to the west of the region, and clustering analysis suggested recurrent migration from the northwest region rather than Queensland. Mitochondrial DNA sequencing also showed no evidence for the existence of a distinct species in the northwest region. We conclude that the new pest fruit fly in the northwest is the endemic population of B. aquilonis but that there is no genetic evidence supporting the separation of B. aquilonis and B. tryoni as distinct species.

  6. Mobility of olive fruit fly (Diptera: Tephritidae) late third instars and teneral adults in test arenas

    Science.gov (United States)

    The mobility of olive fruit fly, Bactrocera oleae (Rossi), late third instars before pupation, teneral adults before flight, and mature adults restricted from flight was studied under mulches in greenhouse cage tests, in horizontal pipes, vertical bottles and pipes filled with sand, and by observati...

  7. Ammonium Acetate and Ammonium Bicarbonate in Traps for Anastrepha Fruit Flies

    Science.gov (United States)

    Fruit flies in the genus Anastrepha, especially the reproductive age females, are attracted to protein baits. Synthetic lures based on the principal components of protein degradation, especially ammonia along with acetic acid, were tested against three of the most economically important Anastrepha s...

  8. Biological control of the Mediterranean fruit fly in Israel: biological parameters of imported parasitoid wasps

    Science.gov (United States)

    Three braconid species that parasitize the Mediterranean fruit fly (medfly), CERATITIS CAPITATA (Wiedemann) were recently imported into Israel. Several of their key biological parameters were studied. The longevities of the egg-attacking parasitoids FOPIUS ARISANUS and FOPIUS CERATITIVORUS, and t...

  9. Exposure to tea tree oil enhances the mating success of male Mediterranean fruit flies (Diptera: Tephritidae)

    Science.gov (United States)

    The aroma of various plant essential oils has been shown to enhance the mating competitiveness of males of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Laboratory observations revealed that male medflies show strong short-range attraction to tea tree oil (TTO hereafter) deri...

  10. Development of transgenic strains for the biological control of the Mexican fruit fly, Anastrepha ludens

    Science.gov (United States)

    The Mexican fruit fly, Anastrepha ludens, is a highly significant agricultural pest species that has been genetically transformed with a piggyBac¬-based transposon vector system using independent vector and transposase helper plasmids. Estimated germ-line transformation frequencies were approximate...

  11. Proteomics/qPCR approach on estimating physical ages of wild male oriental fruit flies

    Science.gov (United States)

    Male fruit flies reared in the laboratory in DKI-PBARC rearing facility in Hilo, Hawaii, were collected and whole insects were run through standard proteomic analysis. An odorant binding protein 99b (OBP) (Bdor0907381) located at molecular weight between 9226 dalton and PI 4.56 was identified throug...

  12. Artificial rearing of the peach fruit fly Bactrocera zonata (Diptera:Tephritidae)

    Science.gov (United States)

    Integration of the sterile insect technique (SIT) into the area-wide management of the peach fruit fly Bactrocera zonata (Saunders) is a promising althernative to the localized use of chemical control tactics. Implementation of the SIT requires adequate numbers of sterile male insects that are produ...

  13. Virulence of selected entomopathogenic fungi against the olive fruit fly and their potential for biocontrol

    Science.gov (United States)

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), is the most serious pest of cultivated olives worldwide. Its recent invasion into North America, specifically California, has initiated renewed interest in management strategies for this pest. Research into classical biological control ha...

  14. Identification of the Ubiquitous Antioxidant Tripeptide Glutathione as a Fruit Fly Semiochemical.

    Science.gov (United States)

    Cheseto, Xavier; Kachigamba, Donald L; Ekesi, Sunday; Ndung'u, Mary; Teal, Peter E A; Beck, John J; Torto, Baldwyn

    2017-10-04

    Many insects mark their oviposition sites with a host marking pheromone (HMP) to deter other females from overexploiting these sites. Previous studies have identified and used HMPs to manage certain fruit fly species; however, few are known for African indigenous fruit flies. The HMP of the African fruit fly, Ceratitis cosyra, was identified as the ubiquitous plant and animal antioxidant tripeptide, glutathione (GSH). GSH was isolated from the aqueous extract of adult female fecal matter and characterized by LC-QTOF-MS. GSH level increased with increasing age of female fecal matter, with highest concentration detected from 2-week-old adult females. Additionally, GSH levels were 5-10-times higher in fecal matter than in the ovipositor or hemolymph extracts of females. In bioassays, synthetic GSH reduced oviposition responses in conspecifics of C. cosyra and the heterospecific species C. rosa, C. fasciventris, C. capitata, and Zeugodacus cucurbitae. These results represent the first report of a ubiquitous antioxidant as a semiochemical in insects and its potential use in fruit fly management.

  15. Sleep Homeostasis and General Anesthesia: Are Fruit Flies Well-Rested After Emergence From Propofol?

    Science.gov (United States)

    Gardner, Benjamin; Strus, Ewa; Meng, Qing Cheng; Coradetti, Thomas; Naidoo, Nirinjini N.; Kelz, Max B.; Williams, Julie A.

    2015-01-01

    Background Shared neurophysiologic features between sleep and anesthetic-induced hypnosis indicate a potential overlap in neuronal circuitry underlying both states. Previous studies in rodents indicate that pre-existing sleep debt discharges under propofol anesthesia. We explored the hypothesis that propofol anesthesia also dispels sleep pressure in the fruit fly. To our knowledge, this constitutes the first time propofol has been tested in the genetically tractable model, Drosophila melanogaster. Methods Daily sleep was measured in Drosophila using a standard locomotor activity assay. Propofol was administered by transferring flies onto food containing various doses of propofol or equivalent concentrations of vehicle. High-Performance Liquid Chromatography (HPLC) was used to measure tissue concentrations of ingested propofol. To determine if propofol anesthesia substitutes for natural sleep, we subjected flies to 10 hours (h) sleep deprivation (SD), followed by 6h propofol exposure, and monitored subsequent sleep. Results Oral propofol treatment causes anesthesia in flies as indicated by a dose-dependent reduction in locomotor activity (n=11–41 flies from each group) and increased arousal threshold (n=79–137). Recovery sleep in flies fed propofol after SD was delayed until after flies had emerged from anesthesia (n=30–48). SD was also associated with a significant increase in mortality in propofol-fed flies (n=44–46). Conclusions Together, these data indicate that fruit flies are effectively anesthetized by ingestion of propofol, and suggest that homologous molecular and neuronal targets of propofol are conserved in Drosophila. However, behavioral measurements indicate that propofol anesthesia does not satisfy the homeostatic need for sleep, and may compromise the restorative properties of sleep. PMID:26556728

  16. Fruit flies (Diptera: Tephritidae and their hosts in the municipality of Quixeré, state of Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Marcia Mayara de Sousa

    2017-07-01

    Full Text Available The state of Ceará is one of the main producers and exporters of tropical fruits in Brazil. However, the farmers have some problems related with the fruit flies (Diptera: Tephritidae, because these tefritids cause damages to the fruits and the simple presence of some species makes difficult the export of fruits in natura. In the state of Ceará, information about fruit flies and their hosts in fruit producing regions are scarce, such as in the region of Baixo Jaguaribe. This region is located in the Brazilian semiarid and is composed of ten municipalities, among them the municipality of Quixeré. Therefore, the objective of this study was to know the species of fruit flies, their hosts and respective infestation index, in different places of the municipality of Quixeré. For this, fruits were randomly collected in different fruit trees (native and exotic, in the rural and urban area of Quixeré. The collected fruits were transported to the laboratory, where they were counted, weighed and stored in plastic trays on a layer of vermiculite. After seven days, the vermiculite was sieved and the pupae obtained were stored in plastic containers until the emergence of adults. Fruits of 21 species were sampled and only five were infested by fruit flies. The species obtained were Ceratitis capitata (Wiedemann, Anastrepha zenildae Zucchi, Anastrepha sororcula Zucchi and Anastrepha obliqua (Macquart. Guava Psidium guajava L. was the fruit that presented the highest rates of infestation.

  17. Field infestation of rambutan fruits by internal-feeding pests in Hawaii.

    Science.gov (United States)

    McQuate, G T; Follett, P A; Yoshimoto, J M

    2000-06-01

    More than 47,000 mature fruits of nine different varieties of rambutan (Nephelium lappaceum L.) were harvested from orchards in Hawaii to assess natural levels of infestation by tephritid fruit flies and other internal feeding pests. Additionally, harvested, mature fruits of seven different rambutan varieties were artificially infested with eggs or first-instars of Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) to assess host suitability. When all varieties were combined over two field seasons of sampling, fruit infestation rates were 0.021% for oriental fruit fly, 0.097% for Cryptophlebia spp. (Lepidoptera: Tortricidae), and 0.85% for pyralids (Lepidoptera). Species of Cryptophlebia included both C. illepida (Butler), the native Hawaiian species, and C. ombrodelta (Lower), an introduced species from Australia. Cryptophlebia spp. had not previously been known to attack rambutan. The pyralid infestation was mainly attributable to Cryptoblabes gnidiella (Milliere), a species also not previously recorded on rambutan in Hawaii. Overall infestation rate for other moths in the families Blastobasidae, Gracillariidae, Tineidae, and Tortricidae was 0.061%. In artificially infested fruits, both species of fruit fly showed moderately high survivorship for all varieties tested. Because rambutan has such low rates of infestation by oriental fruit fly and Cryptophlebia spp., the two primary internal-feeding regulatory pests of rambutan in Hawaii, it may be amenable to the alternative treatment efficacy approach to postharvest quarantine treatment.

  18. More than apples and oranges - Detecting cancer with a fruit fly's antenna

    Science.gov (United States)

    Strauch, Martin; Lüdke, Alja; Münch, Daniel; Laudes, Thomas; Galizia, C. Giovanni; Martinelli, Eugenio; Lavra, Luca; Paolesse, Roberto; Ulivieri, Alessandra; Catini, Alexandro; Capuano, Rosamaria; di Natale, Corrado

    2014-01-01

    Cancer cells and non-cancer cells differ in their metabolism and they emit distinct volatile compound profiles, allowing to recognise cancer cells by their scent. Insect odorant receptors are excellent chemosensors with high sensitivity and a broad receptive range unmatched by current gas sensors. We thus investigated the potential of utilising the fruit fly's olfactory system to detect cancer cells. Using in vivo calcium imaging, we recorded an array of olfactory receptor neurons on the fruit fly's antenna. We performed multidimensional analysis of antenna responses, finding that cell volatiles from different cell types lead to characteristic response vectors. The distances between these response vectors are conserved across flies and can be used to discriminate healthy mammary epithelial cells from different types of breast cancer cells. This may expand the repertoire of clinical diagnostics, and it is the first step towards electronic noses equipped with biological sensors, integrating artificial and biological olfaction.

  19. INFLUENCE OF AMYLOSE STARCH ON DEVELOPMENT AND LIFESPAN OF FRUIT FLY DROSOPHILA MELANOGASTER

    Directory of Open Access Journals (Sweden)

    Oleksandra Abrat

    2015-05-01

    Full Text Available Last years, the concept of resistant starch (RS has evoked a new interest in researchers in the context of bioavailability of starch and its use as a source of dietary fiber. Based on clinical and animal research, RS has been proposed to be the most potentially beneficial starch fraction for human health. In this study, the effects of amylose starch as a fraction of RS on development and lifespan of fruit fly Drosophila melanogaster were investigated. In both Canton S and w1118 strains, the diet with 20% amylose RS delayed fly development, increased triacylglyceride level in the body of adult insects and reduced their lifespan compared to the diet with 4% amylose starch. Thus, our data clearly demonstrate that amylose starch at high concentrations may negatively affect fruit fly.

  20. Wing attachment position of fruit fly minimizes flight cost

    Science.gov (United States)

    Noest, Robert; Wang, Jane

    Flight is energetically costly which means insects need to find ways to reduce their energy expenditure during sustained flight. Previous work has shown that insect muscles can recover some of the energy used for producing flapping motion. Moreover the form of flapping motions are efficient for generating the required force to balance the weight. In this talk, we show that one of the morphological parameters, the wing attachment point on a fly, is suitably located to further reduce the cost for flight, while allowing the fly to be close to stable. We investigate why this is the case and attempt to find a general rule for the optimal location of the wing hinge. Our analysis is based on computations of flapping free flight together with the Floquet stability analysis of periodic flight for descending, hovering and ascending cases.

  1. Chemical Degradation of TMR Multilure Dispensers for Fruit Fly Detection Weathered Under California Climatic Conditions.

    Science.gov (United States)

    Vargas, Roger I; Souder, Steven K; Morse, Joseph G; Grafton-Cardwell, Elizabeth E; Haviland, David R; Kabashima, John N; Faber, Ben A; Mackey, Bruce; Nkomo, Eddie; Cook, Peter J; Stark, John D

    2017-08-01

    Degradation models for multilure fruit fly trap dispensers were analyzed to determine their potential for use in large California detection programs. Solid three-component male lure TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) dispensers impregnated with DDVP (2, 2-dichlorovinyl dimethyl phosphate) insecticide placed inside Jackson traps were weathered during summer (8 wk) and winter (12 wk) in five citrus-growing areas. Additionally, TMR wafers without DDVP, but with an insecticidal strip, were compared to TMR dispensers with DDVP. Weathered dispensers were sampled weekly and chemically analyzed. Percent loss of TML, the male lure for Ceratitis capitata (Wiedemann) Mediterranean fruit fly; ME, the male lure for Bactrocera dorsalis (Hendel), oriental fruit fly; RK, the male lure for Bactrocera cucurbitae (Coquillett), melon fly; and DDVP was measured. Based on regression analyses for the male lures, TML degraded the fastest followed by ME. Degradation of the more chemically stable RK was discontinuous, did not fit a regression model, but followed similar seasonal patterns. There were few location differences for all three male lures and DDVP. Dispensers degraded faster during summer than winter. An asymptotic regression model provided a good fit for % loss (ME, TML, and DDVP) for summer data. Degradation of DDVP in TMR dispensers was similar to degradation of DDVP in insecticidal strips. Based on these chemical analyses and prior bioassay results with wild flies, TMR dispensers could potentially be used in place of three individual male lure traps, reducing costs of fruit fly survey programs. Use of an insecticidal tape would not require TMR dispensers without DDVP to be registered with US-EPA. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  2. assessment of invasive fruit fly fruit infestation and damage in cabo ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Key Words: Bactrocera invadens, guava, mango, sugar apple. RÉSUMÉ. Les mouches des fruits sont parmi les peste les plus importantes des fruits et legumes à travers le monde. La mouche invasive Bactrocera invadens (Diptera: Tephritidae) de fruits était détectée en Afrique en 2003 au. Kenya. Au Mozambique, elle y ...

  3. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae)

    OpenAIRE

    Park, Soo J.; Morelli, Renata; Hanssen, Benjamin L.; Jamie, Joanne F.; Jamie, Ian M.; Siderhurst, Matthew S.; Taylor, Phillip W.

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters...

  4. RNAi-Mediated Knock-Down of transformer and transformer 2 to Generate Male-Only Progeny in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel.

    Directory of Open Access Journals (Sweden)

    Guiqing Liu

    Full Text Available The transformer (tra gene appears to act as the genetic switch that promotes female development by interaction with the transformer2 (tra-2 gene in several dipteran species including the Medfly, housefly and Drosophila melanogaster. In this study, we describe the isolation, expression and function of tra and tra-2 in the economically important agricultural pest, the oriental fruit fly, Bactrocera dorsalis (Hendel. Bdtra and Bdtra-2 are similar to their homologs from other tephritid species. Bdtra demonstrated sex-specific transcripts: one transcript in females and two transcripts in males. In contrast, Bdtra-2 only had one transcript that was common to males and females, which was transcribed continuously in different adult tissues and developmental stages. Bdtra-2 and the female form of Bdtra were maternally inherited in eggs, whereas the male form of Bdtra was not detectable until embryos of 1 and 2 h after egg laying. Function analyses of Bdtra and Bdtra-2 indicated that both were indispensable for female development, as nearly 100% males were obtained with embryonic RNAi against either Bdtra or Bdtra-2. The fertility of these RNAi-generated males was subsequently tested. More than 80% of RNAi-generated males could mate and the mated females could lay eggs, but only 40-48.6% males gave rise to progeny. In XX-reversed males and intersex individuals, no clear female gonadal morphology was observed after dissection. These results shed light on the development of a genetic sexing system with male-only release for this agricultural pest.

  5. Attractants fromStaphylococcus aureus cultures for Mexican fruit fly,Anastrepha ludens.

    Science.gov (United States)

    Robacker, D C; Flath, R A

    1995-11-01

    Volatile chemicals from tryptic soy broth cultures ofStaphylococcus aureus that attract sugar-fed, protein-hungry adult Mexican fruit flies were identified. Chemicals identified from the headspace above the filtrate of the bacterial cultures were ammonia, trimethylamine, isoamylamine, 2-methylbutylamine, 2,5-dimethylpyrazine, and acetic acid. Each chemical attracted flies. A mixture of the chemicals in the same concentrations as were found in the bacterial filtrate was 89% as effective in attracting flies as the bacterial filtrate in laboratory bioassays. Additional chemicals were identified from various concentrated or pH altered preparations made from the filtrate. Many of these chemicals also attracted flies. One of these chemicals, dimethylamine, was the most effective chemical identified. The use of solid-phase microextraction for volatile collection and of thick-film (5-µm) capillary GC columns was essential to the success of this work.

  6. OpenFlyData: an exemplar data web integrating gene expression data on the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Miles, Alistair; Zhao, Jun; Klyne, Graham; White-Cooper, Helen; Shotton, David

    2010-10-01

    Integrating heterogeneous data across distributed sources is a major requirement for in silico bioinformatics supporting translational research. For example, genome-scale data on patterns of gene expression in the fruit fly Drosophila melanogaster are widely used in functional genomic studies in many organisms to inform candidate gene selection and validate experimental results. However, current data integration solutions tend to be heavy weight, and require significant initial and ongoing investment of effort. Development of a common Web-based data integration infrastructure (a.k.a. data web), using Semantic Web standards, promises to alleviate these difficulties, but little is known about the feasibility, costs, risks or practical means of migrating to such an infrastructure. We describe the development of OpenFlyData, a proof-of-concept system integrating gene expression data on D. melanogaster, combining Semantic Web standards with light-weight approaches to Web programming based on Web 2.0 design patterns. To support researchers designing and validating functional genomic studies, OpenFlyData includes user-facing search applications providing intuitive access to and comparison of gene expression data from FlyAtlas, the BDGP in situ database, and FlyTED, using data from FlyBase to expand and disambiguate gene names. OpenFlyData's services are also openly accessible, and are available for reuse by other bioinformaticians and application developers. Semi-automated methods and tools were developed to support labour- and knowledge-intensive tasks involved in deploying SPARQL services. These include methods for generating ontologies and relational-to-RDF mappings for relational databases, which we illustrate using the FlyBase Chado database schema; and methods for mapping gene identifiers between databases. The advantages of using Semantic Web standards for biomedical data integration are discussed, as are open issues. In particular, although the performance of open

  7. Regional Suppression of Bactrocera Fruit Flies (Diptera: Tephritidae in the Pacific through Biological Control and Prospects for Future Introductions into Other Areas of the World

    Directory of Open Access Journals (Sweden)

    Roger I. Vargas

    2012-08-01

    Full Text Available Bactrocera fruit fly species are economically important throughout the Pacific. The USDA, ARS U.S. Pacific Basin Agricultural Research Center has been a world leader in promoting biological control of Bactrocera spp. that includes classical, augmentative, conservation and IPM approaches. In Hawaii, establishment of Bactrocera cucurbitae (Coquillett in 1895 resulted in the introduction of the most successful parasitoid, Psyttalia fletcheri (Silvestri; similarly, establishment of Bactrocera dorsalis (Hendel in 1945 resulted in the introduction of 32 natural enemies of which Fopius arisanus (Sonan, Diachasmimorpha longicaudata (Ashmead and Fopius vandenboschi (Fullaway were most successful. Hawaii has also been a source of parasitoids for fruit fly control throughout the Pacific region including Australia, Pacific Island Nations, Central and South America, not only for Bactrocera spp. but also for Ceratitis and Anastrepha spp. Most recently, in 2002, F. arisanus was introduced into French Polynesia where B. dorsalis had invaded in 1996. Establishment of D. longicaudata into the new world has been important to augmentative biological control releases against Anastrepha spp. With the rapid expansion of airline travel and global trade there has been an alarming spread of Bactrocera spp. into new areas of the world (i.e., South America and Africa. Results of studies in Hawaii and French Polynesia, support parasitoid introductions into South America and Africa, where B. carambolae and B. invadens, respectively, have become established. In addition, P. fletcheri is a candidate for biological control of B. cucurbitae in Africa. We review past and more

  8. Sublethal effect of neem extract on mediterranean fruit fly adults

    Directory of Open Access Journals (Sweden)

    Márcio Alves Silva

    2013-03-01

    Full Text Available The sublethal effect of extracts of Azadirachta indica on Ceratitis capitata was evaluated. Two pairs of flies were treated in plastic tubes with cotton placed in plastic cages. An artificial diet (hydrolyzed protein + sugar was provided ad libitum. The extracts affected significantly the longevity of C. capitata. The pre-oviposition period were not significantly affected by the extracts. The A. indica branches extracted with dichloromethane (888 ppm affected significantly the fecundity and fertility, reducing the number of eggs laid to approximately 80 % and the egg hatching by 30 % at the 8th day. Therefore, the neem branches extracted with dichloromethane affected the reproduction of C. capitata.

  9. Olfactory response of the Mexican fruit fly (Diptera: Tephritidae) to Citrus aurantium volatiles.

    Science.gov (United States)

    Rasgado, Milton A; Malo, Edi A; Cruz-López, Leopoldo; Rojas, Julio C; Toledo, Jorge

    2009-04-01

    We investigated the behavioral and electrophysiological responses of male and female Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), to volatiles of bitter orange fruit, Citrus aurantium L. In field cage tests, the number of A. ludens caught in Multilure traps baited with mature green bitter orange fruit was significantly higher than the number captured in traps baited with ripe yellow bitter orange fruit and control (unbaited traps). Both sexes were more attracted to mature green bitter orange fruit extracts than to controls in both flight tunnel and field cage assays. Gas chromatography-mass spectrometry analysis of the mature green bitter orange fruit volatiles identified 10 different compounds. Limonene was the most abundant volatile compound, followed by an unknown compound, tentatively identified as trans-ocimene. Linalool, beta-pinene, and methyl salicylate were found in lower proportions. Both sexes of A. ludens evoked higher antennal response to linalool, methyl salicylate, and to a blend of these four components in comparison with limonene, and beta-pinene. In flight tunnel, both sexes were more attracted and landed more often on spheres baited with the four-component blend compared with control spheres. In field cage tests, Multilure traps baited with the four-component blend captured significantly more A. ludens flies than traps baited with hydrolyzed protein or control traps.

  10. 76 FR 43804 - Movement of Hass Avocados From Areas Where Mediterranean Fruit Fly or South American Fruit Fly Exist

    Science.gov (United States)

    2011-07-22

    ... through the end of harvest or if a post-harvest irradiation treatment is applied to the fruit. To be.... Following any post-harvest processing, inspectors from the NPPO of Peru must inspect a biometric sample of... after harvest in accordance with specific measures. We are also amending our foreign quarantine...

  11. Target of rapamycin activation predicts lifespan in fruit flies.

    Science.gov (United States)

    Scialò, Filippo; Sriram, Ashwin; Naudí, Alba; Ayala, Victoria; Jové, Mariona; Pamplona, Reinald; Sanz, Alberto

    2015-01-01

    Aging and age-related diseases are one of the most important health issues that the world will confront during the 21(st) century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory.

  12. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

    Science.gov (United States)

    Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2010-03-16

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.

  13. Light sheet-based imaging and analysis of early embryogenesis in the fruit fly.

    Science.gov (United States)

    Khairy, Khaled; Lemon, William C; Amat, Fernando; Keller, Philipp J

    2015-01-01

    The fruit fly is an excellent model system for investigating the sequence of epithelial tissue invaginations constituting the process of gastrulation. By combining recent advancements in light sheet fluorescence microscopy (LSFM) and image processing, the three-dimensional fly embryo morphology and relevant gene expression patterns can be accurately recorded throughout the entire process of embryogenesis. LSFM provides exceptionally high imaging speed, high signal-to-noise ratio, low level of photoinduced damage, and good optical penetration depth. This powerful combination of capabilities makes LSFM particularly suitable for live imaging of the fly embryo.The resulting high-information-content image data are subsequently processed to obtain the outlines of cells and cell nuclei, as well as the geometry of the whole embryo tissue by image segmentation. Furthermore, morphodynamics information is extracted by computationally tracking objects in the image. Towards that goal we describe the successful implementation of a fast fitting strategy of Gaussian mixture models.The data obtained by image processing is well-suited for hypothesis testing of the detailed biomechanics of the gastrulating embryo. Typically this involves constructing computational mechanics models that consist of an objective function providing an estimate of strain energy for a given morphological configuration of the tissue, and a numerical minimization mechanism of this energy, achieved by varying morphological parameters.In this chapter, we provide an overview of in vivo imaging of fruit fly embryos using LSFM, computational tools suitable for processing the resulting images, and examples of computational biomechanical simulations of fly embryo gastrulation.

  14. Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control

    Directory of Open Access Journals (Sweden)

    Olivia L. Reynolds

    2012-10-01

    Full Text Available This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option for areas of inland eastern Australia around the Fruit Fly Exclusion Zone that produces B. tryoni-free fruits for export. Diachasmimorpha tryoni has been successful in other locations such as Hawaii for the biological control of other fruit fly species. Biological control could contribute to local eradication of isolated outbreaks and more general suppression and/or eradication of the B. tryoni population in endemic areas. Combining biological control with the use of sterile insect technique offers scope for synergy because the former is most effective at high pest densities and the latter most economical when the pest becomes scarce. Recommendations are made on methods for culturing and study of four B. tryoni parasitoids present in Australia along with research priorities for optimising augmentative biological control of B. tryoni.

  15. Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control.

    Science.gov (United States)

    Zamek, Ashley L; Spinner, Jennifer E; Micallef, Jessica L; Gurr, Geoff M; Reynolds, Olivia L

    2012-10-22

    This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option for areas of inland eastern Australia around the Fruit Fly Exclusion Zone that produces B. tryoni-free fruits for export. Diachasmimorpha tryoni has been successful in other locations such as Hawaii for the biological control of other fruit fly species. Biological control could contribute to local eradication of isolated outbreaks and more general suppression and/or eradication of the B. tryoni population in endemic areas. Combining biological control with the use of sterile insect technique offers scope for synergy because the former is most effective at high pest densities and the latter most economical when the pest becomes scarce. Recommendations are made on methods for culturing and study of four B. tryoni parasitoids present in Australia along with research priorities for optimising augmentative biological control of B. tryoni.

  16. Hole diameters in pet bottles used for fruit fly capture

    Directory of Open Access Journals (Sweden)

    Maurico Paulo Batistella Pasini

    2015-05-01

    Full Text Available Two experiments were conducted during the period from 31 January to 6 March 2012 in Santa Maria, Rio Grande do Sul State, Brazil to determine the efficiency of different hole diameters in PET trap bottles on pests in guava and persimmon orchards. In a randomised block design in a factorial scheme, we assessed the average number adults of Anastrepha fraterculus, Ceratitis capitata (Diptera: Tephitidae and Zaprionus indianus (Diptera: Drosophilidae infruits thatemerged in two situations (in the plant and on the soil; we also assessed the number of captured adults in trap bottlesunder two conditions, different hole diameters and different days after placement of the attractive solution. Smaller diameter sizescaptured more A. fraterculus, C. capitata and Z. indianusadults. The 1.0 cm diameter was the most efficient hole size in reducing the adult emergence of Tephritidae to Z. indianus, whereas the smallest diameter hole sizes, 0.6 and 0.8 cm, showed the highest efficiencies in controlling adult emergence in persimmon fruit and guava fruit.

  17. POTENTIAL OF TURMERIC EXTRACT AND ITS FRACTIONS TO CONTROL PEACH FRUIT FLY (DIPTERA: TEPHRITIDAE

    Directory of Open Access Journals (Sweden)

    Muhammad Rizwan Riaz

    2015-12-01

    Full Text Available ABSTRACT Potential of turmeric extract and its chemical fractions were evaluated to control the infestation of Bactrocera zonata peach fruit fly in a mortality-based bioassay. The turmeric extract (TE was taken on Soxhelt's extraction apparatus and chemically fractioned by thin layer followed by column chromatography into 6 fractions (F1 ...F6. Fifty pairs of the flies were fed in cages with 250 and 500 ppm TE and its fractions separately for 20 days along with flies fed on untreated diet to serve as control. The toxicity of TE and each of its fractions was evaluated by calculating percent mortality of fly population after every 5th day in 4 consecutive intervals. Mortality of fly population was observed to be positively correlated with increasing concentrations of TE and its fractions in diet. The mortality of flies fed at 250 and 500 ppm TE was significantly higher at 44.17 and 66.33% compared to 28.88% in control. Percent mortality was much higher in case of flies fed with fractions F1, F3 and F6 i.e. 72.22, 50.00 and 48.76 respectively. Maximum rise of mortality was observed at the end of 3rd interval; in case of flies fed at 500 ppm TE, 52.45 percent mortality was observed at the end of 3rd interval; highest mortality was caused by fraction F1, 51.39% in case of flies fed at 250 ppm and 70.37% in case of those fed at 500 ppm.

  18. Influence of different tropical fruits on biological and behavioral aspects of the Mediterranean fruit fly Ceratitis capitata (Wiedemann (Diptera, Tephritidae

    Directory of Open Access Journals (Sweden)

    Anne M. Costa

    2011-09-01

    Full Text Available Influence of different tropical fruits on biological and behavioral aspects of the Mediterranean fruit fly Ceratitis capitata (Wiedemann (Diptera, Tephritidae. Studies on Ceratitis capitata, a world fruit pest, can aid the implementation of control programs by determining the plants with higher vulnerability to attacks and plants able to sustain their population in areas of fly distribution. The objective of the present study was to evaluate the influence of eight tropical fruits on the following biological and behavioral parameters of C. capitata: emergence percentage, life cycle duration, adult size, egg production, longevity, fecundity, egg viability, and oviposition acceptance. The fruits tested were: acerola (Malpighia glabra L., cashew (Anacardium occidentale L., star fruit (Averrhoa carambola L., guava (Psidium guajava L., soursop (Annona muricata L., yellow mombin (Spondias mombin L., Malay apple (Syzygium malaccense L., and umbu (Spondias tuberosa L.. The biological parameters were obtained by rearing the recently hatched larvae on each of the fruit kinds. Acceptance of fruits for oviposition experiment was assessed using no-choice tests, as couples were exposed to two pieces of the same fruit. The best performances were obtained with guava, soursop, and star fruit. Larvae reared on cashew and acerola fruits had regular performances. No adults emerged from yellow mombin, Malay apple, or umbu. Fruit species did not affect adult longevity, female fecundity, or egg viability. Guava, soursop, and acerola were preferred for oviposition, followed by star fruit, Malay apple, cashew, and yellow mombin. Oviposition did not occur on umbu. In general, fruits with better larval development were also more accepted for oviposition.Influência de diferentes frutos tropicais em aspectos biológicos e comportamentais da mosca-das-frutas Ceratitis capitata (Wiedemann (Diptera, Tephritidae. Estudos em Ceratitis capitata, uma praga agrícola, pode auxiliar

  19. Cold storage enhances the efficacy and margin of security in postharvest irradiation treatments against fruit flies (Diptera: Tephritidae).

    Science.gov (United States)

    Follett, Peter A; Snook, Kirsten

    2013-10-01

    Cold storage is used to preserve fruit quality after harvest during transportation in marketing channels. Low temperature can be a stressor for insects that reduces survivorship, and cold storage may contribute to the efficacy of postharvest quarantine treatments such as irradiation against quarantine insect pests. The combined effect of irradiation and cold storage was examined in a radiation-tolerant fruit fly, Bactrocera cucurbitae Coquillet (melon fly), and a radiation-intolerant fruit fly, Ceratitis capitata (Wiedemann) (Mediterranean fruit fly) (Diptera: Tephritidae). Third instars on diet or in papaya were treated with a sublethal radiation dose of 30 Gy and stored at 4 or 11 degrees C for 3-13 d and held for adult emergence. For both fruit fly species, survival of third instars to the adult stage generally decreased with increasing cold storage duration at 4 or 11 degrees C in diet or papaya. Survivorship differences were highly significant for the effects of substrate (diet > papaya), temperature (11 > 4 degrees C),and irradiation (0 > 30 Gy). Few Mediterranean fruit flies survived in any cold storage treatment after receiving a radiation dose of 30 Gy. No melon fly larvae survived to the adult stage after irradiation and 11 d cold storage at 4 or 11 degrees C in papayas. Cold storage enhances the efficacy and widens the margin of security in postharvest irradiation treatments. Potentially irradiation and cold storage can be used in combination to reduce the irradiation exposure requirements of quarantine treatments.

  20. Raspberry ketone supplement promotes early sexual maturation in male Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Akter, Humayra; Mendez, Vivian; Morelli, Renata; Pérez, Jeanneth; Taylor, Phillip W

    2017-08-01

    Raspberry ketone (RK) is highly attractive to sexually mature, but not immature, males of many Bactrocera species, including Queensland fruit fly ('Qfly', Bactrocera tryoni), and acts as a metabolic enhancer in a wide diversity of animals. We considered the possibility that, as a metabolic enhancer, RK in adult diet might accelerate sexual maturation of male Qflies. Recently emerged adult Qfly males (0-24 h old) were exposed to RK-treated food for 48 h and were then provided only sugar and water. Four doses of RK (1.25, 2.5, 3.75 and 5%) along with control (0%) were tested with two types of food: sugar alone and sugar mixed with yeast hydrolysate (3:1). For flies tested when 4-10 days old all RK doses increased mating probability of flies fed sugar mixed with yeast hydrolysate but did not show any effect on mating probability of flies fed only sugar. No effects of RK were found for flies tested when 10-30 days old for either diet group. There was no evidence that RK affected longevity at any of the doses tested. Feeding of RK together with yeast hydrolysate to immature Qfly increases mating propensity at young ages and accordingly shows significant potential as a pre-release supplement that might increase the proportion of released flies that attain sexual maturation in Sterile Insect Technique programmes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Assessment of Navel Oranges, Clementine Tangerines, and Rutaceous Fruits as Hosts of and (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Grant T. Mcquate

    2015-01-01

    Full Text Available Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett, and Bactrocera latifrons (Hendel. In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges ( Citrus sinensis [L.] Osbeck and Clementine tangerines ( C. reticulata L. var. Clementine, but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae , including heat and cold treatments and systems approaches, are discussed.

  2. A Novel Discrete Fruit Fly Optimization Algorithm for Intelligent Parallel Test sheets Generation

    Directory of Open Access Journals (Sweden)

    Wang Fengrui

    2015-01-01

    Full Text Available Parallel test sheet generation (PTSG is a NP-hard combinational optimization problem, in which test sheet generation algorithm with high quality and efficiency is the core technology. Basic fruit fly optimization algorithm (FOA has the defects of easily relapsing into local optimal and low convergence precision when solving PTSG problem. In this paper, a novel discrete fruit fly optimization algorithm is proposed to solve the PTSG problem, in which a discrete osphesis searching operator based on the problem-specific knowledge is designed to help the FOA escaping from being trapped in local minima. To evaluate the performance of the proposed algorithm, the simulation experiments were conducted using a series of item banks with different scales. The superiority of the proposed algorithm is demonstrated by comparing it with the particle swarm optimization algorithm and differential evolution algorithm.

  3. Pictorial keys for predominant Bactrocera and Dacus fruit flies (Diptera: Tephritidae of north western Himalaya

    Directory of Open Access Journals (Sweden)

    C. S. Prabhakar

    2012-09-01

    Full Text Available A pictorial key for 13 species of fruit flies under 2 genera namely Bactrocera and Dacus of subfamily Dacinae (Diptera: Tephritidae is presented in this paper based on actual photographs of fruit flies collected from north western Himalaya of India during 2009-2010. Among these, Bactrocera diversa (Coquillett, Bactrocera scutellaris (Bezzi, Bactrocera tau (Walker, Bactrocera cucurbitae (Coquillett, Bactrocera zonata (Saunders, Bactrocera correcta (Bezzi, Bactrocera dorsalis (Hendel, Bactrocera latifrons (Hendel and Dacus ciliatus Loew are the pests of agricultural and horticultural ecosystems. Bactrocera latifrons, Bactrocera nigrofemoralis White and Tsuruta, Dacus longicornis Wiedemann and Dacus sphaeroidalis (Bezzi are the new records from the region of which host range has yet to be investigated. The pictorial keysdeveloped for these species will help the researchers for their easy and accurate identification.

  4. The white gene of the tephritid fruit fly Bactrocera tryoni is characterized by a long untranslated 5' leader and a 12kb first intron.

    Science.gov (United States)

    Bennett, C L; Frommer, M

    1997-11-01

    A 300 bp fragment from exon 6 of the white gene of Bactrocera tryoni was used to screen a B. tryoni genomic library. One positive (approximately 14 kb) insert contained exons 2-6 of white by nucleotide and amino acid sequence similarity to the white genes of D. melanogaster (O'Hare et al., 1984; Pepling & Mount, 1990). Lucilia cuprina (Garcia et al., 1996). Ceratitis capitata (Zwiebel et al., 1995) and Anopheles gambiae (Besansky et al., 1995). A white 5' cDNA fragment containing exons 1, 2 and part of exon 3 was amplified, cloned and sequenced. An inverse PCR fragment of genomic DNA was generated, containing the exon 1 coding region plus approximately 2.1 kb of upstream sequence, encompassing the putative promoter of the gene. Exon 1 was found to be 728 bp long, encoding the first twenty-five amino acids. The full length of intron 1 was shown to be 12 kb (amplified using long PCR protocols), up to 3 times the length of the longest white intron 1 isolated to date.

  5. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    Science.gov (United States)

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  6. Sniffing Out Chemosensory Genes from the Mediterranean Fruit Fly, Ceratitis capitata

    OpenAIRE

    Siciliano, Paolo; Scolari, Francesca; Gomulski, Ludvik M.; Falchetto, Marco; Manni, Mosè; Gabrieli, Paolo; Field, Linda M.; Zhou, Jing-Jiang; Gasperi, Giuliano; Malacrida, Anna R.

    2014-01-01

    The Mediterranean fruit fly, Ceratitis capitata (medfly), is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats. Chemosensory behaviour plays an important role in many crucial stages in the life of this insect, such as the detection of pheromone cues during mate pursuit and odorants during host plant localisation. Thus, the analysis of the chemosensory gene repertoire is an important step f...

  7. Potential impacts of climate change on habitat suitability for the Queensland fruit fly

    OpenAIRE

    Sultana, Sabira; Baumgartner, John B.; Dominiak, Bernard C.; Royer, Jane E.; Beaumont, Linda J.

    2017-01-01

    Anthropogenic climate change is a major factor driving shifts in the distributions of pests and invasive species. The Queensland fruit fly, Bactrocera tryoni Froggatt (Qfly), is the most economically damaging insect pest of Australia’s horticultural industry, and its management is a key priority for plant protection and biosecurity. Identifying the extent to which climate change may alter the distribution of suitable habitat for Qfly is important for the development and continuation of effect...

  8. Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control

    OpenAIRE

    Zamek, Ashley L.; Spinner, Jennifer E.; Micallef, Jessica L.; Gurr, Geoff M.; Reynolds, Olivia L.

    2012-01-01

    This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. Augmentative release of the native and naturalised Australian parasitoids, especially the braconid Diachasmimorpha tryoni, may result in better management of B. tryoni in some parts of Australia. Mass releases are an especially attractive option...

  9. Genetic and molecular markers of the Queensland fruit fly, Bactrocera tryoni.

    Science.gov (United States)

    Zhao, J T; Frommer, M; Sved, J A; Gillies, C B

    2003-01-01

    Twenty-six microsatellite markers, along with two restriction fragment length polymorphism (RFLP) markers and three morphological markers, have been mapped to five linkage groups, corresponding to the five autosomes of the Queensland fruit fly, Bactrocera tryoni. All these molecular and genetic markers were genotyped in three-generation pedigrees. Eight molecular markers were also localized to the salivary gland polytene chromosomes by in situ hybridization. This provides a substantial starting point for an integrated genetic and physical map of B. tryoni.

  10. Isolation and characterization of the Xanthine dehydrogenase gene of the Mediterranean fruit fly, Ceratitis capitata.

    OpenAIRE

    Pitts, R J; Zwiebel, L J

    2001-01-01

    Xanthine dehydrogenase (XDH) is a member of the molybdenum hydroxylase family of enzymes catalyzing the oxidation of hypoxanthine and xanthine to uric acid. The enzyme is also required for the production of one of the major Drosophila eye pigments, drosopterin. The XDH gene has been isolated in many species representing a broad cross section of the major groups of living organisms, including the cDNA encoding XDH from the Mediterranean fruit fly Ceratitis capitata (CcXDH) described here. CcXD...

  11. The Oriental Fruit Fly, Bactrocera dorsalis, in China: Origin and Gradual Inland Range Expansion Associated with Population Growth: e25238

    National Research Council Canada - National Science Library

    Xuanwu Wan; Francesco Nardi; Bin Zhang; Yinghong Liu

    2011-01-01

      The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary...

  12. The Oriental Fruit Fly, Bactrocera dorsalis, in China: Origin and Gradual Inland Range Expansion Associated with Population Growth

    National Research Council Canada - National Science Library

    Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary...

  13. Synomone or kairomone?--Bulbophyllum apertum flower releases raspberry ketone to attract Bactrocera fruit flies.

    Science.gov (United States)

    Keng-Hong, Tan; Nishida, Ritsuo

    2005-03-01

    Bulbophyllum apertum flower (Orchidaceae) releases raspberry ketone (RK) in its fragrance, which attracts males of several fruit fly species belonging to the genus Bactrocera. Besides RK as a major component, the flower contains smaller amounts of 4-(4-hydroxylphenyl)-2-butanol, plus two minor volatile components, veratryl alcohol and vanillyl alcohol. Within the flower, the lip (labellum) had the highest concentration of RK with much smaller quantities present in petals; other flower parts had no detectable RK. Male fruit flies attracted to the flower belong to RK-sensitive species--such as Bactrocera albistragata, B. caudatus, B. cucurbitae (melon fly), and B. tau. Removal and attachment of the pollinarium to a fly's thoracic dorsum occurred when a male of B. albistragata was toppled into the floral column cavity, due to an imbalance caused by it shifting its body weight while feeding on the see-saw lip, and then freeing itself after being momentarily trapped between the lip and column. During this process, the stiff hamulus (the pollinia stalk protruding prominently towards the lip) acted as a crowbar when it was brushed downwards by the toppled fly and lifted the pollinia out of the anther. If the fly was big or long for the small triangular lip, it would not be toppled into the column cavity and would just walk across the column, during which time the pollinarium could be accidentally removed by the fly's leg, resulting in a failed transport of the pollinarium. This suggests an unstable situation, where the orchid relies only on a particular pollinator species in the complex ecosystem where many RK-sensitive species inhabit. Wild males of B. caudatus (most common visitors) captured on Bulbophyllum apertum flowers were found to sequester RK in their bodies as a potential pheromonal and allomonal ingredient. Thus, RK can act either as a floral synomone (pollinarium transported) or kairomone (accidental removal of pollinarium leading to total pollen wastage

  14. The gene transformer of anastrepha fruit flies (Diptera, tephritidae and its evolution in insects.

    Directory of Open Access Journals (Sweden)

    María Fernanda Ruiz

    Full Text Available In the tephritids Ceratitis capitata and Bactrocera oleae, the gene transformer acts as the memory device for sex determination, via an auto-regulatory function; and functional Tra protein is produced only in females. This paper investigates the evolution of the gene tra, which was characterised in twelve tephritid species belonging to the less extensively analysed genus Anastrepha. Our study provided the following major conclusions. Firstly, the memory device mechanism used by this gene in sex determination in tephritids likely existed in the common ancestor of the Ceratitis, Bactrocera and Anastrepha phylogenetic lineages. This mechanism would represent the ancestral state with respect to the extant cascade seen in the more evolved Drosophila lineage. Secondly, Transformer2-specific binding intronic splicing silencer sites were found in the splicing regulatory region of transformer but not in doublesex pre-mRNAs in these tephritids. Thus, these sites probably provide the discriminating feature for the putative dual splicing activity of the Tra-Tra2 complex in tephritids. It acts as a splicing activator in dsx pre-mRNA splicing (its binding to the female-specific exon promotes the inclusion of this exon into the mature mRNA, and as a splicing inhibitor in tra pre-mRNA splicing (its binding to the male-specific exons prevents the inclusion of these exons into the mature mRNA. Further, a highly conserved region was found in the specific amino-terminal region of the tephritid Tra protein that might be involved in Tra auto-regulatory function and hence in its repressive splicing behaviour. Finally, the Tra proteins conserved the SR dipeptides, which are essential for Tra functionality.

  15. Specific and sensitive primers for the detection of predated olive fruit flies, Bactrocera oleae (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Esther Lantero

    2017-07-01

    Full Text Available Bactrocera oleae, the olive fruit fly, is a major pest of olive (Olea europaea L. trees worldwide. Its presence can cause important losses, with consequences for the economies of countries that produce and export table olives and olive oil. Efforts to control olive fruit fly populations have, however, been insufficient. Now more than ever, environmentally friendly alternatives need to be considered in potential control programs. Generalist predators could provide a way of managing this pest naturally. However, the identification of candidate predator species is essential if such a management system is to be introduced. The present paper describes a set of species-specific primers for detecting the presence of B. oleae DNA in the gut of predatory arthropods. All primers were tested for checking cross-reactive amplification of other fruit fly DNA and evaluated in heterospecific mixes of nucleic acids. All were found to be very sensitive for B. oleae. Subsequent feeding trials were conducted using one of the most abundant species of ground dwelling carabids in olive groves in south-eastern Madrid, Spain. These trials allowed determining that 253F-334R and 334F-253R primer pairs had the highest detection efficiency with an ID50 of around 78 h. These primers therefore provide a very useful tool for screening the gut contents of potential predators of B. oleae, and can thus reveal candidate species for the pest's biological control

  16. Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain.

    Directory of Open Access Journals (Sweden)

    Lev E Givon

    Full Text Available We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs. Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules' local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly's entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel's model integration by combining independently developed models of the retina and lamina neuropils in the fly's visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel's ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel's communication performance both over the number of interface ports exposed by an emulation's constituent modules and the total number of modules comprised by an emulation.

  17. Flight control of fruit flies: dynamic response to optic flow and headwind.

    Science.gov (United States)

    Lawson, Kiaran K K; Srinivasan, Mandyam V

    2017-06-01

    Insects are magnificent fliers that are capable of performing many complex tasks such as speed regulation, smooth landings and collision avoidance, even though their computational abilities are limited by their small brain. To investigate how flying insects respond to changes in wind speed and surrounding optic flow, the open-loop sensorimotor response of female Queensland fruit flies ( Bactrocera tryoni ) was examined. A total of 136 flies were exposed to stimuli comprising sinusoidally varying optic flow and air flow (simulating forward movement) under tethered conditions in a virtual reality arena. Two responses were measured: the thrust and the abdomen pitch. The dynamics of the responses to optic flow and air flow were measured at various frequencies, and modelled as a multicompartment linear system, which accurately captured the behavioural responses of the fruit flies. The results indicate that these two behavioural responses are concurrently sensitive to changes of optic flow as well as wind. The abdomen pitch showed a streamlining response, where the abdomen was raised higher as the magnitude of either stimulus was increased. The thrust, in contrast, exhibited a counter-phase response where maximum thrust occurred when the optic flow or wind flow was at a minimum, indicating that the flies were attempting to maintain an ideal flight speed. When the changes in the wind and optic flow were in phase (i.e. did not contradict each other), the net responses (thrust and abdomen pitch) were well approximated by an equally weighted sum of the responses to the individual stimuli. However, when the optic flow and wind stimuli were presented in counterphase, the flies seemed to respond to only one stimulus or the other, demonstrating a form of 'selective attention'. © 2017. Published by The Company of Biologists Ltd.

  18. Pre and post harvest IPM for the mango fruit fly, Bactrocera dorsalis (Hendel)

    Energy Technology Data Exchange (ETDEWEB)

    Verghese, Abraham; Sreedevi, K.; Nagaraju, D.K., E-mail: avergis@iihr.ernet.i [Indian Institute of Horticultural Research, Bangalore, Karnataka (India)

    2006-07-01

    The fruit fly, Bactrocera dorsalis (Hendel) is a major pest of mango in India. So, investigations were carried out to standardize an Integrated Pest Management (IPM) for fruit fly-free and residue-free mango fruits. The study required orchard and laboratory studies, which were conducted on the commercial variety Banganapalli, at the Indian Institute of Horticultural Research, Hessaraghatta Lake P.O., Bangalore, India, during 2004 and 2005. Results showed that a pre harvest IPM combination of male annihilation technique (MAT) (using methyl eugenol as a lure) + sanitation brought down B. dorsalis infestation to 5.00% from an infestation ranging from 17 to 66% in control in both years. An additional cover spray of Decamethrin 2.8EC 0.5ml/l (which is half the recommended dose) + Azadirachtin (0.03 %) 2ml/l (neem based botanical) gave 100% control in both the years. Post harvest treatments with hot water at 48 degree C for 60 and 75 min resulted in 100% control at both the time regimes in 2004 and 2005. The untreated fruits, which were also exposed to gravid females (but not treated in hot water) showed 30% and 5.5% infestations, respectively, in 2004 and 2005. (author)

  19. High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity.

    Science.gov (United States)

    Sinha, Supriyo; Liang, Liang; Ho, Eric T W; Urbanek, Karel E; Luo, Liqun; Baer, Thomas M; Schnitzer, Mark J

    2013-11-12

    Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (laser and the fruit fly as a model, we created observation windows (12- to 350-µm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca(2+) signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ∼5-20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation.

  20. High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity

    Science.gov (United States)

    Sinha, Supriyo; Liang, Liang; Ho, Eric T. W.; Urbanek, Karel E.; Luo, Liqun; Baer, Thomas M.; Schnitzer, Mark J.

    2013-01-01

    Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (laser and the fruit fly as a model, we created observation windows (12- to 350-µm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca2+ signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ∼5–20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation. PMID:24167298

  1. Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens?

    Directory of Open Access Journals (Sweden)

    Luis A. Ramírez-Camejo

    2017-01-01

    Full Text Available Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health.

  2. Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens?

    Science.gov (United States)

    Maldonado-Morales, Génesis; Bayman, Paul

    2017-01-01

    Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health. PMID:29234354

  3. The mating system of the true fruit fly Bactrocera tryoni and its sister species, Bactrocera neohumeralis.

    Science.gov (United States)

    Ekanayake, Wasala M T D; Jayasundara, Mudalige S H; Peek, Thelma; Clarke, Anthony R; Schutze, Mark K

    2017-06-01

    The frugivorous "true" fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a nonresourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or nonaggregated; (ii) mating system was resource or nonresource based; (iii) flies utilized possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was nonresource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behavior align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a nonresource based, aggregation system for which we also have evidence that land-marking may be involved. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  4. Biological control of olive fruit fly in California - release, establishment and impact of Psyttalia lounsburyi and Psyttalia humilis

    Science.gov (United States)

    Geographic strains of the African endoparasitoids Psyttalia lounsburyi and Psyttalia humilis (Hymenoptera: Braconidae) were released to suppress the olive fruit fly, Bactrocera oleae, in California from 2006 – 2016. Both parasitoid species were recovered post-release within the same fruit season; ho...

  5. Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Madsen, Lisbeth Strøm; Arvidson, Sandra Marie Neumann

    2016-01-01

    Fruit flies are important model organisms for functional testing of candidate genes in multiple disciplines, including the study of human diseases. Here we use a high-throughput locomotor activity assay to test the response on activity behavior of gene disruption in Drosophila melanogaster. The aim...... was to investigate the impact of disruption of 14 candidate genes for human attention-deficit/hyperactivity disorder (ADHD) on fly behavior. By obtaining a range of correlated measures describing the space of variables for behavioral activity we show, that some mutants display similar phenotypic responses...... in fruit flies. Results provide additional support for the investigated genes being risk candidate genes for ADHD in humans....

  6. Effects of polygamy on the activity/rest rhythm of male fruit flies Drosophila melanogaster

    Science.gov (United States)

    Vartak, Vivek Rohidas; Varma, Vishwanath; Sharma, Vijay Kumar

    2015-02-01

    Although polygamy is common in insects, its extent varies enormously among natural populations. Mating systems influence the evolution of reproductive traits and the difference in extent of polygamy between males and females may be a key factor in determining traits which come under the influence of sexual selection. Fruit flies Drosophila melanogaster are promiscuous as both males and females mate with multiple partners. Mating has severe consequences on the physiology and behaviour of flies, and it affects their activity/rest rhythm in a sex-specific manner. In this study, we attempted to discern the effects of mating with multiple partners as opposed to a single partner, or of remaining unmated, on the activity/rest rhythm of flies under cyclic semi-natural (SN) and constant dark (DD) conditions. The results revealed that while evening activity of mated flies was significantly reduced compared to virgins, polygamous males showed a more severe reduction compared to monogamous males. In contrast, though mated females showed reduction in evening activity compared to virgins, activity levels were not different between polygamous and monogamous females. Although there was no detectable effect of mating on clock period, power of the activity/rest rhythm was significantly reduced in mated females with no difference seen between polygamous and monogamous individuals. These results suggest that courtship motivation, represented by evening activity, is successively reduced in males due to mating with one or more partners, while in females, it does not depend on the number of mating partners. Based on these results we conclude that polygamy affects the activity/rest rhythm of fruit flies D. melanogaster in a sex-dependent manner.

  7. FRUIT FLIES AND THEIR PARASITOIDS IN THE FRUIT GROWING REGION OF LIVRAMENTO DE NOSSA SENHORA, BAHIA, WITH RECORDS OF UNPRECEDENTED INTERACTIONS

    Directory of Open Access Journals (Sweden)

    SUZANY AGUIAR LEITE

    2017-10-01

    Full Text Available ABSTRACT Several fruit fly species (Diptera: Tephritidae and Lonchaeidae assume the status of primary pests in fruit trees grown in Brazil, causing direct production losses. The aims of the study were to know aspects of diversity of fruit flies and their parasitoids in the fruit growing region of Livramento de Nossa Senhora, Bahia. Fruit samples were collected from 19 plant species during November/2011 and June/2014. Infestation rates were calculated in pupae.kg-1 of fruit and pupae.fruit-1. The results indicate the occurrence of Anastrepha obliqua (Macquart, Ceratitis capitata (Wiedemann and Neosilba pendula (Bezzi. Plant species Anacardium occidentale, Averrhoa carambola, Carica papaya, Eugenia uniflora, Malpighia emarginata, Mangifera indica var. “Haden”, “Rosa” and “Tommy Atkins”, Opuntia ficus indica, Pereskia bahiensis, Psidium guajava, Spondias lutea, Spondias purpurea and Spondias tuberosa are hosts of fruit flies in the region. Unprecedented bitrophic relationships between P. bahiensis and C. capitata and Anastrepha sp. and between Opuntia ficus indica and C. capitata and A. obliqua were recorded. Unprecedented tritrophic relationship for the state of Bahia Averrhoa carambola and C. capitata and parasitoid of the Pteromalidae Family were also recorded. Tritrophic associations between M. indica var. “Tommy Atkins” and S. purpurea and A. obliqua and Doryctobracon areolatus; and between S. purpurea and A. obliqua and Utetes anastrephae were observed.

  8. Assessment of Navel Oranges, Clementine Tangerines, and Rutaceous Fruits as Hosts of Bactrocera cucurbitae and Bactrocera latifrons (Diptera: Tephritidae)

    Science.gov (United States)

    McQuate, Grant T.; Follett, Peter A.; Liquido, Nicanor J.; Sylva, Charmaine D.

    2015-01-01

    Export of Citrus spp. fruits may require risk mitigation measures if grown in areas with established tephritid fruit fly (Diptera: Tephritidae) populations capable of infesting the fruits. The host status of Citrus spp. fruits is unclear for two tephritid fruit fly species whose geographic ranges have expanded in recent years: melon fly, Bactrocera cucurbitae (Cocquillett), and Bactrocera latifrons (Hendel). In no choice cage infestation studies, B. latifrons oviposited into intact and punctured Washington navel oranges (Citrus sinensis [L.] Osbeck) and Clementine tangerines (C. reticulata L. var. Clementine), but eggs rarely developed to the adult stage. B. cucurbitae readily infested intact and punctured tangerines, and to a lesser extent punctured oranges, but did not infest intact oranges. Limited cage infestation and only a single literature report of field Citrus spp. infestation suggest that risk mitigation of Citrus spp. for B. latifrons is not needed. Risk mitigation options of Citrus spp. for B. cucurbitae, including heat and cold treatments and systems approaches, are discussed. PMID:26816484

  9. Grower Perception of the Significance of Weaver Ants as a Fruit Fly Deterrent in Tanzanian Smallholder Mango Production

    DEFF Research Database (Denmark)

    Kirkegaard, Nina; Msogoya, Theodosy; Offenberg, Hans Joachim

    2017-01-01

    Managed populations of weaver ants in mango trees have been used successfully in Australia, SE Asia and parts of Western Africa to deter fruit flies from ovipositing in ripening fruits. The presence of indigenous weaver ants in mango trees of smallholder growers in Tanzania offers the possibility...... in their trees and were sceptical of any likely value as a biological control technique. Additionally, fruit fly infestation was not seen as a priority problem and subsequent enquiry and investigation showed that, fortuitously, traditional, local practices for storage and enhancing ripening prevented...

  10. Adaptive Wavelet Threshold Denoising Method for Machinery Sound Based on Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2016-07-01

    Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.

  11. Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Emilio; Escobar, Arseny; Bravo, Bigail; Montoya, Pablo [Instituto Interamericano de Cooperacion para la Agricultura (IICA), Chiapas (Mexico); Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA), Mexico, D.F. (Mexico). Programa Moscafrut

    2010-07-15

    We evaluated three packing systems (PARC boxes, 'GT' screen towers and 'MX' screen towers) for the emergence and sexual maturation of sterile fruit flies, at three adult fl y densities (1, 1.2 and 1.3 fly/cm 2) and three food types. At the lowest density, results showed no significant differences in the longevity and flight ability of adult Anastrepha ludens (Loew) and Anastrepha obliqua Macquart among the three packing systems. Higher densities resulted in a decrease in these parameters. In the evaluation of the three food types, no significant differences were found either on longevity or flight ability of A. ludens. However, the greatest longevity for both sexes A. obliqua was obtained with commercial powdered Mb and the mix of sugar, protein and corn starch on paper (SPCP) food types. The highest value for flight ability in A. obliqua males was obtained with powdered Mb and SPCP food types, and for females with Mb powdered food. Our data indicated that GT and MX screen tower packing systems are an alternative to the PARC boxes, since they were suitable for adult fl y sexual maturation without any harm to their longevity or flight ability. The tested foods were equivalent in both fruit fl y species, with the exception of the agar type for A. obliqua, which yielded the lowest biological parameters evaluated. Our results contribute to the application of new methods for the packing and release of sterile flies in large-scale programs. (author)

  12. Mercury in fruiting bodies of Fly Agaric Amanita muscaria (L.: Fr.) Pers. collected from Poland

    Science.gov (United States)

    Falandysz, J.; Lipka, K.

    2003-05-01

    Total mercury concentrations were determined in the fruiting bodies of Fly Agaric Amanita muscaria (L.: FL) Pers. and underlying soil substrate collected from several sites in Poland in 1993-2000 to evaluate mercury status as contaminant and bioindicating features of this species. The samples were collected from the spatially distant sites such as: Zaborski Landscape Park, Mierzeja Wiślana Landscape Park, Wdzydzki Landscape Park, Borecka Forest, Tucholskie Forest, Wieluńska Upland, the communities of Gubin, Manowo, Lubiana and Morag. Total mercury content of caps and stalks of Fly agaric varied widely depending on the sites examined. The range of the mean mercury concentrations for all 17 sites was between 96±10 and 1900±1400 ng/g dry wt for the caps and between 6l±32 and 920±760 ng/g dry wt for the stalks, while between 4.4±3.1 and 150±20 ng/g were noted for soil substrate samples from 9 sites examined. Fly agaric independently of the site examined showed relatively good capacity to accumulate total mercury and BCF values varied between 16±10 and 74±15 for the caps and between 11±8 and 42±10 for the stalks. Nevertheless, relatively high bioconcentration potential of mercury by Fly agaric seems to be specific for that species and under soil mercury concentrations noted no bioindication properties of this mushroom could be observed.

  13. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions.

    Science.gov (United States)

    Koyle, Melinda L; Veloz, Madeline; Judd, Alec M; Wong, Adam C-N; Newell, Peter D; Douglas, Angela E; Chaston, John M

    2016-07-30

    The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood.

  14. Pineal peptide preparation epithalamin increases the lifespan of fruit flies, mice and rats.

    Science.gov (United States)

    Anisimov, V N; Mylnikov, S V; Khavinson, V K

    1998-06-15

    Treatment with pineal peptide preparation epithalamin was followed by the increase of the mean lifespan of female D. melanogaster, SHR mice, C3H/Sn mice and LIO rats by 11-31% (P < 0.05). Ninety percent mortality as well as maximum lifespan were increased in fruit flies, C3H/Sn mice and rats. Mortality rate was decreased by 52% in D. melanogaster, by 52% in rats, by 27% in C3H/Sn mice. It did not change in SHR mice exposed to epithalamin. Treatment with the pineal peptide increased MRDT in flies, C3H/Sn mice and rats. It has been shown that epithalamin increased synthesis and secretion of melatonin in rats and inhibits free radical processes in rats and in D. melanogaster. It is suggested that antioxidative properties of epithalamin lead to increased lifespan of three different animal species.

  15. LGMS-FOA: An Improved Fruit Fly Optimization Algorithm for Solving Optimization Problems

    Directory of Open Access Journals (Sweden)

    Dan Shan

    2013-01-01

    Full Text Available Recently, a new fruit fly optimization algorithm (FOA is proposed to solve optimization problems. In this paper, we empirically study the performance of FOA. Six different nonlinear functions are selected as testing functions. The experimental results illustrate that FOA cannot solve complex optimization problems effectively. In order to enhance the performance of FOA, an improved FOA (named LGMS-FOA is proposed. Simulation results and comparisons of LGMS-FOA with FOA and other metaheuristics show that LGMS-FOA can greatly enhance the searching efficiency and greatly improve the searching quality.

  16. The Fruit Fly Drosophila melanogaster as a Model System to Study Cholesterol Metabolism and Homeostasis.

    Science.gov (United States)

    Niwa, Ryusuke; Niwa, Yuko S

    2011-01-01

    Cholesterol has long been recognized for its versatile roles in influencing the biophysical properties of cell membranes and for serving as a precursor of steroid hormones. While many aspects of cholesterol biosynthesis are well understood, little is currently known about the molecular mechanisms of cholesterol metabolism and homeostasis. Recently, genetic approaches in the fruit fly, Drosophila melanogaster, have been successfully used for the analysis of molecular mechanisms that regulate cholesterol metabolism and homeostasis. This paper summarizes the recent studies on genes that regulate cholesterol metabolism and homeostasis, including neverland, Niemann Pick type C(NPC) disease genes, and DHR96.

  17. Neural control of steroid hormone biosynthesis during development in the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Niwa, Yuko S; Niwa, Ryusuke

    2014-01-01

    The insect steroid hormone ecdysteroid plays pivotal roles in the temporal coordination of development, represented by molting and metamorphosis. During the larval stages, ecdysteroid is biosynthesized from dietary cholesterol by several ecdysteroidogenic enzymes in the specialized endocrine organ called the prothoracic gland (PG). As ecdysteroid biosynthesis in the PG is affected by several environmental cues, such as photoperiod and nutrition, a fundamental question is how the ecdysteroid biosynthesis pathway is controlled in response to environmental cues. In this review, we briefly summarize recent topics on the regulatory mechanisms of ecdysteroid biosynthesis, especially the neuronal regulatory mechanism, in the fruit fly Drosophila melanogaster. The implications from studies with other insects are also discussed.

  18. The Fruit Fly Drosophila melanogaster as a Model System to Study Cholesterol Metabolism and Homeostasis

    Directory of Open Access Journals (Sweden)

    Ryusuke Niwa

    2011-01-01

    Full Text Available Cholesterol has long been recognized for its versatile roles in influencing the biophysical properties of cell membranes and for serving as a precursor of steroid hormones. While many aspects of cholesterol biosynthesis are well understood, little is currently known about the molecular mechanisms of cholesterol metabolism and homeostasis. Recently, genetic approaches in the fruit fly, Drosophila melanogaster, have been successfully used for the analysis of molecular mechanisms that regulate cholesterol metabolism and homeostasis. This paper summarizes the recent studies on genes that regulate cholesterol metabolism and homeostasis, including neverland, Niemann Pick type C(NPC disease genes, and DHR96.

  19. An Improved Fruit Fly Optimization Algorithm Inspired from Cell Communication Mechanism

    Directory of Open Access Journals (Sweden)

    Chuncai Xiao

    2015-01-01

    Full Text Available Fruit fly optimization algorithm (FOA invented recently is a new swarm intelligence method based on fruit fly’s foraging behaviors and has been shown to be competitive with existing evolutionary algorithms, such as particle swarm optimization (PSO algorithm. However, there are still some disadvantages in the FOA, such as low convergence precision, easily trapped in a local optimum value at the later evolution stage. This paper presents an improved FOA based on the cell communication mechanism (CFOA, by considering the information of the global worst, mean, and best solutions into the search strategy to improve the exploitation. The results from a set of numerical benchmark functions show that the CFOA outperforms the FOA and the PSO in most of the experiments. Further, the CFOA is applied to optimize the controller for preoxidation furnaces in carbon fibers production. Simulation results demonstrate the effectiveness of the CFOA.

  20. The complete mitochondrial genome of the pumpkin fruit fly, Bactrocera tau (Diptera: Tephritidae).

    Science.gov (United States)

    Tan, Meihua; Zhang, Rui; Xiang, Caiyu; Zhou, Xin

    2016-07-01

    The pumpkin fruit fly, Bactrocera tau, is an important quarantine pest in many countries because of its mass destructiveness to a variety of vegetable and fruit plants. In this study, we report the complete mitochondrial genome (mitogenome) of B. tau. Its complete mitogenome sequence is 15,687 bp in length, which contains a non-coding control region and all of the 37 genes of bilaterian animals (13 protein-coding genes, 22 tRNA genes and 2 rRNA genes). A phylogenetic tree of the complete mitogenome of all available Tephritidae species was established to approve the accuracy. The base composition of mitogenome sequence and the gene arrangement including directions are rather conservative, compared to other published mitogenomes of Bactrocera species. This first complete mitogenome of B. tau will facilitate the development of new DNA markers for species diagnosis, therefore improving accurate detection of quarantine species.

  1. Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring, and control in Hawaii.

    Science.gov (United States)

    Vargas, Roger I; Shelly, Todd E; Leblanc, Luc; Piñero, Jaime C

    2010-01-01

    Worldwide, an important aspect of invasive insect pest management is more effective, safer detection and control systems. Phenyl propanoids are attractive to numerous species of Dacinae fruit flies. Methyl eugenol (ME) (4-allyl-1, 2-dimethoxybenzene-carboxylate), cue-lure (C-L) (4-(p-acetoxyphenyl)-2-butanone), and raspberry ketone (RK) (4-(p-hydroxyphenyl)-2-butanone) are powerful male-specific lures. Most evidence suggests a role of ME and C-L/RK in pheromone synthesis and mate attraction. ME and C-L/RK are used in current fruit fly programs for detection, monitoring, and control. During the Hawaii Area-Wide Pest Management Program in the interest of worker safety and convenience, liquid C-L/ME and insecticide (i.e., naled and malathion) mixtures were replaced with solid lures and insecticides. Similarly, Male Annihilation Technique (MAT) with a sprayable Specialized Pheromone and Lure Application Technology (SPLAT), in combination with ME (against Bactrocera dorsalis, oriental fruit fly) or C-L/RK (against B. cucurbitae, melon fly), and the reduced-risk insecticide, spinosad, was developed for area-wide suppression of fruit flies. The nontarget effects of ME and C-L/RK to native invertebrates were examined. Although weak attractiveness was recorded to flower-visiting insects, including bees and syrphid flies, by ME, effects to native Drosophila and other Hawaiian endemics were found to be minimal. These results suggested that the majority of previously published records, including those of endemic Drosophilidae, were actually for attraction to dead flies inside fruit fly traps. Endemic insect attraction was not an issue with C-L/RK, because B. cucurbitae were rarely found in endemic environments. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Achilles, a New Family of Transcriptionally Active Retrotransposons from the Olive Fruit Fly, with Y Chromosome Preferential Distribution.

    Directory of Open Access Journals (Sweden)

    Konstantina T Tsoumani

    Full Text Available Sex chromosomes have many unusual features relative to autosomes. The in depth exploration of their structure will improve our understanding of their origin and divergence (degeneration as well as the evolution of genetic sex determination pathways which, most often are attributed to them. In Tephritids, the structure of Y chromosome, where the male-determining factor M is localized, is largely unexplored and limited data concerning its sequence content and evolution are available. In order to get insight into the structure and organization of the Y chromosome of the major olive insect pest, the olive fly Bactrocera oleae, we characterized sequences from a Pulse Field Gel Electrophoresis (PFGE-isolated Y chromosome. Here, we report the discovery of the first olive fly LTR retrotransposon with increased presence on the Y chromosome. The element belongs to the BEL-Pao superfamily, however, its sequence comparison with the other members of the superfamily suggests that it constitutes a new family that we termed Achilles. Its ~7.5 kb sequence consists of the 5'LTR, the 5'non-coding sequence and the open reading frame (ORF, which encodes the polyprotein Gag-Pol. In situ hybridization to the B. oleae polytene chromosomes showed that Achilles is distributed in discrete bands dispersed on all five autosomes, in all centromeric regions and in the granular heterochromatic network corresponding to the mitotic sex chromosomes. The between sexes comparison revealed a variation in Achilles copy number, with male flies possessing 5-10 copies more than female (CI range: 18-38 and 12-33 copies respectively per genome. The examination of its transcriptional activity demonstrated the presence of at least one intact active copy in the genome, showing a differential level of expression between sexes as well as during embryonic development. The higher expression was detected in male germline tissues (testes. Moreover, the presence of Achilles-like elements in

  3. Identification and Expression Profile Analysis of Odorant Binding Proteins in the Oriental Fruit Fly Bactrocera dorsalis

    Directory of Open Access Journals (Sweden)

    Hongyu Zhang

    2013-07-01

    Full Text Available Olfaction is crucial in many insects for critical behaviors, including those regulating survival and reproduction. Insect odorant-binding proteins (OBPs function in the first step of the olfactory system and play an essential role in the perception of odorants, such as pheromones and host chemicals. The oriental fruit fly, Bactrocera dorsalis, is a destructive fruit-eating pest, due to its wide host range of up to 250 different types of fruits and vegetables, and this fly causes severe economic damage to the fruit and vegetable industry. However, OBP genes have not been largely identified in B. dorsalis. Based on our previously constructed B. dorsalis cDNA library, ten OBP genes were identified in B. dorsalis for the first time. A phylogenetic tree was generated to show the relationships among the 10 OBPs of B. dorsalis to OBP sequences of two other Dipteran species, including Drosophila melanogaster and the mosquito Anopheles gambiae. The expression profiles of the ten OBPs in different tissues (heads, thoraxes, abdomens, legs, wings, male antennae and female antenna of the mated adults were analyzed by real-time PCR. The results showed that nine of them are highly expressed in the antenna of both sexes, except BdorOBP7. Four OBPs (BdorOBP1, BdorOBP4, BdorOBP8, and BdorOBP10 are also enriched in the abdomen, and BdorOBP7 is specifically expressed in leg, indicating that it may function in other biological processes. This work will provide insight into the roles of OBPs in chemoreception and help develop new pest-control strategies.

  4. Revised Distribution of Bactrocera tryoni in Eastern Australia and Effect on Possible Incursions of Mediterranean Fruit Fly: Development of Australia's Eastern Trading Block.

    Science.gov (United States)

    Dominiak, Bernard C; Mapson, Richard

    2017-12-05

    Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), commonly called 'Queensland fruit fly' in Australia, and Mediterranean fruit fly (Ceratitis capitata Wiedemann) (Diptera: Tephritidae) are the two most economically important fruit fly in Australia with B. tryoni in the east and Mediterranean fruit fly in the west. The two species coexisted for several decades, but it is believed that B. tryoni displaced Mediterranean fruit fly. In southeastern Australia, this was deemed inadequate for export market access, and a large fruit fly free zone (fruit fly exclusion zone) was developed in 1996 where B. tryoni was eradicated by each state department in their portion of the zone. This zone caused an artificial restricted distribution of B. tryoni. When the fruit fly exclusion zone was withdrawn in Victoria and New South Wales in 2013, B. tryoni became endemic once again in this area and the national distribution of B. tryoni changed. For export markets, B. tryoni is now deemed endemic to all eastern Australian states, except for the Greater Sunraysia Pest-Free Area. All regulatory controls have been removed between eastern states, except for some small zones, subject to domestic market access requirements. The eastern Australian states now form a B. tryoni endemic trading group or block. All Australian states and territories maintain legislation to regulate the movement of potentially infested host fruit into their states. In particular, eastern states remain active and regulate the entry of commodities possibly infested with Mediterranean fruit fly. The combination of regulatory controls limits the chances of Mediterranean fruit fly entering eastern states, and if it did, Mediterranean fruit fly is unlikely to establish in the opposition to a well-established B. tryoni population. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A four-component attractant for the mexican fruit fly,Anastrepha ludens (Diptera: Tephritidae), from host fruit.

    Science.gov (United States)

    Robacker, D C; Warfield, W C; Flath, R A

    1992-07-01

    Sixteen chemicals found in fermented chapote fruit odor were evaluated as attractants for hungry adult Mexican fruit flies. Ethyl octanoate, ethyl benzoate, terpinyl acetate, ethyl salicylate, and (-)-α-copaene proved slightly attractive. Several of the chemicals also were tested for their ability to increase the attractiveness of the previously developed chapote-derived attractant (CEH) consisting of 1,8-cineole, ethyl hexanoate, and hexanol. Combinations containing CEH with ethyl octanoate, ethyl benzoate, 4-terpineol, (-)-α-cubebene, orα-terpineol were significantly more attractive than CEH alone. The two most attractive four-component combinations were ethyl octanoate with CEH (CEHO) and ethyl benzoate with CEH. No combinations containing greater numbers of chemicals were significantly more attractive than CEHO. Therefore, CEHO was selected for further study in this paper. Of CEHO component ratios that were tested, the most attractive was 10∶1∶1∶100 for the chemicals 1,8-cineole, ethyl hexanoate, hexanol, and ethyl octanoate, respectively. Formulations of CEHO into rubber septa and polyvinyl chloride (PVC) were aged 0-15 days and tested againstTorula yeast in competing McPhail traps in a flight chamber. Summed over all lure ages, rubber septa and PVC dispensers, respectively, were 1.2 and 1.5 times more attractive thanTorula yeast. PVC dispensers aged 10-15 days were approximately 2.1 times more attractive thanTorula yeast.

  6. Complete mitochondrial genome of the guava fruit fly, Bactrocera correcta (Diptera: Tephritidae).

    Science.gov (United States)

    Liu, Jian-Hong; Xu, Jin; Li, Yong-He; Dan, Wenli; Pan, Yongzhi

    2016-11-01

    Bactrocera correcta (Diptera: Tephritidae) is one of the most serious pest insects in south China and surrounding Southeast Asian countries. The family Tephritidae includes over 4257 species distributed worldwide, so the complete mitochondrial genome would be helpful for bio-identification, biogeography and phylogeny. The B. correcta genome consists of 15 936 bp. Annotation indicated that the structure and orientation of 13 protein-coding genes (PCGs), 22 tRNA and 2 rRNA sequences were typical of, and similar to, the ten closely related tephritid species. The nucleotide composition shows heavily biased toward As and Ts accounting 73.2% and exhibits a slightly positive AT skew, which is similar to other known tephritid species and other insects. The phylogenetic tree indicated the presence of three distinct families (Tephritidae, Muscidae, Drosophilidae) in Order Diptera.

  7. Ecological studies of Eastern Australian fruit flies (Diptera: Tephritidae) in their endemic habitat : I. Temporal variation in abundance.

    Science.gov (United States)

    Drew, R A I; Zalucki, M P; Hooper, G H S

    1984-10-01

    Fortnightly fruit fly captures for a 2-year period at Cooloola (south-east Queensland) contained 11 species. Three species, viz., D. tryoni, D. neohumeralis and D. endiandrae predominated. The peak trap catches of 7 species corresponded with the peak fruiting times of their major hosts. There was no direct relationship between temperature and rainfall and the variations in population numbers. The host plants of some species do not grow in the Cooloola area and there is evidence that large numbers of flies migrate into the region from other breeding areas up to 100 km away. Pockets of tropical rainforest such as Cooloola could be important adult fruit fly feeding areas even in the absence of larval host plants.

  8. Parameters Tuning Approach for Proportion Integration Differentiation Controller of Magnetorheological Fluids Brake Based on Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-07-01

    Full Text Available In order to improve the response performance of a proportion integration differentiation (PID controller for magnetorheological fluids (MRF brake and to reduce the braking fluctuation rate, an improved fruit fly optimization algorithm for PID controller parameters tuning of MRF brake is proposed. A data acquisition system for MRF brake is designed and the transfer function of MRF brake is identified. Moreover, an improved fruit fly optimization algorithm (IFOA through integration of PID control strategy and cloud model algorithm is proposed to design a PID controller for MRF brake. Finally, the simulation and experiment are carried out. The results show that IFOA, with a faster response output and no overshoot, is superior to the conventional PID and fruit fly optimization algorithm (FOA PID controller.

  9. A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem.

    Directory of Open Access Journals (Sweden)

    Zi-Bin Jiang

    Full Text Available The fruit fly optimization algorithm (FOA is a newly developed bio-inspired algorithm. The continuous variant version of FOA has been proven to be a powerful evolutionary approach to determining the optima of a numerical function on a continuous definition domain. In this study, a discrete FOA (DFOA is developed and applied to the traveling salesman problem (TSP, a common combinatorial problem. In the DFOA, the TSP tour is represented by an ordering of city indices, and the bio-inspired meta-heuristic search processes are executed with two elaborately designed main procedures: the smelling and tasting processes. In the smelling process, an effective crossover operator is used by the fruit fly group to search for the neighbors of the best-known swarm location. During the tasting process, an edge intersection elimination (EXE operator is designed to improve the neighbors of the non-optimum food location in order to enhance the exploration performance of the DFOA. In addition, benchmark instances from the TSPLIB are classified in order to test the searching ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is compared to that of other meta-heuristic algorithms. The results indicate that the proposed DFOA can be effectively used to solve TSPs, especially large-scale problems.

  10. IMPROVING MASS REARING TECHNOLOGY FOR SOUTH AMERICAN FRUIT FLY (DIPTERA:TEPHRITIDAE

    Directory of Open Access Journals (Sweden)

    Raimundo Braga Sobrinho

    2006-01-01

    Full Text Available Studies on availability of suitable and economic diets for adults and larvae of the South American fruit fly Anastrepha fraterculus (Wiedemann, 1830 were carried out at the Entomology Unit of the FAO/IAEA Agriculture and Biotechnology Laboratories in Seibersdorf, Austria with the aim to find the best diets to fit in a large scale mass rearing production. The best diet for adult was the combination of Hydrolysate Corn Protein + Yeast Hydrolysate Enzymatic + Sugar (3:1:3. This diet resulted in the highest numbers of egg/female/day, spermatozoid in the spermathecae, percentages of egg hatch, the lowest mortality rate of adults and the highest average mating duration compared with the standard adult diet based on Yeast Hydrolysate Enzymatic + Sugar (1:3. Among eleven larval diets tested, diets based on sugarcane and sugarbeet bagases plus 7% brewer yeast, 8% sugar, 0.2% sodium benzoate, 0.8% of hydrochloric acid and 60% water (adjusted, yielded the highest percentages of egg hatching, pupal recovery, pupal weight and adult emergence. There was no statistical difference with the standard larval diet based on wheat germ 3%, corncob 15%, corn flower 8%, brewer yeast 6%, sugar 8%, sodium benzoate 0.23%, hydrochloric acid 0.63%, nipagin 0.14% and water 59% (adjusted. The significant performance of these adult and larval diets open discussion for future researches on improvement of rearing techniques required for the establishment of sterile insect technique (SIT program focused on the South American fruit fly.

  11. Food selection in larval fruit flies: dynamics and effects on larval development

    Science.gov (United States)

    Schwarz, Sebastian; Durisko, Zachary; Dukas, Reuven

    2014-01-01

    Selecting food items and attaining a nutritionally balanced diet is an important challenge for all animals including humans. We aimed to establish fruit fly larvae ( Drosophila melanogaster) as a simple yet powerful model system for examining the mechanisms of specific hunger and diet selection. In two lab experiments with artificial diets, we found that larvae deprived of either sucrose or protein later selectively fed on a diet providing the missing nutrient. When allowed to freely move between two adjacent food patches, larvae surprisingly preferred to settle on one patch containing yeast and ignored the patch providing sucrose. Moreover, when allowed to move freely between three patches, which provided either yeast only, sucrose only or a balanced mixture of yeast and sucrose, the majority of larvae settled on the yeast-plus-sucrose patch and about one third chose to feed on the yeast only food. While protein (yeast) is essential for development, we also quantified larval success on diets with or without sucrose and show that larvae develop faster on diets containing sucrose. Our data suggest that fruit fly larvae can quickly assess major nutrients in food and seek a diet providing a missing nutrient. The larvae, however, probably prefer to quickly dig into a single food substrate for enhanced protection over achieving an optimal diet.

  12. Molecular Phylogeny and Identification of the Peach Fruit Fly, Bactrocera zonata, Established in Egypt

    Science.gov (United States)

    Abd-El-Samie, Emtithal M.; El Fiky, Zaki A.

    2011-01-01

    The genetic structure of the Egyptian peach fruit fly (Bactrocera zonata (Saunders) (Diptera: Tephritidae)) population was analyzed using total RNA from adult females. A portion of mitochondrial cytochrome oxidase I (COI), 369 bp was amplified using RT-PCR, and was sequenced and analyzed to clarify the phylogenetic relationship of B. zonata established in Egypt. The data suggested that the gene shared a similarity in sequence compared to Bactrocera COI gene found in GenBank. Molecular phylogenetic analyses were performed based on nucleotide sequences in order to examine the position of the Egyptian population among many other species of fruit flies. The results indicate that four accession numbers of B. zonata (three from New Zealand and one from India) are closely related, while the Egyptian B. zonata are close to the 71 accession numbers of Bactrocera include one B. zonata from New Zealand. These two B. zonata from Egypt and New Zealand showed a close relationship in neighbor—joining analysis using the seven accession numbers of B. zonata. In addition, a theoretical restriction map of the homology portion of the COI gene was constructed using 212 restriction enzymes obtained from the restriction enzyme database to identify the Egyptian and New Zealand B. zonata. PMID:22958094

  13. Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing

    Science.gov (United States)

    Brandt, Joshua; Doig, Graham; Tsafnat, Naomi

    2015-01-01

    The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistc model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful. PMID:25954946

  14. A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem.

    Science.gov (United States)

    Jiang, Zi-Bin; Yang, Qiong

    2016-01-01

    The fruit fly optimization algorithm (FOA) is a newly developed bio-inspired algorithm. The continuous variant version of FOA has been proven to be a powerful evolutionary approach to determining the optima of a numerical function on a continuous definition domain. In this study, a discrete FOA (DFOA) is developed and applied to the traveling salesman problem (TSP), a common combinatorial problem. In the DFOA, the TSP tour is represented by an ordering of city indices, and the bio-inspired meta-heuristic search processes are executed with two elaborately designed main procedures: the smelling and tasting processes. In the smelling process, an effective crossover operator is used by the fruit fly group to search for the neighbors of the best-known swarm location. During the tasting process, an edge intersection elimination (EXE) operator is designed to improve the neighbors of the non-optimum food location in order to enhance the exploration performance of the DFOA. In addition, benchmark instances from the TSPLIB are classified in order to test the searching ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is compared to that of other meta-heuristic algorithms. The results indicate that the proposed DFOA can be effectively used to solve TSPs, especially large-scale problems.

  15. Diet quality mediates activity patterns in adult Queensland fruit fly (Bactrocera tryoni).

    Science.gov (United States)

    Fanson, Benjamin G; Petterson, Ingrid E; Taylor, Phillip W

    2013-07-01

    Studies linking resource acquisition and trait expression have traditionally treated nutritional resources as a single currency, but recent research has shown that trait expression can depend as much on diet quality (nutrient composition) as on diet quantity (calories). Here, we investigate the role of nutrient composition and diet concentration on activity levels of adult Queensland fruit flies (Bactrocera tryoni Froggatt: Tephritidae). Male and female flies were fed diets that varied in the proportion of protein and carbohydrate as well as total amounts of protein and carbohydrate. Daily activity levels were then quantified using locomotor activity monitors during both light and dark phases. During the light phase, both sexes increased the proportion of time spent active and their rate of activity as diets became more carbohydrate-rich and concentrated. In contrast, during the dark phase, nutrient composition and concentration had no effect on the proportion of time spent active for either sex, although when active during the dark phase, activity rates were higher for flies fed more carbohydrate-rich and concentrated diets. Overall, nutritional composition of the diet affected activity levels to a greater extent than the total energetic content of the diet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Comparison of inter- and intraspecies variation in humans and fruit flies

    Directory of Open Access Journals (Sweden)

    Juliann Shih

    2015-03-01

    Full Text Available Variation is essential to species survival and adaptation during evolution. This variation is conferred by the imperfection of biochemical processes, such as mutations and alterations in DNA sequences, and can also be seen within genomes through processes such as the generation of antibodies. Recent sequencing projects have produced multiple versions of the genomes of humans and fruit flies (Drosophila melanogaster. These give us a chance to study how individual gene sequences vary within and between species. Here we arranged human and fly genes in orthologous pairs and compared such within-species variability with their degree of conservation between flies and humans. We observed that a significant number of proteins associated with mRNA translation are highly conserved between species and yet are highly variable within each species. The fact that we observe this in two species whose lineages separated more than 700 million years ago suggests that this is the result of a very ancient process. We hypothesize that this effect might be attributed to a positive selection for variability of virus-interacting proteins that confers a general resistance to viral hijacking of the mRNA translation machinery within populations. Our analysis points to this and to other processes resulting in positive selection for gene variation.

  17. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    Science.gov (United States)

    Sridhar, Madhu; Kang, Chang-kwon

    2015-05-06

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.

  18. Isotope label-aided mass spectrometry reveals the influence of environmental factors on metabolism in single eggs of fruit fly.

    Directory of Open Access Journals (Sweden)

    Te-Wei Tseng

    Full Text Available In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster. First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar ((13C(6-glucose for 12 h--either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI mass spectrometry (MS: this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate - possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism.

  19. Isotope label-aided mass spectrometry reveals the influence of environmental factors on metabolism in single eggs of fruit fly.

    Science.gov (United States)

    Tseng, Te-Wei; Wu, June-Tai; Chen, Yu-Chie; Urban, Pawel L

    2012-01-01

    In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster). First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar ((13)C(6)-glucose) for 12 h--either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS): this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose) in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate - possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism.

  20. Carbohydrate diet and reproductive performance of a fruit fly parasitoid, Diachasmimorpha tryoni.

    Science.gov (United States)

    Zamek, Ashley Louisa; Reynolds, Olivia Louise; Mansfield, Sarah; Micallef, Jessica Louise; Gurr, Geoff Michael

    2013-01-01

    Augmentative releases of parasitoid wasps are often used successfully for biological control of fruit flies in programs worldwide. The development of cheaper and more effective augmentative releases of the parasitoid wasp Diachasmimorpha tryoni (Cameron) (Hymenoptera: Braconidae) may allow its use to be expanded to cover Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a serious pest of many vegetables and most fruit production in Australia. This demands a fuller understanding of the parasitoid's reproductive biology. In this study, mating status, fecundity, and size of female D. tryoni were determined under laboratory conditions. A range of pre-release diets, 10% concentrations of honey, white sugar, and golden syrup, were also assessed in the laboratory. Mature egg loads and progeny yields of mated and unmated parasitoid females were statistically similar, demonstrating that mating status was not a determinant of parasitoid performance. Female lifespan was not negatively impacted by the act of oviposition, though larger females carried more eggs than smaller individuals, indicating a need to produce large females in mass-rearing facilities to maintain this trait. White sugar gave the highest adult female lifespan, while honey and golden syrup shared similar survivorship curves, all significantly greater compared with water control females. Pre-release feeding of D. tryoni, particularly with white sugar, may enhance the impact of released parasitoids on B. tryoni. These findings are important because honey is currently the standard diet for mass-reared braconids, but white sugar is less than one-third the cost of other foods; however further work is required to assess postrelease performance of the parasitoid.

  1. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae)

    Science.gov (United States)

    Doorenweerd, Camiel; Leblanc, Luc; Norrbom, Allen L.; Jose, Michael San; Rubinoff, Daniel

    2018-01-01

    Abstract The correct application of the scientific names of species is neither easy nor trivial. Mistakes can lead to the wrong interpretation of research results or, when pest species are involved, inappropriate regulations and limits on trade, and possibly quarantine failures that permit the invasion of new pest species. Names are particularly challenging to manage when groups of organisms encompass a large number of species, when different workers employ different philosophical views, or when species are in a state of taxonomic flux. The fruit fly tribe Dacini is a species-rich taxon within Tephritidae and contains around a fifth of all known species in the family. About 10% of the 932 currently recognized species are pests of commercial fruits and vegetables, precipitating quarantines and trade embargos. Authoritative species lists consist largely of scattered regional treatments and outdated online resources. The checklist presented here is the first global overview of valid species names for the Dacini in almost two decades, and includes new lure records. By publishing this list both in paper and digitally, we aim to provide a resource for those studying fruit flies as well as researchers studying components of their impact on agriculture. The list is largely a consolidation of previous works, but following the results from recent phylogenetic work, we transfer one subgenus and eight species to different genera: members of the Bactrocera subgenus Javadacus Hardy, considered to belong to the Zeugodacus group of subgenera, are transferred to genus Zeugodacus; Bactrocera pseudocucurbitae White, 1999, stat. rev., is transferred back to Bactrocera from Zeugodacus; Zeugodacus arisanicus Shiraki, 1933, stat. rev., is transferred back to Zeugodacus from Bactrocera; and Z. brevipunctatus (David & Hancock, 2017), comb. n.; Z. javanensis (Perkins, 1938), comb. n.; Z. montanus (Hardy, 1983), comb. n.; Z. papuaensis (Malloch, 1939), comb. n.; Z. scutellarius (Bezzi, 1916

  2. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae

    Directory of Open Access Journals (Sweden)

    Camiel Doorenweerd

    2018-01-01

    Full Text Available The correct application of the scientific names of species is neither easy nor trivial. Mistakes can lead to the wrong interpretation of research results or, when pest species are involved, inappropriate regulations and limits on trade, and possibly quarantine failures that permit the invasion of new pest species. Names are particularly challenging to manage when groups of organisms encompass a large number of species, when different workers employ different philosophical views, or when species are in a state of taxonomic flux. The fruit fly tribe Dacini is a species-rich taxon within Tephritidae and contains around a fifth of all known species in the family. About 10% of the 932 currently recognized species are pests of commercial fruits and vegetables, precipitating quarantines and trade embargos. Authoritative species lists consist largely of scattered regional treatments and outdated online resources. The checklist presented here is the first global overview of valid species names for the Dacini in almost two decades, and includes new lure records. By publishing this list both in paper and digitally, we aim to provide a resource for those studying fruit flies as well as researchers studying components of their impact on agriculture. The list is largely a consolidation of previous works, but following the results from recent phylogenetic work, we transfer one subgenus and eight species to different genera: members of the Bactrocera subgenus Javadacus Hardy, considered to belong to the Zeugodacus group of subgenera, are transferred to genus Zeugodacus; Bactrocera pseudocucurbitae White, 1999, stat. rev., is transferred back to Bactrocera from Zeugodacus; Zeugodacus arisanicus Shiraki, 1933, stat. rev., is transferred back to Zeugodacus from Bactrocera; and Z. brevipunctatus (David & Hancock, 2017, comb. n.; Z. javanensis (Perkins, 1938, comb. n.; Z. montanus (Hardy, 1983, comb. n.; Z. papuaensis (Malloch, 1939, comb. n.; Z. scutellarius (Bezzi

  3. Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Soma Chakraborty

    Full Text Available Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12,000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence. In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle. Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.

  4. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni).

    Science.gov (United States)

    Fanson, Benjamin G; Weldon, Christopher W; Pérez-Staples, Diana; Simpson, Stephen J; Taylor, Phillip W

    2009-09-01

    Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.

  5. Biological control potential of entomopathogenic nematodes for management of Caribbean fruit fly, Anastrepha suspensa Loew (Tephritidae).

    Science.gov (United States)

    Heve, William K; El-Borai, Fahiem E; Carrillo, Daniel; Duncan, Larry W

    2017-06-01

    Caribbean fruit fly (Caribfly) is a serious economic insect pest because of development of larvae that hatch from eggs oviposited into fruits by female adults. This study assessed the virulence of twelve entomopathogenic nematode (EPN) isolates to Caribfly in laboratory bioassays as a starting point toward evaluation of management strategies for the fruit-to-soil-dwelling stages of A. suspensa in fields infested by Caribfly. Inoculation of A. suspensa with 1 mL of ca 200 IJs larva-1 killed Caribfly at either larval or pupal stage. Pupae were more resistant to EPN infections than larvae. Adult emergence from inoculated pupae in soil microcosms was significantly lower than that observed in filter paper assays. Longest or largest steinernematids suppressed emergence of more adult Caribfly from pupae in soils, whereas shorter heterorhabditids were more infectious to Caribfly larvae. The highest mortalities of A. suspensa were caused by exotic nematodes Steinernema feltiae and Heterorhabditis bacteriophora, followed by the native Heterorhabditis indica and the exotic Steinernema carpocapsae. Entomopathogenic nematodes reduced the development of Caribfly larvae and pupae to adult in our bioassays, suggesting that EPNs have potential for biological control of A. suspensa. Future work will assess management strategies, using the virulent EPNs, in orchards infested by A. suspensa. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique.

    Science.gov (United States)

    Raphael, Kathryn A; Shearman, Deborah C A; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies.

  7. Molecular interactions between the olive and the fruit fly Bactrocera oleae

    Directory of Open Access Journals (Sweden)

    Corrado Giandomenico

    2012-06-01

    Full Text Available Abstract Background The fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively. Results We identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures. Conclusions This study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction.

  8. Moving distance measurement for hydraulic support based on fruit fly optimization algorithm

    Science.gov (United States)

    Wang, Jiabiao; Wang, Zhongbin; Xu, Jing; Tan, Chao; Si, Lei

    2017-01-01

    Due to the inaccurate and unreliable moving distance measurement of the hydraulic support in mines, a method based on the random circle detection (RCD) algorithm and the fruit fly optimization algorithm (FOA) is proposed. According to the changing center and radium of the circle on the support, the relative position of adjacent supports is acquired by the camera. The noise of the collected image is moved, and the edge feature is protected using a bilateral filter. A local adaptive threshold algorithm is used for binary processing of the image. Then, RCD is used to detect the contour, which is similar to the circle. A method to detect the circle based on FOA is used to accurately detect the circle. Subsequently, the relative distance is calculated according to the change of the circle. Finally, the accuracy and reliability of the proposed method are verified though the experiment.

  9. A new long-life trimedlure dispenser for Mediterranean fruit fly.

    Science.gov (United States)

    Domínguez-Ruiz, Javier; Sanchis, Juan; Navarro-Llopis, Vicente; Primo, Jaime

    2008-08-01

    New agricultural techniques are attempting to reduce the application of synthesized pesticides and replace them with new environmentally friendly methods such as mass trapping, mating disruption, or chemosterilization techniques. All these methods are based on the release of a lure for insect attraction or confusion. The success of the chosen method depends on the quality of the attractant emission from the dispenser. Currently, used dispensers with a polymeric matrix and new dispensers with mesoporous inorganic materials were evaluated to obtain more efficient emission kinetics. In this study, the selected pest was the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) and the lure used was trimedlure (TML). The dispensers were validated by means of a field study comparing insect catches with attractant release values. As a result, we have demonstrated that mesoporous dispensers have a clearly longer lifetime than the polymeric plug. Furthermore, the attractant release rate is less dependent on temperature in mesoporous than in polymeric dispensers.

  10. Ultrastructure of the Antennal Sensillae of Male and Female Peach Fruit Fly, Bactrocera zonata

    Science.gov (United States)

    Awad, Azza A.; Ali, Nashat A.; Mohamed, Hend O.

    2014-01-01

    Antennal morphology and funicular sensillae of male and female peach fruit flies, Bactrocera zonata (Saunders) (Diptera: Tephritidae), were studied with scanning electron microscopy (SEM). This study focused on the sensillae found on the antennal segments (scape, pedicel, and flagellum or funiculus that bears the arista) of B. zonata. Antennal segments of females tended to be larger than those of the males. The first two antennal segments, scape and pedicel, were heavily covered with microtrichia and bear bristles. Numerous microtrichia as well as trichoid (I, II), basiconic, clavate, and coeloconic sensillae were observed on the funiculus. SEM studies showed some differences in size and also in position of some sensillae on the antennae of the females of B. zonata. The sensillae found on the funiculus, such as trichoid and basiconic sensillae, were significantly larger in females.

  11. First Records of the Fruit Flies (Diptera, Tephritidae in the Fauna of Iran

    Directory of Open Access Journals (Sweden)

    Zarghani E.

    2016-04-01

    Full Text Available As a result of studies on fruit flies in Iran during 2013-2015, two genera (Eurasimona Korneyev & White 1991 and Inuromaesa Korneyev & White 1991 and eight species: Eurasimona stigma (Loew, 1840 Inuromaesa maura (Frauenfeld, 1857, Myopites inulaedyssentericae Blot, 1827, Oxyna flavipennis (Loew, 1846, Terellia ermolenkoi Korneyev, 1985, T. odontolophi Korneyev 1993, T. pseudovirens (Hering, 1940, and Euleia kovalevi (Korneyev 1991, are recorded for the first time from Iran. The host plants, collection data as well as general distribution and diagnostic characters of them are given. Detailed illustrated redescription for T. ermolenkoi previously known from a unique holotype male is provided. The presence of Noeeta pupillata (Fallén, 1814 in the fauna of Iran is confirmed.

  12. 75 FR 12961 - Regulation of the Interstate Movement of Lemons from Areas Quarantined for Mediterranean Fruit Fly

    Science.gov (United States)

    2010-03-18

    ... post-harvest treatments of smooth- skinned lemons required by this rule are negligible. In addition... proposed to amend the treatments regulations in 7 CFR part 305 by updating the list in Sec. 305.2(h)(2)(ii) of approved treatments for regulated articles moved interstate from areas quarantined for fruit flies...

  13. Notes on the frugivorous fruit fly (Diptera: Tephritidae fauna of western Africa, with description of a new Dacus species

    Directory of Open Access Journals (Sweden)

    Kim F.M. Goodger

    2013-07-01

    Full Text Available The species richness of the frugivorous fruit fly fauna of western African (in particular of Ivory Coast, Ghana, Togo, Benin and Nigeria is discussed. The diversity is compared at a national level and between the ecoregions within the national boundaries of the study area. A new species, Dacus goergeni sp. nov. is described and additional taxonomic notes are presented.

  14. Attraction and electroantennogram responses of male Mediterranean fruit fly (Diptera: Tephritidae) to volatile chemicals from Persea, Litchi and Ficus wood

    Science.gov (United States)

    Trimedlure is the most effective male-targeted lure for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). A similar response is elicited by plant substances that contain a-copaene, a naturally-occurring sesquiterpene. a-copaene is a complex, highly-volatile, widely-distributed plant comp...

  15. Attraction and Electroantennography responses of the male Mediterranean Fruit Fly, Ceratitis capitata, to natural essential oils and synthetic blends.

    Science.gov (United States)

    Field experiments and long range bioassays were used to understand the difference in attractiveness among various natural essential oils for the Mediterranean Fruit Fly, Ceratitis capitata. Using electroantennography, we have selected various antennally active chemicals and tested their role in the ...

  16. PRESENCE OF THE MEDITERRANEAN FRUIT FLY(Ceratitis capitata Wied. IN SELECTED OLIVE ORCHARDS OF CENTRAL DALMATIA

    Directory of Open Access Journals (Sweden)

    M. Bjeliš

    2007-12-01

    Full Text Available Mediterranean fruit fly (Ceratitis capitata Wiedemann is a regular pest of large number of cultivated and wild host plants in Dalmatia. However, this pest does not develop either inside fruits of cultivated olive - Olea europaea sativa or wild olive „ mastrinka“ - Olea europaea oleaster. The main objective of this research was to prove regular presence, time of appearance and flight duration of the Mediterranean fruit fly inside selected orchards of central Dalmatia. During the four years of research, from 2001 to 2004 by using of traps and parapheromone trimedlure, the regular presence of the Mediterranean fruit fly was proved inside four selected orchards on the area of cities of Split and Kaštela, with differences in adult caught between localities and years. During the 2001 year, on the three locations in the area of city of Kaštela, the highest capture during the total research period was recorded, while on the locations in Split, the highest capture was recorded during 2003 year, but also significant during 2001 year. The lowest number of adult, less than 5 flies/trap was captured on all four locations during 2002 year.

  17. Captures of bactrocera fruit flies (Diptera: Tephritidae) and nontarget insects in biolure and torula yeast traps in Hawaii

    Science.gov (United States)

    BioLure, a synthetic food attractant for Mediterranean fruit fly (Ceratitis capitata (Wiedemann)) that uses a combination of three chemical components (ammonium acetate, trimethylamine hydrochloride and putrescine), was deployed in MultiLure traps in predominantly native forests, non-native forests,...

  18. Performance of Psyttalia humilis (Hymenoptera: Braconidae) reared from irradiated host on olive fruit fly (Diptera: Tephritidae) in California

    Science.gov (United States)

    The parasitoid Psytallia humilis (Silvestri) was reared on Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae irradiated at different doses from 0-70 Gy at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala and shipped to the USDA, ARS, Parlier,...

  19. A qPCR-based method for detecting parasitism of Fopius arisanus (Sonan) in oriental fruit flies, Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    BACKGROUND: Parasitism rate detection and parasitoid species identification are necessary in fruit fly biological control. Currently release of mass-reared Fopius arisanus is occurring world-wide, as this species is effective in controlling Bactrocera dorsalis and Ceratitis capitata. While release i...

  20. Biological control of olive fruit fly in California – release, establishment and impact of Psyttalia lounsburyi and Psyttalia humilis

    Science.gov (United States)

    The invasive olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) likely originated in sub-Saharan Africa, where the wild olive Olea europaea cuspidata L. (Wall. ex G. Don) is found and from which the domesticated olive O. europaea europaea L. was derived. Following the path of olive cult...

  1. Pupal x-ray irradiation influences protein expression in adults of the oriental fruit fly, Bactrocera dorsalis

    Science.gov (United States)

    We did protein analysis using 1-12-d-old adults from irradiated and non-irradiated oriental fruit fly pupae. We found that exposing pupae to x-ray irradiation impacted expression of 26 proteins in adult females and 30 proteins in adult males. There were 7 proteins (Glyceraldehyde-3-phosphate dehyd...

  2. Attraction and Mortality of Oriental Fruit Flies (Diptera: Tephritidae) to SPLAT-MAT- Methyl Eugenol with Spinosad

    Science.gov (United States)

    Studies were conducted in Hawaii to quantify attraction and feeding responses resulting in mortality of male oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), to SPLAT-MAT-methyl eugenol (ME) with spinosad in comparison with Min-U-Gel-ME with naled (Dibrom). Our approach invol...

  3. Ring-fluorinated analog of methyl eugenol: Attractiveness to and metabolism in the oriental fruit fly, Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are highly attractive to the natural phenylpropanoid methyl eugenol (ME). They compulsively feed on ME and metabolize it to ring and side-chain hydroxylated compounds which have both pheromonal and allomonal functions. Side-chain metabolic act...

  4. Automatic image analysis and spot classification for detection of fruit fly infestation in hyperspectral images of mangoes

    Science.gov (United States)

    An algorithm has been developed to identify spots generated in hyperspectral images of mangoes infested with fruit fly larvae. The algorithm incorporates background removal, application of a Gaussian blur, thresholding, and particle count analysis to identify locations of infestations. Each of the f...

  5. Larval x-ray irradiation influences protein expression in pupae of the Oriental fruit fly, Bactrocera Dorsalis

    Science.gov (United States)

    Third instar larvae were exposed to X-ray treatment of the Oriental fruit fly, Bactrocera dorsalis. Irradiated pupae were collected daily. Biological performance parameters of pupae and adults of larvae treated with X-ray irradiation were evaluated. Standard proteomics procedures such as densitometr...

  6. MicroRNAs in the oriental fruit fly, Bactrocera dorsalis: extending Drosophilid miRNA clusters to the Tephritidae

    Science.gov (United States)

    The oriental fruit fly, Bactrocera dorsalis, is an important pest species in the family Tephritidae. It is a phytophagous species with broad host range, and while not established in the mainland United States, is a species of great concern for introduction. Despite of the vast amount of informatio...

  7. Host plant records of the Mango Fruit Fly, Bactrocera (Bactrocera) frauenfeldi (Schiner) (Diptera: Tephritidae), version 1.0

    Science.gov (United States)

    Bactrocera (Bactrocera) frauenfeldi (Schiner, 1868), commonly known as the mango fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Although, to date, the USDA PestID has no i...

  8. Suitability of a liquid larval diet for rearing the Philippines fruit fly Bactrocera philippinensis (Diptera:Tephritidae)

    Science.gov (United States)

    A liquid larval diet as an artificial rearing medium was successfully tested for the Philippines fruit fly Bactrocera philippinensis Drew & Hancock. The biological parameters studied were pupal weight, adult emergence and fliers, sex ratio, fecundity and fertility. The insects performed most satisfa...

  9. Analysis of the olive fruit fly Bactrocera oleae transcriptome and phylogenetic classification of the major detoxification gene families

    NARCIS (Netherlands)

    Pavlidi, N.; Dermauw, W.; Rombauts, S.; Chrisargiris, A.; Van Leeuwen, T.; Vontas, J.

    2013-01-01

    The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved.

  10. Germline transformation of the olive fruit fly, Bactrocera oleae (Rossi)(Diptera:Tephritidae) with a piggyBac transposon vector

    Science.gov (United States)

    The olive fruit fly, Bactrocera oleae, is a highly significant pest in olive growing countries whose control may be enhanced by the use of genetically-modified strains, especially for sterile insect technique programs. To improve and expand this technology, piggyBac-mediated germline transformation ...

  11. Spiroacetal biosynthesis in fruit flies is complex: distinguishable origins of the same major spiroacetal released by different Bactrocera spp.

    Science.gov (United States)

    Schwartz, Brett D; Booth, Yvonne K; Fletcher, Mary T; Kitching, William; De Voss, James J

    2010-03-07

    The major spiroacetal ((E,E)-1) of the pestiferous fruit flies, Bactrocera tryoni and Bactrocera cucumis, is biosynthesised from fatty acids by distinguishable pathways which utilise modified beta-oxidation and C-H hydroxylation, generating a putative ketodiol which cyclises.

  12. Effect of cryopreservation on the pre-hatching behavior in the Mexican fruit fly Anastrepha ludens Loew (Diptera, Tephritidae)

    Science.gov (United States)

    In a sampling of untreated embryos of Mexican fruit fly, Anastrepha ludens, the cumulative hatch percentage was 84.77±7.8% of which ~70% of the larvae eclosed through the posterior pole of the egg. This is due to an unusual and seemingly energy demanding act of flipping of the fully developed pre-ha...

  13. Advances and perspectives in the mass rearing of fruit fly parasitoids in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cancino, Jorge; Montoya, Pablo [Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (DGSV/SENASICA/SAGARPA), Chiapas (Mexico). Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Programa Moscamed-Moscafrut

    2006-07-01

    Biological control by augmentation is applied in Mexico as part of an integrated pest management program against native fruit flies of the genus Anastrepha Schiner. The exotic parasitoid Diachasmimorpha longicaudata has been the most important species used within this context. A program for the mass rearing of 50 million parasitized pupa per week has been established in southeast Mexico, and these are released into the field according to a yearly national plan based on industry requirements. In order to reduce costs and optimize procedures, important advances have been made in the technology for mass production, including an increase in the weight of host larvae (24 mg), changes in the management of host exposition, improvements in the management of environmental conditions, suitability in time and motions are the main areas addressed. Furthermore, a quality control program is routinely applied, and the key parameters under constant evaluation are: 1) weight and volume of host larvae, 2) host mortality after exposure, 3) weight and volume of pupae, and 4) percent parasitoid viability and percent emergence. Good performance in these parameters produces adults with adequate longevity and fecundity, high flight ability and good searching behavior. The introduced egg parasitoid Fopius arisanus and the native pupal parasitoid Coptera hawardi are being evaluated for use in the future as a complement to releases into the field of D. longicaudata. Manipulating host size and exposition time, the use of starting diet and suppressing host development by irradiation, have permitted the effective use of Anastrepha eggs as hosts for the rearing of F. arisanus. Further achievements in the mass rearing of C. haywardi (e.g., the suppression of unparasitized hosts after irradiation), could give us the opportunity to employ new options to reinforce the augmentative biological control of Anastrepha fruit flies in Mexico. (author)

  14. Cryopreservation of Embryos of the Mediterranean Fruit Fly Ceratitis capitata Vienna 8 Genetic Sexing Strain.

    Directory of Open Access Journals (Sweden)

    Antonios A Augustinos

    Full Text Available The Mediterranean fruit fly, Ceratitis capitata, is one of the most serious pests of fruit crops world-wide. During the last decades, area-wide pest management (AW-IPM approaches with a sterile insect technique (SIT component have been used to control populations of this pest in an effective and environment-friendly manner. The development of genetic sexing strains (GSS, such as the Vienna 8 strain, has been played a major role in increasing the efficacy and reducing the cost of SIT programs. However, mass rearing, extensive inbreeding, possible bottleneck phenomena and hitch-hiking effects might pose major risks for deterioration and loss of important genetic characteristics of domesticated insect. In the present study, we present a modified procedure to cryopreserve the embryos of the medfly Vienna 8 GSS based on vitrification and used this strain as insect model to assess the impact of the cryopreservation process on the genetic structure of the cryopreserved insects. Forty-eight hours old embryos, incubated at 24°C, were found to be the most suitable developmental stage for cryopreservation treatment for high production of acceptable hatch rate (38%. Our data suggest the absence of any negative impact of the cryopreservation process on egg hatch rate, pupation rates, adult emergence rates and stability of the temperature sensitive lethal (tsl character on two established cryopreserved lines (flies emerged from cryopreserved embryos, named V8-118 and V8-228. Taken together, our study provides an optimized procedure to cryopreserve the medfly Vienna 8 GSS and documents the absence of any negative impact on the genetic structure and quality of the strain. Benefits and sceneries for utilization of this technology to support operational SIT projects are discussed in this paper.

  15. Sexual harassment induces a temporary fitness cost but does not constrain the acquisition of environmental information in fruit flies.

    Science.gov (United States)

    Teseo, Serafino; Veerus, Liisa; Moreno, Céline; Mery, Frédéric

    2016-01-01

    Across animals, sexual harassment induces fitness costs for females and males. However, little is known about the cognitive costs involved, i.e. whether it constrains learning processes, which could ultimately affect an individual's fitness. Here we evaluate the acquisition of environmental information in groups of fruit flies challenged with various levels of male sexual harassment. We show that, although high sexual harassment induces a temporary fitness cost for females, all fly groups of both sexes exhibit similar levels of learning. This suggests that, in fruit flies, the fitness benefits of acquiring environmental information are not affected by the fitness costs of sexual harassment, and that selection may favour cognition even in unfavourable social contexts. Our study provides novel insights into the relationship between sexual conflicts and cognition and the evolution of female counterstrategies against male sexual harassment. © 2016 The Author(s).

  16. Cost of reproduction in the Queensland fruit fly: Y-model versus lethal protein hypothesis.

    Science.gov (United States)

    Fanson, Benjamin G; Fanson, Kerry V; Taylor, Phillip W

    2012-12-22

    The trade-off between lifespan and reproduction is commonly explained by differential allocation of limited resources. Recent research has shown that the ratio of protein to carbohydrate (P : C) of a fly's diet mediates the lifespan-reproduction trade-off, with higher P : C diets increasing egg production but decreasing lifespan. To test whether this P : C effect is because of changing allocation strategies (Y-model hypothesis) or detrimental effects of protein ingestion on lifespan (lethal protein hypothesis), we measured lifespan and egg production in Queensland fruit flies varying in reproductive status (mated, virgin and sterilized females, virgin males) that were fed one of 18 diets varying in protein and carbohydrate amounts. The Y-model predicts that for sterilized females and for males, which require little protein for reproduction, there will be no effect of P : C ratio on lifespan; the lethal protein hypothesis predicts that the effect of P : C ratio should be similar in all groups. In support of the lethal protein hypothesis, and counter to the Y-model, the P : C ratio of the ingested diets had similar effects for all groups. We conclude that the trade-off between lifespan and reproduction is mediated by the detrimental side-effects of protein ingestion on lifespan.

  17. De Novo Assembly and Transcriptome Analysis of the Mediterranean Fruit Fly Ceratitis capitata Early Embryos

    Science.gov (United States)

    Salvemini, Marco; Arunkumar, Kallare P.; Nagaraju, Javaregowda; Sanges, Remo; Petrella, Valeria; Tomar, Archana; Zhang, Hongyu; Zheng, Weiwei; Saccone, Giuseppe

    2014-01-01

    The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing genetic-based pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8–10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae. PMID:25474564

  18. De novo assembly and transcriptome analysis of the Mediterranean fruit fly Ceratitis capitata early embryos.

    Directory of Open Access Journals (Sweden)

    Marco Salvemini

    Full Text Available The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing genetic-based pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8-10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae.

  19. Transmission modes of a pesticide-degrading symbiont of the oriental fruit fly Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Guo, Zijun; Lu, Yongyue; Yang, Fan; Zeng, Ling; Liang, Guangwen; Xu, Yijuan

    2017-12-01

    Symbionts are associated with many insects and play several multifunctional roles in insect-microorganism mutualistic relationships. The trichlorphon-degrading symbiont Citrobacter freundii (CF-BD) of the oriental fruit fly Bactrocera dorsalis was recently discovered; however, its intraspecies transmission pathway among flies remains unknown. Here, we use fluorescence in situ hybridization (FISH), PCR detection, and a series of ingenious experiments to reveal that CF-BD was aggregated in rectal pads associated with the female ovipositor, and the CF-BD symbiont was vertically transmitted via egg surface contamination. Although CF-BD was not detected in ovaries, it was found in deposited eggs. In addition, CF-BD was readily acquired horizontally between larvae or adults via oral uptake, although it was not transferred via mating behavior. Surface sterilization of eggs had a negative effect on the insects, which exhibited a lower body weight and a sharp decrease in fecundity, suggesting important biological roles of CF-BD in the fitness of the host insects. Our findings may also help to explain the high pesticide resistance levels of B. dorsalis. Furthermore, identifying a clear transmission pathway of this organophosphorus-degrading symbiont will be useful for pesticide resistance management and future pest control technologies.

  20. Remating inhibition in female Queensland fruit flies: effects and correlates of sperm storage.

    Science.gov (United States)

    Harmer, Aaron M T; Radhakrishnan, Preethi; Taylor, Phillip W

    2006-02-01

    Reproductive success of male insects commonly hinges both on their ability to secure copulations with many mates and also on their ability to inseminate and inhibit subsequent sexual receptivity of their mates to rival males. We here present the first investigation of sperm storage in Queensland fruit flies (Tephritidae: Bactrocera tryoni; a.k.a. 'Q-flies') and address the question of whether remating inhibition in females is directly influenced by or correlated with number of sperm stored from their first mates. We used irradiation to disrupt spermatogenesis and thereby experimentally reduce the number of sperm stored by some male's mates while leaving other aspects of male sexual performance (mating probability, latency until copulating, copula duration) unaffected. Females that mated with irradiated rather than normal males were less likely to store any sperm at all (50% vs. 89%) and, if some sperm were stored, the number was greatly reduced (median 11 vs. 120). Despite the considerable differences in sperm storage, females mated by normal males and irradiated males were similarly likely to remate at the next opportunity, indicating (1) number of sperm stored does not directly drive female remating inhibition and (2) factors actually responsible for remating inhibition are similarly expressed in normal and irradiated males. While overall levels of remating were similar for mates of normal and irradiated males, factors responsible for female remating inhibition were positively associated with presence and number of sperm stored by mates of normal but not irradiated males. We suggest seminal fluids as the most likely factor responsible for remating inhibition in female Q-flies, as these are likely to be transported in proportion to number of sperm in normal males, be uninfluenced by irradiation, and be transported without systematic relation to sperm number in irradiated males.

  1. An improved culturing method for opiine fruit fly parasitoids and its application to parasitoid monitoring in the field.

    Science.gov (United States)

    Masry, Ayad; Furlong, Michael J; Clarke, Anthony R; Cunningham, John Paul

    2018-02-01

    Good culturing methods play an important role in the study of insect behavior and its application to pest management. Here, we describe and validate a new method for rearing the parasitoid wasp, Diachasmimorpha kraussii, which attacks some of the world's worst fruit fly pests and is an internationally used biological control agent. Our method differs from standard culturing approaches by presenting adult wasps with host-infested artificial media within a "culturing bag," which mimics a natural (fruit) oviposition substrate. In laboratory trials using wild collected D. kraussii, the culturing bag method was compared to the use of host-infested nectarines, and a commonly used laboratory method of presenting host-infested artificial media within Petri dishes. The culturing bag method proved to be a significant improvement on both methods, combining the advantages of high host survival in artificial media with parasitism levels that were the equivalent to those recorded using host-infested fruits. In our field study, culturing bags infested with the Queensland fruit fly, Bactrocera tryoni, and hung in a mixed peach and nectarine orchard proved to be effective "artificial fruits" attracting wild D. kraussii for oviposition. Significantly more adult wasps were reared from the culturing bags compared to field collected fruits. This was shown to be due to higher fruit fly larval density in the bags, as similar percentage parasitism rates were found between the culturing bags and ripe fruits. We discuss how this cheap, time-efficient method could be applied to collecting and monitoring wild D. kraussii populations in orchards, and assist in maintaining genetic variability in parasitoid laboratory cultures. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  2. Parasitismo natural em moscas-das-frutas (Diptera: Tephritidae no semiárido do sudoeste da Bahia, Brasil Natural parasitism in fruit-flies in the fruticulture area of anagé, semi-arid of southwestern Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Falcão de Sá

    2012-12-01

    Full Text Available Parasitoides são importantes agentes de controle natural de tefritídeos, e os conhecimentos sobre as relações tritróficas podem subsidiar o manejo destas pragas. Este trabalho objetivou estimar índices de parasitismo em moscas-das-frutas, em 21 espécies vegetais, e identificar as espécies de parasitoides associados, nas condições do semiárido do sudoeste da Bahia. Oito hospedeiros apresentaram infestação por Anastrepha spp. e, destes, em quatro, ocorreu parasitismo superior a 20,0%, sendo: 20,8% (Ziziphus joazeiro L.; 21,3% (Spondias tuberosa L.; 32,4% (Spondias purpurea L. e 57,1% (Malpighia emarginata L.. Os parasitoides coletados pertencem à família Braconidae, sendo 89% de Doryctobracon areolatus e 11% de Asobara anastrephae.Parasitoids are important natural control agents of tephritids and knowledge about the tritrophic relationships can support the management of these pests. This study aimed to estimate of parasitism indexes in fruit flies in 21 plant species and identify the species of parasitoids associated, in semiarid conditions of Southwestern Bahia. Eight hosts showed infestation by Anastrepha spp. and, of these, four occurred parasitism above 20.0%, of which: 20.8% (Ziziphus joazeiro L.; 21.3% (Spondias tuberosa L.; 32.4% (Spondias purpurea L. and 57.1% (Malpighia emarginata L.. The collected parasitoids belong to the Braconidae family, 89% of Doryctobracon areolatus and 11% of Asobara anastrephae.

  3. Irradiation to control insects in fruits and vegetables for export from Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Follett, P.A. E-mail: pfollett@pbarc.ars.usda.gov

    2004-10-01

    Phytosanitary or quarantine treatments are often required to disinfest host commodities of economically important arthropod pests before they are moved through market channels to areas where the pest does not occur. Irradiation is an accepted treatment to control quarantine pests in 10 fruits and five vegetables for export from Hawaii to the US mainland. Irradiation is the ideal technology for developing generic quarantine treatments because it is effective against most insect and mite pests at dose levels that do not affect the quality of most commodities. A generic dose of 150 Gy has been proposed for tephritid fruit flies. Contrary to the 150 Gy dose, approved irradiation quarantine treatment doses for Mediterranean fruit fly, melon fly, and oriental fruit fly in Hawaii are 210-250 Gy. Irradiation studies were conducted to determine if the approved doses were unnecessarily high and could be reduced. Irradiation is also a viable alternative to methyl bromide fumigation to disinfest Hawaii sweetpotatoes, and studies are in progress to identify an effective dose for two key sweetpotato insect pests. Results indicate that irradiation doses <150 Gy will control Hawaii's fruit flies, which supports the proposed generic dose. The idea of generic doses is appealing because it would greatly accelerate the process of approving irradiation quarantine treatments for specific crops, and thereby rapidly expand exports. Preliminary results show that 250-300 Gy will control Hawaii's sweetpotato pests.

  4. Irradiation to control insects in fruits and vegetables for export from Hawaii

    Science.gov (United States)

    Follett, Peter A.

    2004-09-01

    Phytosanitary or quarantine treatments are often required to disinfest host commodities of economically important arthropod pests before they are moved through market channels to areas where the pest does not occur. Irradiation is an accepted treatment to control quarantine pests in 10 fruits and five vegetables for export from Hawaii to the US mainland. Irradiation is the ideal technology for developing generic quarantine treatments because it is effective against most insect and mite pests at dose levels that do not affect the quality of most commodities. A generic dose of 150 Gy has been proposed for tephritid fruit flies. Contrary to the 150 Gy dose, approved irradiation quarantine treatment doses for Mediterranean fruit fly, melon fly, and oriental fruit fly in Hawaii are 210-250 Gy. Irradiation studies were conducted to determine if the approved doses were unnecessarily high and could be reduced. Irradiation is also a viable alternative to methyl bromide fumigation to disinfest Hawaii sweetpotatoes, and studies are in progress to identify an effective dose for two key sweetpotato insect pests. Results indicate that irradiation doses <150 Gy will control Hawaii's fruit flies, which supports the proposed generic dose. The idea of generic doses is appealing because it would greatly accelerate the process of approving irradiation quarantine treatments for specific crops, and thereby rapidly expand exports. Preliminary results show that 250-300 Gy will control Hawaii's sweetpotato pests.

  5. Comparison of aggregation and feeding responses by normal and irradiated fruit flies, Ceratitis capitata and Anastrepha suspensa (Diptera: Tephritidae)

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Gothilf, S.; Blondheim, S.; Sharp, J.L.; Mazor, M.; Lachman, A.

    1985-12-01

    Olfactory, aggregatory, and feeding responses of normal (untreated) laboratory stocks of Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), and of Caribbean fruit fly (caribfly), Anastrepha suspensa (Loew), were compared to those of flies irradiated (10 krad in air) 2 days before eclosion. Females of both species consumed greater quantities of protein hydrolysate solutions, entered protein hydrolysate-baited olfactory traps, and aggregated on agar plates containing protein hydrolysate in greater numbers than males of the same age and condition. However, male medflies consumed more sucrose than did females of the same age and condition. In the medfly, irradiation resulted in reduced olfactory response, reduced total food intake by flies of both sexes, and a significant reduction in aggregation on and intake of protein hydrolysate by females and of sugar consumption by males. In the irradiated caribfly, there was a significant reduction in olfactory response of females to yeast hydrolysate. In both sexes, aggregation on and consumption of yeast hydrolysate were reduced. Effects of irradiation on feeding behavior are discussed in relation to the biology of the flies and their control by the sterile insect release method.

  6. Identification of Host Fruit Volatiles from Snowberry (Symphoricarpos albus), Attractive to Rhagoletis zephyria Flies from the Western United States.

    Science.gov (United States)

    Cha, Dong H; Olsson, Shannon B; Yee, Wee L; Goughnour, Robert B; Hood, Glen R; Mattsson, Monte; Schwarz, Dietmar; Feder, Jeffrey L; Linn, Charles E

    2017-02-01

    A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and β-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C. douglasii) and ornamental hawthorn (C. monogyna) from Washington state. Selected subtraction assays showed that whereas removal of DMNT or 1-octen-3-ol significantly reduced the level of upwind flight, removal of myrcene and β-caryophyllene, or dimethyl trisulfide alone did not significantly affect the proportion of upwind flights. Our findings add to previous studies showing that populations of Rhagoletis flies infesting different host fruit are attracted to unique mixtures of volatile compounds specific to their respective host plants. Taken together, the results support the hypothesis that differences among flies in their behavioral responses to host fruit odors represent key adaptations involved in sympatric host plant shifts, contributing to host specific mating and generating prezygotic reproductive isolation among members of the R. pomonella sibling species complex.

  7. Olfaction in the Queensland fruit fly, Bactrocera tryoni. II: Response spectra and temporal encoding characteristics of the carbon dioxide receptors.

    Science.gov (United States)

    Hull, C D; Cribb, B W

    2001-05-01

    Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactroera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation. at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.

  8. Effects of adhesive powders on the mating and flight behavior of Mediterranean fruit fly (Diptera: Tephritidae).

    Science.gov (United States)

    Armsworth, Clare G; Baxter, Ian H; Barton, Lucy E E; Poppy, Guy M; Nansen, Christian

    2006-08-01

    Powders that adhere to insect cuticle can be used as carrier particles for synthetic insecticides, entomopathogens, or pheromones in insect control systems, and insects can be lured into contact with such powder mixtures by using attractants. Secondary transfer of adhesive powders to conspecifics during social interactions has been reported; however, this transfer relies on insects leaving the source of powder and continuing normal behavior when contaminated. We examined the ability of the Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), to fly and mate after being contaminated with one of two adhesive powders: an electrostatic wax powder, Entostat, and a proprietary metallic powder, Entomag. During continuous observations for 1 h in a flight tunnel, male C. capitata made significantly more flights than females. Treating C. capitata with either powder significantly suppressed the flight activity of male C. capitata compared with untreated controls, whereas powder treatment had a negligible effect on female flight activity. Within 1 h, male C. capitata treated with Entomag recovered normal flight activity, but Entostat-treated males were not fully recovered. Virgin male C. capitata treated with either Entostat or Entomag were able to mate with virgin female C. capitata, but the onset of mating was delayed compared with control C. capitata by approximately 1 h. Even though the effect of powder uptake on behavior seemed to be temporary, scanning electron micrograph images of treated C. capitata showed that both powders were retained for > 24 h on most body parts. The adhesive powders showed potential for use as carrier particles for pesticides, entomopathogens, or pheromones in novel C. capitata control systems.

  9. Body appendages fine-tune posture and moments in freely manoeuvring fruit flies.

    Science.gov (United States)

    Berthé, Ruben; Lehmann, Fritz-Olaf

    2015-10-01

    The precise control of body posture by turning moments is key to elevated locomotor performance in flying animals. Although elevated moments for body stabilization are typically produced by wing aerodynamics, animals also steer using drag on body appendages, shifting their centre of body mass, and changing moments of inertia caused by active alterations in body shape. To estimate the instantaneous contribution of each of these components for posture control in an insect, we three-dimensionally reconstructed body posture and movements of body appendages in freely manoeuvring fruit flies (Drosophila melanogaster) by high-speed video and experimentally scored drag coefficients of legs and body trunk at low Reynolds number. The results show that the sum of leg- and abdomen-induced yaw moments dominates wing-induced moments during 17% of total flight time but is, on average, 7.2-times (roll, 3.4-times) smaller during manoeuvring. Our data reject a previous hypothesis on synergistic moment support, indicating that drag on body appendages and mass-shift inhibit rather than support turning moments produced by the wings. Numerical modelling further shows that hind leg extension alters the moments of inertia around the three main body axes of the animal by not more than 6% during manoeuvring, which is significantly less than previously reported for other insects. In sum, yaw, pitch and roll steering by body appendages probably fine-tune turning behaviour and body posture, without providing a significant advantage for posture stability and moment support. Motion control of appendages might thus be part of the insect's trimming reflexes, which reduce imbalances in moment generation caused by unilateral wing damage and abnormal asymmetries of the flight apparatus. © 2015. Published by The Company of Biologists Ltd.

  10. Life table assay of field-caught Mediterranean fruit flies, Ceratitis capitata, reveals age bias

    Science.gov (United States)

    Kouloussis, Nikos A.; Papadopoulos, Nikos T.; Müller, Hans-Georg; Wang, Jane-Ling; Mao, Meng; Katsoyannos, Byron I.; Duyck, Pierre-François; Carey, James R.

    2012-01-01

    Though traps are used widely to sample phytophagous insects for research or management purposes, and recently in aging research, possible bias stemming from differential response of individuals of various ages to traps has never been examined. In this paper, we tested the response of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) males and females of four ages (spanning from 1 to 40 days) to McPhail-type traps baited with a synthetic food attractant in field cages and found that the probability of trapping was significantly influenced by age. The type of food on which flies were maintained before testing (sugar or protein) also had a strong effect and interacted with age. In another experiment, we collected wild C. capitata adults of unknown age using 1–3 methods and then reared them in the laboratory until death. The survival schedules of these flies were subsequently used in a life table assay to infer their age at the time of capture. Results showed that on a single sampling date, males captured in traps baited with a food attractant were younger compared with males aspirated from fruiting host trees, or males captured in traps baited with a sex attractant. Likewise, females captured in food-baited traps were younger compared with aspirated females. In addition to providing the first evidence of age-dependent sampling bias for a phytophagous insect species, this paper also provides a novel approach to estimate the differences in the age composition of samples collected with different techniques. These findings are of utmost importance for several categories of insects, medically important groups notwithstanding. PMID:22844133

  11. The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects.

    Science.gov (United States)

    Sarno, Francesca; Ruiz, María F; Eirín-López, José M; Perondini, André L P; Selivon, Denise; Sánchez, Lucas

    2010-05-13

    In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent

  12. The oviposition of the chili fruit fly (Bactrocera latifrons Hendel (Diptera: Tephritidae with reference to reproductive capacity

    Directory of Open Access Journals (Sweden)

    Anothai Wingsanoi

    2012-11-01

    Full Text Available The chili fruit fly, Bactrocera latifrons Hendel, is a serious pest of chili fruit production in Thailand. To determine theeffective control planning of the fly population, the oviposition related to reproductive capacity of the female were observed.The female ovary was daily dissected through the entire life span and the eggs inside the ovary were examined and counted.There were 44.84±19.60 eggs/ovary. The oviposition of female was simultaneously conducted. Eggs inside the ovarypresented on 8th day and the female oviposited on 10th day of the life span. The female laid 4.25±2.28 eggs, which was 12.45±9.56 fold less than the reproductive capacity. The female longevity was 31.1±8.40 days and the oviposition period was 40days.

  13. Molecular structure of yoyo, a gypsy-like retrotransposon from the mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Zhou, Q; Haymer, D S

    We have isolated and characterized a new LTR-retrotransposon in the genome of the Mediterranean fruit fly (Medfly), Ceratitis capitata. This retrotransposon, which we named yoyo, appears to be a member of the gypsy/Ty3 class of elements. The yoyo element was originally discovered on the Y chromosome of the Medfly. Although the Y chromosome copy appears to be truncated, at least two other apparently complete copies of yoyo from other genomic locations have been isolated and characterized. The complete element is approximately 7.7 kb in size. In addition to fairly typical GAG and POL coding regions, the yoyo element contains a potential ENV gene. The presence of an ENV gene is a key feature distinguishing potential retroviral-like elements, such as gypsy (and possibly yoyo), from many other invertebrate retrotransposons previously described. In addition to the structural features of yoyo, evidence is provided to show that yoyo is capable of movement in the genome, including RFLPs showing variability in genomic localization of copies of yoyo between strains, and differences among individuals in the presence of yoyo at a specific site in the genome.

  14. Dietary lufenuron reduces egg hatch and influences protein expression in the fruit fly Bactrocera latifrons (Hendel).

    Science.gov (United States)

    Chang, Chiou Ling; Geib, Scott; Cho, Il Kyu; Li, Qing X; Stanley, David

    2014-08-01

    Lufenuron (LFN), a chitin synthase inhibitor, impacts the fertility of Ceratitis capitata, Bactrocera dorsalis, B. cucurbitae, and B. latifrons. We posed the hypothesis that LFN curtails egg hatch in the solanaceous fruit fly, B. latifrons. In this study, newly emerged virgin adults were sexed and fed for 12 days with varying concentrations of LFN-laced agar diets until sexual maturation. Eggs were collected from 12-d-old adults and the egg hatch was assessed. Egg hatch decreased in adults reared on LFN-treated diets. LFN-treated media did not influence fertility after one gender was reared on experimental and the other on control media before mating. Exposure to LFN-treated medium after mating led to reduced egg hatch. We infer that LFN is not a permanent sterilant, and reduced egg hatch depends on continuous exposure to dietary LFN after mating. Proteomic analysis identified two differentially expressed proteins, a pheromone binding protein and a chitin binding protein, between adults maintained on LFN-treated and control diets. Expression of two genes encoding chitin synthase 2, and chitin binding protein, was altered in adults exposed to dietary LFN. LFN treatments also led to increased expression of two odorant binding proteins one in females and one in males. We surmise these data support our hypothesis and provide insight into LFN actions. © 2014 Wiley Periodicals, Inc.

  15. Control of copula duration and sperm storage by female Queensland fruit flies.

    Science.gov (United States)

    Pérez-Staples, Diana; Weldon, Christopher W; Radhakrishnan, Preethi; Prenter, John; Taylor, Phillip W

    2010-12-01

    Copula duration and sperm storage patterns can directly or indirectly affect fitness of male and female insects. Although both sexes have an interest in the outcome, research has tended to focus on males. To investigate female influences, we compared copula duration and sperm storage of Queensland fruit fly females that were intact, or had been incapacitated through decapitation or abdomen isolation. We found that copulations were far longer when females had been incapacitated, indicating that constraints imposed on copula duration by intact females had been relaxed. Repeatability of copula duration for males was very low regardless of female treatment, and this is also consistent with strong female influence. Number of sperm in the spermathecae was not influenced by female treatment, suggesting that female abdominal ganglia control the transport of sperm to these long-term storage organs. However, more sperm were found in the ventral receptacles of incapacitated females compared to intact females. Overall, results implicate cephalic ganglia in regulation of copula duration and short-term sperm storage in the ventral receptacle and abdominal ganglia in regulation of long-term sperm storage in the spermathecae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Potential impacts of climate change on habitat suitability for the Queensland fruit fly.

    Science.gov (United States)

    Sultana, Sabira; Baumgartner, John B; Dominiak, Bernard C; Royer, Jane E; Beaumont, Linda J

    2017-10-12

    Anthropogenic climate change is a major factor driving shifts in the distributions of pests and invasive species. The Queensland fruit fly, Bactrocera tryoni Froggatt (Qfly), is the most economically damaging insect pest of Australia's horticultural industry, and its management is a key priority for plant protection and biosecurity. Identifying the extent to which climate change may alter the distribution of suitable habitat for Qfly is important for the development and continuation of effective monitoring programs, phytosanitary measures, and management strategies. We used Maxent, a species distribution model, to map suitable habitat for Qfly under current climate, and six climate scenarios for 2030, 2050 and 2070. Our results highlight that south-western Australia, northern regions of the Northern Territory, eastern Queensland, and much of south-eastern Australia are currently suitable for Qfly. This includes southern Victoria and eastern Tasmania, which are currently free of breeding populations. There is substantial agreement across future climate scenarios that most areas currently suitable will remain so until at least 2070. Our projections provide an initial estimate of the potential exposure of Australia's horticultural industry to Qfly as climate changes, highlighting the need for long-term vigilance across southern Australia to prevent further range expansion of this species.

  17. Transcriptome Profiling of Sexual Maturation and Mating in the Mediterranean Fruit Fly, Ceratitis capitata

    Science.gov (United States)

    Gomulski, Ludvik M.; Dimopoulos, George; Xi, Zhiyong; Scolari, Francesca; Gabrieli, Paolo; Siciliano, Paolo; Clarke, Anthony R.; Malacrida, Anna R.; Gasperi, Giuliano

    2012-01-01

    Sexual maturation and mating in insects are generally accompanied by major physiological and behavioural changes. Many of these changes are related to the need to locate a mate and subsequently, in the case of females, to switch from mate searching to oviposition behaviour. The prodigious reproductive capacity of the Mediterranean fruit fly, Ceratitis capitata, is one of the factors that has led to its success as an invasive pest species. To identify the molecular changes related to maturation and mating status in male and female medfly, a microarray-based gene expression approach was used to compare the head transcriptomes of sexually immature, mature virgin, and mated individuals. Attention was focused on the changes in abundance of transcripts related to reproduction, behaviour, sensory perception of chemical stimulus, and immune system processes. Broad transcriptional changes were recorded during female maturation, while post-mating transcriptional changes in females were, by contrast, modest. In male medfly, transcriptional changes were consistent both during maturation and as a consequence of mating. Of particular note was the lack of the mating-induced immune responses that have been recorded for Drosophila melanogaster, that may be due to the different reproductive strategies of these species. This study, in addition to increasing our understanding of the molecular machinery behind maturation and mating in the medfly, has identified important gene targets that might be useful in the future management of this pest. PMID:22303464

  18. Pressure Model of Control Valve Based on LS-SVM with the Fruit Fly Algorithm

    Directory of Open Access Journals (Sweden)

    Huang Aiqin

    2014-07-01

    Full Text Available Control valve is a kind of essential terminal control component which is hard to model by traditional methodologies because of its complexity and nonlinearity. This paper proposes a new modeling method for the upstream pressure of control valve using the least squares support vector machine (LS-SVM, which has been successfully used to identify nonlinear system. In order to improve the modeling performance, the fruit fly optimization algorithm (FOA is used to optimize two critical parameters of LS-SVM. As an example, a set of actual production data from a controlling system of chlorine in a salt chemistry industry is applied. The validity of LS-SVM modeling method using FOA is verified by comparing the predicted results with the actual data with a value of MSE 2.474 × 10−3. Moreover, it is demonstrated that the initial position of FOA does not affect its optimal ability. By comparison, simulation experiments based on PSO algorithm and the grid search method are also carried out. The results show that LS-SVM based on FOA has equal performance in prediction accuracy. However, from the respect of calculation time, FOA has a significant advantage and is more suitable for the online prediction.

  19. Global Assessment of Seasonal Potential Distribution of Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae)

    Science.gov (United States)

    Szyniszewska, Anna M.; Tatem, Andrew J.

    2014-01-01

    The Mediterranean fruit fly (Medfly) is one of the world's most economically damaging pests. It displays highly seasonal population dynamics, and the environmental conditions suitable for its abundance are not constant throughout the year in most places. An extensive literature search was performed to obtain the most comprehensive data on the historical and contemporary spatio-temporal occurrence of the pest globally. The database constructed contained 2328 unique geo-located entries on Medfly detection sites from 43 countries and nearly 500 unique localities, as well as information on hosts, life stages and capture method. Of these, 125 localities had information on the month when Medfly was recorded and these data were complemented by additional material found in comprehensive databases available online. Records from 1980 until present were used for medfly environmental niche modeling. Maximum Entropy Algorithm (MaxEnt) and a set of seasonally varying environmental covariates were used to predict the fundamental niche of the Medfly on a global scale. Three seasonal maps were also produced: January-April, May-August and September-December. Models performed significantly better than random achieving high accuracy scores, indicating a good discrimination of suitable versus unsuitable areas for the presence of the species. PMID:25375649

  20. Transgenerational plasticity following a dual pathogen and stress challenge in fruit flies.

    Science.gov (United States)

    Nystrand, M; Cassidy, E J; Dowling, D K

    2016-08-27

    Phenotypic plasticity operates across generations, when the parental environment affects phenotypic expression in the offspring. Recent studies in invertebrates have reported transgenerational plasticity in phenotypic responses of offspring when the mothers had been previously exposed to either live or heat-killed pathogens. Understanding whether this plasticity is adaptive requires a factorial design in which both mothers and their offspring are subjected to either the pathogen challenge or a control, in experimentally matched and mismatched combinations. Most prior studies exploring the capacity for pathogen-mediated transgenerational plasticity have, however, failed to adopt such a design. Furthermore, it is currently poorly understood whether the magnitude or direction of pathogen-mediated transgenerational responses will be sensitive to environmental heterogeneity. Here, we explored the transgenerational consequences of a dual pathogen and stress challenge administered in the maternal generation in the fruit fly, Drosophila melanogaster. Prospective mothers were assigned to a non-infectious pathogen treatment consisting of an injection with heat-killed bacteria or a procedural control, and a stress treatment consisting of sleep deprivation or control. Their daughters and sons were similarly assigned to the same pathogen treatment, prior to measurement of their reproductive success. We observed transgenerational interactions involving pathogen treatments of mothers and their offspring, on the reproductive success of daughters but not sons. These interactions were unaffected by sleep deprivation. The direction of the transgenerational effects was not consistent with that predicted under a scenario of adaptive transgenerational plasticity. Instead, they were indicative of expectations based on terminal investment.

  1. Mating compatibility among four pest members of the Bactrocera dorsalis fruit fly species complex (Diptera: Tephritidae).

    Science.gov (United States)

    Schutze, M K; Jessup, A; Ul-Haq, I; Vreysen, M J B; Wornoayporn, V; Vera, M T; Clarke, A R

    2013-04-01

    Bactrocera dorsalis (Hendel), Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, and Bactrocera carambolae Drew & Hancock are pest members within the B. dorsalis species complex of tropical fruit flies. The species status of these taxa is unclear and this confounds quarantine, pest management, and general research. Mating studies carried out under uniform experimental conditions are required as part of resolving their species limits. These four taxa were collected from the wild and established as laboratory cultures for which we subsequently determined levels of prezygotic compatibility, assessed by field cage mating trials for all pair-wise combinations. We demonstrate random mating among all pair-wise combinations involving B. dorsalis, B. papayae, and B. philippinensis. B. carambolae was relatively incompatible with each of these species as evidenced by nonrandom mating for all crosses. Reasons for incompatibility involving B. carambolae remain unclear; however, we observed differences in the location of couples in the field cage for some comparisons. Alongside other factors such as pheromone composition or other courtship signals, this may lead to reduced interspecific mating compatibility with B. carambolae. These data add to evidence that B. dorsalis, B. papayae, and B. philippinensis represent the same biological species, while B. carambolae remains sufficiently different to maintain its current taxonomic identity. This poses significant implications for this group's systematics, impacting on pest management, and international trade.

  2. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae).

    Science.gov (United States)

    Shishir, Md Asaduzzaman; Akter, Asma; Bodiuzzaman, Md; Hossain, M Aftab; Alam, Md Musfiqul; Khan, Shakil Ahmed; Khan, Shakila Nargis; Hoq, M Mozammel

    2015-01-01

    Bactrocera cucurbitae (melon fruit fly) is one of the most detrimental vegetable-damaging pests in Bangladesh. The toxicity of Bacillus thuringiensis (Bt) has been reported against a few genera of Bactrocera in addition to numerous other insect species. Bt strains, harbouring cry1A-type genes were, therefore, assayed in vivo against the 3(rd) instar larvae of B. cucurbitae in this study. The biotype-based prevalence of cry1 and cry1A genes was calculated to be 30.8% and 11.16%, respectively, of the test strains (n=224) while their prevalence was greatest in biotype kurstaki. Though three indigenous Bt strains from biotype kurstaki with close genetic relationship exhibited higher toxicity, maximum mortalities were recorded for Btk HD-73 (96%) and the indigenous Bt JSc1 (93%). LC50 and LC99 values were determined to be 6.81 and 8.32 for Bt JSc1, 7.30 and 7.92 for Bt SSc2, and 6.99 and 7.67 for Btk HD-73, respectively. The cause of toxicity and its variation among the strains was found to be correlated with the synergistic toxic effects of cry1, cry2, cry3 and cry9 gene products, i.e. relevant Cry proteins. The novel toxicity of the B. thuringiensis strains against B. cucurbitae revealed in the present study thus will help in developing efficient and eco-friendly control measures such as Bt biopesticides and transgenic Bt cucurbits.

  3. BdorOBP83a-2 mediates responses of the oriental fruit fly to semiochemicals

    Directory of Open Access Journals (Sweden)

    Zhongzhen Wu

    2016-10-01

    Full Text Available The oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae, is one of the most destructive pests throughout tropical and subtropical regions in Asia. This insect displays remarkable changes during different developmental phases in olfactory behavior between sexually immature and mated adults. The olfactory behavioral changes provide clues to examine physiological and molecular bases of olfactory perception in this insect. We comparatively analyzed behavioral and neuronal responses of B. dorsalis adults to attractant semiochemicals, and the expression profiles of antenna chemosensory genes. We found that some odorant-binding proteins (OBPs were upregulated in mated adults in association with their behavioral and neuronal responses. Ligand-binding assays further showed that one of OBP83a orthologues, BdorOBP83a-2, binds with high affinity to attractant semiochemicals. Functional analyses confirmed that the reduction in BdorOBP83a-2 transcript abundance led to a decrease in neuronal and behavioral responses to selected attractants. This study suggests that BdorOBP83a-2 mediates behavioral responses to attractant semiochemicals and could be a potential efficient target for pest control.

  4. Genetic and cytogenetic analysis of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae).

    Science.gov (United States)

    Mavragani-Tsipidou, P

    2002-09-01

    The genetic and cytogenetic characteristics of one of the major agricultural pests, the olive fruit fly Bactmcera oleae, are presented here. The mitotic metaphase complement of this insect consists of six pairs of chromosomes including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the polytene complements of three larval tissues, the fat body, the salivary glands and the Malpighian tubules of this pest has shown (a) a total number of five long chromosomes (10 polytene arms) that correspond to the five autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes, (b) the constancy of the banding pattern of the three somatic tissues, (c) the absence of a typical chromocenter as an accumulation of heterochromatin, (d) the existence of reverse tandem duplications, and (e) the presence of toroid tips of the chromosome arms. The in situ hybridization of genes or DNA sequences to the salivary gland polytene chromosomes of B. oleae provided molecular markers for all five autosomes and permitted the establishment of chromosomal homologies among B. olea, B. tryoni and Ceratitis capitata. The heat shock response of B. oleae, as revealed by heat-inducible puffing and protein pattern, shows a higher thermotolerance than Drosophila melanogaster.

  5. Genetic delineation of sibling species of the pest fruit fly Bactocera (Diptera: Tephritidae) using microsatellites.

    Science.gov (United States)

    Gilchrist, A S; Wang, Y; Yu, H; Raphael, K; Gilchrist, A S

    2003-08-01

    Using a large set of microsatellites, the genetic relationships between three closely related Australian fruit fly species, Bactrocera tryoni (Froggatt), B. neohumeralis (Hardy) and B. aquilonis(May) were investigated. Bactrocera tryoni and B. neohumeralis are sympatric, while B. aquilonisis allopatric to both. The sympatric species, B. tryoni and B. neohumeralis, were found to be genetically distinct. It is likely that despite differences in mating time between these two species, some gene flow still occurs. In contrast, the sibling species B. tryoni and B. aquilonis were found to be closely related, despite allopatry. The level of genetic divergence was similar to that found within eastern Australian populations of B. tryoni. Consideration of all available genetic data suggests that this similarity is not due to recent (i.e. within the last 30 years) displacement of B. aquilonis by B. tryoni from the B. aquilonis region (north-western Australia). Instead the data suggests that, at least in the areas sampled, asymmetrical hybridization may have occurred over a longer timescale.

  6. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    OpenAIRE

    Pavlidi, Nena; Gioti, Anastasia; Wybouw, Nicky; Dermauw, Wannes; Ben-Yosef, Michael; Yuval, Boaz; Jurkevich, Edouard; Kampouraki, Anastasia; Van Leeuwen, Thomas; Vontas, John

    2017-01-01

    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candid...

  7. Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families.

    Directory of Open Access Journals (Sweden)

    Nena Pavlidi

    Full Text Available The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630 were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology.

  8. The Bactrocera oleae genome: localization of nine genes on the polytene chromosomes of the olive fruit fly (Diptera: Tephritidae).

    Science.gov (United States)

    Drosopoulou, Elena; Nakou, Ifigeneia; Mavragani-Tsipidou, Penelope

    2014-10-01

    Four homologous and five heterologous gene-specific sequences have been mapped by in situ hybridization on the salivary gland polytene chromosomes of the olive fruit fly, Bactrocera oleae. The nine genes were dispersed on four of the five autosomal chromosomes, thus enriching the available set of chromosome landmarks for this major agricultural pest. Present data further supports the proposed chromosome homologies among B. oleae, Ceratitis capitata, and Drosophila melanogaster and the idea of the conservation of chromosomal element identity throughout dipteran evolution.

  9. Sex-specific differences in the physiological basis of water conservation in the fruit fly Drosophila hydei from the western Himalayas

    National Research Council Canada - National Science Library

    Parkash, Ravi; Singh, Divya; Lambhod, Chanderkala

    2014-01-01

    In the cosmopolitan fruit fly Drosophila hydei Sturtevant, 1921 (Diptera: Drosophilidae), the relative abundance of males is significantly higher than females, but the physiological basis of such sex-specific differences are largely unknown...

  10. The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth.

    Science.gov (United States)

    Wan, Xuanwu; Nardi, Francesco; Zhang, Bin; Liu, Yinghong

    2011-01-01

    The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers.

  11. Whole Genome Sequencing of the Braconid Parasitoid Wasp Fopius arisanus, an Important Biocontrol Agent of Pest Tepritid Fruit Flies

    Directory of Open Access Journals (Sweden)

    Scott M. Geib

    2017-08-01

    Full Text Available The braconid wasp Fopius arisanus (Sonan is an important biological control agent of tropical and subtropical pest fruit flies, including two important global pests, the Mediterranean fruit fly (Ceratitis capitata, and the oriental fruit fly (Bactrocera dorsalis. The goal of this study was to develop foundational genomic resources for this species to provide tools that can be used to answer questions exploring the multitrophic interactions between the host and parasitoid in this important research system. Here, we present a whole genome assembly of F. arisanus, derived from a pool of haploid offspring from a single unmated female. The genome is ∼154 Mb in size, with a N50 contig and scaffold size of 51,867 bp and 0.98 Mb, respectively. Utilizing existing RNA-Seq data for this species, as well as publicly available peptide sequences from related Hymenoptera, a high quality gene annotation set, which includes 10,991 protein coding genes, was generated. Prior to this assembly submission, no RefSeq proteins were present for this species. Parasitic wasps play an important role in a diverse ecosystem as well as a role in biological control of agricultural pests. This whole genome assembly and annotation data represents the first genome-scale assembly for this species or any closely related Opiine, and are publicly available in the National Center for Biotechnology Information Genome and RefSeq databases, providing a much needed genomic resource for this hymenopteran group.

  12. Effect of adult chill treatments on recovery, longevity and flight ability of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae).

    Science.gov (United States)

    Reynolds, O L; Orchard, B A

    2011-02-01

    Control of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), populations or outbreaks may be achieved through the mass-rearing and inundative release of sterile B. tryoni. An alternative release method is to release chilled adult sterile fruit flies to decrease packaging and transport requirements and potentially improve release efficiencies. Two trials were conducted to determine the effect of chilling on the performance of two separate batches of adult B. tryoni, fed either a protein and sucrose diet or sucrose only diet. The first trial compared chill times of 0, 0.5, 2 and 4 h; the second trial compared chill times of 0, 2, 4, 8 and 24 h. Overall, there was little or no affect of chilling on the recovery, longevity and flight ability of B. tryoni chilled at 4°C. Recovery time can take up to 15 min for chilled adult flies. There was no effect of chill time on longevity although females generally had greater longevity on either diet compared with males. Propensity for flight was not adversely affected by chilling at the lower chill times in trial 1; however, in trial 2, adults fed on a protein and sucrose diet had a decreased tendency for flight as the chilling time increased. Fly body size did not affect recovery times although the smaller adult B. tryoni in trial 1 had significantly reduced longevity compared to the larger adults in trial 2. Implications of these findings for B. tryoni SIT are discussed.

  13. Screening mitochondrial DNA sequence variation as an alternative method for tracking established and outbreak populations of Queensland fruit fly at the species southern range limit

    OpenAIRE

    Blacket, Mark J.; Malipatil, Mali B.; Semeraro, Linda; Gillespie, Peter S.; Dominiak, Bernie C.

    2017-01-01

    Abstract Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long?term quarantine and population reduction control measures in the major ho...

  14. First record of the velvet ants (Hymenoptera: Mutillidae) reared from puparia of the ber fruit fly Carpomya vesuviana Costa (Diptera: Tephritidae) in Iran.

    Science.gov (United States)

    Amini, Alieh; Lelej, Arkady S; Sadeghi, Hussein; Karimi, Javad

    2014-09-18

    Two species of mutillids, Smicromyrme (Astomyrme) nikolskajae Lelej, 1985 and S. (Eremotilla) tekensis Skorikov, 1935, reared from puparia of ber fruit fly, Carpomya vesuviana Costa, in South Khorasan, Iran are recorded. Both mutillids are newly recorded from Iran. An overview of eight species of mutillids associated with six species of flies is given in the appendix. 

  15. Assessment of Ziziphus mauritiana grown on fly ash dumps: Prospects for phytoremediation but concerns with the use of edible fruit.

    Science.gov (United States)

    Pandey, Vimal Chandra; Mishra, Tripti

    2016-12-12

    A field study was carried out on fly ash dumps of Panki Thermal Power Station to assess the phytoaccumulation of elements in various plant parts of edible fruit tree Ziziphus mauritiana. Out of the twelve analysed elements, the highest concentration was found for Fe followed by Mn > Se > Zn > Mo > Cu > Cr > Pb > Cd >Ni > As > Co in rhizospheric substrate of Z. mauritiana grown on fly ash dumps. Metal accumulation, bioconcentration factor and translocation factor for each metal was calculated in various parts of the edible fruit tree. Significant variations of metal accumulations were observed amongst various plant parts. Accumulation of toxic elements was higher in roots and it gradually declined towards the aerial parts of the plant corresponding to its distance from the ground. The concentration of some elements in fruit tree was found to be above prescribed limits in edible parts. Therefore, the present study suggested that additional care should be undertaken, if edible fruit trees are considered for phytoremediation or afforestation programs of FA dumps.

  16. Ocorrência precoce da mosca das frutas em ameixas Incidence of the southamerican fruit fly on plums

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Salles

    1999-06-01

    Full Text Available O objetivo deste estudo foi verificar qual o estágio fenológico mais precoce da fruta de ameixeira em que ocorreria o ataque de mosca das frutas Anastrepha fraterculus. Os estudos foram conduzidos em plantas adultas de ameixeira, expondo-se fêmeas grávidas da mosca das frutas, confinadas em gaiolas com frutos protegidos do ataque natural. Cinco cultivares de ameixeira foram estudados (Amarelinha, Pluma 7, Reubennel, Santa Rosa e Wade. Essa praga ataca frutos de qualquer um dos cultivares logo nos primeiros estádios do desenvolvimento, quando os mesmos têm somente cerca de 2 a 3cm de diâmetro.The incidence of the southamerican fruit fly, Anastrepha fraterculus, on plum cultivars is reported. The objective of this study was to know the earliest fruit phase that fly attack could occur. Fertilized females were confined with fruits in plum trees in an orchard. Five plums cultivars were studied: Amarelinha; Pluma 7; Reubennel; Santa Rosa and Wade. This pest attack fruits during first stages of their development, mainly they have only from 2 to 3 centimeters of diameter.

  17. Evaluation of Methyl Eugenol and Cue-Lure Traps with Solid Lure and Insecticide Dispensers for Fruit Fly Monitoring and Male Annihilation in the Hawaii Area-Wide Pest Management Program

    Science.gov (United States)

    Methyl eugenol (ME) and cue-lure (C-L) traps with solid lure dispensers were deployed in areas with low and high populations of oriental fruit fly, Bactrocera dorsalis (Hendel) and melon fly, B. cucurbitae (Coquillett), respectively. In low density areas, standard Jackson traps or Hawaii fruit fly A...

  18. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt (Diptera: Tephritidae.

    Directory of Open Access Journals (Sweden)

    Soo J Park

    Full Text Available The Queensland fruit fly, Bactrocera tryoni (Froggatt (Q-fly, is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT and mass trapping (MT are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl-2-butanone and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl and ethers (methyl ether, trimethylsilyl ether in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC, and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated.

  19. Raspberry Ketone Analogs: Vapour Pressure Measurements and Attractiveness to Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae).

    Science.gov (United States)

    Park, Soo J; Morelli, Renata; Hanssen, Benjamin L; Jamie, Joanne F; Jamie, Ian M; Siderhurst, Matthew S; Taylor, Phillip W

    2016-01-01

    The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated.

  20. Field evaluation of Mediterranean fruit fly mass trapping with Tripack as alternative to malathion bait-spraying in citrus orchards

    Energy Technology Data Exchange (ETDEWEB)

    Mediouni Ben Jemaa, J.; Bachrouch, O.; Allimi, E.; Dhouibi, M. H.

    2010-07-01

    The mass trapping technique based on the use of the female-targeted attractant lure Tri-pack as an alternative to malathion bait-spraying (control treatment) was tested in two citrus orchards in the North of Tunisia against the Mediterranean fruit fly Ceratitis capitata during 2006 and 2007. Results of mass trapping trials in 2006 and 2007 indicated that adult males Medfly captures showed reductions respect to control of 37.62% and 40.2% respectively in mandarin orange variety (Citrus reticulata) orchard compared to 36.48% and 47.29% in Washington navel orange variety (Citrus sinensis) field. Fruit damage assessment showed significant differences between the mass trapping with Tripack and malathion bait-spraying techniques in the reduction of the percentage of fruit punctures. The percentage of punctured fruit at harvest was significantly different between the treated and the control field in 2006 and in 2007 in the mandarin orange orchard. Nevertheless, in the Washington navel orange orchard, the percentage of punctured fruit at harvest was significantly different between the treated and the control field only in 2006. Thus, results obtained from this study showed that the mass trapping technique based on the use of the female-targeted lure Tri-pack could be involved as an appropriate strategy for the control of the Medfly and is as effective as malathion bait spraying treatment without leaving pesticide residues on fruit. (Author) 40 refs.

  1. Identification of novel vibration- and deflection-sensitive neuronal subgroups in Johnston’s organ of the fruit fly

    Directory of Open Access Journals (Sweden)

    Eriko eMatsuo

    2014-05-01

    Full Text Available The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Johnston’s organ (JO at the antennal base serves as a sensory organ in the fruit fly to detect these mechanosensory stimuli. Among the five anatomically defined subgroups of sensory neurons in JO, subgroups A and B detect sound vibrations and subgroups C and E respond to static deflections, such as gravity and wind. The functions of subgroup-D JO neurons, however, remain unknown. In this study, we used molecular-genetic methods to explore the physiologic properties of subgroup-D JO neurons. Both vibrations and static deflection of the antennal receiver activated subgroup-D JO neurons. This finding clearly revealed that zone D in the antennal mechanosensory and motor center (AMMC, the projection target of subgroup-D JO neurons, is a primary center for antennal vibrations and deflection in the fly brain. We anatomically identified two types of interneurons downstream of subgroup-D JO neurons, AMMC LNs and AMMC D1 neurons. AMMC LNs are local neurons whose projections are confined within the AMMC, connecting zones B and D. On the other hand, AMMC D1 neurons have both local dendritic arborizations within the AMMC and descending projections to the thoracic ganglia, suggesting that AMMC D1 neurons are likely to relay information of the antennal movement detected by subgroup-D JO neurons from the AMMC directly to the thorax. Together, these findings provide a neural basis for how JO and its brain targets encode information of complex movements of the fruit fly antenna.

  2. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedmann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Science.gov (United States)

    The Mediterranean fruit fly is one of the most destructive agricultural pests throughout the world due to its broad host plant range that includes more than 260 different fruits, flowers, vegetables, and nuts. Host preferences vary in different regions of the world, which can be associated with its ...

  3. Characterizing the developmental transcriptome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) through comparative genomic analysis with Drosophila melanogaster utilizing modENCODE datasets

    Science.gov (United States)

    Background The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family ...

  4. An overview of tropical pest species of bactrocera fruit flies (Diptera:Tephritidae) and the integration of biopesticides with other biological approaches for their management

    Science.gov (United States)

    Fruit flies (Diptera:Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas of the world. These species are such devastating crop pests that major control and eradication prog...

  5. Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding.

    Science.gov (United States)

    Khamis, Fathiya M; Masiga, Daniel K; Mohamed, Samira A; Salifu, Daisy; de Meyer, Marc; Ekesi, Sunday

    2012-01-01

    In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D(2) = 122.9) was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1) and against B. dorsalis s.s (11.4). Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s.), branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree.

  6. Taxonomic identity of the invasive fruit fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Fathiya M Khamis

    Full Text Available In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D(2 = 122.9 was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1 and against B. dorsalis s.s (11.4. Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s., branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree.

  7. Relating past and present diet to phenotypic and transcriptomic variation in the fruit fly.

    Science.gov (United States)

    May, Christina M; Zwaan, Bas J

    2017-08-22

    Sub-optimal developmental diets often have adverse effects on long-term fitness and health. One hypothesis is that such effects are caused by mismatches between the developmental and adult environment, and may be mediated by persistent changes in gene expression. However, there are few experimental tests of this hypothesis. Here we address this using the fruit fly, Drosophila melanogaster. We vary diet during development and adulthood in a fully factorial design and assess the consequences for both adult life history traits and gene expression at middle and old age. We find no evidence that mismatches between developmental and adult diet are detrimental to either lifespan or fecundity. Rather, developmental and adult diet exert largely independent effects on both lifespan and gene expression, with adult diet having considerably more influence on both traits. Furthermore, we find effects of developmental diet on the transcriptome that persist into middle and old-age. Most of the genes affected show no correlation with the observed phenotypic effects of larval diet on lifespan. However, in each sex we identify a cluster of ribosome, transcription, and translation-related genes whose expression is altered across the lifespan and negatively correlated with lifespan. As several recent studies have linked decreased expression of ribosomal and transcription related proteins to increased lifespan, these provide promising candidates for mediating the effects of larval diet on lifespan. We place our findings in the context of theories linking developmental conditions to late-life phenotypes and discuss the likelihood that gene expression differences caused by developmental exposure causally relate to adult ageing phenotypes.

  8. Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity.

    Directory of Open Access Journals (Sweden)

    William A Rogers

    2013-08-01

    Full Text Available The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE, little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B and sex-determination (DSX transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages.

  9. Effect of physiological and experiential state ofBactrocera tryoni flies on intra-tree foraging behavior for food (bacteria) and host fruit.

    Science.gov (United States)

    Prokopy, Ronald J; Drew, Richard A I; Sabine, Bruce N E; Lloyd, Annice C; Hamacek, Edward

    1991-09-01

    Using caged host trees on which we manipulated food and oviposition sites, we investigated the foraging behavior of individually-releasedBactrocera tryoni (Diptera: Tephritidae) females in relation to state of fly hunger for protein, presence or absence of bacteria as a source of protein, degree of prior experience with host fruit, and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or matureB. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odor of which is known to attractB. tryoni females. We found that 3-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odorless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. Together, our findings lead us to conclude that (1) the firstB. tryoni

  10. Ring-fluorinated analog of methyl eugenol: attractiveness to and metabolism in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Khrimian, Ashot; Siderhurst, Matthew S; Mcquate, Grant T; Liquido, Nicanor J; Nagata, Janice; Carvalho, Lori; Guzman, Filadelfo; Jang, Eric B

    2009-02-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are highly attracted to the natural phenylpropanoid methyl eugenol (ME). They compulsively feed on ME and metabolize it to ring and side-chain hydroxylated compounds that have both pheromonal and allomonal functions. Side-chain metabolic activation of ME leading to (E)-coniferyl alcohol has long been recognized as a primary reason for hepatocarcinogenicity of this compound in rodents. Earlier, we demonstrated that introduction of a fluorine atom at the terminal carbon of the ME side chain significantly depressed metabolism and specifically reduced formation of coniferyl alcohol but had little effect on field attractiveness to B. dorsalis. In the current paper, we demonstrate that fluorination of ME at the 4 position of the aromatic ring blocks metabolic ring-hydroxylation but overall enhances side-chain metabolism by increasing production of fluorinated (E)-coniferyl alcohol. In laboratory experiments, oriental fruit fly males were attracted to and readily consumed 1,2-dimethoxy-4-fluoro-5-(2-propenyl)benzene (I) at rates similar to ME but metabolized it faster. Flies that consumed the fluorine analog were as healthy post feeding as ones fed on methyl eugenol. In field trials, the fluorine analog I was approximately 50% less attractive to male B. dorsalis than ME.

  11. Contact toxicity of the crude extract of Chinese star anise fruits to house fly larvae and their development

    Directory of Open Access Journals (Sweden)

    Guntharee Sripongpun

    2008-08-01

    Full Text Available Contact toxicity of the ethanol crude extract of Chinese star anise fruits, Illicium verum Hook. F. (Illiciaceae to house fly larvae, Musca domestica L. (Diptera: Muscidae and their development were determined by a dipping method. Younger larvae were more susceptible than older. The median lethal concentration (LC50 values of the crude extract to the 2nd instar larvae at 24, 48 and 72 hours were 7.4x104, 4.1x104 and 3.2x104 mg/l, respectively. Furthermore, treated extractsaffected house fly development in pupal and adult stages. The number of test larvae developed to pupae and adults was lessthan that of control group. The crude extract at concentration 8.5x104 mg/l completely inhibited development from larvae to pupae. In addition, small pupae were found at every concentration between 2.5x103 -105x103 mg/l. Small treated pupae were observed more at higher concentrations. Some of them could continually develop to adults but their developmental percentageswere less than those of normal sized pupae in treatments and in control group. The crude extract of Chinese star anise fruits can be applied as an optional point source control of house fly.

  12. The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe?

    Directory of Open Access Journals (Sweden)

    Mathilde Poyet

    Full Text Available The Asiatic fruit fly Drosophila suzukii has recently invaded Europe and North and South America, causing severe damage to fruit production systems. Although agronomic host plants of that fly are now well documented, little is known about the suitability of wild and ornamental hosts in its exotic area. In order to study the potential trophic niche of D. suzukii with relation to fruit characteristics, fleshy fruits from 67 plant species were sampled in natural and anthropic ecosystems (forests, hedgerows, grasslands, coastal areas, gardens and urban areas of the north of France and submitted to experimental infestations. A set of fruit traits (structure, colour, shape, skin texture, diameter and weight, phenology potentially interacting with oviposition choices and development success of D. suzukii was measured. Almost half of the tested plant species belonging to 17 plant families allowed the full development of D. suzukii. This suggests that the extreme polyphagy of the fly and the very large reservoir of hosts producing fruits all year round ensure temporal continuity in resource availability and contribute to the persistence and the exceptional invasion success of D. suzukii in natural habitats and neighbouring cultivated systems. Nevertheless, this very plastic trophic niche is not systematically beneficial to the fly. Some of the tested plants attractive to D. suzukii gravid females stimulate oviposition but do not allow full larval development. Planted near sensitive crops, these "trap plants" may attract and lure D. suzukii, therefore contributing to the control of the invasive fly.

  13. The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe?

    Science.gov (United States)

    Poyet, Mathilde; Le Roux, Vincent; Gibert, Patricia; Meirland, Antoine; Prévost, Geneviève; Eslin, Patrice; Chabrerie, Olivier

    2015-01-01

    The Asiatic fruit fly Drosophila suzukii has recently invaded Europe and North and South America, causing severe damage to fruit production systems. Although agronomic host plants of that fly are now well documented, little is known about the suitability of wild and ornamental hosts in its exotic area. In order to study the potential trophic niche of D. suzukii with relation to fruit characteristics, fleshy fruits from 67 plant species were sampled in natural and anthropic ecosystems (forests, hedgerows, grasslands, coastal areas, gardens and urban areas) of the north of France and submitted to experimental infestations. A set of fruit traits (structure, colour, shape, skin texture, diameter and weight, phenology) potentially interacting with oviposition choices and development success of D. suzukii was measured. Almost half of the tested plant species belonging to 17 plant families allowed the full development of D. suzukii. This suggests that the extreme polyphagy of the fly and the very large reservoir of hosts producing fruits all year round ensure temporal continuity in resource availability and contribute to the persistence and the exceptional invasion success of D. suzukii in natural habitats and neighbouring cultivated systems. Nevertheless, this very plastic trophic niche is not systematically beneficial to the fly. Some of the tested plants attractive to D. suzukii gravid females stimulate oviposition but do not allow full larval development. Planted near sensitive crops, these "trap plants" may attract and lure D. suzukii, therefore contributing to the control of the invasive fly.

  14. Diversity and indices of infestation of fruit flies and their parasitoids in six coffee cultivars in the city of Bom Jesus of Itabapoana, RJ

    Directory of Open Access Journals (Sweden)

    Patrícia Sobral Silva

    2011-11-01

    Full Text Available This study focuses one of the most important pests of world fruit crop: the fruit flies, however, there are few studies concerned with their association with coffee fruit. This study was carried out in the municipality of Bom Jesus do Itabapoana, in the Northwest Region of Rio de Janeiro State, Brazil, aiming at determining the species which occur in the coffee plantations of this region, their natural infestation indices and the natural parasitism of these species. Mature fruits of six cultivars of Arabic coffee (‘Acauã’ ‘Catuaí Amarelo’, ‘Catuaí Vermelho’, ‘Catuaí 785’, ‘Mundo Novo’e ‘2SL Vermelho’ were collected. All cultivars evaluated were infested by fruit flies, which were associated with only one species of parasitoid in each cultivar. A total of 1,749 puparia were obtained and from which emerged 460 adults, being 441 specimens of fruit flies and 19 parasitoids. Four species of fruit flies were obtained: Anastrepha fraterculus (Wiedemman, 1830, Anastrepha sororcula (Zucchi, 1979, Ceratitis capitata (Wiedemann, 1824, (Tephritidae and Neosilba pendula Bezzi, 1919 (Lonchaeidae. The mean natural infestation index of the coffee fruits by fruit flies was of 291.5 puparia/kg and 0.4 puparia/fruit. There was a predominance of A. fraterculus over C. capitata, which was more frequent only in ‘Catuaí Vermelho’ and ‘Catuaí 785’. All parasitoids belong to the family Braconidae [Asobara sp., Opius bellus (Gahan, 1930 and Doryctobrachon areolatus (Szépligeti, 1911], which were responsible for a very low level of natural parasitism (1.1%.

  15. Fruit fly infestation in mango: A threat to the Horticultural sector in ...

    African Journals Online (AJOL)

    collected fruits; namely Bactrocera invadens, Ceratitis cosyra, Ceratitis rosa and Ceratitis capitata. Bactrocera invadens was the most prevalent species (98%), while C. capitata was the populous. A total of 73% of the mango fruit samples collected ...

  16. Additive and interactive effects of nutrient classes on longevity, reproduction, and diet consumption in the Queensland fruit fly (Bactrocera tryoni).

    Science.gov (United States)

    Fanson, Benjamin G; Taylor, Phillip W

    2012-03-01

    Insect lifespan is often closely linked to diet, and diet manipulations have been central to studies of ageing. Recent research has found that lifespan for some flies is maximised on a very low yeast diet, but once all yeast is removed, lifespan drops precipitously. Although effects of yeast availability on lifespan are commonly interpreted in terms of protein, yeast is a complex mix of nutrients and provides a rich source of vitamins, minerals and sterols. Elucidating which components of yeast are involved in this lifespan drop provides insights into more specific nutritional requirements and also provides a test for the commonplace interpretation of yeast in terms of protein. To this end, we fed Queensland fruit flies (Bactrocera tryoni) one of eight experimental diets that differed in the nutrient group(s) found in yeast that were added to sucrose: none, vitamins, minerals, amino acids, cholesterol, vitamin+mineral+cholesterol (VMC), vitamin+mineral+cholesterol+amino acids (VMCA), and yeast. We measured survival rates and egg production in single sex and mixed sex cages, as well as nutrient intake of individual flies. We found that the addition of minerals increased lifespan of both male and female flies housed in single sex cages by decreasing baseline mortality. The addition of just amino acids decreased lifespan in female flies; however, when combined with other nutrient groups found in yeast, amino acids increased lifespan by decreasing both baseline mortality and age-specific mortality. Flies on the yeast and VMCA diets were the only ones to show significant egg production. We conclude that the drop in lifespan observed when all yeast is removed is explained by missing micronutrients (vitamins, minerals and cholesterol) as well as the absence of protein in females, whereas minerals alone can explain the pattern for males. These results indicate a need for caution when interpreting effects of dietary yeast as effects of protein. Copyright © 2011 Elsevier

  17. Genetic differentiation associated with host plants and geography among six widespread species of South American Blepharoneura fruit flies (Tephritidae).

    Science.gov (United States)

    Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A

    2017-04-01

    Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. Natural Parasitism in Fruit Fly (Diptera: Tephritidae) Populations in Disturbed Areas Adjacent to Commercial Mango Orchards in Chiapas and Veracruz, Mexico.

    Science.gov (United States)

    Montoya, Pablo; Ayala, Amanda; López, Patricia; Cancino, Jorge; Cabrera, Héctor; Cruz, Jassmin; Martinez, Ana Mabel; Figueroa, Isaac; Liedo, Pablo

    2016-04-01

    To determine the natural parasitism in fruit fly populations in disturbed areas adjacent to commercial mango orchards in the states of Chiapas and Veracruz, Mexico, we recorded over one year the fruit fly-host associations, fly infestation, and parasitism rates in backyard orchards and patches of native vegetation. We also investigated the relationship between fruit size, level of larval infestation, and percent of parasitism, and attempted to determine the presence of superparasitism. The most recurrent species in trap catches was Anastrepha obliqua (Macquart), followed by Anastrepha ludens (Loew), in both study zones. The fruit infestation rates were higher in Chiapas than in Veracruz, with A. obliqua again being the most conspicuous species emerging from collected fruits. The diversity of parasitoids species attacking fruit fly larvae was greater in Chiapas, with a predominance of Doryctobracon areolatus (Szépligeti) in both sites, although the exotic Diachasmimorpha longicaudata (Ashmead) was well established in Chiapas. Fruit size was positively correlated with the number of larvae per fruit, but this relationship was not observed in the level of parasitism. The number of oviposition scars was not related to the number of immature parasitoids inside the pupa of D. areolatus emerging from plum fruits. Mass releases of Di. longicaudata seem not to affect the presence or prevalence of the native species. Our findings open new research scenarios on the role and impact of native parasitoid species attacking Anastrepha flies that can contribute to the development of sound strategies for using these species in projects for augmentative biological control. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia.

    Science.gov (United States)

    Vargas, Roger I; Leblanc, Luc; Putoa, Rudolph; Eitam, Avi

    2007-06-01

    Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), was discovered on Tahiti Island in July 1996. Eradication programs were conducted from 1997 to 2001, but failed. From 1998 to 2006, B. dorsalis was recovered from 29 different host fruit from the five Society Islands: Tahiti, Moorea, Raiatea, Tahaa, and Huahine. Analysis of coinfestation patterns by B. dorsalis, Bactrocera tryoni (Froggatt), and Bactrocera kirki (Froggatt) suggested B. dorsalis had displaced these two species and become the most abundant fruit fly in coastal areas. To suppress B. dorsalis populations, a classical biological control program was initiated to introduce the natural enemy Fopius arisanus (Sonan) (Hymenoptera: Braconidae) into French Polynesia from Hawaii. Wasps were released and established on Tahiti, Moorea, Raiatea, Tahaa, and Huahine Islands. In guava, Psidium guajava L., collections for Tahiti, F. arisanus parasitism of fruit flies was 2.1, 31.8, 37.5, and 51.9% for fruit collected for 2003, 2004, 2005 and 2006, respectively. Based on guava collections in 2002 (before releases) and 2006 (after releases), there was a subsequent decrease in numbers of B. dorsalis, B. tryoni, and B. kirki fruit flies emerging (per kilogram of fruit) by 75.6, 79.3, and 97.9%, respectively. These increases in F. arisanus parasitism and decreases in infestation were similar for other host fruit. Establishment of F. arisanus is the most successful example of classical biological control of fruit flies in the Pacific area outside of Hawaii and serves as a model for introduction into South America, Africa, and China where species of the B. dorsalis complex are established.

  20. Eficácia de atrativos alimentares na captura de moscas-das-frutas em pomar de citros Attractiveness of food baits to the fruit flies in citrus orchard

    Directory of Open Access Journals (Sweden)

    Adalton Raga

    2006-01-01

    Full Text Available As moscas-das-frutas (Diptera: Tephritoidea são importantes pragas de frutas cítricas no Estado de São Paulo, principalmente Anastrepha fraterculus (Wied. e Ceratitis capitata (Wied.. O objetivo deste estudo foi medir a eficiência dos atrativos alimentares para monitoramento de moscas-das-frutas, em pomar de citros. O delineamento experimental adotado foi de blocos ao acaso com cinco tratamentos e cinco repetições. O ensaio foi instalado em 30/9/2003 e desenvolvidopor nove semanas. Os atrativos testados foram: proteínas hidrolisadas comerciais Bio Anastrepha, Isca Mosca e Aumax®, todas diluídas em água a 5%; melaço a 7% isoladamente e melaço a 7% em mistura com suco de laranja a 10%. Foram utilizados semanalmente, 400mL da solução atrativa por frasco plástico McPhail instalado na copa de laranjeiras da variedade 'Pêra Rio'. As soluções eram renovadas semanalmente, ocasião em que os adultos eram coletados e çevados ao laboratório para contagem, sexagem e identificação. Foram capturados 1.821 adultos de Tephritoidea, sendo 892 de Anastrepha spp., 731 de C. capitata e 198 de Neosilba spp. Para essas espécies, as proteínas Bio Anastrepha e Isca Mosca foram altamente eficientes e semelhantes entre si, capturando 44,5% e 41,3% dos adultos de Tephritidae respectivamente. Não houve diferença entre as espécies de Tephritidae analisadas por sexo capturadas em Bio Anastrepha, Aumax® e melaço. Aumax®, melaço isoladamente e melaço + suco de laranja atraíram apenas 4,6%, 1,3% e 1,2% do total de adultos de Tephritidae, respectivamente. Melaço isoladamente e melaço com suco de laranja foram mais eficazes na atratividade de Zaprionus indianus (Gupta (Diptera: Drosophilidae.Fruit flies (Diptera: Tephritoidea are key pests in citrus production in the State of São Paulo, Brazil, mainly Anastrepha fraterculus (Wied. and Ceratitis capitata (Wied.. The objective of this study was to evaluate food baits to monitor fruit fly

  1. Gamma radiation tolerance in different life stages of the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Paithankar, Jagdish Gopal; Deeksha, K; Patil, Rajashekhar K

    2017-04-01

    Insects are known to have higher levels of radiation tolerance than mammals. The fruit fly Drosophila provides opportunities for genetic analysis of radiation tolerance in insects. A knowledge of stage-specific sensitivity is required to understand the mechanisms and test the existing hypothesis of insect radiation tolerance. Drosophila melanogaster were irradiated using gamma rays at different life stages. Irradiation doses were chosen to start from 100-2200 Gy with increments of 100 Gy, with a dose rate of 12.5 and 25 Gy/min. The threshold of mortality, LD50 and LD100 1 h post-irradiation was recorded for larvae and adults and 24 h post-irradiation for eggs and after 2-3 days for early and late pupae. Total antioxidant capacity for all the life stages was measured using the phosphomolybdenum method. Twenty-four hours post-irradiation, 100% mortality was recorded for eggs at 1000 Gy. One hour post irradiation 100% mortality was recorded at 1300 Gy for first instar larvae, 1700 Gy for second instar larvae, 1900 Gy for feeding third instar larvae and 2200 Gy for non-feeding third instar larvae. Post-irradiation complete failure of emergence (100% mortality) was observed at 130 Gy for early pupae and 1500 Gy for late pupae; 100% mortality was observed at 1500 Gy for adults. The values of LD50 were recorded as 452 Gy for eggs, 1049 Gy for first instar larvae, 1350 Gy for second instar larvae, 1265 Gy for feeding third instar larvae, 1590 Gy for non-feeding third instar larvae, 50 Gy for early pupae, 969 Gy for late pupae, 1228 Gy for adult males and 1250 Gy for adult females. Early pupae were found to be prone to radiation, whereas the non-feeding third instar larvae were most resistant among all stages. The chromosome number being constant and total antioxidant capacity being nearly constant in all stages, we suggest that high rate of cell division during early pupae makes this stage sensitive to radiation.

  2. Isolation and identification of host cues from mango, Mangifera indica, that attract gravid female oriental fruit fly, Bactrocera dorsalis.

    Science.gov (United States)

    Jayanthi, Pagadala D Kamala; Woodcock, Christine M; Caulfield, John; Birkett, Michael A; Bruce, Toby J A

    2012-04-01

    The oriental fruit fly, Bactrocera dorsalis, is an economically damaging, polyphagous pest of fruit crops in South-East Asia and Hawaii, and a quarantine pest in other parts of the world. The objective of our study was to identify new attractants for B. dorsalis from overripe mango fruits. Headspace samples of volatiles were collected from two cultivars of mango, 'Alphonso' and 'Chausa', and a strong positive behavioral response was observed when female B. dorsalis were exposed to these volatiles in olfactometer bioassays. Coupled GC-EAG with female B. dorsalis revealed 7 compounds from 'Alphonso' headspace and 15 compounds from 'Chausa' headspace that elicited an EAG response. The EAG-active compounds, from 'Alphonso', were identified, using GC-MS, as heptane, myrcene, (Z)-ocimene, (E)-ocimene, allo-ocimene, (Z)-myroxide, and γ-octalactone, with the two ocimene isomers being the dominant compounds. The EAG-active compounds from 'Chausa' were 3-hydroxy-2-butanone, 3-methyl-1-butanol, ethyl butanoate, ethyl methacrylate, ethyl crotonate, ethyl tiglate, 1-octen-3-ol, ethyl hexanoate, 3-carene, p-cymene, ethyl sorbate, α-terpinolene, phenyl ethyl alcohol, ethyl octanoate, and benzothiazole. Individual compounds were significantly attractive when a standard dose (1 μg on filter paper) was tested in the olfactometer. Furthermore, synthetic blends with the same concentration and ratio of compounds as in the natural headspace samples were highly attractive (P < 0.001), and in a choice test, fruit flies did not show any preference for the natural samples over the synthetic blends. Results are discussed in relation to developing a lure for female B. dorsalis to bait traps with.

  3. Effects of microwave-assisted hot water treatments designed against Mexican fruit fly (Anastrepha ludens) on grapefruit (Citrus paradisi) quality.

    Science.gov (United States)

    Soto-Reyes, Nohemi; Lopez-Malo, Aurelio; Rojas-Laguna, Roberto; Gómez-Salazar, Julián Andrés; Sosa-Morales, María Elena

    2017-12-18

    Hot water treatment (HWT) against Anastrepha ludens were developed achieving 48°C in the core of grapefruits and holding it for 6 min. After heating, the grapefruits were hydro-cooled and stored at 23°C and analyzed for 16 days. The effect of microwave-assisted hot water treatment (MW-HWT) on grapefruit quality was analyzed and compared with the quality of fruits treated with HWT and control fruits (without treatment). The physico-chemical properties and chemical composition of essential oil were analyzed. MW-HWT was equivalent to HWT according to accumulated heat calculations, with the advantage of being shorter. Treatments significantly affected the weight, color, maturity index, juice content, firmness, titratable acidity, pH and ascorbic acid content of the grapefruits (P 0.05). The major components identified in the essential oil were D-limonene and β-myrcene, compounds responsible of the scent of the grapefruits. Microwave-assisted hot water treatment (MW-HWT) was shorter (130 min) and had a lesser effect on the quality of the grapefruit when compared to fruits under HWT (188 min duration). Thus, this treatment could be considered as an alternative method against the Mexican fruit fly in grapefruit. This article is protected by copyright. All rights reserved.

  4. Suppression of Mediterranean Fruit Fly (Diptera: Tephritidae) With Trimedlure and Biolure Dispensers in Coffea arabica (Gentianales: Rubiaceae) in Hawaii.

    Science.gov (United States)

    Vargas, Roger I; Souder, Steven K; Rendon, Pedro; Mackey, Bruce

    2017-11-23

    To assess the potential to suppress Mediterranean fruit fly, Ceratitis capitata (Wiedemann; Diptera: Tephritidae), via mass trapping with Trimedlure (TML), we compared fly catch (as catch per trap per time period) provided by either a novel, solid, triple-lure dispenser with TML, methyl eugenol (ME), and raspberry ketone (RK) (TMR) or solid TML plugs, both without insecticides, in addition to Biolure bait stations. Work was done in a coffee plantation that had a dense C. capitata population. Three treatments were compared: 1) TMR or TML (50 traps per ha), 2) Biolure (50 traps per ha), 3) TML (25 per ha) or TMR (25 per ha) + Biolure (25 per ha), and 4) an untreated control. During coffee season, based on C. capitata captures (mean flies per trap per wk) inside plastic McPhail traps, all treatments were significantly different than the control: Biolure (9.57) = TMR (11.28) = Biolure +TMR (13.50) < Control (36.06 flies/trap/wk). During non-coffee season, all treatments were significantly different than the control and TML was significantly lower than Biolure (wax matrix bait stations): TML (0.95) < Biolure (1.43) = Biolure +TML (1.77) < Control (2.81 flies/trap/wk). Surprisingly, captures were not lower in plots treated with combinations of Biolure + TMR or TML, compared to individual plots with Biolure or TML or TMR alone. Mass trapping with either TML or TMR dispensers deserves further study as a component of Integrated Pest Management programs for C. capitata in Hawaii and may have global potential for management of C. capitata. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae).

    Science.gov (United States)

    Wang, Jiang-Ning; Chen, Xiao-Lin; Hou, Xin-Wen; Zhou, Li-Bing; Zhu, Chao-Dong; Ji, Li-Qiang

    2017-07-01

    Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Assessment of Attractiveness of Cassava as a Roosting Plant for the Melon Fly, Bactrocera cucurbitae, and the Oriental Fruit Fly, B. dorsalis

    Science.gov (United States)

    McQuate, Grant T.

    2011-01-01

    Application of bait spray to crop borders is a standard approach for suppression of melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) populations and may also be of value for suppression of oriental fruit fly, B. dorsalis (Hendel) populations. Establishment of preferred roosting hosts as crop borders may help to improve suppression of both fruit fly species by providing sites for bait spray applications. In an area-wide B. cucurbitae suppression trial, the question was raised as to whether cassava, Manihot esculenta Crantz (Euphorbiales: Euphorbiaceae), could be used as a B. cucurbitae roosting host. M. esculenta was of interest as a roosting host because, in contrast to many other identified preferred roosting hosts, it would also be a crop potentially increasing the productivity of the crop production system overall. As a short-lived and shrubby perennial, M. esculenta potentially constitutes a crop with more persistent roosting foliage than an annual crop such as corn, Zea mays L. (Cyperales: Poaceae), that has often been planted as a roosting host for B. cucurbitae control. Using protein-baited traps set amidst potted plants placed adjacent to a papaya Carica papaya L. (Violales: Caricaceae) orchard known to have established populations of B. cucurbitae and B. dorsalis, the effectiveness of M. esculenta as a roosting host was assessed by comparing its attractiveness to that of castor bean, Ricinus communis L (Malpighiales: Euphorbiaceae), previously identified as one of the most attractive roosting hosts for B. cucurbitae, and to corn, a crop which has been planted as a roosting host for help in B. cucurbitae control. The results showed that use of M. esculenta as a roosting host is comparable to use of R. communis by both B. cucurbitae and B. dorsalis. These results provide encouragement to incorporate M. esculenta on a farm as a trap crop (i.e. site for bait spray application). This has the advantage of having the trap crop be a crop on its

  7. Ill-conditioned Problems Robust Solution of Improved Fruit Fly Optimization Algorithm Combining with Tikhonov Regularization Method

    Directory of Open Access Journals (Sweden)

    FAN Qian

    2016-06-01

    Full Text Available Based on deeply analysis for optimization process of basic fruit fly optimization algorithm, an improved fruit fly optimization (IFOA algorithm is proposed via changing random search direction and adding to a tuning coefficient of search radius. Moreover, through introducing the regularization term of objective function in IFOA algorithm, a new method that IFOA algorithm is combined with Tikhonov regularization method is put forward in order to resolving ill-conditioned problems. Analysis results of practical example show that solution accuracy of new method is superior to genetic algorithm and single Tikhonov regularization method. When observation contains gross errors, the deviation between the results and the true value will increase rapidly using least square method to solve ill-conditioned problems. At this time, the new method has strong robustness. Compared with intelligent search method represented by genetic algorithm, new method has the characteristics of less parameter, fast calculation speed, simple optimization process. It is more practical in ill-conditioned problems solution.

  8. Toxic and hormetic-like effects of three components of citrus essential oils on adult Mediterranean fruit flies (Ceratitis capitata.

    Directory of Open Access Journals (Sweden)

    Stella A Papanastasiou

    Full Text Available Plant essential oils (EOs and a wide range of their individual components are involved in a variety of biological interactions with insect pests including stimulatory, deterrent, toxic and even hormetic effects. Both the beneficial and toxic properties of citrus EOs on the Mediterranean fruit fly (medfly have been experimentally evidenced over the last years. However, no information is available regarding the toxic or beneficial effects of the major components of citrus EOs via contact with the adults of the Mediterranean fruit fly. In the present study, we explored the toxicity of limonene, linalool and α-pinene (3 of the main compounds of citrus EOs against adult medflies and identified the effects of sub-lethal doses of limonene on fitness traits in a relaxed [full diet (yeast and sugar] and in a stressful (sugar only feeding environment. Our results demonstrate that all three compounds inferred high toxicity to adult medflies regardless of the diet, with males being more sensitive than females. Sub-lethal doses of limonene (LD20 enhanced the lifespan of adult medflies when they were deprived of protein. Fecundity was positively affected when females were exposed to limonene sub-lethal doses. Therefore, limonene, a major constituent of citrus EOs, induces high mortality at increased doses and positive effects on life history traits of medfly adults through contact at low sub-lethal doses. A hormetic-like effect of limonene to adult medflies and its possible underlying mechanisms are discussed.

  9. Opiine parasitoids (Hymenoptera: Braconidae) of tropical fruit flies (Diptera: Tephritidae) of the Australian and South Pacific region.

    Science.gov (United States)

    Carmichael, A E; Wharton, R A; Clarke, A R

    2005-12-01

    Opiine wasps are parasitoids of dacine fruit flies, the primary horticultural pests of Australia and the South Pacific. A taxonomic synopsis and distribution and host records (44% of which are new) for each of the 15 species of dacine-parasitizing opiine braconids found in the South Pacific is presented. Species dealt with are Diachasmimorpha hageni (Fullaway), D. kraussii (Fullaway), D. longicaudata (Ashmead), D. tryoni (Cameron), Fopius arisanus (Sonan), F. deeralensis (Fullaway), F. ferrari Carmichael & Wharton sp. n., F. illusorius (Fischer) comb. n., F. schlingeri Wharton, Opius froggatti Fullaway, Psyttalia fijiensis (Fullaway), P. muesebecki (Fischer), P. novaguineensis (Szépligeti) and Utetes perkinsi (Fullaway). A potentially undescribed species, which may be a colour morph of F. vandenboschi (Fullaway), is diagnosed but not formally described. Fopius vandenboschi sensu stricto, Diachasmimorpha fullawayi Silvestri, Psyttalia concolor Szépligeti and P. incisi Silvestri have been liberated into the region but are not considered to have established: a brief diagnosis of each is included. Biosteres illusorius Fischer is formally transferred to the genus Fopius. A single opiine specimen reared from a species of Bactrocera (Bulladacus) appears to be Utetes albimanus (Szépligeti), but damage to this specimen and to the holotype (the only previously known specimen) means that this species remains unconfirmed as a fruit fly parasite: a diagnosis of U. cf. albimanus is provided. Psyttalia novaguineensis could not be adequately separated from P. fijiensis using previously published characterizations and further work to resolve this complex is recommended. A key is provided to all taxa.

  10. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni.

    Science.gov (United States)

    Thaochan, N; Drew, R A I; Hughes, J M; Vijaysegaran, S; Chinajariyawong, A

    2010-01-01

    Bacteria were isolated from the crop and midgut of field collected Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Two methods were used, firstly isolation onto two types of bacteriological culture media (PYEA and TSA) and identification using the API-20E diagnostic kit, and secondly, analysis of samples using the 16S rRNA gene molecular diagnostic method. Using the API-20E method, 10 genera and 17 species of bacteria in the family Enterobacteriaceae were identified from cultures growing on the nutrient agar. The dominant species in both the crop and midgut were Citrobacter freundii, Enterobacter cloacae and Klebsiella oxytoca. Providencia rettgeri, Klebsiella pneumoniae ssp ozaenae and Serratia marcescens were isolated from B. tryoni only. Using the molecular cloning technique that is based on 16S rRNA gene sequences, five bacteria classes were dignosed — Alpha-, Beta-, Gamma- and Delta- Proteobacteria and Firmicutes — including five families, Leuconostocaceae, Enterococcaceae, Acetobacteriaceae, Comamonadaceae and Enterobacteriaceae. The bacteria affiliated with Firmicutes were found mainly in the crop while the Gammaproteobacteria, especially the family Enterobacteriaceae, was dominant in the midgut. This paper presents results from the first known application of molecular cloning techniques to study bacteria within tephritid species and the first record of Firmicutes bacteria in these flies.

  11. Kinetics of Colonization of Adult Queensland Fruit Flies (Bactrocera tryoni) by Dinitrogen-Fixing Alimentary Tract Bacteria.

    Science.gov (United States)

    Murphy, K M; Teakle, D S; Macrae, I C

    1994-07-01

    The average total population of bacteria remained constant in the alimentary tracts of adult laboratory-raised Queensland fruit flies (Bactrocera tryoni) although the insects had ingested large numbers of live bacteria as part of their diet. The mean number of bacteria (about 13 million) present in the gut of the insects from 12 to 55 days after emergence was not significantly modified when, at 5 days after emergence, the flies were fed antibiotic-resistant bacteria belonging to two species commonly isolated from the gut of field-collected B. tryoni. Flies were fed one marked dinitrogen-fixing strain each of either Klebsiella oxytoca or Enterobacter cloacae, and the gastrointestinal tracts of fed flies were shown to be colonized within 7 days by antibiotic-resistant isolates of K. oxytoca but not E. cloacae. The composition of the microbial population also appeared to be stable in that the distribution and frequency of bacterial taxa among individual flies exhibited similar patterns whether or not the flies had been bacteria fed. Isolates of either E. cloacae or K. oxytoca, constituting 70% of the total numbers, were usually dominant, with oxidative species including pseudomonads forming the balance of the population. Antibiotic-resistant bacteria could be spread from one cage of flies to the adjacent surfaces of a second cage within a few days and had reached a control group several meters distant by 3 weeks. Restriction of marked bacteria to the population of one in five flies sampled from the control group over the next 30 days suggested that the bacterial population in the gut of the insect was susceptible to alteration in the first week after emergence but that thereafter it entered a steady state and was less likely to be perturbed by the introduction of newly encountered strains. All populations sampled, including controls, included at least one isolate of the dinitrogen-fixing family Enterobacteriaceae; many were distinct from the marked strains fed to the

  12. Mobile mating disruption of light-brown apple moths using pheromone-treated sterile Mediterranean fruit flies.

    Science.gov (United States)

    Suckling, David M; Woods, Bill; Mitchell, Vanessa J; Twidle, Andrew; Lacey, Ian; Jang, Eric B; Wallace, Andrew R

    2011-08-01

    Public opposition to aerial application of sex pheromone for mating disruption of light-brown apple moth (LBAM), Epiphyas postvittana (Walk.), in California stopped its further use in the ca $74 million eradication programme in 2008, underscoring the need for other eradication tactics. It is demonstrated that pheromone-treated sterile Mediterranean fruit flies (medflies), Ceratitis capitata Wied., can disrupt communication in male moths. Medflies topically dosed with moth pheromone (E)-11-tetradecenyl acetate showed a no observed effect level (NOEL) of ~10 µg fly(-1) , with increasing toxicity from 30 to 100 µg fly(-1) . Greater potency and longevity of attraction and lower mortality were achieved using microencapsulated pheromone. Releases of 1000 pheromone-treated medflies ha(-1) prevented male moth catch to synthetic lures in treated 4 ha plots for 1 day in suburban Perth, Australia. Releases of ca 3000 pheromone-treated medflies ha(-1) disrupted catch to single female moths in delta traps, and to synthetic pheromone lures. Percentage disruption on the first four nights was 95, 91, 82 and 85%. Disruption of moth catch using pheromone-treated medflies is a novel development that, with future improvement, might provide a socially acceptable approach for application of the insect mating disruption technique to control invasive insects in urban environments. Adequacy of payload and other issues require resolution. Copyright © 2011 Society of Chemical Industry.

  13. Ability of male Queensland fruit flies to inhibit receptivity in multiple mates, and the associated recovery of accessory glands.

    Science.gov (United States)

    Radhakrishnan, Preethi; Taylor, Phillip W

    2008-02-01

    Mating success of male insects is commonly determined by their ability to find and copulate with multiple females, but is also determined by their ability to transfer an effective ejaculate. In order to succeed in these tasks, males must first succeed in replenishing the necessary reproductive reserves between mating opportunities. We here investigate the ability of male Queensland fruit flies ('Q-fly') to recover from their first matings in time to both mate again the following day and to induce sexual inhibition in successive mates. We have previously found that accessory gland fluids (AGFs) transferred in the ejaculate of male Q-flies are directly responsible for induction of sexual inhibition in their mates. We here investigate changes in male accessory gland, testis and ejaculatory apodeme dimensions that are likely to reflect depletion and recovery of contents. We found no differences between virgin and previously mated males in their ability to obtain matings or to induce sexual inhibition in their mates, indicating a full recovery of the necessary reproductive reserves between mating opportunities. Whereas no changes were detected in testis or ejaculatory apodeme size following mating, the recovery of male ability to inhibit female remating was closely reflected in the mesodermal accessory gland dimensions; these accessory glands greatly diminished in size (length and area) immediately after mating, with recovery commencing between 5.5 and 11 h after mating. The accessory glands then expanded to reach their original size in time to mate the following day and induce sexual inhibition in the next mate.

  14. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.

    Science.gov (United States)

    Beatus, Tsevi; Cohen, Itai

    2015-08-01

    While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.

  15. Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil.

    Directory of Open Access Journals (Sweden)

    Cesar A Marchioro

    Full Text Available The carambola fruit fly, Bactrocera carambolae, is a tephritid native to Asia that has invaded South America through small-scale trade of fruits from Indonesia. The economic losses associated with biological invasions of other fruit flies around the world and the polyphagous behaviour of B. carambolae have prompted much concern among government agencies and farmers with the potential spread of this pest. Here, ecological niche models were employed to identify suitable environments available to B. carambolae in a global scale and assess the extent of the fruit acreage that may be at risk of attack in Brazil. Overall, 30 MaxEnt models built with different combinations of environmental predictors and settings were evaluated for predicting the potential distribution of the carambola fruit fly. The best model was selected based on threshold-independent and threshold-dependent metrics. Climatically suitable areas were identified in tropical and subtropical regions of Central and South America, Sub-Saharan Africa, west and east coast of India and northern Australia. The suitability map of B. carambola was intersected against maps of fruit acreage in Brazil. The acreage under potential risk of attack varied widely among fruit species, which is expected because the production areas are concentrated in different regions of the country. The production of cashew is the one that is at higher risk, with almost 90% of its acreage within the suitable range of B. carambolae, followed by papaya (78%, tangerine (51%, guava (38%, lemon (30%, orange (29%, mango (24% and avocado (20%. This study provides an important contribution to the knowledge of the ecology of B. carambolae, and the information generated here can be used by government agencies as a decision-making tool to prevent the carambola fruit fly spread across the world.

  16. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications.

    Directory of Open Access Journals (Sweden)

    Fei Ye

    Full Text Available This paper proposes a new support vector machine (SVM optimization scheme based on an improved chaotic fly optimization algorithm (FOA with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.

  17. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications

    Science.gov (United States)

    Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm’s performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem. PMID:28369096

  18. A centralised remote data collection system using automated traps for managing and controlling the population of the Mediterranean (Ceratitis capitata) and olive (Dacus oleae) fruit flies

    Science.gov (United States)

    Philimis, Panayiotis; Psimolophitis, Elias; Hadjiyiannis, Stavros; Giusti, Alessandro; Perelló, Josep; Serrat, Albert; Avila, Pedro

    2013-08-01

    The present paper describes the development of a novel monitoring system (e-FlyWatch system) for managing and controlling the population of two of the world's most destructive fruit pests, namely the olive fruit fly (Bactrocera oleae, Rossi - formerly Dacus oleae) and the Mediterranean fruit fly (Ceratitis capitata, also called medfly). The novel monitoring system consists of a) novel automated traps with optical and motion detection modules for capturing the flies, b) local stations including a GSM/GPRS module, sensors, flash memory, battery, antenna etc. and c) a central station that collects, stores and publishes the results (i.e. insect population in each field, sensor data, possible error/alarm data) via a web-based management software.The centralised data collection system provides also analysis and prediction models, end-user warning modules and historical analysis of infested areas. The e-FlyWatch system enables the SMEs-producers in the Fruit, Vegetable and Olive sectors to improve their production reduce the amount of insecticides/pesticides used and consequently the labour cost for spraying activities, and the labour cost for traps inspection.

  19. Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies.

    Science.gov (United States)

    Velandia-Huerto, Cristian A; Berkemer, Sarah J; Hoffmann, Anne; Retzlaff, Nancy; Romero Marroquín, Liliana C; Hernández-Rosales, Maribel; Stadler, Peter F; Bermúdez-Santana, Clara I

    2016-08-11

    Transfer RNAs (tRNAs) are ubiquitous in all living organism. They implement the genetic code so that most genomes contain distinct tRNAs for almost all 61 codons. They behave similar to mobile elements and proliferate in genomes spawning both local and non-local copies. Most tRNA families are therefore typically present as multicopy genes. The members of the individual tRNA families evolve under concerted or rapid birth-death evolution, so that paralogous copies maintain almost identical sequences over long evolutionary time-scales. To a good approximation these are functionally equivalent. Individual tRNA copies thus are evolutionary unstable and easily turn into pseudogenes and disappear. This leads to a rapid turnover of tRNAs and often large differences in the tRNA complements of closely related species. Since tRNA paralogs are not distinguished by sequence, common methods cannot not be used to establish orthology between tRNA genes. In this contribution we introduce a general framework to distinguish orthologs and paralogs in gene families that are subject to concerted evolution. It is based on the use of uniquely aligned adjacent sequence elements as anchors to establish syntenic conservation of sequence intervals. In practice, anchors and intervals can be extracted from genome-wide multiple sequence alignments. Syntenic clusters of concertedly evolving genes of different families can then be subdivided by list alignments, leading to usually small clusters of candidate co-orthologs. On the basis of recent advances in phylogenetic combinatorics, these candidate clusters can be further processed by cograph editing to recover their duplication histories. We developed a workflow that can be conceptualized as stepwise refinement of a graph of homologous genes. We apply this analysis strategy with different types of synteny anchors to investigate the evolution of tRNAs in primates and fruit flies. We identified a large number of tRNA remolding events concentrated

  20. Mortality in Tephritid Fruit Fry Puparia and Adults Caused by ...

    African Journals Online (AJOL)

    user1

    LEZAMA-CUTIÉRREZ, R., TRUJILLO-DE-LA LUZ, A.,. MOLINA-OCHOA, J., REBOLLEDO-DOMINGUEZ, O.,. PESCADOR, A.R., LOPEZ-EDWARDS, M. & ALUJA, M. 2000. Virulence of Metarhizium anisopliae (deuteromycotina: hyphomycetes) on Anastrepha ludens (Diptera: Tephritidae): laboratory and field trials. Journal of ...

  1. A novel lenticular arena to quantify locomotor competence in walking fruit flies.

    Science.gov (United States)

    Tom Mekdara, Nalong; Goto, Joy June; Choudhury, Songita; Jerry Mekdara, Prasong; Yingst, Nicholas; Cao, Yu; Berg, Otto; Katharina Müller, Ulrike

    2012-07-01

    Drosophila melanogaster has become an important invertebrate model organism in biological and medical research, for mutational and genetic analysis, and in toxicological screening. Many screening assays have been developed that assess the flies' mortality, reproduction, development, morphology, or behavioral competence. In this study, we describe a new assay for locomotor competence. It comprises a circular walking arena with a lenticular floor and a flat cover (the slope of the floor increases gradually from the center to the edge of the arena) plus automated fly tracking and statistical analysis. This simple modification of a flat arena presents a graduated physical challenge, with which we can assess fine gradations of motor ability, since a fly's time average radial distance from the arena center is a direct indicator of its climbing ability. The time averaged distribution of flies as a function of slope, activity levels, and walking speed, yields a fine grained picture of locomotory ability and motivation levels. We demonstrate the strengths and weaknesses of this assay (compared with a conventional tap-down test) by observing flies treated with a neurotoxin (BMAA) that acts as a glutamate agonist. The assay proves well suited to detect dose effects and progression effects with higher statistical power than the traditional tap-down, but it has a higher detection limit, making it less sensitive to treatment effects. © 2012 WILEY PERIODICALS, INC.

  2. Characterization of a β-Adrenergic-Like Octopamine Receptor in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel

    Directory of Open Access Journals (Sweden)

    Hui-Min Li

    2016-09-01

    Full Text Available The biogenic amine octopamine plays a critical role in the regulation of many physiological processes in insects. Octopamine transmits its action through a set of specific G-protein coupled receptors (GPCRs, namely octopamine receptors. Here, we report on a β-adrenergic-like octopamine receptor gene (BdOctβR1 from the oriental fruit fly, Bactrocera dorsalis (Hendel, a destructive agricultural pest that occurs in North America and the Asia-Pacific region. As indicated by RT-qPCR, BdOctβR1 was highly expressed in the central nervous system (CNS and Malpighian tubules (MT in the adult flies, suggesting it may undertake important roles in neural signaling in the CNS as well as physiological functions in the MT of this fly. Furthermore, its ligand specificities were tested in a heterologous expression system where BdOctβR1 was expressed in HEK-293 cells. Based on cyclic AMP response assays, we found that BdOctβR1 could be activated by octopamine in a concentration-dependent manner, confirming that this receptor was functional, while tyramine and dopamine had much less potency than octopamine. Naphazoline possessed the highest agonistic activity among the tested agonists. In antagonistic assays, mianserin had the strongest activity and was followed by phentolamine and chlorpromazine. Furthermore, when the flies were kept under starvation, there was a corresponding increase in the transcript level of BdOctβR1, while high or low temperature stress could not induce significant expression changes. The above results suggest that BdOctβR1 may be involved in the regulation of feeding processes in Bactrocera dorsalis and may provide new potential insecticide leads targeting octopamine receptors.

  3. The Investigations of Nitric Oxide Influence on Lifespan of Fruit Fly D. melanogaster Transgenic Strain dNOS4

    Directory of Open Access Journals (Sweden)

    Mamura Begmanova

    2014-12-01

    Full Text Available Introduction. Aging and longevity control are among the greatest problems in biology and medicine. The fruit fly Drosophila melanogaster is a nice model organism for longevity investigations because of its biological features. Many D. melanogaster genes have their orthologs, similar in other eukaryotes, including human. The role of nitric oxide (NO in the D. melanogaster lifespan has been analyzed.Methods. Virgin flies of dNOS4 transgenic strain were used for the experiment. This strain contains non-functional additional copies of nitric oxide synthase (NOS gene under heat shock promoter.  For promoter activation, transgenic flies on their second day of life were exposed to heat shock (37°C for an hour. After heat shock, flies were maintained on standard medium temperatures at 25°C, with females separate from males. Two types of control were used: Oregon R wild-type strain and Oregon R strain exposed to heat shock. The average lifespan was evaluated.Results. It was revealed that the longevity of females was significantly higher than males in each series of experiments (p < 0.05. The survival rate of females and males was similar in the first month of their life, but in the second month the mortality among males was much higher than among females in all series of experiments. The average lifespan of dNOS4 imago was 31 days (34 days for females and 28 days for males, maximum lifespan was 63 days. In controls, the average lifespan of Oregon R flies was 54 days (58 days for females and 50 days for males, and the maximum lifespan was 94 days. The average lifespan of Oregon R flies exposed to heat shock was 45 days (48 days for females and 41 days for males, and the maximum lifespan was 72 days. The difference between average lifespan in all studied groups is statistically significant (p < 0.05.Conclusion. Thus, NOS-transgene activation results in formation of non-functional  dNOS4-transcripts and NO deficiency. In turn, NO deficiency decreases d

  4. Impact of the Mediterranean fruit fly (medfly) Ceratitis capitata on different peach cultivars: the possible role of peach volatile compounds.

    Science.gov (United States)

    Tabilio, Maria Rosaria; Fiorini, Dennis; Marcantoni, Enrico; Materazzi, Stefano; Delfini, Maurizio; De Salvador, Flavio Roberto; Musmeci, Sergio

    2013-09-01

    The relationship between susceptibility of different peach cultivars (cvs) to the Mediterranean fruit fly (medfly), Ceratitis capitata, and the volatile composition of ripe fruit of each cv has been investigated, since understanding the fruit-insect interaction mechanism is crucial for developing control strategies for such a pest. Volatile compounds were analyzed by SPME-GC-MS in three cvs highly susceptible to medfly attack (Fair Time, Flaminia, Sicilia Piatta), and in two less susceptible cvs (Percoca Romagnola 7 and Doctor Davis). Among the volatile compounds detected, 88 could be identified. The main differences found in the volatile composition of the cvs, concerned the relative abundance of esters. The least susceptible cvs, above all Percoca Romagnola 7, contained the higher amounts of hexenyl, hexyl, 3-methylbutyl, butyl and 2-methylpropyl esters; among these, some C6 derivatives detected, such as (Z)-3-hexenyl acetate, are known to act as priming agents, enhancing plant defence response to insects. Instead, a lower relative content of methyl esters, such as methyl hexanoate and methyl octanoate, known to act as medfly pheromone and attractant respectively, was found in the least susceptible cvs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata

    OpenAIRE

    Siciliano, P.; He, X.L.; Woodcock, C.; Pickett, J.A.; Field, L.M.; Birkett, M.A.; Kalinova, B.; Gomulski, L.M.; Scolari, F.; Gasperi, G.; Malacrida, A.R.; Zhou, J.J.

    2014-01-01

    The Mediterranean fruit fly (or medfly), Ceratitis capitata (Wiedemann; Diptera: Tephritidae), is a serious pest of agriculture worldwide, displaying a very wide larval host range with more than 250 different species of fruit and vegetables. Olfaction plays a key role in the invasive potential of this species. Unfortunately, the pheromone communication system of the medfly is complex and still not well established. In this study, we report the isolation of chemicals emitted by sexually mature...

  6. Metabolic rate and hypoxia tolerance are affected by group interactions and sex in the fruit fly (Drosophila melanogaster: new data and a literature survey

    Directory of Open Access Journals (Sweden)

    Warren Burggren

    2017-04-01

    Full Text Available Population density and associated behavioral adjustments are potentially important in regulating physiological performance in many animals. In r-selected species like the fruit fly (Drosophila, where population density rapidly shifts in unpredictable and unstable environments, density-dependent physiological adjustments may aid survival of individuals living in a social environment. Yet, how population density (and associated social behaviors affects physiological functions like metabolism is poorly understood in insects. Additionally, insects often show marked sexual dimorphism (larger females. Thus, in this study on D. melanogaster, we characterized the effects of fly density and sex on both mass-specific routine oxygen consumption (V̇O2 and hypoxia tolerance (PCrit. Females had significantly lower routine V̇O2 (∼4 µl O2 mg−1 h−1 than males (∼6 µl O2 mg−1 h−1 at an average fly density of 28 flies·respirometer chamber−1. However, V̇O2 was inversely related to fly density in males, with V̇O2 ranging from 4 to 11 µl O2 mg−1 h−1 at a density of 10 and 40 flies·chamber−1, respectively (r2=0.58, P0.5 flies, with higher fly densities having a lower PCrit. An extensive survey of the literature on metabolism in fruit flies indicates that not all studies control for, or even report on, fly density and gender, both of which may affect metabolic measurements.

  7. PENGARUH PEMBERIAN EKTRAK DAUN KERSEN (Muntingia calabura TERHADAP LALAT BUAH Bactrocera carambolae;THE INFLUENCE TO GIVING LEAF EXTRACT KERSEN (Muntingia calabura AGAINST FRUIT FLIES Bactrocera carambolae

    Directory of Open Access Journals (Sweden)

    Diah Asta Putri

    2016-12-01

    Full Text Available AbstrakLalat buah telah diketahui secara luas sebagai hama utama pada komoditas buah di Indonesia sehingga menyebabkan kerugian ekonomi yang besar. Daun kersen (Muntingia calabura telah diteliti mengandung beberapa senyawa yang berpotensi untuk mengendalikan serangan lalat buah. Penelitian ini bertujuan untuk mengetahui pengaruh ekstrak etanol daun kersen terhadap Bactrocera carambolae, salah satu jenis lalat buah yang menyerang berbagai buah-buahan sebagai inangnya. Ekstrak etanol daun kersen dengan konsentrasi yang berbeda yaitu 0%, 2,5%, 5% dan 7,5% disemprotkan ke permukaan buah jambu biji (Psidium guajava dan diamati pengaruhnya terhadap lalat buah tersebut. Parameter dalam penelitian ini yaitu jumlah pupa dan jumlah lalat dewasa. Data dianalisis menggunakan uji analisis varians (uji F α = 0,05 dilanjutkan dengan uji Beda Nyata Terkecil (BNT. Hasil penelitian menunjukkan semakin tinggi konsentrasi ekstrak yang diuji maka semakin kuat pengaruhnya pada penurunan jumlah pupa dan lalat dewasa. Berdasarkan hasil penelitian ini maka ekstrak etanol daun kersen diharapkan dapat menjadi alternatif untuk pestisida sintetis.Abstract Fruit flies are known as major fruit pest in Indonesia that cause economic losses. Muntingia calabura leaves has been observed to contain compounds that can potentially control the fruit fly. This research aimed to investigate the effect of ethanolic extract of M. calabura leaves againts Bactrocera carambolae, one of fruit flies which has wide range host. Ethanolic extract of M. calabura leaves with different concentrations of 0%, 2.5%, 5% and 7.5% that sprayed onto the surface of guava (Psidium guajava and observed their effect on the fruit fly. Parameters observed are the number of pupae and the number of adult flies. Data were analyzed by analysis of variance (F test α = 0.05 followed by Least Significant Difference (LSD. Results showed that the higher the concentration of extract tested, the stronger its effect on

  8. Accumulation of phenylpropanoid and sesquiterpenoid volatiles in male rectal pheromonal glands of the guava fruit fly, Bactrocera correcta.

    Science.gov (United States)

    Tokushima, Isao; Orankanok, Watchreeporn; Tan, Keng Hong; Ono, Hajime; Nishida, Ritsuo

    2010-12-01

    The guava fruit fly, Bactrocera correcta, is widely distributed in Thailand and other surrounding Southeast Asian countries, and, like the closely related sympatric species, the oriental fruit fly, B. dorsalis, infests various fruits, including guava, peach, and mango. Males of both B. correcta and B. dorsalis are strongly attracted to, and compulsively feed on, methyl eugenol (ME). Bactrocera dorsalis males fed on ME sequester its metabolite phenylpropanoids, (E)-coniferyl alcohol and 2-allyl-4,5-dimethoxyphenol, in the rectal pheromone gland. In contrast, B. correcta males fed on ME sequester two different metabolites, (Z)-coniferyl alcohol (ZCF) and (Z)-3,4-dimethoxycinnamyl alcohol (DMC), in the rectal gland. Examination of the temporal changes of ME metabolites in B. correcta male rectal glands revealed that the total of ZCF and DMC was as high as 100 μg/male at 24 hr after ME feeding. ZCF and DMC were detected in a large proportion of wild B. correcta males captured at various sites in Thailand. Since B. correcta and B. dorsalis are sympatric species in Thailand, these two different subsets of rectal phenylpropanoids could play a role to avoid interbreeding between the species. Further survey of wild flies in Thailand revealed that a large proportion of males of B. correcta store large quantities (over 250 μg/gland) of sesquiterpene hydrocarbons, including β-caryophyllene, α-humulene, and alloaromadendrene in the rectal gland in addition to, or instead of, ZCF and DMC. Laboratory-reared males also sequestered β-caryophyllene and α-humulene, along with ZCF and DMC, when the sesquiterpenes were artificially supplied together with ME. A field test demonstrated that a mixture (1:1) of β-caryophyllene and α-humulene attracted male B. correcta, albeit in smaller numbers than in traps baited with ME. The sequestration of sesquiterpenes, in addition to the different ME metabolites in the pheromone gland in B. correcta males, contrasts with the situation in

  9. The Role of Monoaminergic Neurotransmission for Metabolic Control in the Fruit Fly Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Yong Li

    2017-08-01

    Full Text Available Hormones control various metabolic traits comprising fat deposition or starvation resistance. Here we show that two invertebrate neurohormones, octopamine (OA and tyramine (TA as well as their associated receptors, had a major impact on these metabolic traits. Animals devoid of the monoamine OA develop a severe obesity phenotype. Using flies defective in the expression of receptors for OA and TA, we aimed to decipher the contributions of single receptors for these metabolic phenotypes. Whereas those animals impaired in octß1r, octß2r and tar1 share the obesity phenotype of OA-deficient (tβh-deficient animals, the octß1r, octß2r deficient flies showed reduced insulin release, which is opposed to the situation found in tβh-deficient animals. On the other hand, OAMB deficient flies were leaner than controls, implying that the regulation of this phenotype is more complex than anticipated. Other phenotypes seen in tβh-deficient animals, such as the reduced ability to perform complex movements tasks can mainly be attributed to the octß2r. Tissue-specific RNAi experiments revealed a very complex interorgan communication leading to the different metabolic phenotypes observed in OA or OA and TA-deficient flies.

  10. Population activity of peach fruit fly Bactrocera zonata (Saunders (Diptera: Tephiritidae at fruits orchards in Kafer El-Shikh Governorate, Egypt

    Directory of Open Access Journals (Sweden)

    Khalil A. Draz

    2016-03-01

    Full Text Available Peach Fruit Fly (PFF Bactrocera zonata (Saunders is one of most dominant and destructive key pest in fruit orchards in different agro-ecosystem in Egypt, so monitoring adults' population fluctuation in orchards, through capturing adults, has been considered as main way to forecasting or management the pest. So current study aimed to assay the efficiency of Jackson traps baited with methyl eugenol (M.E. on male capture, that were distributed in different fruit trees orchards, in different positions and hang levels in one of Egyptian agroecosystem (Kafer El-Shikh Governorate, from (May 2014 to April 2015. Moreover, adults capture in McPhail traps in navel orange orchards intercropping with Guava were exploded to detect abundant and rearing season of the pest studying impact of abiotic factors on population, and estimation number, time and duration of annual generation. Obtained results declared that the pest had 7-8 annually generation. Jackson traps that placed in center of orchard and hanged at 2 m height more efficient than others for male catches. Highest numbers of PFF male attack orchards of Navel orange intercropping with Guava, while the lowest were with Navel orange and Guava. Each of season and kind of orchard or intercropping system had combined and significant effect on mass trapping. In McPhail traps, highest mass trapping of adult was observed in autumn (20.353 adult/ trap/ week, while each of spring, summer and winter season were similar in mass trapping. Only Wind direction as climatic factors had negative significant effect on mass trapping of PFF adults in McPhail traps, while each of maximum and mean temperature of winter season had positive significant effect on mass trapping.

  11. Identification of host fruit volatiles from three mayhaw species (Crataegus series Aestivales) attractive to mayhaw-origin Rhagoletis pomonella flies in the southern United States.

    Science.gov (United States)

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula

  12. Yeast hydrolysate supplementation increases field abundance and persistence of sexually mature sterile Queensland fruit fly, Bactrocera tryoni (Froggatt).

    Science.gov (United States)

    Reynolds, O L; Orchard, B A; Collins, S R; Taylor, P W

    2014-04-01

    The sterile insect technique (SIT) is a non-chemical approach used to control major pests from several insect families, including Tephritidae, and entails the mass-release of sterile insects that reduce fertility of wild populations. For SIT to succeed, released sterile males must mature and compete with wild males to mate with wild females. To reach sexual maturity, the Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), must obtain adequate nutrition after adult emergence; however, in current SIT programs sterile B. tryoni receive a pre-release diet that lacks key nutrients required to sustain sexual development. The chief objective of this study was to determine whether pre-release yeast hydrolysate (YH) supplements affect the persistence and abundance of sexually mature sterile male B. tryoni under field conditions. Experiments were run in outdoor cages under conditions of low and high environmental stress that differed markedly in temperature and humidity, and in the field. Under low environmental stress conditions, survival of sterile B. tryoni was monitored in cages under three diet treatments: (i) sugar only, (ii) sugar plus YH or (iii) sugar plus YH for 48 h and sugar only thereafter. Under high environmental stress conditions survival of sterile B. tryoni was monitored in cages under four diet treatments: (i) white sugar only, (ii) brown sugar only, (iii) white sugar plus YH and (iv) brown sugar plus YH. In a replicated field study, we released colour-marked sterile B. tryoni from two diet regimes, YH-supplemented or YH-deprived, and monitored abundance of sexually mature males. In the low-stress cage study, there was no effect of diet, although overall females lived longer than males. In the high stress cage study, mortality was lower for YH-fed flies than YH-deprived flies and females lived longer than males. In the field, YH supplementation resulted in higher abundance of sexually mature sterile males, with 1.2 YH-fed flies

  13. Is sexually transmitted fungal infection evidence for size-related mating success in Neotropical guava fruit flies?

    Directory of Open Access Journals (Sweden)

    Ingemar Hedström

    1998-12-01

    Full Text Available The influence of wing length on mate preference was examined in natural populations of the Neotropical guava fruit fly, Anastrepha striata Schiner, at two locations in Costa Rica. Based on evidence that the fungi are transmitted during mating, site-specific infection by Laboulbeniales fungi on the body surface was used to assess mating history. Males and females that carried fungi on the legs and/or on the ventral part of the thorax (males, and on both sides of the notum and/or the dorsal base of the abdomen (females, had significantly longer wings than males and females without fungi. This suggests that individuals of both sexes with longer wings (i.e. larger individuals enjoy higher mating success. Fungus infection is more frequent in the wet than in the seasonally dry forest, possibly because hosts are available year-round in the wet forest.

  14. Olfaction in the Queensland fruit fly, Bactrocera tryoni. I: Identification of olfactory receptor neuron types responding to environmental odors.

    Science.gov (United States)

    Hull, C D; Cribb, B W

    2001-05-01

    The electroantennogram method was used to investigate the number of distinct olfactory receptor neuron types responding to a range of behaviorally active volatile chemicals in gravid Queensland fruit flies, Bactrocera tryoni. Three receptor neuron types were identified. One type responds to methyl butyrate, 2-butanone, farnesene, and carbon dioxide; a second to ethanol; and a third to n-butyric acid and ammonia. The receptor neuron type responding to methyl butyrate, 2-butanone, farnesene, and carbon dioxide consists of three subtypes. The presence of a limited number of receptor neuron types responding to a diverse set of chemicals and the reception of carbon dioxide by a receptor neuron type that responds to other odorants are novel aspects of the peripheral olfactory discrimination process.

  15. Simple Algorithms for Distributed Leader Election in Anonymous Synchronous Rings and Complete Networks Inspired by Neural Development in Fruit Flies.

    Science.gov (United States)

    Xu, Lei; Jeavons, Peter

    2015-11-01

    Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally.

  16. Suppression of mediterranean fruit fly(Diptera: Tephritidae) with trimedlure(TML) dispensers and biolure in coffee(Coffea arabica L)

    Science.gov (United States)

    Solid Trimedlure[TML] dispensers and novel solid triple lure dispensers[TMR] without insecticides were tested as “attract and kill” devices alone and in combination with Biolure mass trapping to evaluate suppression of Mediterranean fruit fly, Ceratitis capitata(Wiedemann) in a large coffee plantati...

  17. A comparative assessment of the response of three fruit fly species (Diptera: Tephritidae) to a spinosad-based bait: Effect of ammonium acetate, female age, and protein hunger

    Science.gov (United States)

    Ammonia-releasing substances are known to play an important role in fruit fly (Diptera: Tephritidae) attraction to food sources and this information has been exploited for the development of effective synthetic food-based lures and insecticidal baits. In field studies conducted in Hawaii, we examine...

  18. Medhost: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann),Version 2.0

    Science.gov (United States)

    MEDHOST,Version 2.0 is the second revision of:"MEDHOST: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly,Ceratitis capitata(Wiedemann),Version 1.0," which was released in 1998 as a Windows-based executable database and listed all plant species reported as hosts of Medit...

  19. Biological and Cultural Control of Olive Fruit Fly in California---Utilization of Parasitoids from USDA-APHIS-PPQ, Guatemala and Cultural Control Methods

    Science.gov (United States)

    The parasitoid Psytallia humilis = P. cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala and shipped to the USDA, ARS, Parlier, for biological ...

  20. Ammonium acetate enhances the attractiveness of a variety of protein-based baits to female Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae)

    Science.gov (United States)

    Ammonia and its derivatives are used largely by female fruit 32 flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally-based control strategies such a food-based lures a...

  1. Evaluation of Cuelure and Methyl Eugenol solid lure and insecticide dispensers for fruit fly (Diptera: Tephritidae) monitoring and control in Tahiti

    Science.gov (United States)

    Performance of solid male lure (cuelure (C-L)/raspberry ketone (RK) - against Bactrocera tyroni (Froggatt), and methyl eugenol (ME) - against oriental fruit fly, B. dorsalis (Hendel) and insecticide formulations, were evaluated in Tahiti Island (French Polynesia), as alternatives to current monitori...

  2. Di- and Tri-flourinated analogs of methyl eugenol: attractiveness to and metabolism in the oriental fruit fly, bactrocera dorsalis (hendel)

    Science.gov (United States)

    Oriental fruit fly, Bactrocera dorsalis (Hendel), males are highly 1 attracted to the natural phenylpropanoid methyl eugenol (ME). They compulsively feed on ME and metabolize it to ring and side-chain hydroxylated compounds that have both pheromonal and allomonal properties. Previously, we demonstra...

  3. Host plant records of the White Striped Fruit Fly, Bactrocera (Bactrocera) albistrigata(de Meijere,1911)(Diptera: Tephritidae), Version 1.0

    Science.gov (United States)

    Bactrocera (Bactrocera) albistrigata (de Meijere, 1911), commonly known as the white striped fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). While considered an obscure min...

  4. A review of recorded host plants of Oriental Fruit Fly, Bactrocera (Bactrocera)dorsalis(Hendel)(Diptera: Tephritidae), version 3.0

    Science.gov (United States)

    Bactrocera (Bactrocera) dorsalis (Hendel)(Diptera: Tephritidae), commonly known as the Oriental fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Presented herein is a compre...

  5. A high-throughput detection method for invasive fruit fly (Diptera: Tephritidae) species based on microfluidic dynamic array.

    Science.gov (United States)

    Jiang, Fan; Fu, Wei; Clarke, Anthony R; Schutze, Mark Kurt; Susanto, Agus; Zhu, Shuifang; Li, Zhihong

    2016-11-01

    Invasive species can be detrimental to a nation's ecology, economy and human health. Rapid and accurate diagnostics are critical to limit the establishment and spread of exotic organisms. The increasing rate of biological invasions relative to the taxonomic expertise available generates a demand for high-throughput, DNA-based diagnostics methods for identification. We designed species-specific qPCR primer and probe combinations for 27 economically important tephritidae species in six genera (Anastrepha, Bactrocera, Carpomya, Ceratitis, Dacus and Rhagoletis) based on 935 COI DNA barcode haplotypes from 181 fruit fly species publically available in BOLD, and then tested the specificity for each primer pair and probe through qPCR of 35 of those species. We then developed a standardization reaction system for detecting the 27 target species based on a microfluidic dynamic array and also applied the method to identify unknown immature samples from port interceptions and field monitoring. This method led to a specific and simultaneous detection for all 27 species in 7.5 h, using only 0.2 μL of reaction system in each reaction chamber. The approach successfully discriminated among species within complexes that had genetic similarities of up to 98.48%, while it also identified all immature samples consistent with the subsequent results of morphological examination of adults which were reared from larvae of cohorts from the same samples. We present an accurate, rapid and high-throughput innovative approach for detecting fruit flies of quarantine concern. This is a new method which has broad potential to be one of international standards for plant quarantine and invasive species detection. © 2016 John Wiley & Sons Ltd.

  6. Fruit flies on the front line: the translational impact of Drosophila

    Directory of Open Access Journals (Sweden)

    Norbert Perrimon

    2016-03-01

    Full Text Available Drosophila melanogaster has been adopted as one of the most-used model systems since it was first introduced by Thomas Morgan for the study of heredity in the early 20th century. Its experimental tractability and similarity of its biological pathways to those of humans have placed the model at the forefront of research into human development and disease. With the ongoing accumulation of genetic tools and assays, the fly community has at its fingertips the resources to generate diverse Drosophila disease models for the study of genes and pathways involved in a wide range of disorders. In recent years, the fly has also been used successfully for drug screening. In this Editorial, we introduce a Special Collection of reviews, interviews and original research articles that highlight some of the many ways that Drosophila has made, and continues to make, an impact on basic biological insights and translational science.

  7. Pathogenicity and characterization of a novel Bacillus cereus sensu lato isolate toxic to the Mediterranean fruit fly Ceratitis capitata Wied.

    Science.gov (United States)

    Ruiu, Luca; Falchi, Giovanni; Floris, Ignazio; Marche, Maria Giovanna; Mura, Maria Elena; Satta, Alberto

    2015-03-01

    The lethal and sub-lethal effects of sporulated cultures of a novel Bacillus cereus sensu lato strain lacking detectable cry genes and identified through morphological and genetic analyses, have been studied on the Mediterranean fruit fly Ceratitis capitata. The lethal effects on young larvae were concentration dependent, with a median lethal concentration (LC50) of 4.48 × 10(8)spores/g of diet. Sporulated cultures of this strain significantly extended development time and reduced immature survival, and the size of emerging fly adults. Besides spores, the toxicity has been associated to the insoluble extra-spore fraction characterized through a proteomic approach. The profile of the extra-spore protein fraction (ES) showed major protein bands within the 35-65 kDa range. The results of mass spectrometry analysis highlighted the presence of putative virulence factors, including members of protein families previously associated to the insecticidal action of other microbial entomopathogens. These proteins include metalloproteases, peptidases and other enzymes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Prolongevity Effects of an Oregano and Cranberry Extract are Diet Dependent in the Mexican Fruit Fly (Anastrepha ludens)

    Science.gov (United States)

    Carey, James R.; Liedo, Pablo; Ingram, Donald K.; Yu, Binbing; Ghaedian, Reza

    2010-01-01

    Botanicals have numerous health benefits. Here, we used the Mexican fruit fly to screen 14 compounds and botanicals for their prolongevity effects and found an oregano and cranberry mixture (OC) improved survival. We then evaluated prolongevity effects of OC within the context of diet composition. Individual flies were fed 0%, 1%, or 2% OC in one of the three diets containing sugar and yeast extract (SY) at a ratio of 3:1, 9:1, or 24:1. We found that prolongevity effects of OC depended upon dose, gender, and diet composition. The greatest increase in longevity was observed in females fed the SY24:1 diet with 2% OC compared to the non-supplemented diet. OC did not reduce egg laying and, hence, did not compromise fecundity under any dietary condition tested here. This study reveals the prolongevity effects of OC and supports the emerging view that benefits of botanicals on aging depend on diet composition and gender. PMID:19906819

  9. Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    Science.gov (United States)

    Pavlidi, Nena; Gioti, Anastasia; Wybouw, Nicky; Dermauw, Wannes; Ben-Yosef, Michael; Yuval, Boaz; Jurkevich, Edouard; Kampouraki, Anastasia; van Leeuwen, Thomas; Vontas, John

    2017-02-01

    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B.oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism.

  10. Evaluating irradiation dose for sterility induction and quality control of mass-produced fruit fly Bactrocera tryoni (Diptera: Tephritidae).

    Science.gov (United States)

    Dominiak, B C; Sundaralingam, S; Jiang, L; Fanson, B G; Collins, S R; Banos, C; Davies, J B; Taylor, P W

    2014-06-01

    The sterile insect technique has been routinely used to eradicate fruit fly Bactrocera tryoni (Froggatt) incursions. This study considers whether fly quality in a mass-rearing facility can be improved by reducing irradiation doses, without sacrificing reproductive sterility. Pupae were exposed to one of five target irradiation dose ranges: 0, 40-45, 50-55, 60-65, and 70-75 Gy. Pupae were then assessed using routine quality control measures: flight ability, sex ratio, longevity under nutritional stress, emergence, and reproductive sterility. Irradiation did not have a significant effect on flight ability or sex ratio tests. Longevity under nutritional stress was significantly increased at 70-75 Gy, but no other doses differed from 0 Gy. Emergence was slightly reduced in the 50-55, 60-65, and 70-75 Gy treatments, but 40-45 Gy treatments did not differ from 0 Gy, though confounding temporal factors complicate interpretation. Reproductive sterility remained acceptable (> 99.5%) for all doses--40-45 Gy (99.78%), 50-55 Gy (100%), 60-65 Gy (100%), and 70-75 Gy (99.99%). We recommend that B. tryoni used in sterile insect technique releases be irradiated at a target dose of 50-55 Gy, providing improved quality and undiminished sterility in comparison with the current 70-75 Gy standard while also providing a substantial buffer against risk of under dosing.

  11. Cost of reproduction in the Queensland fruit fly: Y-model versus lethal protein hypothesis

    OpenAIRE

    Fanson, Benjamin G.; Fanson, Kerry V.; Taylor, Phillip W.

    2012-01-01

    The trade-off between lifespan and reproduction is commonly explained by differential allocation of limited resources. Recent research has shown that the ratio of protein to carbohydrate (P : C) of a fly's diet mediates the lifespan–reproduction trade-off, with higher P : C diets increasing egg production but decreasing lifespan. To test whether this P : C effect is because of changing allocation strategies (Y-model hypothesis) or detrimental effects of protein ingestion on lifespan (lethal p...

  12. Influence of modified atmosphere packaging on radiation tolerance in the phytosanitary pest melon fly (Diptera: Tephritidae).

    Science.gov (United States)

    Follett, Peter A; Wall, Marisa; Bailey, Woodward

    2013-10-01

    Modified atmosphere packaging (MAP) produces a low-oxygen (O2) environment that can increase produce shelf life by decreasing product respiration and growth of pathogens. However, low O2 is known to increase insect tolerance to irradiation, and the use of MAP with products treated by irradiation before export to control quarantine pests may inadvertently compromise treatment efficacy. Melon fly, Bactrocera cucurbitae Coquillet (Diptera: Tephritidae), is an important economic and quarantine pest of tropical fruits and vegetables, and one of the most radiation-tolerant tephritid fruit flies known. The effect of low O2 generated by MAP on the radiation tolerance of B. cucurbitae was examined. Third-instar larval B. cucurbitae were inoculated into ripe papayas and treated by 1) MAP + irradiation, 2) irradiation alone, 3) MAP alone, or (4) no MAP and no irradiation, and held for adult emergence. Three types of commercially available MAP products were tested that produced O2 concentrations between 1 and 15%, and a sublethal radiation dose (50 Gy) was used to allow comparisons between treatments. Ziploc storage bags (1-4% O2) increased survivorship to adult from 14 to 25%, whereas Xtend PP61 bags (3-8% O2) and Xtend PP53 bags (11-15% O2) did not enhance survivorship to the adult stage in B. cucurbitae irradiated at 50 Gy. Radiation doses approved by the United States Department of Agriculture and the International Plant Protection Commission for B. cucurbitae and Ceratitis capitata (Wiedemann) (Mediterranean fruit fly) are 150 and 100 Gy, respectively. In large-scale tests, 9,000 B. cucurbitae and 3,800 C. capitata larvae infesting papayas in Ziploc bags were irradiated at 150 and 100 Gy, respectively, with no survivors to the adult stage. MAP can increase insect survivorship during irradiation treatment at certain doses and O2 concentrations, but should not compromise the efficacy of the 150-Gy generic radiation treatment for tephritid fruit flies or the 100-Gy radiation

  13. Biodiversidade de moscas-das-frutas (Diptera, Tephritoidea em matas nativas e pomares domésticos de dois municípios do Estado do Tocantins, Brasil Biodiversity of fruit flies (Diptera, Tephritoidea in native forests and orchards in two counties of the State of Tocantins, Brazil

    Directory of Open Access Journals (Sweden)

    Darcy A. do Bomfim

    2007-01-01

    Full Text Available Este trabalho apresenta análise faunística comparativa das espécies de moscas-das-frutas capturadas em armadilhas McPhail (junho a dezembro de 2002 com proteína hidrolisada de milho a 5%. Foram comparadas a riqueza de espécies e a estrutura populacional entre ambientes de mata e pomar dos municípios de Palmas e Porto Nacional, TO. Foram capturados 1.748 indivíduos de espécies de três gêneros de Tephritidae: Tomoplagia Coquillett, 1910, Anastrepha Schiner, 1868 e Ceratitis MacLeay, 1829. De Lonchaeidae foram capturadas espécies de três gêneros: Lonchaea Fallén, 1820, Neosilba McAlpine, 1962 e Dasiops Rondani, 1856. Ceratitis capitata (Wiedemann, 1824. Dezenove espécies de Anastrepha foram coletadas, sendo a maioria dos indivíduos (69,1% de A. obliqua (Macquart, 1835. Não houve diferença significativa (P This paper presents comparative and faunistic analysis of the species of fruit flies captured in McPhail traps (from June to December 2002 baited with 5% corn protein hydrolyzed. Species richness and the patterns of population are compared between forest and orchard environments and between the counties of Palmas and Porto Nacional. A total of 1,748 individuals of Tephritidae belonging to species of three genera were collected: Tomoplagia Coquillett, 1910, Anastrepha Schiner, 1868 and Ceratitis MacLeay, 1829. Species of three genera of Lonchaeidae were also captured: Lonchaea Fallén, 1820, Neosilba McAlpine, 1962 and Dasiops Rondani, 1856. Ceratitis capitata (Wiedemann, 1824 and nineteen species of the genus Anastrepha were collected. Most of the collected individuals (69.1% belonged to A. obliqua (Macquart, 1935. The average numbers of tephritid individuals in Palmas and native forests were significantly lower than Porto Nacional and orchards, respectively. According to the Shannon diversity index (H' and test t used for comparing the fruit flies fauna among the environments, it was verified that only one comparison showed

  14. 76 FR 81401 - Importation of Litchi Fruit From Australia

    Science.gov (United States)

    2011-12-28

    ... through the importation of litchi fruit, including 3 fruit flies, 7 lepidopteran pests, 2 scales, 2 insect pests, and 1 mite. Fruit flies Jarvis's fruit fly (Bactrocera jarvisi). Queensland fruit fly (Bactrocera tryoni). Mediterranean fruit fly (Ceratitis capitata). Lepidopteran pests Yellow peach moth (Conogethes...

  15. Moscas-das-frutas em pomares de pessegueiro e maracujazeiro, no Município de Iraceminha, Santa Catarina, Brasil Fruit flies in peach and passion fruit orchards in Iraceminha, Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Sheila Alberti

    2009-08-01

    Full Text Available Este estudo teve o objetivo de caracterizar a comunidade de moscas-das-frutas de ocorrência em pomares de pessegueiro e maracujazeiro, no Município de Iraceminha, Santa Catarina (SC, por meio da análise faunística. Os adultos de moscas-das-frutas foram capturados semanalmente, em armadilhas McPhail, contendo glicose invertida a 10%, no período de abril de 2006 a março de 2007. Na caracterização, foram calculados os índices de abundância, constância, dominância, frequência e diversidade. Foram coletados 697 adultos de moscas-das-frutas. Anastrepha grandis e Anastrepha fraterculus foram as espécies mais abundantes, frequentes, constantes e dominantes nos pomares estudados, predominando sobre as outras espécies de moscas-das-frutas. Ceratitis capitata foi caracterizada como dispersa e pouco frequente. O maior índice de diversidade encontrado foi de 1,99 no pomar de maracujazeiro.This research had the objective to characterize the community of fruit flies in peach and passion fruit orchards in Iraceminha, Santa Catarina, Brazil, through faunistic analyses. The adults fruit flies were weekly captured in McPhail traps with 10% inverted glucose, from April 2006 to March 2007. In the characterization, the indices for abundance, constancy, dominance, frequency and diversity were calculated. A total of 697 adults fruit flies were collected. Anastrepha grandis and Anastrepha fraterculus species were the most abundant, frequent, constant and dominant in orchards studied, predominating upon other fruit flies species. Ceratitis capitata was dispersed and not very frequent. The biggest index of diversity of 1.99 was in passion fruit orchard.

  16. Seasonality of the Mediterranean Fruit Fly (Diptera: Tephritidae) on Terceira and Sao Jorge Islands, Azores, Portugal

    Science.gov (United States)

    Lopes, D.J.H.; Mexia, A.M.M.; Mumford, J.D.

    2017-01-01

    Population dynamics studies are very important for any area-wide control program as they provide detailed knowledge about the relationship of Medfly [Ceratitis capitata (Wiedemann)] life cycle with host availability and abundance. The main goal of this study is to analyse seasonality of C. capitata in Terceira and Sao Jorge Islands (Azores archipelago) using field and laboratory data collected during (2010–2014) CABMEDMAC (MAC/3/A163) project. The results from Sao Jorge Island indicate significantly lower male/female ratio than on Terceira Island. This is an important finding specially regarding when stablishing the scenario parameters for a sterile insect technique application in each island. The population dynamics of C. capitata are generally linked with host fruit availability and abundance. However, on Terceira Island fruit infestation levels are not synchronized with the trap counts. For example, there was Medfly infestations in some fruits [e.g., Solanum mauritianum (Scop.)] while in the nearby traps there were no captures at the same time. From this perspective, it is important to denote the importance of wild invasive plants, on the population dynamics of C. capitata, as well important to consider the possibility of having different densities of traps according to the characteristics of each area in order to improve the network of traps surveillance’s sensitivity on Terceira Island. PMID:28082349

  17. The NMDA Receptor Promotes Sleep in the Fruit Fly, Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Jun Tomita

    Full Text Available Considerable evidence indicates that sleep is essential for learning and memory. Drosophila melanogaster has emerged as a novel model for studying sleep. We previously found a short sleeper mutant, fumin (fmn, and identified its mutation in the dopamine transporter gene. We reported similarities in the molecular basis of sleep and arousal regulation between mammals and Drosophila. In aversive olfactory learning tasks, fmn mutants demonstrate defective memory retention, which suggests an association between sleep and memory. In an attempt to discover additional sleep related genes in Drosophila, we carried out a microarray analysis comparing mRNA expression in heads of fmn and control flies and found that 563 genes are differentially expressed. Next, using the pan-neuronal Gal4 driver elav-Gal4 and UAS-RNA interference (RNAi to knockdown individual genes, we performed a functional screen. We found that knockdown of the NMDA type glutamate receptor channel gene (Nmdar1 (also known as dNR1 reduced sleep. The NMDA receptor (NMDAR plays an important role in learning and memory both in Drosophila and mammals. The application of the NMDAR antagonist, MK-801, reduced sleep in control flies, but not in fmn. These results suggest that NMDAR promotes sleep regulation in Drosophila.

  18. Identification of host fruit volatiles from domestic apple (Malus domestica), native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (C. monogyna) attractive to Rhagoletis pomonella flies from the western United States.

    Science.gov (United States)

    Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2012-03-01

    The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.

  19. The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock.

    Science.gov (United States)

    Kempinger, Lena; Dittmann, Rainer; Rieger, Dirk; Helfrich-Forster, Charlotte

    2009-02-01

    Artificial moonlight was recently shown to shift the endogenous clock of fruit flies and make them nocturnal. To test whether this nocturnal activity is partly due to masking effects of light, we exposed the clock-mutants per(01), tim(01), per(01);tim(01), cyc(01), and Clk(JRK) to light/dark and light/dim-light cycles and determined the activity level during the day and night. We found that under moonlit nights, all clock mutants shifted their activity significantly into the night, suggesting that this effect is independent of the clock. We also recorded the flies under continuous artificial moonlight and darkness to judge the effect of dim constant light on the activity level. All mutants, except Clk(JRK) flies, were significantly more active under artificial moonlight conditions than under complete darkness. Unexpectedly, we found residual rhythmicity of per(01) and especially tim(01) mutants under these conditions, suggesting that TIM and especially PER retained some activity in the absence of its respective partner. Nevertheless, as even the double mutants and the cyc(01) and Clk(JRK) mutants shifted their activity into the night, we conclude that dim light stimulates the activity of fruit flies in a clock-independent manner. Thus, nocturnal light has a twofold influence on flies: it shifts the circadian clock, and it increases nocturnal activity independently of the clock. The latter was also observed in some primates by others and might therefore be of a more general validity.

  20. Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    de Aguiar, Lais Mattos; Figueira, Fernanda Hernandes; Gottschalk, Marco Silva; da Rosa, Carlos Eduardo

    2016-01-01

    Glyphosate is a non-selective and post-emergent herbicide that affects plant growth. Animal exposure to this herbicide can lead to adverse effects, such as endocrine disruption, oxidative stress and behavioural disorders. Drosophilids have been utilized previously as an effective tool in toxicological tests. In the present study, the effects of a glyphosate-based herbicide (Roundup [Original]) were investigated regarding oxidative stress, the antioxidant defence system and acetylcholinesterase (AChE) activity in Drosophila melanogaster. Flies (of both genders) that were 1 to 3days old were exposed to different glyphosate concentrations (0.0mg/L=control, 1.0mg/L, 2.0mg/L, 5.0mg/L and 10.0mg/L) in the diet for 24h and 96h. After the exposure periods, reactive oxygen species (ROS) levels, antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (LPO) levels were quantified. In addition, the mRNA expression of antioxidant genes (i.e., keap1, sod, sod2, cat, irc, gclc, gclm, gss, trxt, trxr-1 and trxr-2) was evaluated via RT-PCR. Additionally, AChE activity was evaluated only after the 96h exposure period. The results indicated that Roundup exposure leads to a reduction in ROS levels in flies exposed for 96h. ACAP levels and gene expression of the antioxidant defence system exhibited an increase from 24h, while LPO did not show any significant alterations in both exposure periods. AChE activity was not affected following Roundup exposure. Our data suggest that Roundup exposure causes an early activation of the antioxidant defence system in D. melanogaster, and this can prevent subsequent damage caused by ROS. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Male Sexual Behavior and Pheromone Emission Is Enhanced by Exposure to Guava Fruit Volatiles in Anastrepha fraterculus.

    Directory of Open Access Journals (Sweden)

    Guillermo E Bachmann

    Full Text Available Plant chemicals can affect reproductive strategies of tephritid fruit flies by influencing sex pheromone communication and increasing male mating competitiveness.We explored whether exposure of Anastrepha fraterculus males to guava fruit volatiles and to a synthetic blend of volatile compounds released by this fruit affects the sexual performance of wild and laboratory flies. By means of bioassays and pheromone collection we investigated the mechanism underlying this phenomenon.Guava volatile exposure enhanced male mating success and positively affected male calling behavior and pheromone release in laboratory and wild males. Changes in male behavior appear to be particularly important during the initial phase of the sexual activity period, when most of the mating pairs are formed. Exposure of laboratory males to a subset of guava fruit volatiles enhanced mating success, showing that the response to the fruit might be mimicked artificially.Volatiles of guava seem to influence male mating success through an enhancement of chemical and physical signals related to the communication between sexes. This finding has important implications for the management of this pest species through the Sterile Insect Technique. We discuss the possibility of using artificial blends to improve the sexual competitiveness of sterile males.

  2. Low-Dose Irradiation With Modified Atmosphere Packaging for Mango Against the Oriental Fruit Fly (Diptera: Tephritidae).

    Science.gov (United States)

    Srimartpirom, Monnipa; Burikam, Intawat; Limohpasmanee, Wanich; Kongratarporn, Titima; Thannarin, Thodsapon; Bunsiri, Apita; Follett, Peter A

    2017-12-27

    Irradiation is used to disinfest the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) and other pests on mango fruits before export from Thailand to foreign markets. Modified atmosphere packaging (MAP) used during export of mangoes creates a low-oxygen environment that may reduce the efficacy of quarantine irradiation treatment against B. dorsalis. 'Nam Dok Mai' mangoes infested with third-instar larvae of B. dorsalis, wrapped with three different kinds of MAP bags (CF1, FF5, and H34M) or no MAP, were treated with gamma radiation at 0 (control), 30, 60, 90, 120, and 150 Gy. The average O2 and CO2 concentrations in MAP bags with mangos were 7.2 and 8.7% in the H34M bag, 8.6 and 21.2% in the CF1 bag, and 9.6 and 26.7% in the FF5 bag, respectively. The use of MAP on infested mangoes significantly increased mortality of B. dorsalis under irradiation treatment. The estimated lethal doses to cause 99% mortality (LD99) for no MAP and MAP (CF1, FF5, and H34M bags) treatments were 58.1, 41.6, 43.8, and 47.4 Gy, respectively. Therefore, MAP acted as an additional stressor rather than providing radioprotection in irradiated B. dorsalis. Large-scale confirmatory testing of 35,000 B. dorsalis larvae treated at a radiation dose of 150 Gy in mangoes with H34M MAP bags produced no survivors to the adult stage. Commercial use of MAP producing the O2 levels that we observed for mangos in this study will not reduce the efficacy of the approved 150 Gy quarantine irradiation treatment for B. dorsalis. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Pupal development and pigmentation process of a polka-dotted fruit fly, Drosophila guttifera (Insecta, Diptera).

    Science.gov (United States)

    Fukutomi, Yuichi; Matsumoto, Keiji; Agata, Kiyokazu; Funayama, Noriko; Koshikawa, Shigeyuki

    2017-06-01

    Various organisms have color patterns on their body surfaces, and these color patterns are thought to contribute to physiological regulation, communication with conspecifics, and signaling with the environment. An adult fly of Drosophila guttifera (Insecta: Diptera: Drosophilidae) has melanin pigmentation patterns on its body and wings. Though D. guttifera has been used for research into color pattern formation, how its pupal development proceeds and when the pigmentation starts have not been well studied. In this study, we defined the pupal stages of D. guttifera and measured the pigment content of wing spots from the pupal period to the period after eclosion. Using a transgenic line which carries eGFP connected with an enhancer of yellow, a gene necessary for melanin synthesis, we analyzed the timing at which the yellow enhancer starts to drive eGFP. We also analyzed the distribution of Yellow-producing cells, as indicated by the expression of eGFP during pupal and young adult periods. The results suggested that Yellow-producing cells were removed from wings within 3 h after eclosion, and wing pigmentation continued without epithelial cells. Furthermore, the results of vein cutting experiments showed that the transport of melanin precursors through veins was necessary for wing pigmentation. These results showed the importance of melanin precursors transported through veins and of extracellular factors which were secreted from epithelial cells and left in the cuticle.

  4. Germ-line transformation of the Queensland fruit fly, Bactrocera tryoni, using a piggyBac vector in the presence of endogenous piggyBac elements.

    Science.gov (United States)

    Raphael, K A; Shearman, D C A; Streamer, K; Morrow, J L; Handler, A M; Frommer, M

    2011-01-01

    We report the heritable germ-line transformation of the Queensland fruit fly, Bactrocera tryoni, using a piggyBac vector marked with either the fluorescent protein DsRed or EGFP. A transformation frequency of 5-10% was obtained. Inheritance of the transgenes has remained stable over more than 15 generations despite the presence of endogenous piggyBac sequences in the B. tryoni genome. The sequence of insertion sites shows the usual canonical pattern of piggyBac integraton into TTAA target sites. An investigation of endogenous piggyBac elements in the B. tryoni genome reveals the presence of sequences almost identical to those reported recently for the B. dorsalis complex of fruit flies and two noctuid moths, suggesting a common origin of piggyBac sequences in these species. The availability of transformation protocols for B. tryoni has the potential to deliver improvements in the performance of the Sterile Insect Technique for this pest species.

  5. Ingestion toxicity of three Lamiaceae essential oils incorporated in protein baits against the olive fruit fly, Bactrocera oleae (Rossi) (Diptera Tephritidae).

    Science.gov (United States)

    Canale, Angelo; Benelli, Giovanni; Conti, Barbara; Lenzi, Gabriele; Flamini, Guido; Francini, Alessandra; Cioni, Pier Luigi

    2013-01-01

    The ingestion toxicity of three Lamiaceae essential oils (EOs) - Hyptis suaveolens, Rosmarinus officinalis and Lavandula angustifolia - incorporated in protein baits was evaluated against Bactrocera oleae, a worldwide pest of olive fruits. In laboratory conditions, all the tested EOs showed dose-dependent toxicity on B. oleae, with mortality rates ranging from 12% (EO concentration: 0.01% w:v) to 100% (EO concentration: 1.75% w:v). Semi-field results highlighted the toxicity of L. angustifolia and H. suaveolens EOs, which exerted more than 60% of flies mortality at a concentration of 1.75% (w:v). Gas Chromatography-Electron Impact Mass Spectrometry analyses of the three EOs showed that H. suaveolens EO was dominated by monoterpene and sesquiterpene hydrocarbons. Oxygenated monoterpenes were the main chemical class in R. officinalis and L. angustifolia EOs. Further research is needed to evaluate the efficacy of these EOs plus food bait against the olive fruit fly in the open field.

  6. The genetic structure of populations of an invading pest fruit fly, Bactrocera tryoni, at the species climatic range limit.

    Science.gov (United States)

    Gilchrist, A S; Meats, A W

    2010-08-01

    Previous population genetic studies of the Queensland fruit fly, Bactrocera tryoni Froggatt (Diptera: Tephritidae), in its central range have shown barely detectable genetic differentiation across distances of almost 3000 km (F(st)=0.003). In this study, we investigated the genetic structuring of southern border populations of B. tryoni, in the region extending from the central population to the recently colonized southern range limit. The expectation was that marginal populations would be small, fragmented population sinks, with local adaptation limited by gene flow or drift. Unexpectedly, we found that the population at the southern extreme of the range was a source population, rather than a sink, for the surrounding region. This was shown by assignment testing of recent outbreaks in an adjoining quarantine area and by indirect migration estimates. Furthermore, populations in the region had formed a latitudinal cline in microsatellite allele frequencies, spanning the region between the central population and the southern range limit. The cline has formed within 250 generations of the initial invasion and appears stable between years. We show that there is restricted gene flow in the region and that effective population sizes are of the order of 10(2)-10(3). Although the cline may result from natural selection, neutral evolutionary processes may also explain our findings.

  7. The Queensland fruit fly, Bactrocera tryoni, contains multiple members of the hAT family of transposable elements.

    Science.gov (United States)

    Pinkerton, A C; Whyard, S; Mende, H A; Coates, C J; O'Brochta, D A; Atkinson, P W

    1999-11-01

    Members of the hAT transposable element family are mobile in non-host insect species and have been used as transformation vectors in some of these species. We report that the Queensland fruit fly, Bactrocera tryoni, contains at least two types of insect hAT elements called Homer and a Homer-like element (HLE). The Homer element is 3789 bp in size and contains 12-bp imperfect inverted terminal repeats. The Homer element contains a long open reading frame (ORF) that encodes a putative transposase. Three different copies of this long ORF were recovered from the B. tryoni genome and, upon transcription and translation in an in vitro system, all produced transposase. The HLE is an incomplete element since no 3' inverted terminal repeat (ITR) was found. Homer and the HLE are as related to one another as either is to the other insect hAT elements such as Hermes, hobo, hermit and hopper. The structure and distribution of these two Homer elements is described.

  8. Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Bao Wang

    2012-11-01

    Full Text Available The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA, generalized regression neural network (GRNN and regression model.

  9. Three-Dimensional Path Planning of Robots in Virtual Situations Based on an Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Munan Li

    2014-11-01

    Full Text Available The fruit fly optimization algorithm (FOA is one of the latest nature-inspired computational models. It has the advantages of having a simple mechanism, fewer control variables, and a fast convergence. However, most applications of the FOA focus on optimization problems in a continuous space. Three-dimensional path planning is a typical discrete optimization problem and can be attributed to multivariable and multiobjective optimization computations. In this paper, we advance an improved FOA model (IFOA based on engineering techniques. This model is then used to solve for the three-dimensional (3D path planning of a robot. In a simulation experiment conducted in a virtual three-dimensional space, the IFOA was shown to have a certain capability for three-dimensional path planning. Although the accuracy of the IFOA seems slightly weaker than that of ant colony optimization (ACO, the IFOA may confer time savings of 25% and has greater efficiency. Therefore, this new model still provides a novel and valuable means for solving such discrete optimization problems.

  10. Identification of gamma-interferon-inducible lysosomal thiol reductase (GILT) homologues in the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Kongton, Kittima; McCall, Kimberly; Phongdara, Amornrat

    2014-06-01

    Gamma-interferon-inducible lysosomal thiol reductase (GILT) has been demonstrated to be involved in the immune response to bacterial challenge in various organisms. However, little is known about GILT function in innate immunity. Drosophila has been commonly used as a model for the study of the innate immune response of invertebrates. Here, we identify the CG9796, CG10157, and CG13822 genes of fruit fly Drosophila melanogaster as GILT homologues. All deduced Drosophila GILT coding sequences contained the major characteristic features of the GILT protein family: the GILT signature CQHGX2ECX2NX4C sequence and the active site CXXC or CXXS motif. The mRNA transcript levels of the Drosophila GILT genes were up-regulated after Gram-negative bacteria Escherichia coli DH5α infection. Moreover, a bacterial load assay showed that over-expression of Drosophila GILT in fat body or hemocytes led to a low bacterial colony number whereas knock-down of Drosophila GILT in fat body or hemocytes led to a high bacterial colony number when compared to a wild-type control. These results indicate that the Drosophila GILTs are very likely to play a role in the innate immune response upon bacterial challenge of Drosophila host defense. This study may provide the basis for further study on GILT function in innate immunity. Copyright © 2014. Published by Elsevier Ltd.

  11. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).

    Science.gov (United States)

    Wu, Yi-Bei; Yang, Wen-Jia; Xie, Yi-Fei; Xu, Kang-Kang; Tian, Yi; Yuan, Guo-Rui; Wang, Jin-Jun

    2016-03-10

    The forkhead box O transcription factor (FoxO) is an important downstream transcription factor in the well-conserved insulin signaling pathway, which regulates the body size and development of insects. In this study, the FoxO gene (BdFoxO) was identified from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frame of BdFoxO (2732 bp) encoded a 910 amino acid protein, and the sequence was well conserved with other insect species. The BdFoxO was highly expressed in larvae and pupae among different development stages, and the highest tissue-specific expression level was found in the fat bodies compared to the testis, ovary, head, thorax, midgut, and Malpighian tubules of adults. Interestingly, we found BdFoxO expression was also up-regulated by starvation, but down-regulated when re-fed. Moreover, the injection of BdFoxO double-stranded RNAs into third-instar larvae significantly reduced BdFoxO transcript levels, which in turn down-regulated the expression of other four genes in the insulin signaling pathway. The silencing of BdFoxO resulted in delayed pupation, and the insect body weight increased significantly compared with that of the control. These results suggested that BdFoxO plays an important role in body size and development in B. dorsalis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Hybrid Model Based on Ensemble Empirical Mode Decomposition and Fruit Fly Optimization Algorithm for Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Zongxi Qu

    2016-01-01

    Full Text Available As a type of clean and renewable energy, the superiority of wind power has increasingly captured the world’s attention. Reliable and precise wind speed prediction is vital for wind power generation systems. Thus, a more effective and precise prediction model is essentially needed in the field of wind speed forecasting. Most previous forecasting models could adapt to various wind speed series data; however, these models ignored the importance of the data preprocessing and model parameter optimization. In view of its importance, a novel hybrid ensemble learning paradigm is proposed. In this model, the original wind speed data is firstly divided into a finite set of signal components by ensemble empirical mode decomposition, and then each signal is predicted by several artificial intelligence models with optimized parameters by using the fruit fly optimization algorithm and the final prediction values were obtained by reconstructing the refined series. To estimate the forecasting ability of the proposed model, 15 min wind speed data for wind farms in the coastal areas of China was performed to forecast as a case study. The empirical results show that the proposed hybrid model is superior to some existing traditional forecasting models regarding forecast performance.

  13. Protocols for Visualizing Steroidogenic Organs and Their Interactive Organs with Immunostaining in the Fruit Fly Drosophila melanogaster.

    Science.gov (United States)

    Imura, Eisuke; Yoshinari, Yuto; Shimada-Niwa, Yuko; Niwa, Ryusuke

    2017-04-14

    In multicellular organisms, a small group of cells is endowed with a specialized function in their biogenic activity, inducing a systemic response to growth and reproduction. In insects, the larval prothoracic gland (PG) and the adult female ovary play essential roles in biosynthesizing the principal steroid hormones called ecdysteroids. These ecdysteroidogenic organs are innervated from the nervous system, through which the timing of biosynthesis is affected by environmental cues. Here we describe a protocol for visualizing ecdysteroidogenic organs and their interactive organs in larvae and adults of the fruit fly Drosophila melanogaster, which provides a suitable model system for studying steroid hormone biosynthesis and its regulatory mechanism. Skillful dissection allows us to maintain the positions of ecdysteroidogenic organs and their interactive organs including the brain, the ventral nerve cord, and other tissues. Immunostaining with antibodies against ecdysteroidogenic enzymes, along with transgenic fluorescence proteins driven by tissue-specific promoters, are available to label ecdysteroidogenic cells. Moreover, the innervations of the ecdysteroidogenic organs can also be labeled by specific antibodies or a collection of GAL4 drivers in various types of neurons. Therefore, the ecdysteroidogenic organs and their neuronal connections can be visualized simultaneously by immunostaining and transgenic techniques. Finally, we describe how to visualize germline stem cells, whose proliferation and maintenance are controlled by ecdysteroids. This method contributes to comprehensive understanding of steroid hormone biosynthesis and its neuronal regulatory mechanism.

  14. Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster)

    Science.gov (United States)

    Sinakevitch, Irina T.; Smith, Adrian N.; Locatelli, Fernando; Huerta, Ramon; Bazhenov, Maxim; Smith, Brian H.

    2013-01-01

    Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species. PMID:24187534

  15. Adult population dynamics of the bolivian fruit flies Anastrepha sp. (Diptera: Tephritidae at Municipality Coroico, Department of The La Paz, Bolivia

    Directory of Open Access Journals (Sweden)

    Gonzáles Manuel

    2011-08-01

    Full Text Available The investigation was carried out in Paco (1603 msnm communities, it Marca (1511 msnm and Capellania (1720 msnm, of the Municipality of Coroico, department of La Paz, Bolivia. In orchards frutícolas semicomerciales, they settled 15 traps distributed McPhail in a similar way among areas, five for community, sampling" "points. The censuses were carried out with an interval of 15 days, they were identified and they quantified the mature flies of the fruit. For the captures of the individuals, they settled the traps McPhail, using the attractive (Buminal one and as conserving borax. The traps were distributed in representative parcels, having as main cultivations, orange, mandarin, grapefruit, guava and avocado. The identification taxonómica of the captured species was carried out in the laboratory of the National Program of Control of Flies of the fruit (PROMOSCA, clerk of the National Service of Agricultural Sanity and Alimentary (SENASAG Inocuidad. 1210 mature flies of the fruit were captures, those that grouped for species, sex, capture dates and community, corresponding to the seven carried out censuses. The species of Anastrepha fraterculus (Wiedeman were identified, Anastrepha striata Schiner, Anastrepha serpentine (Wiedeman, Anastrepha sp, Ceratitis capitata (Wiedemann, Blepharoneura sp Loew, Hexaresta sp Hering, Hexachaeta sp Loew, Tomoplagia sp Coquillett, Tetreuaresta sp Hendel, being that of more presence Anastrepha fraterculus (Wiedeman with 818 and Ceratitis capitata (Wiedemann, with 354. The temperature and presence of spices put up frutícolas of flies of the fruit in maturation state explain the observed fluctuations.

  16. Circadian clock dysfunction and psychiatric disease: could fruit flies have a say?

    Directory of Open Access Journals (Sweden)

    Mauro Agostino Zordan

    2015-04-01

    Full Text Available There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system lead to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e. a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.

  17. Screening mitochondrial DNA sequence variation as an alternative method for tracking established and outbreak populations of Queensland fruit fly at the species southern range limit.

    Science.gov (United States)

    Blacket, Mark J; Malipatil, Mali B; Semeraro, Linda; Gillespie, Peter S; Dominiak, Bernie C

    2017-04-01

    Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long-term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.

  18. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties.

    Science.gov (United States)

    Grasso, Filomena; Coppola, Mariangela; Carbone, Fabrizio; Baldoni, Luciana; Alagna, Fiammetta; Perrotta, Gaetano; Pérez-Pulido, Antonio J; Garonna, Antonio; Facella, Paolo; Daddiego, Loretta; Lopez, Loredana; Vitiello, Alessia; Rao, Rosa; Corrado, Giandomenico

    2017-01-01

    The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.

  19. Larval endoparasitoids (Hymenoptera of frugivorous flies (Diptera, Tephritoidea reared from fruits of the cerrado of the State of Mato Grosso do Sul , Brazil

    Directory of Open Access Journals (Sweden)

    Manoel A. Uchôa-Fernandes

    2003-01-01

    Full Text Available This paper presents a five years survey of endoparasitoids obtained from the larvae of frugivorous Tephritidae and Lonchaeidae flies. The insects were reared from cultivated and wild fruits collected in areas of the cerrado in the State of Mato Grosso do Sul, Brazil. The flies obtained from 14 host fruit species were eight Anastrepha species, Ceratitis capitata (Wiedemann, 1824 (Tephritidae; Dasiops sp. and Neosilba spp. (Lonchaeidae. Eleven parasitoid species were collected: Braconidae - Asobara anastrephae (Muesebek, 1958, Doryctobracon areolatus (Szépligeti, 1911, D. fluminensis (Costa Lima, 1938, Opius bellus Gahan, 1930 and Utetes anastrephae (Viereck, 1913; Figitidae - Aganaspis nordlanderi Wharton, 1998, Lopheucoila anastrephae (Rhower, 1919, Odontosema anastrephae (Borgmeier, 1935 and Trybliographa infuscata Gallardo, Díaz & Uchôa-Fernandes, 2000 and, Pteromalidae - Spalangia gemina Boucek, 1963 and S. endius Walker, 1839. In all cases only one parasitoid emerged per puparium. D. areolatus was the most abundant and frequent parasitoid of fruit fly species, as was L. anastrephae in Neosilba spp. larvae. This is the first record of A. nordlanderi in the midwestern Brazilian region.

  20. Population-level lateralized aggressive and courtship displays make better fighters not lovers: evidence from a fly.

    Science.gov (United States)

    Benelli, Giovanni; Romano, Donato; Messing, Russell H; Canale, Angelo

    2015-06-01

    Lateralization (i.e., left-right asymmetries in the brain and behavior) of aggressive and courtship displays has been examined in many vertebrate species, while evidence for invertebrates is limited. We investigated lateralization of aggressive and courtship displays in a lekking tephritid species, the olive fruit fly, Bactrocera oleae. Results showed a left-biased population-level lateralization of aggressive displays, with no differences between the sexes. In both male-male and female-female contests, aggressive behaviors performed with left body parts led to greater fighting success than those performed with right body parts, while no differences in fighting duration were found. Olive fruit fly males also showed a side bias during courtship and mating behavior, courting females more frequently from the left than the right, front, or back sides. No differences were detected between courtship duration and copulation duration following the different male directional approaches. Male mating success was comparable whether females were approached from the left, right, front, or back side. Lateralized aggressive and courtship displays at the population-level may be connected to the prolonged social interactions occurring among lekking flies. Further research is needed on possible benefits arising from lateralization of courtship traits in insects. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cold Disinfestation of "Hass" Avocado (Persia americana) of Three Species of Fruit Fly (Diptera: Tephritidae)-Ceratitis capitata, Ceratitis rosa, and Ceratitis cosyra.

    Science.gov (United States)

    Ware, A B; du Toit, C L N

    2017-06-01

    The avocado industry is important in South Africa, but access to certain markets is impeded by the presence of phytosanitary pests. One of the ways of securing entry to these markets is to demonstrate that a mitigating treatment will result in there being a negligible chance of accidental importation. In cold treatment comparative studies at 0 °C and 2 °C of immature stages of Ceratitis capitata (Wiedemann), Ceratitis rosa Karsch, and Ceratitis cosyra (Walker) in "Hass" avocado, the third instar of C. cosyra was shown to be the most cold tolerant. This larval life stage was used in a large-scale trial to test treatment efficacy at 2 °C, a temperature known to be the better for fruit quality. There were no survivors from the 49,795 individual fruit fly larvae subjected to the cold treatment at 2 °C for 20 d. It is argued that, although this level of assessment falls short of the Probit 9 level normally required for fruit fly, they are rarely found in avocado fruit and that the level of disinfestation obtained is more than sufficient to achieve quarantine security. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Scented males and choosy females: does male odor influence female mate choice in the Mediterranean fruit fly?

    Science.gov (United States)

    Shelly, Todd E; Edu, James; Pahio, Elaine; Nishimoto, Jon

    2007-12-01

    The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), displays a lek mating system characterized by a high level of female discrimination among potential mates. The basis of female choice is not understood, but recent studies indicate that male exposure to the aroma of certain plant structures or essential oils may increase mating success. In particular, exposure to the aroma of ginger root oil (GRO) enhances male mating frequency, and several sterile-male release programs against C. capitata have incorporated 'aromatherapy' (large-scale exposure of pre-release insects to GRO) to increase the effectiveness of control efforts. We investigated the mechanism underlying female preference for GRO-exposed males. Two sets of experiments were conducted. In the first, we monitored female attraction to (1) freshly killed flies, or (2) paper discs that contained hexane extracts from varying treatments. In these tests, females were sighted more often (1) near GRO-exposed than non-exposed males (even when the males were visually concealed) and (2) near extracts from GRO-exposed than non-exposed males. These findings suggest a 'perfume effect', whereby female mate choice is mediated by olfactory differences. In the second set, we compared (1) mate choice between intact females and females from which both antennae had been surgically removed, and (2) mating success between intact males and males from which both antennae had been surgically removed before GRO exposure. Intact females preferred GRO-exposed males, whereas females lacking both antennae rarely mated and showed no preference between GRO-exposed and non-exposed males. In the opposite treatment (intact females but surgically altered males), GRO-exposed males lacking both antennae mated as frequently as GRO-exposed intact males. These data suggest that female choice was dependent on olfactory perception of male odor but that male mating success did not depend on olfactory perception of GRO aroma, suggesting, in

  3. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Wang Jin-Jun

    2010-10-01

    Full Text Available Abstract Background Quantitative real-time reverse transcriptase PCR (RT-qPCR has been widely used for quantification of mRNA as a way to determine key genes involved in different biological processes. For accurate gene quantification analysis, normalization of RT-qPCR data is absolutely essential. To date, normalization is most frequently achieved by the use of internal controls, often referred to as reference genes. However, several studies have shown that the reference genes used for the quantification of mRNA expression can be affected by the experimental set-up or cell type resulting in variation of the expression level of these key genes. Therefore, the evaluation of reference genes is critical for gene expression profiling, which is often neglected in gene expression studies of insects. For this purpose, ten candidate reference genes were investigated in three different tissues (midgut, Malpighian tubules, and fat body of the oriental fruit fly, Bactrocera dorsalis (Hendel. Results Two different programs, geNorm and Normfinder, were used to analyze the data. According to geNorm, α-TUB + ACT5 are the most appropriate reference genes for gene expression profiling across the three different tissues in the female flies, while ACT3 + α-TUB are considered as the best for males. Furthermore, we evaluated the stability of the candidate reference genes to determine the sexual differences in the same tissue. In the midgut and Malpighian tubules, ACT2 + α-TUB are the best choice for both males and females. However, α-TUB + ACT1 are the best pair for fat body. Meanwhile, the results calculated by Normfinder are quite the same as the results with geNorm; α-TUB is always one of the most stable genes in each sample validated by the two programs. Conclusions In this study, we validated the suitable reference genes for gene expression profiling in different tissues of B. dorsalis. Moreover, appropriate reference genes were selected out for gene

  4. Dispersion of the Mediterranean Fruit Fly Ceratitis capitata Wiedem. (Diptera: Tephritidae in Mandarin Orchards on Montenegrin Seacoast

    Directory of Open Access Journals (Sweden)

    Sanja Radonjić

    2013-01-01

    Full Text Available The Mediterranean fruit fly Ceratitis capitata Widem. has been an established pest onthe Montenegrin seacoast for more than ten years, although with variable abundance indifferent years and localities.From an economic aspect, its most important host in Montenegro is the mandarinunshiu (Citrus unshiu Marc., particularly its cultivar Owari. Dispersion of C. capitata in citrusorchards (prevailingly mandarin was monitored on Baošići, Lastva Grbaljska and Bar localitiesduring 2003 and 2004.The results of this study showed that, during both years, peripheral-row trees (primarily thefirst row in citrus orchards were more exposed to attacks by C. capitata than middle and lastrows. In 2003, the average number of larvae in mandarin fruits in first rows varied from 11.4±0.59to 40.1±0.67, from 7.04±0.47 to 28.8±0.48 and from 2.9±0.07 to 17.3±0.54 on the localities ofBaošići, Lastva Grbaljska and Bar, respectively. On the same localities, it ranged from 7.4±0.34 to16.9±0.4, from 0.0 to 18.7±0.32 and from 0.0 to 9.93±0.56 in middle rows, and from 3.0±0.28 to16.8±0.77, from 0.0 to 20.9±0.38 and from 0.0 to 13.1±0.39 in last rows. Data collected at Baošići,Lastva Grbaljska and Bar in 2003 also suggest that the average number of larvae per mandarinfruit in first rows was 1.78-2.08 times higher than in middle rows, and 1.25-1.77 times higher thanin last rows. In 2004, the average number of larvae in mandarin fruits in first rows varied from7.3±0.27 to 8.3±0.45, from 7.2±0.23 to 17.6±0.59 and from 3.8±0.1 to 8.8±0.25 on the localitiesof Baošići, Lastva Grbaljska and Bar, respectively. On these localities, it ranged from 1.7 ±0.17 to3.3±0.19, from 1.1±0.12 to 3.5±0.8 and from 0.0 to 0.8±0.14 in middle rows, and from 1.7±0.17 to3.6±0.32, from 0.0 to 4.0±0.26 and from 0.0 to 0.2±0.06 in last rows. Data collected in 2004also showed that the average number of larvae in mandarin fruits in first rows on the samelocalities was 3

  5. Long-term attraction and toxic effects of tephritid insecticide-bait mixtures by applying Torricelli's barometer principle in a trapping device.

    Science.gov (United States)

    Díaz-Fleischer, Francisco; Pérez-Staples, Diana; Cabrera-Mireles, Héctor; Montoya, Pablo; Liedo, Pablo

    2016-07-01

    The field activity of the mixtures of liquid baits and insecticides used in the control of tephritid pests is normally short, both when they are sprayed or when used in trapping or in attract-and-kill devices. A new lure-and-kill device based on Torricelli's barometer principle was tested as a long-lasting dispenser for two liquid hydrolysed protein baits mixed with insecticide, GF-120 and Captor 300 + malathion, against Anastrepha ludens (Loew) flies of laboratory origin. The dispensers were kept under field conditions for 42 days. Laboratory bioassays for insecticide properties and field cage studies for attraction capacity were carried out on a weekly basis after 22 and 42 days of weathering respectively. Our results demonstrated that both mixtures of insecticides and phagostimulant baits killed up to 80% of the tested flies when they were 42 days old. The attraction capacity of both weathering-exposed mixtures was even higher than fresh insecticidal-bait mixtures after the same period. The device is efficient when used with the liquid baits currently employed in the control of tephritid flies. It also offers a high potential for combining visual stimuli, such as shape and colour, and for improving trapping and bait station designs. Incorporating this new device in trapping and attract-and-kill methods could help to reduce the frequency of servicing of the traps and bait stations and lower their costs. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Incidence of fruit flies on coffee and citrus and quarantine treatment of citrus fruits by gamma radiation; Incidencia de moscas-das-frutas em cafe e citros e tratamento quarentenario de frutos citricos com radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Raga, Adalton

    1996-12-31

    The objective of this study was to evaluate the fruit fly infestation on coffee and citrus, and also to determine gamma radiation doses for immature stages of Ceratitis capitata and Anastrepha fraterculus, in order to satisfy quarantine regulations. Coffee arabica varieties Icatu Vermelho, Catuai Amarelo, Mundo Novo and Sarchimor showed the highest infestation indices (pupa/berry): 0.53; 0,41; 0.33 and 0.36. respectively Icatu Vermelho and Catuai Vermelho showed the highest values of pupa/berry weight (0.49 and 0.39, respectively), and Robusta (Coffea canephora) presented the lowest index (0.01). The following fruit flies were found in coffee berries: C. capitata (76.6%) Anastrepha spp. (7.4%) and Lonchaeidae (17.0%). In area near coffee plantation, fruit fly infestation indices in sweet oranges were of 4.77 larvae/kg and 0.55 larva/fruit. The infestation indices for sweet orange, collected from five regions of the State of Sao Paulo ranged from 0.73 to 7.60 pupa/kg and 0.12 to 1.27 pupa/fruit. The same species of fruit flies were found in oranges. In the case of C. capitata eggs with 24-48 hours old, 20 Gy prevented completely adult emergence (artificial diet and orange). No emergence of adult occurred when C. capitata larvae of third instar were irradiated at 20 Gy in their rearing medium. But at 25 Gy, the number of adults was reduced by 54% and 97% from larval infestation in oranges and grapefruit, respectively. A dose of 30 Gy was required to prevent medfly emergence from third instar larvae in grapefruit. A dose of 15 Gy was required for third instar, to prevent adult emergence of A. fraterculus. No adult emerged from C third instar, to prevent adult emergence of A. fraterculus. No adult emerged from C capitata pre-pupa irradiated at 30 Gy. One medfly adult emerged from pupa (3-4 days after pupating) irradiated at 120 Gy. At the same dose, sixteen A. fraterculus adults emergency from irradiated pupa with 5-6 days old. (author) 85 refs., 2 figs., 13 tabs.

  7. Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly.

    Directory of Open Access Journals (Sweden)

    Giancarlo López-Martínez

    Full Text Available Early life events can have dramatic consequences on performance later in life. Exposure to stressors at a young age affects development, the rate of aging, risk of disease, and overall lifespan. In spite of this, mild stress exposure early in life can have beneficial effects on performance later in life. These positive effects of mild stress are referred to as physiological conditioning hormesis. In our current study we used anoxia conditioning hormesis as a pretreatment to reduce oxidative stress and improve organismal performance, lifespan, and healthspan of Caribbean fruit flies. We used gamma irradiation to induce mild oxidative damage in a low-dose experiment, and massive oxidative damage in a separate high-dose experiment, in pharate adult fruit flies just prior to adult emergence. Irradiation-induced oxidative stress leads to reduced adult emergence, flight ability, mating performance, and lifespan. We used a hormetic approach, one hour of exposure to anoxia plus irradiation in anoxia, to lower post-irradiation oxidative damage. We have previously shown that this anoxic-conditioning treatment elevates total antioxidant capacity and lowers post-irradiation oxidative damage to lipids and proteins. In this study, conditioned flies had lower mortality rates and longer lifespan compared to those irradiated without hormetic conditioning. As a metric of healthspan, we tracked mating both at a young age (10 d and old age (30 d. We found that anoxia-conditioned male flies were more competitive at young ages when compared to unconditioned irradiation stressed male flies, and that the positive effects of anoxic conditioning hormesis on mating success were even more pronounced in older males. Our data shows that physiological conditioning hormesis at a young age, not only improves immediate metrics of organismal performance (emergence, flight, mating, but the beneficial effects also carry into old age by reducing late life oxidative damage and

  8. Attraction and electroantennogram responses of male Mediterranean fruit fly to volatile chemicals from Persea, Litchi and Ficus wood.

    Science.gov (United States)

    Niogret, Jerome; Montgomery, Wayne S; Kendra, Paul E; Heath, Robert R; Epsky, Nancy D

    2011-05-01

    Trimedlure is the most effective male-targeted lure for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). A similar response is elicited by plant substances that contain α-copaene, a naturally-occurring sesquiterpene. α-Copaene is a complex, highly-volatile, widely-distributed plant compound, and male C. capitata respond to material from both hosts (e.g., Litchi chinensis) and non-hosts (e.g., Ficus benjamina) that contain α-copaene. Avocado, Persea americana, recently was found to contain varying amounts of α-copaene in the bark and underlying cambial tissue. Short-range attraction bioassays and electroantennography (EAG) were used to quantify responses of sterile male C. capitata to samples of rasped wood from four avocado genotypes, L. chinensis, and F. benjamina. Gas chromatography-mass spectral (GC-MS) analysis was used to identify and quantify the major sesquiterpenes. Attraction and EAG amplitude were correlated, with L. chinensis eliciting the highest and F. benjamina the lowest responses. Responses to the avocado genotypes were intermediate, but varied among the four types. GC-MS identified 13 sesquiterpenes, including α-copaene, from all samples. Amounts of α-copaene in volatile collections from samples (3 g) ranged from 11.8 μg in L. chinensis to 0.09 μg in F. benjamina, which correlated with short-range attraction and EAG response. α-Copaene ranged from 8.0 to 0.8 μg in the avocado genotypes, but attraction and EAG responses were not correlated with the amount of α-copaene. Differences in enantiomeric structure of the α-copaene in the different genotypes and/or presence of additional sesquiterpenes may be responsible for the variation in male response. EAG responses were correlated with the amount of several other sesquiterpenes including α-humulene, and this compound elicited a strong antennal response when tested alone.

  9. Estimating effective population size from linkage disequilibrium between unlinked loci: theory and application to fruit fly outbreak populations.

    Directory of Open Access Journals (Sweden)

    John A Sved

    Full Text Available There is a substantial literature on the use of linkage disequilibrium (LD to estimate effective population size using unlinked loci. The Ne estimates are extremely sensitive to the sampling process, and there is currently no theory to cope with the possible biases. We derive formulae for the analysis of idealised populations mating at random with multi-allelic (microsatellite loci. The 'Burrows composite index' is introduced in a novel way with a 'composite haplotype table'. We show that in a sample of diploid size S, the mean value of x2 or r2 from the composite haplotype table is biased by a factor of 1-1/(2S-12, rather than the usual factor 1+1/(2S-1 for a conventional haplotype table. But analysis of population data using these formulae leads to Ne estimates that are unrealistically low. We provide theory and simulation to show that this bias towards low Ne estimates is due to null alleles, and introduce a randomised permutation correction to compensate for the bias. We also consider the effect of introducing a within-locus disequilibrium factor to r2, and find that this factor leads to a bias in the Ne estimate. However this bias can be overcome using the same randomised permutation correction, to yield an altered r2 with lower variance than the original r2, and one that is also insensitive to null alleles. The resulting formulae are used to provide Ne estimates on 40 samples of the Queensland fruit fly, Bactrocera tryoni, from populations with widely divergent Ne expectations. Linkage relationships are known for most of the microsatellite loci in this species. We find that there is little difference in the estimated Ne values from using known unlinked loci as compared to using all loci, which is important for conservation studies where linkage relationships are unknown.

  10. Estimating effective population size from linkage disequilibrium between unlinked loci: theory and application to fruit fly outbreak populations.

    Science.gov (United States)

    Sved, John A; Cameron, Emilie C; Gilchrist, A Stuart

    2013-01-01

    There is a substantial literature on the use of linkage disequilibrium (LD) to estimate effective population size using unlinked loci. The Ne estimates are extremely sensitive to the sampling process, and there is currently no theory to cope with the possible biases. We derive formulae for the analysis of idealised populations mating at random with multi-allelic (microsatellite) loci. The 'Burrows composite index' is introduced in a novel way with a 'composite haplotype table'. We show that in a sample of diploid size S, the mean value of x2 or r2 from the composite haplotype table is biased by a factor of 1-1/(2S-1)2, rather than the usual factor 1+1/(2S-1) for a conventional haplotype table. But analysis of population data using these formulae leads to Ne estimates that are unrealistically low. We provide theory and simulation to show that this bias towards low Ne estimates is due to null alleles, and introduce a randomised permutation correction to compensate for the bias. We also consider the effect of introducing a within-locus disequilibrium factor to r2, and find that this factor leads to a bias in the Ne estimate. However this bias can be overcome using the same randomised permutation correction, to yield an altered r2 with lower variance than the original r2, and one that is also insensitive to null alleles. The resulting formulae are used to provide Ne estimates on 40 samples of the Queensland fruit fly, Bactrocera tryoni, from populations with widely divergent Ne expectations. Linkage relationships are known for most of the microsatellite loci in this species. We find that there is little difference in the estimated Ne values from using known unlinked loci as compared to using all loci, which is important for conservation studies where linkage relationships are unknown.

  11. Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata.

    Directory of Open Access Journals (Sweden)

    Francesca Scolari

    Full Text Available Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active.We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female.We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male recovery dynamics in terms of accessory gland gene expression profiles and

  12. Rapid diagnosis of the economically important fruit fly, Bactrocera correcta (Diptera: Tephritidae) based on a species-specific barcoding cytochrome oxidase I marker.

    Science.gov (United States)

    Jiang, F; Li, Z H; Deng, Y L; Wu, J J; Liu, R S; Buahom, N

    2013-06-01

    The guava fruit fly, Bactrocera correcta (Bezzi) (Diptera: Tephritidae), is an invasive pest of fruit and vegetable crops that primarily inhabits Southeast Asia and which has the potential to become a major threat within both the Oriental and Australian oceanic regions as well as California and Florida. In light of the threat posed, it is important to develop a rapid, accurate and reliable method to identify B. correcta in quarantine work in order to provide an early warning to prevent its widespread invasion. In the present study, we describe a species-specific polymerase chain reaction assay for the diagnosis of B. correcta using mitochondrial DNA cytochrome oxidase I (mtDNA COI) barcoding genes. A B. correcta-specific primer pair was designed according to variations in the mtDNA COI barcode sequences among 14 fruit fly species. The specificity and sensitivity of the B. correcta-specific primer pair was tested based on the presence or absence of a band in the gel profile. A pair of species-specific B. correcta primers was successfully designed and named BCOR-F/BCOR-R. An ∼280 bp fragment was amplified from specimens belonging to 17 geographical populations and four life stages of B. correcta, while no such diagnostic bands were present in any of the 14 other related fruit fly species examined. Sensitivity test results demonstrated that successful amplification can be obtained with as little as 1 ng μl⁻¹ of template DNA. The species-specific PCR analysis was able to successfully diagnose B. correcta, even in immature life stages, and from adult body parts. This method proved to be a robust single-step molecular technique for the diagnosis of B. correcta with respect to potential plant quarantine.

  13. ( Z)-9-tricosene identified in rectal gland extracts of Bactrocera oleae males: first evidence of a male-produced female attractant in olive fruit fly

    Science.gov (United States)

    Carp