WorldWideScience

Sample records for tensor-based morphometry study

  1. Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry.

    Science.gov (United States)

    Shi, Jie; Stonnington, Cynthia M; Thompson, Paul M; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C; Reiman, Eric M; Caselli, Richard J; Wang, Yalin

    2015-01-01

    Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study.

    Science.gov (United States)

    Farbota, Kimberly D M; Sodhi, Aparna; Bendlin, Barbara B; McLaren, Donald G; Xu, Guofan; Rowley, Howard A; Johnson, Sterling C

    2012-11-01

    After traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements.

  3. Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: A tensor based morphometry study.

    Science.gov (United States)

    Agosta, Federica; Gorno-Tempini, Maria Luisa; Pagani, Elisabetta; Sala, Stefania; Caputo, Domenico; Perini, Michele; Bartolomei, Ilaria; Fruguglietti, Maria Elena; Filippi, Massimo

    2009-06-01

    Our objective was to investigate grey matter (GM) contraction in patients with amyotrophic lateral sclerosis (ALS) using tensor based morphometry (TBM). Using a 1.5 Tesla scanner, T1-weighted MRI scans were obtained at baseline and at follow-up (mean interval, 9 months) from 16 ALS and 10 controls. Standard TBM procedures in Statistical Parametric Mapping (SPM2) were used for image processing and statistical analyses. The frontotemporal cortex and basal ganglia were considered areas of interest, based on pathological studies. Eight patients showed rapid clinical progression of ALS during the follow-up period. Compared to controls, all ALS patients showed progression of GM atrophy in left premotor cortex and right basal ganglia. Patients with rapidly progressing ALS showed GM atrophy changes in a larger motor cortical-subcortical area and in extramotor frontal regions compared to both controls and to non-rapidly progressing cases. Thus, TBM detected longitudinal atrophy changes in the motor network in ALS occurring over less than one year. The faster the clinical progression, the greater was the GM loss in motor and prefrontal areas. Further advances in tracking longitudinal changes in cortical and subcortical regions in ALS may provide an objective marker for monitoring disease progression, and the disease-modifying effect of potential treatments.

  4. Atrophy progression in semantic dementia with asymmetric temporal involvement: a tensor-based morphometry study.

    Science.gov (United States)

    Brambati, S M; Rankin, K P; Narvid, J; Seeley, W W; Dean, D; Rosen, H J; Miller, B L; Ashburner, J; Gorno-Tempini, M L

    2009-01-01

    We performed a longitudinal anatomical study to map the progression of gray matter atrophy in anatomically defined predominantly left (LTLV) and right (RTLV) temporal lobe variants of semantic dementia (SD). T1-weighted MRI scans were obtained at presentation and one-year follow-up from 13 LTLV, 6 RTLV, and 25 control subjects. Tensor-based morphometry (TBM) in SPM2 was applied to derive a voxel-wise estimation of regional tissue loss over time from the deformation field required to warp the follow-up scan to the presentation scan in each subject. When compared to controls, both LTLV and RTLV showed significant progression of gray matter atrophy not only within the temporal lobe most affected at presentation, but also in the controlateral temporal regions (p<0.05 FWE corrected). In LTLV, significant progression of volume loss also involved the ventromedial frontal and the left anterior insular regions. These results identified the anatomic substrates of the previously reported clinical evolution of LTLV and RTLV into a unique 'merged' clinical syndrome characterized by semantic and behavioral deficits and bilateral temporal atrophy.

  5. Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study

    Science.gov (United States)

    Kim, Junghoon; Avants, Brian; Patel, Sunil; Whyte, John; Coslett, H. Branch; Pluta, John; Detre, John A.; Gee, James C.

    2008-01-01

    Traumatic brain injury (TBI) is one of the most common causes of long-term disability. Despite the importance of identifying neuropathology in individuals with chronic TBI, methodological challenges posed at the stage of inter-subject image registration have hampered previous voxel-based MRI studies from providing a clear pattern of structural atrophy after TBI. We used a novel symmetric diffeomorphic image normalization method to conduct a tensor-based morphometry (TBM) study of TBI. The key advantage of this method is that it simultaneously estimates an optimal template brain and topology preserving deformations between this template and individual subject brains. Detailed patterns of atrophies are then revealed by statistically contrasting control and subject deformations to the template space. Participants were 29 survivors of TBI and 20 control subjects who were matched in terms of age, gender, education, and ethnicity. Localized volume losses were found most prominently in white matter regions and the subcortical nuclei including the thalamus, the midbrain, the corpus callosum, the mid- and posterior cingulate cortices, and the caudate. Significant voxel-wise volume loss clusters were also detected in the cerebellum and the frontal/temporal neocortices. Volume enlargements were identified largely in ventricular regions. A similar pattern of results was observed in a subgroup analysis where we restricted our analysis to the 17 TBI participants who had no macroscopic focal lesions (total lesion volume> 1.5 cm 3). The current study confirms, extends, and partly challenges previous structural MRI studies in chronic TBI. By demonstrating that a large deformation image registration technique can be successfully combined with TBM to identify TBI-induced diffuse structural changes with greater precision, our approach is expected to increase the sensitivity of future studies examining brain-behavior relationships in the TBI population. PMID:17999940

  6. A tensor based morphometry study of longitudinal gray matter contraction in FTD

    Science.gov (United States)

    Brambati, Simona M.; Renda, Natasha C.; Rankin, Katherine P.; Rosen, Howard J.; Seeley, William W.; Ashburner, John; Weiner, Michael W.; Miller, Bruce L.; Gorno-Tempini, Maria Luisa

    2008-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by progressive behavioural abnormalities and frontotemporal atrophy. Here we used tensor based morphometry (TBM) to identify regions of longitudinal progression of gray matter atrophy in FTD compared to controls. T1-weighted MRI images were acquired at presentation and 1-year follow-up from 12 patients with mild to moderate FTD and 12 healthy controls. Using TBM as implemented in SPM2, a voxel-wise estimation of regional tissue volume change was derived from the deformation field required to warp a subject’s late to early anatomical images. A whole brain analysis was performed, in which a level of significance of pBased on prior studies, a region of interest (ROI) analysis was also performed, including in the search area bilateral medial and orbital frontal regions, anterior cingulate gyrus, insula, amygdala and hippocampus. Within this ROI a level of significance of p<0.001 uncorrected was accepted. In the whole brain analysis, the anterior cingulate/paracingulate gyri were the only regions that showed significant atrophy change over 1 year. In the ROI analysis, the left ventro-medial frontal cortex, right medial superior frontal gyrus, anterior insulae and left amygdala/hippocampus showed significant longitudinal changes. In conclusion, limbic and paralimbic regions showed detectable gray matter contraction over 1 year in FTD, confirming the susceptibility of these regions to the disease and the consistency with their putative role in causing typical presenting behaviours. These results suggest that TBM might be useful in tracking progression of regional atrophy in FTD. PMID:17350290

  7. Tracking the development of agrammatic aphasia: A tensor-based morphometry study.

    Science.gov (United States)

    Whitwell, Jennifer L; Duffy, Joseph R; Machulda, Mary M; Clark, Heather M; Strand, Edythe A; Senjem, Matthew L; Gunter, Jeffrey L; Spychalla, Anthony J; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A

    2017-05-01

    Agrammatic aphasia can be observed in neurodegenerative disorders and has been traditionally linked with damage to Broca's area, although there have been disagreements concerning whether damage to Broca's area is necessary or sufficient for the development of agrammatism. We aimed to investigate the neuroanatomical correlates of the emergence of agrammatic aphasia utilizing a unique cohort of patients with primary progressive apraxia of speech (PPAOS) that did not have agrammatism at baseline but developed agrammatic aphasia over time. Twenty PPAOS patients were recruited and underwent detailed speech/language assessments and 3T MRI at two visits, approximately two years apart. None of the patients showed evidence of agrammatism in writing or speech at baseline. Eight patients developed aphasia at follow-up (progressors) and 12 did not (non-progressors). Tensor-based morphometry utilizing symmetric normalization (SyN) was used to assess patterns of grey matter atrophy and voxel-based morphometry was used to assess patterns of grey matter loss at baseline. The progressors were younger at onset and more likely to show distorted sound substitutions or additions compared to non-progressors. Both groups showed change over time in premotor and motor cortices, posterior frontal lobe, basal ganglia, thalamus and midbrain, but the progressors showed greater rates of atrophy in left pars triangularis, thalamus and putamen compared to non-progressors. The progressors also showed greater grey matter loss in pars triangularis and putamen at baseline. This cohort provided a unique opportunity to assess the anatomical changes that accompany the development of agrammatic aphasia. The results suggest that damage to a network of regions including Broca's area, thalamus and basal ganglia are responsible for the development of agrammatic aphasia in PPAOS. Clinical and neuroimaging abnormalities were also present before the onset of agrammatism that could help improve prognosis in

  8. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Science.gov (United States)

    Mascalchi, Mario; Diciotti, Stefano; Giannelli, Marco; Ginestroni, Andrea; Soricelli, Andrea; Nicolai, Emanuele; Aiello, Marco; Tessa, Carlo; Galli, Lucia; Dotti, Maria Teresa; Piacentini, Silvia; Salvatore, Elena; Toschi, Nicola

    2014-01-01

    Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM) and cortical gray matter (GM) in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  9. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Mario Mascalchi

    Full Text Available Spinocerebellar ataxia type 2 (SCA2 is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years and 16 age- and gender-matched healthy controls (mean interval 3.3 years on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM and cortical gray matter (GM in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  10. Structural connectivity via the tensor-based morphometry

    OpenAIRE

    Kim, S.; Chung, M.; Hanson, J.; Avants, B.; Gee, J.; Davidson, R.; Pollak, S.

    2011-01-01

    The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the ε-neighbor ...

  11. Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study.

    Science.gov (United States)

    Ceccarelli, Antonia; Rocca, Maria Assunta; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2009-11-15

    Longitudinal voxel-based morphometry studies have demonstrated morphological changes in cortical structures following motor and cognitive learning. In this study, we applied, for the first time, tensor-based morphometry (TBM) to assess the short-term structural brain gray matter (GM) changes associated with cognitive learning in healthy subjects. Using a 3 T scanner, a 3D T1-weighted sequence was acquired from 32 students at baseline and after two weeks. Students were separated into two groups: 13 defined as "students in cognitive training", who underwent a two-week cognitive learning period, and 19 "students not in cognitive training", who were not involved in any teaching activity. GM changes were assessed using TBM and statistical parametric mapping. Baseline regional GM volume did not differ between the two groups. At follow up, compared to "students not in cognitive training", the "students in cognitive training" had a significant GM volume increase in the dorsomedial frontal cortex, the orbitofrontal cortex, and the precuneus (p<0.001). These results suggest that cognitive learning results in short-term structural GM changes of neuronal networks of the human brain, which are known to be involved in cognition. This may have important implications for the development of rehabilitation strategies in patients with neurological diseases.

  12. Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study.

    Science.gov (United States)

    Brun, Caroline C; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D; Barysheva, Marina; Madsen, Sarah K; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I; McMahon, Katie L; Wright, Margaret J; Toga, Arthur W; Thompson, Paul M

    2009-10-15

    Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

  13. STRUCTURAL CONNECTIVITY VIA THE TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Kim, Seung-Goo; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2011-01-01

    The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the ε -neighbor method that does not need any predetermined parcellation. The proposed pipeline is applied in detecting the topological alteration of the white matter connectivity in maltreated children.

  14. Disease and genetic contributions toward local tissue volume disturbances in schizophrenia: a tensor-based morphometry study.

    Science.gov (United States)

    Yang, Yaling; Nuechterlein, Keith H; Phillips, Owen R; Gutman, Boris; Kurth, Florian; Dinov, Ivo; Thompson, Paul M; Asarnow, Robert F; Toga, Arthur W; Narr, Katherine L

    2012-09-01

    Structural brain deficits, especially frontotemporal volume reduction and ventricular enlargement, have been repeatedly reported in patients with schizophrenia. However, it remains unclear whether brain structural deformations may be attributable to disease-related or genetic factors. In this study, the structural magnetic resonance imaging data of 48 adult-onset schizophrenia patients, 65 first-degree nonpsychotic relatives of schizophrenia patients, 27 community comparison (CC) probands, and 73 CC relatives were examined using tensor-based morphometry (TBM) to isolate global and localized differences in tissue volume across the entire brain between groups. We found brain tissue contractions most prominently in frontal and temporal regions and expansions in the putamen/pallidum, and lateral and third ventricles in schizophrenia patients when compared with unrelated CC probands. Results were similar, though less prominent when patients were compared with their nonpsychotic relatives. Structural deformations observed in unaffected patient relatives compared to age-similar CC relatives were suggestive of schizophrenia-related genetic liability and were pronounced in the putamen/pallidum and medial temporal regions. Schizophrenia and genetic liability effects for the putamen/pallidum were confirmed by regions-of-interest analysis. In conclusion, TBM findings complement reports of frontal, temporal, and ventricular dysmorphology in schizophrenia and further indicate that putamen/pallidum enlargements, originally linked mainly with medication exposure in early studies, also reflect a genetic predisposition for schizophrenia. Thus, brain deformation profiles revealed in this study may help to clarify the role of specific genetic or environmental risk factors toward altered brain morphology in schizophrenia.

  15. Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study.

    Science.gov (United States)

    Filippi, Massimo; Ceccarelli, Antonia; Pagani, Elisabetta; Gatti, Roberto; Rossi, Alice; Stefanelli, Laura; Falini, Andrea; Comi, Giancarlo; Rocca, Maria Assunta

    2010-04-15

    We used tensor-based morphometry (TBM) to: 1) map gray matter (GM) volume changes associated with motor learning in young healthy individuals; 2) evaluate if GM changes persist three months after cessation of motor training; and 3) assess whether the use of different schemes of motor training during the learning phase could lead to volume modifications of specific GM structures. From 31 healthy subjects, motor functional assessment and brain 3D T1-weighted sequence were obtained: before motor training (time 0), at the end of training (two weeks) (time 2), and three months later (time 3). Fifteen subjects (group A) were trained with goal-directed motor sequences, and 16 (group B) with non purposeful motor actions of the right hand. At time 1 vs. time 0, the whole sample of subjects had GM volume increase in regions of the temporo-occipital lobes, inferior parietal lobule (IPL) and middle frontal gyrus, while at time 2 vs. time 1, an increased GM volume in the middle temporal gyrus was seen. At time 1 vs. time 0, compared to group B, group A had a GM volume increase of the hippocampi, while the opposite comparison showed greater GM volume increase in the IPL and insula in group B vs. group A. Motor learning results in structural GM changes of different brain areas which are part of specific neuronal networks and tend to persist after training is stopped. The scheme applied during the learning phase influences the pattern of such structural changes.

  16. Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Massimo Filippi

    Full Text Available We used tensor-based morphometry (TBM to: 1 map gray matter (GM volume changes associated with motor learning in young healthy individuals; 2 evaluate if GM changes persist three months after cessation of motor training; and 3 assess whether the use of different schemes of motor training during the learning phase could lead to volume modifications of specific GM structures. From 31 healthy subjects, motor functional assessment and brain 3D T1-weighted sequence were obtained: before motor training (time 0, at the end of training (two weeks (time 2, and three months later (time 3. Fifteen subjects (group A were trained with goal-directed motor sequences, and 16 (group B with non purposeful motor actions of the right hand. At time 1 vs. time 0, the whole sample of subjects had GM volume increase in regions of the temporo-occipital lobes, inferior parietal lobule (IPL and middle frontal gyrus, while at time 2 vs. time 1, an increased GM volume in the middle temporal gyrus was seen. At time 1 vs. time 0, compared to group B, group A had a GM volume increase of the hippocampi, while the opposite comparison showed greater GM volume increase in the IPL and insula in group B vs. group A. Motor learning results in structural GM changes of different brain areas which are part of specific neuronal networks and tend to persist after training is stopped. The scheme applied during the learning phase influences the pattern of such structural changes.

  17. Multivariate Tensor-based Brain Anatomical Surface Morphometry via Holomorphic One-Forms

    OpenAIRE

    Wang, Yalin; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer’s Disease (AD; 26 subjects), lateral ventricula...

  18. Mean template for tensor-based morphometry using deformation tensors.

    Science.gov (United States)

    Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M

    2007-01-01

    Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.

  19. Multivariate analysis of eigenvalues and eigenvectors in tensor based morphometry

    Science.gov (United States)

    Rajagopalan, Vidya; Schwartzman, Armin; Hua, Xue; Leow, Alex; Thompson, Paul; Lepore, Natasha

    2015-01-01

    We develop a new algorithm to compute voxel-wise shape differences in tensor-based morphometry (TBM). As in standard TBM, we non-linearly register brain T1-weighed MRI data from a patient and control group to a template, and compute the Jacobian of the deformation fields. In standard TBM, the determinants of the Jacobian matrix at each voxel are statistically compared between the two groups. More recently, a multivariate extension of the statistical analysis involving the deformation tensors derived from the Jacobian matrices has been shown to improve statistical detection power.7 However, multivariate methods comprising large numbers of variables are computationally intensive and may be subject to noise. In addition, the anatomical interpretation of results is sometimes difficult. Here instead, we analyze the eigenvalues and the eigenvectors of the Jacobian matrices. Our method is validated on brain MRI data from Alzheimer's patients and healthy elderly controls from the Alzheimer's Disease Neuro Imaging Database.

  20. MANDIBULAR ASYMMETRY CHARACTERIZATION USING GENERALIZED TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Paniagua, Beatriz; Alhadidi, Abeer; Cevidanes, Lucia; Styner, Martin; Oguz, Ipek

    2011-12-31

    Quantitative assessment of facial asymmetry is crucial for successful planning of corrective surgery. We propose a tensor-based morphometry (TBM) framework to locate and quantify asymmetry using 3D CBCT images. To this end, we compute a rigid transformation between the mandible segmentation and its mirror image, which yields global rotation and translation with respect to the cranial base to guide the surgery's first stage. Next, we nonrigidly register the rigidly aligned images and use TBM methods to locally analyze the deformation field. This yields data on the location, amount and direction of "growth" (or "shrinkage") between the left and right sides. We visualize this data in a volumetric manner and via scalar and vector maps on the mandibular surface to provide the surgeon with optimal understanding of the patient's anatomy. We illustrate the feasibility and strength of our technique on 3 representative patients with a wide range of facial asymmetries.

  1. Multivariate tensor-based brain anatomical surface morphometry via holomorphic one-forms.

    Science.gov (United States)

    Wang, Yalin; Chan, Tony F; Toga, Arthur W; Thompson, Paul M

    2009-01-01

    Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer's Disease (AD; 26 subjects), lateral ventricular surface morphometry in HIV/AIDS (19 subjects) and cortical surface morphometry in Williams Syndrome (WS; 80 subjects). Experimental results demonstrated that our method powerfully detected brain surface abnormalities. Multivariate statistics on the local tensors outperformed other TBM methods including analysis of the Jacobian determinant, the largest eigenvalue, or the pair of eigenvalues, of the surface Jacobian matrix.

  2. Mapping directionality specific volume changes using tensor based morphometry: an application to the study of gyrogenesis and lateralization of the human fetal brain.

    Science.gov (United States)

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A; Kim, Kio; Rousseau, Francois; Glenn, Orit A; Barkovich, A James; Studholme, Colin

    2012-11-01

    Tensor based morphometry (TBM) is a powerful approach to analyze local structural changes in brain anatomy. However, conventional scalar TBM methods do not completely capture all direction specific volume changes required to model complex changes such as those during brain growth. In this paper, we describe novel TBM descriptors for studying direction-specific changes in a subject population which can be used in conjunction with scalar TBM to analyze local patterns in directionality of volume change during brain development. We also extend the methodology to provide a new approach to mapping directional asymmetry in deformation tensors associated with the emergence of structural asymmetry in the developing brain. We illustrate the use of these methods by studying developmental patterns in the human fetal brain, in vivo. Results show that fetal brain development exhibits a distinct spatial pattern of anisotropic growth. The most significant changes in the directionality of growth occur in the cortical plate at major sulci. Our analysis also detected directional growth asymmetry in the peri-Sylvian region and the medial frontal lobe of the fetal brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Alzheimer's disease neuroimaging initiative: a one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition.

    Science.gov (United States)

    Leow, Alex D; Yanovsky, Igor; Parikshak, Neelroop; Hua, Xue; Lee, Suh; Toga, Arthur W; Jack, Clifford R; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Borowski, Bret; Shaw, Leslie M; Trojanowski, John Q; Fleisher, Adam S; Harvey, Danielle; Kornak, John; Schuff, Norbert; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2009-04-15

    Tensor-based morphometry can recover three-dimensional longitudinal brain changes over time by nonlinearly registering baseline to follow-up MRI scans of the same subject. Here, we compared the anatomical distribution of longitudinal brain structural changes, over 12 months, using a subset of the ADNI dataset consisting of 20 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with mild cognitive impairment (MCI). Each individual longitudinal change map (Jacobian map) was created using an unbiased registration technique, and spatially normalized to a geometrically-centered average image based on healthy controls. Voxelwise statistical analyses revealed regional differences in atrophy rates, and these differences were correlated with clinical measures and biomarkers. Consistent with prior studies, we detected widespread cerebral atrophy in AD, and a more restricted atrophic pattern in MCI. In MCI, temporal lobe atrophy rates were correlated with changes in mini-mental state exam (MMSE) scores, clinical dementia rating (CDR), and logical/verbal learning memory scores. In AD, temporal atrophy rates were correlated with several biomarker indices, including a higher CSF level of p-tau protein, and a greater CSF tau/beta amyloid 1-42 (ABeta42) ratio. Temporal lobe atrophy was significantly faster in MCI subjects who converted to AD than in non-converters. Serial MRI scans can therefore be analyzed with nonlinear image registration to relate ongoing neurodegeneration to a variety of pathological biomarkers, cognitive changes, and conversion from MCI to AD, tracking disease progression in 3-dimensional detail.

  4. Progression of brain atrophy in the early stages of Parkinson's disease: a longitudinal tensor-based morphometry study in de novo patients without cognitive impairment.

    Science.gov (United States)

    Tessa, Carlo; Lucetti, Claudio; Giannelli, Marco; Diciotti, Stefano; Poletti, Michele; Danti, Sabrina; Baldacci, Filippo; Vignali, Claudio; Bonuccelli, Ubaldo; Mascalchi, Mario; Toschi, Nicola

    2014-08-01

    The presence of brain atrophy and its progression in early Parkinson's disease (PD) are still a matter of debate, particularly in patients without cognitive impairment. The aim of this longitudinal study was to assess whether PD patients who remain cognitively intact develop progressive atrophic changes in the early stages of the disease. For this purpose, we employed high-resolution T1-weighted MR imaging to compare 22 drug-naïve de novo PD patients without cognitive impairment to 17 age-matched control subjects, both at baseline and at three-year follow-up. We used tensor-based morphometry to explore the presence of atrophic changes at baseline and to compute yearly atrophy rates, after which we performed voxel-wise group comparisons using threshold-free cluster enhancement. At baseline, we did not observe significant differences in regional atrophy in PD patients with respect to control subjects. In contrast, PD patients showed significantly higher yearly atrophy rates in the prefrontal cortex, anterior cingulum, caudate nucleus, and thalamus when compared to control subjects. Our results indicate that even cognitively preserved PD patients show progressive cortical and subcortical atrophic changes in regions related to cognitive functions and that these changes are already detectable in the early stages of the disease. Copyright © 2014 Wiley Periodicals, Inc.

  5. Visual rating method and tensor-based morphometry in the diagnosis of mild cognitive impairment and Alzheimer's disease: a comparative magnetic resonance imaging study.

    Science.gov (United States)

    Tuokkola, Terhi; Koikkalainen, Juha; Parkkola, Riitta; Karrasch, Mira; Lötjönen, Jyrki; Rinne, Juha O

    2016-03-01

    Atrophy of the medial temporal lobe (MTL) is the main structural magnetic resonance imaging (MRI) finding in the brain of patients with Alzheimer's disease (AD). However, evaluating the degree of atrophy is still demanding. The visual rating method (VRM) was compared with multi-template tensor-based morphometry (TBM), in terms of its efficacy in diagnosing of mild cognitive impairment (MCI) and AD. Forty-seven patients with MCI, 80 patients with AD and 84 controls were studied. TBM seems to be more sensitive than VRM at the early stage of dementia in the areas of MTL and ventricles. The methods were equally good in distinguishing controls and the MCI group from the AD group. At the frontal areas TBM was better than VRM in all comparisons. A user-friendly VRM is still useful for the clinical evaluation of MCI patients, but multi-template TBM is more sensitive for diagnosing the early stages of dementia. However, TBM is currently too demanding to use for daily clinical work. © The Foundation Acta Radiologica 2015.

  6. Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors

    OpenAIRE

    Lepore, Natasha; Brun, Caroline; Chou, Yi-Yu; Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Luders, Eileen; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor...

  7. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects.

    Science.gov (United States)

    Hua, Xue; Leow, Alex D; Parikshak, Neelroop; Lee, Suh; Chiang, Ming-Chang; Toga, Arthur W; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2008-11-15

    In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6+/-7.6 years), 330 MCI subjects (74.8+/-7.5), and 181 controls (75.9+/-5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements--the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores - at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers--1/6 of the normal group--showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies.

  8. Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects.

    Science.gov (United States)

    Hua, Xue; Lee, Suh; Yanovsky, Igor; Leow, Alex D; Chou, Yi-Yu; Ho, April J; Gutman, Boris; Toga, Arthur W; Jack, Clifford R; Bernstein, Matt A; Reiman, Eric M; Harvey, Danielle J; Kornak, John; Schuff, Norbert; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2009-12-01

    Tensor-based morphometry (TBM) is a powerful method to map the 3D profile of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We optimized a TBM-based image analysis method to determine what methodological factors, and which image-derived measures, maximize statistical power to track brain change. 3D maps, tracking rates of structural atrophy over time, were created from 1030 longitudinal brain MRI scans (1-year follow-up) of 104 AD patients (age: 75.7+/-7.2 years; MMSE: 23.3+/-1.8, at baseline), 254 amnestic MCI subjects (75.0+/-7.2 years; 27.0+/-1.8), and 157 healthy elderly subjects (75.9+/-5.1 years; 29.1+/-1.0), as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). To determine which TBM designs gave greatest statistical power, we compared different linear and nonlinear registration parameters (including different regularization functions), and different numerical summary measures derived from the maps. Detection power was greatly enhanced by summarizing changes in a statistically-defined region-of-interest (ROI) derived from an independent training sample of 22 AD patients. Effect sizes were compared using cumulative distribution function (CDF) plots and false discovery rate methods. In power analyses, the best method required only 48 AD and 88 MCI subjects to give 80% power to detect a 25% reduction in the mean annual change using a two-sided test (at alpha=0.05). This is a drastic sample size reduction relative to using clinical scores as outcome measures (619 AD/6797 MCI for the ADAS-Cog, and 408 AD/796 MCI for the Clinical Dementia Rating sum-of-boxes scores). TBM offers high statistical power to track brain changes in large, multi-site neuroimaging studies and clinical trials of AD.

  9. Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry.

    Science.gov (United States)

    Shi, Jie; Collignon, Olivier; Xu, Liang; Wang, Gang; Kang, Yue; Leporé, Franco; Lao, Yi; Joshi, Anand A; Leporé, Natasha; Wang, Yalin

    2015-07-01

    Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g., via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling's T(2) test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses.

  10. Apolipoprotein E genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: a tensor-based morphometry study.

    Science.gov (United States)

    Lu, Po H; Thompson, Paul M; Leow, Alex; Lee, Grace J; Lee, Agatha; Yanovsky, Igor; Parikshak, Neelroop; Khoo, Theresa; Wu, Stephanie; Geschwind, Daniel; Bartzokis, George

    2011-01-01

    Apolipoprotein E (ApoE) ε4 genotype is a strong risk factor for developing Alzheimer's disease (AD). Conversely, the presence of the ε2 allele has been shown to mitigate cognitive decline. Tensor-based morphometry (TBM), a novel computational approach for visualizing longitudinal progression of brain atrophy, was used to determine whether cognitively intact elderly participants with the ε4 allele demonstrate greater volume reduction than those with the ε2 allele. Healthy "younger elderly" volunteers, aged 55-75, were recruited from the community and hospital staff. They were evaluated with a baseline and follow-up MRI scan (mean scan interval = 4.72 years, s.d. = 0.55) and completed ApoE genotyping. Twenty-seven participants were included in the study of which 16 had the ε4 allele (all heterozygous ε3ε4 genotype) and 11 had the ε2ε3 genotype. The two groups did not differ significantly on any demographic characteristics and all subjects were cognitively "normal" at both baseline and follow-up time points. TBM was used to create 3D maps of local brain tissue atrophy rates for individual participants; these spatially detailed 3D maps were compared between the two ApoE groups. Regional analyses were performed and the ε4 group demonstrated significantly greater annual atrophy rates in the temporal lobes (p = 0.048) and hippocampus (p = 0.016); greater volume loss was observed in the right hippocampus than the left. TBM appears to be useful in tracking longitudinal progression of brain atrophy in cognitively asymptomatic adults. Possession of the ε4 allele is associated with greater temporal and hippocampal volume reduction well before the onset of cognitive deficits.

  11. Optimizing power to track brain degeneration in Alzheimer’s disease and mild cognitive impairment with tensor-based morphometry: An ADNI study of 515 subjects

    Science.gov (United States)

    Hua, Xue; Lee, Suh; Yanovsky, Igor; Leow, Alex D.; Chou, Yi-Yu; Ho, April J.; Gutman, Boris; Toga, Arthur W.; Jack, Clifford R.; Bernstein, Matt A.; Reiman, Eric M.; Harvey, Danielle J.; Kornak, John; Schuff, Norbert; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2010-01-01

    Tensor-based morphometry (TBM) is a powerful method to map the 3D profile of brain degeneration in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). We optimized a TBM-based image analysis method to determine what methodological factors, and which image-derived measures, maximize statistical power to track brain change. 3D maps, tracking rates of structural atrophy over time, were created from 1030 longitudinal brain MRI scans (1-year follow-up) of 104 AD patients (age: 75.7 ± 7.2 years; MMSE: 23.3 ± 1.8, at baseline), 254 amnestic MCI subjects (75.0 ± 7.2 years; 27.0 ± 1.8), and 157 healthy elderly subjects (75.9 ± 5.1 years; 29.1 ± 1.0), as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). To determine which TBM designs gave greatest statistical power, we compared different linear and nonlinear registration parameters (including different regularization functions), and different numerical summary measures derived from the maps. Detection power was greatly enhanced by summarizing changes in a statistically-defined region-of-interest (ROI) derived from an independent training sample of 22 AD patients. Effect sizes were compared using cumulative distribution function (CDF) plots and false discovery rate methods. In power analyses, the best method required only 48 AD and 88 MCI subjects to give 80% power to detect a 25% reduction in the mean annual change using a two-sided test (at α = 0.05). This is a drastic sample size reduction relative to using clinical scores as outcome measures (619 AD/6797 MCI for the ADAS-Cog, and 408 AD/796 MCI for the Clinical Dementia Rating sum-of-boxes scores). TBM offers high statistical power to track brain changes in large, multi-site neuroimaging studies and clinical trials of AD. PMID:19615450

  12. Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors.

    Science.gov (United States)

    Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.

  13. Longitudinal changes in the brain in mild cognitive impairment: a magnetic resonance imaging study using the visual rating method and tensor-based morphometry.

    Science.gov (United States)

    Tuokkola, Terhi; Koikkalainen, Juha; Parkkola, Riitta; Karrasch, Mira; Lötjönen, Jyrki; Rinne, Juha O

    2017-01-01

    Background Brain atrophy is associated with mild cognitive impairment (MCI), and by using volumetric and visual analyzing methods, it is possible to differentiate between individuals with progressive MCI (MCIp) and stable MCI (MCIs). Automated analysis methods detect degenerative changes in the brain earlier and more reliably than visual methods. Purpose To detect and evaluate structural brain changes between and within the MCIs, MCIp, and control groups during a two-year follow-up period. Material and Methods Brain magnetic resonance imaging (MRI) scans of 11 participants with MCIs, 18 participants with MCIp, and 84 controls were analyzed by the visual rating method (VRM) and tensor-based morphometry (TBM). Results At baseline, both VRM and TBM differentiated the whole MCI group (combined MCIs and MCIp) and the MCIp group from the control group, but they did not differentiate the MCIs group from the control group. At follow-up, both methods differentiated the MCIp group from the control group, but minor differences between the MCIs and control groups were only seen by TBM. Neuropsychological tests did not find differences between the MCIs and control groups at follow-up. Neither method revealed relevant signs of brain atrophy progression within or between MCI subgroups during the follow-up time. Conclusion Both methods are equally good in the evaluation of structural brain changes in MCI if the groups are sufficiently large and the disease progresses to AD. Only TBM disclosed minor atrophic changes in the MCIs group compared to controls at follow-up. The results need to be confirmed with a large patient group and longer follow-up time.

  14. Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS.

    Science.gov (United States)

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F; Becker, James T; Aizenstein, Howard J; Lopez, Oscar L; Tamburo, Robert J; Toga, Arthur W; Thompson, Paul M

    2010-02-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics-these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  15. Tensor-based morphometry of fibrous structures with application to human brain white matter.

    Science.gov (United States)

    Zhang, Hui; Yushkevich, Paul A; Rueckert, Daniel; Gee, James C

    2009-01-01

    Tensor-based morphometry (TBM) is a powerful approach for examining shape changes in anatomy both across populations and in time. Our work extends the standard TBM for quantifying local volumetric changes to establish both rich and intuitive descriptors of shape changes in fibrous structures. It leverages the data from diffusion tensor imaging to determine local spatial configuration of fibrous structures and combines this information with spatial transformations derived from image registration to quantify fibrous structure-specific changes, such as local changes in fiber length and in thickness of fiber bundles. In this paper, we describe the theoretical framework of our approach in detail and illustrate its application to study brain white matter. Our results show that additional insights can be gained with the proposed analysis.

  16. Detecting brain growth patterns in normal children using tensor-based morphometry.

    Science.gov (United States)

    Hua, Xue; Leow, Alex D; Levitt, Jennifer G; Caplan, Rochelle; Thompson, Paul M; Toga, Arthur W

    2009-01-01

    Previous magnetic resonance imaging (MRI)-based volumetric studies have shown age-related increases in the volume of total white matter and decreases in the volume of total gray matter of normal children. Recent adaptations of image analysis strategies enable the detection of human brain growth with improved spatial resolution. In this article, we further explore the spatio-temporal complexity of adolescent brain maturation with tensor-based morphometry. By utilizing a novel non-linear elastic intensity-based registration algorithm on the serial structural MRI scans of 13 healthy children, individual Jacobian growth maps are generated and then registered to a common anatomical space. Statistical analyses reveal significant tissue growth in cerebral white matter, contrasted with gray matter loss in parietal, temporal, and occipital lobe. In addition, a linear regression with age and gender suggests a slowing down of the growth rate in regions with the greatest white matter growth. We demonstrate that a tensor-based Jacobian map is a sensitive and reliable method to detect regional tissue changes during development. (c) 2007 Wiley-Liss, Inc.

  17. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    OpenAIRE

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2007-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images.

  18. Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry.

    Science.gov (United States)

    Muñoz-Ruiz, Miguel Ángel; Hartikainen, Päivi; Koikkalainen, Juha; Wolz, Robin; Julkunen, Valtteri; Niskanen, Eini; Herukka, Sanna-Kaisa; Kivipelto, Miia; Vanninen, Ritva; Rueckert, Daniel; Liu, Yawu; Lötjönen, Jyrki; Soininen, Hilkka

    2012-01-01

    MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD). However there is a need to develop more accurate and standardized MRI analysis methods. To compare FTD with Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) with three automatic MRI analysis methods - Hippocampal Volumetry (HV), Tensor-based Morphometry (TBM) and Voxel-based Morphometry (VBM), in specific regions of interest in order to determine the highest classification accuracy. Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI) and 48 patients with stable MCI (SMCI) were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR), sensitivity (SS) and specificity (SP) between the study groups. We found unequivocal results differentiating controls from FTD with HV (hippocampus left side) (CCR = 0.83; SS = 0.84; SP = 0.80), with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94), and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn) (CCR = 0.87/SS = 0.81/SP = 0.96). VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76), particularly in lateral ventricle (frontal horn, central part and occipital horn) (CCR = 0.73), whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73). TBM resulted in low accuracy (CCR = 0.62) in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55). Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD.

  19. Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry.

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Muñoz-Ruiz

    Full Text Available BACKGROUND: MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD. However there is a need to develop more accurate and standardized MRI analysis methods. OBJECTIVE: To compare FTD with Alzheimer's Disease (AD and Mild Cognitive Impairment (MCI with three automatic MRI analysis methods - Hippocampal Volumetry (HV, Tensor-based Morphometry (TBM and Voxel-based Morphometry (VBM, in specific regions of interest in order to determine the highest classification accuracy. METHODS: Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI and 48 patients with stable MCI (SMCI were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR, sensitivity (SS and specificity (SP between the study groups. RESULTS: We found unequivocal results differentiating controls from FTD with HV (hippocampus left side (CCR = 0.83; SS = 0.84; SP = 0.80, with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94, and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn (CCR = 0.87/SS = 0.81/SP = 0.96. VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76, particularly in lateral ventricle (frontal horn, central part and occipital horn (CCR = 0.73, whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73. TBM resulted in low accuracy (CCR = 0.62 in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55. CONCLUSION: Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD.

  20. Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis.

    Science.gov (United States)

    Wang, Yalin; Yuan, Lei; Shi, Jie; Greve, Alexander; Ye, Jieping; Toga, Arthur W; Reiss, Allan L; Thompson, Paul M

    2013-07-01

    Many methods have been proposed for computer-assisted diagnostic classification. Full tensor information and machine learning with 3D maps derived from brain images may help detect subtle differences or classify subjects into different groups. Here we develop a new approach to apply tensor-based morphometry to parametric surface models for diagnostic classification. We use this approach to identify cortical surface features for use in diagnostic classifiers. First, with holomorphic 1-forms, we compute an efficient and accurate conformal mapping from a multiply connected mesh to the so-called slit domain. Next, the surface parameterization approach provides a natural way to register anatomical surfaces across subjects using a constrained harmonic map. To analyze anatomical differences, we then analyze the full Riemannian surface metric tensors, which retain multivariate information on local surface geometry. As the number of voxels in a 3D image is large, sparse learning is a promising method to select a subset of imaging features and to improve classification accuracy. Focusing on vertices with greatest effect sizes, we train a diagnostic classifier using the surface features selected by an L1-norm based sparse learning method. Stability selection is applied to validate the selected feature sets. We tested the algorithm on MRI-derived cortical surfaces from 42 subjects with genetically confirmed Williams syndrome and 40 age-matched controls, multivariate statistics on the local tensors gave greater effect sizes for detecting group differences relative to other TBM-based statistics including analysis of the Jacobian determinant and the largest eigenvalue of the surface metric. Our method also gave reasonable classification results relative to the Jacobian determinant, the pair of eigenvalues of the Jacobian matrix and volume features. This analysis pipeline may boost the power of morphometry studies, and may assist with image-based classification. Copyright © 2013

  1. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse.

    Science.gov (United States)

    Kielar, Catherine; Sawiak, Stephen J; Navarro Negredo, Paloma; Tse, Desmond H Y; Morton, A Jennifer

    2012-01-01

    Complexins (Cplxs) are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/-)) have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/-) mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/-) mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/-) and Cplx1(+/+) mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/-) mice when compared to Cplx1(+/+) animals. Our study is the first to describe pathological changes in Cplx1(-/-) mouse brain. We suggest that the ataxia in Cplx1(-/-) mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/-) mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.

  2. Tensor-based morphometry with stationary velocity field diffeomorphic registration: application to ADNI.

    Science.gov (United States)

    Bossa, Matias; Zacur, Ernesto; Olmos, Salvador

    2010-07-01

    Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations mapping a customized template with the observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerequisite for both template estimation and image warping. Subsequent statistical analysis on the spatial transformations is performed to highlight voxel-wise differences. Most of previous TBM studies did not explore the influence of the registration parameters, such as the parameters defining the deformation and the regularization models. In this work performance evaluation of TBM using stationary velocity field (SVF) diffeomorphic registration was performed in a subset of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) study. A wide range of values of the registration parameters that define the transformation smoothness and the balance between image matching and regularization were explored in the evaluation. The proposed methodology provided brain atrophy maps with very detailed anatomical resolution and with a high significance level compared with results recently published on the same data set using a non-linear elastic registration method. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse.

    Directory of Open Access Journals (Sweden)

    Catherine Kielar

    Full Text Available Complexins (Cplxs are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/- have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/- mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/- mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/- and Cplx1(+/+ mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/- mice when compared to Cplx1(+/+ animals. Our study is the first to describe pathological changes in Cplx1(-/- mouse brain. We suggest that the ataxia in Cplx1(-/- mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/- mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.

  4. Tensor-based cortical surface morphometry via weighted spherical harmonic representation.

    Science.gov (United States)

    Chung, Moo K; Dalton, Kim M; Davidson, Richard J

    2008-08-01

    We present a new tensor-based morphometric framework that quantifies cortical shape variations using a local area element. The local area element is computed from the Riemannian metric tensors, which are obtained from the smooth functional parametrization of a cortical mesh. For the smooth parametrization, we have developed a novel weighted spherical harmonic (SPHARM) representation, which generalizes the traditional SPHARM as a special case. For a specific choice of weights, the weighted-SPHARM is shown to be the least squares approximation to the solution of an isotropic heat diffusion on a unit sphere. The main aims of this paper are to present the weighted-SPHARM and to show how it can be used in the tensor-based morphometry. As an illustration, the methodology has been applied in the problem of detecting abnormal cortical regions in the group of high functioning autistic subjects.

  5. Comparing registration methods for mapping brain change using tensor-based morphometry.

    Science.gov (United States)

    Yanovsky, Igor; Leow, Alex D; Lee, Suh; Osher, Stanley J; Thompson, Paul M

    2009-10-01

    Measures of brain changes can be computed from sequential MRI scans, providing valuable information on disease progression for neuroscientific studies and clinical trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy. In this paper, we examine the power of different nonrigid registration models to detect changes in TBM, and their stability when no real changes are present. Specifically, we investigate an asymmetric version of a recently proposed Unbiased registration method, using mutual information as the matching criterion. We compare matching functionals (sum of squared differences and mutual information), as well as large-deformation registration schemes (viscous fluid and inverse-consistent linear elastic registration methods versus Symmetric and Asymmetric Unbiased registration) for detecting changes in serial MRI scans of 10 elderly normal subjects and 10 patients with Alzheimer's Disease scanned at 2-week and 1-year intervals. We also analyzed registration results when matching images corrupted with artificial noise. We demonstrated that the unbiased methods, both symmetric and asymmetric, have higher reproducibility. The unbiased methods were also less likely to detect changes in the absence of any real physiological change. Moreover, they measured biological deformations more accurately by penalizing bias in the corresponding statistical maps.

  6. A Matlab user interface for the statistically assisted fluid registration algorithm and tensor-based morphometry

    Science.gov (United States)

    Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha

    2015-01-01

    Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.

  7. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    Science.gov (United States)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  8. Effect of cocaine on structural changes in brain: MRI volumetry using tensor-based morphometry.

    Science.gov (United States)

    Narayana, Ponnada A; Datta, Sushmita; Tao, Guozhi; Steinberg, Joel L; Moeller, F Gerard

    2010-10-01

    Magnetic resonance imaging (MRI) was performed in cocaine-dependent subjects to determine the structural changes in brain compared to non-drug using controls. Cocaine-dependent subjects and controls were carefully screened to rule out brain pathology of undetermined origin. Magnetic resonance images were analyzed using tensor-based morphometry (TBM) and voxel-based morphometry (VBM) without and with modulation to adjust for volume changes during normalization. For TBM analysis, unbiased atlases were generated using two different inverse consistent and diffeomorphic nonlinear registration techniques. Two different control groups were used for generating unbiased atlases. Independent of the nonlinear registration technique and normal cohorts used for creating the unbiased atlases, our analysis failed to detect any statistically significant effect of cocaine on brain volumes. These results show that cocaine-dependent subjects do not show differences in regional brain volumes compared to non-drug using controls. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Structural MRI in Frontotemporal Dementia: Comparisons between Hippocampal Volumetry, Tensor-Based Morphometry and Voxel-Based Morphometry

    Science.gov (United States)

    Muñoz-Ruiz, Miguel Ángel; Hartikainen, Päivi; Koikkalainen, Juha; Wolz, Robin; Julkunen, Valtteri; Niskanen, Eini; Herukka, Sanna-Kaisa; Kivipelto, Miia; Vanninen, Ritva; Rueckert, Daniel; Liu, Yawu; Lötjönen, Jyrki; Soininen, Hilkka

    2012-01-01

    Background MRI is an important clinical tool for diagnosing dementia-like diseases such as Frontemporal Dementia (FTD). However there is a need to develop more accurate and standardized MRI analysis methods. Objective To compare FTD with Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) with three automatic MRI analysis methods - Hippocampal Volumetry (HV), Tensor-based Morphometry (TBM) and Voxel-based Morphometry (VBM), in specific regions of interest in order to determine the highest classification accuracy. Methods Thirty-seven patients with FTD, 46 patients with AD, 26 control subjects, 16 patients with progressive MCI (PMCI) and 48 patients with stable MCI (SMCI) were examined with HV, TBM for shape change, and VBM for gray matter density. We calculated the Correct Classification Rate (CCR), sensitivity (SS) and specificity (SP) between the study groups. Results We found unequivocal results differentiating controls from FTD with HV (hippocampus left side) (CCR = 0.83; SS = 0.84; SP = 0.80), with TBM (hippocampus and amygdala (CCR = 0.80/SS = 0.71/SP = 0.94), and with VBM (all the regions studied, especially in lateral ventricle frontal horn, central part and occipital horn) (CCR = 0.87/SS = 0.81/SP = 0.96). VBM achieved the highest accuracy in differentiating AD and FTD (CCR = 0.72/SS = 0.67/SP = 0.76), particularly in lateral ventricle (frontal horn, central part and occipital horn) (CCR = 0.73), whereas TBM in superior frontal gyrus also achieved a high accuracy (CCR = 0.71/SS = 0.68/SP = 0.73). TBM resulted in low accuracy (CCR = 0.62) in the differentiation of AD from FTD using all regions of interest, with similar results for HV (CCR = 0.55). Conclusion Hippocampal atrophy is present not only in AD but also in FTD. Of the methods used, VBM achieved the highest accuracy in its ability to differentiate between FTD and AD. PMID:23285078

  10. Using tensor-based morphometry to detect structural brain abnormalities in rats with adolescent intermittent alcohol exposure

    Science.gov (United States)

    Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek

    2011-03-01

    Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.

  11. Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry.

    Science.gov (United States)

    Tao, Guozhi; Datta, Sushmita; He, Renjie; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A

    2009-07-15

    Tensor based morphometry (TBM) was applied to determine the atrophy of deep gray matter (DGM) structures in 88 relapsing multiple sclerosis (MS) patients. For group analysis of atrophy, an unbiased atlas was constructed from 20 normal brains. The MS brain images were co-registered with the unbiased atlas using a symmetric inverse consistent nonlinear registration. These studies demonstrate significant atrophy of thalamus, caudate nucleus, and putamen even at a modest clinical disability, as assessed by the expanded disability status score (EDSS). A significant correlation between atrophy and EDSS was observed for different DGM structures: (thalamus: r=-0.51, p=3.85 x 10(-7); caudate nucleus: r=-0.43, p=2.35 x 10(-5); putamen: r=-0.36, p=6.12 x 10(-6)). Atrophy of these structures also correlated with 1) T2 hyperintense lesion volumes (thalamus: r=-0.56, p=9.96 x 10(-9); caudate nucleus: r=-0.31, p=3.10 x 10(-3); putamen: r=-0.50, p=6.06 x 10(-7)), 2) T1 hypointense lesion volumes (thalamus: r=-0.61, p=2.29 x 10(-10); caudate nucleus: r=-0.35, p=9.51 x 10(-4); putamen: r=-0.43, p=3.51 x 10(-5)), and 3) normalized CSF volume (thalamus: r=-0.66, p=3.55 x 10(-12); caudate nucleus: r=-0.52, p=2.31 x 10(-7), and putamen: r=-0.66, r=2.13 x 10(-12)). More severe atrophy was observed mainly in thalamus at higher EDSS. These studies appear to suggest a link between the white matter damage and DGM atrophy in MS.

  12. Unbiased tensor-based morphometry: improved robustness and sample size estimates for Alzheimer's disease clinical trials.

    Science.gov (United States)

    Hua, Xue; Hibar, Derrek P; Ching, Christopher R K; Boyle, Christina P; Rajagopalan, Priya; Gutman, Boris A; Leow, Alex D; Toga, Arthur W; Jack, Clifford R; Harvey, Danielle; Weiner, Michael W; Thompson, Paul M

    2013-02-01

    Various neuroimaging measures are being evaluated for tracking Alzheimer's disease (AD) progression in therapeutic trials, including measures of structural brain change based on repeated scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change must be robust to scan quality. Biases may arise if any scans are thrown out, as this can lead to the true changes being overestimated or underestimated. Here we analyzed the full MRI dataset from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) and assessed several sources of bias that can arise when tracking brain changes with structural brain imaging methods, as part of a pipeline for tensor-based morphometry (TBM). In all healthy subjects who completed MRI scanning at screening, 6, 12, and 24months, brain atrophy was essentially linear with no detectable bias in longitudinal measures. In power analyses for clinical trials based on these change measures, only 39AD patients and 95 mild cognitive impairment (MCI) subjects were needed for a 24-month trial to detect a 25% reduction in the average rate of change using a two-sided test (α=0.05, power=80%). Further sample size reductions were achieved by stratifying the data into Apolipoprotein E (ApoE) ε4 carriers versus non-carriers. We show how selective data exclusion affects sample size estimates, motivating an objective comparison of different analysis techniques based on statistical power and robustness. TBM is an unbiased, robust, high-throughput imaging surrogate marker for large, multi-site neuroimaging studies and clinical trials of AD and MCI. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.

  14. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  15. Tensor-based morphometry with mappings parameterized by stationary velocity fields in Alzheimer's disease neuroimaging initiative.

    Science.gov (United States)

    Bossa, Matías Nicolás; Zacur, Ernesto; Olmos, Salvador

    2009-01-01

    Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations between a customized template and observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerrequisite. Further statistical analysis of the spatial transformations is used to highlight some useful information, such as local statistical differences among populations. With the new advent of recent and powerful non-rigid registration algorithms based on the large deformation paradigm, TBM is being increasingly used. In this work we evaluate the statistical power of TBM using stationary velocity field diffeomorphic registration in a large population of subjects from Alzheimer's Disease Neuroimaging Initiative project. The proposed methodology provided atrophy maps with very detailed anatomical resolution and with a high significance compared with results published recently on the same data set.

  16. APPLYING SPARSE CODING TO SURFACE MULTIVARIATE TENSOR-BASED MORPHOMETRY TO PREDICT FUTURE COGNITIVE DECLINE.

    Science.gov (United States)

    Zhang, Jie; Stonnington, Cynthia; Li, Qingyang; Shi, Jie; Bauer, Robert J; Gutman, Boris A; Chen, Kewei; Reiman, Eric M; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2016-04-01

    Alzheimer's disease (AD) is a progressive brain disease. Accurate diagnosis of AD and its prodromal stage, mild cognitive impairment, is crucial for clinical trial design. There is also growing interests in identifying brain imaging biomarkers that help evaluate AD risk presymptomatically. Here, we applied a recently developed multivariate tensor-based morphometry (mTBM) method to extract features from hippocampal surfaces, derived from anatomical brain MRI. For such surface-based features, the feature dimension is usually much larger than the number of subjects. We used dictionary learning and sparse coding to effectively reduce the feature dimensions. With the new features, an Adaboost classifier was employed for binary group classification. In tests on publicly available data from the Alzheimers Disease Neuroimaging Initiative, the new framework outperformed several standard imaging measures in classifying different stages of AD. The new approach combines the efficiency of sparse coding with the sensitivity of surface mTBM, and boosts classification performance.

  17. Unified voxel- and tensor-based morphometry (UVTBM) using registration confidence.

    Science.gov (United States)

    Khan, Ali R; Wang, Lei; Beg, Mirza Faisal

    2015-01-01

    Voxel-based morphometry (VBM) and tensor-based morphometry (TBM) both rely on spatial normalization to a template and yet have different requirements for the level of registration accuracy. VBM requires only global alignment of brain structures, with limited degrees of freedom in transformation, whereas TBM performs best when the registration is highly deformable and can achieve higher registration accuracy. In addition, the registration accuracy varies over the whole brain, with higher accuracy typically observed in subcortical areas and lower accuracy seen in cortical areas. Hence, even the determinant of Jacobian of registration maps is spatially varying in their accuracy, and combining these with VBM by direct multiplication introduces errors in VBM maps where the registration is inaccurate. We propose a unified approach to combining these 2 morphometry methods that is motivated by these differing requirements for registration and our interest in harnessing the advantages of both. Our novel method uses local estimates of registration confidence to determine how to weight the influence of VBM- and TBM-like approaches. Results are shown on healthy and mild Alzheimer's subjects (N = 150) investigating age and group differences, and potential of differential diagnosis is shown on a set of Alzheimer's disease (N = 34) and frontotemporal dementia (N = 30) patients compared against controls (N = 14). These show that the group differences detected by our proposed approach are more descriptive than those detected from VBM, Jacobian-modulated VBM, and TBM separately, hence leveraging the advantages of both approaches in a unified framework. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Contribution to speech development of the right anterior putamen revealed with multivariate tensor-based morphometry.

    Science.gov (United States)

    Vlasova, Roza; Yalin Wang; Dirks, Holly; Dean, Douglas; O'Muircheartaigh, Jonathan; Gonzalez, Sara; Binh Kien Nguyen; Nelson, Marvin D; Deoni, Sean; Lepore, Natasha

    2017-07-01

    In our previous study1, we suggested that the difference between tensor-based metrics in the anterior part of the right putamen between 21 and 18 months age groups associated with speech development during this ages. Here we used a correlational analysis between verbal scores and determinant of the Jacobian matrix to confirm our hypothesis. Significant correlations in anterior part of the right putamen between verbal scores and surface metric were revealed in the 18 and 21 age groups.

  19. Accurate measurement of brain changes in longitudinal MRI scans using tensor-based morphometry.

    Science.gov (United States)

    Hua, Xue; Gutman, Boris; Boyle, Christina P; Rajagopalan, Priya; Leow, Alex D; Yanovsky, Igor; Kumar, Anand R; Toga, Arthur W; Jack, Clifford R; Schuff, Norbert; Alexander, Gene E; Chen, Kewei; Reiman, Eric M; Weiner, Michael W; Thompson, Paul M

    2011-07-01

    This paper responds to Thompson and Holland (2011), who challenged our tensor-based morphometry (TBM) method for estimating rates of brain changes in serial MRI from 431 subjects scanned every 6 months, for 2 years. Thompson and Holland noted an unexplained jump in our atrophy rate estimates: an offset between 0 and 6 months that may bias clinical trial power calculations. We identified why this jump occurs and propose a solution. By enforcing inverse-consistency in our TBM method, the offset dropped from 1.4% to 0.28%, giving plausible anatomical trajectories. Transitivity error accounted for the minimal remaining offset. Drug trial sample size estimates with the revised TBM-derived metrics are highly competitive with other methods, though higher than previously reported sample size estimates by a factor of 1.6 to 2.4. Importantly, estimates are far below those given in the critique. To demonstrate a 25% slowing of atrophic rates with 80% power, 62 AD and 129 MCI subjects would be required for a 2-year trial, and 91 AD and 192 MCI subjects for a 1-year trial. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease.

    Science.gov (United States)

    Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka

    2011-06-01

    In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and compared to the conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1% for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM).

    Science.gov (United States)

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J; Gunter, Jeffrey L; Carmona, Susanna; Jaeggi, Susanne M; Thompson, Paul M

    2016-10-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates.

    Science.gov (United States)

    Thompson, Wesley K; Holland, Dominic

    2011-07-01

    A series of reports have recently appeared using tensor based morphometry statistically-defined regions of interest, Stat-ROIs, to quantify longitudinal atrophy in structural MRIs from the Alzheimer's Disease Neuroimaging Initiative (ADNI). This commentary focuses on one of these reports, Hua et al. (2010), but the issues raised here are relevant to the others as well. Specifically, we point out a temporal pattern of atrophy in subjects with Alzheimer's disease and mild cognitive impairment whereby the majority of atrophy in two years occurs within the first 6 months, resulting in overall elevated estimated rates of change. Using publicly-available ADNI data, this temporal pattern is also found in a group of identically-processed healthy controls, strongly suggesting that methodological bias is corrupting the measures. The resulting bias seriously impacts the validity of conclusions reached using these measures; for example, sample size estimates reported by Hua et al. (2010) may be underestimated by a factor of five to sixteen. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry

    Science.gov (United States)

    Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2011-01-01

    35% of HIV-infected patients have cognitive impairment, but the profile of HIV-induced brain damage is still not well understood. Here we used tensor-based morphometry (TBM) to visualize brain deficits and clinical/anatomical correlations in HIV/AIDS. To perform TBM, we developed a new MRI-based analysis technique that uses fluid image warping, and a new α-entropy-based information-theoretic measure of image correspondence, called the Jensen–Rényi divergence (JRD). Methods 3D T1-weighted brain MRIs of 26 AIDS patients (CDC stage C and/or 3 without HIV-associated dementia; 47.2 ± 9.8 years; 25M/1F; CD4+ T-cell count: 299.5 ± 175.7/µl; log10 plasma viral load: 2.57 ± 1.28 RNA copies/ml) and 14 HIV-seronegative controls (37.6 ± 12.2 years; 8M/6F) were fluidly registered by applying forces throughout each deforming image to maximize the JRD between it and a target image (from a control subject). The 3D fluid registration was regularized using the linearized Cauchy–Navier operator. Fine-scale volumetric differences between diagnostic groups were mapped. Regions were identified where brain atrophy correlated with clinical measures. Results Severe atrophy (~15–20% deficit) was detected bilaterally in the primary and association sensorimotor areas. Atrophy of these regions, particularly in the white matter, correlated with cognitive impairment (P=0.033) and CD4+ T-lymphocyte depletion (P=0.005). Conclusion TBM facilitates 3D visualization of AIDS neuropathology in living patients scanned with MRI. Severe atrophy in frontoparietal and striatal areas may underlie early cognitive dysfunction in AIDS patients, and may signal the imminent onset of AIDS dementia complex. PMID:17035049

  4. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    Science.gov (United States)

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  5. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ≥ 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  6. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with pleft-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  7. Tensor-based morphometry of cannabis use on brain structure in individuals at elevated genetic risk of schizophrenia.

    Science.gov (United States)

    Welch, K A; Moorhead, T W; McIntosh, A M; Owens, D G C; Johnstone, E C; Lawrie, S M

    2013-10-01

    Schizophrenia is associated with various brain structural abnormalities, including reduced volume of the hippocampi, prefrontal lobes and thalami. Cannabis use increases the risk of schizophrenia but reports of brain structural abnormalities in the cannabis-using population have not been consistent. We used automated image analysis to compare brain structural changes over time in people at elevated risk of schizophrenia for familial reasons who did and did not use cannabis. Magnetic resonance imaging (MRI) scans were obtained from subjects at high familial risk of schizophrenia at entry to the Edinburgh High Risk Study (EHRS) and approximately 2 years later. Differential grey matter (GM) loss in those exposed (n=23) and not exposed to cannabis (n=32) in the intervening period was compared using tensor-based morphometry (TBM). Cannabis exposure was associated with significantly greater loss of right anterior hippocampal (pcorrected=0.029, t=3.88) and left superior frontal lobe GM (pcorrected=0.026, t=4.68). The former finding remained significant even after the exclusion of individuals who had used other drugs during the inter-scan interval. Using an automated analysis of longitudinal data, we demonstrate an association between cannabis use and GM loss in currently well people at familial risk of developing schizophrenia. This observation may be important in understanding the link between cannabis exposure and the subsequent development of schizophrenia.

  8. Unbiased tensor-based morphometry: Improved robustness and sample size estimates for Alzheimer’s disease clinical trials

    Science.gov (United States)

    Hua, Xue; Hibar, Derrek P.; Ching, Christopher R.K.; Boyle, Christina P.; Rajagopalan, Priya; Gutman, Boris A.; Leow, Alex D.; Toga, Arthur W.; Jack, Clifford R.; Harvey, Danielle; Weiner, Michael W.; Thompson, Paul M.

    2013-01-01

    Various neuroimaging measures are being evaluated for tracking Alzheimer’s disease (AD) progression in therapeutic trials, including measures of structural brain change based on repeated scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change must be robust to scan quality. Biases may arise if any scans are thrown out, as this can lead to the true changes being overestimated or underestimated. Here we analyzed the full MRI dataset from the first phase of Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) from the first phase of Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) and assessed several sources of bias that can arise when tracking brain changes with structural brain imaging methods, as part of a pipeline for tensor-based morphometry (TBM). In all healthy subjects who completed MRI scanning at screening, 6, 12, and 24 months, brain atrophy was essentially linear with no detectable bias in longitudinal measures. In power analyses for clinical trials based on these change measures, only 39 AD patients and 95 mild cognitive impairment (MCI) subjects were needed for a 24-month trial to detect a 25% reduction in the average rate of change using a two-sided test (α=0.05, power=80%). Further sample size reductions were achieved by stratifying the data into Apolipoprotein E (ApoE) ε4 carriers versus non-carriers. We show how selective data exclusion affects sample size estimates, motivating an objective comparison of different analysis techniques based on statistical power and robustness. TBM is an unbiased, robust, high-throughput imaging surrogate marker for large, multi-site neuroimaging studies and clinical trials of AD and MCI. PMID:23153970

  9. Three-dimensional brain growth abnormalities in childhood-onset schizophrenia visualized by using tensor-based morphometry.

    Science.gov (United States)

    Gogtay, Nitin; Lu, Allen; Leow, Alex D; Klunder, Andrea D; Lee, Agatha D; Chavez, Alex; Greenstein, Deanna; Giedd, Jay N; Toga, Arthur W; Rapoport, Judith L; Thompson, Paul M

    2008-10-14

    Earlier studies revealed progressive cortical gray matter (GM) loss in childhood-onset schizophrenia (COS) across both lateral and medial surfaces of the developing brain. Here, we use tensor-based morphometry to visualize white matter (WM) growth abnormalities in COS throughout the brain. Using high-dimensional elastic image registration, we compared 3D maps of local WM growth rates in COS patients and healthy children over a 5-year period, based on analyzing longitudinal brain MRIs from 12 COS patients and 12 healthy controls matched for age, gender, and scan interval. COS patients showed up to 2.2% slower growth rates per year than healthy controls in WM (P = 0.02, all P values corrected). The greatest differences were in the right hemisphere (P = 0.006). This asymmetry was attributable to a right slower than left hemisphere growth rate mapped in COS patients (P = 0.037) but not in healthy controls. WM growth rates reached 2.6% per year in healthy controls (P = 0.0002). COS patients showed only a 1.3% per year trend for growth in the left hemisphere (P = 0.066). In COS, WM growth rates were associated with improvement in the Children's Global Assessment Scale (R = 0.64, P = 0.029). Growth rates were reduced throughout the brain in COS, but this process appeared to progress in a front-to-back (frontal-parietal) fashion, and this effect was not attributable to lower IQ. Growth rates were correlated with functional prognosis and were visualized as detailed 3D maps. Finally, these findings also confirm that the progressive GM deficits seen in schizophrenia are not the result of WM overgrowth.

  10. Combining boundary-based methods with tensor-based morphometry in the measurement of longitudinal brain change.

    Science.gov (United States)

    Fletcher, Evan; Knaack, Alexander; Singh, Baljeet; Lloyd, Evan; Wu, Evan; Carmichael, Owen; DeCarli, Charles

    2013-02-01

    Tensor-based morphometry is a powerful tool for automatically computing longitudinal change in brain structure. Because of bias in images and in the algorithm itself, however, a penalty term and inverse consistency are needed to control the over-reporting of nonbiological change. These may force a tradeoff between the intrinsic sensitivity and specificity, potentially leading to an under-reporting of authentic biological change with time. We propose a new method incorporating prior information about tissue boundaries (where biological change is likely to exist) that aims to keep the robustness and specificity contributed by the penalty term and inverse consistency while maintaining localization and sensitivity. Results indicate that this method has improved sensitivity without increased noise. Thus it will have enhanced power to detect differences within normal aging and along the spectrum of cognitive impairment.

  11. Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Michel Modo

    Full Text Available Parkinson's disease (PD is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics.

  12. Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson's disease.

    Science.gov (United States)

    Modo, Michel; Crum, William R; Gerwig, Madeline; Vernon, Anthony C; Patel, Priya; Jackson, Michael J; Rose, Sarah; Jenner, Peter; Iravani, Mahmoud M

    2017-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics.

  13. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING

    OpenAIRE

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K.; Hanson, Jamie L.; Avants, Brian B.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white ...

  14. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure.

    Science.gov (United States)

    Meintjes, E M; Narr, K L; van der Kouwe, A J W; Molteno, C D; Pirnia, T; Gutman, B; Woods, R P; Thompson, P M; Jacobson, J L; Jacobson, S W

    2014-01-01

    Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD). Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM) methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6-11.0 years) and controls (n = 16, 9.5-11.0 years). Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1) the thalamus, midbrain, and ventromedial frontal lobe, (2) the superior cerebellum and inferior occipital lobe, (3) the dorsolateral frontal cortex, and (4) the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA) regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  15. 3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry

    Science.gov (United States)

    Hua, Xue; Leow, Alex D.; Lee, Suh; Klunder, Andrea D.; Toga, Arthur W.; Lepore, Natasha; Chou, Yi-Yu; Brun, Caroline; Chiang, Ming-Chang; Barysheva, Marina; Jack, Clifford R.; Bernstein, Matt A.; Britson, Paula J.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret; Fleisher, Adam S.; Fox, Nick C.; Boyes, Richard G.; Barnes, Josephine; Harvey, Danielle; Kornak, John; Schuff, Norbert; Boreta, Lauren; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2008-01-01

    Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.1 years+/−7.7 SD). We warped each individual brain image (N=120) to the control group average template to create Jacobian maps, which show the local expansion or compression factor at each point in the image, reflecting individual volumetric differences. Statistical maps of group differences revealed widespread medial temporal and limbic atrophy in AD, with a lesser, more restricted distribution in MCI. Atrophy and CSF space expansion both correlated strongly with Mini-Mental State Exam (MMSE) scores and Clinical Dementia Rating (CDR). Using cumulative p-value plots, we investigated how detection sensitivity was influenced by the sample size, the choice of search region (whole brain, temporal lobe, hippocampus), the initial linear registration method (9- versus 12-parameter), and the type of TBM design. In the future, TBM may help to (1) identify factors that resist or accelerate the disease process, and (2) measure disease burden in treatment trials. PMID:18378167

  16. A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    E.M. Meintjes

    2014-01-01

    Full Text Available Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD. Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with FASD and whether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and without correction for overall brain volume, tensor-based morphometry (TBM methods were applied to structural imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with FASD (n = 39, 9.6–11.0 years and controls (n = 16, 9.5–11.0 years. Degree of prenatal alcohol exposure was significantly associated with regionally pervasive brain tissue reductions in: (1 the thalamus, midbrain, and ventromedial frontal lobe, (2 the superior cerebellum and inferior occipital lobe, (3 the dorsolateral frontal cortex, and (4 the precuneus and superior parietal lobule. When overall brain size was factored out of the analysis on a subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven independent component analyses (ICA regional brain tissue deformations successfully distinguished individuals based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the continuous measure of alcohol exposure compared with the categorical diagnosis across diverse brain regions underscores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterations may be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial features are not apparent.

  17. Comparing 3 T and 1.5 T MRI for tracking Alzheimer's disease progression with tensor-based morphometry.

    Science.gov (United States)

    Ho, April J; Hua, Xue; Lee, Suh; Leow, Alex D; Yanovsky, Igor; Gutman, Boris; Dinov, Ivo D; Leporé, Natasha; Stein, Jason L; Toga, Arthur W; Jack, Clifford R; Bernstein, Matt A; Reiman, Eric M; Harvey, Danielle J; Kornak, John; Schuff, Norbert; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2010-04-01

    A key question in designing MRI-based clinical trials is how the main magnetic field strength of the scanner affects the power to detect disease effects. In 110 subjects scanned longitudinally at both 3.0 and 1.5 T, including 24 patients with Alzheimer's Disease (AD) [74.8 +/- 9.2 years, MMSE: 22.6 +/- 2.0 at baseline], 51 individuals with mild cognitive impairment (MCI) [74.1 +/- 8.0 years, MMSE: 26.6 +/- 2.0], and 35 controls [75.9 +/- 4.6 years, MMSE: 29.3 +/- 0.8], we assessed whether higher-field MR imaging offers higher or lower power to detect longitudinal changes in the brain, using tensor-based morphometry (TBM) to reveal the location of progressive atrophy. As expected, at both field strengths, progressive atrophy was widespread in AD and more spatially restricted in MCI. Power analysis revealed that, to detect a 25% slowing of atrophy (with 80% power), 37 AD and 108 MCI subjects would be needed at 1.5 T versus 49 AD and 166 MCI subjects at 3 T; however, the increased power at 1.5 T was not statistically significant (alpha = 0.05) either for TBM, or for SIENA, a related method for computing volume loss rates. Analysis of cumulative distribution functions and false discovery rates showed that, at both field strengths, temporal lobe atrophy rates were correlated with interval decline in Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog), mini-mental status exam (MMSE), and Clinical Dementia Rating sum-of-boxes (CDR-SB) scores. Overall, 1.5 and 3 T scans did not significantly differ in their power to detect neurodegenerative changes over a year. Hum Brain Mapp, 2010. (c) 2009 Wiley-Liss, Inc.

  18. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING.

    Science.gov (United States)

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white matter connectivity in a clinical population is determined.

  19. Longitudinal MRI studies of brain morphometry

    DEFF Research Database (Denmark)

    Skimminge, Arnold Jesper Møller

    High resolution MR images acquired at multiple time points of the brain allow quantification of localized changes induced by external factors such as maturation, ageing or disease progression/recovery. High-dimensional warping of such MR images incorporates changes induced by external factors...... into the accompanying deformation field. Deformation fields from high dimensional warping founds tensor based morphometry (TBM), and provides unique opportunities to study human brain morphology and plasticity. In this thesis, specially adapted image processing streams utilizing several image registration techniques...... to characterize differences between brains, demonstrate the versatility and specificity of the employed voxel-wise morphometric methods. More specifically TBM is used to study neurodegenerative changes following severe traumatic brain injuries. Such injuries progress for months, perhaps even years postinjury...

  20. Evaluating the Predictive Power of Multivariate Tensor-based Morphometry in Alzheimers Disease Progression via Convex Fused Sparse Group Lasso.

    Science.gov (United States)

    Tsao, Sinchai; Gajawelli, Niharika; Zhou, Jiayu; Shi, Jie; Ye, Jieping; Wang, Yalin; Lepore, Natasha

    2014-03-21

    Prediction of Alzheimers disease (AD) progression based on baseline measures allows us to understand disease progression and has implications in decisions concerning treatment strategy. To this end we combine a predictive multi-task machine learning method 1 with novel MR-based multivariate morphometric surface map of the hippocampus 2 to predict future cognitive scores of patients. Previous work by Zhou et al. 1 has shown that a multi-task learning framework that performs prediction of all future time points (or tasks) simultaneously can be used to encode both sparsity as well as temporal smoothness. They showed that this can be used in predicting cognitive outcomes of Alzheimers Disease Neuroimaging Initiative (ADNI) subjects based on FreeSurfer-based baseline MRI features, MMSE score demographic information and ApoE status. Whilst volumetric information may hold generalized information on brain status, we hypothesized that hippocampus specific information may be more useful in predictive modeling of AD. To this end, we applied Shi et al. 2 s recently developed multivariate tensor-based (mTBM) parametric surface analysis method to extract features from the hippocampal surface. We show that by combining the power of the multi-task framework with the sensitivity of mTBM features of the hippocampus surface, we are able to improve significantly improve predictive performance of ADAS cognitive scores 6, 12, 24, 36 and 48 months from baseline.

  1. Evaluating the predictive power of multivariate tensor-based morphometry in Alzheimer's disease progression via convex fused sparse group Lasso

    Science.gov (United States)

    Tsao, Sinchai; Gajawelli, Niharika; Zhou, Jiayu; Shi, Jie; Ye, Jieping; Wang, Yalin; Lepore, Natasha

    2014-03-01

    Prediction of Alzheimers disease (AD) progression based on baseline measures allows us to understand disease progression and has implications in decisions concerning treatment strategy. To this end we combine a predictive multi-task machine learning method1 with novel MR-based multivariate morphometric surface map of the hippocampus2 to predict future cognitive scores of patients. Previous work by Zhou et al.1 has shown that a multi-task learning framework that performs prediction of all future time points (or tasks) simultaneously can be used to encode both sparsity as well as temporal smoothness. They showed that this can be used in predicting cognitive outcomes of Alzheimers Disease Neuroimaging Initiative (ADNI) subjects based on FreeSurfer-based baseline MRI features, MMSE score demographic information and ApoE status. Whilst volumetric information may hold generalized information on brain status, we hypothesized that hippocampus specific information may be more useful in predictive modeling of AD. To this end, we applied Shi et al.2s recently developed multivariate tensor-based (mTBM) parametric surface analysis method to extract features from the hippocampal surface. We show that by combining the power of the multi-task framework with the sensitivity of mTBM features of the hippocampus surface, we are able to improve significantly improve predictive performance of ADAS cognitive scores 6, 12, 24, 36 and 48 months from baseline.

  2. Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson’s disease

    Science.gov (United States)

    Crum, William R.; Gerwig, Madeline; Vernon, Anthony C.; Patel, Priya; Jackson, Michael J.; Rose, Sarah; Jenner, Peter; Iravani, Mahmoud M.

    2017-01-01

    Parkinson’s disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics. PMID:28738061

  3. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.

    Science.gov (United States)

    Garbe, Christoph S; Buttgereit, Andreas; Schürmann, Sebastian; Friedrich, Oliver

    2012-01-01

    Practically, all chronic diseases are characterized by tissue remodeling that alters organ and cellular function through changes to normal organ architecture. Some morphometric alterations become irreversible and account for disease progression even on cellular levels. Early diagnostics to categorize tissue alterations, as well as monitoring progression or remission of disturbed cytoarchitecture upon treatment in the same individual, are a new emerging field. They strongly challenge spatial resolution and require advanced imaging techniques and strategies for detecting morphological changes. We use a combined second harmonic generation (SHG) microscopy and automated image processing approach to quantify morphology in an animal model of inherited Duchenne muscular dystrophy (mdx mouse) with age. Multiphoton XYZ image stacks from tissue slices reveal vast morphological deviation in muscles from old mdx mice at different scales of cytoskeleton architecture: cell calibers are irregular, myofibrils within cells are twisted, and sarcomere lattice disruptions (detected as "verniers") are larger in number compared to samples from healthy mice. In young mdx mice, such alterations are only minor. The boundary-tensor approach, adapted and optimized for SHG data, is a suitable approach to allow quick quantitative morphometry in whole tissue slices. The overall detection performance of the automated algorithm compares very well with manual "by eye" detection, the latter being time consuming and prone to subjective errors. Our algorithm outperfoms manual detection by time with similar reliability. This approach will be an important prerequisite for the implementation of a clinical image databases to diagnose and monitor specific morphological alterations in chronic (muscle) diseases. © 2011 IEEE

  4. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age.

    Science.gov (United States)

    Taso, Manuel; Le Troter, Arnaud; Sdika, Michaël; Cohen-Adad, Julien; Arnoux, Pierre-Jean; Guye, Maxime; Ranjeva, Jean-Philippe; Callot, Virginie

    2015-08-15

    Recently, a T2*-weighted template and probabilistic atlas of the white and gray matter (WM, GM) of the spinal cord (SC) have been reported. Such template can be used as tissue-priors for automated WM/GM segmentation but can also provide a common reference and normalized space for group studies. Here, a new template has been created (AMU40), and accuracy of automatic template-based WM/GM segmentation was quantified. The feasibility of tensor-based morphometry (TBM) for studying voxel-wise morphological differences of SC between young and elderly healthy volunteers was also investigated. Sixty-five healthy subjects were divided into young (n=40, age50years old, mean age 57±5years old) groups and scanned at 3T using an axial high-resolution T2*-weighted sequence. Inhomogeneity correction and affine intensity normalization of the SC and cerebrospinal fluid (CSF) signal intensities across slices were performed prior to both construction of the AMU40 template and WM/GM template-based segmentation. The segmentation was achieved using non-linear spatial normalization of T2*-w MR images to the AMU40 template. Validation of WM/GM segmentations was performed with a leave-one-out procedure by calculating DICE similarity coefficients between manual and automated WM/GM masks. SC morphological differences between young and elderly healthy volunteers were assessed using the same non-linear spatial normalization of the subjects' MRI to a common template, derivation of the Jacobian determinant maps from the warping fields, and a TBM analysis. Results demonstrated robust WM/GM automated segmentation, with mean DICE values greater than 0.8. Concerning the TBM analysis, an anterior GM atrophy was highlighted in elderly volunteers, demonstrating thereby, for the first time, the feasibility of studying local structural alterations in the SC using tensor-based morphometry. This holds great promise for studies of morphological impairment occurring in several central nervous system

  5. Genetic influence of apolipoprotein E4 genotype on hippocampal morphometry: An N = 725 surface-based Alzheimer's disease neuroimaging initiative study.

    Science.gov (United States)

    Shi, Jie; Leporé, Natasha; Gutman, Boris A; Thompson, Paul M; Baxter, Leslie C; Caselli, Richard J; Wang, Yalin

    2014-08-01

    The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database-the Alzheimer's Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling's T(2) test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the nondemented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD. Copyright © 2014 Wiley Periodicals, Inc.

  6. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A; Toga, Arthur W; Thompson, Paul M

    2011-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic "Demons" algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future.

  7. Tensor-based spatiotemporal saliency detection

    Science.gov (United States)

    Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen

    2018-03-01

    This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.

  8. A deformation-based morphometry study of patients with early-stage Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, P; Østergaard, Karen; Cumming, P

    2010-01-01

    BACKGROUND AND PURPOSE: Previous volumetric magnetic resonance imaging (MRI) studies of Parkinson's disease (PD) utilized primarily voxel-based morphometry (VBM), and investigated mostly patients with moderate- to late-stage disease. We now use deformation-based morphometry (DBM), a method...... purported to be more sensitive than VBM, to test for atrophy in patients with early-stage PD. METHODS: T1-weighted MRI images from 24 early-stage PD patients and 26 age-matched normal control subjects were compared using DBM. Two separate studies were conducted, where two minimally-biased nonlinear...... intensity-average were created; one for all subjects and another for just the PD patients. The DBM technique creates an average population-based MRI-average in an iterative hierarchical fashion. The nonlinear transformations estimated to match each subject to the MRI-average were then analysed. RESULTS...

  9. Aging effects on cerebral asymmetry: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Kasai, Kiyoto; Sasaki, Hiroki; Ohtomo, Kuni

    2010-01-01

    The hemispheres of the human brain are functionally and structurally asymmetric. The purpose of this study was to evaluate the effects of aging on gray and white matter asymmetry. Two hundred twenty-six right-handed normal volunteers aged 21-71 years were included in this study. The effects of aging on gray matter volume asymmetry and white matter fractional anisotropy asymmetry were evaluated with use of voxel-based morphometry and voxel-based analysis of fractional anisotropy maps derived from diffusion tensor imaging (DTI), respectively. The voxel-based morphometry showed no significant correlation between age and gray matter volume asymmetry. The voxel-based analysis of DTI also showed no significant correlation between age and white matter fractional anisotropy asymmetry. Our results showed no significant effects of aging on either gray matter volume asymmetry or white matter fractional anisotropy asymmetry.

  10. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability

    OpenAIRE

    Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent

    2007-01-01

    International audience; The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tra...

  11. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: a Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Camila Callegari Piccinin

    2015-01-01

    Full Text Available Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia. Neuroimaging studies have attempted to identify structural abnormalities in craniocervical dystonia but a clear pattern of alteration has not been established. We performed whole brain evaluation using voxel-based morphometry to identify patterns of gray matter changes in craniocervical dystonia.Methods: We compared 27 patients with craniocervical dystonia matched in age and gender to 54 healthy controls. Voxel-based morphometry was used to compare gray matter volumes. We created a two-sample t-test corrected for subjects’ age and we tested with a level of significance of p<0.001 and false discovery rate correction (p<0.05. Results: Voxel-based morphometry demonstrated significant reductions of gray matter using p<0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus and calcarine fissure; in the left hemisphere in the supplemementary motor area (SMA, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum , hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the false discovery rate correction. We also detected correlations between gray matter volume and age, disease duration, duration of botulinum toxin treatment and the Marsden-Fahn dystonia scale scores.Conclusions: We detected large clusters of gray matter changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function and emotional processing.

  12. Variations in renal morphometry: A hospital-based Indian study

    Directory of Open Access Journals (Sweden)

    Ranjeet S Rathore

    2016-01-01

    Conclusions: Our study revealed that there exist differences in various morphometric parameters of the kidney and ureter in different subsets of the Indian population attending our hospital as compared with the standard values quoted in the world literature.

  13. Structural covariance in the hallucinating brain: a voxel-based morphometry study

    Science.gov (United States)

    Modinos, Gemma; Vercammen, Ans; Mechelli, Andrea; Knegtering, Henderikus; McGuire, Philip K.; Aleman, André

    2009-01-01

    Background Neuroimaging studies have indicated that a number of cortical regions express altered patterns of structural covariance in schizophrenia. The relation between these alterations and specific psychotic symptoms is yet to be investigated. We used voxel-based morphometry to examine regional grey matter volumes and structural covariance associated with severity of auditory verbal hallucinations. Methods We applied optimized voxel-based morphometry to volumetric magnetic resonance imaging data from 26 patients with medication-resistant auditory verbal hallucinations (AVHs); statistical inferences were made at p < 0.05 after correction for multiple comparisons. Results Grey matter volume in the left inferior frontal gyrus was positively correlated with severity of AVHs. Hallucination severity influenced the pattern of structural covariance between this region and the left superior/middle temporal gyri, the right inferior frontal gyrus and hippocampus, and the insula bilaterally. Limitations The results are based on self-reported severity of auditory hallucinations. Complementing with a clinician-based instrument could have made the findings more compelling. Future studies would benefit from including a measure to control for other symptoms that may covary with AVHs and for the effects of antipsychotic medication. Conclusion The results revealed that overall severity of AVHs modulated cortical intercorrelations between frontotemporal regions involved in language production and verbal monitoring, supporting the critical role of this network in the pathophysiology of hallucinations. PMID:19949723

  14. A Cadaveric Study of the Morphometry of the Cervical Spinal Canal ...

    African Journals Online (AJOL)

    Morphometry of the cervical spinal canal is of clinical importance in traumatic, degenerative and inflammatory conditions. A small canal diameter has been associated with an increase of injury mainly in athletes who participate in contact or collision sports. Before abnormal spinal morphometry can be determined, it is first ...

  15. Study of nuclear morphometry on cytology specimens of benign and malignant breast lesions: A study of 122 cases.

    Science.gov (United States)

    Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj

    2017-01-01

    Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a "gray zone" of 6.9-20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm 2 , 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma.

  16. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan, E-mail: clare1475@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lin Fuchun, E-mail: fclin@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Du Yasong, E-mail: yasongdu@yahoo.com.cn [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Qin Lingdi, E-mail: flyingfool838@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Zhao Zhimin, E-mail: zmzsky@163.com [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Xu Jianrong, E-mail: xujianr@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lei Hao, E-mail: leihao@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-07-15

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  17. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Zhou Yan; Lin Fuchun; Du Yasong; Qin Lingdi; Zhao Zhimin; Xu Jianrong; Lei Hao

    2011-01-01

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  18. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-09-01

    Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature.

  19. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study.

    Science.gov (United States)

    Dickstein, Daniel P; Milham, Michael P; Nugent, Allison C; Drevets, Wayne C; Charney, Dennis S; Pine, Daniel S; Leibenluft, Ellen

    2005-07-01

    While numerous magnetic resonance imaging (MRI) studies have evaluated adults with bipolar disorder (BPD), few have examined MRI changes in children with BPD. To determine volume alterations in children with BPD using voxel-based morphometry, an automated MRI analysis method with reduced susceptibility to various biases. A priori regions of interest included amygdala, accumbens, hippocampus, dorsolateral prefrontal cortex (DLPFC), and orbitofrontal cortex. Ongoing study of the pathophysiology of pediatric BPD. Intramural National Institute of Mental Health; approved by the institutional review board. Patients Pediatric subjects with BPD (n = 20) with at least 1 manic or hypomanic episode meeting strict DSM-IV criteria for duration and elevated, expansive mood. Controls (n = 20) and their first-degree relatives lacked psychiatric disorders. Groups were matched for age and sex and did not differ in IQ. With a 1.5-T MRI machine, we collected 1.2-mm axial sections (124 per subject) with an axial 3-dimensional spoiled gradient recalled echo in the steady state sequence. Image analysis was by optimized voxel-based morphometry. Subjects with BPD had reduced gray matter volume in the left DLPFC. With a less conservative statistical threshold, additional gray matter reductions were found in the left accumbens and left amygdala. No difference was found in the hippocampus or orbitofrontal cortex. Our results are consistent with data implicating the prefrontal cortex in emotion regulation, a process that is perturbed in BPD. Reductions in amygdala and accumbens volumes are consistent with neuropsychological data on pediatric BPD. Further study is required to determine the relationship between these findings in children and adults with BPD.

  20. Do manual and voxel-based morphometry measure the same? – A proof of concept study

    Directory of Open Access Journals (Sweden)

    Niels K. Focke

    2014-04-01

    Full Text Available Voxel-based morphometry (VBM is a commonly used method to study volumetric variations on a whole brain basis. However it is often criticised for potential confounds, mainly based on imperfect spatial registration. We therefore aimed to evaluate if VBM and gold-standard manual volumetry are measuring the same effects with respect to subcortical grey matter volumes. Manual regions-of-interest (ROIs were drawn in the hippocampus, amygdala, nucleus accumbens, thalamus, putamen, pallidum and caudate nucleus bilaterally. Resulting volumes were used for a whole brain VBM correlation analysis with SPM8. The hippocampus, amygdala, putamen and caudate nucleus were correctly identified by SPM using the contemporary high-dimensional normalization (DARTEL toolbox. This strongly suggests that VBM and manual volumetry both are indeed measuring the same effects with regard to subcortical brain structures.

  1. Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction

    Science.gov (United States)

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991

  2. Tensor-based dictionary learning for dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Tan, Shengqi; Wu, Zhifang; Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Cao, Guohua; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. (paper)

  3. Lip morphometry in 600 North Indian adults: a data base study for sexual dimorphism.

    Science.gov (United States)

    Goel, Archana; Patnaik, Vvg; Puri, Nidhi

    2015-01-01

    The study comprised lip morphometry of 600 North Indian adults (300 males and 300 females). The aim of the study was to create base data of various linear and vertical measurements of the upper and lower lips and width of the mouth. This standard may serve as a guideline for sexual dimorphism as well as for restoration or enhancement of esthetic and plastic surgery for the lips in the north Indian population, which will enable the surgeon to offer a better cosmetic result. Prior informed written consent from all the subjects was obtained. The exclusion and inclusion criteria for the subjects were predefined. The analysis shows the sexual dimorphism in most parameters of lips being greater in males. The results were compared with the available data for north white Americans, Malays, Malaysian Indians, Italians, western Indians and Caucasians. In the population under study, the measurements differ in all dimensions with Malays, Italians and Caucasians and show resemblance to the Malaysian Indians. Knowledge of the proportion between the upper and lower lips helps in surgical correction of the region. This study highlights the applied significance of observations of the present study to forensic, namely racial and sex dimorphic, criteria of identification. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic restless legs syndrome patients.

    Science.gov (United States)

    Rizzo, G; Manners, D; Vetrugno, R; Tonon, C; Malucelli, E; Plazzi, G; Marconi, S; Pizza, F; Testa, C; Provini, F; Montagna, P; Lodi, R

    2012-07-01

      The aim of this study was to evaluate the presence of abnormalities in the brain of patients with restless legs syndrome (RLS) using voxel-based morphometry and diffusion tensor imaging (DTI).   Twenty patients and twenty controls were studied. Voxel-based morphometry analysis was performed using statistical parametric mapping (SPM8) and FSL-VBM software tools. For voxel-wise analysis of DTI, tract-based spatial statistics (TBSS) and SPM8 were used.   Applying an appropriate threshold of probability, no significant results were found either in comparison or in correlation analyses.   Our data argue against clear structural or microstructural abnormalities in the brain of patients with idiopathic RLS, suggesting a prevalent role of functional or metabolic impairment. © 2011 The Author(s) European Journal of Neurology © 2011 EFNS.

  5. Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease

    DEFF Research Database (Denmark)

    Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart

    2011-01-01

    impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than...

  6. Selection of appropriate template for spatial normalization of brain images: tensor based morphometry

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul

    2004-01-01

    Although there have been remarkable advances in spatial normalization techniques, the differences in the shape of the hemispheres and the sulcal pattern of brains relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques. T1 SPGR MR images in 16 elderly male normal volunteers (>55 y. mean age: = 61.8 ± 3.5 y) were spatially normalized onto the age/gender specific Korean templates, and the Caucasian MNI template and the extent of the deformations were compared. These particular subjects were never included in the development of the templates. First , the images were matched into the templates using an affine transformation to eliminate the global difference between the templates and source images. Second the affine registration was followed by an estimation of nonlinear deformation. Determinants of the Jacobian matrices of the nonlinear deformation were then calculated for every voxel to estimate the regional volume change during the nonlinear transformation Jacobian determinant images highlighted the great magnitude of the relative local volume changes obtained when the elderly brains were spatially normalized onto the young/midlife male or female templates. They reflect the enlargement of CSF space in the lateral ventricles, sylvian fissures and cisterna magna, and the shrinkage of the cortex noted mainly in frontal, insular and lateral temporal cortexes, and the cerebellums in the aged brains. In the Jacobian determinant images, a regional shrinkage of the brain in the left middle prefrontal cortex was observed in addition to the regional expansion in the ventricles and sylvian fissures, which may be due to the age differences between the template and source images. The regional anatomical difference between template and source images could impose an extreme deformation of the source images during the spatial normalization and therefore. Individual brains should be placed into the appropriate template

  7. Selection of appropriate template for spatial normalization of brain images: tensor based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Although there have been remarkable advances in spatial normalization techniques, the differences in the shape of the hemispheres and the sulcal pattern of brains relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques. T1 SPGR MR images in 16 elderly male normal volunteers (>55 y. mean age: = 61.8 {+-} 3.5 y) were spatially normalized onto the age/gender specific Korean templates, and the Caucasian MNI template and the extent of the deformations were compared. These particular subjects were never included in the development of the templates. First , the images were matched into the templates using an affine transformation to eliminate the global difference between the templates and source images. Second the affine registration was followed by an estimation of nonlinear deformation. Determinants of the Jacobian matrices of the nonlinear deformation were then calculated for every voxel to estimate the regional volume change during the nonlinear transformation Jacobian determinant images highlighted the great magnitude of the relative local volume changes obtained when the elderly brains were spatially normalized onto the young/midlife male or female templates. They reflect the enlargement of CSF space in the lateral ventricles, sylvian fissures and cisterna magna, and the shrinkage of the cortex noted mainly in frontal, insular and lateral temporal cortexes, and the cerebellums in the aged brains. In the Jacobian determinant images, a regional shrinkage of the brain in the left middle prefrontal cortex was observed in addition to the regional expansion in the ventricles and sylvian fissures, which may be due to the age differences between the template and source images. The regional anatomical difference between template and source images could impose an extreme deformation of the source images during the spatial normalization and therefore. Individual brains should be placed into the appropriate template.

  8. Cytological Study of Breast Carcinoma Before and After Oncotherapy with Special Reference to Morphometry and Proliferative Activity.

    Science.gov (United States)

    Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha

    2015-12-01

    Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.

  9. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  10. Creativity and borderline personality disorder: evidence from a voxel-based morphometry study.

    Science.gov (United States)

    Leutgeb, Verena; Ille, Rottraut; Wabnegger, Albert; Schienle, Anne; Schöggl, Helmut; Weber, Bernhard; Papousek, Ilona; Weiss, Elisabeth M; Fink, Andreas

    2016-05-01

    Throughout the history, various examples of eminent creative people suffering from mental disorders along with some empirical research reports strengthened the idea of a potential link between creativity and psychopathology. This study investigated different facets of psychometrically determined creativity in 20 females diagnosed with borderline personality disorder (BPD) relative to 19 healthy female controls. In addition, group differences in grey matter (GM) were examined. Behavioural findings revealed no significant differences between the BPD group and healthy controls with respect to verbal and figural-graphic creative task performance and creativity-related personality characteristics. Whole-brain voxel-based morphometry analyses revealed a distinct pattern of GM reductions in the BPD group (relative to controls) in a network of brain regions closely associated with various cognitive and emotional functions (including the bilateral orbital inferior frontal gyri and the left superior temporal gyrus), partly overlapping with creativity-related brain regions. Correlation analyses moreover revealed that in the BPD group GM reductions in the orbital parts of the inferior and middle frontal gyri were associated with lower levels of creativity. This study provides no indications in favour of the putative link between creativity and psychopathology, as sometimes reported in the literature.

  11. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study.

    Science.gov (United States)

    Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C

    2007-01-01

    The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.

  12. Alexithymia is related to differences in gray matter volume: a voxel-based morphometry study.

    Science.gov (United States)

    Ihme, Klas; Dannlowski, Udo; Lichev, Vladimir; Stuhrmann, Anja; Grotegerd, Dominik; Rosenberg, Nicole; Kugel, Harald; Heindel, Walter; Arolt, Volker; Kersting, Anette; Suslow, Thomas

    2013-01-23

    Alexithymia has been characterized as the inability to identify and describe feelings. Functional imaging studies have revealed that alexithymia is linked to reactivity changes in emotion- and face-processing-relevant brain areas. In this respect, anterior cingulate cortex (ACC), amygdala, anterior insula and fusiform gyrus (FFG) have been consistently reported. However, it remains to be clarified whether alexithymia is also associated with structural differences. Voxel-based morphometry on T1-weighted magnetic resonance images was used to investigate gray matter volume in 17 high alexithymics (HA) and 17 gender-matched low alexithymics (LA), which were selected from a sample of 161 healthy volunteers on basis of the 20-item Toronto Alexithymia Scale. Data were analyzed as statistic parametric maps for the comparisons LA>HA and HA>LA in a priori determined regions of interests (ROIs), i.e., ACC, amygdala, anterior insula and FFG. Moreover, an exploratory whole brain analysis was accomplished. For the contrast LA>HA, significant clusters were detected in the ACC, left amygdala and left anterior insula. Additionally, the whole brain analysis revealed volume differences in the left middle temporal gyrus. No significant differences were found for the comparison HA>LA. Our findings suggest that high compared to low alexithymics show less gray matter volume in several emotion-relevant brain areas. These structural differences might contribute to the functional alterations found in previous imaging studies in alexithymia. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study.

    Science.gov (United States)

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-02-21

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals' creative performance in the fields of science and art.

  14. Grey matter abnormalities in untreated hyperthyroidism: A voxel-based morphometry study using the DARTEL approach

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: will.zhang.1111@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Song, Lingheng, E-mail: songlh1023@hotmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Department of Radiology, No. 324 Hospital of PLA, Chongqing 400020 (China); Yin, Xuntao, E-mail: xuntaoyin@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Zhang, Jiuquan, E-mail: jiuquanzhang@yahoo.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Liu, Chen, E-mail: cqliuchen@foxmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Wang, Jian, E-mail: wangjian_811@yahoo.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Zhou, Daiquan, E-mail: zhoudq77@sina.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Chen, Bing, E-mail: chenbing3@medmail.com.cn [Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Lii, Haitao, E-mail: haitaolii023@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2014-01-15

    Objective: Hyperthyroidism is frequently associated with pronounced neuropsychiatric symptoms such as impulsiveness, irritability, poor concentration, and memory impairments. Functional neuroimaging has revealed changes in cerebral metabolism in hyperthyroidism, but regional changes in cortical morphology associated with specific neurological deficits have not been studied so far. To investigate the pathophysiology underlying hyperthyroid-associated neural dysfunction, we compared grey matter volume (GMV) between adult hyperthyroid patients and matched healthy controls using voxel-based morphometry (VBM). Materials and methods: High resolution 3D T1-weighted images were acquired by 3T MRI from 51 hyperthyroid patients and 51 controls. VBM analysis was performed using SPM8. Correlations between regional GMV and both serum free thyroid hormone (TH) concentrations and disease duration were assessed by multiple regression analysis. Results: Compared to controls, GM volumes in the bilateral hippocampus, parahippocampal gyrus, calcarine, lingual gyrus, and left temporal pole were lower and bilateral supplementary motor area GMV higher in hyperthyroid patients. Serum free triiodothyronine (FT3) concentration was negatively correlated with the normalized regional volume (NRV) of the left parahippocampal gyrus and serum free thyroxine (FT4) concentration negatively correlated with the NRV of the left hippocampus and right parahippocampal gyrus. Disease duration was negatively correlated with the NRV of the left hippocampus, bilateral parahippocampal gyrus, and left temporal pole. Conclusion: Hyperthyroid patients exhibited reduced GMV in regions associated with memory, attention, emotion, vision, and motor planning. Negative correlations between GMV and both free TH and disease duration suggest that chronic TH elevation induces abnormalities in the adult cortex.

  15. Structural brain alterations in hemifacial spasm: A voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Tu, Ye; Yu, Tian; Wei, Yongxu; Sun, Kun; Zhao, Weiguo; Yu, Buwei

    2016-02-01

    Hemifacial spasm (HFS) is characterized by involuntary, irregular clonic or tonic movement of muscles innervated by the facial nerve. We evaluated structural reorganization in brain gray matter and white matter and whether neuroplasticity is linked to clinical features in HFS patients. High-resolution structural magnetic resonance imaging and diffusion tensor imaging data were acquired by 3.0 T MRI from 42 patients with HFS and 30 healthy subjects. The severity of the spasm was assessed according to Jankovic disability rating scale. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis were performed to identify regional grey matter volume (GMV) changes and whole-brain microstructural integrity disruption measured by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). The VBM analysis showed that patients with HFS reduced GMV in the right inferior parietal lobule and increased GMV in the cerebellar lobule VIII, when compared with healthy subjects. Furthermore, within the HFS disease group, GMV decreased with the disease duration in the right inferior parietal lobule. TBSS did not identify group differences in diffusivity parameters. While no white matter integrity disruption was detected in the brain of patients with HFS, our study identified evident GMV changes in brain areas which were known to be involved in motor control. Our results suggest that HFS, a chronic neurovascular conflict disease, is related to structural reorganization in the brain. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Anatomy of the Episodic Buffer: A Voxel-Based Morphometry Study in Patients with Dementia

    Directory of Open Access Journals (Sweden)

    M. Berlingeri

    2008-01-01

    Full Text Available In 2000 Baddeley proposed the existence of a new component of working memory, the episodic buffer, which should contribute to the on-line maintenance of integrated memory traces. The author assumed that this component should be critical for immediate recall of a short story that exceeds the capacity of the phonological store. Accordingly, patients with Alzheimer’s dementia (AD should suffer of a deficit of the episodic buffer when immediate recall of a short story is impossible. On the other hand, the episodic buffer should be somewhat preserved in such patients when some IR can occur (Baddeley and Wilson, 2002. We adopted this logic for a voxel-based morphometry study. We compared the distribution of grey-matter density of two such groups of AD patients with a group of age-matched controls. We found that both AD groups had a significant atrophy of the left mid-hippocampus; on the other hand, the anterior part of the hippocampus was significantly more atrophic in patients who were also impaired on the immediate prose recall task. Six out of ten patients with no immediate recall were spared at “central executive” tasks. Taken together our findings suggest that the left anterior hippocampus contributes to the episodic buffer of the revised working memory model. We also suggest that the episodic buffer is somewhat independent from the central executive component of working memory.

  17. Potential hippocampal region atrophy in diabetes mellitus type 2. A voxel-based morphometry VSRAD study

    International Nuclear Information System (INIS)

    Kamiyama, Kazutoshi; Sugihara, Masaki; Wada, Akihiko

    2010-01-01

    Among diabetes mellitus type 2 (DM2) patients, the frequency of cognitive dysfunction is higher and the relative risk of Alzheimer's disease (AD) is approximately twice that of nondiabetics. Cognitive impairment symptoms of AD are induced by limbic system dysfunction, and an early-stage AD brain without dementia has the potential for atrophy in the hippocampal region. In this study, we estimated potential hippocampal region atrophy in DM2 and pursued the association between DM2 and cognitive impairment/AD. Voxel-based morphometry analysis was performed in 28 diabetics (14 men, 14 women; ages 59-79 years, mean 70.7 years) and 28 sex- and age- matched (±1 year) nondiabetics. Severity of gray matter loss in the hippocampal region and whole brain were investigated. Group analysis was performed using two-tailed unpaired t-test; significance was assumed with less than 1% (P<0.01) of the critical rate. There was a significant difference between diabetics and nondiabetics regarding the severity of hippocampal region atrophy and whole-brain atrophy. Only diabetics showed a positive correlation for severity of hippocampal region atrophy and whole-brain atrophy (rs=0.69, P<0.0001). Aged DM2 patients have the potential for hippocampal region atrophy, and its dysfunction can be related to the expression of a cognitive impairment that resembles AD. (author)

  18. Grey matter abnormalities in untreated hyperthyroidism: A voxel-based morphometry study using the DARTEL approach

    International Nuclear Information System (INIS)

    Zhang, Wei; Song, Lingheng; Yin, Xuntao; Zhang, Jiuquan; Liu, Chen; Wang, Jian; Zhou, Daiquan; Chen, Bing; Lii, Haitao

    2014-01-01

    Objective: Hyperthyroidism is frequently associated with pronounced neuropsychiatric symptoms such as impulsiveness, irritability, poor concentration, and memory impairments. Functional neuroimaging has revealed changes in cerebral metabolism in hyperthyroidism, but regional changes in cortical morphology associated with specific neurological deficits have not been studied so far. To investigate the pathophysiology underlying hyperthyroid-associated neural dysfunction, we compared grey matter volume (GMV) between adult hyperthyroid patients and matched healthy controls using voxel-based morphometry (VBM). Materials and methods: High resolution 3D T1-weighted images were acquired by 3T MRI from 51 hyperthyroid patients and 51 controls. VBM analysis was performed using SPM8. Correlations between regional GMV and both serum free thyroid hormone (TH) concentrations and disease duration were assessed by multiple regression analysis. Results: Compared to controls, GM volumes in the bilateral hippocampus, parahippocampal gyrus, calcarine, lingual gyrus, and left temporal pole were lower and bilateral supplementary motor area GMV higher in hyperthyroid patients. Serum free triiodothyronine (FT3) concentration was negatively correlated with the normalized regional volume (NRV) of the left parahippocampal gyrus and serum free thyroxine (FT4) concentration negatively correlated with the NRV of the left hippocampus and right parahippocampal gyrus. Disease duration was negatively correlated with the NRV of the left hippocampus, bilateral parahippocampal gyrus, and left temporal pole. Conclusion: Hyperthyroid patients exhibited reduced GMV in regions associated with memory, attention, emotion, vision, and motor planning. Negative correlations between GMV and both free TH and disease duration suggest that chronic TH elevation induces abnormalities in the adult cortex

  19. Loss aversion is associated with bilateral insula volume. A voxel based morphometry study.

    Science.gov (United States)

    Markett, S; Heeren, G; Montag, C; Weber, B; Reuter, M

    2016-04-21

    Loss aversion is a decision bias, reflecting a greater sensitivity to losses than to gains in a decision situation. Recent neuroscientific research has shown that mesocorticolimbic structures like ventromedial prefrontal cortex and the ventral striatum constitute a bidirectional neural system that processes gains and losses and exhibits a neural basis of loss aversion. On a functional and structural level, the amygdala and insula also seem to play an important role in the processing of loss averse behavior. By applying voxel-based morphometry to structural brain images in N=41 healthy participants, the current study provides further evidence for the relationship of brain structure and loss aversion. The results show a negative correlation of gray matter volume in bilateral posterior insula as well as left medial frontal gyrus with individual loss aversion. Hence, higher loss aversion is associated with lower gray matter volume in these brain areas. Both structures have been discussed to play important roles in the brain's salience network, where the posterior insula is involved in interoception and the detection of salience. The medial frontal gyrus might impact decision making through its dense connections with the anterior cingulate cortex. A possible explanation for the present finding is that structural differences in these regions alter the processing of losses and salience, possibly biasing decision making towards avoidance of negative outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Regional Grey Matter Structure Differences between Transsexuals and Healthy Controls—A Voxel Based Morphometry Study

    Science.gov (United States)

    Simon, Lajos; Kozák, Lajos R.; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender. PMID:24391851

  1. Regional grey matter structure differences between transsexuals and healthy controls--a voxel based morphometry study.

    Science.gov (United States)

    Simon, Lajos; Kozák, Lajos R; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender.

  2. Structural neural correlates of multitasking: A voxel-based morphometry study.

    Science.gov (United States)

    Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K

    2016-12-01

    Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. Regional grey matter structure differences between transsexuals and healthy controls--a voxel based morphometry study.

    Directory of Open Access Journals (Sweden)

    Lajos Simon

    Full Text Available Gender identity disorder (GID refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF transsexuals and there is scarcity of data acquired on female to male (FTM transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM obtained from both FTM and MTF transsexuals (n = 17 and compare them to the data of 18 age matched healthy control subjects (both males and females. We found differences in the regional grey matter (GM structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri. These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender.

  4. Grey matter abnormalities in untreated hyperthyroidism: a voxel-based morphometry study using the DARTEL approach.

    Science.gov (United States)

    Zhang, Wei; Song, Lingheng; Yin, Xuntao; Zhang, Jiuquan; Liu, Chen; Wang, Jian; Zhou, Daiquan; Chen, Bing; Lii, Haitao

    2014-01-01

    Hyperthyroidism is frequently associated with pronounced neuropsychiatric symptoms such as impulsiveness, irritability, poor concentration, and memory impairments. Functional neuroimaging has revealed changes in cerebral metabolism in hyperthyroidism, but regional changes in cortical morphology associated with specific neurological deficits have not been studied so far. To investigate the pathophysiology underlying hyperthyroid-associated neural dysfunction, we compared grey matter volume (GMV) between adult hyperthyroid patients and matched healthy controls using voxel-based morphometry (VBM). High resolution 3D T1-weighted images were acquired by 3T MRI from 51 hyperthyroid patients and 51 controls. VBM analysis was performed using SPM8. Correlations between regional GMV and both serum free thyroid hormone (TH) concentrations and disease duration were assessed by multiple regression analysis. Compared to controls, GM volumes in the bilateral hippocampus, parahippocampal gyrus, calcarine, lingual gyrus, and left temporal pole were lower and bilateral supplementary motor area GMV higher in hyperthyroid patients. Serum free triiodothyronine (FT3) concentration was negatively correlated with the normalized regional volume (NRV) of the left parahippocampal gyrus and serum free thyroxine (FT4) concentration negatively correlated with the NRV of the left hippocampus and right parahippocampal gyrus. Disease duration was negatively correlated with the NRV of the left hippocampus, bilateral parahippocampal gyrus, and left temporal pole. Hyperthyroid patients exhibited reduced GMV in regions associated with memory, attention, emotion, vision, and motor planning. Negative correlations between GMV and both free TH and disease duration suggest that chronic TH elevation induces abnormalities in the adult cortex. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Neuroanatomical correlates of time perspective: A voxel-based morphometry study.

    Science.gov (United States)

    Chen, Zhiyi; Guo, Yiqun; Feng, Tingyong

    2018-02-26

    Previous studies indicated that time perspective can affect many behaviors, such as decisions, risk taking, substance abuse and health behaviors. However, very little is known about the neural substrates of time perspective (TP). To address this question, we characterized different dimensions of TP (including the Past, Present, and Future TP) using standardized Zimbardo Time Perspective Inventory (ZTPI), and quantified the gray matter volume using voxel-based morphometry (VBM) method across two independent samples. Our whole-brain analysis (sample 1, N=150) revealed Past-Negative TP was positively correlated with the GMV of a cluster in LPFC whereas Past-Positive was negatively correlated with the GMV in OFC, and Future TP was negatively correlated with GMV in mPFC. Moreover, two present scales (Present-Hedonistic and Present-Fatalistic TPs) were positively correlated with the GMV of regions in MTG and precuneus, respectively. We further examined the reliability of these correlations between multidimensional TPs and neuroanatomical structures in another independent sample (sample 2, N=58). Results verified our findings that GMV in LPFC could predict Past-Negative TP while GMV in OFC could predict Past-Positive TP, and the GMV in MTG could predict Present-Hedonistic while the GMV in presuneus could predict Present-Fatalistic, as well as the GMV in mPFC could predict Future TP. Thus, our findings suggest that the existence of selective neural basis underlying TPs, and further provide the stable biomarkers for multidimensional TPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Brain volumes in healthy adults aged 40 years and over: a voxel-based morphometry study.

    Science.gov (United States)

    Riello, Roberta; Sabattoli, Francesca; Beltramello, Alberto; Bonetti, Matteo; Bono, Giorgio; Falini, Andrea; Magnani, Giuseppe; Minonzio, Giorgio; Piovan, Enrico; Alaimo, Giuseppina; Ettori, Monica; Galluzzi, Samantha; Locatelli, Enrico; Noiszewska, Malgorzata; Testa, Cristina; Frisoni, Giovanni B

    2005-08-01

    Gender and age effect on brain morphology have been extensively investigated. However, the great variety in methods applied to morphology partly explain the conflicting results of linear patterns of tissue changes and lateral asymmetry in men and women. The aim of the present study was to assess the effect of age, gender and laterality on the volumes of gray matter (GM) and white matter (WM) in a large group of healthy adults by means of voxel-based morphometry. This technique, based on observer-independent algorithms, automatically segments the 3 types of tissue and computes the amount of tissue in each single voxel. Subjects were 229 healthy subjects of 40 years of age or older, who underwent magnetic resonance (MR) for reasons other than cognitive impairment. MR images were reoriented following the AC-PC line and, after removing the voxels below the cerebellum, were processed by Statistical Parametric Mapping (SPM99). GM and WM volumes were normalized for intracranial volume. Women had more fractional GM and WM volumes than men. Age was negatively correlated with both fractional GM and WM, and a gender x age interaction effect was found for WM, men having greater WM loss with advancing age. Pairwise differences between left and right GM were negative (greater GM in right hemisphere) in men, and positive (greater GM in left hemisphere) in women (-0.56+/-4.2 vs 0.99+/-4.8; p=0.019). These results support side-specific accelerated WM loss in men, and may help our better understanding of changes in regional brain structures associated with pathological aging.

  7. Morphometric changes of whole brain in patients with alcohol addiction: a voxel-based morphometry study

    International Nuclear Information System (INIS)

    Li Jinfeng; Chen Zhiye; Ma Lin

    2011-01-01

    Objective: To evaluate morphometric changes of brain in patients with alcohol addiction by voxel-based morphometry. Methods: Fifteen patients with alcohol addiction and 15 health controls were recruited and underwent fluid attenuated inversion recovery (FLAIR) and 3D fast spoiled gradient echo (FSPGR) T 1 -weighted sequences on a 3.0 T MRI system. 3D FSPGR T 1 structure images were normalized, segmented and smoothed, and then underwent voxel-based morphometry. An ANCOVA was applied with age, body mass index (BMI), and education years as covariates because of exact sex match. A statistical threshold of P 0.05). Conclusions: Regional gray and white matter atrophy can be the initial changes in patients with alcohol addiction and the frontal region is a relative specific damaged brain region. VBM has a potential value for the detection of subtle brain atrophy in patients with alcohol addiction. (authors)

  8. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies.

    Science.gov (United States)

    Piras, Federica; Piras, Fabrizio; Chiapponi, Chiara; Girardi, Paolo; Caltagirone, Carlo; Spalletta, Gianfranco

    2015-01-01

    The most widely accepted model of obsessive-compulsive disorder (OCD) assumes brain abnormalities in the "affective circuit", mainly consisting of volume reduction in the medial orbitofrontal, anterior cingulate and temporolimbic cortices, and tissue expansion in the striatum and thalamus. The advent of whole-brain, voxel-based morphometry (VBM) has provided increasing evidence that regions outside the "affective" orbitofronto-striatal circuit are involved in OCD. Nevertheless, potential confounds from the different image analysis methods, as well as other factors, such as patients' medication and comorbidity status, may limit generalization of results. In the present paper, we systematically reviewed the whole-brain VBM literature on OCD by focussing specifically on degree of consistency between studies, extent to which findings have been replicated and interrelation between clinical variables and OCD anatomy, a potentially crucial factor that has been systematically examined only in a limited number of studies. The PubMed database was searched through February 2012. A total of 156 studies were identified; 18 of them fulfilled the inclusion/exclusion criteria and included 511 patients and 504 controls. Results support the notion that the brain alterations responsible for OCD are represented at the network level, and that widespread structural abnormalities may contribute to neurobiological vulnerability to OCD. Apart from defects in regions within the classic "affective" circuit, volume reduction of the cortical source of the dorsolateral (DL) prefronto-striatal "executive" circuit (dorsomedial, DL, ventrolateral and frontopolar prefrontal cortices), and of reciprocally connected regions (temporo-parieto-occipital associative areas) is consistently described in OCD patients. Moreover, increased volume of the internal capsule and reduced frontal and parietal white matter volumes may account for altered anatomical connectivity in fronto-subcortical circuitry

  9. Study of bony trabecular characteristics using bone morphometry and micro-CT

    International Nuclear Information System (INIS)

    Song, Young Han; Lee, Wan; Lee, Chang Jin; Ji, Jung Hyun; Lee, Byung Do

    2007-01-01

    The research was done to investigate the effectiveness of 2D bony morphometry and microstructure of micro-computed tomography (micro-CT) on the osteoporotic bony change. We performed the bone morphometric analysis of proximal femur in ovariectomized rabbits with BMD and micro-CT examination. Twenty-one female (Newzeland, about 16 weeks old, 2.9-3.4 kg) rabbits were used. Three rabbits were sacrificed on the day when experiment began (Basline). The remaining 18 rabbits were divided into two groups. One group was ovariectomized bilaterally (OVX) and the other animals were subjected to sham operation (Sham). Bone specimens were obtained from the right and left femur of sacrificed rabbits. At intervals of 1,2,3,5,6 months respectively, BMD tests were performed on the proximal on the proximal femur by using PIXImus 2 (GE Lunar Co. USA), 2-dimensional bone morphometric analysis by custom computer program and 2D / 3D bone structure analysis by micro-CT (Skyscan1072, Antwerpen, Belgium). Statistical analysis was carried out for the correlation between bone morphometry, micro-CT and BMD. BV/TV, Tb.Th, Tb.N of micro-CT parameters showed higher values in sham group than OVX group. N.Nd/Ar.RI, N.NdNd, N.NdTm, N. TmTm, PmB/Ar.RI, 3-D BoxSlope of 2D morphometric parameters showed higher values in Sham group than OVX group. The micro-CT parameters of Tb.Sp. Tb.N were statistically significant correlated with BMD respectively. Several 2D morphometric parameters were statistically significant correlated with BMD respectively. Several parameters of 2D bony morphometry and micro-CT showed effective aspects on the osteoporotic bony change

  10. An optimized voxel-based morphometry MRI study of the brain in patients with first episode schizophrenia

    International Nuclear Information System (INIS)

    Lv Su; Huang Xiaoqi; Tang Hehan; Gong Qiyong; Ouyang Luo; Deng Wei; Jiang Lijun; Li Tao

    2007-01-01

    Objective: To evaluate the structural differences between patients with first episode schizophrenia and normal controls using optimized voxel-based morphometry (VBM) study. Methods: High resolution T 1 weighted images were obtained using 3.0 T MR from 13 first-episode, untreated schizophrenia and 13 age, sex, handedness matched normal controls. Images were preprocessed by employing the optimized VBM and two sample t-test was used to detect differences between patients and normal controls with respect to both density and volume of gray matter in the brain. Results Patients with schizophrenia had significant lower gray matter density and gray matter volume generally distributed among bilateral hemispheres, especially in bilateral frontal and temporal lobes. However, no significant increase of gray matter density and gray matter volume was observed in these patients. Conclusions: Optimized voxel-based morphometry study is an automatic and effective method to study psychological diseases such as schizophrenia. Compared with normal controls, patients with schizophrenia had significantly lower gray matter density and gray matter volume across the bilateral hemispheres. (authors)

  11. Tensor-Based Dictionary Learning for Spectral CT Reconstruction.

    Science.gov (United States)

    Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Yu, Hengyong

    2017-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods.

  12. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    Science.gov (United States)

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  13. Cerebral asymmetry in patients with schizophrenia: a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Kasai, Kiyoto; Ohtomo, Kuni

    2010-01-01

    To evaluate the differences in gray- and white-matter asymmetry between schizophrenia patients and normal subjects. Forty-eight right-handed patients with chronic schizophrenia (24 males and 24 females) and 48 right-handed age- and sex-matched healthy controls (24 males and 24 females) were included in this study. The effects of diagnosis on gray-matter volume asymmetry and white-matter fractional anisotropy (FA) asymmetry were evaluated with use of voxel-based morphometry (VBM) and voxel-based analysis of FA maps derived from diffusion tensor imaging (DTI), respectively. The mean gray- and white-matter volumes were significantly smaller in the schizophrenia group than in the control group. The voxel-based morphometry (VBM) showed no significant effect of diagnosis on gray-matter volume asymmetry. The voxel-based analysis of DTI also showed no significant effect of diagnosis on white-matter FA asymmetry. Our results of voxel-based analyses showed no significant differences in either gray-matter volume asymmetry or white-matter FA asymmetry between schizophrenia patients and normal subjects. (c) 2009 Wiley-Liss, Inc.

  14. Study of morphometry to debit drainage basin (DAS) arau Padang city

    Science.gov (United States)

    Utama, Lusi; Amrizal, Berd, Isril; Zuherna

    2017-11-01

    High intensity rain that happened in Padang city cause the happening of floods at DAS Arau. Floods that happened in Padang besides caused high rain intensity, require to be by research about morphometry that is cause parameter the happening of floods. Morphometry drainage basin physical network (DAS) quantitatively related to DAS geomorphology that is related to form of DAS, river network, closeness of stream, ramp, usage of farm, high and gradient steepness of river. Form DAS will influence rain concentration to outlet. Make an index to closeness of stream depict closeness of river stream at one particular DAS. Speed of river stream influenced by storey, level steepness of river. Steepness storey, level is comparison of difference height of river downstream and upstream. Ever greater of steepness of river stream, excelsior speed of river stream that way on the contrary. High to lower speed of river stream influence occurrence of floods, more than anything else if when influenced by debit big. Usage of farm in glove its link to process of infiltration where if geology type which is impermeable, be difficult the happening of infiltration, this matter will enlarge value of run off. Research by descriptive qualitative that is about characteristic of DAS. Method the used is method survey with data collecting, in the form of rainfall data of year 2005 until year 2015 and Image of DEM IFSAR with resolution 5 meter, analyzed use Software ARGIS. Result of research got by DAS reside in at condition of floods gristle.

  15. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM study.

    Directory of Open Access Journals (Sweden)

    Satoshi Tanaka

    Full Text Available Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.

  16. Personality traits related to juvenile myoclonic epilepsy: MRI reveals prefrontal abnormalities through a voxel-based morphometry study.

    Science.gov (United States)

    de Araújo Filho, Gerardo Maria; Jackowski, Andrea Parolin; Lin, Katia; Guaranha, Mirian S B; Guilhoto, Laura M F F; da Silva, Henrique Hattori; Caboclo, Luís Otávio Sales Ferreira; Júnior, Henrique Carrete; Bressan, Rodrigo Affonseca; Yacubian, Elza Márcia T

    2009-06-01

    Studies involving juvenile myoclonic epilepsy (JME) patients have demonstrated an elevated prevalence of cluster B personality disorders (PD) characterized as emotional instability, immaturity, unsteadiness, lack of discipline, and rapid mood changes. We aimed to verify a possible correlation between structural brain abnormalities in magnetic resonance image (MRI) and the PD in JME using voxel-based morphometry (VBM). Sixteen JME patients with cluster B PD, 38 JME patients without psychiatric disorders, and 30 healthy controls were submitted to a psychiatric evaluation through SCID I and II and to a MRI scan. Significant reduction in thalami and increase in mesiofrontal and frontobasal regions' volumes were observed mainly in JME patients with PD. Structural alterations of the orbitofrontal cortex (OFC), involved in regulation of mood reactivity, impulsivity, and social behavior, were also observed. This study supports the hypothesis of frontobasal involvement in the pathophysiology of cluster B PD related to JME.

  17. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies

    Directory of Open Access Journals (Sweden)

    Chemin Lin

    2016-01-01

    Full Text Available Over the years, studies have demonstrated morphological changes in the brain of fibromyalgia (FMS. We aimed to conduct a coordinate-based meta-analytic research through systemic review on voxel-based morphometry (VBM imaging results to identify consistent gray matter (GM difference between FMS patients and healthy subjects. We performed a comprehensive literature search in PubMed (January 2000–December 2015 and included six VBM publication on FMS. Stereotactic data were extracted from 180 patients of FMS and 123 healthy controls. By means of activation likelihood estimation (ALE technique, regional GM reduction in left medial prefrontal cortex and right dorsal posterior cingulate cortex was identified. Both regions are within the default mode network. In conclusion, the gray matter deficit is related to the both affective and nonaffective components of pain processing. This result also provided the neuroanatomical correlates for emotional and cognitive symptoms in FMS.

  18. Behavioral Inhibition System activity is associated with increased amygdala and hippocampal gray matter volume: A voxel-based morphometry study.

    Science.gov (United States)

    Barrós-Loscertales, A; Meseguer, V; Sanjuán, A; Belloch, V; Parcet, M A; Torrubia, R; Avila, C

    2006-11-15

    Recent research has examined anxiety and hyperactivity in the amygdala and the anterior hippocampus while processing aversive stimuli. In order to determine whether these functional differences have a structural basis, optimized voxel-based morphometry was used to study the relationship between gray matter concentration in the brain and scores on a Behavioral Inhibition System measure (the Sensitivity to Punishment scale) in a sample of 63 male undergraduates. Results showed a positive correlation between Sensitivity to Punishment scores and gray matter volume in the amygdala and the hippocampal formation, that is, in areas that Gray, J.A., and McNaughton, N.J. (2000). The neuropsychology of anxiety. Oxford: Oxford Medical Publications. associated with the Behavioral Inhibition System.

  19. Assessment of memory/attention impairment in children with primary nocturnal enuresis: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Yu, Bing; Kong, Fanxing; Peng, Miao; Ma, Hongwei; Liu, Na; Guo, Qiyong

    2012-01-01

    Aim: Assessment of memory/attention impairment and related exploration of the gray matter differential MR density variations between children with and without primary nocturnal enuresis (PNE) using voxel-based morphometry (VBM) methodology is the aim of the present study. Methods: A total of 75 right-handed PNE children (M/F = 39:36, average age 10.4 ± 1.3 years) and 72 age-matched, right-handed, healthy controls (M/F = 40:32, 10.0 ± 1.2 years) were recruited for the study. First, intelligence tests were performed using the China-Wechsler Intelligence Scale for Children (C-WISC) in both PNE and control children. The full intelligence quotient (FIQ), verbal IQ (VIQ), performance IQ (PIQ), and memory/caution (M/C) factor were measured. Voxel-based morphometry (VBM) was performed using high resolution 3 Tesla T1-weighted MR images, processed using VBM5 in the PNE and control children. Student's t-test or Mann–Whitney U test were performed to analyze the difference in the gray matter density (GMD) between the PNE and control children. Results: The FIQ, VIQ, and PIQ in the PNE group were within the normal range and did not significantly differ from the control group, though the M/C factor was statistically lower in the PNE group. Compared with normal controls, PNE children exhibited lower GMD in the right dorsolateral prefrontal cortex (DLPFC) and the left cerebellum (P < 0.001). Conclusion: Impairment in memory/attention was detected in PNE children, and the structural abnormalities of the right DLPFC and left cerebellum are likely to be implicated in these deficits.

  20. Assessment of memory/attention impairment in children with primary nocturnal enuresis: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bing, E-mail: yubing@sj-hospital.org [Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Kong, Fanxing, E-mail: kongfx@sj-hospital.org [Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Peng, Miao, E-mail: pengm@sj-hospital.org [Psychological Outpatient Service, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Ma, Hongwei, E-mail: mahongwei1960@hotmail.com [Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Na, E-mail: liuna.916@163.com [Department of Radiology, the People' s Hospital of Liaoning Province, Shenyang 110016 (China); Guo, Qiyong, E-mail: guoqy@sj-hospital.org [Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2012-12-15

    Aim: Assessment of memory/attention impairment and related exploration of the gray matter differential MR density variations between children with and without primary nocturnal enuresis (PNE) using voxel-based morphometry (VBM) methodology is the aim of the present study. Methods: A total of 75 right-handed PNE children (M/F = 39:36, average age 10.4 ± 1.3 years) and 72 age-matched, right-handed, healthy controls (M/F = 40:32, 10.0 ± 1.2 years) were recruited for the study. First, intelligence tests were performed using the China-Wechsler Intelligence Scale for Children (C-WISC) in both PNE and control children. The full intelligence quotient (FIQ), verbal IQ (VIQ), performance IQ (PIQ), and memory/caution (M/C) factor were measured. Voxel-based morphometry (VBM) was performed using high resolution 3 Tesla T1-weighted MR images, processed using VBM5 in the PNE and control children. Student's t-test or Mann–Whitney U test were performed to analyze the difference in the gray matter density (GMD) between the PNE and control children. Results: The FIQ, VIQ, and PIQ in the PNE group were within the normal range and did not significantly differ from the control group, though the M/C factor was statistically lower in the PNE group. Compared with normal controls, PNE children exhibited lower GMD in the right dorsolateral prefrontal cortex (DLPFC) and the left cerebellum (P < 0.001). Conclusion: Impairment in memory/attention was detected in PNE children, and the structural abnormalities of the right DLPFC and left cerebellum are likely to be implicated in these deficits.

  1. Neural Correlates of Post-Conventional Moral Reasoning: A Voxel-Based Morphometry Study

    Science.gov (United States)

    Prehn, Kristin; Korczykowski, Marc; Rao, Hengyi; Fang, Zhuo; Detre, John A.; Robertson, Diana C.

    2015-01-01

    Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema) or based on adherence to laws and rules (maintaining norms schema), whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA) students. Subjects completed the Defining Issues Test (DIT-2) which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago. PMID:26039547

  2. Neural correlates of post-conventional moral reasoning: a voxel-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Kristin Prehn

    Full Text Available Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema or based on adherence to laws and rules (maintaining norms schema, whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA students. Subjects completed the Defining Issues Test (DIT-2 which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago.

  3. Neural correlates of post-conventional moral reasoning: a voxel-based morphometry study.

    Science.gov (United States)

    Prehn, Kristin; Korczykowski, Marc; Rao, Hengyi; Fang, Zhuo; Detre, John A; Robertson, Diana C

    2015-01-01

    Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema) or based on adherence to laws and rules (maintaining norms schema), whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA) students. Subjects completed the Defining Issues Test (DIT-2) which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago.

  4. A voxel-based morphometry study of brain volume changes in patients with neuromyelitis optica

    International Nuclear Information System (INIS)

    Duan Yunyun; Liu Yaou; Liang Peipeng; Huang Jing; Ren Zhuoqiong; Ye Jing; Dong Huiqing; Chen Hai; Li Kuncheng

    2012-01-01

    Objective: To detect changes of regional grey matter and white matter volume in patients of neuromyelitis optica (NMO) by voxel-based morphometry (VBM), and investigate its relationship with clinical variables. Methods: Conventional magnetic resonance imaging (MRI) and structural three-dimensional MRI were obtained from 20 NMO and 20 sex-and age-matched healthy volunteers. The comparison of grey matter and white matter volume between the two groups was analyzed by VBM tools of statistical parametric mapping (SPM) 5. Pearson correlation analysis was used to assess correlations between regional volume decrease and disease duration and expanded disability status scale (EDSS) scores in NMO patients. Results: Compared with normal controls, NMO patients had grey matter atrophy in several cortical regions, such as right inferior frontal gyrus (cluster size 514), left superior temporal gyrus (282), right middle temporal gyrus (229) and right insula (211) (t=3.58-5.11, AlphaSim corrected, P<0.05). White matter atrophy was found in several subcortical regions in NMO patients, such as right precentral and postcentral gyrus (cluster size 457, 110), left middle frontal gyrus (285), and right inferior parietal lobule (231) (t=2.90-4.25, AlphaSim corrected, P<0.05). Grey matter and white matter volume loss were not significantly correlated with clinical duration or EDSS score in NMO. Conclusion: By means of VBM, regional atrophy of grey matter and white matter is found in NMO patients, which may provide evidence for brain structural abnormality in NMO. (authors)

  5. A Voxel Based Morphometry Study of Brain Gray Matter Volumes in Juvenile Obsessive Compulsive Disorder.

    Science.gov (United States)

    Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C R; Janardhan Reddy, Y C

    2015-01-01

    Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions - the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children's Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe - especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD.

  6. The neural substrates of procrastination: A voxel-based morphometry study.

    Science.gov (United States)

    Hu, Yue; Liu, Peiwei; Guo, Yiqun; Feng, Tingyong

    2018-03-01

    Procrastination is a pervasive phenomenon across different cultures and brings about lots of serious consequences, including performance, subjective well-being, and even public policy. However, little is known about the neural substrates of procrastination. In order to shed light upon this question, we investigated the neuroanatomical substrates of procrastination across two independent samples using voxel-based morphometry (VBM) method. The whole-brain analysis showed procrastination was positively correlated with the graymatter (GM) volume of clusters in the parahippocampal gyrus (PHG) and the orbital frontal cortex (OFC), while negatively correlated with the GM volume of clusters in the inferior frontal gyrus (IFG) and the middle frontal gyrus (MFG) in sample one (151 participants). We further conducted a verification procedure on another sample (108 participants) using region-of-interest analysis to examine the reliability of these results. Results showed procrastination can be predicted by the GM volume of the OFC and the MFG. The present findings suggest that the MFG and OFC, which are the key regions of self-control and emotion regulation, may play an important role in procrastination. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Right Brodmann area 18 predicts tremor arrest after Vim radiosurgery: a voxel-based morphometry study.

    Science.gov (United States)

    Tuleasca, Constantin; Witjas, Tatiana; Van de Ville, Dimitri; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean

    2018-03-01

    Drug-resistant essential tremor (ET) can benefit from open standard stereotactic procedures, such as deep-brain stimulation or radiofrequency thalamotomy. Non-surgical candidates can be offered either high-focused ultrasound (HIFU) or radiosurgery (RS). All procedures aim to target the same thalamic site, the ventro-intermediate nucleus (e.g., Vim). The mechanisms by which tremor stops after Vim RS or HIFU remain unknown. We used voxel-based morphometry (VBM) on pretherapeutic neuroimaging data and assessed which anatomical site would best correlate with tremor arrest 1 year after Vim RS. Fifty-two patients (30 male, 22 female; mean age 71.6 years, range 49-82) with right-sided ET benefited from left unilateral Vim RS in Marseille, France. Targeting was performed in a uniform manner, using 130 Gy and a single 4-mm collimator. Neurological (pretherapeutic and 1 year after) and neuroimaging (baseline) assessments were completed. Tremor score on the treated hand (TSTH) at 1 year after Vim RS was included in a statistical parametric mapping analysis of variance (ANOVA) model as a continuous variable with pretherapeutic neuroimaging data. Pretherapeutic gray matter density (GMD) was further correlated with TSTH improvement. No a priori hypothesis was used in the statistical model. The only statistically significant region was right Brodmann area (BA) 18 (visual association area V2, p = 0.05, cluster size K c  = 71). Higher baseline GMD correlated with better TSTH improvement at 1 year after Vim RS (Spearman's rank correlation coefficient = 0.002). Routine baseline structural neuroimaging predicts TSTH improvement 1 year after Vim RS. The relevant anatomical area is the right visual association cortex (BA 18, V2). The question whether visual areas should be included in the targeting remains open.

  8. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    Science.gov (United States)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  9. Voxel-based morphometry in Alzheimers disease and mild cognitive impairment: Systematic review of studies addressing the frontal lobe.

    Science.gov (United States)

    Ribeiro, Luís Gustavo; Busatto, Geraldo

    2016-01-01

    Voxel-based morphometry (VBM) is a useful approach for investigating neurostructural brain changes in dementia. We systematically reviewed VBM studies of Alzheimer's disease (AD) and mild cognitive impairment (MCI), specifically focusing on grey matter (GM) atrophy in the frontal lobe. Two searches were performed on the Pubmed database. A set of exclusion criteria was applied to ensure the selection of only VBM studies that directly investigated GM volume abnormalities in AD and/or MCI patients compared to cognitively normal controls. From a total of 46 selected articles, 35 VBM studies reported GM volume reductions in the frontal lobe. The frontal subregions, where most of the volume reductions were reported, included the inferior, superior and middle frontal gyri, as well as the anterior cingulate gyrus. We also found studies in which reduced frontal GM was detected in MCI patients who converted to AD. In a minority of studies, correlations between frontal GM volumes and behavioural changes or cognitive deficits in AD patients were investigated, with variable findings. Results of VBM studies indicate that the frontal lobe should be regarded as an important brain area when investigating GM volume deficits in association with AD. Frontal GM loss might not be a feature specific to late AD only. Future VBM studies involving large AD samples are warranted to further investigate correlations between frontal volume deficits and both cognitive impairment and neuropsychiatric symptoms.

  10. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies.

    Science.gov (United States)

    Vitolo, Enrico; Tatu, Mona Karina; Pignolo, Claudia; Cauda, Franco; Costa, Tommaso; Ando', Agata; Zennaro, Alessandro

    2017-12-30

    Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Neuroanatomical Alterations in Patients with Early Stage of Unilateral Pulsatile Tinnitus: A Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Yawen Liu

    2018-01-01

    Full Text Available During the past several years, the rapid development of neuroimaging techniques has contributed greatly in the noninvasive imaging studies of tinnitus. The aim of the present study was to explore the brain anatomical alterations in patients with right-sided unilateral pulsatile tinnitus (PT in the early stage of PT symptom using voxel-based morphometry (VBM analysis. Twenty-four patients with right-sided pulsatile tinnitus and 24 age- and gender-matched normal controls were recruited to this study. Structural image data preprocessing was performed using VBM8 toolbox. Tinnitus Handicap Inventory (THI score was acquired in the tinnitus group to assess the severity of tinnitus and tinnitus-related distress. Two-sample t-test and Pearson’s correlation analysis were used in statistical analysis. Patients with unilateral pulsatile tinnitus had significantly increased gray matter (GM volume in bilateral superior temporal gyrus compared with the normal controls. However, the left cerebellum posterior lobe, left frontal superior orbital lobe (gyrus rectus, right middle occipital gyrus (MOG, and bilateral putamen showed significantly decreased brain volumes. This was the first study which demonstrated the features of neuroanatomical changes in patients with unilateral PT during their early stages of the symptom.

  12. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies.

    Science.gov (United States)

    Fornito, A; Yücel, M; Patti, J; Wood, S J; Pantelis, C

    2009-03-01

    Voxel-based morphometry (VBM) is a popular tool for mapping neuroanatomical changes in schizophrenia patients. Several recent meta-analyses have identified the brain regions in which patients most consistently show grey matter reductions, although they have not examined whether such changes reflect differences in grey matter concentration (GMC) or grey matter volume (GMV). These measures assess different aspects of grey matter integrity, and may therefore reflect different pathological processes. In this study, we used the Anatomical Likelihood Estimation procedure to analyse significant differences reported in 37 VBM studies of schizophrenia patients, incorporating data from 1646 patients and 1690 controls, and compared the findings of studies using either GMC or GMV to index grey matter differences. Analysis of all studies combined indicated that grey matter reductions in a network of frontal, temporal, thalamic and striatal regions are among the most frequently reported in literature. GMC reductions were generally larger and more consistent than GMV reductions, and were more frequent in the insula, medial prefrontal, medial temporal and striatal regions. GMV reductions were more frequent in dorso-medial frontal cortex, and lateral and orbital frontal areas. These findings support the primacy of frontal, limbic, and subcortical dysfunction in the pathophysiology of schizophrenia, and suggest that the grey matter changes observed with MRI may not necessarily result from a unitary pathological process.

  13. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia

    Science.gov (United States)

    van der Velde, Jorien; Gromann, Paula M.; Swart, Marte; de Haan, Lieuwe; Wiersma, Durk; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-01-01

    Background Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. Methods We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (< 30 yr), genetic loading and subclinical psychotic symptoms to examine whether this would lead to different results. Results We included 89 siblings and 69 controls in our study. The results showed that siblings and controls did not differ significantly on grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. Limitations The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. Conclusion These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia. PMID:25768029

  14. Relating inter-individual differences in verbal creative thinking to cerebral structures: an optimal voxel-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Feifei Zhu

    Full Text Available Creativity can be defined the capacity of an individual to produce something original and useful. An important measurable component of creativity is divergent thinking. Despite existing studies on creativity-related cerebral structural basis, no study has used a large sample to investigate the relationship between individual verbal creativity and regional gray matter volumes (GMVs and white matter volumes (WMVs. In the present work, optimal voxel-based morphometry (VBM was employed to identify the structure that correlates verbal creativity (measured by the verbal form of Torrance Tests of Creative Thinking across the brain in young healthy subjects. Verbal creativity was found to be significantly positively correlated with regional GMV in the left inferior frontal gyrus (IFG, which is believed to be responsible for language production and comprehension, new semantic representation, and memory retrieval, and in the right IFG, which may involve inhibitory control and attention switching. A relationship between verbal creativity and regional WMV in the left and right IFG was also observed. Overall, a highly verbal creative individual with superior verbal skills may demonstrate a greater computational efficiency in the brain areas involved in high-level cognitive processes including language production, semantic representation and cognitive control.

  15. Structural changes of central white matter tracts in Kennedy's disease - a diffusion tensor imaging and voxel-based morphometry study.

    Science.gov (United States)

    Pieper, C C; Konrad, C; Sommer, J; Teismann, I; Schiffbauer, H

    2013-05-01

    Spinobulbar muscular atrophy [Kennedy's disease (KD)] is a rare X-linked neurodegenerative disorder of mainly spinal and bulbar motoneurons. Recent studies suggest a multisystem character of this disease. The aim of this study was to identify and characterize structural changes of gray (GM) and white matter (WM) in the central nervous system. Whole-brain-based voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analyses were applied to MRI data of eight genetically proven patients with KD and compared with 16 healthy age-matched controls. Diffusion tensor imaging analysis showed not only decreased fractional anisotropy (FA) values in the brainstem, but also widespread changes in central WM tracts, whereas VBM analysis of the WM showed alterations primarily in the brainstem and cerebellum. There were no changes in GM volume. The FA value decrease in the brainstem correlated with the disease duration. Diffusion tensor imaging analysis revealed subtle changes of central WM tract integrity, while GM and WM volume remained unaffected. In our patient sample, KD had more extended effects than previously reported. These changes could either be attributed primarily to neurodegeneration or reflect secondary plastic changes due to atrophy of lower motor neurons and reorganization of cortical structures. © 2012 John Wiley & Sons A/S.

  16. A Voxel-Based Morphometry Study of the Brain of University Students Majoring in Music and Nonmusic Disciplines.

    Science.gov (United States)

    Sato, Kanako; Kirino, Eiji; Tanaka, Shoji

    2015-01-01

    The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions.

  17. Relating Inter-Individual Differences in Verbal Creative Thinking to Cerebral Structures: An Optimal Voxel-Based Morphometry Study

    Science.gov (United States)

    Zhu, Feifei; Zhang, Qinglin; Qiu, Jiang

    2013-01-01

    Creativity can be defined the capacity of an individual to produce something original and useful. An important measurable component of creativity is divergent thinking. Despite existing studies on creativity-related cerebral structural basis, no study has used a large sample to investigate the relationship between individual verbal creativity and regional gray matter volumes (GMVs) and white matter volumes (WMVs). In the present work, optimal voxel-based morphometry (VBM) was employed to identify the structure that correlates verbal creativity (measured by the verbal form of Torrance Tests of Creative Thinking) across the brain in young healthy subjects. Verbal creativity was found to be significantly positively correlated with regional GMV in the left inferior frontal gyrus (IFG), which is believed to be responsible for language production and comprehension, new semantic representation, and memory retrieval, and in the right IFG, which may involve inhibitory control and attention switching. A relationship between verbal creativity and regional WMV in the left and right IFG was also observed. Overall, a highly verbal creative individual with superior verbal skills may demonstrate a greater computational efficiency in the brain areas involved in high-level cognitive processes including language production, semantic representation and cognitive control. PMID:24223921

  18. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia.

    Science.gov (United States)

    van der Velde, Jorien; Gromann, Paula M; Swart, Marte; de Haan, Lieuwe; Wiersma, Durk; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-05-01

    Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia.

  19. Structural brain alterations in bipolar disorder II: a combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study.

    Science.gov (United States)

    Ambrosi, Elisa; Rossi-Espagnet, Maria Camilla; Kotzalidis, Georgios D; Comparelli, Anna; Del Casale, Antonio; Carducci, Filippo; Romano, Andrea; Manfredi, Giovanni; Tatarelli, Roberto; Bozzao, Alessandro; Girardi, Paolo

    2013-09-05

    Brain structural changes have been described in bipolar disorder (BP), but usually studies focused on both I and II subtypes indiscriminately and investigated changes in either brain volume or white matter (WM) integrity. We used combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis to track changes in the grey matter (GM) and WM in the brains of patients affected by BPII, as compared to healthy controls. Using VBM and DTI, we scanned 20 DSM-IV-TR BPII patients in their euthymic phase and 21 healthy, age- and gender-matched volunteers with no psychiatric history. VBM showed decreases in GM of BPII patients, compared to controls, which were diffuse in nature and most prominent in the right middle frontal gyrus and in the right superior temporal gurus. DTI showed significant and widespread FA reduction in BPII patients in all major WM tracts, including cortico-cortical association tracts. The small sample size limits the generalisability of our findings. Reduced GM volumes and WM integrity changes in BPII patients are not prominent like those previously reported in bipolar disorder type-I and involve cortical structures and their related association tracts. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A voxel-based morphometry study of regional gray and white matter correlate of self-disclosure.

    Science.gov (United States)

    Wang, ShanShan; Wei, DongTao; Li, WenFu; Li, HaiJiang; Wang, KangCheng; Xue, Song; Zhang, Qinglin; Qiu, Jiang

    2014-01-01

    Self-disclosure is an important performance in human social communication. Generally, an individual is likely to have a good physical and mental health if he is prone to self-disclosure under stressful life events. However, as for now, little is known about the neural structure associated with self-disclosure. Therefore, in this study, we used voxel-based morphometry to explore regional gray matter volume (rGMV) and white matter volume (rWMV) associated with self-disclosure measured by the Jourard Self-disclosure Questionnaire in a large sample of college students. Results showed that individual self-disclosure was significantly and positively associated with rGMV of the left postcentral gyrus, which might be related to strengthen individual's ability of body feeling; while self-disclosure was significantly and negatively associated with rGMV of the right orbitofrontal cortex (OFC), which might be involved in increased positive emotion experience seeking (intrinsically rewarding). In addition, individual self-disclosure was also associated with smaller rWMV in the right inferior parietal lobule (IPL). These findings suggested a biological basis for individual self-disclosure, distributed across different gray and white matter areas of the brain.

  1. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study.

    Directory of Open Access Journals (Sweden)

    Sergio Elías Hernández

    Full Text Available To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation.Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry.Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators.The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation.

  2. Discrepancy between perceived pain and cortical processing: A voxel-based morphometry and contact heat evoked potential study.

    Science.gov (United States)

    Kramer, J L K; Jutzeler, C R; Haefeli, J; Curt, A; Freund, P

    2016-01-01

    The purpose of this study was to determine if local gray and white matter volume variations between subjects could account for variability in responses to CHEP stimulation. Structural magnetic resonance imaging was used to perform voxel-based morphometry (VBM) of gray and white matter in 30 neurologically healthy subjects. Contact heat stimulation was performed on the dorsum of the right hand at the base of the thumb. Evoked potentials were acquired from a vertex-recording electrode referenced to linked ears. Controlling for age, total intracranial volume, and skull/scalp thickness, CHEP amplitude and pain rating were not significantly correlated between subjects. A VBM region of interest approach demonstrated a significant interaction between pain rating and N2 amplitude in the right insular cortex (ppain rating. This finding suggests that the discrepancy between pain ratings and the amplitude of evoked potentials is not solely related to measurement artifact, but rather attributable, in part, to anatomical differences between subjects. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  3. The overlapping brain region accounting for the relationship between procrastination and impulsivity: A voxel-based morphometry study.

    Science.gov (United States)

    Liu, Peiwei; Feng, Tingyong

    2017-09-30

    Procrastination is a prevalent problematic behavior that brings serious consequences, such as lower levels of health, wealth, and well-being. Previous research has verified that impulsivity is one of the traits most strongly correlated with procrastination. However, little is known about why there is a tight behavioral relationship between them. To address this question, we used voxel-based morphometry (VBM) to explore the common neural substrates between procrastination and impulsivity. In line with previous findings, the behavioral results showed a strong behavioral correlation between procrastination and impulsivity. Neuroimaging results showed impulsivity and procrastination shared the common neurobiological underpinnings in the dorsolateral prefrontal cortex (DLPFC) based on the data from 85 participants (sample 1). Furthermore, the mediation analysis revealed that impulsivity mediated the impact of gray matter (GM) volumes of this overlapping region in the DLPFC on procrastination on another independent 84 participants' data (sample 2). In conclusion, the overlapping brain region in the DLPFC would be responsible for the close relationship between procrastination and impulsivity. As a whole, the present study extends our knowledge on procrastination, and provides a novel perspective to explain the tight impulsivity - procrastination relationship. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Hernández, Sergio Elías; Suero, José; Barros, Alfonso; González-Mora, José Luis; Rubia, Katya

    2016-01-01

    To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation. Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry. Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators. The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation.

  5. Comparison of template registration methods for multi-site meta-analysis of brain morphometry

    Science.gov (United States)

    Faskowitz, Joshua; de Zubicaray, Greig I.; McMahon, Katie L.; Wright, Margaret J.; Thompson, Paul M.; Jahanshad, Neda

    2016-03-01

    Neuroimaging consortia such as ENIGMA can significantly improve power to discover factors that affect the human brain by pooling statistical inferences across cohorts to draw generalized conclusions from populations around the world. Voxelwise analyses such as tensor-based morphometry also allow an unbiased search for effects throughout the brain. Even so, such consortium-based analyses are limited by a lack of high-powered methods to harmonize voxelwise information across study populations and scanners. While the simplest approach may be to map all images to a single standard space, the benefits of cohort-specific templates have long been established. Here we studied methods to pool voxel-wise data across sites using templates customized for each cohort but providing a meaningful common space across all studies for voxelwise comparisons. As non-linear 3D MRI registrations represent mappings between images at millimeter resolution, we need to consider the reliability of these mappings. To evaluate these mappings, we calculated test-retest statistics on the volumetric maps of expansion and contraction. Further, we created study-specific brain templates for ten T1-weighted MRI datasets, and a common space from four study-specific templates. We evaluated the efficacy of using a two-step registration framework versus a single standard space. We found that the two-step framework more reliably mapped subjects to a common space.

  6. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Duan Yunyun; Liu Yaou; Liang Peipeng; Jia Xiuqin; Yu Chunshui; Qin Wen; Sun Hui; Liao Zhangyuan; Ye Jing; Li Kuncheng

    2012-01-01

    Purpose: Previous studies have established regional grey matter (GM) loss in multiple sclerosis (MS). However, whether there is any regional GM atrophy in neuromyelitis optica (NMO) and the difference between NMO and MS is unclear. The present study addresses this issue by voxel-based morphometry (VBM). Methods: Conventional magnetic resonance imaging (MRI) and T1-weighted three-dimensional MRI were obtained from 26 NMO patients, 26 relapsing–remitting MS (RRMS) patients, and 26 normal controls. An analysis of covariance model assessed with cluster size inference was used to compare GM volume among three groups. The correlations of GM volume changes with disease duration, expanded disability status scale (EDSS) and brain T2 lesion volume (LV) were analyzed. Results: GM atrophy was found in NMO patients in several regions of frontal, temporal, parietal lobes and insula (uncorrected, p < 0.001). While extensive GM atrophy was found in RRMS patients, including most cortical regions and the deep grey matter (corrected for multiple comparisons, p < 0.01). Compared with NMO, those with RRMS had significant GM loss in bilateral thalami, caudate, left parahippocampal gyrus, right hippocampus and insula (corrected, p < 0.01). In RRMS group, regional GM loss in right caudate and bilateral thalami were strongly correlated with brain T2LV. Conclusions: Our study found the difference of GM atrophy between NMO and RRMS patients mainly in deep grey matter. The correlational results suggested axonal degeneration from lesions on T2WI may be a key pathogenesis of atrophy in deep grey matter in RRMS.

  7. Childhood adversity is linked to differential brain volumes in adolescents with alcohol use disorder: a voxel-based morphometry study.

    Science.gov (United States)

    Brooks, Samantha J; Dalvie, Shareefa; Cuzen, Natalie L; Cardenas, Valerie; Fein, George; Stein, Dan J

    2014-06-01

    Previous neuroimaging studies link both alcohol use disorder (AUD) and early adversity to neurobiological differences in the adult brain. However, the association between AUD and childhood adversity and effects on the developing adolescent brain are less clear, due in part to the confound of psychiatric comorbidity. Here we examine early life adversity and its association with brain volume in a unique sample of 116 South African adolescents (aged 12-16) with AUD but without psychiatric comorbidity. Participants were 58 adolescents with DSM-IV alcohol dependence and with no other psychiatric comorbidities, and 58 age-, gender- and protocol-matched light/non-drinking controls (HC). Assessments included the Childhood Trauma Questionnaire (CTQ). MR images were acquired on a 3T Siemens Magnetom Allegra scanner. Volumes of global and regional structures were estimated using SPM8 Voxel Based Morphometry (VBM), with analysis of covariance (ANCOVA) and regression analyses. In whole brain ANCOVA analyses, a main effect of group when examining the AUD effect after covarying out CTQ was observed on brain volume in bilateral superior temporal gyrus. Subsequent regression analyses to examine how childhood trauma scores are linked to brain volumes in the total cohort revealed a negative correlation in the left hippocampus and right precentral gyrus. Furthermore, bilateral (but most significantly left) hippocampal volume was negatively associated with sub-scores on the CTQ in the total cohort. These findings support our view that some alterations found in brain volumes in studies of adolescent AUD may reflect the impact of confounding factors such as psychiatric comorbidity rather than the effects of alcohol per se. In particular, early life adversity may influence the developing adolescent brain in specific brain regions, such as the hippocampus.

  8. Influence of magnetic field strength and image registration strategy on voxel-based morphometry in a study of Alzheimer's disease.

    Science.gov (United States)

    Marchewka, Artur; Kherif, Ferath; Krueger, Gunnar; Grabowska, Anna; Frackowiak, Richard; Draganski, Bogdan

    2014-05-01

    Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS. Copyright © 2013 Wiley Periodicals, Inc.

  9. Grey matter volume in healthy and epileptic beagles using voxel-based morphometry – a pilot study

    Directory of Open Access Journals (Sweden)

    Lisa Frank

    2018-02-01

    Full Text Available Abstract Background One of the most common chronic neurological disorders in dogs is idiopathic epilepsy (IE diagnosed as epilepsy without structural changes in the brain. In the current study the hypothesis should be proven that subtle grey matter changes occur in epileptic dogs. Therefore, magnetic resonance (MR images of one dog breed (Beagles were used to obtain an approximately uniform brain shape. Local differences in grey matter volume (GMV were compared between 5 healthy Beagles and 10 Beagles with spontaneously recurrent seizures (5 dogs with IE and 5 dogs with structural epilepsy (SE, using voxel-based morphometry (VBM. T1W images of all dogs were prepared using Amira 6.3.0 for brain extraction, FSL 4.1.8 for registration and SPM12 for realignment. After creation of tissue probability maps of cerebrospinal fluid, grey and white matter from control images to segment all extracted brains, GM templates for each group were constructed to normalize brain images for parametric statistical analysis, which was achieved using SPM12. Results Epileptic Beagles (IE and SE Beagles displayed statistically significant reduced GMV in olfactory bulb, cingulate gyrus, hippocampus and cortex, especially in temporal and occipital lobes. Beagles with IE showed statistically significant decreased GMV in olfactory bulb, cortex of parietal and temporal lobe, hippocampus and cingulate gyrus, Beagles with SE mild statistically significant GMV reduction in temporal lobe (p < 0.05; family- wise error correction. Conclusion These results suggest that, as reported in epileptic humans, focal reduction in GMV also occurs in epileptic dogs. Furthermore, the current study shows that VBM analysis represents an excellent method to detect GMV differences of the brain between a healthy dog group and dogs with epileptic syndrome, when MR images of one breed are used.

  10. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    The outline analysis, in which geometric and traditional morphometry potentials are insufficient, was performed by using the Fourier transformation. As a result of the comprehensive wing morphometry study, it was found that both Cerceris species can be distinguished according to their wing structures and the metric ...

  11. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    Background: Data on central region morphometry of a child brain is important not only in terms of providing us with information about central region anatomy of the brain but also in terms of the help of this information for the plans to be applied in neurosurgery. Objective: In the present study, central region morphometry of a ...

  12. Brain-volume changes in young and middle-aged smokers: a DARTEL-based voxel-based morphometry study.

    Science.gov (United States)

    Peng, Peng; Wang, Zhenchang; Jiang, Tao; Chu, Shuilian; Wang, Shuangkun; Xiao, Dan

    2017-09-01

    Many studies have reported brain volume changes in smokers. However, the volume differences of grey matter (GM) and white matter (WM) in young and middle-aged male smokers with different lifetime tobacco consumption (pack-years) remain uncertain. To examine the brain volume change, especially whether more pack-years smoking would be associated with smaller gray matter and white matter volume in young and middle-aged male smokers. We used a 3T MR scanner and performed Diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry on 53 long-term male smokers (30.72 ± 4.19 years) and 53 male healthy non-smokers (30.83 ± 5.18 years). We separated smokers to light and heavy smokers by pack-years and compared brain volume between different smoker groups and non-smokers. And then we did analysis of covariance (ANCOVA) between smokers and non-smokers by setting pack-years as covariates. Light and heavy smokers all displayed smaller GM and WM volume than non-smokers and more obviously in heavy smokers. The main smaller areas in light and heavy smokers were superior temporal gyrus, insula, middle occipital gyrus, posterior cingulate, precuneus in GM and posterior cingulate, thalamus and midbrain in WM, in addition, we also observed more pack-years smoking was associated with some certain smaller GM and WM volumes by ANCOVA. Young and middle-aged male smokers had many smaller brain areas than non-smokers. Some of these areas' volume had negative correlation with pack-years, while some had not. These may due to different pathophysiological role of smokings. © 2015 John Wiley & Sons Ltd.

  13. Structural correlates of creative thinking in patients with bipolar disorder and healthy controls-a voxel-based morphometry study.

    Science.gov (United States)

    Tu, Pei-Chi; Kuan, Yi-Hsuan; Li, Cheng-Ta; Su, Tung-Ping

    2017-06-01

    This study investigated the structural correlates of creative thinking in patients with bipolar disorder (BD) to understand the possible neural mechanism of creative thinking in BD. We recruited 59 patients with BD I or BD II (35.3±8.5 y) and 56 age- and sex-matched controls (HCs; 34±7.4 y). Each participant underwent structural magnetic resonance imaging and evaluation of creative thinking, which was assessed using two validated tools: the Chinese version of the Abbreviated Torrance Test for Adults for divergent thinking and the Chinese Word Remote Associates Test for remote association. Voxel-based morphometry was performed using SPM12. In patients with BD, divergent thinking positively correlated with the gray matter volume (GMV) in right medial frontal gyrus (Brodmann area [BA] 9), and remote association positively correlated with the GMV in the medial prefrontal gyrus (BA 10). In the HCs, divergent thinking negatively correlated with the GMV in left superior frontal gyrus (BA 8) and positively correlated with the GMV in the precuneus and occipital regions, and remote association positively correlated with the GMV in the hippocampus. Patients with BD were receiving various dosages of antipsychotics, antidepressants and mood stabilizer. These medications may confound the GMV-creative thinking relationship in patients with BD. Our findings indicate that medial prefrontal cortex plays a major and positive role in creative thinking in patients with BD. By contrary, creative thinking involves more diverse structures, and the prefrontal cortex may have an opposite effect in HCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability.

    Science.gov (United States)

    Agosta, F; Pagani, E; Rocca, M A; Caputo, D; Perini, M; Salvi, F; Prelle, A; Filippi, M

    2007-12-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and simultaneous degeneration of upper and lower motor neurons. The pathological process associated to ALS, albeit more pronounced in the motor/premotor cortices and along the corticospinal tracts (CST), does not spare extra-motor brain gray (GM) and white (WM) matter structures. However, it remains unclear whether such extra-motor cerebral abnormalities occur with mildly disabling disease, and how irreversible tissue loss and intrinsic tissue damage are interrelated. To this end, we used an optimized version of voxel-based morphometry (VBM) analysis to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain from mildly disabled patients with ALS. A high-resolution T1-weighted 3D magnetization-prepared rapid acquisition gradient echo and a pulsed gradient spin-echo single shot echo-planar sequence of the brain were acquired from 25 mildly disabled patients with ALS and 18 matched healthy controls. An analysis of covariance was used to compare volumetry and diffusivity measurements between patients and controls. Compared with controls, ALS patients had significant clusters of locally reduced GM density (P frontal gyrus (IFG), and superior temporal gyrus (STG), bilaterally. In ALS patients contrasted to controls, we also found significant clusters of locally increased MD (P gyrus (MTG) of the right hemisphere, and in the WM adjacent to the MTG and lingual gyrus in the left hemisphere. Compared with controls, ALS patients also had significant clusters of locally decreased FA values (P < 0.001) in the CST in the midbrain and corpus callosum, bilaterally. This study supports the notion that ALS is a multisystem disorder and suggests that extra-motor involvement may be an early feature of the disease. (copyright) 2007 Wiley-Liss, Inc.

  15. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study.

    Directory of Open Access Journals (Sweden)

    Gayane Aghakhanyan

    Full Text Available Angelman syndrome (AS is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM method to investigate disease-related changes in the cortical/subcortical grey matter (GM structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM. Principal component analysis (PCA was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS.

  16. MRI study of the morphometry of the cervical musculature in F-16 pilots

    NARCIS (Netherlands)

    de Loose, Veerle; van den Oord, Marieke; Keser, Ilke; Burnotte, Frédéric; van Tiggelen, Damien; Dumarey, Alexandre; Cagnie, Barbara; Witvrouw, Erik; Danneels, Lieven

    2009-01-01

    INTRODUCTION: In fighter pilots neck muscle strengthening exercises are often recommended to protect the neck against pathologies. The aim of the current study was to compare the relative cross-sectional area (rCSA) and muscle:fat ratio of the cervical musculature of F-16 pilots experiencing neck

  17. Structural brain aging and speech production: a surface-based brain morphometry study.

    Science.gov (United States)

    Tremblay, Pascale; Deschamps, Isabelle

    2016-07-01

    While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa-pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex.

  18. Cadaveric Study of Male Lumbar Intervertebral Foramina Morphometry in Ile-Ife

    Directory of Open Access Journals (Sweden)

    Sunday E. C

    2018-04-01

    Full Text Available Background: This study was designed to investigate the mean lumbar foramina height and length in male cadaveric specimens in Ile-Ife. Aim and Objectives: Two hundred and fifty intervertebral foramina derived from twenty-five male cadaveric specimens were analyzed, were studied. They were obtained from the Department of Anatomy, Obafemi Awolowo University, Ile-Ife, Osun State in Southwestern Nigeria. The cadavers were positioned prone and a routine paraspinal approach was employed to gain exposure to the posterior spinal element following meticulous soft tissue dissection. An osteotomy of the iliac crest was performed to adequately expose the fifth lumbar (L1-S1 foramina.Parameters assessed were; the foramen height and the foraminal length. The measurement was performed three times on each side using vernier calipers. The variations of the different measurements in the cephalo-caudal direction were analyzed for statistical differences using the “One way ANOVA” with post hoc test. Results: The result showed a gradual increase of the foramina height were observed on both right and left side from L1-L2 to L3- L4 and from then on decreased progressively towards the L5-S1 level. No statistical difference was noted in the measurements derived (p<0.05. Conclusion: A good understanding of the lumbar intervertebral foraminal are essential in surgical planning of suitably sized cannulas necessary for less invasive spine surgeries as well as help in diagnosis of pathologies surrounding this important region following adequate clinical evaluation and measurements using imaging.

  19. Laterality Influences Brain Atrophy in Parkinson's Disease - a Voxel-based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Maria Cristina Arci Santos

    2016-09-01

    Full Text Available Background: Several neuroimaging studies revealed widespread neurodegeneration in Parkinson's disease but only few considered the asymmetrical clinical presentation. Objective: To investigate gray matter (GM atrophy in Parkinson Disease considering the side of motor symptom onset. Methods: Sixty patients (57.87± 10.27 years diagnosed according to the Brain Bank criteria, 26 with right-sided disease onset (RDO and 34 with left-sided disease onset (LDO, were compared to 80 healthy controls (HC (57.1± 9.47 years. T1-weighted images were acquired on a 3T scanner. VBM8 (SPM8/Dartel on Matlab R2012b platform processed and analyzed the images. Statistics included a two-sample test (FWE p<0.05 with extent threshold of 20 voxels. In a secondary analysis, we used MRIcro software to flip the images right/left of 25 patients, which had a RDO, so that all images had the contralateral side of disease onset at the right hemisphere. Thirty-five HC images were flipped, as the hemispheres are not completely equivalent. Results: Compared to HC, GM atrophy in LDO was identified in the insula, putamen, anterior cingulate, frontotemporal cortex and right caudate. For the RDO group, anterior cingulate, insula, frontotemporal and occipital cortex. VBM of total brain-flipped images showed GM loss mainly in the left putamen, left olfactory cortex, amygdala, parahipocampal gyrus and in the rectus gyrus, insula, frontotemporal cortex, cuneus, precuneus and calcarine fissure bilaterally. (p<0.05 FWE corrected. Conclusions: The study revealed widespread GM atrophy in PD, predominantly in the left hemisphere. Future investigations should also consider handedness and side of onset to better characterize cerebral involvement and its progression in PD.

  20. Apathy is related to cortex morphology in CADASIL. A sulcal-based morphometry study.

    Science.gov (United States)

    Jouvent, E; Reyes, S; Mangin, J-F; Roca, P; Perrot, M; Thyreau, B; Hervé, D; Dichgans, M; Chabriat, H

    2011-04-26

    Apathy is a debilitating symptom in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the pathophysiology of which remains poorly understood. The aim of this study was to evaluate the neuroanatomic correlates of apathy, using new MRI postprocessing methods based on the identification of cortical sulci, in a large cohort of patients with CADASIL. A total of 132 patients with genetically confirmed diagnosis were included in this prospective cohort study. Global cognitive performances were assessed by the Mattis Dementia Rating Scale (MDRS) and disability by the modified Rankin score (mRS). Apathy was defined according to standard criteria. Depth, width, and cortical thickness of 10 large sulci of the frontal lobe in each hemisphere were measured. Logistic regression modeling was used to evaluate the links between apathy and cortical thickness, depth, or width of the different sulci. All models were adjusted for age, gender, level of education, MDRS, mRS, depression, and global brain volume. Complete MRI datasets of high quality were available in 119 patients. Depth of the posterior cingulate sulcus exhibited the strongest association with apathy in fully adjusted models (right: p value = 0.0006; left: p value = 0.004). Depth and width of cortical sulci in mediofrontal and orbitofrontal areas were independently associated with apathy. By contrast, cortical thickness was not. Cortical morphology in mediofrontal and orbitofrontal areas, by contrast to cortical thickness, is strongly and independently associated with apathy. These results suggest that apathy is related to a reduction of cortical surface rather than of cortical thickness secondary to lesion accumulation in CADASIL.

  1. Global and regional brain volumes normalization in weight-recovered adolescents with anorexia nervosa: preliminary findings of a longitudinal voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Bomba M

    2015-03-01

    Full Text Available Monica Bomba,1,* Anna Riva,1,* Sabrina Morzenti,2 Marco Grimaldi,3 Francesca Neri,1 Renata Nacinovich1 1Child and Adolescent Mental Health Department, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy; 2Medical Physics Department, San Gerardo Hospital, Monza, Italy; 3Department of Radiology, Humanitas Research Hospital, Milan, Italy *These authors contributed equally to this work Abstract: The recent literature on anorexia nervosa (AN suggests that functional and structural abnormalities of cortico-limbic areas might play a role in the evolution of the disease. We explored global and regional brain volumes in a cross-sectional and follow-up study on adolescents affected by AN. Eleven adolescents with AN underwent a voxel-based morphometry study at time of diagnosis and immediately after weight recovery. Data were compared to volumes carried out in eight healthy, age and sex matched controls. Subjects with AN showed increased cerebrospinal fluid volumes and decreased white and gray matter volumes, when compared to controls. Moreover, significant regional gray matter decrease in insular cortex and cerebellum was found at time of diagnosis. No regional white matter decrease was found between samples and controls. Correlations between psychological evaluation and insular volumes were explored. After weight recovery gray matter volumes normalized while reduced global white matter volumes persisted. Keywords: anorexia nervosa, adolescent, gray matter, insula, voxel-based morphometry study

  2. Role of Nuclear Morphometry in Breast Cancer and its Correlation with Cytomorphological Grading of Breast Cancer: A Study of 64 Cases.

    Science.gov (United States)

    Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj

    2018-01-01

    Fine needle aspiration cytology (FNAC) is a simple, rapid, inexpensive, and reliable method of diagnosis of breast mass. Cytoprognostic grading in breast cancers is important to identify high-grade tumors. Computer-assisted image morphometric analysis has been developed to quantitate as well as standardize various grading systems. To apply nuclear morphometry on cytological aspirates of breast cancer and evaluate its correlation with cytomorphological grading with derivation of suitable cutoff values between various grades. Descriptive cross-sectional hospital-based study. This study included 64 breast cancer cases (29 of grade 1, 22 of grade 2, and 13 of grade 3). Image analysis was performed on Papanicolaou stained FNAC slides by NIS -Elements Advanced Research software (Ver 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Nuclear size parameters showed an increase in values with increasing cytological grades of carcinoma. Nuclear shape parameters were not found to be significantly different between the three grades. Among nuclear texture parameters, sum intensity, and sum brightness were found to be different between the three grades. Nuclear morphometry can be applied to augment the cytology grading of breast cancer and thus help in classifying patients into low and high-risk groups.

  3. lakemorpho: Calculating lake morphometry metrics in R.

    Science.gov (United States)

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  4. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Zikou, Anastasia K; Kosmidou, Maria; Astrakas, Loukas G; Tzarouchi, Loukia C; Tsianos, Epameinondas; Argyropoulou, Maria I

    2014-10-01

    To investigate structural brain changes in inflammatory bowel disease (IBD). Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images. VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p tensor imaging detects microstructural brain abnormalities in IBD. • Voxel based morphometry reveals brain atrophy in IBD.

  5. An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats

    Science.gov (United States)

    Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J.; Kawashima, Ryuta

    2011-01-01

    Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies. PMID:22275894

  6. An in vivo MRI template set for morphometry, tissue segmentation and fMRI localization in rats

    Directory of Open Access Journals (Sweden)

    Pedro Antonio Valdes Hernandez

    2011-11-01

    Full Text Available Over the last decade, several papers have focused on the construction of highly detailed mouse high field MRI templates via nonlinear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate fMRI localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via nonlinear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g. SPM voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos & Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, we reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation- or voxel-based morphometry, morphological connectivity and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies.

  7. An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats.

    Science.gov (United States)

    Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J; Kawashima, Ryuta

    2011-01-01

    Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies.

  8. A case study of a multiply talented savant with an autism spectrum disorder: neuropsychological functioning and brain morphometry.

    Science.gov (United States)

    Wallace, Gregory L; Happé, Francesca; Giedd, Jay N

    2009-05-27

    Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and 'weak' central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure.

  9. Grey matter volume differences associated with gender in children with attention-deficit/hyperactivity disorder: A voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Thomas Villemonteix

    2015-08-01

    Full Text Available Female participants have been underrepresented in previous structural magnetic resonance imaging reports on attention-deficit/hyperactivity disorder (ADHD. In this study, we used optimized voxel-based morphometry to examine grey matter volumes in a sample of 33 never-medicated children with combined-type ADHD and 27 typically developing (TD children. We found a gender-by-diagnosis interaction effect in the ventral anterior cingulate cortex (ACC, whereby boys with ADHD exhibited reduced volumes compared with TD boys, while girls with ADHD showed increased volumes when compared with TD girls. Considering the key role played by the ventral ACC in emotional regulation, we discuss the potential contribution of these alterations to gender-specific symptoms’ profiles in ADHD.

  10. Grey matter volume differences associated with gender in children with attention-deficit/hyperactivity disorder: A voxel-based morphometry study.

    Science.gov (United States)

    Villemonteix, Thomas; De Brito, Stéphane A; Slama, Hichem; Kavec, Martin; Balériaux, Danielle; Metens, Thierry; Baijot, Simon; Mary, Alison; Peigneux, Philippe; Massat, Isabelle

    2015-08-01

    Female participants have been underrepresented in previous structural magnetic resonance imaging reports on attention-deficit/hyperactivity disorder (ADHD). In this study, we used optimized voxel-based morphometry to examine grey matter volumes in a sample of 33 never-medicated children with combined-type ADHD and 27 typically developing (TD) children. We found a gender-by-diagnosis interaction effect in the ventral anterior cingulate cortex (ACC), whereby boys with ADHD exhibited reduced volumes compared with TD boys, while girls with ADHD showed increased volumes when compared with TD girls. Considering the key role played by the ventral ACC in emotional regulation, we discuss the potential contribution of these alterations to gender-specific symptoms' profiles in ADHD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Comparison of vertebral morphometry in the lumbar vertebrae by T1-weighted sagittal MRI and radiograph

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Purpose: In this study, we investigated the usefulness of T1-weighted sagittal MR images at the lumbar vertebrae in the vertebral morphometry, in comparison with lateral radiographs. Subjects and methods: The subjects were 42 men (mean age: 53.0 years) and 41 women (mean age: 57.9 years). Both MRI and radiography of the lumbar spine were performed within 1 month. The vertebral body heights and their ratios were measured by the semi-automatic measuring system. The frequency of a vertebral fracture and the absolute value of vertebral body height in both morphometry were compared. Results: Based on the criteria for prevalent vertebral fracture using vertebral height ratios, the vertebrae were classified into four groups. Group 1 was defined as the vertebrae without fracture (n = 347 vertebrae). Groups 2-4 were defined as the vertebrae with fracture; Group 2 by both MRI and X-ray morphometry (n = 17), Group 3 by MRI morphometry alone (n = 17), and Group 4 by X-ray morphometry alone (n = 4). The rate of prevalent vertebral fracture diagnosed by MRI morphometry (8.8%) was higher than that by X-ray morphometry (5.5%). In Group 1, the values of anterior and posterior vertebral height obtained by MRI morphometry were greater than those obtained by X-ray morphometry. On the other hand, the values of central vertebral height obtained by MRI morphometry were smaller than those obtained by X-ray morphometry. Conclusion: Severe biconcave deformity of vertebra can be detected by both MRI and X-ray morphometry, although mild biconcave deformity can be detected only by MRI morphometry

  12. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    Science.gov (United States)

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  13. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    Science.gov (United States)

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Brain expansion in patients with type II diabetes following insulin therapy: a preliminary study with longitudinal voxel-based morphometry.

    Science.gov (United States)

    Chen, Zhiye; Li, Jinfeng; Sun, Jie; Ma, Lin

    2014-01-01

    We performed a longitudinal analysis based on magnetic resonance (MR) imaging to investigate the brain structural and perfusion changes caused by insulin therapy in patients with type II diabetes. High resolution three-dimensional T1-weighted fast spoiled gradient recalled echo images and flow-sensitive alternating inversion recovery (FAIR) images were obtained from 11 patients with type II diabetes before and 1 year after initiation of insulin therapy and 11 normal controls. Brain volume changes were investigated by a longitudinal voxel-based morphometry (VBM), and perfusion changes were evaluated by FAIR imaging between baseline and follow-up data. Significant regional gray matter (GM) expansion located in bilateral frontal, parietal, and left occipital lobes, and regional white matter (WM) expansion was shown in left precentral subcortical WM and right angular subcortical WM after insulin therapy (P Brain hyperperfusion was detected in bilateral frontal cortex, left occipital cortex, and right temporal cortex after insulin therapy (P brain expansion and hyperperfusion were demonstrated 1 year after initiation of insulin therapy, and insulin therapy could contribute to the brain volume gainment in the patients with type II diabetes. Copyright © 2013 by the American Society of Neuroimaging.

  15. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Senda, Joe; Kato, Shigenori; Kaga, Tomotsugu; Ito, Mizuki; Atsuta, Naoki; Nakamura, Tomohiko; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-01-01

    We investigated 17 patients with sporadic amyotrophic lateral sclerosis (ALS) using voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) at baseline and after a six-month follow-up. Compared with 17 healthy controls, ALS patients at baseline showed only minimal white matter volume decreases in the inferior frontal gyrus but marked decreases in the gray matter of several regions, especially in the bilateral paracentral lobule of the premotor cortex. DTI revealed reduced fractional anisotropy in the bilateral corticospinal tracts, insula, ventrolateral premotor cortex, and parietal cortex. Increased mean diffusivity was noted bilaterally in the motor cortex, ventrolateral premotor cortex, insula, hippocampal formation, and temporal gyrus. At the six-month follow-up, ALS patients showed widespread volume decreases in gray matter, and DTI abnormalities extended mainly into the bilateral frontal lobes, while volume changes in the white matter remained minimal but more distinct. Our combined VBM and DTI techniques revealed extra-corticospinal tract neuronal degeneration mainly in the frontotemporal lobe of ALS patients. In particular, follow-up examinations in these patients showed that whole-brain DTI changes occurred predominantly in the regions of brain atrophy. These objective analyses can be used to assess the disease condition of the ALS brain.

  16. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zikou, Anastasia K.; Astrakas, Loukas G.; Tzarouchi, Loukia C.; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Kosmidou, Maria; Tsianos, Epameinondas [University of Ioannina, 1st Department of Internal Medicine (Hepato-Gastroenterology Unit), Medical School, Ioannina (Greece)

    2014-10-15

    To investigate structural brain changes in inflammatory bowel disease (IBD). Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images. VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p < 0.05). TBSS showed decreased axial diffusivity (AD) in the right corticospinal tract and the right superior longitudinal fasciculus in patients compared with controls. A larger number of WMHIs was observed in patients (p < 0.05). Patients with IBD show an increase in WMHIs and GM atrophy, probably related to cerebral vasculitis and ischaemia. Decreased AD in major white matter tracts could be a secondary phenomenon, representing Wallerian degeneration. (orig.)

  17. An optimized voxel-based morphometry study in the evaluation of brain structural abnormalities in anisometropic amblyopia patients

    International Nuclear Information System (INIS)

    Liu Shengyuan; Zhang Jing; Zhang Quan; Yin Huiming; Zhang Lihong; Li Wei; Zhang Yunting

    2012-01-01

    Objective: To investigate possible neural mechanism of anisometropic amblyopia by analysing the whole brain volume changes both in grey matter and white matter using optimized voxel-based morphometry (VBM). Methods: Twelve anisometropic amblyopia patients and 12 age,gender and handedness matched healthy volunteers underwent 3-dimensional (3D) fast spoiled gradient echo (FSPGR) sequence scanning on 1.5 Tesla MR system. Raw data was processed and analyzed using statistical parametric mapping (SPM) 5. Results: Compared to healthy controls,the grey matter exhibiting significantly decreased volume in patients included right cuneus, bilateral occipital gyrus, right middle frontal gyrus, left middle temporal gyrus, right superior temporal gyrus, right precuneus,and middle part of right cingulate gyrus (clusters > 10). The grey matter showing increased volume in patients included right cerebellum,right parahippocampal gyrus, left precentral gyrus,and left superior frontal gyrus (clusters > 10). The white matter volume in bilateral optic radiation and internal capsule, especially right optic radiation, decreased significantly in patient group (clusters > 10 ). No white matter showed significantly increased volume in patient group. Conclusion: VBM can be used to investigate the changes of grey matter volume and white matter volume in the whole brain of anisometropic amblyopia children, it provides a method to illustrate the presumed neuro-mechanism from a morphologic point of view. (authors)

  18. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study

    International Nuclear Information System (INIS)

    Zikou, Anastasia K.; Astrakas, Loukas G.; Tzarouchi, Loukia C.; Argyropoulou, Maria I.; Kosmidou, Maria; Tsianos, Epameinondas

    2014-01-01

    To investigate structural brain changes in inflammatory bowel disease (IBD). Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images. VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p < 0.05). TBSS showed decreased axial diffusivity (AD) in the right corticospinal tract and the right superior longitudinal fasciculus in patients compared with controls. A larger number of WMHIs was observed in patients (p < 0.05). Patients with IBD show an increase in WMHIs and GM atrophy, probably related to cerebral vasculitis and ischaemia. Decreased AD in major white matter tracts could be a secondary phenomenon, representing Wallerian degeneration. (orig.)

  19. Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Li, Qian; Jiang, Qinying; Guo, Mingxia; Li, Qingji; Cai, Chunquan; Yin, Xiaohui

    2013-04-01

    To investigate the potential morphological alterations of grey and white matter in monocular amblyopic children using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). A total of 20 monocular amblyopic children and 20 age-matched controls were recruited. Whole-brain MRI scans were performed after a series of ophthalmologic exams. The imaging data were processed and two-sample t-tests were employed to identify group differences in grey matter volume (GMV), white matter volume (WMV) and fractional anisotropy (FA). After image screening, there were 12 amblyopic participants and 15 normal controls qualified for the VBM analyses. For DTI analysis, 14 amblyopes and 14 controls were included. Compared to the normal controls, reduced GMVs were observed in the left inferior occipital gyrus, the bilateral parahippocampal gyrus and the left supramarginal/postcentral gyrus in the monocular amblyopic group, with the lingual gyrus presenting augmented GMV. Meanwhile, WMVs reduced in the left calcarine, the bilateral inferior frontal and the right precuneus areas, and growth in the WMVs was seen in the right cuneus, right middle occipital and left orbital frontal areas. Diminished FA values in optic radiation and increased FA in the left middle occipital area and right precuneus were detected in amblyopic patients. In monocular amblyopia, cortices related to spatial vision underwent volume loss, which provided neuroanatomical evidence of stereoscopic defects. Additionally, white matter development was also hindered due to visual defects in amblyopes. Growth in the GMVs, WMVs and FA in the occipital lobe and precuneus may reflect a compensation effect by the unaffected eye in monocular amblyopia.

  20. Neural substrates underlying balanced time perspective: A combined voxel-based morphometry and resting-state functional connectivity study.

    Science.gov (United States)

    Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong

    2017-08-14

    Balanced time perspective (BTP), which is defined as a mental ability to switch flexibly among different time perspectives Zimbardo and Boyd (1999), has been suggested to be a central component of positive psychology Boniwell and Zimbardo (2004). BTP reflects individual's cognitive flexibility towards different time frames, which leads to many positive outcomes, including positive mood, subjective wellbeing, emotional intelligence, fluid intelligence, and executive control. However, the neural basis of BTP is still unclear. To address this question, we quantified individual's deviation from the BTP (DBTP), and investigated the neural substrates of DBTP using both voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods VBM analysis found that DBTP scores were positively correlated with gray matter volume (GMV) in the ventral precuneus. We further found that DBTP scores were negatively associated with RSFCs between the ventral precuneus seed region and medial prefrontal cortex (mPFC), bilateral temporoparietal junction (TPJ), parahippocampa gyrus (PHG), and middle frontal gyrus (MFG). These brain regions found in both VBM and RSFC analyses are commonly considered as core nodes of the default mode network (DMN) that is known to be involved in many functions, including episodic and autobiographical memory, self-related processing, theory of mind, and imagining the future. These functions of the DMN are also essential to individuals with BTP. Taken together, we provide the first evidence for the structural and functional neural basis of BTP, and highlight the crucial role of the DMN in cultivating an individual's BTP. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. An optimized voxel-based morphometry study of gray matter abnormalities in patients with obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Li Fei; Lu Su; Huang Xiaoqi; Wu Qizhu; Qiu Lihua; Li Bin; Yang Yanchun; Gong Qiyong

    2011-01-01

    Objective: To explore changes of gray matter volume in patients with obsessive- compulsive disorder (OCD) in Chinese Han population using optimized voxel-based morphometry (VBM), and investigate its relationship with clinical symptoms. Methods: Twenty patients with OCD and 20 age, sex and handedness matched healthy controls were scanned using 3D-T 1 images on a 3.0 T MR system. The high resolution T 1 WI was preprocessed according to the optimized VBM protocol in Statistical Parametric Mapping (SPM5). Two-sample t test was performed to characterize the differences of the gray matter volume (GMV) between the OCD patients and healthy controls, and the correlations between the GMV and symptom severity and cumulative illness duration were examined using Pearson correlation in SPSS 16.0, respectively. Results: Compared to controls, OCD patients demonstrated increased GMV in left thalamus, right thalamus and left cerebellum after false discovery rate (FDR) correction. No areas of significantly decreased GMV was observed in OCD patients in relative to healthy controls. The mean eigenvalue ranged from 0.5782 to 0.889 representing the left thalamus volume of OCD patients was 0.6813±0.0718, and that ranged from 0.5546 to 0.9062 was 0.6869±0.0808 for right thalamus. The mean eigenvalues were positively correlated in bilateral thalamus (r=0.94, P<0.01). Conclusion: Using optimized VBM, the current research indicates that the pathophysiology of OCD is associated with GMV abnormalities not only in cortico-striato-thalamo-cortical (CSTC) circuit, but also in the cerebellum. (authors)

  2. Pilot study of brain morphometry in a sample of Brazilian children with attention deficit hyperactivity disorder: influence of clinical presentation.

    Science.gov (United States)

    Pastura, Giuseppe; Kubo, Tadeu Takao Almodovar; Gasparetto, Emerson Leandro; Figueiredo, Otavio; Mattos, Paulo; Prüfer Araújo, Alexandra

    2017-12-01

    Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) rests on clinical criteria. Nonetheless, neuroimaging studies have demonstrated that children with ADHD have different cortical thickness and volume measures to typically developing children (TDC). In general, studies do not evaluate the influence of clinical presentation in the brain morphometry of ADHD children. Our objective was to perform a pilot study in order to evaluate cortical thickness and brain volume in a sample of Brazilian ADHD children and compare these to those of TDC, taking into account the influence of clinical presentation. We performed an analytic study comparing 17 drug-naïve ADHD children of both genders, aged between 7 and 10, and 16 TDC. ADHD subjects were first considered as one group and further separated based on clinical presentation. The brain volume did not differ between patients and TDC. Smaller cortical thicknesses were identified on the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex. When compared to TDC, combined and inattentive ADHD presentations depicted smaller cortical thickness with high significance and power. The same magnitude of results was not observed when comparing inattentive ADHD and TDC. In this pilot study, ADHD is associated with abnormalities involving the cortical thickness of the posterior attentional system. The cortical thickness in the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex may differ according to ADHD presentations.

  3. A combined tract-based spatial statistics and voxel-based morphometry study of the first MRI scan after diagnosis of amyotrophic lateral sclerosis with subgroup analysis.

    Science.gov (United States)

    Alruwaili, A R; Pannek, K; Coulthard, A; Henderson, R; Kurniawan, N D; McCombe, P

    2018-02-01

    This study aims to compare the cortical and subcortical deep gray matter (GM) and white matter (WM) of ALS subjects and controls and to compare ALS subjects with (ALScog) and without (ALSnon-cog) cognitive impairment. The study was performed in 30 ALS subjects, and 19 healthy controls. Structural T1- and diffusion-weighted MRI data were analyzed using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). All DTI measures and GM volume differed significantly between ALS subjects and controls. Compared to controls, greater DTI changes were present in ALScog than ALSnon-cog subjects. GM results showed reduction in the caudate nucleus volume in ALScog subjects compared to ALSnon-cog. and comparing all ALS with controls, there were changes on the right side and in a small region in the left middle frontal gyrus. This combined DTI and VBM study showed changes in motor and extra-motor regions. The DTI changes were more extensive in ALScog than ALSnon-cog subjects. It is likely that the inclusion of ALS subjects with cognitive impairment in previous studies resulted in extra-motor WM abnormalities being reported in ALS subjects. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Atlas warping for brain morphometry

    Science.gov (United States)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  5. Depressive symptoms and neuroanatomical structures in community-dwelling women: A combined voxel-based morphometry and diffusion tensor imaging study with tract-based spatial statistics

    Directory of Open Access Journals (Sweden)

    Yayoi K. Hayakawa

    2014-01-01

    Full Text Available Depressive symptoms, even at a subclinical level, have been associated with structural brain abnormalities. However, previous studies have used regions of interest or small sample sizes, limiting the ability to generalize the results. In this study, we examined neuroanatomical structures of both gray matter and white matter associated with depressive symptoms across the whole brain in a large sample. A total of 810 community-dwelling adult participants underwent measurement of depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D. The participants were not demented and had no neurological or psychiatric history. To examine the gray and white matter volume, we used structural MRI scans and voxel-based morphometry (VBM; to examine the white matter integrity, we used diffusion tensor imaging with tract-based spatial statistics (TBSS. In female participants, VBM revealed a negative correlation between bilateral anterior cingulate gray matter volume and the CES-D score. TBSS showed a CES-D-related decrease in fractional anisotropy and increase in radial and mean diffusivity in several white matter regions, including the right anterior cingulum. In male participants, there was no significant correlation between gray or white matter volume or white matter integrity and the CES-D score. Our results indicate that the reduction in gray matter volume and differences in white matter integrity in specific brain regions, including the anterior cingulate, are associated with depressive symptoms in women.

  6. Depressive symptoms and neuroanatomical structures in community-dwelling women: A combined voxel-based morphometry and diffusion tensor imaging study with tract-based spatial statistics.

    Science.gov (United States)

    Hayakawa, Yayoi K; Sasaki, Hiroki; Takao, Hidemasa; Hayashi, Naoto; Kunimatsu, Akira; Ohtomo, Kuni; Aoki, Shigeki

    2014-01-01

    Depressive symptoms, even at a subclinical level, have been associated with structural brain abnormalities. However, previous studies have used regions of interest or small sample sizes, limiting the ability to generalize the results. In this study, we examined neuroanatomical structures of both gray matter and white matter associated with depressive symptoms across the whole brain in a large sample. A total of 810 community-dwelling adult participants underwent measurement of depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D). The participants were not demented and had no neurological or psychiatric history. To examine the gray and white matter volume, we used structural MRI scans and voxel-based morphometry (VBM); to examine the white matter integrity, we used diffusion tensor imaging with tract-based spatial statistics (TBSS). In female participants, VBM revealed a negative correlation between bilateral anterior cingulate gray matter volume and the CES-D score. TBSS showed a CES-D-related decrease in fractional anisotropy and increase in radial and mean diffusivity in several white matter regions, including the right anterior cingulum. In male participants, there was no significant correlation between gray or white matter volume or white matter integrity and the CES-D score. Our results indicate that the reduction in gray matter volume and differences in white matter integrity in specific brain regions, including the anterior cingulate, are associated with depressive symptoms in women.

  7. Examining brain structures associated with the motive to achieve success and the motive to avoid failure: A voxel-based morphometry study.

    Science.gov (United States)

    Ming, Dan; Chen, Qunlin; Yang, Wenjing; Chen, Rui; Wei, Dongtao; Li, Wenfu; Qiu, Jiang; Xu, Zhan; Zhang, Qinglin

    2016-01-01

    The motive to achieve success (MAS) and motive to avoid failure (MAF) are two different but classical kinds of achievement motivation. Though many functional magnetic resonance imaging studies have explored functional activation in motivation-related conditions, research has been silent as to the brain structures associated with individual differences in achievement motivation, especially with respect to MAS and MAF. In this study, the voxel-based morphometry method was used to uncover focal differences in brain structures related to MAS and MAF measured by the Mehrabian Achieving Tendency Scale in 353 healthy young Chinese adults. The results showed that the brain structures associated with individual differences in MAS and MAF were distinct. MAS was negatively correlated with regional gray matter volume (rGMV) in the medial prefrontal cortex (mPFC)/orbitofrontal cortex while MAF was negatively correlated with rGMV in the mPFC/subgenual cingulate gyrus. After controlling for mutual influences of MAS and MAF scores, MAS scores were found to be related to rGMV in the mPFC/orbitofrontal cortex and another cluster containing the parahippocampal gyrus and precuneus. These results may predict that compared with MAF, the generation process of MAS may be more complex and rational, thus in the real world, perhaps MAS is more beneficial to personal growth and guaranteeing the quality of task performance.

  8. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study

    International Nuclear Information System (INIS)

    Lv, Xiao-Fei; Zheng, Xiao-Li; Zhang, Wei-Dong; Liu, Li-Zhi; Zhang, You-Ming; Chen, Ming-Yuan; Li, Li

    2014-01-01

    Evidence is accumulating that temporal lobe radiation necrosis in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT) could involve gray matter (GM). The purpose of the study was to assess the radiation-induced GM volume differences between NPC patients who had and had not received RT and the effect of time after RT on GM volume differences in those patients who had received RT. We used magnetic resonance imaging voxel-based morphometry (VBM) to assess differences in GM volume between 30 NPC patients with normal-appearing whole-brain GM after RT and 15 control patients with newly diagnosed but not yet medically treated NPC. Correlation analyses were used to investigate the relationship between GM volume changes and time after RT. Patients who had received RT had GM volume decreases in the bilateral superior temporal gyrus, left middle temporal gyrus, right fusiform gyrus, right precentral gyrus, and right inferior parietal lobule (p 100 voxels). Moreover, the correlation analysis indicated that regional GM volume loss in the left superior temporal gyrus, left middle temporal gyrus, and right fusiform gyrus were negatively related to the mean dose to the ipsilateral temporal lobe, respectively. These results indicate that GM volume deficits in bilateral temporal lobes in patients who had received RT might be radiation-induced. Our findings might provide new insight into the pathogenesis of radiation-induced structural damage in normal-appearing brain tissue. Yet this is an exploratory study, whose findings should therefore be taken with caution. (orig.)

  9. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies.

    Directory of Open Access Journals (Sweden)

    Clare eFinlay

    2014-06-01

    Full Text Available Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson's disease (PD developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography (PET and functional magnetic resonance imaging (fMRI. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry (VBM. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.

  10. The Pivotal Role of the Parieto-Occipital Lobe in Card Game-Induced Reflex Epilepsy: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Park, Kang Min; Kim, Sung Eun; Lee, Byung In

    2016-01-01

    The pathogenesis of card game-induced reflex epilepsy has not been determined so far. The aim of this study was to evaluate structural abnormalities using voxel-based morphometry (VBM) analysis, which may give some clue about the pathogenesis in card game-induced reflex epilepsy. The 3 subjects were diagnosed with card game-induced reflex epilepsy. Evaluation involved a structured interview to obtain clinical information and brain MRI. In VBM analysis, Statistical Parametric Mapping 8 running on the MATLAB platform was employed to analyze the structural differences between patients with card game-induced reflex epilepsy and age- and sex-matched control subjects. The results of VBM analysis revealed that patients with card game-induced reflex epilepsy had significantly increased gray matter volume in the right occipital and parietal lobe. However, there were no structures with decreased gray matter volume in patients with card game-induced reflex epilepsy compared with control subjects. In addition, we found that the patients with card game-induced reflex epilepsy had onset of seizures in adulthood rather than in adolescence, and all of the patients were men. The parieto-occipital lobes might be partially involved in the neuronal network responsible for card game-induced reflex epilepsy. © 2016 S. Karger AG, Basel.

  11. Brainstem dysfunction in patients with late-onset Lennox-Gastaut syndrome: Voxel-based morphometry and tract-based spatial statistics study

    Directory of Open Access Journals (Sweden)

    Kang Min Park

    2016-01-01

    Full Text Available Background: There have been a few reports of patients who developed Lennox-Gastaut syndrome (LGS in the second decades of their life. Objectives: The aim of this study was to investigate electroclinical presentation in patients with late-onset LGS. In addition, we evaluated structural abnormalities of the brain, which may give some clue about the common pathogenic pathway in LGS. Materials and Methods: We enrolled the patients with late-onset LGS. We collected electroclinical characteristics of the patients and evaluated structural abnormalities using voxel-based morphometry (VBM and tract-based spatial statistics (TBSS analysis. Results: The three subjects were diagnosed with late-onset LGS. The patients have no mental retardation and normal background activities on electroencephalography (EEG, and they had generalized paroxysmal fast activities on EEG, especially during sleep. The TBSS analysis revealed that fractional anisotropy values in the patients were significantly reduced in the white matter of brainstem compared with normal controls. However, VBM analysis did not show any significant difference between the patients and normal controls. Conclusions: Patients with late-onset LGS have different clinical and EEG characteristics from those with early-onset LGS. In addition, we demonstrated that brainstem dysfunction might contribute to the pathogenesis of late-onset LGS.

  12. How reliable are gray matter disruptions in specific reading disability across multiple countries and languages? Insights from a large-scale voxel-based morphometry study.

    Science.gov (United States)

    Jednoróg, Katarzyna; Marchewka, Artur; Altarelli, Irene; Monzalvo Lopez, Ana Karla; van Ermingen-Marbach, Muna; Grande, Marion; Grabowska, Anna; Heim, Stefan; Ramus, Franck

    2015-05-01

    The neural basis of specific reading disability (SRD) remains only partly understood. A dozen studies have used voxel-based morphometry (VBM) to investigate gray matter volume (GMV) differences between SRD and control children, however, recent meta-analyses suggest that few regions are consistent across studies. We used data collected across three countries (France, Poland, and Germany) with the aim of both increasing sample size (236 SRD and controls) to obtain a clearer picture of group differences, and of further assessing the consistency of the findings across languages. VBM analysis reveals a significant group difference in a single cluster in the left thalamus. Furthermore, we observe correlations between reading accuracy and GMV in the left supramarginal gyrus and in the left cerebellum, in controls only. Most strikingly, we fail to replicate all the group differences in GMV reported in previous studies, despite the superior statistical power. The main limitation of this study is the heterogeneity of the sample drawn from different countries (i.e., speaking languages with varying orthographic transparencies) and selected based on different assessment batteries. Nevertheless, analyses within each country support the conclusions of the cross-linguistic analysis. Explanations for the discrepancy between the present and previous studies may include: (1) the limited suitability of VBM to reveal the subtle brain disruptions underlying SRD; (2) insufficient correction for multiple statistical tests and flexibility in data analysis, and (3) publication bias in favor of positive results. Thus the study echoes widespread concerns about the risk of false-positive results inherent to small-scale VBM studies. © 2015 Wiley Periodicals, Inc.

  13. CT morphometry of adult thoracic intervertebral discs.

    Science.gov (United States)

    Fletcher, Justin G R; Stringer, Mark D; Briggs, Christopher A; Davies, Tilman M; Woodley, Stephanie J

    2015-10-01

    Despite being commonly affected by degenerative disorders, there are few data on normal thoracic intervertebral disc dimensions. A morphometric analysis of adult thoracic intervertebral discs was, therefore, undertaken. Archival computed tomography scans of 128 recently deceased individuals (70 males, 58 females, 20-79 years) with no known spinal pathology were analysed to determine thoracic disc morphometry and variations with disc level, sex and age. Reliability was assessed by intraclass correlation coefficients (ICCs). Anterior and posterior intervertebral disc heights and axial dimensions were significantly greater in men (anterior disc height 4.0±1.4 vs 3.6±1.3 mm; posterior disc height 3.6±0.90 vs 3.4±0.93 mm; p<0.01). Disc heights and axial dimensions at T4-5 were similar or smaller than at T2-3, but thereafter increased caudally (mean anterior disc height T4-5 and T10-11, 2.7±0.7 and 5.4±1.2 mm, respectively, in men; 2.6±0.8 and 5.1±1.3 mm, respectively, in women; p<0.05). Except at T2-3, anterior disc height decreased with advancing age and anteroposterior and transverse disc dimensions increased; posterior and middle disc heights and indices of disc shape showed no consistent statistically significant changes. Most parameters showed substantial to almost perfect agreement for intra- and inter-rater reliability. Thoracic disc morphometry varies significantly and consistently with disc level, sex and age. This study provides unique reference data on adult thoracic intervertebral disc morphometry, which may be useful when interpreting pathological changes and for future biomechanical and functional studies.

  14. Gray and white matter asymmetries in healthy individuals aged 21-29 years: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Sasaki, Hiroki; Kasai, Kiyoto; Yoshioka, Naoki; Ohtomo, Kuni

    2011-10-01

    The hemispheres of the human brain are functionally and structurally asymmetric. The study of structural asymmetries provides important clues to the neuroanatomical basis of lateralized brain functions. Previous studies have demonstrated age-related changes in morphology and diffusion properties of brain tissue. In this study, we simultaneously explored gray and white matter asymmetry using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) in 109 young healthy individuals (58 females and 51 males). To eliminate the potential confounding effects of aging and handedness, we restricted the study to right-handed subjects aged 21-29 years. VBM and voxel-based analysis of fractional anisotropy (FA) maps derived from DTI revealed a number of gray matter volume asymmetries (including the right frontal and left occipital petalias and leftward asymmetry of the planum temporale) and white matter FA asymmetries (including leftward asymmetry of the arcuate fasciculus, cingulum, and corticospinal tract). There was no significant effect of sex on gray and white matter asymmetry. Leftward volume asymmetry of the planum temporale and leftward FA asymmetry of the arcuate fasciculus were simultaneously demonstrated. Post hoc analysis showed that the gray matter volume of the planum temporale and FA of the arcuate fasciculus were positively related (Pearson correlation coefficient, 0.43; P < 0.0001). The results of our study demonstrate gray and white matter asymmetry in right-handed healthy young adults and suggest that leftward volume asymmetry of the planum temporale and leftward FA asymmetry of the arcuate fasciculus may be related. Copyright © 2010 Wiley-Liss, Inc.

  15. A comparative study of the morphometry of sperm head components in cattle, sheep, and pigs with a computer-assisted fluorescence method

    Directory of Open Access Journals (Sweden)

    Jesús L Yániz

    2016-01-01

    Full Text Available The aim of this study was to compare the sperm nuclear and acrosomal morphometry of three species of domestic artiodactyls; cattle (Bos taurus, sheep (Ovis aries, and pigs (Sus scrofa. Semen smears of twenty ejaculates from each species were fixed and labeled with a propidium iodide-Pisum sativum agglutinin (PI/PSA combination. Digital images of the sperm nucleus, acrosome, and whole sperm head were captured and analyzed. The use of the PI/PSA combination and CASA-Morph fluorescence-based method allowed the capture, morphometric analysis, and differentiation of most sperm nuclei, acrosomes and whole heads, and the assessment of acrosomal integrity with a high precision in the three species studied. For the size of the head and nuclear area, the relationship between the three species may be summarized as bull > ram > boar. However, for the other morphometric parameters (length, width, and perimeter, there were differences in the relationships between species for sperm nuclei and whole sperm heads. Bull sperm acrosomes were clearly smaller than those in the other species studied and covered a smaller proportion of the sperm head. The acrosomal morphology, small in the bull, large and broad in the sheep, and large, long, and with a pronounced equatorial segment curve in the boar, was species-characteristic. It was concluded that there are clear variations in the size and shape of the sperm head components between the three species studied, the acrosome being the structure showing the most variability, allowing a clear distinction of the spermatozoa of each species.

  16. Structural Changes Induced by Daily Music Listening in the Recovering Brain after Middle Cerebral Artery Stroke: A Voxel-Based Morphometry Study

    Science.gov (United States)

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M.; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain. PMID:24860466

  17. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study.

    Science.gov (United States)

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

  18. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Teppo eSärkämö

    2014-04-01

    Full Text Available Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery (MCA stroke. Extending this study, a voxel-based morphometry (VBM analysis utilizing cost-function masking was performed on the acute and 6-month post-stroke stage structural MRI data of the patients (n = 49 who either listened to their favourite music (music group, n = 16 or verbal material (audio book group, n = 18 or did not receive any listening material (control group, n = 15 during the 6-month recovery period. Although all groups showed significant grey matter volume (GMV increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG, right medial SFG] and limbic areas [left ventral / subgenual anterior cingulate cortex (SACC and right ventral striatum (VS] in patients with left hemisphere damage in which the GMV increases were larger in the music group than in the audio book and control groups. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioural recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

  19. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  20. Thymus morphometry of New Zealand White Rabbits treated with gentamicin

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Magalhães Silva

    2010-09-01

    Full Text Available The aim of this study was to evaluate the morphometry of cortical and medullary thymic lobes individualized by determination of area (μm2, perimeter (μm, maximum and minimum diameter (μm and shape factor in New Zealand White rabbits. The spleens of ten rabbits treated with gentamicin and ten control rabbits (males and females were histologically processed. The gentamicin dosage and the time of administration of this aminoglicoside were according to therapeutic recommendation. This antibiotic did not cause any alteration in the morphometry of the spleen, and it seemed not to be an immunosuppressive drug.

  1. Thymus morphometry of New Zealand White Rabbits treated with gentamicin

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Magalhães Silva

    2010-01-01

    Full Text Available The aim of this study was to evaluate the morphometry of cortical and medullary thymic lobes individualized by determination of area (µm2, perimeter (µm, maximum and minimum diameter (µm and shape factor in New Zealand White rabbits. The spleens of ten rabbits treated with gentamicin and ten control rabbits (males and females were histologically processed. The gentamicin dosage and the time of administration of this aminoglicoside were according to therapeutic recommendation. This antibiotic did not cause any alteration in the morphometry of the spleen, and it seemed not to be an immunosuppressive drug.

  2. White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: a diffusion-tensor imaging and voxel-based morphometry study.

    Science.gov (United States)

    Scherfler, Christoph; Frauscher, Birgit; Schocke, Michael; Iranzo, Alex; Gschliesser, Viola; Seppi, Klaus; Santamaria, Joan; Tolosa, Eduardo; Högl, Birgit; Poewe, Werner

    2011-02-01

    We applied diffusion-tensor imaging (DTI) including measurements of mean diffusivity (MD), a parameter of brain tissue integrity, fractional anisotropy (FA), a parameter of neuronal fiber integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to detect brain tissue changes in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). Magnetic resonance imaging (MRI) was performed in 26 patients with iRBD (mean disease duration, 9.2 ± 6.4 years) and 14 age-matched healthy control subjects. Statistical parametric mapping (SPM) was applied to objectively identify focal changes of MRI parameters throughout the entire brain volume. SPM localized significant decreases of FA in the tegmentum of the midbrain and rostral pons and increases of MD within the pontine reticular formation overlapping with a cluster of decreased FA in the midbrain (p < 0.001). VBM revealed increases of gray matter densities in both hippocampi of iRBD patients (p < 0.001). The observed changes in the pontomesencephalic brainstem localized 2 areas harboring key neuronal circuits believed to be involved in the regulation of REM sleep and overlap with areas of structural brainstem damage causing symptomatic RBD in humans. Bilateral increases in gray matter density of the hippocampus suggest functional neuronal reorganization in this brain area in iRBD. This study indicates that DTI detects distinct structural brainstem tissue abnormalities in iRBD in the regions where REM is modulated. Further studies should explore the relationship between MRI pathology and the risk of patients with iRBD of developing alpha-synuclein-related neurodegenerative diseases like Parkinson disease. Copyright © 2010 American Neurological Association.

  3. Structural brain alteration in survivors of acute lymphoblastic leukemia with chemotherapy treatment: A voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Zou, Liwei; Su, Lianzi; Xu, Jiajia; Xiang, Li; Wang, Longsheng; Zhai, Zhimin; Zheng, Suisheng

    2017-03-01

    To assess structural brain changes in survivors of acute lymphoblastic leukemia (ALL) with chemotherapy treatment by combining voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). 28 ALL patients (mean age: 40.71±8.58years, years since diagnosis: 7-38) and 20 age-matched control subjects (mean age: 42.95±6.39years) selected in this study with 3D T1 and diffusion tensor imaging acquired on a 3.0T Siemens MRI scanner. The ALL group had a history of chemotherapy treatment and off-therapy at least for 3years was enrolled. VBM and TBSS analysis were performed to detect regional grey matter (GM) volume changes and white matter (WM) alternation measured by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). VBM revealed decreased GM volume in ALL patients in lingual gyrus, left occipital middle gyrus, left temporal middle gyrus, left postcentral gyrus, left parietal inferior gyrus, left precentral gyrus, left frontal superior gyrus and increased GM volume in right caudate and frontal lobe. WM integrity changes measured by TBSS which showed decreased FA and AD in several WM regions, and increased MD and RD in ALL patients with chemotherapy treatment. Our results indicate that ALL patients had smaller GM volume and WM integrity changes in several regions. The current study may shed further light on the potential brain effects of chemotherapy treatment in ALL patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. White matter differences in monozygotic twins discordant or concordant for obsessive-compulsive symptoms: a combined diffusion tensor imaging/voxel-based morphometry study.

    Science.gov (United States)

    den Braber, Anouk; van 't Ent, Dennis; Boomsma, Dorret I; Cath, Danielle C; Veltman, Dick J; Thompson, Paul M; de Geus, Eco J C

    2011-11-15

    Neuroimaging studies of obsessive-compulsive disorder (OCD) patients point to deficits in cortico-striato-thalamo-cortical circuits that might include changes in white matter. The contribution of environmental and genetic factors to the various OCD-related changes in brain structures remains to be established. White matter structures were analyzed in 140 subjects with both diffusion tensor imaging and voxel-based morphometry. We studied 20 monozygotic twin pairs discordant for obsessive-compulsive symptoms (OCS) to detect the effects of environmental risk factors for obsessive-compulsive (OC) symptomatology. Furthermore, we compared 28 monozygotic twin pairs concordant for low OCS scores with 23 twin pairs concordant for high OCS scores to detect the effects of genetic risk factors for OC symptomatology. Discordant pair analysis showed that the environmental risk was associated with an increase in dorsolateral-prefrontal white matter. Analysis of concordant pairs showed that the genetic risk was associated with a decrease in inferior frontal white matter. Various white matter tracts showed opposite effects of environmental and genetic risk factors (e.g., right medial frontal, left parietal, and right middle temporal), illustrating the need for designs that separate these classes of risk factors. Different white matter regions were affected by environmental and genetic risk factors for OC symptomatology, but both classes of risk factors might, in aggregate, create an imbalance between the indirect loop of the cortico-striato-thalamo-cortical network (to the dorsolateral-prefrontal region)-important for inhibition and switching between behaviors-and the direct loop (involving the inferior frontal region) that contributes to the initiation and continuation of behaviors. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiao-Fei; Zheng, Xiao-Li; Zhang, Wei-Dong; Liu, Li-Zhi; Zhang, You-Ming [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Sun Yat-sen University Cancer Center, Department of Medical Imaging and Interventional Radiology, Guangzhou (China); Chen, Ming-Yuan [Sun Yat-sen University Cancer Center, Department of Nasopharyngeal Carcinoma, Guangzhou (China); Li, Li [Sun Yat-sen University Cancer Center, Department of Medical Imaging and Interventional Radiology, Guangzhou (China)

    2014-05-15

    Evidence is accumulating that temporal lobe radiation necrosis in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT) could involve gray matter (GM). The purpose of the study was to assess the radiation-induced GM volume differences between NPC patients who had and had not received RT and the effect of time after RT on GM volume differences in those patients who had received RT. We used magnetic resonance imaging voxel-based morphometry (VBM) to assess differences in GM volume between 30 NPC patients with normal-appearing whole-brain GM after RT and 15 control patients with newly diagnosed but not yet medically treated NPC. Correlation analyses were used to investigate the relationship between GM volume changes and time after RT. Patients who had received RT had GM volume decreases in the bilateral superior temporal gyrus, left middle temporal gyrus, right fusiform gyrus, right precentral gyrus, and right inferior parietal lobule (p < 0.001, uncorrected, cluster size >100 voxels). Moreover, the correlation analysis indicated that regional GM volume loss in the left superior temporal gyrus, left middle temporal gyrus, and right fusiform gyrus were negatively related to the mean dose to the ipsilateral temporal lobe, respectively. These results indicate that GM volume deficits in bilateral temporal lobes in patients who had received RT might be radiation-induced. Our findings might provide new insight into the pathogenesis of radiation-induced structural damage in normal-appearing brain tissue. Yet this is an exploratory study, whose findings should therefore be taken with caution. (orig.)

  6. The common traits of the ACC and PFC in anxiety disorders in the DSM-5: meta-analysis of voxel-based morphometry studies.

    Directory of Open Access Journals (Sweden)

    Jing Shang

    Full Text Available BACKGROUND: The core domains of social anxiety disorder (SAD, generalized anxiety disorder (GAD, panic disorder (PD with and without agoraphobia (GA, and specific phobia (SP are cognitive and physical symptoms that are related to the experience of fear and anxiety. It remains unclear whether these highly comorbid conditions that constitute the anxiety disorder subgroups of the Diagnostic and Statistical Manual for Mental Disorders--Fifth Edition (DSM-5 represent distinct disorders or alternative presentations of a single underlying pathology. METHODS: A systematic search of voxel-based morphometry (VBM studies of SAD, GAD, PD, GA, and SP was performed with an effect-size signed differential mapping (ES-SDM meta-analysis to estimate the clusters of significant gray matter differences between patients and controls. RESULTS: Twenty-four studies were eligible for inclusion in the meta-analysis. Reductions in the right anterior cingulate gyrus and the left inferior frontal gyrus gray matter volumes (GMVs were noted in patients with anxiety disorders when potential confounders, such as comorbid major depressive disorder (MDD, age, and antidepressant use were controlled for. We also demonstrated increased GMVs in the right dorsolateral prefrontal cortex (DLPFC in comorbid depression-anxiety (CDA, drug-naïve and adult patients. Furthermore, we identified a reduced left middle temporal gyrus and right precentral gyrus in anxiety patients without comorbid MDD. CONCLUSION: Our findings indicate that a reduced volume of the right ventral anterior cingulate gyrus and left inferior frontal gyrus is common in anxiety disorders and is independent of comorbid depression, medication use, and age. This generic effect supports the notion that the four types of anxiety disorders have a clear degree of overlap that may reflect shared etiological mechanisms. The results are consistent with neuroanatomical DLPFC models of physiological responses, such as worry and

  7. Effects of omega-3 fatty acid supplementation on cognitive functions and neural substrates: a voxel-based morphometry study in aged mice

    Directory of Open Access Journals (Sweden)

    Debora eCutuli

    2016-03-01

    Full Text Available Human and experimental studies have revealed putative neuroprotective and pro-cognitive effects of omega-3 polyunsaturated fatty acids (n-3 PUFA in aging, evidencing positive correlations between peripheral n-3 PUFA levels and regional grey matter (GM volume, as well as negative correlations between dietary n-3 PUFA levels and cognitive deficits. We recently showed that n-3 PUFA supplemented aged mice exhibit better hippocampal-dependent mnesic functions, along with enhanced cellular plasticity and reduced neurodegeneration, thus supporting a role of n-3 PUFA supplementation in preventing cognitive decline during aging. To corroborate these initial results and develop new evidence on the effects of n-3 PUFA supplementation on brain substrates at macro-scale level, here we expanded behavioral analyses to the emotional domain (anxiety and coping skills, and carried out a fine-grained regional GM volumetric mapping by using high-resolution MRI-based voxel-based morphometry. The behavioral effects of 8 week n-3 PUFA supplementation were measured on cognitive (discriminative, spatial and social and emotional (anxiety and coping abilities of aged (19 month-old at the onset of study C57B6/J mice. n-3 PUFA supplemented mice showed better mnesic performances as well as increased active coping skills. Importantly, these effects were associated with enlarged regional hippocampal, retrosplenial and prefrontal GM volumes, and with increased post mortem n-3 PUFA brain levels. These findings indicate that increased dietary n-3 PUFA intake in normal aging can improve fronto-hippocampal GM structure and function, an effect present also when the supplementation starts at late age. Our data are consistent with a protective role of n-3 PUFA supplementation in counteracting cognitive decline, emotional dysfunctions and brain atrophy.

  8. Effects of gestational age on brain volume and cognitive functions in generally healthy very preterm born children during school-age: A voxel-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Sakari Lemola

    Full Text Available To determine whether the relationship of gestational age (GA with brain volumes and cognitive functions is linear or whether it follows a threshold model in preterm and term born children during school-age.We studied 106 children (M = 10 years 1 month, SD = 16 months; 40 females enrolled in primary school: 57 were healthy very preterm children (10 children born 24-27 completed weeks' gestation (extremely preterm, 14 children born 28-29 completed weeks' gestation, 19 children born 30-31 completed weeks' gestation (very preterm, and 14 born 32 completed weeks' gestation (moderately preterm all born appropriate for GA (AGA and 49 term-born children. Neuroimaging involved voxel-based morphometry with the statistical parametric mapping software. Cognitive functions were assessed with the WISC-IV. General Linear Models and multiple regressions were conducted controlling age, sex, and maternal education.Compared to groups of children born 30 completed weeks' gestation and later, children born <28 completed weeks' gestation had less gray matter volume (GMV and white matter volume (WMV and poorer cognitive functions including decreased full scale IQ, and processing speed. Differences in GMV partially mediated the relationship between GA and full scale IQ in preterm born children.In preterm children who are born AGA and without major complications GA is associated with brain volume and cognitive functions. In particular, decreased brain volume becomes evident in the extremely preterm group (born <28 completed weeks' gestation. In preterm children born 30 completed weeks' gestation and later the relationship of GA with brain volume and cognitive functions may be less strong as previously thought.

  9. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study

    Science.gov (United States)

    Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O.; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions. PMID:28771634

  10. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study.

    Science.gov (United States)

    Saarela, Carina; Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions.

  11. White matter microstructure in 22q11 deletion syndrome: a pilot diffusion tensor imaging and voxel-based morphometry study of children and adolescents.

    Science.gov (United States)

    Sundram, Frederick; Campbell, Linda E; Azuma, Rayna; Daly, Eileen; Bloemen, Oswald J N; Barker, Gareth J; Chitnis, Xavier; Jones, Derek K; van Amelsvoort, Therese; Murphy, Kieran C; Murphy, Declan G M

    2010-06-01

    Young people with 22q11 Deletion Syndrome (22q11DS) are at substantial risk for developing psychosis and have significant differences in white matter (WM) volume. However, there are few in vivo studies of both WM microstructural integrity (as measured using Diffusion Tensor (DT)-MRI) and WM volume in the same individual. We used DT-MRI and structural MRI (sMRI) with voxel based morphometry (VBM) to compare, respectively, the fractional anisotropy (FA) and WM volume of 11 children and adolescents with 22q11DS and 12 controls. Also, within 22q11DS we related differences in WM to severity of schizotypy, and polymorphism of the catechol-O-methyltransferase (COMT) gene. People with 22q11DS had significantly lower FA in inter-hemispheric and brainstem and frontal, parietal and temporal lobe regions after covarying for IQ. Significant WM volumetric increases were found in the internal capsule, anterior brainstem and frontal and occipital lobes. There was a significant negative correlation between increased schizotypy scores and reduced WM FA in the right posterior limb of internal capsule and the right body and left splenium of corpus callosum. Finally, the Val allele of COMT was associated with a significant reduction in both FA and volume of WM in the frontal lobes, cingulum and corpus callosum. Young people with 22q11DS have significant differences in both WM microstructure and volume. Also, there is preliminary evidence that within 22q11DS, some regional differences in FA are associated with allelic variation in COMT and may perhaps also be associated with schizotypy.

  12. Clinical Study White Matter Atrophy in Patients with Mesial Temporal Lobe Epilepsy: Voxel-Based Morphometry Analysis of T1- and T2-Weighted MR Images

    International Nuclear Information System (INIS)

    Braga, B.; Yasuda, C.L.; Cendes, F.

    2012-01-01

    Introduction. Mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis is highly refractory to clinical treatment. MRI voxel-based morphometry (VBM) of T1-weighted images has revealed a widespread pattern of gray matter (GM) and white matter (WM) atrophy in MTLE. Few studies have investigated the role of T2-weighted images in revealing WM atrophy using VBM. Objectives. To compare the results of WM atrophy between T1- and T2-weighted images through VBM. Methods. We selected 28 patients with left and 27 with right MTLE and 60 normal controls. We analyzed T1- and T2- weighted images with SPM8, using VBM/DARTEL algorithm to extract maps of GM and WM. The second level of SPM was used to investigate areas of WM atrophy among groups. Results. Both acquisitions showed bilateral widespread WM atrophy. T1-weighted images showed higher sensibility to detect areas of WM atrophy in both groups of MTLE. T2-weighted images also showed areas of WM atrophy in a more restricted pattern, but still bilateral and with a large area of superposition with T1-weighted images. Conclusions. In MTLE, T1-weighted images are more sensitive to detect subtle WM abnormalities using VBM, compared to T2 images, although both present a good superposition of statistical maps. 1. Introduction The mesial temporal lobe epilepsy (MTLE) is highly refractory to pharmacological treatment [1], and it is the main group of epilepsy referred to the tertiary care hospitals for surgical treatment [2]. MTLE shows a good surgical prognosis, with satisfactory seizures control in 60-80% of the patients [3]. In approximately 65%

  13. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    Science.gov (United States)

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  14. Improving fluid registration through white matter segmentation in a twin study design

    Science.gov (United States)

    Chou, Yi-Yu; Lepore, Natasha; Brun, Caroline; Barysheva, Marina; McMahon, Katie; de Zubicaray, Greig I.; Wright, Margaret J.; Toga, Arthur W.; Thompson, Paul M.

    2010-03-01

    Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.

  15. Genital tract morphometry and haematology of male rabbits fed ...

    African Journals Online (AJOL)

    Genital tract morphometry and haematology of male rabbits fed graded levels of cassava leaf meal. ... It was concluded that the inclusion of up to 27% of CLM in bucks' diets is not detrimental to good health and normal reproductive tract development. It is recommended that further studies on the feeding potentials of ...

  16. Testicular morphometry and sperm reserves of local turkey toms fed ...

    African Journals Online (AJOL)

    The morphometry and sperm reserves of the testis, epididymis and vas deferens of three groups (n=5/ group) of sexually active adult local turkey toms fed isocaloric diet with varying levels (12 %, 16 %, 20 %) of protein were studied for sixteen weeks. The weights of the toms before treatment were between 3.5 – 4.5 kg, while ...

  17. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk.

    Science.gov (United States)

    Hanson, Jamie L; Chung, Moo K; Avants, Brian B; Shirtcliff, Elizabeth A; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2010-06-02

    Individuals who experience early adversity, such as child maltreatment, are at heightened risk for a broad array of social and health difficulties. However, little is known about how this behavioral risk is instantiated in the brain. Here we examine a neurobiological contribution to individual differences in human behavior using methodology appropriate for use with pediatric populations paired with an in-depth measure of social behavior. We show that alterations in the orbitofrontal cortex among individuals who experienced physical abuse are related to social difficulties. These data suggest a biological mechanism linking early social learning to later behavioral outcomes.

  18. Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor-based brain morphometry and discriminant analysis.

    Science.gov (United States)

    Sowell, Elizabeth R; Leow, Alex D; Bookheimer, Susan Y; Smith, Lynne M; O'Connor, Mary J; Kan, Eric; Rosso, Carly; Houston, Suzanne; Dinov, Ivo D; Thompson, Paul M

    2010-03-17

    Here we investigate the effects of prenatal exposure to methamphetamine (MA) on local brain volume using magnetic resonance imaging. Because many who use MA during pregnancy also use alcohol, a known teratogen, we examined whether local brain volumes differed among 61 children (ages 5-15 years), 21 with prenatal MA exposure, 18 with concomitant prenatal alcohol exposure (the MAA group), 13 with heavy prenatal alcohol but not MA exposure (ALC group), and 27 unexposed controls. Volume reductions were observed in both exposure groups relative to controls in striatal and thalamic regions bilaterally and in right prefrontal and left occipitoparietal cortices. Striatal volume reductions were more severe in the MAA group than in the ALC group, and, within the MAA group, a negative correlation between full-scale intelligence quotient (FSIQ) scores and caudate volume was observed. Limbic structures, including the anterior and posterior cingulate, the inferior frontal gyrus (IFG), and ventral and lateral temporal lobes bilaterally, were increased in volume in both exposure groups. Furthermore, cingulate and right IFG volume increases were more pronounced in the MAA than ALC group. Discriminant function analyses using local volume measurements and FSIQ were used to predict group membership, yielding factor scores that correctly classified 72% of participants in jackknife analyses. These findings suggest that striatal and limbic structures, known to be sites of neurotoxicity in adult MA abusers, may be more vulnerable to prenatal MA exposure than alcohol exposure and that more severe striatal damage is associated with more severe cognitive deficit.

  19. Matrix- and tensor-based recommender systems for the discovery of currently unknown inorganic compounds

    Science.gov (United States)

    Seko, Atsuto; Hayashi, Hiroyuki; Kashima, Hisashi; Tanaka, Isao

    2018-01-01

    Chemically relevant compositions (CRCs) and atomic arrangements of inorganic compounds have been collected as inorganic crystal structure databases. Machine learning is a unique approach to search for currently unknown CRCs from vast candidates. Herein we propose matrix- and tensor-based recommender system approaches to predict currently unknown CRCs from database entries of CRCs. Firstly, the performance of the recommender system approaches to discover currently unknown CRCs is examined. A Tucker decomposition recommender system shows the best discovery rate of CRCs as the majority of the top 100 recommended ternary and quaternary compositions correspond to CRCs. Secondly, systematic density functional theory (DFT) calculations are performed to investigate the phase stability of the recommended compositions. The phase stability of the 27 compositions reveals that 23 currently unknown compounds are newly found to be stable. These results indicate that the recommender system has great potential to accelerate the discovery of new compounds.

  20. Morphometry Predicts Early GFR Change in Primary Proteinuric Glomerulopathies: A Longitudinal Cohort Study Using Generalized Estimating Equations.

    Directory of Open Access Journals (Sweden)

    Kevin V Lemley

    Full Text Available Most predictive models of kidney disease progression have not incorporated structural data. If structural variables have been used in models, they have generally been only semi-quantitative.We examined the predictive utility of quantitative structural parameters measured on the digital images of baseline kidney biopsies from the NEPTUNE study of primary proteinuric glomerulopathies. These variables were included in longitudinal statistical models predicting the change in estimated glomerular filtration rate (eGFR over up to 55 months of follow-up.The participants were fifty-six pediatric and adult subjects from the NEPTUNE longitudinal cohort study who had measurements made on their digital biopsy images; 25% were African-American, 70% were male and 39% were children; 25 had focal segmental glomerular sclerosis, 19 had minimal change disease, and 12 had membranous nephropathy. We considered four different sets of candidate predictors, each including four quantitative structural variables (for example, mean glomerular tuft area, cortical density of patent glomeruli and two of the principal components from the correlation matrix of six fractional cortical areas-interstitium, atrophic tubule, intact tubule, blood vessel, sclerotic glomerulus, and patent glomerulus along with 13 potentially confounding demographic and clinical variables (such as race, age, diagnosis, and baseline eGFR, quantitative proteinuria and BMI. We used longitudinal linear models based on these 17 variables to predict the change in eGFR over up to 55 months. All 4 models had a leave-one-out cross-validated R2 of about 62%.Several combinations of quantitative structural variables were significantly and strongly associated with changes in eGFR. The structural variables were generally stronger than any of the confounding variables, other than baseline eGFR. Our findings suggest that quantitative assessment of diagnostic renal biopsies may play a role in estimating the baseline

  1. Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging

    DEFF Research Database (Denmark)

    Giménez, Mónica; Miranda, Maria J; Born, A Peter

    2008-01-01

    stratum. While some earlier findings in preterm infants have suggested developmental delays, the results of this study are more consistent with accelerated white matter development, possibly as a result of increased sensorimotor stimulation in the extrauterine environment. These results are the first...... to suggest that the increased intensity of stimulation associated with preterm birth may advance the process of white matter maturation in the human brain. Questions remain about whether these findings reflect acceleration of the process of white matter maturation generally, or localized alterations induced...

  2. Preliminary study of the influence of red blood cells morphometry on the species determinism of domestic animals

    Directory of Open Access Journals (Sweden)

    Nezar Adili

    2014-04-01

    Full Text Available Aim: This survey was realized on cattle, sheep, goats, horses, and dogs, in order to study the influence of three morphometric parameters: the diameter, the circumference and the surface of red blood cells on the determinism of these species. Materials and Methods: For each species, blood samples were taken from 15 adult female by jugular venipuncture with confection of blood smears on microscope slides immediately after blood collection and stained according to the method of May-Gründwald Giemsa. Morphometric study was realized using the software OPTIKA Pro Vision. To better describe the results, the statistical analysis was assessed by using the descriptive Boxplots test, ANOVA, and the Student's t-test. Results: The morphometric parameters of red blood cells are biggest in dogs followed by horses, cattle, and sheep, while goats have the lowest ones. Conclusion: This investigation allowed us to show that from a drop of blood we can have an idea about the animal species taking into account the diameter, the circumference, and the surface of erythrocytes.

  3. Morphometry study on pre and post-hatching nerve cell bodies of lumbar spinal ganglia of Gallus domesticus

    Directory of Open Access Journals (Sweden)

    Claudio A. Ferraz de Carvalho

    1983-09-01

    Full Text Available A cytomorphometric study was performed in lumbar spinal ganglia neurons of Gallus domesticus on the 10th and 18th incubation days and 8th, 35th, 61st, and 120th post-hatching days. The absolute volume of nucleus and relative volume of cytoplasm were respectively estimated by the Bach² caryometric method and by point-counting volumetry, carried out in 0.5mm thick araldite sections. The relative volume, the surface-to-volume ratio and the total surface of RER, SER, mitochondria, dense bodies, Golgi complex and the relative volume of hyaloplasm inside and outside the Nissl bodies were estimated from electronmicrographs by the Weibel et al.58 method. The conclusions were: a there was an increase of the cell volume and a decrease of the nucleo-cytoplasmic ratio, particularly between the first two ages; b the relative volumes of RER and SER change inversely with respect to each other: the RER increases before hatching, decreasing progressively afterwards; the changes of relative volume of dense bodies are similar to those of the RER, and the mitochondria show relatively small variations concerning the same parameter; c the relative volume of hyaloplasm inside the Nissl bodies decreases while those outside increases; d the surface-to-volume ratio drops sharply for all organelles from the 10th to the 18th day of incubation; after hatching, a tendency to increase is observed; e the membrane surface-to-cytoplasmic volume ratio decreases for all organelles from the 10th to the 18th day of incubation; after hatching, this ratio increases slightly for mitochondria and Golgi complex, sharply for SER, dropping for dense bodies. The RER values alternate regularly.

  4. Loggerhead oral cavity morphometry study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard external morphometrics and internal oral cavity morphometrics data were collected on wild and captive reared loggerhead sea turtles in size classes ranging...

  5. Bioavailability of the sodium pertechnetate and morphometry of organs isolated from rats: study of possible pharmacokinetic interactions of a ginkgo biloba extract

    International Nuclear Information System (INIS)

    Moreno, Silvana Ramos Farias; Arnobio, Adriano; Caldas, Luiz Querino de Araujo; Carvalho, Jorge Jose; Nascimento, Ana Lucia; Pereira, Mario; Dire, Glaucio; Bernardo Filho, Mario; Rocha, Emely Kazan

    2005-01-01

    Many compounds affect the bioavailability of radiobiocomplexes as radiopharmaceuticals. Ginkgo Biloba extract (EGb) has several effects. The influence of an EGb on the bioavailability of the radiobiocomplex sodium pertechnetate (Na 99m TcO 4 ) and on the morphometry of the organs was evaluated. Rats were treated with EGb and Na 99m TcO 4 was injected. The animals were sacrificed; the radioactivity in the organs was counted. The results showed that EGb altered the Na 99m TcO 4 bioavailability in the kidneys, liver and duodenum. Morphometric analysis of the organs showed significant alterations (P 99m TcO 4 . (author)

  6. MORPHOMETRY OF SPLEEN

    Directory of Open Access Journals (Sweden)

    Radhika

    2016-03-01

    Full Text Available INTRODUCTION Spleen is organ of lymphatic system located on left side of abdominal cavity under diaphragm. It is a secondary lymphatic organ that plays an important role in cell mediated immunity. Foetal spleen is erythropoietic in nature. MATERIAL & METHODS Present study was done in 50 adult spleens and 50 foetal spleens. RESULTS Morphometric features like length, breadth, thickness & weight are measured. Length varied from 6.3 to 12.5 cm, breadth varied from 2.6 to 8.6 cm, thickness ranged from 2 cm to 4.6 cm, weight ranged from 65 g to 225 g. Average total length of spleen is 2.52 cm x 1.76 x 2 cm, weight 6.5 g. Shapes of spleens observed wedge shape spleen–48%, tetrahedral spleen–24%, triangular spleen-28%. Splenic notches on superior border & inferior border are observed. Incident of accessory spleen in 1% of cases. CONCLUSIONS Present knowledge of study may be helpful for surgeons in surgical procedures like splenectomy, resection of tumours and extirpation of cysts

  7. Enhancing Diffusion MRI Measures By Integrating Grey and White Matter Morphometry With Hyperbolic Wasserstein Distance

    Science.gov (United States)

    Zhang, Wen; Shi, Jie; Yu, Jun; Zhan, Liang; Thompson, Paul M.; Wang, Yalin

    2017-01-01

    In order to improve the preclinical diagnose of Alzheimer's disease (AD), there is a great deal of interest in analyzing the AD related brain structural changes with magnetic resonance image (MRI) analyses. As the major features, variation of the structural connectivity and the cortical surface morphometry provide different views of structural changes to determine whether AD is present on presymptomatic patients. However, the large scale tensor-valued information and relatively low imaging resolution in diffusion MRI (dMRI) have created huge challenges for analysis. In this paper, we propose a novel framework that improves dMRI analysis power by fusing cortical surface morphometry features from structural MRI (sMRI). We first compute the hyperbolic harmonic maps between cortical surfaces with the landmark constraints thus to precisely evaluate surface tensor-based morphometry. Meanwhile, the graph-based analysis of structural connectivity derived from dMRI is conducted. Next, we fuse these two features via the optimal mass transportation (OMT) and eventually the Wasserstein distance (WD) based single image index is computed as a potential clinical multimodality imaging score. We apply our framework to brain images of 20 AD patients and 20 matched healthy controls, randomly chosen from the Alzheimer's Disease Neuroimaging Initiative (AD-NI2) dataset. Our preliminary experimental results of group classification outperformed those of some other single dMRI-based features, such as regional hippocampal volume, mean scores of fractional anisotropy (FA) and mean axial (MD). The novel image fusion pipeline and simple imaging score of structural changes may benefit the preclinical AD and AD prevention research. PMID:28936280

  8. Tensor-based Multi-view Feature Selection with Applications to Brain Diseases

    Science.gov (United States)

    Cao, Bokai; He, Lifang; Kong, Xiangnan; Yu, Philip S.; Hao, Zhifeng; Ragin, Ann B.

    2015-01-01

    In the era of big data, we can easily access information from multiple views which may be obtained from different sources or feature subsets. Generally, different views provide complementary information for learning tasks. Thus, multi-view learning can facilitate the learning process and is prevalent in a wide range of application domains. For example, in medical science, measurements from a series of medical examinations are documented for each subject, including clinical, imaging, immunologic, serologic and cognitive measures which are obtained from multiple sources. Specifically, for brain diagnosis, we can have different quantitative analysis which can be seen as different feature subsets of a subject. It is desirable to combine all these features in an effective way for disease diagnosis. However, some measurements from less relevant medical examinations can introduce irrelevant information which can even be exaggerated after view combinations. Feature selection should therefore be incorporated in the process of multi-view learning. In this paper, we explore tensor product to bring different views together in a joint space, and present a dual method of tensor-based multi-view feature selection (dual-Tmfs) based on the idea of support vector machine recursive feature elimination. Experiments conducted on datasets derived from neurological disorder demonstrate the features selected by our proposed method yield better classification performance and are relevant to disease diagnosis. PMID:25937823

  9. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    Science.gov (United States)

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  10. Skull morphometry and diferentation: a case in ovis

    OpenAIRE

    Parés Casanova, Pere-Miquel

    2015-01-01

    Techniques of traditional morphometry, based on the application of multivariate statistical methods on a set of linear variables, have been running since the appearance of personal computers. However, a variety of new techniques has emerged recently, grouped together in what has been called geometric morphometrics (GM) appropriate for the statistical study of variation and covariation of the form (shape + size). This is more useful and consistent for the study of the morphological variation t...

  11. Anti-basal ganglia antibodies and Tourette's syndrome: a voxel-based morphometry and diffusion tensor imaging study in an adult population.

    Science.gov (United States)

    Martino, D; Draganski, B; Cavanna, A; Church, A; Defazio, G; Robertson, M M; Frackowiak, R S J; Giovannoni, G; Critchley, H D

    2008-07-01

    Anti-basal ganglia antibodies (ABGAs) have been suggested to be a hallmark of autoimmunity in Gilles de la Tourette's syndrome (GTS), possibly related to prior exposure to streptococcal infection. In order to detect whether the presence of ABGAs was associated with subtle structural changes in GTS, whole-brain analysis using independent sets of T(1) and diffusion tensor imaging MRI-based methods were performed on 22 adults with GTS with (n = 9) and without (n = 13) detectable ABGAs in the serum. Voxel-based morphometry analysis failed to detect any significant difference in grey matter density between ABGA-positive and ABGA-negative groups in caudate nuclei, putamina, thalami and frontal lobes. These results suggest that ABGA synthesis is not related to structural changes in grey and white matter (detectable with these methods) within frontostriatal circuits.

  12. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Peng Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Liu Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie Binbin, E-mail: niebb@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Li Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Shan Baoci, E-mail: shanbc@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Wang Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China)

    2011-11-15

    Purpose: To investigate cerebral and cerebellar gray matter abnormalities in patients with first-episode major depressive disorder (MDD). Materials and methods: We examined the structural difference in regional gray matter density (GMD) between 22 first-episode MDD patients and 30 age-, gender- and education-matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging. Results: Compared with healthy controls, MDD patients showed decreased GMD in the right medial and left lateral orbitofrontal cortex, right dorsolateral prefrontal cortex (DLPFC), bilateral temporal pole, right superior temporal gyrus, bilateral anterior insular cortex, left parahippocampal gyrus, and left cerebellum. In addition, in MDD patients, there was a negative correlation between GMD values of the right DLPFC and the score of the depression rating scale. Conclusions: Our findings provided additional support for the involvement of limbic-cortical circuits in the pathophysiology of MDD and preliminary evidence that a defect involving the cerebellum may also be implicated.

  13. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Peng Jing; Liu Jiangtao; Nie Binbin; Li Yang; Shan Baoci; Wang Gang; Li Kuncheng

    2011-01-01

    Purpose: To investigate cerebral and cerebellar gray matter abnormalities in patients with first-episode major depressive disorder (MDD). Materials and methods: We examined the structural difference in regional gray matter density (GMD) between 22 first-episode MDD patients and 30 age-, gender- and education-matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging. Results: Compared with healthy controls, MDD patients showed decreased GMD in the right medial and left lateral orbitofrontal cortex, right dorsolateral prefrontal cortex (DLPFC), bilateral temporal pole, right superior temporal gyrus, bilateral anterior insular cortex, left parahippocampal gyrus, and left cerebellum. In addition, in MDD patients, there was a negative correlation between GMD values of the right DLPFC and the score of the depression rating scale. Conclusions: Our findings provided additional support for the involvement of limbic-cortical circuits in the pathophysiology of MDD and preliminary evidence that a defect involving the cerebellum may also be implicated.

  14. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.

  15. Numerical transcoding proficiency in 10-year-old schoolchildren is associated with grey-matter interindividual differences: A voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Amélie eLubin

    2013-04-01

    Full Text Available Are individual differences in numerical performance sustained by variations in grey matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N=22 whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less grey matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.

  16. [Voxel-Based Morphometry in Autism Spectrum Disorder].

    Science.gov (United States)

    Yamasue, Hidenori

    2017-05-01

    Autism spectrum disorder shows deficits in social communication and interaction including nonverbal communicative behaviors (e.g., eye contact, gestures, voice prosody, and facial expressions) and restricted and repetitive behaviors as its core symptoms. These core symptoms are emerged as an atypical behavioral development in toddlers with the disorder. Atypical neural development is considered to be a neural underpinning of such behaviorally atypical development. A number of studies using voxel-based morphometry have already been conducted to compare regional brain volumes between individuals with autism spectrum disorder and those with typical development. Furthermore, more than ten papers employing meta-analyses of the comparisons using voxel based morphometry between individuals with autism spectrum disorder and those with typical development have already been published. The current review paper adds some brief discussions about potential factors contributing to the inconsistency observed in the previous findings such as difficulty in controlling the confounding effects of different developmental phases among study participants.

  17. Pronounced within-individual plasticity in sperm morphometry across social environments.

    Science.gov (United States)

    Immler, Simone; Pryke, Sarah R; Birkhead, Tim R; Griffith, Simon C

    2010-06-01

    Sperm morphometry (i.e., size and shape) and function are important determinants of male reproductive success and are thought to be under stabilizing selection. However, recent studies suggest that sperm morphometry can be a phenotypically plastic trait, which can be adjusted to varying conditions. We tested whether different behavioral strategies in aggression between aggressive red and nonaggressive black males of the color polymorphic Gouldian finch (Erythrura gouldiae) can influence sperm morphometry. We show pronounced within-individual phenotypic plasticity in sperm morphometry of male Gouldian finches in three different social environments. Both red and black males placed in intermediate to high competitive environments (high frequency of red males) increased the relative length of their sperm midpiece. By contrast, red males placed in low to intermediate competitive environments (higher frequency of black males) increased the length of the sperm flagellum. Significant changes in stress and sex steroid hormone levels (in response to the competitive environment) appear to influence sperm traits in red but not in black males, suggesting that changes in hormonal levels are not solely responsible for the observed changes in sperm morphometry. These findings imply that males can adjust sperm morphometry across social environments.

  18. Periodic assessment of plasma sFlt-1 and PlGF concentrations and its association with placental morphometry in gestational hypertension (GH) - a prospective follow-up study.

    Science.gov (United States)

    Jeevaratnam, Kamalan; Nadarajah, Vishna Devi; Judson, John Paul; Nalliah, Sivalingam; Abdullah, Mohd Farouk

    2010-09-28

    Hypertensive disorders in pregnancy contributes to about 12% of maternal deaths in Malaysia and similarly worldwide. Early detection and adequate management are preventable strategies. Biochemical markers of abnormal angiogenesis would be more specific in early detection than routine blood pressure and proteinuria measurements. The aim of this study was to estimate maternal plasma PlGF and sFlt-1 levels in pregnant women with gestational hypertension at three intervals of pregnancy and correlate these biomarker levels with placental morphometry. Venous blood samples (antepartum, intrapartum and post partum periods) were drawn to estimate for sFlt-1 and PlGF levels while placental tissue samples were examined for placental morphometry. PlGF levels were lower in gestational hypertension (GH) compared to normotensive during antepartum and intrapartum period, whereas sFlt-1 levels were elevated in GH at antepartum, intrapartum and postpartum intervals during pregnancy. An inverse relationship between these two biomarkers was observed through correlation analysis. PlGF levels were inversely correlated with total villous surface area of the placental periphery (TCsa-C) and villous capillarization (VC-C) of the placental periphery. We established periodic values of for sFlt-1 and PlGF levels for the first time in an ethnically diverse Malaysian setting. We suggest the development of GH in women is related to defective capillarization. In demonstrating periodic changes, this study suggest the possibility of developing GH and other long term health complications as a result of prolonged exposure to sFlt-1. The correlation between PlGF levels and morphometric findings also support possible capillarization defect.

  19. Periodic assessment of plasma sFlt-1 and PlGF concentrations and its association with placental morphometry in gestational hypertension (GH - a prospective follow-up study

    Directory of Open Access Journals (Sweden)

    Nalliah Sivalingam

    2010-09-01

    Full Text Available Abstract Background Hypertensive disorders in pregnancy contributes to about 12% of maternal deaths in Malaysia and similarly worldwide. Early detection and adequate management are preventable strategies. Biochemical markers of abnormal angiogenesis would be more specific in early detection than routine blood pressure and proteinuria measurements. The aim of this study was to estimate maternal plasma PlGF and sFlt-1 levels in pregnant women with gestational hypertension at three intervals of pregnancy and correlate these biomarker levels with placental morphometry. Methods Venous blood samples (antepartum, intrapartum and post partum periods were drawn to estimate for sFlt-1 and PlGF levels while placental tissue samples were examined for placental morphometry. Results PlGF levels were lower in gestational hypertension (GH compared to normotensive during antepartum and intrapartum period, whereas sFlt-1 levels were elevated in GH at antepartum, intrapartum and postpartum intervals during pregnancy. An inverse relationship between these two biomarkers was observed through correlation analysis. PlGF levels were inversely correlated with total villous surface area of the placental periphery (TCsa-C and villous capillarization (VC-C of the placental periphery. Conclusion We established periodic values of for sFlt-1 and PlGF levels for the first time in an ethnically diverse Malaysian setting. We suggest the development of GH in women is related to defective capillarization. In demonstrating periodic changes, this study suggest the possibility of developing GH and other long term health complications as a result of prolonged exposure to sFlt-1. The correlation between PlGF levels and morphometric findings also support possible capillarization defect.

  20. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  1. Sex Determination by Morphometry of Lips

    Directory of Open Access Journals (Sweden)

    B. Senthil Kumar

    2018-04-01

    Full Text Available Background: Facial anthropometric parameters are affected by various factors including age, sex, ethnicity, socioeconomic status, environment and region. The lips become thinner as age increases and the wet line moves caudally, in addition oral commissure begins to downturn. Aim and Objectives: The purpose of this study was to create a baseline data in determining the sex of the people from India and Malaysia depending on morphometry of lips. Materials and Methods:Atotal of 100 Malaysians and 100 South Indians were enrolled for the study. Various morphometric measurements of lips were taken using Vernier caliper. The data were analyzed by one way ANOVAto find out the significance among the sex and population. Results: All the measurements of upper and lower lips were higher in males as compared to females and thus sexual dimorphism exists. Mouth width and height were found to be more in Indian males followed by Malaysian males whereas in females it's vice versa. Vermilion upper lip occupied less than half of total upper lip height, whereas vermilion lower lip occupied more than half of total lower lip height in both the population. Indian males and females differed significantly in lip parameters from those of Malaysian males and females. Conclusion: It can be concluded from the study that same standards cannot be used on each other's populations for identification and cosmetic surgery. The study highlights the applied significance of observations to forensic medicine namely, personal identification, racial and sex dimorphic criteria of identification.

  2. Early gray-matter and white-matter concentration in infancy predict later language skills: a whole brain voxel-based morphometry study.

    Science.gov (United States)

    Deniz Can, Dilara; Richards, Todd; Kuhl, Patricia K

    2013-01-01

    Magnetic resonance imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants' receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants' expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants' linguistic functions are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  4. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    Science.gov (United States)

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  5. Anterior Temporal Lobe Morphometry Predicts Categorization Ability

    Directory of Open Access Journals (Sweden)

    Béatrice Garcin

    2018-02-01

    Full Text Available Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  6. The neuroanatomy of subthreshold depressive symptoms in Huntington's disease: a combined diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) study.

    Science.gov (United States)

    Sprengelmeyer, R; Orth, M; Müller, H-P; Wolf, R C; Grön, G; Depping, M S; Kassubek, J; Justo, D; Rees, E M; Haider, S; Cole, J H; Hobbs, N Z; Roos, R A C; Dürr, A; Tabrizi, S J; Süssmuth, S D; Landwehrmeyer, G B

    2014-07-01

    Depressive symptoms are prominent psychopathological features of Huntington's disease (HD), making a negative impact on social functioning and well-being. We compared the frequencies of a history of depression, previous suicide attempts and current subthreshold depression between 61 early-stage HD participants and 40 matched controls. The HD group was then split based on the overall HD group's median Hospital Anxiety and Depression Scale-depression score into a group of 30 non-depressed participants (mean 0.8, s.d. = 0.7) and a group of 31 participants with subthreshold depressive symptoms (mean 7.3, s.d. = 3.5) to explore the neuroanatomy underlying subthreshold depressive symptoms in HD using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). Frequencies of history of depression, previous suicide attempts or current subthreshold depressive symptoms were higher in HD than in controls. The severity of current depressive symptoms was also higher in HD, but not associated with the severity of HD motor signs or disease burden. Compared with the non-depressed HD group DTI revealed lower fractional anisotropy (FA) values in the frontal cortex, anterior cingulate cortex, insula and cerebellum of the HD group with subthreshold depressive symptoms. In contrast, VBM measures were similar in both HD groups. A history of depression, the severity of HD motor signs or disease burden did not correlate with FA values of these regions. Current subthreshold depressive symptoms in early HD are associated with microstructural changes - without concomitant brain volume loss - in brain regions known to be involved in major depressive disorder, but not those typically associated with HD pathology.

  7. Comparative Minicolumnar Morphometry of Three Distinguished Scientists

    Science.gov (United States)

    Casanova, Manuel F.; Switala, Andrew E.; Trippe, Juan; Fitzgerald, Michael

    2007-01-01

    It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished…

  8. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    Science.gov (United States)

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  9. Morphometry of latent palmprints as a function of time.

    Science.gov (United States)

    Barros, Rodrigo M; Faria, Bruna E F; Kuckelhaus, Selma A S

    2013-12-01

    In many crimes, the elapsed time between production and collecting fingermark traces is crucial. and a method able to detect the aging of latent prints would represent an improvement in forensic procedures. Considering that as the latent print gets older, substantial changes in the relative proportion of individual components secreted by skin glands could affect the morphology of ridges, morphometry could be a potential tool to assess the aging of latent fingermarks. Then, considering the very limited research in the field, the present work aims to evaluate the morphometry of latent palmprint ridges, as a function of time, in order to identify an aging pattern. The latent marks were deposited by 20 donors on glass microscope slides considering pressure and contact angle, and then were maintained under controlled environmental conditions. The morphometric study was conducted on marks developed with magnetic powder in 7 different time intervals after deposition (0, 5, 10, 15, 20, 25 or 30 days); 60 ridges were evaluated for each developed mark. The results showed that: 1) the method for the replacement and mixing of skin secretions on the palm was appropriate to ensure reproducibility of latent prints, and 2) considering the studied group, there was a time-dependent reduction in the width of ridges and on the percentage of visible ridges over 30 days. Results suggest the possibility of using the morphometric method to determine an aging profile of latent palmprints on glass surface, aiming for forensic purposes. © 2013.

  10. Diffusion tensor studies and voxel-based morphometry of the temporal lobe to determine the cognitive prognosis in cases of Alzheimer's disease and mild cognitive impairment: Do white matter changes precede gray matter changes?

    Science.gov (United States)

    Taoka, Toshiaki; Yasuno, Fumihiko; Morikawa, Masayuki; Inoue, Makoto; Kiuchi, Kuniaki; Kitamura, Soichiro; Matsuoka, Kiwamu; Kishimoto, Toshifumi; Kichikawa, Kimihiko; Naganawa, Shinji

    2016-01-01

    The purpose of the current study was to assess the feasibility of diffusion tensor imaging (DTI) parameters for determining the prognosis of Alzheimer's disease (AD). We also analyzed the correlation among DTI, voxel-based morphometry (VBM), and results of the mini-mental state examination (MMSE). The subjects of this prospective study were patients with AD and mild cognitive impairment. We performed annual follow-ups with DTI, VBM, and MMSE for 2 or 3 years. On DTI, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of the uncinate fascicles were measured. VBM was performed to provide a z-score for the parahippocampal gyrus. The correlations among these factors were evaluated in the same period and the next period of the follow-up study. For evaluation of the same period, both DTI parameters and z-scores showed statistically significant correlations with the MMSE score. Also for evaluation of the next period, both DTI parameters and z-scores showed statistically significant correlations with the MMSE score of the next period. We observed a statistically significant correlation between the ADC value of the uncinate fascicles and the z-score of the next period. Diffusion tensor parameters (ADC and FA) of the uncinate fascicles correlated well with cognitive function in the next year and seemed to be feasible for use as biomarkers for predicting the progression of AD. In addition, the white matter changes observed in the ADC seemed to precede changes in the gray matter volume of the parahippocampal gyrus that were represented by z-scores of VBM.

  11. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-01-01

    Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD) have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM) volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons), and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons). This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD. PMID:29636704

  12. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Ji-Woo Seok

    2018-03-01

    Full Text Available Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons, and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons. This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD.

  13. Automatic morphometry of synaptic boutons of cultured cells using granulometric analysis of digital images

    NARCIS (Netherlands)

    Prodanov, D.P.; Heeroma, Joost; Marani, Enrico

    2006-01-01

    Numbers, linear density, and surface area of synaptic boutons can be important parameters in studies on synaptic plasticity in cultured neurons. We present a method for automatic identification and morphometry of boutons based on filtering of digital images using granulometric analysis. Cultures of

  14. Association between the scores of the Japanese version of the Brief Assessment of Cognition in Schizophrenia and whole-brain structure in patients with chronic schizophrenia: A voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Hidese, Shinsuke; Ota, Miho; Matsuo, Junko; Ishida, Ikki; Hiraishi, Moeko; Teraishi, Toshiya; Hattori, Kotaro; Kunugi, Hiroshi

    2017-12-01

    The Brief Assessment of Cognition in Schizophrenia (BACS) is a concise tool designed to evaluate cognitive deficits in schizophrenia. We examined the possible association between BACS scores and whole-brain structure, as observed using magnetic resonance imaging with a relatively large sample. The study sample comprised 116 patients with schizophrenia (mean age, 39.3 ± 11.1 years; 66 men) and 118 healthy controls (HC; mean age, 40.0 ± 13.6 years; 58 men) who completed the Japanese version of the BACS (BACS-J). All participants were of Japanese ethnicity. The magnetic resonance imaging volume and diffusion tensor imaging data were processed with voxel-based morphometry and tract-based spatial statistics, respectively. There were significant reductions in the regional gray matter volumes and white matter fractional anisotropy values in patients with schizophrenia compared to HC. For the gray matter areas, the working memory score had a significant positive correlation with the anterior cingulate and medial frontal cortices volumes in the patients. For the white matter areas, the motor speed score had a significant positive correlation with fractional anisotropy values in the corpus callosum, internal capsule, superior corona radiata, and superior longitudinal fasciculus in the patients. However, there was no significant correlation among either the gray or white matter areas in the HC. Our results suggest that among the BACS-J measures, the working memory and motor speed scores are associated with several structural alterations in the brains of patients with schizophrenia. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  15. ALFF Value in Right Parahippocampal Gyrus Acts as a Potential Marker Monitoring Amyotrophic Lateral Sclerosis Progression: a Neuropsychological, Voxel-Based Morphometry, and Resting-State Functional MRI Study.

    Science.gov (United States)

    Zhu, Wenjia; Fu, Xiaoling; Cui, Fang; Yang, Fei; Ren, Yuting; Zhang, Xiaoyun; Zhang, Xiaolan; Chen, Zhaohui; Ling, Li; Huang, Xusheng

    2015-09-01

    The aim of this study is to analyze cognitive impairment in amyotrophic lateral sclerosis (ALS). Forty-four participants matched for age, sex, and educational background were enrolled as the sporadic ALS group (n = 22) and the control group (n = 22). All participants completed comprehensive neuropsychological tests, including the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Stroop Color-Word Interference Test (SCWT), the Wisconsin Card Sorting Test (WCST), and the Frontal Assessment Battery. The participants underwent a series of 3.0 Tesla magnetic resonance imaging (MRI) scans. Resting-state functional MRI (Rs-fMRI) using the amplitude of low-frequency fluctuation (ALFF) was performed. Three-dimensional T1-weighted anatomical images obtained by voxel-based morphometry (VBM) were used to conduct correlation analyses and group comparisons with the demographic and neuropsychological characteristics. The results indicated that the decreased gray matter (GM) volume in the bilateral precentral gyri and increased ALFF values in the right parahippocampal gyrus, left inferior temporal gyrus, left anterior cingulate gyrus, right superior frontal gyrus, and left middle occipital gyrus were identified in the sporadic ALS group. The increased ALFF value in the right parahippocampal gyrus was positively correlated with ALS progression rate. The ALS patients exhibited poor performances on cognitive and executive tests, which were significantly or marginally significantly correlated with the ALFF values in the anterior cingulate gyrus and the frontal, temporal, and parahippocampal cortices. In conclusion, these findings provide evidence of an extramotor involvement and suggest that the ALFF value in the right parahippocampal gyrus could represent a potential marker to monitor disease progression.

  16. Nuclear morphometry and prognosis in favorable histology Wilms' tumor: A prospective reevaluation.

    Science.gov (United States)

    Breslow, N E; Partin, A W; Lee, B R; Guthrie, K A; Beckwith, J B; Green, D M

    1999-07-01

    This study was designed to evaluate the ability of a previously published nuclear morphometry discriminant function to predict disease-free survival in patients with Wilms' tumor. We identified 218 patients with stage I-IV Wilms' tumor of favorable histology who were entered onto the National Wilms' Tumor Study (NWTS) between January 1, 1990 and April 15, 1994. The nuclear morphometry score was calculated for each patient as follows: MV(f) = (0.02 x AGE) + (1.17 x SNRF) + (90.6 x LEFD) - 94, with AGE denoting age at diagnosis in months, SNRF the skewness of the nuclear roundness factor, and LEFD the lowest value of nuclear ellipticity as measured by the feret diameter method. Relative risks of relapse were estimated for the total score and for each of its components. Sensitivity and specificity were determined for the criterion of "MV(f) is greater than -0.35" as a predictor of relapse. By contrast with previously published results, neither the SNRF nor the LEFD made any contribution to the prediction of disease-free survival. Sensitivity and specificity of the criterion of "MV(f) is greater than -0.35" were 71% and 56%, respectively. Re-evaluation of a published nuclear morphometry score showed that it did not predict disease-free survival in patients with Wilms' tumor. The earlier study very likely overestimated the predictive power of nuclear morphometry by using the same data set both to develop the score and to evaluate its properties. Because of the huge number of combinations of nuclear morphometry measurements that may enter into the multivariate discriminant function, use of appropriate statistical methods is essential to estimate accurately the sensitivity and specificity.

  17. New experimental results in atlas-based brain morphometry

    Science.gov (United States)

    Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.

    1999-05-01

    In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.

  18. Effects of image distortion correction on voxel-based morphometry

    International Nuclear Information System (INIS)

    Goto, Masami; Abe, Osamu; Kabasawa, Hiroyuki

    2012-01-01

    We aimed to show that correcting image distortion significantly affects brain volumetry using voxel-based morphometry (VBM) and to assess whether the processing of distortion correction reduces system dependency. We obtained contiguous sagittal T 1 -weighted images of the brain from 22 healthy participants using 1.5- and 3-tesla magnetic resonance (MR) scanners, preprocessed images using Statistical Parametric Mapping 5, and tested the relation between distortion correction and brain volume using VBM. Local brain volume significantly increased or decreased on corrected images compared with uncorrected images. In addition, the method used to correct image distortion for gradient nonlinearity produced fewer volumetric errors from MR system variation. This is the first VBM study to show more precise volumetry using VBM with corrected images. These results indicate that multi-scanner or multi-site imaging trials require correction for distortion induced by gradient nonlinearity. (author)

  19. White matter microstructure in 22q11 deletion syndrome: a pilot diffusion tensor imaging and voxel-based morphometry study of children and adolescents

    NARCIS (Netherlands)

    Sundram, Frederick; Campbell, Linda E.; Azuma, Rayna; Daly, Eileen; Bloemen, Oswald J. N.; Barker, Gareth J.; Chitnis, Xavier; Jones, Derek K.; van Amelsvoort, Therese; Murphy, Kieran C.; Murphy, Declan G. M.

    2010-01-01

    Young people with 22q11 Deletion Syndrome (22q11DS) are at substantial risk for developing psychosis and have significant differences in white matter (WM) volume. However, there are few in vivo studies of both WM microstructural integrity (as measured using Diffusion Tensor (DT)-MRI) and WM volume

  20. White matter differences in monozygotic twins discordant or concordant for obsessive-compulsive symptoms: a combined diffusion tensor imaging/voxel-based morphometry study

    NARCIS (Netherlands)

    den Braber, Anouk; van 't Ent, Dennis; Boomsma, Dorret I.; Cath, Danielle C.; Veltman, Dick J.; Thompson, Paul M.; de Geus, Eco J. C.

    2011-01-01

    Neuroimaging studies of obsessive-compulsive disorder (OCD) patients point to deficits in cortico-striato-thalamo-cortical circuits that might include changes in white matter. The contribution of environmental and genetic factors to the various OCD-related changes in brain structures remains to be

  1. White matter differences in monozygotic twins discordant or concordant for obsessive-compulsive symptoms: a combined diffusion tensor imaging/voxel-based morphometry study

    NARCIS (Netherlands)

    den Braber, A.; van t Ent, D.; Boomsma, D.I.; Cath, D.C.; Veltman, D.J.; Thompson, P.M.; de Geus, E.J.C.

    2011-01-01

    Background: Neuroimaging studies of obsessive-compulsive disorder (OCD) patients point to deficits in cortico-striato-thalamo-cortical circuits that might include changes in white matter. The contribution of environmental and genetic factors to the various OCD-related changes in brain structures

  2. Patients with poor response to antipsychotics have a more severe pattern of frontal atrophy: a voxel-based morphometry study of treatment resistance in schizophrenia.

    Science.gov (United States)

    Quarantelli, Mario; Palladino, Olga; Prinster, Anna; Schiavone, Vittorio; Carotenuto, Barbara; Brunetti, Arturo; Marsili, Angela; Casiello, Margherita; Muscettola, Giovanni; Salvatore, Marco; de Bartolomeis, Andrea

    2014-01-01

    Approximately 30% of schizophrenia patients do not respond adequately to the therapy. Previous MRI studies have suggested that drug treatment resistance is associated with brain morphological abnormalities, although region-of-interest analysis of MR studies from nonresponder and responder patients failed to demonstrate a statistically significant difference between these two schizophrenia subgroups. We have used a voxel-based analysis of segmented MR studies to assess structural cerebral differences in 20 nonresponder and 15 responder patients and 16 age-matched normal volunteers. Differences between the three groups emerged bilaterally mainly at the level of the superior and middle frontal gyri, primarily due to reduced grey matter volumes in nonresponders, as compared to both normal volunteers and responder patients. Post hoc direct comparison between the two schizophrenia subgroups demonstrated significantly reduced grey matter volumes in middle frontal gyrus bilaterally, in the dorsolateral aspects of left superior frontal gyrus extending into postcentral gyrus and in the right medial temporal cortex. Our results extend and integrate previous findings suggesting a more severe atrophy in nonresponder schizophrenia patients, compared to responder patients, mainly at the level of the superior and middle frontal gyri. Longitudinal studies in drug-naïve patients are needed to assess the role of these associations.

  3. Numerical estimates of the maximum sustainable pore pressure in anticline formations using the tensor based concept of pore pressure-stress coupling

    Directory of Open Access Journals (Sweden)

    Andreas Eckert

    2015-02-01

    Full Text Available The advanced tensor based concept of pore pressure-stress coupling is used to provide pre-injection analytical estimates of the maximum sustainable pore pressure change, ΔPc, for fluid injection scenarios into generic anticline geometries. The heterogeneous stress distribution for different prevailing stress regimes in combination with the Young's modulus (E contrast between the injection layer and the cap rock and the interbedding friction coefficient, μ, may result in large spatial and directional differences of ΔPc. A single value characterizing the cap rock as for horizontal layered injection scenarios is not obtained. It is observed that a higher Young's modulus in the cap rock and/or a weak mechanical coupling between layers amplifies the maximum and minimum ΔPc values in the valley and limb, respectively. These differences in ΔPc imposed by E and μ are further amplified by different stress regimes. The more compressional the stress regime is, the larger the differences between the maximum and minimum ΔPc values become. The results of this study show that, in general compressional stress regimes yield the largest magnitudes of ΔPc and extensional stress regimes provide the lowest values of ΔPc for anticline formations. Yet this conclusion has to be considered with care when folded anticline layers are characterized by flexural slip and the friction coefficient between layers is low, i.e. μ = 0.1. For such cases of weak mechanical coupling, ΔPc magnitudes may range from 0 MPa to 27 MPa, indicating imminent risk of fault reactivation in the cap rock.

  4. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study

    OpenAIRE

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M.; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez Fornells, Antoni

    2014-01-01

    [Abstract.] Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neuro- logical rehabilitation. In our previous randomized controlled study, we found that listening to music...

  5. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study.

    Science.gov (United States)

    Zikou, A K; Kitsos, G; Tzarouchi, L C; Astrakas, L; Alexiou, G A; Argyropoulou, M I

    2012-01-01

    Neuropathologic studies in experimental and human glaucoma have demonstrated degenerative changes in the optic pathway. The purpose of this study was to assess the optic pathway in POAG by using VBM and DTI. Eighteen patients 57.05 ± 11.38 years of age with POAG of 8.30 ± 5.14 years' duration and 18 control subjects underwent a complete ophthalmologic examination, including quantification of the RNFLT by using Stratus OCT 3, and brain imaging. The imaging protocol consisted of a T1-weighted high-resolution 3D spoiled gradient-echo sequence and a multisection spin-echo- planar diffusion-weighted sequence. Data preprocessing and analysis were performed by using Matlab 7.0 and SPM 5. Left temporal and right nasal RNFLTs were significantly thinner than right temporal and left nasal RNFLTs. In patients, VBM revealed a significant reduction in the left visual cortex volume, the left lateral geniculate nucleus, and the intracranial part of the ONs and the chiasma. In addition, a significant decrease of FA was observed in the inferior fronto-occipital fasciculus, the longitudinal and inferior frontal fasciculi, the putamen, the caudate nucleus, the anterior and posterior thalamic radiations, and the anterior and posterior limbs of the internal capsule of the left hemisphere (P < .05). Neurodegenerative changes of the optic pathway and several brain areas associated with the visual system can be observed by using VBM and DTI in patients with POAG, suggesting that glaucoma is a complex neurologic disease.

  6. Impact of coil design on the contrast-to-noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the osteoarthritis initiative.

    Science.gov (United States)

    Eckstein, Felix; Kunz, Manuela; Hudelmaier, Martin; Jackson, Rebecca; Yu, Joseph; Eaton, Charles B; Schneider, Erika

    2007-02-01

    Phased-array (PA) coils generally provide higher signal-to-noise ratios (SNRs) than quadrature knee coils. In this pilot study for the Osteoarthritis Initiative (OAI) we compared these two types of coils in terms of contrast-to-noise ratio (CNR), precision, and consistency of quantitative femorotibial cartilage measurements. Test-retest measurements were acquired using coronal fast low-angle shot with water excitation (FLASHwe) and coronal multiplanar reconstruction (MPR) of sagittal double-echo steady state with water excitation (DESSwe) at 3T. The precision errors for cartilage volume and thickness were coil and coil with FLASHwe, and coil and sequence. The PA coil measurements did not always fully agree with the quadrature coil measurements, and some differences were significant. The higher CNR of the PA coil did not translate directly into improved precision of cartilage measurement; however, summing up cartilage plates within the medial and lateral compartment reduced precision errors. Copyright (c) 2007 Wiley-Liss, Inc.

  7. Glaucoma anterior chamber morphometry based on optical Scheimpflug images.

    Science.gov (United States)

    Alonso, Ruiz Simonato; Ambrósio Junior, Renato; Paranhos Junior, Augusto; Sakata, Lisandro Massanori; Ventura, Marcelo Palis

    2010-01-01

    To compare the performance of gonioscopy and noncontact morphometry with anterior chamber tomography (High Resolution Pentacam - HR) using optical Scheimpflug images in the evaluation of the anterior chamber angle (ACA). Transversal study. 112 eyes from 74 subjects evaluated at the Glaucoma Department, Fluminense Federal University, underwent gonioscopy and Pentacam HR. Using gonioscopy, the ACA was graded using the Shaffer Classification (SC) by a single experienced examiner masked to the Pentacam HR findings. Narrow angle was determined in eyes in which the posterior trabecular meshwork could not be seen in two or more quadrants on non-indentation gonioscopy (SC Grade 2 or less). Pentacam HR images of the nasal and temporal quadrants were evaluated by custom software to automatically obtain anterior chamber measurements, such as: anterior chamber angle (ACA), anterior chamber volume (ACV) and anterior chamber depth (ACD). Based on gonioscopy results, 74 (60.07%) eyes of patients classified as open-angle (SC 3 and 4) and 38 (33.93%) eyes of patients classified as narrow-angle (SC 1 and 2). Noncontact morphometry with Scheimpflug images revealed a mean ACA of 39.20 ± 5.31 degrees for open-angle and 21.18 ± 7.98 degrees for narrow-angle. The open-angle group showed significant greater ACV and ACD values when compared to narrow-angle group (ACV of 193 ± 36 mm³ vs. 90 ± 25 mm³, respectively, p<0.001; and ACD of 3,09 ± 0,42 mm vs. 1,55 ± 0,64 mm, respectively, p<0.0001.). In screening eyes with open-angle and narrow-angle with the Pentacam ACA of 20º (SC Grade 2) using the ROC curves, the analysis showed 52.6% of sensitivity and 100% of specificity. The Pentacam showed ability in detecting eyes at risk for angle closure analyzing ACV and ACD.

  8. Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Shahin [Purdue Univ., West Lafayette, IN (United States); Gleich, David F. [Purdue Univ., West Lafayette, IN (United States); Kolda, Tamara G. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Grama, Ananth [Purdue Univ., West Lafayette, IN (United States)

    2015-11-01

    Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangular AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.

  9. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex.

    Science.gov (United States)

    Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L

    2016-01-01

    This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.

  10. Fluvial processes and channel morphometry of the upper Orashi ...

    African Journals Online (AJOL)

    Fluvial processes and channel morphometry of the upper Orashi basin in ... of channel equilibrium between morphology and hydrology, the Orashi channel is not well ... Drainage basins, watershed morphology, morphometric analysis, Nigeria ...

  11. Lake Morphometry for NHD Lakes in Tennessee Region 6 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  12. Lake Morphometry for NHD Lakes in Ohio Region 5 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  13. Lake Morphometry for NHD Lakes in California Region 18 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  14. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    International Nuclear Information System (INIS)

    Wang Zhiqun; Guo Xiaojuan; Qi Zhigang; Yao Li; Li Kuncheng

    2010-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  15. Whole-brain voxel-based morphometry of white matter in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiqun [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Guo Xiaojuan [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Qi Zhigang [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China); Yao Li [College of Information Science and Technology, Beijing Normal University, 100875, Beijing (China); National Key Laboratory for Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing (China); Li Kuncheng, E-mail: likuncheng@xwh.ccmu.edu.c [Department of Radiology, Xuanwu Hospital of Capital Medical University, 100053, Beijing (China)

    2010-08-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in mild cognitive impairment (MCI). Materials and methods: We studied 14 patients with MCI and 14 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The data were collected on a 3T MR system and analyzed by SPM2 to generate white matter volume maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MCI prominently including the bilateral temporal gyrus, the right anterior cingulate, the bilateral superior and medial frontal gyrus and right parietal angular gyrus. White matter reduction was more prominent in anterior regions than that in posterior regions. Conclusion: Whole-brain white matter reduction in MCI patients detected with VBM has special distribution which is in line with the white matter pathology of MCI.

  16. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Aihong [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China); Li Kuncheng [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, Beijing 100053 (China)], E-mail: Likuncheng@vip.sina.com; Li Lin; Shan Baoci [Institute of High Energy Physics, Chinese Academy of Sciences (China); Wang Yuping; Xue Sufang [Department of Neurology, Xuanwu Hospital, Capital University of Medical Sciences (China)

    2008-01-15

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE.

  17. Whole-brain voxel-based morphometry of white matter in medial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Yu Aihong; Li Kuncheng; Li Lin; Shan Baoci; Wang Yuping; Xue Sufang

    2008-01-01

    Purpose: The purpose of this study was to analyze whole-brain white matter changes in medial temporal lobe epilepsy (MTLE). Materials and methods: We studied 23 patients with MTLE and 13 age- and sex-matched healthy control subjects using voxel-based morphometry (VBM) on T1-weighted 3D datasets. The seizure focus was right sided in 11 patients and left sided in 12. The data were collected on a 1.5 T MR system and analyzed by SPM 99 to generate white matter density maps. Results: Voxel-based morphometry revealed diffusively reduced white matter in MTLE prominently including bilateral frontal lobes, bilateral temporal lobes and corpus callosum. White matter reduction was also found in the bilateral cerebellar hemispheres in the left MTLE group. Conclusion: VBM is a simple and automated approach that is able to identify diffuse whole-brain white matter reduction in MTLE

  18. Thanatophoric dysplasia. Correlation among bone X-ray morphometry, histopathology, and gene analysis

    International Nuclear Information System (INIS)

    Pazzaglia, Ugo E.; Donzelli, Carla M.; Izzi, Claudia; Baldi, Maurizia; Di Gaetano, Giuseppe; Bondioni, MariaPia

    2014-01-01

    Documentation through X-ray morphometry and histology of the steady phenotype expressed by FGFR3 gene mutation and interpolation of mechanical factors on spine and long bones dysmorphism. Long bones and spine of eight thanatophoric dysplasia and three age-matched controls without skeletal dysplasia were studied after pregnancy termination between the 18th and the 22nd week with X-ray morphometry, histology, and molecular analysis. Statistical analysis with comparison between TD cases and controls and intraobserver/interobserver variation were applied to X-ray morphometric data. Generalized shortening of long bones was observed in TD. A variable distribution of axial deformities was correlated with chondrocyte proliferation inhibition, defective seriate cell columns organization, and final formation of the primary metaphyseal trabeculae. The periosteal longitudinal growth was not equally inhibited, so that decoupling with the cartilage growth pattern produced the typical lateral spurs around the metaphyseal growth plates. In spine, platyspondyly was due to a reduced height of the vertebral body anterior ossification center, while its enlargement in the transversal plane was not restricted. The peculiar radiographic and histopathological features of TD bones support the hypothesis of interpolation of mechanical factors with FGFR3 gene mutations. The correlated observations of X-ray morphometry, histopathology, and gene analysis prompted the following diagnostic workup for TD: (1) prenatal sonography suspicion of skeletal dysplasia; (2) post-mortem X-ray morphometry for provisional diagnosis; (3) confirmation by genetic tests (hot-spot exons 7, 10, 15, and 19 analysis with 80-90 % sensibility); (4) in negative cases if histopathology confirms TD diagnosis, research of rare mutations through sequential analysis of FGFR3 gene. (orig.)

  19. Thanatophoric dysplasia. Correlation among bone X-ray morphometry, histopathology, and gene analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pazzaglia, Ugo E. [University of Brescia, Orthopaedic Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Donzelli, Carla M. [Spedali Civili di Brescia, Morbid Anatomy Department, Brescia (Italy); Izzi, Claudia [University of Brescia, Prenatal Diagnosis Unit, Department of Obstetrics and Gynaecology, Brescia (Italy); Baldi, Maurizia [Hospital Galliera, Human Genetic Laboratory, Genova (Italy); Di Gaetano, Giuseppe; Bondioni, MariaPia [University of Brescia, Paediatric Radiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy)

    2014-09-15

    Documentation through X-ray morphometry and histology of the steady phenotype expressed by FGFR3 gene mutation and interpolation of mechanical factors on spine and long bones dysmorphism. Long bones and spine of eight thanatophoric dysplasia and three age-matched controls without skeletal dysplasia were studied after pregnancy termination between the 18th and the 22nd week with X-ray morphometry, histology, and molecular analysis. Statistical analysis with comparison between TD cases and controls and intraobserver/interobserver variation were applied to X-ray morphometric data. Generalized shortening of long bones was observed in TD. A variable distribution of axial deformities was correlated with chondrocyte proliferation inhibition, defective seriate cell columns organization, and final formation of the primary metaphyseal trabeculae. The periosteal longitudinal growth was not equally inhibited, so that decoupling with the cartilage growth pattern produced the typical lateral spurs around the metaphyseal growth plates. In spine, platyspondyly was due to a reduced height of the vertebral body anterior ossification center, while its enlargement in the transversal plane was not restricted. The peculiar radiographic and histopathological features of TD bones support the hypothesis of interpolation of mechanical factors with FGFR3 gene mutations. The correlated observations of X-ray morphometry, histopathology, and gene analysis prompted the following diagnostic workup for TD: (1) prenatal sonography suspicion of skeletal dysplasia; (2) post-mortem X-ray morphometry for provisional diagnosis; (3) confirmation by genetic tests (hot-spot exons 7, 10, 15, and 19 analysis with 80-90 % sensibility); (4) in negative cases if histopathology confirms TD diagnosis, research of rare mutations through sequential analysis of FGFR3 gene. (orig.)

  20. Aggregates morphometry in a Latosol (Oxisol under different soil management systems

    Directory of Open Access Journals (Sweden)

    Carla Eloize Carducci

    2016-02-01

    Full Text Available Changes in soil physical properties are inherent in land use, mainly in superficial layers. Structural alterations can directly influence distribution, stability and especially morphometry of soil aggregates, which hence will affect pore system and the dynamic process of water and air in soil. Among the methods used to measure these changes, morphometry is a complementary tool to the classic methods. The aim of this study was to evaluate structural quality of a Latosol (Oxisol, under different management systems, using morphometric techniques. Treatments consisted of soil under no-tillage (NT; pasture (P, in which both had been cultivated for ten years, and an area under native vegetation (NV – Savannah like vegetation. Aggregates were sampled at depths of 0-0.10 and 0.10-0.20 m, retained on sieves with 9.52 – 4.76 mm, 4.76 – 1.0mm, 1.0 – 0.5mm diameter ranges. Aggregate morphometry was assessed by 2D images from scanner via QUANTPORO software. The analyzed variables were: area, perimeter, aspect, roughness, Ferret diameter and compactness. Moreover, disturbed samples were collected at the same depths to determine particle size, aggregate stability in water, water-dispersible clay, clay flocculation index and organic matter content. It was observed that different soil management systems have modified soil aggregate morphology as well as physical attributes; and management effects’ magnitude increased from NT to P.

  1. Anatomic Variation in Morphometry of Human Coracoid Process among Asian Population

    Directory of Open Access Journals (Sweden)

    Manal Fathi

    2017-01-01

    Full Text Available Ethnic origin plays an important role in bone morphometry. Studies examining the influence of coracoid process have focused primarily on adults and have not included people from diverse Asian ethnic backgrounds. Our goal was to explore ethnic differences in morphometry of coracoid among Asian population. We performed morphometric measurements of coracoid process on cadaveric shoulders and shoulder CT scans from 118 specimens. The cadaveric sample included Indian (46%, Chinese (27%, and Myanmarese (27% subjects, while the CT scans sample included Chinese (67% and Malay (33% subjects. The morphometric measurements were performed using digital caliper and software developed at Golden Horses Health Sanctuary (GHHS. In the Indian cadaveric shoulders, the coracoid process is better developed than the other groups with the exception of the tip width of coracoid process. There are significant differences in almost all measurements (P<0.05 between the ethnic groups. On the other hand, the morphometry of coracoid process from CT scans data is bigger in Chinese than Malay subjects when stratified by sex (P<0.05. Moreover, in all morphometric measurements, the females had smaller measurements than males (P<0.05. Understanding such differences is important in anatomy, forensic and biological identity, and orthopaedic and shoulder surgeries.

  2. Dyslexia and voxel-based morphometry: correlations between five behavioural measures of dyslexia and gray and white matter volumes

    NARCIS (Netherlands)

    Tamboer, P.; Scholte, H.S.; Vorst, H.C.M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in

  3. Dog sperm head morphometry: its diversity and evolution

    Directory of Open Access Journals (Sweden)

    Carles Soler

    2017-01-01

    Full Text Available Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds′ sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics.

  4. Ultrastructural morphometry of parotid acinar cells following fractionated irradiation

    International Nuclear Information System (INIS)

    Grehn, A.-L.; Gustafsson, H.; Franzen, L.; Thornell, L.-E.; Henriksson, R.

    1997-01-01

    The aim of this study was to evaluate the long term effects on the ultrastructure of parotid glands after fractionated irradiation. The method implemented involved 5 x 6 Gy and 5 x 8 Gy, Monday to Friday 6 MV photons. By unilateral irradiation, the contralateral parotid gland served as a control. Although irradiation diminished the acinar cell density in light microscopic sections from 75 to 32% after 5 x 8 Gy of irradiation, ultrastructural morphometry could not detect any statistically significant differences in acinar cell size, nuclear size, nuclear density, granule area, mean granule size, or granule density. In general, greater differences were seen between rats receiving 30 or 40 Gy, on both the irradiated and the control side, than between the irradiated side and the control side. This was interpreted as due to differences in the nutritional state of the animals. This analysis concluded that individual acinar cells that survive irradiation seem not to be damaged in the long term when evaluated at the ultrastructural level. The study further stresses the importance of adequate sampling sizes and the use of adequate controls. (author)

  5. [Morphometry of pulmonary tissue: From manual to high throughput automation].

    Science.gov (United States)

    Sallon, C; Soulet, D; Tremblay, Y

    2017-12-01

    Weibel's research has shown that any alteration of the pulmonary structure has effects on function. This demonstration required a quantitative analysis of lung structures called morphometry. This is possible thanks to stereology, a set of methods based on principles of geometry and statistics. His work has helped to better understand the morphological harmony of the lung, which is essential for its proper functioning. An imbalance leads to pathophysiology such as chronic obstructive pulmonary disease in adults and bronchopulmonary dysplasia in neonates. It is by studying this imbalance that new therapeutic approaches can be developed. These advances are achievable only through morphometric analytical methods, which are increasingly precise and focused, in particular thanks to the high-throughput automation of these methods. This review makes a comparison between an automated method that we developed in the laboratory and semi-manual methods of morphometric analyzes. The automation of morphometric measurements is a fundamental asset in the study of pulmonary pathophysiology because it is an assurance of robustness, reproducibility and speed. This tool will thus contribute significantly to the acceleration of the race for the development of new drugs. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  6. Dog sperm head morphometry: its diversity and evolution.

    Science.gov (United States)

    Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos

    2017-01-01

    Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds' sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics.

  7. Validation of voxel-based morphometry (VBM) based on MRI

    Science.gov (United States)

    Yang, Xueyu; Chen, Kewei; Guo, Xiaojuan; Yao, Li

    2007-03-01

    Voxel-based morphometry (VBM) is an automated and objective image analysis technique for detecting differences in regional concentration or volume of brain tissue composition based on structural magnetic resonance (MR) images. VBM has been used widely to evaluate brain morphometric differences between different populations, but there isn't an evaluation system for its validation until now. In this study, a quantitative and objective evaluation system was established in order to assess VBM performance. We recruited twenty normal volunteers (10 males and 10 females, age range 20-26 years, mean age 22.6 years). Firstly, several focal lesions (hippocampus, frontal lobe, anterior cingulate, back of hippocampus, back of anterior cingulate) were simulated in selected brain regions using real MRI data. Secondly, optimized VBM was performed to detect structural differences between groups. Thirdly, one-way ANOVA and post-hoc test were used to assess the accuracy and sensitivity of VBM analysis. The results revealed that VBM was a good detective tool in majority of brain regions, even in controversial brain region such as hippocampus in VBM study. Generally speaking, much more severity of focal lesion was, better VBM performance was. However size of focal lesion had little effects on VBM analysis.

  8. Sex differences in impulsivity and brain morphometry in methamphetamine users.

    Science.gov (United States)

    Kogachi, Shannon; Chang, Linda; Alicata, Daniel; Cunningham, Eric; Ernst, Thomas

    2017-01-01

    Methamphetamine (METH) is an addictive stimulant, and METH users have abnormal brain structures and function. The aims of this study were to investigate the relationships between impulsivity, brain structures, and possible sex-specific differences between METH users and non-drug using Controls. Structural MRI and the Barratt Impulsiveness Scale (BIS) questionnaire were completed in 124 subjects: 62 METH (ages 41.2 ± 1.4 years, 34 males) and 62 Controls (ages 43.3 ± 2.3 years, 36 males). Independent and interactive effects of METH use status and sex were evaluated. Relationships between METH usage characteristics, brain morphometry, and impulsivity scores were examined. METH users had higher impulsivity scores, on both the Cognitive and Behavioral Factors from the BIS (p impulsivity (interaction-p ≤ 0.05). Only female METH users showed relatively larger nucleus accumbens (interaction-p = 0.03). Greater impulsivity and thinner frontal cortices in METH users are validated. Larger superior frontal cortex in male METH users with greater cognitive impulsivity suggest decreased dendritic pruning during adolescence might have contributed to their impulsive and drug use behaviors. In the female METH users, smaller frontal cortices and the associated greater impulsivity suggest greater neurotoxicity to these brain regions, while their relatively larger nucleus accumbens suggest an estrogen-mediated neuroprotective glial response. Men and women may be affected differently by METH use.

  9. Stereological Cell Morphometry In Right Atrium Myocardium Of Primates

    Science.gov (United States)

    Mandarim-De-Lacerda, Carlos A...; Hureau, Jacques

    1986-07-01

    The mechanism by which the cardiac impulse is propagated in normal hearts from its origin in the sinus node to the atrio-ventricular node has not been agreed on fully. We studied the "internodal posterior tract" through the crista terminalis by light microscopy and stereological morphometry. The hearts of 12 Papio cynocephalus were perfused , after sacrifice,with phosphate-buffered formol saline. The regions of the crista terminalis (CT), interatrial septum (IAS), atrioventricular bundle (AVB) and interventricular septum (IVS) were cut off and embedded in paraplast and sectioned (10 4m). The multipurpose test system M 42 was superimposed over the photomicrographs (1,890 points test, ESR = 2%) to the stereological computing. The quantitative results show that the cells from CT were more closely relationed with IAS cells than others cells (IVS and AVB cells). This results are not a morphological evidence to establish the specificity of the "internodal posterior tract". The cellular arrangement and anatomical variation in CT myocardium is very important.

  10. Growth performance, immune status and organ morphometry in ...

    African Journals Online (AJOL)

    Growth performance, immune status and organ morphometry in broilers fed Bacillus subtilis -supplemented diet. ... In conclusion, B. subtilis-type probiotics contributed positively to better growth performance, improved immune system and modulated morphology of lymphoid organs and gut mucosa in broilers. Keywords: ...

  11. Genitalia morphometry and testicular characteristics of male white ...

    African Journals Online (AJOL)

    An experiment was designed to evaluate genitalia morphometry of the male white Japanese quails at three different age groups. Fifty-four male Japanese quails were allotted to 3 treatment groups (Pubertal, Mature and Adult) in a completely randomized design. Pubertal (7-10 weeks), mature (15-20 weeks) and the adults ...

  12. Testicular Morphometry and Sperm Quality of Rabbit Bucks Fed ...

    African Journals Online (AJOL)

    Twenty rabbit bucks of mixed breeds, aged four to five weeks which weighed between 627.4g to 631.5g were used to evaluate the effect of Moringa oleifera leaf meal (MOLM) on testicular morphometry and sperm quality. Five bucks were randomly assigned to each of the four diets containing MOLM at 0%. 5%, 10% and ...

  13. Sokoto Journal of Veterinary Sciences Testicular histo-morphometry ...

    African Journals Online (AJOL)

    ADEYEYE

    Olurode et al./Sokoto Journal of Veterinary Sciences, 16(1): 24 - 30. Testicular histo-morphometry and semen parameters of West. African Dwarf bucks ..... Table 2: Mean of Semen parameters of West African Dwarf goat. Parameters. Mean ± SD. Semen colour. Semen volume (ml). Creamy/milky white. 0.40 ± 0.07.

  14. Central region morphometry in a child brain; Age and gender ...

    African Journals Online (AJOL)

    2013-10-10

    Oct 10, 2013 ... Background: Data on central region morphometry of a child brain is important not only in terms of ... brain volume reaches the peak at the age of 14.5 in men ..... child and adolescent brain and effects of genetic variation.

  15. Patch-Based Morphometry: Application to Alzheimer’s Disease

    DEFF Research Database (Denmark)

    Coupe, Pierrick; Manjon, Jose; Fonov, Vladimir

    Background: While widely used to detect morphological differences between groups, Voxel-Based Morphometry (VBM) is based on the assumption of one-to-one anatomical mapping between subjects and Gaussian distributions of focal tissue densities during statistical testing. To make data fit this model...

  16. Individual Assessment of Brain Tissue Changes in MS and the Effect of Focal Lesions on Short-Term Focal Atrophy Development in MS: A Voxel-Guided Morphometry Study

    Directory of Open Access Journals (Sweden)

    Jan Fox

    2016-04-01

    Full Text Available We performed voxel-guided morphometry (VGM investigating the mechanisms of brain atrophy in multiple sclerosis (MS related to focal lesions. VGM maps detect regional brain changes when comparing 2 time points on high resolution T1-weighted (T1w magnetic resonace imaging (MRI. Two T1w MR datasets from 92 relapsing-remitting MS patients obtained 12 months apart were analysed with VGM. New lesions and volume changes of focal MS lesions as well as in the surrounding tissue were identified by visual inspection on colour coded VGM maps. Lesions were dichotomized in active and inactive lesions. Active lesions, defined by either new lesions (NL (volume increase > 5% in VGM, chronic enlarging lesions (CEL (pre-existent T1w lesions with volume increase > 5%, or chronic shrinking lesions (CSL (pre-existent T1w lesions with volume reduction > 5% in VGM, were accompanied by tissue shrinkage in surrounding and/or functionally related regions. Volume loss within the corpus callosum was highly correlated with the number of lesions in its close proximity. Volume loss in the lateral geniculate nucleus was correlated with lesions along the optic radiation. VGM analysis provides strong evidence that all active lesion types (NL, CEL, and CSL contribute to brain volume reduction in the vicinity of lesions and/or in anatomically and functionally related areas of the brain.

  17. Scaling of Myocardial Mass to Flow and Morphometry of Coronary Arteries

    OpenAIRE

    Choy, Jenny Susana; Kassab, Ghassan S.

    2008-01-01

    There is no doubt that scaling relations exist between myocardial mass and morphometry of coronary vasculature. The purpose of this study is to quantify several morphological (diameter, length, and volume) and functional (flow) parameters of the coronary arterial tree in relation to myocardial mass. Eight normal porcine hearts of 117-244 g (mean of 177.5±32.7) were used in this study. Various coronary sub-trees of the Left Anterior Descending (LAD), Right Coronary (RCA) and Left Circumflex (L...

  18. Kinetic of magnetic nanoparticles uptake evaluated by morphometry of mice peritoneal cells

    International Nuclear Information System (INIS)

    Silva, L.P.; Kuckelhaus, S.; Guedes, M.H.A.; Lacava, Z.G.M.; Tedesco, A.C.; Morais, P.C.; Azevedo, R.B.

    2005-01-01

    The development of magnetic fluids (MFs) has led to a wide range of new biomedical applications. Nevertheless, few studies have examined the kinetics of the magnetic nanoparticles (MNPs) internalization by phagocytes. In this study, we present morphometry as a method to quantify the cell surface covered by MNPs. The maximum cell surface covered by MNPs aggregates was 32.5% (8.5 min), 18.3% (24.1 min), and 18.0% (20.2 min) in DMSA, citric acid and dextran-coated MNPs, respectively. We concluded that the phagocytosis process of MNPs is strongly dependent upon the coating species

  19. Morphometry of A1 segment of the anterior cerebral artery and its clinical importance.

    Science.gov (United States)

    Krishnamurthy, A; Nayak, S R; Bagoji, I B; D'Costa, S; Pai, M M; Jiji, P J; Kumar, C G; Rai, R

    2010-01-01

    Anterior cerebral artery, one of the terminal branches of the internal carotid artery is an important vessel taking part in the formation of circle of Willis. It supplies a large part of the medial surface of the cerebral hemisphere containing the areas of motor and somatosensory cortices of the lower limb. Aim of this study was the morphometry of A1 segment of the anterior cerebral artery. 93 formalin fixed brain specimen of either sex and of Indian origin were studied. The mean length, mean external diameter and the anomalies present in A1 segment of the vessel were studied in detail and photographed. The mean length of A1 segment of the vessel was 14.49+/-0.28 mm and 14.22+/-0.22 mm on right and left side respectively. The mean external diameter of the vessel on right and left side was 2.12+/-0.07 mm and 2.32+/-0.06 mm respectively. Narrowing, aneurysm formation, buttonhole formation and median anterior cerebral artery were the anomalies seen with an occurrence of 15.05%, 5.37%, 3.22% and 12.9%, respectively. The above anomalies did not have any sex or side predilection. Knowledge of morphometry of the vessel will be of use to neurosurgeons while performing the shunt operation, in assessing the feasibility of such operations and in the choice of patients. From this study we infer that the morphometry of anterior cerebral artery varies in different population and that the neurosurgeons operating should have a thorough knowledge of the possible variations.

  20. Morphology and digitally aided morphometry of the human paracentral lobule.

    Science.gov (United States)

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations.

  1. Contribution of glomerular morphometry to the diagnosis of pediatric nephropathies

    Directory of Open Access Journals (Sweden)

    Mariana Barreto Marini

    2016-01-01

    Full Text Available Only a few studies describe histopathological changes in renal biopsies performed in pediatric patients. This study was conducted to identify an association between morphometric data in renal biopsies and renal function of these patients. Fifty-nine individuals with ages between 2 and 18 years old were selected, who were divided into six groups consisting of frequent nephropathies in children and adolescents and one control group. Proteinuria, urea, and creatinine values of the patients were recorded. Interactive image analysis software Leica QWin[®]was used for morpho- metric analysis of Bowman′s capsule, glomerular capillary tuft, and Bowman′s space area. The mean glomerular tuft area was higher in the membranous glomerulopathy group than in the podo- cytopathy group (57,101 ± 25,094 vs. 27,420 c ± 6279 µm2; P <0.05. The median of Bowman′s space area was higher in the control group than in the podocytopathy group and in the thin basement membrane/Alport syndrome group [12,210 (7676-26,945 vs. 5801 (3031-7852 µm2; P <0.01 and 12210 (7676-26,945 vs. 4183 (3797-7992 µm2; P <0.01, respectively]. There was a positive and significant correlation between Bowman′s capsule area and the levels of proteinuria, creatinine, and urea of the patients, as well as between the glomerular tuft area and the levels of proteinuria, creatinine, and urea in the patients, regardless of their nephropathy. Glomerular morphometry may contribute to the diagnosis of some glomerulopathies and the association between glomerular morphometric parameters, and laboratory data may promote a better understanding of the prognosis of these patients.

  2. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    Science.gov (United States)

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  3. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    Directory of Open Access Journals (Sweden)

    Domenico Bucci

    2017-11-01

    Full Text Available Catecholamine nuclei within the brainstem reticular formation (RF play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH immune-positive cells of the brainstem correspond to dopamine (DA-, norepinephrine (NE-, and epinephrine (E-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  4. Computed tomography measurement of rib cage morphometry in emphysema.

    Directory of Open Access Journals (Sweden)

    Nicola Sverzellati

    Full Text Available BACKGROUND: Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers. METHODS: Rib cage diameters and areas (calculated from the inner surface of the rib cage in 816 smokers with or without COPD, were evaluated at three anatomical levels using computed tomography (CT. CTs were analyzed with software, which allows quantification of total emphysema (emphysema%. The relationship between rib cage measurements and anthropometric factors, lung function indices, and %emphysema were tested using linear regression models. RESULTS: A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1%, and forced vital capacity (FVC% fit best with the rib cage measurements (R(2 = 64% for the rib cage area variation at the lower anatomical level. Gender had the biggest impact on rib cage diameter and area (105.3 cm(2; 95% CI: 111.7 to 98.8 for male lower area. Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm(2; 95% CI: 3.0 to 7.8 for an emphysema increase of 5%. Lower rib cage areas decreased as FVC% decreased (5.1 cm(2; 95% CI: 2.5 to 7.6 for 10 percentage points of FVC variation. CONCLUSIONS: This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also highlight relationships between rib cage morphometry and emphysema.

  5. Sex differences in impulsivity and brain morphometry in methamphetamine users

    Science.gov (United States)

    Kogachi, Shannon; Chang, Linda; Alicata, Daniel; Cunningham, Eric; Ernst, Thomas

    2016-01-01

    Methamphetamine (METH) is an addictive stimulant, and METH users have abnormal brain structures and function. The aims of this study were to investigate the relationships between impulsivity, brain structures, and possible sex-specific differences between METH users and non-drug using Controls. Structural MRI and the Barratt Impulsiveness Scale (BIS) questionnaire were completed in 124 subjects: 62 METH (ages 41.2 ± 1.4 years, 34 males) and 62 Controls (ages 43.3 ± 2.3 years, 36 males). Independent and interactive effects of METH use status and sex were evaluated. Relationships between METH usage characteristics, brain morphometry, and impulsivity scores were examined. METH users had higher impulsivity scores, on both the Cognitive and Behavioral Factors from the BIS (p users had larger, while female METH users had smaller, right superior frontal cortex (interaction-p = 0.0005). The male METH users with larger frontal volumes and female METH users with smaller or thinner frontal cortices had greater Cognitive impulsivity (interaction-p ≤ 0.05). Only female METH users showed relatively larger nucleus accumbens (interaction-p = 0.03). Greater impulsivity and thinner frontal cortices in METH users are validated. Larger superior frontal cortex in male METH users with greater cognitive impulsivity suggest decreased dendritic pruning during adolescence might have contributed to their impulsive and drug use behaviors. In the female METH users, smaller frontal cortices and the associated greater impulsivity suggest greater neurotoxicity to these brain regions, while their relatively larger nucleus accumbens suggest an estrogen-mediated neuroprotective glial response. Men and women may be affected differently by METH use. PMID:27095357

  6. Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory.

    Science.gov (United States)

    Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H; Gu, Xianfeng

    2015-01-01

    Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing

  7. Geographical variation in morphometry, craniometry, and diet of amammalian species (Stone marten, Martes foina) using data mining

    OpenAIRE

    PAPAKOSTA, MALAMATI; KITIKIDOU, KYRIAKI; BAKALOUDIS, DIMITRIOS; VLACHOS, CHRISTOS; CHATZINIKOS, EVANGELOS; ALEXANDROU, OLGA; SAKOULIS, ANASTASIOS

    2018-01-01

    Ecologists use various data mining techniques to make predictions and estimations, to identify patterns in datasets and relationships between qualitative and quantitative variables, or to classify variables. The aim of this study was to investigate if the application of data mining could be used to study geographical variation in the morphometry, craniometry, and diet of a mammalian species (Martes foina), and to determine whether data mining can complement genetic analysis to recognize subsp...

  8. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex

    Directory of Open Access Journals (Sweden)

    Pilar Santolaria

    2016-01-01

    Full Text Available This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively. Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001 although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY and sexed (SX semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05. We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.

  9. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis

    OpenAIRE

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2015-01-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and ...

  10. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.

    Science.gov (United States)

    Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T

    2016-01-01

    A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  11. Morphometry of the corpus callosum in Chinese children: relationship with gender and academic performance

    International Nuclear Information System (INIS)

    Ng, Wing Hung Alex; Chan, Yu.Lung; Au, Kit Sum Agnes; Yeung, Ka Wai David; Kwan, Ting Fai; To, Cho Yee

    2005-01-01

    The corpus callosum has been widely studied, but no study has demonstrated whether its size and shape have any relationship with language and calculation performance. To examine the morphometry of the corpus callosum of normal Chinese children and its relationship with gender and academic performance. One hundred primary school children (63 boys, 37 girls; age 6.5-10 years) were randomly selected and the standardized academic performance for each was ascertained. On the mid-sagittal section of a brain MRI, the length, height and total area of the corpus callosum and its thickness at different sites were measured. These were correlated with sex and academic performance. Apart from the normal average dimension of the different parts of the corpus callosum, thickness at the body-splenium junction in the average-to-good performance group was significantly greater than the below-average performance group in Chinese language (P=0.005), English language (P=0.02) and mathematics (P=0.01). The remainder of the callosal thickness showed no significant relationship with academic performance. There was no significant sex difference in the thickness of any part of the corpus callosum. These findings raise the suggestion that language and mathematics proficiency may be related to the morphometry of the fibre connections in the posterior parietal lobes. (orig.)

  12. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    Science.gov (United States)

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Formic acid demineralization does not affect the morphometry of cervical zygapophyseal joint meniscoids.

    Science.gov (United States)

    Farrell, Scott F; Osmotherly, Peter G; Rivett, Darren A; Cornwall, Jon

    2015-01-01

    Demineralization can facilitate the dissection of soft tissue structures in inaccessible locations by softening surrounding bone so that it can be easily removed without risking damage to the structure of interest. However, it is unclear whether demineralization alters the morphometry of soft tissues if used for this purpose. We have therefore examined the effect of extended-immersion formic acid demineralization on the size and shape of cervical zygapophyseal joint meniscoids to evaluate its usefulness as a means of facilitating dissection and examination of soft tissue structures from bony regions. Four cadaveric cervical spines were dissected, and three randomly selected zygapophyseal joints from each spine (12 in total) were removed, disarticulated and immersed in 5% formic acid for 32 days. Each joint was examined using a surgical microscope and photographed, and meniscoid length and surface area measured at days 0, 4, 18, and 32. Measurements were made on magnified digital photographs, and each measurement was repeated three times to determine intra-rater reliability. Data were analyzed using repeated-measures analysis of variance. Significance was set at p reliability was high (intra-class correlation > 0.9). These results support the use of formic acid demineralization to facilitate the study of cervical spine meniscoids by dissection, as even after a period of extended immersion in the solution, the morphometry of the structures was not significantly altered. Findings may have implications for dissection studies of other meniscoid-like soft tissue structures that use formic acid demineralization.

  14. Morphometry of the corpus callosum in Chinese children: relationship with gender and academic performance

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wing Hung Alex; Chan, Yu.Lung [Prince of Wales Hospital, Department of Diagnostic Radiology and Organ Imaging, Shatin, Hong Kong (Hong Kong); Au, Kit Sum Agnes [James Cook University, Department of Psychology, Townsville, Queensland (Australia); Yeung, Ka Wai David; Kwan, Ting Fai; To, Cho Yee

    2005-06-01

    The corpus callosum has been widely studied, but no study has demonstrated whether its size and shape have any relationship with language and calculation performance. To examine the morphometry of the corpus callosum of normal Chinese children and its relationship with gender and academic performance. One hundred primary school children (63 boys, 37 girls; age 6.5-10 years) were randomly selected and the standardized academic performance for each was ascertained. On the mid-sagittal section of a brain MRI, the length, height and total area of the corpus callosum and its thickness at different sites were measured. These were correlated with sex and academic performance. Apart from the normal average dimension of the different parts of the corpus callosum, thickness at the body-splenium junction in the average-to-good performance group was significantly greater than the below-average performance group in Chinese language (P=0.005), English language (P=0.02) and mathematics (P=0.01). The remainder of the callosal thickness showed no significant relationship with academic performance. There was no significant sex difference in the thickness of any part of the corpus callosum. These findings raise the suggestion that language and mathematics proficiency may be related to the morphometry of the fibre connections in the posterior parietal lobes. (orig.)

  15. Pathology and morphometry of Hystrichis acanthocephalicus (Nematoda from Phimosus infuscatus (Pelecaniformes in southern Brazil

    Directory of Open Access Journals (Sweden)

    Simone Scheer

    Full Text Available Abstract Species of Hystrichis are parasite nematodes of the digestive tract of aquatic birds in South America, Europe and Asia. In Brazil, Hystrichis acanthocephalicus has been reported in Phimosus infuscatus. There are few data on the morphometry of this species and there are no reports on pathological conditions that it causes. Therefore, the purpose of this study was to report morphometric data from H. acanthocephalicus and describe the pathological effects of this parasite on the Phimosus infuscatus proventriculus. Thirty gastrointestinal tracts of P. infuscatus were examined to search for nematodes and H. acanthocephalicus occurred in 83% of hosts. Were measured the total length and body width of males and females, and of their respective cuticular spines, esophagus, spicules and eggs, and the internal and external diameter of copulatory bursa. Histopathological examination revealed parasitic structures in the proventriculus from the lumen (anterior end to the outer layers of the organ (intermediate and posterior parts, in which we observed inflammatory reaction with infiltration of heterophils, hemorrhage and hemosiderin. The results of this study of histopathology, morphometry and parasitological indices are the first ones reported to H. acanthocephalicus and should contribute to the identification and recognition in cases of outbreaks in the Neotropical region.

  16. Bronchial morphometry in smokers: comparison with healthy subjects by using 3D CT

    International Nuclear Information System (INIS)

    Montaudon, Michel; Berger, Patrick; Marthan, Roger; Lederlin, Mathieu; Tunon-de-Lara, Jose Manuel; Laurent, Francois

    2009-01-01

    The assessment of airway dimensions in patients with airway disease by using computed tomography (CT) has been limited by the obliquity of bronchi, the ability to identify the bronchial generation, and the limited number of bronchial measurements. The aims of the present study were (i) to analyze cross-sectional bronchial dimensions after automatic orthogonal reconstruction of all visible bronchi on CT images, and (ii) to compare bronchial morphometry between smokers and nonsmokers. CT and pulmonary function tests were performed in 18 males separated into two groups: 9 nonsmokers and 9 smokers. Bronchial wall area (WA) and lumen area (LA) were assessed using dedicated 3D software able to provide accurate cross-sectional measurements of all visible bronchi on CT. WA/LA and WA/(WA+LA) ratios were computed and all parameters were compared between both groups. Smokers demonstrated greater WA, smaller LA, and consequently greater LA/WA and LA/(WA+LA) ratios than nonsmokers. These differences occurred downward starting at the fourth bronchial generation. 3D quantitative CT method is able to demonstrate significant changes in bronchial morphometry related to tobacco consumption. (orig.)

  17. Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence

    Energy Technology Data Exchange (ETDEWEB)

    Hyhlik-Duerr, A. [Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universitaet, Muenchen (Germany); Klinik fuer Orthopaedie und Sportorthopaedie der Technischen Universitaet, Muenchen (Germany); Faber, S.; Reiser, M. [Klinik fuer Orthopaedie und Sportorthopaedie der Technischen Universitaet, Muenchen (Germany); Burgkart, R. [Institut fuer Medizinische Informatik und Systemforschung (MEDIS), GSF-Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg, Oberschleissheim (Germany); Stammberger, T.; Englmeier, K.H. [Institut fuer Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Klinikum Grosshadern, Marchioninistrasse 15, D-81377 Munich (Germany); Maag, K.P. [Institut fuer Radiologische Diagnostik, Klinikum der Ludwig-Maximilians-Universitaet, Muenchen (Germany); Eckstein, F. [Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2000-02-01

    The aim of this study was to analyze the precision of tibial cartilage morphometry, by using a fast, coronal water-excitation sequence with high spatial resolution, to compare the reproducibility of 3D thickness vs volume estimates, and to test the technique in patients with severe osteoarthritis. The tibiae of 8 healthy volunteers and 3 patients selected for total knee arthroplasty were imaged repeatedly with a water-excitation sequence (image time 6 h 19 min, resolution 1.2 x 0.31 x 0.31 mm{sup 3}), with the knee being repositioned between each replicate acquisition. After 3D reconstruction, the cartilage volume, the mean, and the maximal tibial cartilage thickness were determined by 3D Euclidean distance transformation. In the volunteers, the precision of the volume measurements was 2.3 % (CV%) in the medial and 2.6 % in the lateral tibia. The reproducibility of the mean cartilage thickness was similar (2.6 and 2.5 %, respectively), and that of the maximal thickness lower (6.5 and 4.4 %). The patients showed a considerable reduction in volume and thickness, the precision being comparable with that in the volunteers. We find that, using a new imaging protocol and computational algorithm, it is possible to determine tibial cartilage morphometry with high precision in healthy individuals as well as in patients with osteoarthritis. (orig.)

  18. Morphology and morphometry of two banderitas species (Orchidaceae: masdevallia) in Colombia

    International Nuclear Information System (INIS)

    Cuervo Martinez, Monica Adriana; Bonilla Gomez, Maria Argenis; Bustos Singer, Rodrigo

    2012-01-01

    Masdevallia coccinea and the Masdevallia ignea (Banderitas) are ornamental orchids which are very prized by amateur farmers and collectors. In Colombia, the harvest pressure on these species has been enormous and few natural populations survive in the departments of Boyaca (Arcabuco of Berlin Paramo, Duitama) and Santander (between Malaga and Bucaramanga), in which these populations are reduced and of difficult access. For this reason these species are in the II appendix of cites. However, little is known on their reproductive biology, floral biology and pollination and the literature about this is incomplete. Under this framework, the goal of the project was to study the morphology and morphometry of m. coccinea and m. ignea (pleurothallidinae) under semicultivation conditions in the Villa Rosa Farm located in the municipality of Guasca, Cundinamarca (Colombia). The floral morphology was analyzed by digital photography, morphometry and scanning electron microscope. The main results were differences in color and length of dorsal and lateral sepals between m. coccinea (x = 53.0 mm Sigma = 7.4 mm and x = 44.4 mm and Sigma = 8.3 mm) and m. ignea (x = 34 mm Sigma = 7.7 mm and x = 31.5 mm and Sigma = 6.1 mm). These parts were longest in m. coccinea in contrast to m. ignea. However the lip was longest in m. ignea (x = 7.1 mm y Sigma = 0.6 mm). On the other hand both species had lip articulated to the column but without rewards as nectar and osmophores.

  19. Anatomic Variation in Morphometry of Human Coracoid Process among Asian Population.

    Science.gov (United States)

    Fathi, Manal; Cheah, Pike-See; Ahmad, Umar; Nasir, M Nizlan; San, Aye Aye; Abdul Rahim, Ezamin; Hussin, Paisal; Mahmud, Rozi; Othman, Fauziah

    2017-01-01

    Ethnic origin plays an important role in bone morphometry. Studies examining the influence of coracoid process have focused primarily on adults and have not included people from diverse Asian ethnic backgrounds. Our goal was to explore ethnic differences in morphometry of coracoid among Asian population. We performed morphometric measurements of coracoid process on cadaveric shoulders and shoulder CT scans from 118 specimens. The cadaveric sample included Indian (46%), Chinese (27%), and Myanmarese (27%) subjects, while the CT scans sample included Chinese (67%) and Malay (33%) subjects. The morphometric measurements were performed using digital caliper and software developed at Golden Horses Health Sanctuary (GHHS). In the Indian cadaveric shoulders, the coracoid process is better developed than the other groups with the exception of the tip width of coracoid process. There are significant differences in almost all measurements ( P Chinese than Malay subjects when stratified by sex ( P < 0.05). Moreover, in all morphometric measurements, the females had smaller measurements than males ( P < 0.05). Understanding such differences is important in anatomy, forensic and biological identity, and orthopaedic and shoulder surgeries.

  20. Voxel-based gray and white matter morphometry correlates of hallucinations in schizophrenia: The superior temporal gyrus does not stand alone

    Directory of Open Access Journals (Sweden)

    Marie-José van Tol

    2014-01-01

    Discussion: Results suggest that STG GM abnormalities underlie the general susceptibility to experience psychotic symptoms and that additional abnormalities in a network of medial temporal, ventrolateral, putaminal, and parietal regions related to verbal memory and speech production may specifically increase the likelihood of experiencing AVH. Future studies should clarify the meaning of morphometry abnormalities for functional interregional communication.

  1. A voxel-based morphometry and diffusion tensor imaging analysis of asymptomatic Parkinson's disease-related G2019S LRRK2 mutation carriers

    NARCIS (Netherlands)

    Thaler, A.; Artzi, M.; Mirelman, A.; Jacob, Y.; Helmich, R.C.G.; Nuenen, B.F.L. van; Gurevich, T.; Orr-Urtreger, A.; Marder, K.; Bressman, S.; Bloem, B.R.; Hendler, T.; Giladi, N.; Bashat, D. Ben; et al.,

    2014-01-01

    BACKGROUND: Patients with Parkinson's disease have reduced gray matter volume and fractional anisotropy in both cortical and sub-cortical structures, yet changes in the pre-motor phase of the disease are unknown. METHODS: A comprehensive imaging study using voxel-based morphometry and diffusion

  2. Structural MRI in Autism Spectrum Disorder

    OpenAIRE

    Chen, Rong; Jiao, Yun; Herskovits, Edward H.

    2011-01-01

    Magnetic-resonance (MR) examination provides a powerful tool for investigating brain structural changes in children with Autism Spectrum Disorder (ASD). We review recent advances in the understanding of structural-MR correlates of ASD. We summarize findings from studies based on voxel-based morphometry, surface-based morphometry, and tensor-based morphometry, and diffusion-tensor imaging. Finally, we discuss diagnostic models of ASD, based on MR-derived features.

  3. Improved Tensor-Based Singular Spectrum Analysis Based on Single Channel Blind Source Separation Algorithm and Its Application to Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Dan Yang

    2017-04-01

    Full Text Available To solve the problem of multi-fault blind source separation (BSS in the case that the observed signals are under-determined, a novel approach for single channel blind source separation (SCBSS based on the improved tensor-based singular spectrum analysis (TSSA is proposed. As the most natural representation of high-dimensional data, tensor can preserve the intrinsic structure of the data to the maximum extent. Thus, TSSA method can be employed to extract the multi-fault features from the measured single-channel vibration signal. However, SCBSS based on TSSA still has some limitations, mainly including unsatisfactory convergence of TSSA in many cases and the number of source signals is hard to accurately estimate. Therefore, the improved TSSA algorithm based on canonical decomposition and parallel factors (CANDECOMP/PARAFAC weighted optimization, namely CP-WOPT, is proposed in this paper. CP-WOPT algorithm is applied to process the factor matrix using a first-order optimization approach instead of the original least square method in TSSA, so as to improve the convergence of this algorithm. In order to accurately estimate the number of the source signals in BSS, EMD-SVD-BIC (empirical mode decomposition—singular value decomposition—Bayesian information criterion method, instead of the SVD in the conventional TSSA, is introduced. To validate the proposed method, we applied it to the analysis of the numerical simulation signal and the multi-fault rolling bearing signals.

  4. Voxel-based gray and white matter morphometry correlates of hallucinations in schizophrenia: The superior temporal gyrus does not stand alone.

    Science.gov (United States)

    van Tol, Marie-José; van der Meer, Lisette; Bruggeman, Richard; Modinos, Gemma; Knegtering, Henderikus; Aleman, André

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia (SZ) have been proposed to result from abnormal local, interregional and interhemispheric integration of brain signals in regions involved in language production and perception. This abnormal functional integration may find its base in morphological abnormalities. Structurally, AVHs have been frequently linked to abnormal morphology of the superior temporal gyrus (STG), but only a few studies investigated the relation of hallucination presence with both whole-brain gray matter (GM) and white matter (WM) morphometry. Using a unified voxel-based morphometry-DARTEL approach, we investigated correlates of AVH presence in 51 schizophrenia patients (20 non-hallucinating [SZ -], 31 hallucinating [SZ +]), and included 51 age and sex matched healthy participants. Effects are reported at p frontal and right parahippocampal gyrus, and higher WM volume of the left postcentral and superior parietal lobule than controls. Finally, volume of the putamen was lower in SZ + compared to SZ -. No effects on corpus callosum morphometry were observed. Delusion severity, general positive and negative symptomatology illness duration, and medication status could not explain the results. Results suggest that STG GM abnormalities underlie the general susceptibility to experience psychotic symptoms and that additional abnormalities in a network of medial temporal, ventrolateral, putaminal, and parietal regions related to verbal memory and speech production may specifically increase the likelihood of experiencing AVH. Future studies should clarify the meaning of morphometry abnormalities for functional interregional communication.

  5. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    Directory of Open Access Journals (Sweden)

    Michael eVilliger

    2015-05-01

    Full Text Available Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI. However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI.We used tensor-based morphometry (TBM to analyze longitudinal brain volume changes associated with intensive virtual reality (VR-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16-20 training sessions. Before training, voxel-based morphometry (VBM and voxel-based cortical thickness (VBCT assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3-4 months follow-up. In patients relative to controls, reductions in VBM of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training.

  6. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

    Science.gov (United States)

    Villiger, Michael; Grabher, Patrick; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Curt, Armin; Bolliger, Marc; Hotz-Boendermaker, Sabina; Kollias, Spyros; Eng, Kynan; Freund, Patrick

    2015-01-01

    Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI). However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI. We used tensor-based morphometry (TBM) to analyze longitudinal brain volume changes associated with intensive virtual reality (VR)-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16–20 training sessions). Before training, voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3–4 months follow-up. In patients relative to controls, VBM revealed reductions of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced volume increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training. PMID:25999842

  7. Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa

    Directory of Open Access Journals (Sweden)

    Shokouhi Mahsa

    2011-12-01

    Full Text Available Abstract Background Brain morphometry is extensively used in cross-sectional studies. However, the difference in the estimated values of the morphometric measures between patients and healthy subjects may be small and hence overshadowed by the scanner-related variability, especially with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner. Methods We assessed the variability and reliability for the grey matter, white matter, cerebrospinal fluid and cerebral hemisphere volumes as well as the global sulcal index, sulcal surface and mean geodesic depth using Brainvisa. We used datasets obtained across multiple MR scanners at 1.5 T and 3 T from the same groups of 13 and 11 healthy volunteers, respectively. For each morphometric measure, we conducted ANOVA analysis and verified whether the estimated values were significantly different across different scanners or different sessions of the same scanner. The between-centre and between-visit reliabilities were estimated from their contribution to the total variance, using a random-effects ANOVA model. To estimate the main processes responsible for low reliability, the results of brain segmentation were compared to those obtained using FAST within FSL. Results In a considerable number of cases, the main effects of both centre and visit factors were found to be significant. Moreover, both between-centre and between-visit reliabilities ranged from poor to excellent for most morphometric measures. A comparison between segmentation using Brainvisa and FAST revealed that FAST improved the reliabilities for most cases, suggesting that morphometry could benefit from improving the bias correction. However, the results were still significantly different across different scanners or different visits. Conclusions Our results confirm that for morphometry

  8. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.

    Science.gov (United States)

    Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.

  9. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  10. Robust tumor morphometry in multispectral fluorescence microscopy

    Science.gov (United States)

    Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo

    2009-02-01

    Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.

  11. Gray Matter Alterations in Adults with Attention-Deficit/Hyperactivity Disorder Identified by Voxel Based Morphometry

    Science.gov (United States)

    Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos

    2014-01-01

    Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160

  12. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical morphometry

    Directory of Open Access Journals (Sweden)

    Joseph M. Orr

    2016-01-01

    Full Text Available A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  13. Population Based Analysis of Directional Information in Serial Deformation Tensor Morphometry

    Science.gov (United States)

    Studholme, Colin; Cardenas, Valerie

    2012-01-01

    Deformation morphometry provides a sensitive approach to detecting and mapping subtle volume changes in the brain. Population based analyses of this data have been used successfully to detect characteristic changes in different neurodegenerative conditions. However, most studies have been limited to statistical mapping of the scalar volume change at each point in the brain, by evaluating the determinant of the Jacobian of the deformation field. In this paper we describe an approach to spatial normalisation and analysis of the full deformation tensor. The approach employs a spatial relocation and reorientation of tensors of each subject. Using the assumption of small changes, we use a linear modeling of effects of clinical variables on each deformation tensor component across a population. We illustrate the use of this approach by examining the pattern of significance and orientation of the volume change effects in recovery from alcohol abuse. Results show new local structure which was not apparent in the analysis of scalar volume changes. PMID:18044583

  14. White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Ke, Xiaoyan; Tang, Tianyu; Hong, Shanshan; Hang, Yueyue; Zou, Bing; Li, Huiguo; Zhou, Zhenyu; Ruan, Zongcai; Lu, Zuhong; Tao, Guotai; Liu, Yijun

    2009-04-10

    This study explored white matter abnormalities in a group of Chinese children with high functioning autism (HFA). Twelve male children with HFA and ten matched typically developing children underwent diffusion tensor imaging (DTI) as well three-dimensional T1-weighted MRI for voxel-based morphometry (VBM). We found a significant decrease of the white matter density in the right frontal lobe, left parietal lobe and right anterior cingulate and a significant increase in the right frontal lobe, left parietal lobe and left cingulate gyrus in the HFA group compared with the control group. The HFA group also had decreased FA in the frontal lobe and left temporal lobe. By combining DT-MRI FA and MRI volumetric analyses based on the VBM model, the results showed consistent white matter abnormalities in a group of Chinese children with HFA.

  15. Regional gray matter volume is associated with trait modesty: Evidence from voxel-based morphometry.

    Science.gov (United States)

    Zheng, Chuhua; Wu, Qiong; Jin, Yan; Wu, Yanhong

    2017-11-02

    Modesty when defined as a personality trait, is highly beneficial to interpersonal relationship, group performance, and mental health. However, the potential neural underpinnings of trait modesty remain poorly understood. In the current study, we used voxel-based morphometry (VBM) to investigate the structural neural basis of trait modesty in Chinese college students. VBM results showed that higher trait modesty score was associated with lager regional gray matter volume in the dorsomedial prefrontal cortex, right dorsolateral prefrontal cortex, left superior temporal gyrus/left temporal pole, and right posterior insular cortex. These results suggest that individual differences in trait modesty are linked to brain regions associated with self-evaluation, self-regulation, and social cognition. The results remained robust after controlling the confounding factor of global self-esteem, suggesting unique structural correlates of trait modesty. These findings provide evidence for the structural neural basis of individual differences in trait modesty.

  16. Estimation and Perturbation of the Mid-Sagittal Plane and its Effects on Corpus Callosum Morphometry

    DEFF Research Database (Denmark)

    Skoglund, Karl; Stegmann, Mikkel Bille; Ryberg, Charlotte

    2005-01-01

    callosum (CC), the white-matter nervous tissue bridging the left and right cerebral hemisphere. A multitude of papers (e.g. [2]) report on measurements performed on the two-dimensional cross-section of the CC defined by the mid-sagittal plane (MSP) which separates the left hemisphere from the right......Brain morphometry is an important tool for detecting and monitoring brain pathologies such as epilepsy, dementia [1,2] and multiple sclerosis [3]. A common method is to delineate some well-defined area of the brain to yield a shape for interor intra-subject studies. One such structure is the corpus....... Differences in shape due to pathologies are often slight (e.g. [1]). This makes it imperative to define the MSP in an accurate and consistent manner. This work investigates the importance of proper MSP estimation by measuring relative area changes of the CC as a function of plane perturbation angle from...

  17. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    Science.gov (United States)

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  18. Influence of APOE Genotype on Hippocampal Atrophy over Time - An N=1925 Surface-Based ADNI Study.

    Directory of Open Access Journals (Sweden)

    Bolun Li

    Full Text Available The apolipoprotein E (APOE e4 genotype is a powerful risk factor for late-onset Alzheimer's disease (AD. In the Alzheimer's Disease Neuroimaging Initiative (ADNI cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right--a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM and radial distance. At each time point, using Hotelling's T(2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers.

  19. Influence of Gestational Overfeeding on Cardiac Morphometry and Hypertrophic Protein Markers in Fetal Sheep

    Science.gov (United States)

    Fan, Xiujuan; Turdi, Subat; Ford, Stephen P.; Hua, Yinan; Nijland, Mark J.; Zhu, Meijun; Nathanielsz, Peter W.; Ren, Jun

    2010-01-01

    Intrauterine overnutrition is associated with development of cardiovascular disease in adulthood although the underlying mechanism has not been precisely elucidated. This study evaluated the effects of maternal overnutrition on fetal cardiac morphometry and hypertrophy-related mRNA/protein expression. Multiparous ewes were fed either 150% of NRC nutrient requirements (overfed group) or 100% of NRC requirements (control group) from 60 days before mating to day 75 (D75) of gestation, when ewes were euthanized. Cardiac morphometry, histology and expression of Akt, forkhead-3a (Foxo3a), glycogen synthase kinase-3β (GSK3β), mammalian target of rapamycin (mTOR), NFATc3 and GATA4, atrial natriuretic factor (ANF), calcineurin A and caspase-8 were examined. Crown rump length, left and right ventricular free wall weights and left ventricular wall thickness were increased in D75 overnourished fetuses. H&E staining revealed irregular myofiber orientation and increased interstitial space in heart tissues from overfed group. Masson’s trichrome staining displayed myofiber hypertrophy and fascicular disarray in heart tissues from overfed group. Overfeeding significantly enhanced Foxo3a phosphorylation in both ventricles while protein expression of Akt, Foxo3a, GSK3β and caspase-8 as well as phosphorylated Akt and GSK3β in either ventricle was unaffected. Overfeeding increased left ventricular mTOR, NFATc3 (both total and phosphorylated) and calcineurin A. GATA4, pGATA4 and ANF expression were unchanged in both ventricles. Collectively, our data suggested that overfeeding during early to mid gestation (D75) leads to morphometric changes without overt pathology which may be related to elevated expression of mTOR, NFATc3, calcineurin A and phosphorylation of Foxo3a, mTOR and NFATc3. PMID:20188535

  20. Taxonomic Identity of the Invasive Fruit Fly Pest, Bactrocera invadens: Concordance in Morphometry and DNA Barcoding

    Science.gov (United States)

    Khamis, Fathiya M.; Masiga, Daniel K.; Mohamed, Samira A.; Salifu, Daisy; de Meyer, Marc; Ekesi, Sunday

    2012-01-01

    In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D2 = 122.9) was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1) and against B. dorsalis s.s (11.4). Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s.), branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree. PMID:23028649

  1. Models to estimate volume of individual trees by morphometry of crowns obtained with lidar

    Directory of Open Access Journals (Sweden)

    Evandro Orfanó Figueiredo

    2014-12-01

    Full Text Available The volumetric estimate from digital scanning of the forests through the use of LIDAR increases the precision of forest management techniques in planning tropical forest logging operations. The use of this remote detection technology allows the incorporation of crown morphometric variables which are still little known and little used due to the difficulty of collecting field data for volume equations. The objective of this study was to build equations capable of estimating the stem volume of dominant and codominant individual trees from the crown's morphometry obtained by airborne LIDAR, considering two forest inventory situations: a with the collection of diameter at breast height (DBH, and crown morphometric variables obtained from LIDAR data and b using only the crown morphometry variables. For the selection of models the factors considered were: the correlation matrix of predictor variables and the combination of variables that generates the best results by statistical criteria Syx, Syx(% and Pressp, and that were homoscedastic and had a normal and independent distribution of errors. The influence analysis was performed for the best equations. The results for the statistical fit of the equations to the two situations allowed the selection of models with and without DBH, with R2aj.( % values of a 92.92 and b 79.44, Syx(% values of a 16.73 and b 27.47, and, Pressp criterion values of a 201.15 m6 and b 537.47 m6, respectively. Through morphometric variables it was possible to develop equations capable of accurately estimating the stem volume of dominant and codominant trees in tropical forests.

  2. Feature-based morphometry: discovering group-related anatomical patterns.

    Science.gov (United States)

    Toews, Matthew; Wells, William; Collins, D Louis; Arbel, Tal

    2010-02-01

    This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  3. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    Science.gov (United States)

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.

  4. Lake Morphometry for NHD Lakes in Upper Colorado Region 14 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  5. Lake Morphometry for NHD Lakes in North East Region 1 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  6. Lake Morphometry for NHD Lakes in Souris Red Rainy Region 9 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  7. Lake Morphometry for NHD Lakes in Lower Colorado Region 15 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  8. Lake Morphometry for NHD Lakes in Upper Mississippi Region 7 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  9. Lake Morphometry for NHD Lakes in the Upper Portion of the Missouri Region 10 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  10. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  11. Lake Morphometry for NHD Lakes in Rio Grande Region 13 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  12. Lake Morphometry for NHD Lakes in Arkansas White Red Region 11 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  13. Lake Morphometry for NHD Lakes in Pacific Northwest Region 17 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  14. Lake Morphometry for NHD Lakes in Lower Mississippi Region 8 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  15. Lake Morphometry for NHD Lakes in Texas-Gulf Region 12 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  16. Lake Morphometry for NHD Lakes in the Lower Portion of the Missouri Region 10 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  17. Pelvic belt effects on pelvic morphometry, muscle activity and body balance in patients with sacroiliac joint dysfunction.

    Directory of Open Access Journals (Sweden)

    Odette Soisson

    Full Text Available The sacroiliac joint (SIJ is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application.Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects.Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level.Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest.

  18. Pelvic Belt Effects on Pelvic Morphometry, Muscle Activity and Body Balance in Patients with Sacroiliac Joint Dysfunction

    Science.gov (United States)

    Soisson, Odette; Lube, Juliane; Germano, Andresa; Hammer, Karl-Heinz; Josten, Christoph; Sichting, Freddy; Winkler, Dirk; Milani, Thomas L.; Hammer, Niels

    2015-01-01

    Introduction The sacroiliac joint (SIJ) is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application. Methods Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects. Results Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level. Discussion Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest. PMID:25781325

  19. Pelvic belt effects on pelvic morphometry, muscle activity and body balance in patients with sacroiliac joint dysfunction.

    Science.gov (United States)

    Soisson, Odette; Lube, Juliane; Germano, Andresa; Hammer, Karl-Heinz; Josten, Christoph; Sichting, Freddy; Winkler, Dirk; Milani, Thomas L; Hammer, Niels

    2015-01-01

    The sacroiliac joint (SIJ) is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application. Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects. Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level. Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest.

  20. Brain structural changes in cynomolgus monkeys administered with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A longitudinal voxel-based morphometry and diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Hyeonseok S Jeong

    Full Text Available In animal models of Parkinson's disease (PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP is one of the most widely used agents that damages the nigrostriatal dopaminergic pathway. However, brain structural changes in response to MPTP remain unclear. This study aimed to investigate in vivo longitudinal changes in gray matter (GM volume and white matter (WM microstructure in primate models administered with MPTP. In six cynomolgus monkeys, high-resolution magnetic resonance imaging (MRI and diffusion tensor imaging (DTI scans were acquired 7 times over 32 weeks, and assessments of motor symptoms were conducted over 15 months, before and after the MPTP injection. Changes in GM volume and WM microstructure were estimated on a voxel-by-voxel basis. Mixed-effects regression models were used to examine the trajectories of these structural changes. GM volume initially increased after the MPTP injection and gradually decreased in the striatum, midbrain, and other dopaminergic areas. The cerebellar volume temporarily decreased and returned to its baseline level. The rate of midbrain volume increase was positively correlated with the increase rate of motor symptom severity (Spearman rho = 0.93, p = 0.008. Mean, axial, and radial diffusivity in the striatum and frontal areas demonstrated initial increases and subsequent decreases. The current multi-modal imaging study of MPTP-administered monkeys revealed widespread and dynamic structural changes not only in the nigrostriatal pathway but also in other cortical, subcortical, and cerebellar areas. Our findings may suggest the need to further investigate the roles of inflammatory reactions and glial activation as potential underlying mechanisms of these structural changes.

  1. Brain structural changes in cynomolgus monkeys administered with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A longitudinal voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Jeong, Hyeonseok S; Lee, Sang-Rae; Kim, Jieun E; Lyoo, In Kyoon; Yoon, Sujung; Namgung, Eun; Chang, Kyu-Tae; Kim, Bom Sahn; Yang, Sejung; Im, Jooyeon J; Jeon, Saerom; Kang, Ilhyang; Ma, Jiyoung; Chung, Yong-An; Lim, Soo Mee

    2018-01-01

    In animal models of Parkinson's disease (PD), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is one of the most widely used agents that damages the nigrostriatal dopaminergic pathway. However, brain structural changes in response to MPTP remain unclear. This study aimed to investigate in vivo longitudinal changes in gray matter (GM) volume and white matter (WM) microstructure in primate models administered with MPTP. In six cynomolgus monkeys, high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) scans were acquired 7 times over 32 weeks, and assessments of motor symptoms were conducted over 15 months, before and after the MPTP injection. Changes in GM volume and WM microstructure were estimated on a voxel-by-voxel basis. Mixed-effects regression models were used to examine the trajectories of these structural changes. GM volume initially increased after the MPTP injection and gradually decreased in the striatum, midbrain, and other dopaminergic areas. The cerebellar volume temporarily decreased and returned to its baseline level. The rate of midbrain volume increase was positively correlated with the increase rate of motor symptom severity (Spearman rho = 0.93, p = 0.008). Mean, axial, and radial diffusivity in the striatum and frontal areas demonstrated initial increases and subsequent decreases. The current multi-modal imaging study of MPTP-administered monkeys revealed widespread and dynamic structural changes not only in the nigrostriatal pathway but also in other cortical, subcortical, and cerebellar areas. Our findings may suggest the need to further investigate the roles of inflammatory reactions and glial activation as potential underlying mechanisms of these structural changes.

  2. Fast, automated measurement of nematode swimming (thrashing without morphometry

    Directory of Open Access Journals (Sweden)

    Sattelle David B

    2009-07-01

    Full Text Available Abstract Background The "thrashing assay", in which nematodes are placed in liquid and the frequency of lateral swimming ("thrashing" movements estimated, is a well-established method for measuring motility in the genetic model organism Caenorhabditis elegans as well as in parasitic nematodes. It is used as an index of the effects of drugs, chemicals or mutations on motility and has proved useful in identifying mutants affecting behaviour. However, the method is laborious, subject to experimenter error, and therefore does not permit high-throughput applications. Existing automation methods usually involve analysis of worm shape, but this is computationally demanding and error-prone. Here we present a novel, robust and rapid method of automatically counting the thrashing frequency of worms that avoids morphometry but nonetheless gives a direct measure of thrashing frequency. Our method uses principal components analysis to remove the background, followed by computation of a covariance matrix of the remaining image frames from which the interval between statistically-similar frames is estimated. Results We tested the performance of our covariance method in measuring thrashing rates of worms using mutations that affect motility and found that it accurately substituted for laborious, manual measurements over a wide range of thrashing rates. The algorithm used also enabled us to determine a dose-dependent inhibition of thrashing frequency by the anthelmintic drug, levamisole, illustrating the suitability of the system for assaying the effects of drugs and chemicals on motility. Furthermore, the algorithm successfully measured the actions of levamisole on a parasitic nematode, Haemonchus contortus, which undergoes complex contorted shapes whilst swimming, without alterations in the code or of any parameters, indicating that it is applicable to different nematode species, including parasitic nematodes. Our method is capable of analyzing a 30 s movie in

  3. ANATOMICAL STUDY OF THE MORPHOMETRY OF THE ANTERIOR CRUCIATE LIGAMENT ATTACHMENT SITES. Estudio anatómico de la morfometría de los sitios de fijación del ligamento cruzado anterior

    Directory of Open Access Journals (Sweden)

    Paul I Iyaji

    2016-03-01

    Full Text Available Incidence of anterior cruciate ligament (ACL rupture and its consequent reconstruction is on the rise. In contributing to the achievement of anatomic reconstruction this study seek to provide information regarding the position and variability of the tibial attachment sites, dimensions of femoral insertions and compare these measurements in males and females, and in right and left knees. Thirty one cadaveric knees (15 right and 16 left from 9 females and 7 males, mean age 77 years were dissected. Various ACL footprint dimensions were taken. The mean length and width of the tibial anteromedial (AM bundle footprint were 8.9 and 9.8 mm while that of the posterolateral (PL bundle were 9.3 and 8.0 mm respectively. The mean length and width of the tibial AM and PL bundles in males were 8.5 and 9.8 mm, and 9.1 and 8.3 mm while corresponding values in females were and 9.2 and 9.7 mm, and 9.4 and 7.8 mm respectively.  Males had larger femoral footprints (P=0.020 and tibial plateau (P<0.001. No significant difference between the right and left knees were observed. The mean anatomical positions of the AM and PL bundles were 46.0% and 50.0% of the mediolateral diameter of the tibial plateau. The mean length and width of the ACL femoral insertion sites were 8.3 and 7.7 mm for the AM bundle and 7.8 and 6.9 mm for the PL bundle respectively. The smaller ACL attachment parameters in females could be a contributing factor to the higher incidence of ACL rupture in female athletes. La incidencia de la rotura del ligamento cruzado anterior (LCA y su consiguiente reconstrucción está en aumento. Para contribuir a la actualización de la reconstrucción anatómica del ligamento cruzado anterior, este estudio proporciona información sobre la posición y la variabilidad de los sitios de fijación en la tibia, las dimensiones de las inserciones femorales, así como las relaciones de estas mediciones en hombres y mujeres y en las rodillas derecha e izquierda. Se

  4. Effect of propolis ethanol extract on myostatin gene expression and muscle morphometry of Nile tilapia in net cages.

    Science.gov (United States)

    Buck, E L; Mizubuti, I Y; Alfieri, A A; Otonel, R A A; Buck, L Y; Souza, F P; Prado-Calixto, O P; Poveda-Parra, A R; Alexandre Filho, L; Lopera-Barrero, N M

    2017-03-16

    Propolis can be used as growth enhancer due to its antimicrobial, antioxidant, and immune-stimulant properties, but its effects on morphometry and muscle gene expression are largely unknown. The present study evaluates the influence of propolis on muscle morphometry and myostatin gene expression in Nile tilapia (Oreochromis niloticus) bred in net cages. Reversed males (GIFT strain) with an initial weight of 170 ± 25 g were distributed in a (2 x 4) factorial scheme, with two diets (DPRO, commercial diet with 4% propolis ethanol extract and DCON, commercial diet without propolis, control) and four assessment periods (0, 35, 70, and 105 experimental days). Muscles were evaluated at each assessment period. Histomorphometric analysis classified the fiber diameters into four groups: 50 μm. RT-qPCR was performed to assess myostatin gene expression. Fibers 30 µm (30-50 and > 50 µm) at 70 days were 25.39% and 40.07% for DPRO and DCON, respectively. There was greater myostatin gene expression at 105 days, averaging 1.93 and 1.89 for DCON and DPRO, respectively, with no significant difference in any of the analyzed periods. Propolis ethanol extract did not affect the diameter of muscle fibers or the gene expression of myostatin. Future studies should describe the mechanisms of natural products' effects on muscle growth and development since these factors are highly relevant for fish production performance.

  5. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.

    Science.gov (United States)

    van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K

    2018-04-01

    Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different

  6. Schizotypy and brain structure : a voxel-based morphometry study

    NARCIS (Netherlands)

    Modinos, G.; Mechelli, A.; Ormel, J.; Groenewold, N. A.; Aleman, A.; McGuire, P. K.

    Background. Schizotypy is conceptualized as a subclinical manifestation of the same underlying biological factors that give rise to schizophrenia and other schizophrenia spectrum disorders. Individuals with psychometric schizotypy (PS) experience subthreshold psychotic signs and can be

  7. Can Taichi reshape the brain? A brain morphometry study.

    Directory of Open Access Journals (Sweden)

    Gao-Xia Wei

    Full Text Available Although research has provided abundant evidence for Taichi-induced improvements in psychological and physiological well-being, little is known about possible links to brain structure of Taichi practice. Using high-resolution MRI of 22 Tai Chi Chuan (TCC practitioners and 18 controls matched for age, sex and education, we set out to examine the underlying anatomical correlates of long-term Taichi practice at two different levels of regional specificity. For this purpose, parcel-wise and vertex-wise analyses were employed to quantify the difference between TCC practitioners and the controls based on cortical surface reconstruction. We also adopted the Attention Network Test (ANT to explore the effect of TCC on executive control. TCC practitioners, compared with controls, showed significantly thicker cortex in precentral gyrus, insula sulcus and middle frontal sulcus in the right hemisphere and superior temporal gyrus and medial occipito-temporal sulcus and lingual sulcus in the left hemisphere. Moreover, we found that thicker cortex in left medial occipito-temporal sulcus and lingual sulcus was associated with greater intensity of TCC practice. These findings indicate that long-term TCC practice could induce regional structural change and also suggest TCC might share similar patterns of neural correlates with meditation and aerobic exercise.

  8. Voxel-based morphometry in women with borderline personality disorder with and without comorbid posttraumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Inga Niedtfeld

    Full Text Available Patients with Borderline Personality Disorder (BPD showed reduced volume of amygdala and hippocampus, but similar findings are evident in Posttraumatic Stress Disorder (PTSD. Applying voxel-based morphometry (VBM in a larger cohort of patients with BPD, we sought to extend earlier findings of volume abnormalities in limbic regions and to evaluate the influence of co-occurring PTSD in BPD patients. We used voxel-based morphometry to study gray matter volume (GMV in 60 healthy controls (HC and 60 patients with BPD. Subgroup analyses on 53 patients concerning the role of co-occurring PTSD were conducted. Additionally, regression analyses were calculated to assess the relation between borderline symptom severity as well as dissociative experiences and GMV. Differences in local GMV between patients with BPD and HC were observed in the amygdale and hippocampus as well as in the fusiform and cingulate gyrus. Co-occurring PTSD was accompanied by increased GMV in the superior temporal gyrus and dorsolateral prefrontal cortex. Independent of co-occurring PTSD, severity of BPD symptoms predicted smaller GMV in the amygdala and dorsal ACC. Dissociation was positively related to GMV in the middle temporal gyrus. We could replicate earlier findings of diminished limbic GMV in patients with BPD and additionally show that patients with co-morbid PTSD feature increased GMV in prefrontal regions associated with cognitive control.

  9. Obeticholic Acid Improves Adipose Morphometry and Inflammation and Reduces Steatosis in Dietary but not Metabolic Obesity in Mice

    Science.gov (United States)

    Haczeyni, Fahrettin; Poekes, Laurence; Wang, Hans; Mridha, Auvro R.; Barn, Vanessa; Haigh, W. Geoffrey; Ioannou, George N.; Yeh, Matthew M; Leclercq, Isabelle A.; Teoh, Narcissus C.; Farrell, Geoffrey C.

    2018-01-01

    Objective Non-alcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients, but for unknown reason does not resolve NASH pathology. We therefore investigated OCA effects in Wt mice which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet which develop metabolic obesity and diabetes. Methods OCA (1mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. We studied adipose indices, glucose tolerance and fatty liver pathology. Experiments were repeated with OCA 10mg/kg. Results OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favour of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure (CLS) number in visceral adipose. foz/foz mice showed more CLSs in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10mg/kg. Conclusion OCA improves adipose indices, glucose tolerance and steatosis in milder metabolic phenotype, but fails to improve these factors in morbidly obese diabetic mice. These results help explain OCA’s limited efficacy to reverse human NASH. PMID:27804232

  10. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Daniel Schmitter

    2015-01-01

    Full Text Available Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.

  11. Nuclear Morphometry in Ductal Breast Carcinoma with Correlation to Cell Proliferative Activity and Prognosis

    International Nuclear Information System (INIS)

    Radwan, M.M.; Amer, K.A.; Mokhtar, N.M.

    2003-01-01

    Morphometry is the quantitative description of biologic structures. This study was designed to evaluate the efficiency of morphometric measurements in diagnosis and prognosis of patients with breast carcinoma. Methods: Histological samples from 61 patients of invasive duct carcinoma (IDC) of no special type (NST), 12 cases of ductal carcinoma in situ (DCIS) and 14 control breast samples taken from fibrocystic change disease were retrospectively analyzed by computerized nuclear morphometry. All IDC patients underwent modified radical mastectomy without preoperative chemotherapy. The mean follow up was 28±19 months (range] -71). In each case, 25-50 nuclei were measured and the mean nuclear area (MNA), mean nuclear perimeter (MNP), mean maximum nuclear diameter (MMNO) and mean minimal nuclear diameter (Mmnd) were measured. The mean axis ratio (MAR), mean nuclear compactness (MNC), mean nuclear size (MNS) and mean shape factor (MSHF), were calculated mathematically. To measure the nuclear diameters, a new method was employed using the AutoCAD program. Morphometric parameters were compared with different clinico pathologic features, patient's survival and cell proliferative activity as determined by Ki-67 immunostaining which was evaluated quantitatively. Most of the morphometric parameters were significantly higher in DCIS and IDC groups than benign one. In IDC group morphometric features related to nuclear size (MNA, MNP, MMNO, Mmnd and MNS) were significantly correlated to most clinico pathologic features and cell proliferative activity assessed by Ki-67 immunostaining. However, the shape factor failed to achieve this correlation. The univariate analysis using Kaplan Meier curves indicated that short survival time was correlated with high nuclear morphometric values (MNA. MNP, MMND, Mmnd, MNS and MSHF). Moreover, the Spear man correlation analysis showed that Mmnd has the highest converse correlation with survival (r= -0.75, (ρ < 0.0001). In multivariate analysis

  12. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging.

    Science.gov (United States)

    Profant, O; Škoch, A; Balogová, Z; Tintěra, J; Hlinka, J; Syka, J

    2014-02-28

    Age-related hearing loss (presbycusis) is caused mainly by the hypofunction of the inner ear, but recent findings point also toward a central component of presbycusis. We used MR morphometry and diffusion tensor imaging (DTI) with a 3T MR system with the aim to study the state of the central auditory system in a group of elderly subjects (>65years) with mild presbycusis, in a group of elderly subjects with expressed presbycusis and in young controls. Cortical reconstruction, volumetric segmentation and auditory pathway tractography were performed. Three parameters were evaluated by morphometry: the volume of the gray matter, the surface area of the gyrus and the thickness of the cortex. In all experimental groups the surface area and gray matter volume were larger on the left side in Heschl's gyrus and planum temporale and slightly larger in the gyrus frontalis superior, whereas they were larger on the right side in the primary visual cortex. Almost all of the measured parameters were significantly smaller in the elderly subjects in Heschl's gyrus, planum temporale and gyrus frontalis superior. Aging did not change the side asymmetry (laterality) of the gyri. In the central part of the auditory pathway above the inferior colliculus, a trend toward an effect of aging was present in the axial vector of the diffusion (L1) variable of DTI, with increased values observed in elderly subjects. A trend toward a decrease of L1 on the left side, which was more pronounced in the elderly groups, was observed. The effect of hearing loss was present in subjects with expressed presbycusis as a trend toward an increase of the radial vectors (L2L3) in the white matter under Heschl's gyrus. These results suggest that in addition to peripheral changes, changes in the central part of the auditory system in elderly subjects are also present; however, the extent of hearing loss does not play a significant role in the central changes. Copyright © 2013 IBRO. Published by Elsevier Ltd

  13. Divide and Conquer: Sub-Grouping of ASD Improves ASD Detection Based on Brain Morphometry

    Science.gov (United States)

    Baum, Stefi A.; Cahill, Nathan D.; Michael, Andrew M.

    2016-01-01

    Low success (ASD) classification using brain morphometry from the large multi-site ABIDE dataset and inconsistent findings on brain morphometric abnormalities in ASD can be attributed to the ASD heterogeneity. In this study, we show that ASD brain morphometry is highly heterogeneous, and demonstrate that the heterogeneity can be mitigated and classification improved if autism severity (AS), verbal IQ (VIQ) and age are used with morphometric features. Morphometric features from structural MRIs (sMRIs) of 734 males (ASD: 361, controls: 373) of ABIDE were derived using FreeSurfer. Applying the Random Forest classifier, an AUC of 0.61 was achieved. Adding VIQ and age to morphometric features, AUC improved to 0.68. Sub-grouping the subjects by AS, VIQ and age improved the classification with the highest AUC of 0.8 in the moderate-AS sub-group (AS = 7–8). Matching subjects on age and/or VIQ in each sub-group further improved the classification with the highest AUC of 0.92 in the low AS sub-group (AS = 4–5). AUC decreased with AS and VIQ, and was the lowest in the mid-age sub-group (13–18 years). The important features were mainly from the frontal, temporal, ventricular, right hippocampal and left amygdala regions. However, they highly varied with AS, VIQ and age. The curvature and folding index features from frontal, temporal, lingual and insular regions were dominant in younger subjects suggesting their importance for early detection. When the experiments were repeated using the Gradient Boosting classifier similar results were obtained. Our findings suggest that identifying brain biomarkers in sub-groups of ASD can yield more robust and insightful results than searching across the whole spectrum. Further, it may allow identification of sub-group specific brain biomarkers that are optimized for early detection and monitoring, increasing the utility of sMRI as an important tool for early detection of ASD. PMID:27065101

  14. The pterygoalar bar: A meta-analysis of its prevalence, morphology and morphometry.

    Science.gov (United States)

    Pękala, Przemysław A; Henry, Brandon Michael; Pękala, Jakub R; Frączek, Paulina A; Taterra, Dominik; Natsis, Konstantinos; Piagkou, Maria; Skrzat, Janusz; Tomaszewska, Iwona M

    2017-09-01

    The pterygoalar (PA) bar is a bony bridge resulting from the partial or complete ossification of a PA ligament. The aim of this meta-analysis was to systematically analyze and provide the most comprehensive data on the prevalence, morphology and topographical anatomy of the PA bar. A comprehensive search of the major electronic databases (PubMed, Embase, ScienceDirect, SciELO, BIOSIS, and Web of Science) was conducted in order to identify relevant studies. Studies reporting the prevalence, side of occurrence, gender dimorphism and morphometry of the PA bar were included in the current study. A total of 25 articles (n = 16,168 subjects) were included in the meta-analysis. The overall pooled prevalence of the complete PA bar was 4.4% (95% CI: 3.0-6.0) and of the incomplete was 8.4% (95% CI: 4.6-13.3). The PA bar was most often observed unilaterally, on the left side. Analysis of geographical subgroups revealed considerable differences, with the lowest prevalence rates in Europe for both incomplete and complete PA bars. Considering the prevalence and anatomical characteristics of the PA bar, caution is recommended while planning or performing transfacial needle approach to the foramen ovale and when considering a differential diagnosis for nerve compression or entrapment syndromes. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Exploring the effects of acid mine drainage on diatom teratology using geometric morphometry.

    Science.gov (United States)

    Olenici, Adriana; Blanco, Saúl; Borrego-Ramos, María; Momeu, Laura; Baciu, Călin

    2017-10-01

    Metal pollution of aquatic habitats is a major and persistent environmental problem. Acid mine drainage (AMD) affects lotic systems in numerous and interactive ways. In the present work, a mining area (Roșia Montană) was chosen as study site, and we focused on two aims: (i) to find the set of environmental predictors leading to the appearance of the abnormal diatom individuals in the study area and (ii) to assess the relationship between the degree of valve outline deformation and AMD-derived pollution. In this context, morphological differences between populations of Achnanthidium minutissimum and A. macrocephalum, including normal and abnormal individuals, were evidenced by means of valve shape analysis. Geometric morphometry managed to capture and discriminate normal and abnormal individuals. Multivariate analyses (NMDS, PLS) separated the four populations of the two species mentioned and revealed the main physico-chemical parameters that influenced valve deformation in this context, namely conductivity, Zn, and Cu. ANOSIM test evidenced the presence of statistically significant differences between normal and abnormal individuals within both chosen Achnanthidium taxa. In order to determine the relative contribution of each of the measured physico-chemical parameters in the observed valve outline deformations, a PLS was conducted, confirming the results of the NMDS. The presence of deformed individuals in the study area can be attributed to the fact that the diatom communities were strongly affected by AMD released from old mining works and waste rock deposits.

  16. Morphometry of the pituitary gland and hypothalamus in long-term survivors of childhood trauma.

    Science.gov (United States)

    Porto, L; Margerkurth, J; Althaus, J; You, S-J; Zanella, F E; Kieslich, M

    2011-11-01

    Chronic pituitary dysfunction is increasingly recognized as a sequela of traumatic brain injury (TBI). Our aim was to rule out any late morphometric changes of the pituitary gland and hypothalamus in survivors of TBI during childhood requiring intensive care. We assessed morphometric abnormalities of the sella region and hypothalamus in patients who sustained TBI during childhood. The patients showed no clinical hormonal dysfunction at the acute phase and pituitary hormone levels at the time of our study were within normal limits. From the 18 enrolled patients in the magnetic resonance study, five were removed due to morphological changes or anatomical variations. We studied the MRI of 13 male survivors (mean age 27 years, mean time after trauma 20 years) and compared them to 13 male control subjects who were matched in terms of age (mean age, 26 years), education and ethnicity. Analyses of the pituitary gland and sella on a midsagittal T2- and T1-weighted image were performed. We used voxel-based morphometry (VBM), an unbiased MRI morphometric method to investigate hypothalamic region in this group of patients. There was only a trend towards a reduced pituitary gland width in the patient group compared to controls. However, no significant morphological and morphometric abnormality was seen and VBM showed no hypothalamic grey matter loss. In the absence of hormonal dysfunction, no persisting morphometric changes of the pituitary gland and hypothalamus were seen in survivors of childhood TBI requiring intensive care.

  17. Latitudinal and altitudinal controls of Titan's dune field morphometry

    Science.gov (United States)

    Le Gall, A.; Hayes, A. G.; Ewing, R.; Janssen, M. A.; Radebaugh, J.; Savage, C.; Encrenaz, P.; the Cassini Radar Team

    2012-01-01

    Dune fields dominate ˜13% of Titan's surface and represent an important sink of carbon in the methane cycle. Herein, we discuss correlations in dune morphometry with altitude and latitude. These correlations, which have important implications in terms of geological processes and climate on Titan, are investigated through the microwave electromagnetic signatures of dune fields using Cassini radar and radiometry observations. The backscatter and emissivity from Titan's dune terrains are primarily controlled by the amount of interdune area within the radar footprint and are also expected to vary with the degree of the interdunal sand cover. Using SAR-derived topography, we find that Titan's main dune fields (Shangri-La, Fensal, Belet and Aztlan) tend to occupy the lowest elevation areas in Equatorial regions occurring at mean elevations between ˜-400 and ˜0 m (relative to the geoid). In elevated dune terrains, we show a definite trend towards a smaller dune to interdune ratio and possibly a thinner sand cover in the interdune areas. A similar correlation is observed with latitude, suggesting that the quantity of windblown sand in the dune fields tends to decrease as one moves farther north. The altitudinal trend among Titan's sand seas is consistent with the idea that sediment source zones most probably occur in lowlands, which would reduce the sand supply toward elevated regions. The latitudinal preference could result from a gradual increase in dampness with latitude due to the asymmetric seasonal forcing associated with Titan's current orbital configuration unless it is indicative of a latitudinal preference in the sand source distribution or wind transport capacity.

  18. IDENTIFYING THE INFLUENCE OF MORPHOMETRY ON THE URBAN MORPHOLOGY OF ZALĂU USING GIS

    Directory of Open Access Journals (Sweden)

    ANDREEA MARIA VÂTCA

    2014-11-01

    Full Text Available Identifying the Influence of Morphometry on the Urban Morphology of Zalău Using GIS. The topography is considered to be the main component lying at the basis of human activities and settlements. Its analysis can highlight the territories which are favourable or restrictive for urban expansion and city development. The present study used cartographic databases and geoinformation software to identify the present distribution of edilitary constructions on elevation and slope angle intervals, two morphometric characteristics which have the strongest influence on the urban development of Zalău Municipality. In order to highlight the geomorphological processes which influence in a negative way the city expansion, the study has identified the building distribution in each neighbourhood on landslide probability classes, these specific categories being identified using the methodology described in the Governmental Decision 447/2003. Starting from these databases, the geomorphological risk map was created. This type of analysis, which relies on the current territorial expansion of the city, offers an overall image on the future development options and enables a sustainable planning of the analysed territory.

  19. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2013-07-01

    Full Text Available Scientific studies addressing anatomical variations in meditators’ brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM. To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls, where meditators have been practicing close to twenty years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentate, entorhinal cortex, subiculum as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri- hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators – perhaps due to an attenuated release of stress hormones and decreased neurotoxicity.

  20. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    Science.gov (United States)

    Luders, Eileen; Kurth, Florian; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2013-01-01

    Scientific studies addressing anatomical variations in meditators' brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to 20 years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentata, entorhinal cortex, subiculum) as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri-) hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators—perhaps due to an attenuated release of stress hormones and decreased neurotoxicity. PMID:23847572

  1. Automated MR morphometry to predict Alzheimer's disease in mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, Klaus H.; Schlindwein, Sarah; Bruggen, Thomas van; Meinzer, Hans-Peter [German Cancer Research Center, Division of Medical and Biological Informatics, Heidelberg (Germany); Stieltjes, Bram; Essig, Marco [German Cancer Research Center, Division of Radiology, Heidelberg (Germany)

    2010-12-15

    Prediction of progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is challenging but essential for early treatment. This study aims to investigate the use of hippocampal atrophy markers for the automatic detection of MCI converters and to compare the predictive value to manually obtained hippocampal volume and temporal horn width. A study was performed with 15 patients with Alzheimer and 18 patients with MCI (ten converted, eight remained stable in a 3-year follow-up) as well as 15 healthy subjects. MRI scans were obtained at baseline and evaluated with an automated system for scoring of hippocampal atrophy. The predictive value of the automated system was compared with manual measurements of hippocampal volume and temporal horn width in the same subjects. The conversion to AD was correctly predicted in 77.8% of the cases (sensitivity 70%, specificity 87.5%) in the MCI group using automated morphometry and a plain linear classifier that was trained on the AD and healthy groups. Classification was improved by limiting analysis to the left cerebral hemisphere (accuracy 83.3%, sensitivity 70%, specificity 100%). The manual linear and volumetric approaches reached rates of 66.7% (40/100%) and 72.2% (60/87.5%), respectively. The automatic approach fulfills many important preconditions for clinical application. Contrary to the manual approaches, it is not observer-dependent and reduces human resource requirements. Automated assessment may be useful for individual patient assessment and for predicting progression to dementia. (orig.)

  2. Automated MR morphometry to predict Alzheimer's disease in mild cognitive impairment

    International Nuclear Information System (INIS)

    Fritzsche, Klaus H.; Schlindwein, Sarah; Bruggen, Thomas van; Meinzer, Hans-Peter; Stieltjes, Bram; Essig, Marco

    2010-01-01

    Prediction of progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is challenging but essential for early treatment. This study aims to investigate the use of hippocampal atrophy markers for the automatic detection of MCI converters and to compare the predictive value to manually obtained hippocampal volume and temporal horn width. A study was performed with 15 patients with Alzheimer and 18 patients with MCI (ten converted, eight remained stable in a 3-year follow-up) as well as 15 healthy subjects. MRI scans were obtained at baseline and evaluated with an automated system for scoring of hippocampal atrophy. The predictive value of the automated system was compared with manual measurements of hippocampal volume and temporal horn width in the same subjects. The conversion to AD was correctly predicted in 77.8% of the cases (sensitivity 70%, specificity 87.5%) in the MCI group using automated morphometry and a plain linear classifier that was trained on the AD and healthy groups. Classification was improved by limiting analysis to the left cerebral hemisphere (accuracy 83.3%, sensitivity 70%, specificity 100%). The manual linear and volumetric approaches reached rates of 66.7% (40/100%) and 72.2% (60/87.5%), respectively. The automatic approach fulfills many important preconditions for clinical application. Contrary to the manual approaches, it is not observer-dependent and reduces human resource requirements. Automated assessment may be useful for individual patient assessment and for predicting progression to dementia. (orig.)

  3. Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis

    Directory of Open Access Journals (Sweden)

    Brenda Carla Luquetti

    2016-08-01

    Full Text Available ABSTRACT This study aimed to assess the effects of glutamine as feed additive on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. A total of 400 day-old male chicks were randomly assigned to four treatments (NVNG – no vaccination, no glutamine supplementation; NVG – no vaccination, glutamine supplementation (10 g kg−1; VNG – vaccination, no glutamine supplementation; VG – vaccination, glutamine supplementation replicated four times with 25 birds per replicate. A commercial sprayed-on vaccine against coccidiosis containing Eimeria acervulina, E. maxima, E. mivati, and E. tenella was administered at the hatchery. Broiler performance was evaluated from 1-28 days, and morphometric parameters were analyzed at 14, 21, and 28 days of age. Body weight gain and feed intake were negatively affected by vaccination, but not by glutamine. Vaccination increased crypt depth in the duodenum and jejunum at 21 and 28 days. In conclusion, this study showed that glutamine was not able to increase weight gain of broiler chickens, irrespective of whether the animals were vaccinated or not against coccidiosis. Glutamine supplementation was able to improve feed conversion in vaccinated birds suggesting trophic effect on intestinal epithelium improving.

  4. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    Science.gov (United States)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  5. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    International Nuclear Information System (INIS)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang

    2008-01-01

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  6. MANDIBULAR MORPHOMETRY APPLIED TO ANESTHETIC BLOCKAGE IN THE MANED WOLF (CHRYSOCYON BRACHYURUS).

    Science.gov (United States)

    de Souza Junior, Paulo; de Moraes, Flavio Machado; de Carvalho, Natan da Cruz; Canelo, Evandro Alves; Thiesen, Roberto; Santos, André Luiz Quagliatto

    2016-03-01

    Chrysocyon brachyurus (maned wolf) is the biggest South American canid and has a high frequency of dental injuries, both in the wild and in captivity. Thus, veterinary procedures are necessary to preserve the feeding capacity of hundreds of captive specimens worldwide. The aim of this study was to investigate the mandibular morphometry of the maned wolf with emphasis on the establishment of anatomic references for anesthetic block of the inferior alveolar and mental nerves. Therefore, 16 measurements in 22 mandibles of C. brachyurus adults were taken. For extraoral block of the inferior alveolar nerve at the level of the mandibular foramen, the needle should be advanced close to the medial face of the mandibular ramus for 11.4 mm perpendicular to the palpable concavity. In another extraoral approach, the needle may be introduced for 30.4 mm from the angular process at a 20-25° angle to the ventral margin. For blocking only the mental nerve, the needle should be inserted for 10 mm from ventral border, close to the labial surface of the mandibular body, at the level of the lower first premolar. The mandibular foramen showed similar position, size, and symmetry in the maned wolf specimens examined. Comparison of the data observed here with those available for other carnivores indicates the need to determine these anatomic references specifically for each species.

  7. An enhanced voxel-based morphometry method to investigate structural changes: application to Alzheimer's disease

    International Nuclear Information System (INIS)

    Li, Xingfeng; Messe, Arnaud; Marrelec, Guillaume; Pelegrini-Issac, Melanie; Benali, Habib

    2010-01-01

    When characterizing regional cerebral gray matter differences in structural magnetic resonance images (sMRI) by voxel-based morphometry (VBM), one faces a known drawback of VBM, namely that histogram unequalization in the intensity images introduces false-positive results. To overcome this limitation, we propose to improve VBM by a new approach (called eVBM for enhanced VBM) that takes the histogram distribution of the sMRI into account by adding a histogram equalization step within the VBM procedure. Combining this technique with two most widely used VBM software packages (FSL and SPM), we studied GM variability in a group of 62 patients with Alzheimer's disease compared to 73 age-matched elderly controls. The results show that eVBM can reduce the number of false-positive differences in gray matter concentration. Because it takes advantage of the properties of VBM while improving sMRI histogram distribution at the same time, the proposed method is a powerful approach for analyzing gray matter differences in sMRI and may be of value in the investigation of sMRI gray and white matter abnormalities in a variety of brain diseases. (orig.)

  8. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang [Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China)

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD.

  9. Regional White Matter Decreases in Alzheimer's Disease Using Optimized Voxel-Based Morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuyu Li; Fang Pu; Feng Shi; Sheng Xie; Yinhua Wang; Tianzi Jiang (Dept. of Bioengineering, Beijing Univ. of Aeronautics and Astronautics, Beijing (China))

    2008-02-15

    Background: Most studies that attempt to clarify structural abnormalities related to functional disconnection in patients with Alzheimer's disease (AD) have focused on exploring pathological changes in cortical gray matter. However, white matter fibers connecting these cerebral areas may also be abnormal. Purpose: To investigate the regional changes of white matter volume in patients with AD compared to healthy subjects. Material and Methods: White matter volume changes in whole-brain magnetic resonance images acquired from 19 patients with AD and 20 healthy subjects (control group) were observed using the optimized voxel-based morphometry (VBM) method. In addition, the corpus callosum (CC) of AD patients and the control group was investigated further by outlining manually the boundary of the CC on a midsagittal slice. Each area of the CC was then corrected by dividing each subject's intracranial area in the midsagittal plane. Results: Compared with the control group, AD patients showed significantly reduced white matter volumes in the posterior part of the CC and the temporal lobe in the left and right hemispheres. Moreover, the voxel showing peak statistical difference in the posterior of the CC was left sided. The five subdivisions of the CC were also significantly smaller among the AD patients relative to the control group. Conclusion: Our findings suggest that these abnormalities in white matter regions may contribute to the functional disconnections in AD

  10. Morphometry of lower lumbar vertebrae as seen on CT scans: newly recognized characteristics

    International Nuclear Information System (INIS)

    van Schaik, J.J.P.; Verbiest, H.; van Schaik, F.D.J.

    1985-01-01

    Transaxial computed tomographic (CT) sections represent a new approach to vertebral morphometry, allowing certain measurements to be made in vivo for the first time. The cross-sectional morphology of the bodies and pedicles of L3, L4, and L5 was studied in a series of 213 vertebrae. This revealed that the pedicles of L5 arise more laterally from the body of L5 than from L3. Further, the lateral surfaces of the L5 body are inclined obliquely, unlike those of L3. L4 is transitional in form between L3 and L5, more closely resembling the former. This morphology explains the fact, hitherto unnoticed, that the lateral outlines of the pedicles and the lateral borders of the body of L5 are not normally imaged on plain anteroposterior radiographs. It is evident that pathologic changes of the lateral borders of the body of L5 may be invisible also. In cases of transitional vertebrae in the lumbosacral region the presence or absence of the lateral outlines of the pedicles and of the lateral borders of the vertebral body may be of help in identifying the vertebrae on conventional projections

  11. Assessment of osteoporotic vertebral fractures using specialized workflow software for 6-point morphometry

    International Nuclear Information System (INIS)

    Guglielmi, Giuseppe; Palmieri, Francesco; Placentino, Maria Grazia; D'Errico, Francesco; Stoppino, Luca Pio

    2009-01-01

    Purpose: To evaluate the time required, the accuracy and the precision of a model-based image analysis software tool for the diagnosis of osteoporotic fractures using a 6-point morphometry protocol. Materials and methods: Lateral dorsal and lumbar radiographs were performed on 92 elderly women (mean age 69.2 ± 5.7 years). Institutional review board approval and patient informed consent were obtained for all subjects. The semi-automated and the manual correct annotations of 6-point placement were compared to calculate the time consumed and the accuracy of the software. Twenty test images were randomly selected and the data obtained by multiple perturbed initialisation points on the same image were compared to assess the precision of the system. Results: The time requirement data of the semi-automated system (420 ± 67 s) were statistically different (p < 0.05) from that of manual placement (900 ± 77 s). In the accuracy test, the mean reproducibility error for semi-automatic 6-point placement was 2.50 ± 0.72% [95% CI] for the anterior-posterior reference and 2.16 ± 0.5% [95% CI] for the superior-inferior reference. In the precision test the mean error resulted averaged over all vertebrae was 2.6 ± 1.3% in terms of vertebral width. Conclusions: The technique is time effective, accurate and precise and can, therefore, be recommended in large epidemiological studies and pharmaceutical trials for reporting of osteoporotic vertebral fractures.

  12. Regional gray matter density associated with emotional conflict resolution: evidence from voxel-based morphometry.

    Science.gov (United States)

    Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J

    2014-09-05

    Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Behavioral changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Tsujimoto, Masashi; Senda, Jo; Ishihara, Tetsuro; Niimi, Yoshiki; Kawai, Yoshinari; Atsuta, Naoki; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-08-15

    Amyotrophic lateral sclerosis (ALS) is a multisystem disorder with impairment of frontotemporal functions such as cognition and behavior, but the behavioral changes associated with ALS are not well defined. Twenty-one consecutive patients with sporadic ALS and 21 control subjects participated in the study. The Frontal System Behavior Scale (FrSBe) was used to assess behavioral change. Voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) were performed to explore the associations of brain degeneration with behavior. All patients were evaluated before the notification of ALS. FrSBe scores of ALS patients before notification were significantly increased compared to those of control subjects. Moreover, the FrSBe Apathy score of ALS patients significantly changed from pre- to post-illness (P<0.001). The severity of apathy was significantly correlated with atrophy in the prefrontal cortex, especially in the orbitofrontal (P=0.006) and dorsolateral prefrontal (P=0.006) cortices in VBM, and in the right frontal gyrus (P<0.001) in DTI. ALS patients exhibited apathy during the early course of the illness, the severity of which was significantly associated with frontal lobe involvement. These findings support the view that a continuum exits between ALS and frontotemporal dementia. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder

    Science.gov (United States)

    Magana, Omar; Laird, Robert

    2012-03-01

    A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.

  15. Adolescent drinking and brain morphometry: A co-twin control analysis

    Directory of Open Access Journals (Sweden)

    Sylia Wilson

    2015-12-01

    Full Text Available Developmental changes in structure and functioning are thought to make the adolescent brain particularly sensitive to the negative effects of alcohol. Although alcohol use disorders are relatively rare in adolescence, the initiation of alcohol use, including problematic use, becomes increasingly prevalent during this period. The present study examined associations between normative drinking (alcohol initiation, binge drinking, intoxication and brain morphometry in a sample of 96 adolescent monozygotic twins. A priori regions of interest included 11 subcortical and 20 cortical structures implicated in the existing empirical literature as associated with normative alcohol use in adolescence. In addition, co-twin control analyses were used to disentangle risk for alcohol use from consequences of alcohol exposure on the developing brain. Results indicated significant associations reflecting preexisting vulnerability toward problematic alcohol use, including reduced volume of the amygdala, increased volume of the cerebellum, and reduced cortical volume and thickness in several frontal and temporal regions, including the superior and middle frontal gyri, pars triangularis, and middle and inferior temporal gyri. Results also indicated some associations consistent with a neurotoxic effect of alcohol exposure, including reduced volume of the ventral diencephalon and the middle temporal gyrus.

  16. Morphometry of Left Frontal and Temporal Poles Predicts Analogical Reasoning Abilities.

    Science.gov (United States)

    Aichelburg, Clarisse; Urbanski, Marika; Thiebaut de Schotten, Michel; Humbert, Frederic; Levy, Richard; Volle, Emmanuelle

    2016-03-01

    Analogical reasoning is critical for making inferences and adapting to novelty. It can be studied experimentally using tasks that require creating similarities between situations or concepts, i.e., when their constituent elements share a similar organization or structure. Brain correlates of analogical reasoning have mostly been explored using functional imaging that has highlighted the involvement of the left rostrolateral prefrontal cortex (rlPFC) in healthy subjects. However, whether inter-individual variability in analogical reasoning ability in a healthy adult population is related to differences in brain architecture is unknown. We investigated this question by employing linear regression models of performance in analogy tasks and voxel-based morphometry in 54 healthy subjects. Our results revealed that the ability to reason by analogy was associated with structural variability in the left rlPFC and the anterior part of the inferolateral temporal cortex. Tractography of diffusion-weighted images suggested that these 2 regions have a different set of connections but may exchange information via the arcuate fasciculus. These results suggest that enhanced integrative and semantic abilities supported by structural variation in these areas (or their connectivity) may lead to more efficient analogical reasoning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Predicting human age using regional morphometry and inter-regional morphological similarity

    Science.gov (United States)

    Wang, Xun-Heng; Li, Lihua

    2016-03-01

    The goal of this study is predicting human age using neuro-metrics derived from structural MRI, as well as investigating the relationships between age and predictive neuro-metrics. To this end, a cohort of healthy subjects were recruited from 1000 Functional Connectomes Project. The ages of the participations were ranging from 7 to 83 (36.17+/-20.46). The structural MRI for each subject was preprocessed using FreeSurfer, resulting in regional cortical thickness, mean curvature, regional volume and regional surface area for 148 anatomical parcellations. The individual age was predicted from the combination of regional and inter-regional neuro-metrics. The prediction accuracy is r = 0.835, p Pearson correlation coefficient between predicted ages and actual ages. Moreover, the LASSO linear regression also found certain predictive features, most of which were inter-regional features. The turning-point of the developmental trajectories in human brain was around 40 years old based on regional cortical thickness. In conclusion, structural MRI could be potential biomarkers for the aging in human brain. The human age could be successfully predicted from the combination of regional morphometry and inter-regional morphological similarity. The inter-regional measures could be beneficial to investigating human brain connectome.

  18. Effect of oral dietary supplement for chicks subjected to thermal oscillation on performance and intestinal morphometry

    Directory of Open Access Journals (Sweden)

    Jovanir Inês Müller Fernandes

    2017-09-01

    Full Text Available The aim of the study was to evaluate the efficacy of a nutritional formulation based on amino acids and vitamins supplemented in the drinking water for chicks in the first week of life subjected to thermal oscillation on performance, organ development and intestinal morphometry from 1 to 21 days. 640-male broiler chicks were distributed in a 2x2 factorial completely randomized design (with or without dietary supplementation and at comfort temperature or thermal oscillation. Chicks subjected to thermal oscillation presented worse performance (p < 0.05 than those under thermal comfort of 1 to 7, 1 to 14 and 1 to 21 days. Nutritional supplementation did not alter the performance (p < 0.05 of the birds, but resulted in a higher body weight (p < 0.05 regardless of the environmental thermal condition. At 7 days, chicks under thermal comfort had better intestinal morphometric parameters (p < 0.05, in relation to birds under thermal oscillation. In conclusion, the temperature oscillations caused negative consequences to the productive performance and the intestinal morphology of chicks for which dietary supplementation was not enough to mitigate the effects of the environmental challenge during the first week of life of the birds.

  19. Regional gray matter density is associated with achievement motivation: evidence from voxel-based morphometry.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yokoyama, Ryoichi; Iizuka, Kunio; Hashizume, Hiroshi; Nakagawa, Seishu; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2014-01-01

    Achievement motivation can be defined as a recurrent need to improve one's past performance. Despite previous functional imaging studies on motivation-related functional activation, the relationship between regional gray matter (rGM) morphology and achievement motivation has never been investigated. We used voxel-based morphometry and a questionnaire (achievement motivation scale) to measure individual achievement motivation and investigated the association between rGM density (rGMD) and achievement motivation [self-fulfillment achievement motivation (SFAM) and competitive achievement motivation (CAM) across the brain in healthy young adults (age 21.0 ± 1.8 years, men (n = 94), women (n = 91)]. SFAM and rGMD significantly and negatively correlated in the orbitofrontal cortex (OFC). CAM and rGMD significantly and positively correlated in the right putamen, insula, and precuneus. These results suggest that the brain areas that play central roles in externally modulated motivation (OFC and putamen) also contribute to SFAM and CAM, respectively, but in different ways. Furthermore, the brain areas in which rGMD correlated with CAM are related to cognitive processes associated with distressing emotions and social cognition, and these cognitive processes may characterize CAM.

  20. A comparison between pre- and posthibernation morphometry, hematology, and blood chemistry in viperid snakes.

    Science.gov (United States)

    Dutton, Christopher J; Taylor, Peter

    2003-03-01

    Snakes from temperate climates are often made to hibernate in zoos to stimulate reproduction. Unfortunately, deaths have occurred during and after hibernation. This study evaluated the health status, pre- and posthibernation, of 31 adult viperid snakes. It included morphometric measurements, hematology, and blood chemistry. No differences were seen in body weights and weight to length ratios between pre- and posthibernation examinations, suggesting that the overall condition of the snakes did not change. No differences were seen in hematologic and blood chemistry parameters, except that bile acids (3alpha-hydroxybile acids) decreased, the implications of which are unknown. Three individuals had markedly high plasma uric acid levels posthibernation; of these, two individuals died from extensive visceral gout and one recovered with fluid therapy. Viperid snakes should be clinically healthy, well hydrated, and in good body condition when they are put into hibernation. They should be maintained in an environment with sufficient humidity and should have access to water. Blood samples should be collected on arousal for measuring plasma uric acid levels. Changes in morphometry, hematology, and blood chemistry appear to be abnormal and should be investigated thoroughly.

  1. Morphometry, growth and reproduction of an Atlantic population of the razor clam Ensis macha (Molina, 1782

    Directory of Open Access Journals (Sweden)

    Pedro J. Barón

    2004-06-01

    Full Text Available Ensis macha is a razor clam distributed throughout the coasts of southern Argentina and Chile. Even though it represents a valuable fishery resource, the exploitation of its Atlantic populations has begun only in recent years. This study provides the first estimates of growth rate, an interpretation of the reproductive cycle on the coast of the northern Argentine Patagonia and an analysis of the species morphometry. Growth was estimated by direct observation of growth rings on the valves by two observers. The reproductive cycle was interpreted by the analysis of temporal change of oocyte size frequency distributions. Parameter estimations for the von Bertalanffy equations respectively obtained by observers 1 and 2 were 154 and 153.7 mm for L?, 0.25 and 0.20 yr-1 for k, and -0.08 and -0.72 yr for t0. Two spawning peaks were detected: September-November 1999 and May-June 2000. However, mature females were found all year round. An abrupt change in the relationship between shell length and height was detected at 11.2 mm length.

  2. Morphometry of eyes, antennae and wings in three species of Siagona (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Federica Talarico

    2011-05-01

    Full Text Available In carabid beetles, physiological and behavioural characteristics reflect specific habitat demands and there is a strong correlation between body form and habit in species with different life style. In this study, we compared the morphometry and compound eye characteristics of three species of the genus Siagona: S. jenissoni, S. dejeani and S. europaea. These carabids have a stenotopic lifestyle in Mediterranean clayey soils, inhabiting the ground fissure system formed during the dry season. All species have a Mediterranean distribution and are nocturnal olfactory hunters, and are strict ant predators. For morphometric measurements, we considered body length (mm, wing length (mm, antenna length (mm, head width (mm, trochanter length (mm, number of ommatidia, eye surface area (mm2, ommatidia density (number of ommatidia/mm2 of eye surface area, head height (mm, thorax height (mm and abdomen height (mm. The data revealed intersexual and interspecific differences. The three species differ in relative length of the antennae, density and number of ommatidia and relative trochanter length. Significant differences occurred in wing sizes, which are well developed in S. europaea, the only species capable of flight. When eye size is compared with other ground beetles of various lifestyles, Siagona shows pronounced “microphthalmy” an adaptation to subterranean life in clayey crevices of tropical and subtropical climates with a marked dry season.

  3. Focal retrograde amnesia: voxel-based morphometry findings in a case without MRI lesions.

    Directory of Open Access Journals (Sweden)

    Bernhard Sehm

    Full Text Available Focal retrograde amnesia (FRA is a rare neurocognitive disorder presenting with an isolated loss of retrograde memory. In the absence of detectable brain lesions, a differentiation of FRA from psychogenic causes is difficult. Here we report a case study of persisting FRA after an epileptic seizure. A thorough neuropsychological assessment confirmed severe retrograde memory deficits while anterograde memory abilities were completely normal. Neurological and psychiatric examination were unremarkable and high-resolution MRI showed no neuroradiologically apparent lesion. However, voxel-based morphometry (VBM-comparing the MRI to an education-, age-and sex-matched control group (n = 20 disclosed distinct gray matter decreases in left temporopolar cortex and a region between right posterior parahippocampal and lingual cortex. Although the results of VBM-based comparisons between a single case and a healthy control group are generally susceptible to differences unrelated to the specific symptoms of the case, we believe that our data suggest a causal role of the cortical areas detected since the retrograde memory deficit is the preeminent neuropsychological difference between patient and controls. This was paralleled by grey matter differences in central nodes of the retrograde memory network. We therefore suggest that these subtle alterations represent structural correlates of the focal retrograde amnesia in our patient. Beyond the implications for the diagnosis and etiology of FRA, our results advocate the use of VBM in conditions that do not show abnormalities in clinical radiological assessment, but show distinct neuropsychological deficits.

  4. Hip morphometry of femoroacetabular impingement pattern in patients with ankylosing spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Yoon; Lee, Eu Gene; Choi, Jung Ah [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-06-15

    To analyze hip morphometry of femoroacetabular impingement (FAI) pattern in patients with ankylosing spondylitis (AS) and correlate them with sacroiliitis grades. 384 patients with AS were analyzed regarding demographics, radiologic signs of FAI for hip involvement, and sacroiliitis grades. FAI was classified into 3 types according to alpha angle, lateral center-edge angle and pistol grip deformity. Sacroiliitis was graded according to the New York criteria. Prevalence of FAI morphometry types was determined and evaluated for association with sacroiliitis grades. Statistical analysis regarding numerical variables, including age, sacroiliitis score using t-test, sacroiliitis score in three groups using Kruskal-Wallis test and Mann-Whitney U-test, corrected by Bonferroni methods for post hoc analysis was done. Among 384 patients, 141 (36.7%) had FAI morphometry. Male predominance was found in group with FAI pattern involvement (87.2%) (p = 0.000). Pincer type (20.6%) was the most common. Hip involvement group also showed greater sacroiliitis score (2.49 vs. 1.75, p = 0.000). Combined-type had greater sacroiliitis score compared with others (p = 0.002, 0.003). FAI morphometry was frequent in hips of AS patients (36.7%), especially pincer type, more frequent in male, and associated with significantly greater grade of sacroiliitis; combined type FAI pattern had greater sacroiliitis score.

  5. Hip morphometry of femoroacetabular impingement pattern in patients with ankylosing spondylitis

    International Nuclear Information System (INIS)

    Lee, Jong Yoon; Lee, Eu Gene; Choi, Jung Ah

    2015-01-01

    To analyze hip morphometry of femoroacetabular impingement (FAI) pattern in patients with ankylosing spondylitis (AS) and correlate them with sacroiliitis grades. 384 patients with AS were analyzed regarding demographics, radiologic signs of FAI for hip involvement, and sacroiliitis grades. FAI was classified into 3 types according to alpha angle, lateral center-edge angle and pistol grip deformity. Sacroiliitis was graded according to the New York criteria. Prevalence of FAI morphometry types was determined and evaluated for association with sacroiliitis grades. Statistical analysis regarding numerical variables, including age, sacroiliitis score using t-test, sacroiliitis score in three groups using Kruskal-Wallis test and Mann-Whitney U-test, corrected by Bonferroni methods for post hoc analysis was done. Among 384 patients, 141 (36.7%) had FAI morphometry. Male predominance was found in group with FAI pattern involvement (87.2%) (p = 0.000). Pincer type (20.6%) was the most common. Hip involvement group also showed greater sacroiliitis score (2.49 vs. 1.75, p = 0.000). Combined-type had greater sacroiliitis score compared with others (p = 0.002, 0.003). FAI morphometry was frequent in hips of AS patients (36.7%), especially pincer type, more frequent in male, and associated with significantly greater grade of sacroiliitis; combined type FAI pattern had greater sacroiliitis score

  6. Reproducibility of a semi-automatic method for 6-point vertebral morphometry in a multi-centre trial

    International Nuclear Information System (INIS)

    Guglielmi, Giuseppe; Stoppino, Luca Pio; Placentino, Maria Grazia; D'Errico, Francesco; Palmieri, Francesco

    2009-01-01

    Purpose: To evaluate the reproducibility of a semi-automated system for vertebral morphometry (MorphoXpress) in a large multi-centre trial. Materials and methods: The study involved 132 clinicians (no radiologist) with different levels of experience across 20 osteo-centres in Italy. All have received training in using MorphoXpress. An expert radiologist was also involved providing data used as standard of reference. The test image originate from normal clinical activity and represent a variety of normal, under and over exposed films, indicating both normal anatomy and vertebral deformities. The image was represented twice to the clinicians in a random order. Using the software, the clinicians initially marked the midpoints of the upper and lower vertebrae to include as many of the vertebrae (T5-L4) as practical within each given image. MorphoXpress performs the localisation of all morphometric points based on statistical model-based vision system. Intra-operator as well inter-operator measurement of agreement was calculated using the coefficient of variation and the mean and standard deviation of the difference of two measurements to check their agreement. Results: The overall intra-operator mean differences in vertebral heights is 1.61 ± 4.27% (1 S.D.). The overall intra-operator coefficient of variation is 3.95%. The overall inter-operator mean differences in vertebral heights is 2.93 ± 5.38% (1 S.D.). The overall inter-operator coefficient of variation is 6.89%. Conclusions: The technology tested here can facilitate reproducible quantitative morphometry suitable for large studies of vertebral deformities

  7. Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis.

    Science.gov (United States)

    Wang, Zhi-Wei; Lee, Wayne Yuk-Wai; Lam, Tsz-Ping; Yip, Benjamin Hon-Kei; Yu, Fiona Wai-Ping; Yu, Wing-Sze; Zhu, Feng; Ng, Bobby Kin-Wah; Qiu, Yong; Cheng, Jack Chun-Yiu

    2017-06-01

    Osteopenia has been widely reported in about 30 % of girls with adolescent idiopathic scoliosis (AIS). However, the bone quality profile of the 70 % non-osteopenic AIS defined by areal bone mineral density (BMD) with conventional dual-energy X-ray absorptiometry (DXA) has not been adequately studied. Our purpose was to verify whether abnormal volumetric BMD (vBMD) and bone structure (morphometry and micro-architecture) also existed in the non-osteopenic AIS when compared with matched controls using both DXA and high-resolution peripheral computed tomography (HR-pQCT). This was a case-control cross-sectional study. 257 AIS girls with a mean age of 12.7 (SD = 0.8) years old and 187 age- and gender-matched normal controls with an average age of 12.9 (SD = 0.5) years old were included. Areal BMD (aBMD) and bone quality were measured with standard DXA and HR-pQCT, respectively. The parameters of HR-pQCT could be categorized as bone morphometry, vBMD and bone micro-architecture. The results were compared between the osteopenic AIS and osteopenic control, and between the non-osteopenic AIS and non-osteopenic control. In addition to the lower aBMD and vBMD, osteopenic AIS showed significantly greater cortical perimeter and trabecular area than the osteopenic control even after adjustments of age (P architecture and volumetric density profile compared with their normal matched controls. The observed abnormalities were suggestive of decreased endocortical bone apposition or active endocortical resorption that could affect the mechanical bone strength in AIS. The underlying pathomechanism might be attributed to abnormal bone modeling/remodeling that could be associated with the etiopathogenesis of AIS.

  8. Fibrosis progression under maintenance interferon in hepatitis C is better detected by blood test than liver morphometry.

    Science.gov (United States)

    Calès, P; Zarski, J P; Chapplain, J Marc; Bertrais, S; Sturm, N; Michelet, C; Babany, G; Chaigneau, J; Eddine Charaf, M

    2012-02-01

    We evaluated whether quantitative measurements of liver fibrosis with recently developed diagnostics outperform histological staging in detecting natural or interferon-induced changes. We compared Metavir staging, morphometry (area and fractal dimension) and six blood tests in 157 patients with chronic hepatitis C from two trials testing maintenance interferon for 96 weeks. Paired liver biopsies and blood tests were available for 101 patients, and there was a significant improvement in Metavir activity and a significant increase in blood tests reflecting fibrosis quantity in patients treated with interferon when compared with controls - all per cent changes in histological fibrosis measures were significantly increased in F1 vs F2-4 stages only in the interferon group. For the whole population studied between weeks 0 and 96, there was significant progression only in the area of fibrosis (AOF) (P = 0.026), FibroMeter (P = 0.020) and CirrhoMeter (P = 0.003). With regards to dynamic reproducibility, agreement was good (r(ic) ≥ 0.72) only for Metavir fibrosis score, FibroMeter and CirrhoMeter. The per cent change in AOF was significantly higher than that of fractal dimension (P = 0.003) or Metavir fibrosis score (P = 0.015). CirrhoMeter was the only blood test with a change significantly higher than that of AOF (P = 0.039). AOF and two blood tests, reflecting fibrosis quantity, have high sensitivity and/or reproducibility permitting the detection of a small progression in liver fibrosis over two years. A blood test reflecting fibrosis quantity is more sensitive and reproducible than morphometry. The study also shows that maintenance interferon does not improve fibrosis, whatever its stage. © 2011 Blackwell Publishing Ltd.

  9. Alcohol use disorder with and without stimulant use: brain morphometry and its associations with cigarette smoking, cognition, and inhibitory control.

    Directory of Open Access Journals (Sweden)

    David L Pennington

    Full Text Available Little is known about the effects of polysubstance use and cigarette smoking on brain morphometry. This study examined neocortical brain morphometric differences between abstinent polysubstance dependent and alcohol-only dependent treatment seekers (ALC as well as light drinking controls (CON, the associations of cigarette smoking in these polysubstance users (PSU, and morphometric relationships to cognition and inhibitory control.All participants completed extensive neuropsychological assessments and 4 Tesla brain magnetic resonance imaging. PSU and ALC were abstinent for one month at the time of study. Parcellated morphological data (volume, surface area, thickness were obtained with FreeSurfer methodology for the following bilateral components: dorso-prefrontal cortex (DPFC, anterior cingulate cortex (ACC, orbitofrontal cortex (OFC, and insula. Regional group differences were examined and structural data correlated with domains of cognition and inhibitory control.PSU had significantly smaller left OFC volume and surface area and trends to smaller right DPFC volume and surface area compared to CON; PSU did not differ significantly from ALC on these measures. PSU, however, had significantly thinner right ACC than ALC. Smoking PSU had significantly larger right OFC surface area than non-smoking PSU. No significant relationships between morphometry and quantity/frequency of substance use, alcohol use, or age of onset of heavy drinking were observed. PSU exhibited distinct relationships between brain structure and processing speed, cognitive efficiency, working memory and inhibitory control that were not observed in ALC or CON.Polysubstance users have unique morphometric abnormalities and structure-function relationships when compared to individuals dependent only on alcohol and light drinking controls. Chronic cigarette smoking is associated with structural brain irregularities in polysubstance users. Further elucidation of these distinctive

  10. Morphometry and Morphology of Fresh Craters on Titan

    Science.gov (United States)

    Kirk, R. L.; Wood, C. A.; Neish, C.; Lucas, A.; Hayes, A. G.; Cassini Radar Team

    2011-12-01

    Cassini RADAR imagery obtained on Titan flyby T77 revealed a 40-km diameter fresh impact crater at 11.6° N 44.6° W. This is only the 8th crater identified with high confidence (Wood et al., 2010, Icarus 206, 334), and the 3rd (after Sinlap D=79 km and Ksa D=30 km) for which the depth can be estimated by comparing the foreshortening of the near and far walls. This "autostereo" technique yields an estimated depth of 680 m. The T77 image forms a stereo pair with the T17 discovery image of Ksa from which we estimate the depth of Ksa at 750-800 m, in close agreement with SARTopo data. The depth of Sinlap is 760 m based on SARTopo. Depth-diameter ratios for these craters thus range from 0.01 to 0.025 and the depths are comparable to but 200-400 m shallower than fresh craters of the same size on Ganymede (Bray et al., 2008, Met. Planet Sci. 43, 1979). The depth differences could be explained by initial crater morphometry, by relaxation in a different thermal environment, or (perhaps most plausibly given the bland floors of even the freshest Titan craters) to sedimentary infill. In contrast, the 18x36 km elliptical depression at Sotra Facula is much deeper than Ganymede craters of similar size (d=1500 m from stereo), supporting the conclusion that it is not an impact crater. All three craters exhibit a relatively radar-bright annulus around the outer edge of the floor, possibly as the result of mass wasting of blocky materials from the crater walls. The central part of each crater is darker. The central darker floor of the new crater is symmetrical and featureless, whereas Ksa has a bright central ring 7 km in diameter. Stereo spot heights indicate the ring is 350±100 m above the outer floor. This height is in close agreement with the scaling for Ganymede crater central peaks from Bray et al. (2008). The darker floor area of Sinlap is substantially asymmetrical with a small bright central spot whose elevation is unknown. The new crater has continuous, radar

  11. Standardization of whole slide image morphologic assessment with definition of a new application: Digital slide dynamic morphometry

    Directory of Open Access Journals (Sweden)

    Giacomo Puppa

    2011-01-01

    Full Text Available Background: In histopathology, the quantitative assessment of various morphologic features is based on methods originally conceived on specific areas observed through the microscope used. Failure to reproduce the same reference field of view using a different microscope will change the score assessed. Visualization of a digital slide on a screen through a dedicated viewer allows selection of the magnification. However, the field of view is rectangular, unlike the circular field of optical microscopy. In addition, the size of the selected area is not evident, and must be calculated. Materials and Methods: A digital slide morphometric system was conceived to reproduce the various methods published for assessing tumor budding in colorectal cancer. Eighteen international experts in colorectal cancer were invited to participate in a web-based study by assessing tumor budding with five different methods in 100 digital slides. Results: The specific areas to be tested by each method were marked by colored circles. The areas were grouped in a target-like pattern and then saved as an .xml file. When a digital slide was opened, the .xml file was imported in order to perform the measurements. Since the morphometric tool is composed of layers that can be freely moved on top of the digital slide, the technique was named digital slide dynamic morphometry. Twelve investigators completed the task, the majority of them performing the multiple evaluations of each of the cases in less than 12 minutes. Conclusions: Digital slide dynamic morphometry has various potential applications and might be a useful tool for the assessment of histologic parameters originally conceived for optical microscopy that need to be quantified.

  12. [Voxel-Based Morphometry in Medicated-naive Boys with Attention-deficit/hyperactivity Disorder(ADHD)].

    Science.gov (United States)

    Liu, Qi; Chen, Lizhou; Li, Fei; Chen, Ying; Guo, Lanting; Gong, Qiyong; Huang, Xiaoqi

    2016-06-01

    Attention-deficit/hyperactivity disorder(ADHD)is one of the most common neuro-developmental disorders occurring in childhood,characterized by symptoms of age-inappropriate inattention,hyperactivity/impulsivity,and the prevalence is higher in boys.Although gray matter volume deficits have been frequently reported for ADHD children via structural magnetic resonance imaging,few of them had specifically focused on male patients.The present study aimed to explore the alterations of gray matter volumes in medicated-naive boys with ADHD via a relatively new voxel-based morphometry technique.According to the criteria of DSM-IV-TR,43medicated-naive ADHD boys and 44age-matched healthy boys were recruited.The magnetic resonance image(MRI)scan was performed via a 3T MRI system with three-dimensional(3D)spoiled gradient recalled echo(SPGR)sequence.Voxel-based morphometry with diffeomorphic anatomical registration through exponentiated lie algebra in SPM8 was used to preprocess the3DT1-weighted images.To identify gray matter volume differences between the ADHD and the controls,voxelbased analysis of whole brain gray matter volumes between two groups were done via two sample t-test in SPM8 with age as covariate,threshold at P<0.001.Finally,compared to the controls,significantly reduced gray matter volumes were identified in the right orbitofrontal cortex(peak coordinates[-2,52,-25],t=4.01),and bilateral hippocampus(Left:peak coordinates[14,0,-18],t=3.61;Right:peak coordinates[-14,15,-28],t=3.64)of ADHD boys.Our results demonstrated obvious reduction of whole brain gray matter volumes in right orbitofrontal cortex and bilateral hippocampus in boys with ADHD.This suggests that the abnormalities of prefrontal-hippocampus circuit may be the underlying cause of the cognitive dysfunction and abnormal behavioral inhibition in medicatednaive boys with ADHD.

  13. Differences in cell morphometry, cell wall topography and gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates.

    Directory of Open Access Journals (Sweden)

    Rafaela A Castro

    Full Text Available Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes.

  14. Applicability of preoperative nuclear morphometry to evaluating risk for cervical lymph node metastasis in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Masaaki Karino

    Full Text Available BACKGROUND: We previously reported the utility of preoperative nuclear morphometry for evaluating risk for cervical lymph node metastases in tongue squamous cell carcinoma. The risk for lymph node metastasis in oral squamous cell carcinoma, however, is known to differ depending on the anatomical site of the primary tumor, such as the tongue, gingiva, mouth floor, and buccal mucosa. In this study, we evaluated the applicability of this morphometric technique to evaluating the risk for cervical lymph node metastasis in oral squamous cell carcinoma. METHODS: A digital image system was used to measure the mean nuclear area, mean nuclear perimeter, nuclear circular rate, ratio of nuclear length to width (aspect ratio, and nuclear area coefficient of variation (NACV. Relationships between these parameters and nodal status were evaluated by t-test and logistic regression analysis. RESULTS: Eighty-eight cases of squamous cell carcinoma (52 of the tongue, 25 of the gingiva, 4 of the buccal mucosa, and 7 of the mouth floor were included: 46 with positive node classification and 42 with negative node classification. Nuclear area and perimeter were significantly larger in node-positive cases than in node-negative cases; however, there were no significant differences in circular rate, aspect ratio, or NACV. We derived two risk models based on the results of multivariate analysis: Model 1, which identified age and mean nuclear area and Model 2, which identified age and mean nuclear perimeter. It should be noted that primary tumor site was not associated the pN-positive status. There were no significant differences in pathological nodal status by aspect ratio, NACV, or primary tumor site. CONCLUSION: Our method of preoperative nuclear morphometry may contribute valuable information to evaluations of the risk for lymph node metastasis in oral squamous cell carcinoma.

  15. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2017-05-01

    Full Text Available Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR images using multilevel-features-based classification method.Method: The multilevel region of interest (ROI features consist of two types of features: (i ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs with appropriate weighting factor.Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions.Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.

  16. Voxel-based morphometry analyses of in-vivo MRI in the aging mouse lemur primate

    Directory of Open Access Journals (Sweden)

    Stephen John Sawiak

    2014-05-01

    Full Text Available Cerebral atrophy is one of the most widely brain alterations associated to aging. A clear relationship has been established between age-associated cognitive impairments and cerebral atrophy. The mouse lemur (Microcebus murinus is a small primate used as a model of age-related neurodegenerative processes. It is the first nonhuman primate in which cerebral atrophy has been correlated with cognitive deficits. Previous studies of cerebral atrophy in this model were based on time consuming manual delineation or measurement of selected brain regions from magnetic resonance images (MRI. These measures could not be used to analyse regions that cannot be easily outlined such as the nucleus basalis of Meynert or the subiculum. In humans, morphometric assessment of structural changes with age is generally performed with automated procedures such as voxel-based morphometry (VBM. The objective of our work was to perform user-independent assessment of age-related morphological changes in the whole brain of large mouse lemur populations thanks to VBM. The study was based on the SPMMouse toolbox of SPM 8 and involved thirty mouse lemurs aged from 1.9 to 11.3 years. The automatic method revealed for the first time atrophy in regions where manual delineation is prohibitive (nucleus basalis of Meynert, subiculum, prepiriform cortex, Brodmann areas 13-16, hypothalamus, putamen, thalamus, corpus callosum. Some of these regions are described as particularly sensitive to age-associated alterations in humans. The method revealed also age-associated atrophy in cortical regions (cingulate, occipital, parietal, nucleus septalis, and the caudate. Manual measures performed in some of these regions were in good agreement with results from automatic measures. The templates generated in this study as well as the toolbox for SPM8 can be downloaded. These tools will be valuable for future evaluation of various treatments that are tested to modulate cerebral aging in lemurs.

  17. The influence of ovarian hyperstimulation drugs on morphometry and morphology of human oocytes in ICSI program.

    Science.gov (United States)

    Taheri, Fatemeh; Alemzadeh Mehrizi, Arezoo; Khalili, Mohammad Ali; Halvaei, Iman

    2018-04-01

    To compare the influences of controlled ovarian hyperstimulation (COH) drugs using recombinant follicular stimulating hormone (rFSH) versus human menopausal gonadotropins (hMG) on morphometry and morphology of MII oocytes in ICSI cycles. In this prospective study, 363 MII oocytes from 50 ICSI cycles with male factor infertility were evaluated. The patients were divided into two groups according to the protocols of COH: I- rFSH and II- hMG. The immature oocytes were excluded from the study. All oocytes were categorized into four morphological groups of normal, and those with single, double, or multiple defects. The inclusive morphometrical criteria were: areas and diameters of oocyte, ooplasm, and zona pellucida (ZP). Also, circumferences of oocyte and ooplasm were assessed. The ZP area and ooplasm diameter for both normal and abnormal oocytes were significantly higher in group I (P: .05; P: .028, respectively) compared to group II (P: .023; P: .003, respectively). In abnormal oocytes, ooplasm diameter was higher in group I compared to group II. Furthermore, ooplasm area for abnormal oocytes was significantly higher in group I compared to group II. There was an increasing trend for number of mature oocytes, in abnormal oocytes, for group I (5.53 ± 3.1) in comparison with group II (4.4 ± 2.97; P = .25). The rate of oocytes with normal morphology was significantly higher in hMG, when compared to rFSH groups. Morphometrical parameters were increased in rFSH group, but the normal morphology of oocytes were significantly enhanced in hMG group. Treatment with proper dosage of ovulation induction drugs may enhance the number of normal sized oocytes. Copyright © 2018. Published by Elsevier B.V.

  18. Changes in intraocular pressure and anterior segment morphometry after uneventful phacoemulsification cataract surgery.

    LENUS (Irish Health Repository)

    Dooley, I

    2012-02-01

    PURPOSE: To study changes in anterior segment morphometry after uneventful phacoemulsification cataract surgery, and to investigate whether there is a relationship between any observed changes and intraocular pressure (IOP) reduction after the procedure. METHODS: The anterior chamber depth (ACD), anterior chamber volume (ACV), anterior chamber angle (ACA), central corneal thickness (CCT), and IOP were measured in 101 non-glaucomatous eyes before and after uneventful phacoemulsification cataract surgery. RESULTS: After cataract surgery, the mean ACD, ACV, and ACA values increased by 1.08 mm, 54.4 mm(3), and 13.1 degrees , respectively, and the mean IOP (corrected for CCT) decreased by 3.2 mm Hg. The predictive value of a previously described index (preoperative ACD\\/preoperative IOP (corrected for CCT) or CPD ratio) for IOP (corrected for CCT) reduction after cataract surgery was confirmed, reflected in an r(2) value of 23.3% between these two parameters (P<0.001). Other indices predictive of IOP reduction after cataract surgery were also identified, including preoperative IOP\\/preoperative ACV and preoperative IOP\\/preoperative ACA, reflected in r(2) values of 13.7 and 13.7%, respectively (P<0.001 and P<0.001, respectively). CONCLUSIONS: Our study confirms the predictive value of the CPD ratio for IOP reduction after cataract surgery, and may contribute to the decision-making process in patients with glaucoma or ocular hypertension. Furthermore, two novel indices of preoperative parameters that are predictive for IOP reduction after cataract surgery were identified, and enhance our understanding of the mechanisms underlying IOP changes after this procedure.

  19. Effects of HIV and childhood trauma on brain morphometry and neurocognitive function.

    Science.gov (United States)

    Spies, Georgina; Ahmed-Leitao, Fatima; Fennema-Notestine, Christine; Cherner, Mariana; Seedat, Soraya

    2016-04-01

    A wide spectrum of neurocognitive deficits characterises HIV infection in adults. HIV infection is additionally associated with morphological brain abnormalities affecting neural substrates that subserve neurocognitive function. Early life stress (ELS) also has a direct influence on brain morphology. However, the combined impact of ELS and HIV on brain structure and neurocognitive function has not been examined in an all-female sample with advanced HIV disease. The present study examined the effects of HIV and childhood trauma on brain morphometry and neurocognitive function. Structural data were acquired using a 3T Magnetom MRI scanner, and a battery of neurocognitive tests was administered to 124 women: HIV-positive with ELS (n = 32), HIV-positive without ELS (n = 30), HIV-negative with ELS (n = 31) and HIV-negative without ELS (n = 31). Results revealed significant group volumetric differences for right anterior cingulate cortex (ACC), bilateral hippocampi, corpus callosum, left and right caudate and left and right putamen. Mean regional volumes were lowest in HIV-positive women with ELS compared to all other groups. Although causality cannot be inferred, findings also suggest that alterations in the left frontal lobe, right ACC, left hippocampus, corpus callosum, left and right amygdala and left caudate may be associated with poorer neurocognitive performance in the domains of processing speed, attention/working memory, abstraction/executive functions, motor skills, learning and language/fluency with these effects more pronounced in women living with both HIV and childhood trauma. This study highlights the potential contributory role of childhood trauma to brain alterations and neurocognitive decline in HIV-infected individuals.

  20. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players

    Directory of Open Access Journals (Sweden)

    Hanna eGärtner

    2013-09-01

    Full Text Available To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using Deformation Field Morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed.Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout

  1. Voxel based morphometry of FLAIR MRI in children with intractable focal epilepsy: Implications for surgical intervention

    International Nuclear Information System (INIS)

    Riney, Catherine J.; Chong, William K.; Clark, Chris A.; Cross, J. Helen

    2012-01-01

    Purpose: Magnetic resonance imaging (MRI), in particular fluid-attenuated inversion-recovery (FLAIR), has transformed the delineation of structural brain pathology associated with focal epilepsy. However, to date there is no literature on voxel based morphometry (VBM) of FLAIR in children with epilepsy. The aim of this study was to explore the role of visual and VBM assessment of FLAIR in pre-operative investigation of children with intractable focal epilepsy. Methods: Children with intractable epilepsy due to focal cortical dysplasia (FCD) and children with intractable cryptogenic focal epilepsy (CFE) were investigated. FLAIR and T1-weighted MRI were acquired on a 1.5T MRI scanner (Siemens, Erlangen, Germany). VBM was performed using SPM5 (Wellcome Institute of Cognitive Neuroscience, London). Results: Eight children with FCD (M = 5, age 7.9–17.3 years) and 14 children with CFE (M = 8, 7.8–16.8 years) were enrolled. VBM of FLAIR detected 7/8 (88%) of FCD whilst VBM of T1-weighted MRI detected only 3/8 (38%) FCD. VBM of FLAIR detected abnormality in 4/14 children with CFE, in 2/14 (14%) the abnormality was concordant with other data on the epileptogenic zone and with visible abnormality on repeat visual inspection of MR data. VBM of T1-weighed MRI detected abnormality in 2/14 children with CFE, none of which correlated with visible abnormality. Discussion: This study highlights the important role that FLAIR imaging has in the pre-operative assessment of children with intractable epilepsy. VBM of FLAIR may provide important information allowing selection of children with intractable CFE who are likely to benefit from further neuroradiological or neurophysiological evaluation.

  2. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.

    Science.gov (United States)

    Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L

    2017-01-01

    The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.

  3. Analyses of Rock Size-Frequency Distributions and Morphometry of Modified Hawaiian Lava Flows: Implications for Future Martian Landing Sites

    Science.gov (United States)

    Craddock, Robert A.; Golombek, Matthew; Howard, Alan D.

    2000-01-01

    Both the size-frequency distribution and morphometry of rock populations emplaced by a variety of geologic processes in Hawaii indicate that such information may be useful in planning future landing sites on Mars and interpreting the surface geology.

  4. Lake Morphometry for NHD Lakes in the Western Portion of the South Atlantic-Gulf Region 3 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  5. Lake Morphometry for NHD Lakes in the Northern Portion of the South Atlantic-Gulf Region 3 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  6. Lake Morphometry for NHD Lakes in the Southern Portion of the South Atlantic-Gulf Region 3 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  7. Altered brain morphometry in carpal tunnel syndrome is associated with median nerve pathology☆☆☆

    Science.gov (United States)

    Maeda, Yumi; Kettner, Norman; Sheehan, James; Kim, Jieun; Cina, Stephen; Malatesta, Cristina; Gerber, Jessica; McManus, Claire; Mezzacappa, Pia; Morse, Leslie R.; Audette, Joseph; Napadow, Vitaly

    2013-01-01

    Objective Carpal tunnel syndrome (CTS) is a common median nerve entrapment neuropathy characterized by pain, paresthesias, diminished peripheral nerve conduction velocity (NCV) and maladaptive functional brain neuroplasticity. We evaluated structural reorganization in brain gray matter (GM) and white matter (WM) and whether such plasticity is linked to altered median nerve function in CTS. Methods We performed NCV testing, T1-weighted structural MRI, and diffusion tensor imaging (DTI) in 28 CTS and 28 age-matched healthy controls (HC). Voxel-based morphometry (VBM) contrasted regional GM volume for CTS versus HC. Significant clusters were correlated with clinical metrics and served as seeds to define associated WM tracts using DTI data and probabilistic tractography. Within these WM tracts, fractional anisotropy (FA), axial (AD) and radial (RD) diffusivity were evaluated for group differences and correlations with clinical metrics. Results For CTS subjects, GM volume was significantly reduced in contralesional S1 (hand-area), pulvinar and frontal pole. GM volume in contralesional S1 correlated with median NCV. NCV was also correlated with RD and was negatively correlated with FA within U-fiber cortico-cortical association tracts identified from the contralesional S1 VBM seed. Conclusions Our study identified clear morphometric changes in the CTS brain. This central morphometric change is likely secondary to peripheral nerve pathology and altered somatosensory afference. Enhanced axonal coherence and myelination within cortico-cortical tracts connecting primary somatosensory and motor areas may accompany peripheral nerve deafferentation. As structural plasticity was correlated with NCV and not symptomatology, the former may be a better determinant of appropriate clinical intervention for CTS, including surgery. PMID:23799199

  8. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars.

    Science.gov (United States)

    Kurthukoti, Ameet J; Sharma, Pranjal; Swamy, Dinesh Francis; Shashidara, R; Swamy, Elaine Barretto

    2015-01-01

    Need for the study: The most important procedure for a successful endodontic treatment is the cleaning and shaping of the canal system. Understanding the internal anatomy of teeth provides valuable information to the clinician that would help him achieve higher clinical success during endodontic therapy. To evaluate by computed tomography-the internal anatomy of mandibular second primary molars with respect to the number of canals, cross-sectional shape of canals, cross-sectional area of canals and the root dentin thickness. A total of 31 mandibular second primary molars were subjected to computed-tomographic evaluation in the transverse plane, after mounting them in a prefabricated template. The images, thus, obtained were analyzed using De-winter Bio-wizard® software. All the samples demonstrated two canals in the mesial root, while majority of the samples (65.48%) demonstrated two canals in the distal root. The cross-sectional images of the mesial canals demonstrated a round shape, while the distal canals demonstrated an irregular shape. The root dentin thickness was highly reduced on the distal aspect of mesial and mesial aspect of distal canals. The mandibular second primary molars demonstrated wide variation and complexities in their internal anatomy. A thorough understanding of the complexity of the root canal system is essential for understanding the principles and problems of shaping and cleaning, determining the apical limits and dimensions of canal preparations, and for performing successful endodontic procedures. How to cite this article: Kurthukoti AJ, Sharma P, Swamy DF, Shashidara R, Swamy EB. Computed Tomographic Morphometry of the Internal Anatomy of Mandibular Second Primary Molars. Int J Clin Pediatr Dent 2015;8(3):202-207.

  9. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis.

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-09-15

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.

  10. Sperm ultrastructure, morphometry, and abnormal morphology in American black bears (Ursus americanus).

    Science.gov (United States)

    Brito, L F C; Sertich, P L; Stull, G B; Rives, W; Knobbe, M

    2010-11-01

    The objective of this study was to describe sperm ultrastructure, morphometry, and abnormal morphology in American black bears. Electroejaculation was successful in 53.8% (7/13) of the attempts, but urine contamination was common. Epididymal sperm samples were also obtained from five bears. Sperm had a paddle-like head shape and the ultrastructure was similar to that of most other mammals. The most striking particularity of black bear sperm ultrastructure was a tightening of the nucleus in the equatorial region. Although the differences were not significant in all bears, the overall decrease in sperm nucleus dimensions during transport from the caput epididymis to the cauda suggested increasing compaction of the nucleus during maturation. For ejaculated sperm, nucleus length, width, and base width were 4.9, 3.7, and 1.8 μm, respectively, whereas sperm head length, width, and base width were 6.6, 4.8, and 2.3 μm, and midpiece, tail (including midpiece), and total sperm lengths were 9.8, 68.8, and 75.3 μm. Evaluation of sperm cytoplasmic droplets in the epididymis revealed that proximal droplets start migrating toward a distal position in the caput epididymis and that the process was mostly completed by the time sperm reached the cauda epididymis. The proportion of morphologically normal sperm in the ejaculate was 35.6%; the most prevalent sperm defects were distal cytoplasmic droplets and bent/coiled tails. The morphology of abnormal sperm and the underlying ultrastructural defects were similar to that in other large domestic animals thus suggesting similar underlying pathogenesis of specific sperm defects and similar effects on fertility. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-01-01

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities. PMID:25206550

  12. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon.

    Directory of Open Access Journals (Sweden)

    Israel Medina-Gómez

    Full Text Available This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 ("La Niña" which is associated with a wetter dry season and following a strong storm (Hurricane Dean. The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system's salinity gradient and external nutrients supply from the coastal wetland.

  13. Identification of nurseries areas of juvenile Prochilodus lineatus (Valenciennes, 1836) (Characiformes: Prochilodontidae) by scale and otolith morphometry and microchemistry

    OpenAIRE

    Avigliano, Esteban; Fortunato, Roberta Callicó; Biolé, Fernanda; Domanico, Alejandro; Simone, Silvia De; Neiff, Juan J.; Volpedo, Alejandra V.

    2016-01-01

    ABSTRACT The streaked prochilod Prochilodus lineatus (Valenciennes) is a commercially freshwater species from South America, distributed in the Plata basin. In the present work the morphometry (circularity, rectangularity, form factor, OL/OW and ellipticity indices) and chemistry (Sr:Ca, Ba:Ca, Zn:Ca) of lapilli otolith, and geometric morphometry of scales of streaked prochilod juveniles, in two sites in the Plata basin (Uruguay River and Estrella Wetland), were compared to determine if they ...

  14. Estuarine morphometry governs optically active substances, Kd(PAR) and beam attenuation

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Nielsen, J. M.; Blüthgen, J.

    2013-01-01

    estuaries using OACs as input parameters. It is concluded that there are no large differences in OAC concentrations between the two estuaries. The spatial distributions of OACs and optical properties were significantly different and governed by the estuary morphometry, i.e. a power distribution......°N) at high discharges. The major difference was the spatial distribution of the optical properties against distance, best described by significant power functions in the ria, compared to significant linear functions in the coastal plain. It was hypothesized that estuarine morphometry could explain...... this spatial distribution. Partition and multiple regression analyses showed that Chl-a governed Kd(PAR) and beam attenuation coefficient in both estuaries. Significant, high correlations were obtained by multiple regression analyses in the estimation of Kd(PAR) and beam attenuation coefficients in the two...

  15. Astrocyte morphology after cortical stab wound revealed by single-cell confocal 3D morphometry

    Czech Academy of Sciences Publication Activity Database

    Chvátal, Alexandr; Anděrová, Miroslava; Petřík, David; Syková, Eva

    č. 2 (2003), s. 63 ISSN 0894-1491. [European Meeting on Glia l Cell Function in Health and Disease /6./. Berlín, 03.09.2003-06.09.2003] R&D Projects: GA ČR GA305/02/1528; GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 111300004 Keywords : cortical stab wound * morphometry Subject RIV: FH - Neurology Impact factor: 4.677, year: 2003

  16. THE STATISTICAL MODEL OF PRESSURE RIDGE MORPHOMETRY ON THE NORTHEAST SHELF OF SAKHALIN ISLAND

    Directory of Open Access Journals (Sweden)

    E. U. Mironov

    2012-01-01

    Full Text Available The work presents characteristics on geometry and inner structure of ice ridges investigated at offshore the northeast coast of SakhalinIsland. A formula was obtained which allows one to calculate the ice ridge keel depth by the height of its sail. Plots of the probability distribution density for ice ridge characteristics are given. A model of morphometry of a mean statistical ice ridge was constructed, and its mass is determined. Factors influencing the hydrostatic ice ridge equilibrium are considered.

  17. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis.

    Science.gov (United States)

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2016-02-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.

  18. Structural changes in Parkinson's disease: voxel-based morphometry and diffusion tensor imaging analyses based on 123I-MIBG uptake.

    Science.gov (United States)

    Kikuchi, Kazufumi; Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Somehara, Ryo; Kamei, Ryotaro; Baba, Shingo; Yamaguchi, Hiroo; Kira, Jun-Ichi; Honda, Hiroshi

    2017-12-01

    Patients with Parkinson's disease (PD) may exhibit symptoms of sympathetic dysfunction that can be measured using 123 I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy. We investigated the relationship between microstructural brain changes and 123 I-MIBG uptake in patients with PD using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analyses. This retrospective study included 24 patients with PD who underwent 3 T magnetic resonance imaging and 123 I-MIBG scintigraphy. They were divided into two groups: 12 MIBG-positive and 12 MIBG-negative cases (10 men and 14 women; age range: 60-81 years, corrected for gender and age). The heart/mediastinum count (H/M) ratio was calculated on anterior planar 123 I-MIBG images obtained 4 h post-injection. VBM and DTI were performed to detect structural differences between these two groups. Patients with low H/M ratio had significantly reduced brain volume at the right inferior frontal gyrus (uncorrected p  90). Patients with low H/M ratios also exhibited significantly lower fractional anisotropy than those with high H/M ratios (p based morphometry can detect grey matter changes in Parkinson's disease. • Diffusion tensor imaging can detect white matter changes in Parkinson's disease.

  19. Microscopic morphology and testis morphometry of captivity-bred Adult bullfrogs (Lithobates catesbeianus Shaw, 1802

    Directory of Open Access Journals (Sweden)

    Jaqueline Carlos

    2009-12-01

    Full Text Available The aim of this work was to study the testicular morphometry of captivity-bred adult bullfrogs. Fifteen young adult male were studied, in the rainy season and a lengthy photoperiod. The GSI was established at 0.15%. The nuclear diameter of germinative and Leydig cells, the nucleolus diameter of Sertoli cells and the area of cysts and tubules were determined and the mean number of ISPC, IISPC and SPT per cyst and the mean number of cysts per tubule was estimated. The nucleoplasmatic proportion of the nucleus of the Leydig cell was 76.22%, indicating less cytoplasmic activity. Eight generations of spermatogonia were found. The spermatogenesis efficiency in meiosis and in mitosis was 63 and 49%, respectively. The spermatogenesis of bullfrog fited in the pattern of other captivity Anurans, with differences as the morphology of Sertoli and Leydig cells nuclei.A morfometria é uma importante ferramenta para a biologia estrutural, permitindo estudos estereológicos e análises quantitativas. Existem muitos pontos a serem esclarecidos sobre a morfometria testicular desta espécie, que objetivamos desvendar neste trabalho. Quinze machos adultos foram estudados, em período chuvoso e de fotoperíodo longo (dezembro, 2000. O IGS encontrado foi de 0.15%. O diâmetro nuclear das células germinativas e da célula de Leydig, o diâmetro nucleolar das células de Sertoli e a área dos cistos e túbulos foram determinados. O número médio de ISPC, IISPC e SPT por cisto e o número médio de cisto por túbulo foi estimado. A proporção nucleoplasmática do núcleo da célula de Leydig foi de 76.22%, indicando pouca atividade citoplasmática. Oito gerações de espermatogônia foram estimadas. A eficiência da espermatogênese na meiose e mitose foi de 63% e49%, respectivamente. A espermatogênese de rãtouro segue os padrões dos demais Anuros de cativeiro, apresentando diferenças nos núcleos das c��lulas de Sertoli e Leydig.

  20. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Hashimoto N

    2014-10-01

    Full Text Available Nobuhiko Hashimoto,1 Shutaro Nakaaki,2 Akiko Kawaguchi,1 Junko Sato,1 Harumasa Kasai,3 Takashi Nakamae,4 Jin Narumoto,4 Jun Miyata,5 Toshi A Furukawa,6,7 Masaru Mimura2 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; 2Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 3Department of Central Radiology, Nagoya City University Hospital, Nagoya, Japan; 4Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 5Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 6Department of Health Promotion and Human Behavior, 7Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan Background: Although several functional imaging studies have demonstrated that behavior therapy (BT modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD, the structural abnormalities underlying BT-resistant OCD remain unknown. Methods: In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24 and nonresponders (n=15 to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results: Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion: These results suggest that the brain

  1. Morphometry of testis and seminiferous tubules of the adult crab-eating fox (Cerdocyon thous, Linnaeus, 1766

    Directory of Open Access Journals (Sweden)

    Bianca Cabral Caldeira

    2010-10-01

    Full Text Available Body and testicular biometric parameters are very important for establishing reproductive patterns and, consequently, the development of protocols for assisted reproduction in different species. A direct correlation between the testis weight and the sperm population was observed in other studied species, because the testis size primarily reflects the total volume of the seminiferous tubule, its main component. The objective of this study was to determine the testicular volume parameters and correlate data from morphometry of testis and seminiferous tubules with body mass in six adult crab-eating foxes. The mean body weight of the crab-eating foxes in this study was 6.53 kg, with approximately 0.068% allocated to the testicular mass and 0.042% specifically to seminiferous tubules, which represented 87.5% of the testicular parenchyma. The albuginea comprised 12.5% of the testicular mass. The mean diameter of seminiferous tubules was 236 µm, and the mean thickness of the seminiferous epithelium was 62.9 µm. Values of tubular parameters indicate a sperm productivity close to those observed in previously studied carnivores.

  2. Improving Tensor Based Recommenders with Clustering

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Zemaitis, Valdas

    2012-01-01

    Social tagging systems (STS) model three types of entities (i.e. tag-user-item) and relationships between them are encoded into a 3-order tensor. Latent relationships and patterns can be discovered by applying tensor factorization techniques like Higher Order Singular Value Decomposition (HOSVD),...... of the recommendations and execution time are improved and memory requirements are decreased. The clustering is motivated by the fact that many tags in a tag space are semantically similar thus the tags can be grouped. Finally, promising experimental results are presented...

  3. Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry.

    Science.gov (United States)

    Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-08-30

    "Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCLright superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.

  4. The relationship between human placental morphometry and ultrasonic measurements of utero-placental blood flow and fetal growth.

    Science.gov (United States)

    Salavati, N; Sovio, U; Mayo, R Plitman; Charnock-Jones, D S; Smith, G C S

    2016-02-01

    Ultrasonic fetal biometry and arterial Doppler flow velocimetry are widely used to assess the risk of pregnancy complications. There is an extensive literature on the relationship between pregnancy outcomes and the size and shape of the placenta. However, ultrasonic fetal biometry and arterial Doppler flow velocimetry have not previously been studied in relation to postnatal placental morphometry in detail. We conducted a prospective cohort study of nulliparous women in The Rosie Hospital, Cambridge (UK). We studied a group of 2120 women who had complete data on uterine and umbilical Doppler velocimetry and fetal biometry at 20, 28 and 36 weeks' gestational age, digital images of the placenta available, and delivered a liveborn infant at term. Associations were expressed as the difference in the standard deviation (SD) score of the gestational age adjusted ultrasound measurement (z-score) comparing the lowest and highest decile of the given placental morphometric measurement. The lowest decile of placental surface area was associated with 0.87 SD higher uterine artery Doppler mean pulsatility index (PI) at 20 weeks (95% CI: 0.68 to 1.07, P flow, respectively, and both are associated with fetal growth rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analysis of beak morphometry of the horned octopus Eledone cirrhosa (Cephalopoda: Octopoda in the Thracian Sea (NE Mediterranean

    Directory of Open Access Journals (Sweden)

    E. LEFKADITOU

    2004-06-01