Sample records for tensor coupling effects

  1. Link prediction via generalized coupled tensor factorisation

    DEFF Research Database (Denmark)

    Ermiş, Beyza; Evrim, Acar Ataman; Taylan Cemgil, A.


    This study deals with the missing link prediction problem: the problem of predicting the existence of missing connections between entities of interest. We address link prediction using coupled analysis of relational datasets represented as heterogeneous data, i.e., datasets in the form of matrices...... and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using...... different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links....

  2. Scalar-tensor theory of gravitation with negative coupling constant (United States)

    Smalley, L. L.; Eby, P. B.


    The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.

  3. Building a holographic superconductor with a scalar field coupled kinematically to Einstein tensor

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Xiao-Mei [Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Papantonopoulos, Eleftherios [Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)


    We study the holographic dual description of a superconductor in which the gravity sector consists of a Maxwell field and a charged scalar field which except its minimal coupling to gravity it is also coupled kinematically to Einstein tensor. As the strength of the new coupling is increased, the critical temperature below which the scalar field condenses is lowering, the condensation gap decreases faster than the temperature, the width of the condensation gap is not proportional to the size of the condensate and at low temperatures the condensation gap tends to zero for the strong coupling. These effects which are the result of the presence of the coupling of the scalar field to the Einstein tensor in the gravity bulk, provide a dual description of impurities concentration in a superconducting state on the boundary.

  4. Data fusion in metabolomics using coupled matrix and tensor factorizations

    DEFF Research Database (Denmark)

    Evrim, Acar Ataman; Bro, Rasmus; Smilde, Age Klaas


    With a goal of identifying biomarkers/patterns related to certain conditions or diseases, metabolomics focuses on the detection of chemical substances in biological samples such as urine and blood using a number of analytical techniques, including nuclear magnetic resonance (NMR) spectroscopy...... vast amounts of data using different analytical methods, data fusion remains a challenging task, in particular, when the goal is to capture the underlying factors and use them for interpretation, e.g., for biomarker identification. Furthermore, many data fusion applications require joint analysis...... of heterogeneous (i.e., in the form of higher order tensors and matrices) data sets with shared/unshared factors. In order to jointly analyze such heterogeneous data sets, we formulate data fusion as a coupled matrix and tensor factorization (CMTF) problem, which has already proved useful in many data mining...

  5. Spin-Tensor-Momentum-Coupled Bose-Einstein Condensates (United States)

    Luo, Xi-Wang; Sun, Kuei; Zhang, Chuanwei


    The recent experimental realization of spin-orbit coupling for ultracold atomic gases provides a powerful platform for exploring many interesting quantum phenomena. In these studies, spin represents the spin vector (spin 1 /2 or spin 1) and orbit represents the linear momentum. Here we propose a scheme to realize a new type of spin-tensor-momentum coupling (STMC) in spin-1 ultracold atomic gases. We study the ground state properties of interacting Bose-Einstein condensates with STMC and find interesting new types of stripe superfluid phases and multicritical points for phase transitions. Furthermore, STMC makes it possible to study quantum states with dynamical stripe orders that display density modulation with a long tunable period and high visibility, paving the way for the direct experimental observation of a new dynamical supersolidlike state. Our scheme for generating STMC can be generalized to other systems and may open the door for exploring novel quantum physics and device applications.

  6. Quasinormal modes of black holes in scalar-tensor theories with nonminimal derivative couplings (United States)

    Dong, Ruifeng; Sakstein, Jeremy; Stojkovic, Dejan


    We study the quasinormal modes of asymptotically anti-de Sitter black holes in a class of shift-symmetric Horndeski theories where a gravitational scalar is derivatively coupled to the Einstein tensor. The spacetime differs from exact Schwarzschild-anti-de Sitter, resulting in a different effective potential for the quasinormal modes and a different spectrum. We numerically compute this spectrum for a massless test scalar coupled both minimally to the metric, and nonminimally to the gravitational scalar. We find interesting differences from the Schwarzschild-anti-de Sitter black hole found in general relativity.

  7. Scalar field coupling to Einstein tensor in regular black hole spacetime (United States)

    Zhang, Chi; Wu, Chen


    In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.

  8. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian


    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  9. Classical tests of photons coupled to Weyl tensor in the Solar System (United States)

    Li, Gang; Deng, Xue-Mei


    With the purpose of deeply understanding the fundamental interaction between the electromagnetic and gravitational fields, photons coupled to the Weyl tensor was proposed, which could be derived from the Maxwell equation with a Weyl correction. This correction with respect to general relativity in a 4-dimensional spacetime can be characterized by a coupling strength parameter α. By taking such a coupling into account, we investigate its effects on the classical tests in the Solar System, including the deflection of light, the gravitational time delay and the Cassini tracking experiment, and constrain the parameter α with new datasets. None of these works were done before and these data of the experiments are used for testing the photons coupled to the Weyl tensor for the first time. We find that the experimental upper bounds are | α | ≲ 4 × 1011 - 5 × 1013m2, in which the strongest bound comes from the Cassini tracking. Therefore, it is expected that when more sophisticated frequency standards can be implemented in the spacecrafts tracking in the future, this bound on α will be reduced further.

  10. All-at-once Optimization for Coupled Matrix and Tensor Factorizations

    DEFF Research Database (Denmark)

    Evrim, Acar Ataman; Kolda, Tamara G.; Dunlavy, Daniel M.


    Joint analysis of data from multiple sources has the potential to improve our understanding of the underlying structures in complex data sets. For instance, in restaurant recommendation systems, recommendations can be based on rating histories of customers. In addition to rating histories.......g., the person by person social network matrix or the restaurant by category matrix, and higher-order tensors, e.g., the "ratings" tensor of the form restaurant by meal by person. In this paper, we are particularly interested in fusing data sets with the goal of capturing their underlying latent structures. We...... formulate this problem as a coupled matrix and tensor factorization (CMTF) problem where heterogeneous data sets are modeled by fitting outer-product models to higher-order tensors and matrices in a coupled manner. Unlike traditional approaches solving this problem using alternating algorithms, we propose...

  11. Black hole entropy arising from massless scalar field with Lorentz violation induced by the coupling to Einstein tensor

    CERN Document Server

    Chen, Songbai; Liao, Hao


    We have investigated quantum entropy of a static black hole arising from the massless scalar field with Lorentz violation induced by the coupling to Einstein tensor. Our results show that the coupled massless scalar field contributes to the classical Bekenstein-Hawking term in the black hole entropy. The corrected classical Bekenstein-Hawking entropy is not one quarter of the event horizon area of the original background black hole, but of a corresponding effective metric related to the coupling. It means that the classical Bekenstein-Hawking entropy depends not only on the black hole parameter, but also on the coupling which reduces Lorentz violation.

  12. Two photon couplings of scalar and tensor mesons (United States)

    Feindt, Michael; Harjes, Jens


    Experimental data on exclusive two photon reactions are investigated with respect to formation of tensor and scalar mesons. Theoretical and experimental status and progress is reviewed. Furthermore, new CELLO results on γγ → π-π- and γγ → ϱ0ϱ0 are presented. Clear evidence for a large scalar contribution is found in both reactions. The implications of these new results are discussed.

  13. Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Stolarski, Daniel; Vega-Morales, Roberto


    Kinematic distributions in the decays of the newly discovered resonance to four leptons can provide a direct measurement of the tensor structure of the particle's couplings to gauge bosons. Even if the particle is shown to be a parity even scalar, measuring this tensor structure is a necessary step in determining if this particle is responsible for giving mass to the Z. We consider a Standard Model like coupling as well as coupling via a dimension five operator to either ZZ or Z\\gamma. We show that using full kinematic information from each event allows discrimination between renormalizable and higher dimensional coupling to ZZ at the 95% confidence level with O(50) signal events, and coupling to Z\\gamma can be distinguished with as few as 20 signal events. This shows that these measurements can be useful even with this year's LHC data.

  14. A high performance data parallel tensor contraction framework: Application to coupled electro-mechanics (United States)

    Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio


    The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.

  15. Coupled ADCPs can yield complete Reynolds stress tensor profiles in geophysical surface flows

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.


    We introduce a new technique to measure profiles of each term in the Reynolds stress tensor using coupled acoustic Doppler current profilers (ADCPs). The technique is based on the variance method which is extended to the case with eight acoustic beams. Methods to analyze turbulence from a single

  16. Tensor-decomposed vibrational coupled-cluster theory

    DEFF Research Database (Denmark)

    Madsen, Niels Kristian; Godtliebsen, Ian Heide; Christiansen, Ove

    Vibrational coupled-cluster (VCC) theory is a highly accurate method for obtaining vibrational spectra and properties of small to medium-sized molecules. Calculating the vibrational energy and wave function requires the solution of a set of non-linear equations. We have implemented an array...... of any VCC calculation is the calculation of the error vector from a set of trial amplitudes. For high-order VCC methods this shows steep polynomial scaling w.r.t. the size of the moleule and the number of one-mode basis functions. Both the computational cost and the memory requirements of the VCC solver...

  17. Thermodynamics of scalar-tensor theory with non-minimally derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yumei [Beijing Normal University, Department of Astronomy, Beijing (China); Gong, Yungui [Huazhong University of Science and Technology, MOE Key Laboratory of Fundamental Quantities Measurement, School of Physics, Wuhan, Hubei (China); Liang, Dicong; Yi, Zhu [Huazhong University of Science and Technology, School of Physics, Wuhan, Hubei (China)


    With the usual definitions for the entropy and the temperature associated with the apparent horizon, we show that the unified first law on the apparent horizon is equivalent to the Friedmann equation for the scalar-tensor theory with non-minimally derivative coupling. The second law of thermodynamics on the apparent horizon is also satisfied. The results support a deep and fundamental connection between gravitation, thermodynamics, and quantum theory. (orig.)

  18. Structures and Nuclear Quadrupole Coupling Tensors of a Series of Chlorine-Containing Hydrocarbons (United States)

    Dikkumbura, Asela S.; Webster, Erica R.; Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.; Seifert, Nathan A.; Pate, Brooks


    Rotational spectra for gauche-1,2-dichloroethane (12DCE), gauche-1-chloro-2-fluoroethane (1C2FE) and both anti- and gauche-2,3-dichloropropene (23DCP) have been observed using chirped-pulse Fourier-transform microwave (FTMW) spectroscopy in the 6-18 GHz region. Although the anti conformers for all three species are predicted to be more stable than the gauche forms, they are nonpolar (12DCE) or nearly nonpolar (predicted dipole components for anti-1C2FE: μ_a = 0.11 D, μ_b = 0.02 D and for anti-23DCP: μ_a = 0.25 D, μ_b = 0.02 D); nevertheless, it was also possible to observe and assign the spectrum of anti-23DCP. Assignments of parent spectra and 37Cl and 13C substituted isotopologues utilized predictions at the MP2/6-311++G(2d,2p) level and Pickett's SPCAT/SPFIT programs. For the weak anti-23DCP spectra, additional measurements also utilized a resonant-cavity FTMW spectrometer. Full chlorine nuclear quadrupole coupling tensors for gauche-12DCE and both anti- and gauche-23DCP have been diagonalized to allow comparison of coupling constants. Kraitchman's equations were used to determine r_s coordinates of isotopically substituted atoms and r_0 structures were also deduced for gauche conformers of 12DCE and 1C2FE. Structural details and chlorine nuclear quadrupole coupling constants of all three molecules will be compared, and effects of differing halogen substitution and carbon chain length on molecular properties will be evaluated.

  19. Phase space analysis for a scalar-tensor model with kinetic and Gauss-Bonnet couplings

    CERN Document Server

    Granda, L N


    We study the phase space for an scalar-tensor string inspired model of dark energy with non minimal kinetic and Gauss Bonnet couplings. The form of the scalar potential and of the coupling terms is of the exponential type, which give rise to appealing cosmological solutions. The critical points describe a variety of cosmological scenarios that go from matter or radiation dominated universe to dark energy dominated universe. There were found trajectories in the phase space departing from unstable or saddle fixed points and arriving to the stable scalar field dominated point corresponding to late-time accelerated expansion.

  20. 71Ga Chemical Shielding and Quadrupole Coupling Tensors of the Garnet Y(3)Ga(5)O(12) from Single-Crystal (71)Ga NMR

    DEFF Research Database (Denmark)

    Vosegaard, Thomas; Massiot, Dominique; Gautier, Nathalie


    A single-crystal (71)Ga NMR study of the garnet Y(3)Ga(5)O(12) (YGG) has resulted in the determination of the first chemical shielding tensors reported for the (71)Ga quadrupole. The single-crystal spectra are analyzed in terms of the combined effect of quadrupole coupling and chemical shielding ...

  1. Strong gravitational lensing for the photons coupled to Weyl tensor in a Kerr black hole spacetime

    CERN Document Server

    Chen, Songbai; Huang, Yang; Jing, Jiliang; Wang, Shiliang


    We present firstly equation of motion for the photon coupled to Weyl tensor in a Kerr black hole spacetime and then study further the corresponding strong gravitational lensing. We find that black hole rotation makes propagation of the coupled photons more complicated, which brings some new features for physical quantities including the marginally circular photon orbit, the deflection angle, the observational gravitational lensing variables and the time delay between two relativistic images. There is a critical value of the coupling parameter for existence of the marginally circular photon orbit outside the event horizon, which depends on the rotation parameter of black hole and the polarization direction of photons. As the value of coupling parameter is near the critical value, we find that the marginally circular photon orbit for the retrograde photon increases with the rotation parameter, which modifies a common feature of the marginally circular photon orbit in a rotating black hole spacetime since it alw...

  2. Cross-scale Efficient Tensor Contractions for Coupled Cluster Computations Through Multiple Programming Model Backends

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Khaled Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Epifanovsky, Evgeny [Q-Chem, Inc., Pleasanton, CA (United States); Williams, Samuel W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Krylov, Anna I. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry


    Coupled-cluster methods provide highly accurate models of molecular structure by explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix-matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts to extend the Libtensor framework to work in the distributed memory environment in a scalable and energy efficient manner. We achieve up to 240 speedup compared with the best optimized shared memory implementation. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures, (Cray XC30&XC40, BlueGene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance. Nevertheless, we preserve a uni ed interface to both programming models to maintain the productivity of computational quantum chemists.

  3. Analytical effective tensor for flow-through composites (United States)

    Sviercoski, Rosangela De Fatima [Los Alamos, NM


    A machine, method and computer-usable medium for modeling an average flow of a substance through a composite material. Such a modeling includes an analytical calculation of an effective tensor K.sup.a suitable for use with a variety of media. The analytical calculation corresponds to an approximation to the tensor K, and follows by first computing the diagonal values, and then identifying symmetries of the heterogeneity distribution. Additional calculations include determining the center of mass of the heterogeneous cell and its angle according to a defined Cartesian system, and utilizing this angle into a rotation formula to compute the off-diagonal values and determining its sign.

  4. The \\gamma\\ parameter in Brans-Dicke-like (light-)Scalar-Tensor theory with a universal scalar/matter coupling

    CERN Document Server

    Minazzoli, Olivier


    The post-Newtonian parameter \\gamma\\ resulting from a universal scalar/matter coupling is investigated in Brans-Dicke-like Scalar-Tensor theories where the scalar potential is assumed to be negligible. Conversely to previous studies, we use a perfect fluid formalism in order to get the explicit scalar-field equation. It is shown that the metric can be put in its standard post-Newtonian form. However, it is pointed out that 1-\\gamma\\ could be either positive, null or negative for finite value of \\omega_0, depending on the coupling function; while Scalar-Tensor theories without coupling always predict \\gamma<1 for finite value of \\omega_0.

  5. Turbo-SMT: Parallel Coupled Sparse Matrix-Tensor Factorizations and Applications. (United States)

    Papalexakis, Evangelos E; Faloutsos, Christos; Mitchell, Tom M; Talukdar, Partha Pratim; Sidiropoulos, Nicholas D; Murphy, Brian


    How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like 'edible', 'fits in hand')? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem. Can we enhance any CMTF solver, so that it can operate on potentially very large datasets that may not fit in main memory? We introduce Turbo-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, produces sparse and interpretable solutions, and parallelizes any CMTF algorithm, producing sparse and interpretable solutions (up to 65 fold ). Additionally, we improve upon ALS, the work-horse algorithm for CMTF, with respect to efficiency and robustness to missing values. We apply Turbo-SMT to BrainQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. Turbo-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. Finally, we demonstrate the generality of Turbo-SMT, by applying it on a Facebook dataset (users, 'friends', wall-postings); there, Turbo-SMT spots spammer-like anomalies.

  6. Chaos in the motion of a test scalar particle coupling to the Einstein tensor in Schwarzschild-Melvin black hole spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingzhi [Hunan Normal University, Department of Physics, Institute of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Chen, Songbai; Jing, Jiliang [Hunan Normal University, Department of Physics, Institute of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)


    We present firstly the equation of motion for a test scalar particle coupling to the Einstein tensor in the Schwarzschild-Melvin black hole spacetime through the short-wave approximation. Through analyzing Poincare sections, the power spectrum, the fast Lyapunov exponent indicator and the bifurcation diagram, we investigate the effects of the coupling parameter on the chaotic behavior of the particles. With the increase of the coupling strength, we find that the motion of the coupled particle for the chosen parameters becomes more regular and order for the negative couple constant. While, for the positive one, the motion of the coupled particles first undergoes a series of transitions betweens chaotic motion and regular motion and then falls into horizon or escapes to spatial infinity. Our results show that the coupling brings about richer effects for the motion of the particles. (orig.)

  7. Quantum Gravity Effects in Scalar, Vector and Tensor Field Propagation (United States)

    Dutta, Anindita

    Quantum theory of gravity deals with the physics of the gravitational field at Planck length scale (10-35 m). Even though it is experimentally hard to reach the Planck length scale, on can look for evidence of quantum gravity that is detectable in astrophysics. In this thesis, we try to find effects of loop quantum gravity corrections on observable phenomena. We show that the quantum fluctuation strain for LIGO data would be 10 -125 on the Earth. Th correction is, however, substantial near the black hole horizon. We discuss the effect of this for scalar field propagation followed by vector and tensor fields. For the scalar field, the correction introduces a new asymmetry; for the vector field, we found a new perturbation solution and for the tensor field, we found the corrected Einstein equations which are yet to solve. These will affect phenomena like Hawking radiation, black hole entropy and gravitational waves.

  8. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field (United States)

    Anderson, David; Yunes, Nicolás


    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  9. New perspectives in the PAW/GIPAW approach: J(P-O-Si) coupling constants, antisymmetric parts of shift tensors and NQR predictions. (United States)

    Bonhomme, Christian; Gervais, Christel; Coelho, Cristina; Pourpoint, Frédérique; Azaïs, Thierry; Bonhomme-Coury, Laure; Babonneau, Florence; Jacob, Guy; Ferrari, Maude; Canet, Daniel; Yates, Jonathan R; Pickard, Chris J; Joyce, Siân A; Mauri, Francesco; Massiot, Dominique


    In 2001, Pickard and Mauri implemented the gauge including projected augmented wave (GIPAW) protocol for first-principles calculations of NMR parameters using periodic boundary conditions (chemical shift anisotropy and electric field gradient tensors). In this paper, three potentially interesting perspectives in connection with PAW/GIPAW in solid-state NMR and pure nuclear quadrupole resonance (NQR) are presented: (i) the calculation of J coupling tensors in inorganic solids; (ii) the calculation of the antisymmetric part of chemical shift tensors and (iii) the prediction of (14)N and (35)Cl pure NQR resonances including dynamics. We believe that these topics should open new insights in the combination of GIPAW, NMR/NQR crystallography, temperature effects and dynamics. Points (i), (ii) and (iii) will be illustrated by selected examples: (i) chemical shift tensors and heteronuclear (2)J(P-O-Si) coupling constants in the case of silicophosphates and calcium phosphates [Si(5)O(PO(4))(6), SiP(2)O(7) polymorphs and α-Ca(PO(3))(2)]; (ii) antisymmetric chemical shift tensors in cyclopropene derivatives, C(3)X(4) (X = H, Cl, F) and (iii) (14)N and (35)Cl NQR predictions in the case of RDX (C(3)H(6)N(6)O(6)), β-HMX (C(4)H(8)N(8)O(8)), α-NTO (C(2)H(2)N(4)O(3)) and AlOPCl(6). RDX, β-HMX and α-NTO are explosive compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Benchmark coupled-cluster g-tensor calculations with full inclusion of the two-particle spin-orbit contributions (United States)

    Perera, Ajith; Gauss, Jürgen; Verma, Prakash; Morales, Jorge A.


    We present a parallel implementation to compute electron spin resonance g-tensors at the coupled-cluster singles and doubles (CCSD) level which employs the ACES III domain-specific software tools for scalable parallel programming, i.e., the super instruction architecture language and processor (SIAL and SIP), respectively. A unique feature of the present implementation is the exact (not approximated) inclusion of the five one- and two-particle contributions to the g-tensor [i.e., the mass correction, one- and two-particle paramagnetic spin-orbit, and one- and two-particle diamagnetic spin-orbit terms]. Like in a previous implementation with effective one-electron operators [J. Gauss et al., J. Phys. Chem. A 113, 11541-11549 (2009)], our implementation utilizes analytic CC second derivatives and, therefore, classifies as a true CC linear-response treatment. Therefore, our implementation can unambiguously appraise the accuracy of less costly effective one-particle schemes and provide a rationale for their widespread use. We have considered a large selection of radicals used previously for benchmarking purposes including those studied in earlier work and conclude that at the CCSD level, the effective one-particle scheme satisfactorily captures the two-particle effects less costly than the rigorous two-particle scheme. With respect to the performance of density functional theory (DFT), we note that results obtained with the B3LYP functional exhibit the best agreement with our CCSD results. However, in general, the CCSD results agree better with the experimental data than the best DFT/B3LYP results, although in most cases within the rather large experimental error bars.

  11. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations. (United States)

    Peng, Bo; Kowalski, Karol


    The representation and storage of two-electron integral tensors are vital in large-scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this work, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of the atomic basis set, Nb, ranging from ∼100 up to ∼2,000, the observed numerical scaling of our implementation shows [Formula: see text] versus [Formula: see text] cost of performing single CD on the two-electron integral tensor in most of the other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic orbital (AO) two-electron integral tensor from [Formula: see text] to [Formula: see text] with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled cluster formalism employing single and double excitations (CCSD) on several benchmark systems including the C60 molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10-4 to 10-3 to give acceptable compromise between efficiency and accuracy.

  12. Investigation of Bouncing Universe and Phantom Crossing in Modified Gravity Coupled with Weyl Tensor and its Reconstruction

    CERN Document Server

    Ghanaatian, Mohammad


    In this study, FRW cosmology in modified gravity containing arbitrary function $f(R)$ is taken into consideration when our action are coupled with Weyl tensor. It is indicated that the bouncing solution emerges in the model while the equation of state (EoS) parameter crosses the phantom divider. In this research, cosmological usage of the most promising candidates of dark energy in the framework of f(R) theory coupled by Weyl tensor is explored. A f(R) gravity model in the spatially flat FRW universe acoording to the ordinary version of the holographic dark energy model, which describes accelerated expansion of the universe is reconstructed. The equation of state parameter of the corresponding Weyl gravity models are obtained as well. We conclude that the holographic and Weyl gravity models can behave like phantom or quintessence models, whereas the equation of state parameter of the models can transit from quintessence state to phantom regime as shown recent observations.

  13. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals (United States)

    Verma, Prakash; Perera, Ajith; Morales, Jorge A.


    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the 11B, 17O, 9Be, 19F, 1H, 13C, 35Cl, 33S,14N, 31P, and 67Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N7-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to

  14. TensorLy: Tensor Learning in Python

    NARCIS (Netherlands)

    Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja


    Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning.

  15. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo [William R. Wiley Environmental; Kowalski, Karol [William R. Wiley Environmental


    The representation and storage of two-electron integral tensors are vital in large- scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this paper, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of atomic basis set N_b ranging from ~ 100 up to ~ 2, 000, the observed numerical scaling of our implementation shows O(N_b^{2.5~3}) versus O(N_b^{3~4}) of single CD in most of other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic-orbital (AO) two-electron integral tensor from O(N_b^4) to O(N_b^2 log_{10}(N_b)) with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled- cluster formalism employing single and double excitations (CCSD) on several bench- mark systems including the C_{60} molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10^{-4} to 10^{-3} to give acceptable compromise between efficiency and accuracy.

  16. Spin and Pseudospin Symmetries with Trigonometric Pöschl-Teller Potential including Tensor Coupling

    Directory of Open Access Journals (Sweden)

    M. Hamzavi


    Full Text Available We study approximate analytical solutions of the Dirac equation with the trigonometric Pöschl-Teller (tPT potential and a Coulomb-like tensor potential for arbitrary spin-orbit quantum number κ under the presence of exact spin and pseudospin ( p -spin symmetries. The bound state energy eigenvalues and the corresponding two-component wave functions of the Dirac particle are obtained using the parametric generalization of the Nikiforov-Uvarov (NU method. We show that tensor interaction removes degeneracies between spin and pseudospin doublets. The case of nonrelativistic limit is studied too.

  17. Evaluation of full seismic moment tensor from isotropic, LCVD and double-couple components

    Czech Academy of Sciences Publication Activity Database

    Kolář, Petr


    Roč. 3, č. 4 (2006), s. 105-107 ISSN 1214-9705 R&D Projects: GA AV ČR IAA300120502 Institutional research plan: CEZ:AV0Z30120515 Keywords : evaluation * full seismic moment tensor * point source representation Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  18. A Non-antisymmetric Tensor Contraction Engine for the Automated Implementation of Spin-Adapted Coupled Cluster Approaches. (United States)

    Datta, Dipayan; Gauss, Jürgen


    We present a symbolic manipulation algorithm for the efficient automated implementation of rigorously spin-free coupled cluster (CC) theories based on a unitary group parametrization. Due to the lack of antisymmetry of the unitary group generators under index permutations, all quantities involved in the equations are expressed in terms of non-antisymmetric tensors. Given two tensors, all possible contractions are first generated by applying Wick's theorem. Each term is then put down in the form of a non-antisymmetric Goldstone diagram by assigning its contraction topology. The subsequent simplification of the equations by summing up equivalent terms and their factorization by identifying common intermediates is performed via comparison of these contraction topologies. The definition of the contraction topology is completely general for non-antisymmetric Goldstone diagrams, which enables our algorithm to deal with noncommuting excitations in the cluster operator that arises in the unitary group based CC formulation for open-shell systems. The resulting equations are implemented in a new code, in which tensor contractions are performed by successive application of matrix-matrix multiplications. Implementation of the unitary group adapted CC equations for closed-shell systems and for the simplest open-shell case, i.e., doublets, is discussed, and representative calculations are presented in order to assess the efficiency of the generated codes.

  19. Tensor order parameters for magnetic-structural phase transitions in crystals with strong spin-lattice coupling (United States)

    Birman, Joseph L.; Izyumov, Yuri A.


    We formulate the thermodynamic theory of phase transitions in magnetically ordered systems in terms of a tensor, or coupled, order parameter. This basis is constructed by coupling atomic spin and lattice displacement. Symmetry lowering is predicted at the second-order phase transition point (tricritical points are not considered here). Lower-symmetry phases should in general be classified according to the Shubnikov symmetry space group Sh, which will reveal the total broken symmetry due to the coupled order parameter. In case the apparatus is "blind" to one portion of the order parameter: either spin or displacement, the apparent symmetry group will not be Sh, but a related space group, which will reveal "partial information." Comparing this formulation and the usual (uncoupled) theory, new results are obtained here: for example "pseudoscalar order parameters" can arise and different "symmetry-broken" groups. An illustration is given by applying the formulation to the spinel-structure space group: O7h-Fd3m. It is conjectured that for TbNi2 the tensor order parameter Γ1- may be relevant, so that the phase transition which has been identified as O7h-->Sh101166 may actually be O7h-->Sh132227, caused by a pseudoscalar.

  20. Priors on the effective dark energy equation of state in scalar-tensor theories (United States)

    Raveri, Marco; Bull, Philip; Silvestri, Alessandra; Pogosian, Levon


    Constraining the dark energy (DE) equation of state, wDE, is one of the primary science goals of ongoing and future cosmological surveys. In practice, with imperfect data and incomplete redshift coverage, this requires making assumptions about the evolution of wDE with redshift z . These assumptions can be manifested in a choice of a specific parametric form, which can potentially bias the outcome, or else one can reconstruct wDE(z ) nonparametrically, by specifying a prior covariance matrix that correlates values of wDE at different redshifts. In this work, we derive the theoretical prior covariance for the effective DE equation of state predicted by general scalar-tensor theories with second order equations of motion (Horndeski theories). This is achieved by generating a large ensemble of possible scalar-tensor theories using a Monte Carlo methodology, including the application of physical viability conditions. We also separately consider the special subcase of the minimally coupled scalar field, or quintessence. The prior shows a preference for tracking behaviors in the most general case. Given the covariance matrix, theoretical priors on parameters of any specific parametrization of wDE(z ) can also be readily derived by projection.

  1. A Massively Parallel Tensor Contraction Framework for Coupled-Cluster Computations (United States)


    The Journal of Chemical Physics , 115 (2001), p. 2945. [26] DANIEL KATS AND FREDERICK R. MANBY, Sparse tensor framework for implementation...of general local correlation methods, The Journal of Chemical Physics , 138 (2013), pp. –. [27] P.J. KNOWLES AND N.C. HANDY, A new determinant-based...Determi- nant based configuration interaction algorithms for complete and restricted configuration interaction spaces, The Journal of Chemical

  2. Reinterpreting the magnetoelectric coupling of polarizability tensors of infinite cylinders using symmetry: A simple TM/TE view (United States)

    Chen, Parry Y.; Ben-Yakar, Jacob; Sivan, Yonatan


    Recently, Strickland et al. [Phys. Rev. B 91, 085104 (2015), 10.1103/PhysRevB.91.085104] retrieved dynamic polarizabilities of infinitely long wires at oblique incidence, reporting nonzero magnetoelectric coupling, seemingly defying existing theorems which forbid this in centrosymmetric scatterers. We reconcile this finding with existing symmetry restrictions on microscopic polarizabilities using a property of line dipoles. This motivates a reformulation of cylinder polarizability, yielding diagonal tensors that decompose the response into TM and TE contributions, simplifying subsequent treatment by homogenization theories. A transformation is derived between the formulation of Strickland et al. and our reformulation, allowing magnetoelectric coupling to be identified as the contrast between TM and TE responses, and enabling simple geometric insights into all its scaling and symmetry properties.

  3. Tensor Rank


    Erdtman, Elias; Jönsson, Carl


    This master's thesis addresses numerical methods of computing the typical ranks of tensors over the real numbers and explores some properties of tensors over finite fields. We present three numerical methods to compute typical tensor rank. Two of these have already been published and can be used to calculate the lowest typical ranks of tensors and an approximate percentage of how many tensors have the lowest typical ranks (for some tensor formats), respectively. The third method was developed...

  4. Transverse electron polarization in the neutron decay - Direct search for scalar and tensor couplings in weak interaction (United States)

    Bodek, Kazimierz


    The Standard Model (SM) predictions of T-violation for weak decays of systems built up of u and d quarks are by 7 to 10 orders of magnitude lower than the experimental accuracies attainable at present. It is a general presumption that time reversal phenomena are caused by a tiny admixture of exotic interaction terms. Therefore, weak decays provide a favorable testing ground in a search for such feeble forces. Physics with very slow, polarized neutrons has a great potential in this respect. An experiment seeking for small deviations from the SM in two observables, N and R, that are for the first time addressed experimentally in free neutron decay and that are exclusively sensitive to real and imaginary parts of the same linear combination of the scalar and tensor interaction coupling constants has been completed at the Paul Scherrer Institute, Villigen, Switzerland. The analysis of the experimental data has been completed recently leading to, among others, the best direct constraint for the imaginary part of the R-parity violating MSSM contribution. The success of the applied technique results in a new project devoted to the simultaneous measurement of seven correlation coefficients: H, L, N, R, S, U and V. Five of them (H, L, S, U and V) have never before been measured in weak decays. Such a systematic exploration of the transverse electron polarization will generate from the neutron decay alone a complete set of constraints for the real and imaginary parts of the weak scalar and tensor interactions on the level of 5 × 10-4 or better.

  5. A stress tensor eigenvector projection space for the (H2O)5 potential energy surface (United States)

    Xu, Tianlv; Farrell, James; Momen, Roya; Azizi, Alireza; Kirk, Steven R.; Jenkins, Samantha; Wales, David J.


    A stress tensor eigenvector projection space is created to describe reaction pathways on the (H2O)5 MP2 potential energy surface. Evidence for the stabilizing role of the O--O bonding interactions is found from the length of the recently introduced stress tensor trajectory in the stress tensor eigenvector projection space. The stress tensor trajectories demonstrate coupling behavior of the adjoining covalent (σ) O-H and hydrogen bonds due to sharing of covalent character. Additionally, the stress tensor trajectories can show dynamic coupling effects of pairs of σ bonds and of pairs of hydrogen bonds.

  6. A metamaterial having a frequency dependent elasticity tensor and a zero effective mass density

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Graeme [Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (United States); Seppecher, Pierre [Institut de Mathematiques de Toulon, Universite du Sud Toulon-Var, BP 132, 83957 La Garde Cedex (France)


    Within the context of linear elasticity we show that a two-terminal network of springs and masses, can respond exactly the same as a normal spring, but with a frequency dependent spring constant. A network of such springs can have a frequency dependent effective elasticity tensor but zero effective mass density. The internal masses influence the elasticity tensor, but do not contribute to the effective mass density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Kongsted, Jacob; Sauer, Stephan P. A.


    Calculation of hyperfine coupling constants (HFCs) of Electron Paramagnetic Resonance from first principles can be a beneficial compliment to experimental data in cases where the molecular structure is unknown. We have recently investigated basis set convergence of HFCs in d-block complexes...

  8. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations. (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H; Losilla, Sergio A; Christiansen, Ove


    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  9. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove


    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  10. The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r(4)) scaling. (United States)

    Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David


    Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral tensor and the two-particle excitation amplitudes used in the parametric 2-electron reduced density matrix (p2RDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r(4)), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the standard p2RDM algorithm, somewhere between that of CCSD and CCSD(T).

  11. Effect of tensor correlations on the depletion of nuclear Fermi sea within the extended BHF approach (United States)

    Yin, Peng; Dong, Jianmin; Zuo, Wei


    We have investigated the effect of tensor correlations on the depletion of the nuclear Fermi sea in symmetric nuclear matter within the framework of the extended Brueckner-Hartree-Fock approach by adopting the AV 18 two-body interaction and a microscopic three-body force. The contributions from various partial wave channels including the isospin-singlet T=0 channel, the isospin-triplet T=1 channel and the T=0 tensor 3 SD 1 channel have been calculated. The T=0 neutron-proton correlations play a dominant role in causing the depletion of nuclear Fermi sea. The T=0 correlation-induced depletion turns out to stem almost completely from the 3 SD 1 tensor channel. The isospin-singlet T=0 3 SD 1 tensor correlations are shown to be responsible for most of the depletion, which amounts to more than 70 percent of the total depletion in the density region considered. The three-body force turns out to lead to an enhancement of the depletion at high densities well above the empirical saturation density and its effect increases as a function of density. Supported by National Natural Science Foundation of China (11435014, 11175219), the 973 Program of China (2013CB834405) and the Knowledge Innovation Project (KJCX2-EW-N01) of the Chinese Academy of Sciences

  12. Effective Gravitational Wave Stress-energy Tensor in Alternative Theories of Gravity

    CERN Document Server

    Stein, Leo C; Hughes, Scott A


    The inspiral of binary systems in vacuum is controlled by the rate of change of the system's energy, angular momentum and Carter constant. In alternative theories, such a change is induced by the effective stress-energy carried away by gravitational radiation and any other propagating degrees of freedom. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with d...

  13. Yes-Go Cross-Couplings in Collections of Tensor Fields with Mixed Symmetries of the Type (3, 1) and (2, 2) (United States)

    Bizdadea, Constantin; Cioroianu, Eugen-Mihăiţă; Saliu, Solange-Odile; Băbălîc, Elena-Mirela

    Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincaré invariance of the deformations, combined with the requirement that the interaction vertices contain at most two space-time derivatives of the fields, we investigate the consistent cross-couplings between two collections of tensor fields with the mixed symmetries of the type (3, 1) and (2, 2). The computations are done with the help of the deformation theory based on a cohomological approach in the context of the antifield-BRST formalism. Our results can be synthesized in: (i) there appear consistent cross-couplings between the two types of field collections at order one and two in the coupling constant such that some of the gauge generators and of the reducibility functions are deformed, and (ii) the existence or not of cross-couplings among different fields with the mixed symmetry of the Riemann tensor depends on the indefinite or respectively positive-definite behavior of the quadratic form defined by the kinetic terms from the free Lagrangian.

  14. Effective metrics and a fully covariant description of constitutive tensors in electrodynamics (United States)

    Schuster, Sebastian; Visser, Matt


    Using electromagnetism to study analogue space-times is tantamount to considering consistency conditions for when a given (meta-) material would provide an analogue space-time model or—vice versa—characterizing which given metric could be modeled with a (meta-) material. While the consistency conditions themselves are by now well known and studied, the form the metric takes once they are satisfied is not. This question is mostly easily answered by keeping the formalisms of the two research fields here in contact as close to each other as possible. While fully covariant formulations of the electrodynamics of media have been around for a long while, they are usually abandoned for (3 +1 )- or six-dimensional formalisms. Here we use the fully unified and fully covariant approach. This enables us even to generalize the consistency conditions for the existence of an effective metric to arbitrary background metrics beyond flat space-time electrodynamics. We also show how the familiar matrices for permittivity ɛ , permeability μ-1, and magnetoelectric effects ζ can be seen as the three independent pieces of the Bel decomposition for the constitutive tensor Za b c d, i.e., the components of an orthogonal decomposition with respect to a given observer with four-velocity Va. Finally, we use the Moore-Penrose pseudoinverse and the closely related pseudodeterminant to then gain the desired reconstruction of the effective metric in terms of the permittivity tensor ɛa b, the permeability tensor [μ-1]a b, and the magnetoelectric tensor ζa b, as an explicit function geff(ɛ ,μ-1,ζ ).

  15. Probing effect of tensor interactions in {sup 16}O via (p, d) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ong, H.J., E-mail: [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Tanihata, I. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Tamii, A. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Myo, T. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585 (Japan); Ogata, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Fukuda, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Hirota, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ikeda, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Ishikawa, D. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Matsubara, H. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Matsuta, K.; Mihara, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Naito, T. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Nishimura, D. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ogawa, Y.; Okamura, H. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ozawa, A. [Institute of Physics, Tsukuba University, Tsukuba, Ibaraki 305-8571 (Japan); Pang, D.Y. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Sakaguchi, H. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); and others


    We have measured the {sup 16}O(p, d) reaction using 198-, 295- and 392-MeV proton beams to search for a direct evidence on an effect of the tensor interactions in light nucleus. Differential cross sections of the one-neutron transfer reaction populating the ground states and several low-lying excited states in {sup 15}O were measured. Comparing the ratios of the cross sections for each excited state to the one for the ground state over a wide range of momentum transfer, we found a marked enhancement of the ratio for the positive-parity state(s). The observation is consistent with large components of high-momentum neutrons in the initial ground-state configurations due to the tensor interactions.

  16. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    CERN Document Server

    De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li


    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...

  17. Nuclear Tensor Force and Effective Pions in the Relativistic Hartree-Fock Formalism

    Directory of Open Access Journals (Sweden)

    Marcos S.


    Full Text Available In the framework of nonlinear nuclear models based on the relativistic Hartree-Fock approximation, we have isolated the contribution of the tensor force of pions in the effective NN interaction, by means of two different approximate methods, recently developed by us, in order to dilucidate its role in a variety of nuclear properties. Results show that a reduction of the contribution of this tensor force considerably influences the spin-orbit splittings and magic gaps in the spin-unsaturated midweight 56Ni nucleus as well as the behaviour of the total binding energies with A in heavy nuclei. Both methods give similar results. We also study the evolution of the splitting of the proton 1d spin-orbit doublet in the chain Z=14, from N=20 to N=28, and the neutron 2p − 1f shell in the chain N=28, from the 48Ca nucleus to the 42Si nucleus. Whereas, in the first case, the pion tensor force (PTF plays an important role and its reduction is needed to reproduce the corresponding experimental results; in the second case, the quenching of the neutron 2p3/2 − 1f7/2 gap in the mentioned isotonic chain N=28 is hardly affected by the PTF.

  18. Stress-energy tensor of a quark moving through a strongly-coupled N=4 supersymmetric Yang-Mills plasma: Comparing hydrodynamics and AdS/CFT duality (United States)

    Chesler, Paul M.; Yaffe, Laurence G.


    The stress-energy tensor of a quark moving through a strongly-coupled N=4 supersymmetric Yang-Mills plasma, at large Nc, is evaluated using gauge/string duality. The accuracy with which the resulting wake, in position space, is reproduced by hydrodynamics is examined. Remarkable agreement is found between hydrodynamics and the complete result down to distances less than 2/T away from the quark. In performing the gravitational analysis, we use a relatively simple formulation of the bulk to boundary problem in which the linearized Einstein field equations are fully decoupled. Our analysis easily generalizes to other sources in the bulk.

  19. Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories (United States)

    Anderson, David; Yunes, Nicolás; Barausse, Enrico


    Certain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict nontrivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Farèse, the scalar field has a standard kinetic term and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g., allowing for violations of the strong equivalence principle in neutron stars ("spontaneous scalarization") or in sufficiently tight binary neutron-star systems ("dynamical/induced scalarization"). The original scalar-tensor theory proposed by Damour and Esposito-Farèse is in tension with Solar System constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We extend here the conformal coupling of that theory, in order to ascertain if, in this way, Solar System tests can be passed, while retaining a nontrivial phenomenology for neutron stars. We find that, even with this generalized conformal coupling, it is impossible to construct a theory that passes both big bang nucleosynthesis and Solar System constraints, while simultaneously allowing for scalarization in isolated/binary neutron stars.

  20. The Gauging of Five-dimensional, N=2 Maxwell-Einstein Supergravity Theories coupled to Tensor Multiplets

    CERN Document Server

    Günaydin, M; Gunaydin, Murat; Zagermann, Marco


    We study the general gaugings of N=2 Maxwell-Einstein supergravity theories (MESGT) in five dimensions, extending and generalizing previous work. The global symmetries of these theories are of the form SU(2)_R X G, where SU(2)_R is the R-symmetry group of the N=2 Poincare superalgebra and G is the group of isometries of the scalar manifold that extend to symmetries of the full action. We first gauge a subgroup K of G by turning some of the vector fields into gauge fields of K while dualizing the remaining vector fields into tensor fields transforming in a non-trivial representation of K. Surprisingly, we find that the presence of tensor fields transforming non-trivially under the Yang-Mills gauge group leads to the introduction of a potential which does not admit an AdS ground state. Next we give the simultaneous gauging of the U(1)_R subgroup of SU(2)_R and a subgroup K of G in the presence of K-charged tensor multiplets. The potential introduced by the simultaneous gauging is the sum of the potentials intro...

  1. Tensor categories

    CERN Document Server

    Etingof, Pavel; Nikshych, Dmitri; Ostrik, Victor


    Is there a vector space whose dimension is the golden ratio? Of course not-the golden ratio is not an integer! But this can happen for generalizations of vector spaces-objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This bo

  2. Acoustic wave coupled magnetoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.S. [Institute of information Engineering, Suqian College, Suqian 223800 (China); Magnetoelectronic Laboratory, Nanjing Normal University, Nanjing 210023 (China); Zhang, N., E-mail: [Magnetoelectronic Laboratory, Nanjing Normal University, Nanjing 210023 (China)


    Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm{sup −1} Oe{sup −1}) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially. - Highlights: • Magnetoelectric (ME) coupling by acoustic waveguide was developed. • The frequency and size dependence of the ME effects were investigated. • A resonant condition about the geometrical size of the waveguide was obtained. • A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.

  3. Generalized Slow Roll for Tensors


    Hu, Wayne


    The recent BICEP2 detection of degree scale CMB B-mode polarization, coupled with a deficit of observed power in large angle temperature anisotropy, suggest that the slow-roll parameter $\\epsilon_H$, the fractional variation in the Hubble rate per efold, is both relatively large and may evolve from an even larger value on scales greater than the horizon at recombination. The relatively large tensor contribution implied also requires finite matching features in the tensor power spectrum for an...

  4. Effect of Group Cognitive Behavioral Couples Therapy on Couple Burnout and Divorce Tendency in Couples


    M Mohammadi; R Sheykh Hadi Siruii; A Garafar; K Zahrakar; M Shakarami; R Davarniya


    Background & aim: Couple burnout is one of the phenomena which involve many couples, it is among the main causes of emotional divorce, and without proper management and treatment, and it can lay the ground for formal divorce among couples. Cognitive behavioral couple therapy is one of the existing approaches in the couple therapy field, the efficiency of which has been established for resolving many marital problems. The present study was designed by the aim of investigating the effect of gro...

  5. Reducing the two-body problem in scalar-tensor theories to the motion of a test particle: A scalar-tensor effective-one-body approach (United States)

    Julié, Félix-Louis


    Starting from the second post-Keplerian (2PK) Hamiltonian describing the conservative part of the two-body dynamics in massless scalar-tensor (ST) theories, we build an effective-one-body (EOB) Hamiltonian which is a ν deformation (where ν =0 is the test mass limit) of the analytically known ST Hamiltonian of a test particle. This ST-EOB Hamiltonian leads to a simple (yet canonically equivalent) formulation of the conservative 2PK two-body problem, but also defines a resummation of the dynamics which is well-suited to ST regimes that depart strongly from general relativity (GR) and which may provide information on the strong field dynamics; in particular, the ST innermost stable circular orbit location and associated orbital frequency. Results will be compared and contrasted with those deduced from the ST-deformation of the (5PN) GR-EOB Hamiltonian previously obtained in [Phys. Rev. D 95, 124054 (2017), 10.1103/PhysRevD.95.124054].

  6. Tensors, relativity, and cosmology

    CERN Document Server

    Dalarsson, Mirjana


    Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...

  7. Skeletal effects in Angle Class II/1 patients treated with the functional regulator type II : Cephalometric and tensor analysis. (United States)

    Schulz, Simone; Koos, Bernd; Duske, Kathrin; Stahl, Franka


    The purpose of this work was to employ both cephalometric and tensor analysis in characterizing the skeletal changes experienced by patients with Angle Class II/1 malocclusion during functional orthodontic treatment with the functional regulator type II. A total of 23 patients with Class II/1 malocclusion based on lateral cephalograms obtained before and after treatment with the functional regulator type II were analyzed. Another 23 patients with Angle Class II/1 malocclusion who had not undergone treatment were included as controls. Our cephalometric data attest to significant therapeutic effects of the functional regulator type II on the skeletal mandibular system, including significant advancement of the mandible, increases in effective mandibular length with enhancement of the chin profile, and reduction of growth-related bite deepening. No treatment-related effects were observed at the cranial-base and midface levels. In addition, tensor analysis revealed significant stimulation of mandibular growth in sagittal directions, without indications of growth effects on the maxilla. Its growth-pattern findings differed from those of cephalometric analysis by indicating that the appliance did promote horizontal development, which supports the functional orthodontic treatment effect in Angle Class II/1 cases. Tensor analysis yielded additional insights into sagittal and vertical growth changes not identifiable by strictly cephalometric means. The functional regulator type II was an effective treatment modality for Angle Class II/1 malocclusion and influenced the skeletal development of these patients in favorable ways.

  8. Estimating the tensor-to-scalar ratio and the effect of residual foreground contamination

    Energy Technology Data Exchange (ETDEWEB)

    Fantaye, Y.; Leach, S.M.; Baccigalupi, C. [SISSA, Astrophysics Sector, via Bonomea 265, Trieste 34136 (Italy); Stivoli, F. [INRIA, Laboratoire de Recherche en Informatique, Université Paris-Sud 11, Bâtiment 490, 91405 Orsay Cedex (France); Grain, J. [CNRS, Institut d' Astrophysique Spatiale, Université Paris-Sud 11, Bâtiments 120-121, 91405 Orsay Cedex (France); Tristram, M. [CNRS, Laboratoire de l' Accélérateur Linéaire, Université Paris-Sud 11, Bâtiment 200, 91898 Orsay Cedex (France); Stompor, R., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [CNRS, Laboratoire Astroparticule and Cosmologie, 10 rue A. Domon et L. Duquet, F-75205 Paris Cedex 13 (France)


    We consider future balloon-borne and ground-based suborbital experiments designed to search for inflationary gravitational waves, and investigate the impact of residual foregrounds that remain in the estimated cosmic microwave background maps. This is achieved by propagating foreground modelling uncertainties from the component separation, under the assumption of a spatially uniform foreground frequency scaling, through to the power spectrum estimates, and up to measurement of the tensor to scalar ratio in the parameter estimation step. We characterize the error covariance due to subtracted foregrounds, and find it to be subdominant compared to instrumental noise and sample variance in our simulated data analysis. We model the unsubtracted residual foreground contribution using a two-parameter power law and show that marginalization over these foreground parameters is effective in accounting for a bias due to excess foreground power at low l. We conclude that, at least in the suborbital experimental setups we have simulated, foreground errors may be modeled and propagated up to parameter estimation with only a slight degradation of the target sensitivity of these experiments derived neglecting the presence of the foregrounds.

  9. The effect of template selection on diffusion tensor voxel-based analysis results. (United States)

    Van Hecke, Wim; Leemans, Alexander; Sage, Caroline A; Emsell, Louise; Veraart, Jelle; Sijbers, Jan; Sunaert, Stefan; Parizel, Paul M


    Diffusion tensor imaging (DTI) is increasingly being used to study white matter (WM) degeneration in patients with psychiatric and neurological disorders. In order to compare diffusion measures across subjects in an automated way, voxel-based analysis (VBA) methods were introduced. In VBA, all DTI data are transformed to a template, after which the diffusion measures of control subjects and patients are compared quantitatively in each voxel. Although VBA has many advantages compared to other post-processing approaches, such as region of interest analysis or tractography, VBA results need to be interpreted cautiously, since it has been demonstrated that they depend on the different parameter settings that are applied in the VBA processing pipeline. In this paper, we examine the effect of the template selection on the VBA results of DTI data. We hypothesized that the choice of template to which all data are transformed would also affect the VBA results. To this end, simulated DTI data sets as well as DTI data from control subjects and multiple sclerosis patients were aligned to (i) a population-specific DTI template, (ii) a subject-based DTI atlas in MNI space, and (iii) the ICBM-81 DTI atlas. Our results suggest that the highest sensitivity and specificity to detect WM abnormalities in a VBA setting was achieved using the population-specific DTI atlas, presumably due to the better spatial image alignment to this template. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks (United States)

    Gerster, M.; Rizzi, M.; Silvi, P.; Dalmonte, M.; Montangero, S.


    We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the ν =1/2 fractional quantum Hall (FQH) effect on the lattice. We address the robustness of the ground-state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill [Phys. Rev. Lett. 96, 110404 (2006), 10.1103/PhysRevLett.96.110404] and Levin and Wen [Phys. Rev. Lett. 96, 110405 (2006), 10.1103/PhysRevLett.96.110405]. The numerical results show that the topological contribution is compatible with the expected value γ =1/2 . Our results provide extensive evidence that FQH states are within reach of state-of-the-art cold-atom experiments.

  11. Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tong; Chapman, Christopher H. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Tsien, Christina [Department of Radiation Oncology, Washington University at St Louis, St Louis, Missouri (United States); Kim, Michelle; Spratt, Daniel E.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue, E-mail: [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)


    Purpose: Previous efforts to decrease neurocognitive effects of radiation focused on sparing isolated cortical structures. We hypothesize that understanding temporal, spatial, and dosimetric patterns of radiation damage to whole-brain white matter (WM) after partial-brain irradiation might also be important. Therefore, we carried out a study to develop the methodology to assess radiation therapy (RT)–induced damage to whole-brain WM bundles. Methods and Materials: An atlas-based, automated WM tractography analysis was implemented to quantify longitudinal changes in indices of diffusion tensor imaging (DTI) of 22 major WM fibers in 33 patients with predominantly low-grade or benign brain tumors treated by RT. Six DTI scans per patient were performed from before RT to 18 months after RT. The DTI indices and planned doses (maximum and mean doses) were mapped onto profiles of each of 22 WM bundles. A multivariate linear regression was performed to determine the main dose effect as well as the influence of other clinical factors on longitudinal percentage changes in axial diffusivity (AD) and radial diffusivity (RD) from before RT. Results: Among 22 fiber bundles, AD or RD changes in 12 bundles were affected significantly by doses (P<.05), as the effect was progressive over time. In 9 elongated tracts, decreased AD or RD was significantly related to maximum doses received, consistent with a serial structure. In individual bundles, AD changes were up to 11.5% at the maximum dose locations 18 months after RT. The dose effect on WM was greater in older female patients than younger male patients. Conclusions: Our study demonstrates for the first time that the maximum dose to the elongated WM bundles causes post-RT damage in WM. Validation and correlative studies are necessary to determine the ability and impact of sparing these bundles on preserving neurocognitive function after RT.

  12. Effect of Group Cognitive Behavioral Couples Therapy on Couple Burnout and Divorce Tendency in Couples

    Directory of Open Access Journals (Sweden)

    M Mohammadi


    Full Text Available Background & aim: Couple burnout is one of the phenomena which involve many couples, it is among the main causes of emotional divorce, and without proper management and treatment, and it can lay the ground for formal divorce among couples. Cognitive behavioral couple therapy is one of the existing approaches in the couple therapy field, the efficiency of which has been established for resolving many marital problems. The present study was designed by the aim of investigating the effect of group cognitive behavioral couple therapy on couple burnout and divorce tendency in couples.   Methods: The present research was of applied research type. The research method was semi-empirical with a pretest-posttest with control group design. The research population included all the couples with marital conflict and problems who, after a recall announcement of the researcher, visited the counseling and psychological services center located in Gorgan city in 2014. By using the available sampling method, 20 couples were selected among the volunteer and qualified couples for the research, and they were assigned into experiment and control groups (10 couples per group by random assignment. In the present research, the Pines burnout questionnaire (1996 and divorce tendency scale of Rouswelt, Johnson, and Mouro (1986 were used for gathering the data. After taking the pretest, the group cognitive behavioral couple therapy based on the couple therapy model of Baucom  and colleagues (2008 was held in 10 2-hour weekly sessions for the experiment group couples, while the control group couples received no intervention. The data were analyzed through descriptive statistics method and multivariate covariance analysis (MANCOVA in SPSS v.20. Results: The multivariate covariance analysis results for couple burnout (F= 28.80 and divorce tendency (F= 51.25 suggested that there was a significant difference between the couples of experiment and control groups (P< 0

  13. Tensor calculus for physics a concise guide

    CERN Document Server

    Neuenschwander, Dwight E


    Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism...


    Directory of Open Access Journals (Sweden)

    M. Monajjemi


    Full Text Available The effect of the polarity of the environment on the conformation zwitterionic membrane dilauroyl phosphatidylcholine (DLPC has been investigated with calculation at the Hatree-Fock level using the 6-31G* basis set with Onsager continuum solvation model. The ‘Gauge Including Atomic Orbital' (GIAO approach is used to investigate Ab initio GIAO calculations of NMR chemical shielding tensors carried out within SCF-Hartree-Fock approximation are described. In order to compare the calculated chemical shifts with experimental ones, it is important to use consistent nuclear shielding for NMR reference compounds like TMS. Conformation of DLPC was evaluated with four different solvents with different dielectric constant (Water (ε = 78.39, Dimethyl Sulfoxide (ε = 46.7, Acetone (ε = 20.7 and Heptane (ε = 1.92. In concern with conformational energy, Water could be the most suitable solvent for DLPC. Moreover, as the polarity of the medium increase, the conformational stability of this molecule increases faster than that of DLPC in the gas phase. Consequently, the relative energy of DLPC also depends on the polarity of the environment. This subject was considered as well as the most variable in some dihedral angles degree and NMR isotropic shift were in the less dielectric constant (ε = 1.92. It could be in polar medium DLPC conformer becomes additionally stabilized by intermolecular ionic and hydrogen bond interactions with polar neighboring molecules. On the basis of this work it can be concluded that the effect of the polarity of the environment clearly are influenced on the isotropic values by geometry variation due to intermolecular motion in molecule.   Keywords: Onsager continuum model, DLPC ,NMR shielding, isotropic, solvent models, anisotropic

  15. Performance Optimization of Tensor Contraction Expressions for Many-Body Methods in Quantum Chemistry (United States)

    Hartono, Albert; Lu, Qingda; Henretty, Thomas; Krishnamoorthy, Sriram; Zhang, Huaijian; Baumgartner, Gerald; Bernholdt, David E.; Nooijen, Marcel; Pitzer, Russell; Ramanujam, J.; Sadayappan, P.


    Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental performance data is provided that demonstrates its effectiveness.

  16. The energy–momentum tensor(s) in classical gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Daniel N., E-mail: [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gieres, François, E-mail: [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. P. Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne (France); Reboud, Méril, E-mail: [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. P. Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne (France); Ecole Normale Supérieure de Lyon, 46 allée d' Italie, F-69364 Lyon CEDEX 07 (France); Schweda, Manfred, E-mail: [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria)


    We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  17. The energy–momentum tensor(s in classical gauge theories

    Directory of Open Access Journals (Sweden)

    Daniel N. Blaschke


    Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  18. On the Validity of Additivity Rules for the Molecular Magnetizability Tensor and the Molecular g-Tensor in van der Waals Complexes. A Rotational Zeeman Effect Study o f 1,1-Dideutero-Cyclopropane (United States)

    Böttcher, O.; Meyer, V.; Sutter, D. H.


    The molecular g-tensor and the magnetic susceptibility anisotropy of cyclopropane were deter­ mined by a microwave Fourier transform study of the rotational Zeeman effect of its 1,1-dideuterated isotopomer. The results g⊥ = 0.02675(23), g∥ = 0.06998(23), and ξ⊥ - ξ ∥ = 8.80(31) · 10-6 erg G-2 mol-2 are in agreement with values determinea indirectly from van der Waals complexes. This finding provides experimental evidence that in van der Waals molecules additivity rules might hold to a high degree of approximation for both types of tensors. Rotational Zeeman effect studies of van der Waals complexes may thus provide valuable extra information on their structures.

  19. Random tensors

    CERN Document Server

    Gurau, Razvan


    Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....

  20. Tensors for physics

    CERN Document Server

    Hess, Siegfried


    This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics,  at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to  tensors of any rank, at graduate level.  Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...

  1. Tensor rank is not multiplicative under the tensor product

    DEFF Research Database (Denmark)

    Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen


    The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection b...

  2. Inverse Vernier effect in coupled lasers (United States)

    Ge, Li; Türeci, Hakan E.


    In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the "supermodes" formed at overlapping resonances of these two cavities have the lowest thresholds as previously found, leading to lasing at these overlapping resonances and a manifestation of the typical Vernier effect, but also they can have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. The inverse Vernier effect can also lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings in several previous studies. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

  3. The Effect of Tensor Interaction in Splitting the Energy Levels of Relativistic Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shojaei


    Full Text Available We solve approximately Dirac equation for Eckart plus Hulthen potentials with Coulomb-like and Yukawa-like tensor interaction in the presence of spin and pseudospin symmetry for k≠0. The formula method is used to obtain the energy eigenvalues and wave functions. We also discuss the energy eigenvalues and the Dirac spinors for Eckart plus Hulthen potentials with formula method. To show the accuracy of the present model, some numerical results are shown in both pseudospin and spin symmetry limits.

  4. Tensor integrand reduction via Laurent expansion

    Energy Technology Data Exchange (ETDEWEB)

    Hirschi, Valentin [SLAC, National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025-7090 (United States); Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)


    We introduce a new method for the application of one-loop integrand reduction via the Laurent expansion algorithm, as implemented in the public C++ library Ninja. We show how the coefficients of the Laurent expansion can be computed by suitable contractions of the loop numerator tensor with cut-dependent projectors, making it possible to interface Ninja to any one-loop matrix element generator that can provide the components of this tensor. We implemented this technique in the Ninja library and interfaced it to MADLOOP, which is part of the public MADGRAPH5{sub A}MC@NLO framework. We performed a detailed performance study, comparing against other public reduction tools, namely CUTTOOLS, SAMURAI, IREGI, PJFRY++ and GOLEM95. We find that Ninja outperforms traditional integrand reduction in both speed and numerical stability, the latter being on par with that of the tensor integral reduction tool GOLEM95 which is however more limited and slower than Ninja. We considered many benchmark multi-scale processes of increasing complexity, involving QCD and electro-weak corrections as well as effective non-renormalizable couplings, showing that Ninja’s performance scales well with both the rank and multiplicity of the considered process.


    Directory of Open Access Journals (Sweden)

    Steven M. Nesbit


    Full Text Available This paper discusses the inertia tensors of tennis rackets and their influence on the elbow swing torques in a forehand motion, the loadings transmitted to the elbow from central and eccentric impacts, and the racket acceleration responses from central and eccentric impacts. Inertia tensors of various rackets with similar mass and mass center location were determined by an inertia pendulum and were found to vary considerably in all three orthogonal directions. Tennis swing mechanics and impact analyses were performed using a computer model comprised of a full-body model of a human, a parametric model of the racket, and an impact function. The swing mechanics analysis of a forehand motion determined that inertia values had a moderate linear effect on the pronation-supination elbow torques required to twist the racket, and a minor effect on the flexion-extension and valgus-varus torques. The impact analysis found that mass center inertia values had a considerable effect on the transmitted torques for both longitudinal and latitudinal eccentric impacts and significantly affected all elbow torque components. Racket acceleration responses to central and eccentric impacts were measured experimentally and found to be notably sensitive to impact location and mass center inertia values

  6. Tensor deep stacking networks. (United States)

    Hutchinson, Brian; Deng, Li; Yu, Dong


    A novel deep architecture, the tensor deep stacking network (T-DSN), is presented. The T-DSN consists of multiple, stacked blocks, where each block contains a bilinear mapping from two hidden layers to the output layer, using a weight tensor to incorporate higher order statistics of the hidden binary (½0; 1) features. A learning algorithm for the T-DSN’s weight matrices and tensors is developed and described in which the main parameter estimation burden is shifted to a convex subproblem with a closed-form solution. Using an efficient and scalable parallel implementation for CPU clusters, we train sets of T-DSNs in three popular tasks in increasing order of the data size: handwritten digit recognition using MNIST (60k), isolated state/phone classification and continuous phone recognition using TIMIT (1.1 m), and isolated phone classification using WSJ0 (5.2 m). Experimental results in all three tasks demonstrate the effectiveness of the T-DSN and the associated learning methods in a consistent manner. In particular, a sufficient depth of the T-DSN, a symmetry in the two hidden layers structure in each T-DSN block, our model parameter learning algorithm, and a softmax layer on top of T-DSN are shown to have all contributed to the low error rates observed in the experiments for all three tasks.

  7. Diffusion tensor imaging of incentive effects in prospective memory after pediatric traumatic brain injury. (United States)

    McCauley, Stephen R; Wilde, Elisabeth A; Bigler, Erin D; Chu, Zili; Yallampalli, Ragini; Oni, Margaret B; Wu, Trevor C; Ramos, Marco A; Pedroza, Claudia; Vásquez, Ana C; Hunter, Jill V; Levin, Harvey S


    Few studies exist investigating the brain-behavior relations of event-based prospective memory (EB-PM) impairments following traumatic brain injury (TBI). To address this, children with moderate-to-severe TBI performed an EB-PM test with two motivational enhancement conditions and underwent concurrent diffusion tensor imaging (DTI) at 3 months post-injury. Children with orthopedic injuries (OI; n=37) or moderate-to-severe TBI (n=40) were contrasted. Significant group differences were found for fractional anisotropy (FA) and apparent diffusion coefficient for orbitofrontal white matter (WM), cingulum bundles, and uncinate fasciculi. The FA of these WM structures in children with TBI significantly correlated with EB-PM performance in the high, but not the low motivation condition. Regression analyses within the TBI group indicated that the FA of the left cingulum bundle (p=0.003), left orbitofrontal WM (pchildren.

  8. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam


    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  9. Monograph On Tensor Notations (United States)

    Sirlin, Samuel W.


    Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.

  10. Application of tensor analysis

    CERN Document Server

    McConnell, Albert Joseph


    Standard work applies tensorial methods to subjects within realm of advanced college mathematics. Text explains fundamental ideas and notation of tensor theory; covers geometrical treatment of tensor algebra; introduces theory of differentiation of tensors; and applies mathematics to dynamics, electricity, elasticity and hydrodynamics. 685 exercises, most with answers.

  11. Fabric Tensor Characterization of Tensor-Valued Directional Data: Solution, Accuracy, and Symmetrization

    Directory of Open Access Journals (Sweden)

    Kuang-dai Leng


    Full Text Available Fabric tensor has proved to be an effective tool statistically characterizing directional data in a smooth and frame-indifferent form. Directional data arising from microscopic physics and mechanics can be summed up as tensor-valued orientation distribution functions (ODFs. Two characterizations of the tensor-valued ODFs are proposed, using the asymmetric and symmetric fabric tensors respectively. The later proves to be nonconvergent and less accurate but still an available solution for where fabric tensors are required in full symmetry. Analytic solutions of the two types of fabric tensors characterizing centrosymmetric and anticentrosymmetric tensor-valued ODFs are presented in terms of orthogonal irreducible decompositions in both two- and three-dimensional (2D and 3D spaces. Accuracy analysis is performed on normally distributed random ODFs to evaluate the approximation quality of the two characterizations, where fabric tensors of higher orders are employed. It is shown that the fitness is dominated by the dispersion degree of the original ODFs rather than the orders of fabric tensors. One application of tensor-valued ODF and fabric tensor in continuum damage mechanics is presented.

  12. Tensor power spectrum and disformal transformations

    CERN Document Server

    Fumagalli, Jacopo; Postma, Marieke


    In a general effective theory description of inflation a disformal transformation can be used to set the tensor sound speed to one. After the transformation, the tensor power spectrum then automatically only depends on the Hubble parameter. We show that this disformal transformation, however, is nothing else than a change of units. It is a very useful tool for simplifying and interpreting computations, but it cannot change any physics. While the apparent parametrical dependence of the tensor power spectrum does change under a disformal transformation, the physics described is frame invariant. We further illustrate the frame invariance of the tensor power spectrum by writing it exclusively in terms of separately invariant quantities.

  13. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Ponrartana, Skorn; Hu, Houchun Harry [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Ramos-Platt, Leigh [Children' s Hospital Los Angeles, Department of Neurology, Los Angeles, CA (United States); Wren, Tishya Anne Leong; Gilsanz, Vicente [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital Los Angeles, Department of Orthopaedic Surgery, Los Angeles, CA (United States); Perkins, Thomas Gardner; Chia, Jonathan Mawlin [Philips Healthcare North America, Cleveland, OH (United States)


    There is currently a lack of suitable objective endpoints to measure disease progression in Duchenne muscular dystrophy (DMD). Emerging research suggests that diffusion tensor imaging (DTI) has potential as an outcome measure for the evaluation of skeletal muscle injury. The objective of this study was to evaluate the potential of DTI as quantitative magnetic resonance imaging (MRI) markers of disease severity in DMD. Thirteen consecutive boys (8.9 years ± 3.0 years) with DMD were evaluated using DTI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared with clinical outcome measures of manual muscle testing and MRI determinations of muscle fat fraction (MFF) in the right lower extremity. Both MRI measures of FA and ADC strongly correlated with age and muscle strength. Values for FA positively correlated with age and negatively correlated with muscle strength (r = 0.78 and -0.96; both P ≤ 0.002) while measures of ADC negatively correlated age, but positively correlated with muscle strength (r = -0.87 and 0.83; both P ≤ 0.0004). Additionally, ADC and FA strongly correlated with MFF (r = -0.891 and 0.894, respectively; both P ≤ 0.0001). Mean MMF was negatively correlated with muscle strength (r = -0.89, P = 0.0001). DTI measures of muscle structure strongly correlated with muscle strength and adiposity in boys with DMD in this pilot study, although these markers may be more reflective of fat replacement rather than muscle damage in later stages of the disease. Further studies in presymptomatic younger children are needed to assess the ability of DTI to detect early changes in DMD. (orig.)

  14. Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis

    CERN Document Server

    Serna, A; Navarro, A


    In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function alpha (in the Einstein frame). We show that, in general, the evolution of the scalar field (phi) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, alpha sub 0 , strongly differ from some theories to others. For example, in theories defined by alpha propor to |phi| analytical estimates lead to very stringent nucleosynthesis bou...

  15. Cartesian tensors an introduction

    CERN Document Server

    Temple, G


    This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of t

  16. Effect of Alcohol on Diffuse Axonal Injury in Rat Brainstem: Diffusion Tensor Imaging and Aquaporin-4 Expression Study

    Directory of Open Access Journals (Sweden)

    Lingmei Kong


    Full Text Available The aim of this study is to assess the effects of alcohol on traumatic brain injury by using diffusion tensor imaging (DTI and evaluate aquaporin-4(AQP4 expression changes in rat brainstems following acute alcohol intoxication with diffuse axonal injury (DAI. We further investigated the correlation between the AQP4 expression and DTI in the brain edema. Eighty-five rats were imaged before and after injury at various stages. DTI was used to measure brainstem apparent diffusion coefficient (ADC and fractional anisotropy (FA, with immunostaining being used to determine AQP4 expression. After acute alcoholism with DAI, ADC values of the brainstem first decreased within 6 h and then elevated. FA values began to decline by 1 h, reaching a minimum at 24 h after trauma. There was a negative correlation between ADC values and brainstem AQP4 expression at 6 h and positive correlation at 6 h to 24 h. Changes of ADC and FA values in DAI with acute alcoholism indicate the effects of ethanol on brain edema and the severity of axonal injury. The correlations between ADC values and the brainstem AQP4 expression at different time points suggest that AQP4 expression follows an adaptative profile to the severity of brain edema.

  17. Effects of a static stretch using a load on low back pain patients with shortened tensor fascia lata. (United States)

    Bae, Hae-In; Kim, Dae-Young; Sung, Yun-Hee


    Stretch of tensor fascia lata (TFL) improves range of motion on hip and pelvis and it reported to help reduce low back pain. Accordingly, the purpose of this study was to investigate effects of static stretching using a load on TFL in patients with low back pain. Twenty three subjects were recruited according to the selection criteria. The subjects were randomly assigned to static stretching group (control, n=12), and a static stretching using a load group (experimental, n=11). All group performed stretching for 15 min (side for 50 sec per time and a rest for 30 sec) per day in the left side and the right, respectively, for 2 weeks. Before and after the intervention, all groups measured visual analogue scale (VAS), stand and reach test, and the Oswestry disability index (ODI). In the present results, we found that the experimental group showed significant differences in VAS, stand and reach test, and the ODI (Pstatic stretching using a load can be actively utilized for low back pain patients with shortened TFL.

  18. Chiral perturbation theory with tensor sources

    Energy Technology Data Exchange (ETDEWEB)

    Cata, Oscar; Cata, Oscar; Mateu, Vicent


    We construct the most general chirally-invariant Lagrangian for mesons in the presence of external sources coupled to the tensor current \\bar psi sigma_mu nu psi. In order to have only even terms in the chiral expansion, we consider the new source of O(p2). With this choice, we build the even-parity effective Lagrangian up to the p6-order (NLO). While there are only 4 new terms at the p4-order, at p6-order we find 78 terms for n_f=2 and 113 terms for n_f=3. We provide a detailed discussion on the different mechanisms that ensure that our final set of operators is complete and non-redundant. We also examine the odd-parity sector, to conclude that the first operators appear at the p8-order (NNLO).

  19. Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: [Departamento de Física Aplicada, Universidad de Huelva, 21071 Huelva (Spain); Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva (Spain); Mendiboure, B. [Laboratoire des Fluides Complexes et leurs Réservoirs, UMR5150, Université de Pau et des Pays de l’Adour, B. P. 1155, Pau Cedex 64014 (France); Moreno-Ventas Bravo, A. I. [Centro de Investigación de Física Teórica y Matemática, Universidad de Huelva, 21071 Huelva (Spain); Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain)


    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r{sub c} = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r{sub c} = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial

  20. Mechanical properties, Born effective charge tensors and high frequency dielectric constants of the eight phases of BaTiO3 (United States)

    Jia, Xiao; Zhang, Hong-Qi; Wang, Zheng; Jiang, Cheng-Lu; Liu, Qi-Jun; Liu, Zheng-Tang


    We have preformed the first-principles calculations for the mechanical properties, Born effective charge tensors and high frequency dielectric constants of the eight phases of BaTiO3. The independent elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio were obtained, which were consistent with the available theoretical and experimental values. The mechanical stability and brittle/ductile behaviors of the eight phases of BaTiO3 have been discussed. The calculated results indicated that the eight phases were all mechanically stable and behaved in a brittle manner. The calculated Born effective charge tensors shown the covalent Ti-O bond and ionic Ba-O bond. Moreover, the high frequency dielectric constants have been given.

  1. Dark energy in scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.


    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  2. Dark matter relics and the expansion rate in scalar-tensor theories (United States)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne


    We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We also study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.

  3. Local Tensor Radiation Conditions For Elastic Waves

    DEFF Research Database (Denmark)

    Krenk, S.; Kirkegaard, Poul Henning


    A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...

  4. Effect of acupuncture therapy for postponing Wallerian degeneration of cerebral infarction as shown by diffusion tensor imaging. (United States)

    Shen, Yunxia; Li, Ming; Wei, Ruipeng; Lou, Mingwu


    One aim of this study was to investigate the effects of acupuncture on cerebral function of patients with acute cerebral infarction. Another goal was to evaluate the relationship between acupuncture treatment and motor recovery patients with stroke and to provide a foundation for using acupuncture therapy for such patients. Twenty (20) patients with recent cerebral infarction were divided randomly to an acupuncture group and a control group. The infarction area in each patient was in the basal ganglia or included the basal ganglia with an area size of > 1 cm(2). Serial diffusion tensor imaging (DTI), fluid-attenuated inversion recovery (FLAIR), and T2-weighted imaging (T(2)WI) scans were performed on all patients and the results were evaluated using the National Institute of Health Stroke Scale and the Barthel Index each week. DTI images were postprocessed and analyzed. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of abnormal signals on DTI in the infarction areas and cerebral peduncles were calculated for both groups and compared with one another. (1) The ADC value of infarction lesions decreased at stroke onset; then, a significant elevation was observed after the acute stage, and a significant reduction in FA values was observed from stroke onset to the chronic stage. (2) The ADC of the bilateral cerebral peduncle was reduced on the infarction side. (3) There was a significant difference in ADC and FA values between the acupuncture and control groups. The FA value was higher in the acupuncture group than the control group. ADC and FA values might correlate to patient recovery and reveal the progress of secondary degeneration. Acupuncture treatment is effective for protecting neurons and facilitating recovery.

  5. Renormalization of nonabelian gauge theories with tensor matter fields

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Vitor; Renan, Ricardo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, Silvio Paolo [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica


    The renormalizability of a nonabelian model describing the coupling between antisymmetric second rank tensor matter fields and Yang-Mills gauge fields is discussed within the BRS algebraic framework. (author). 12 refs.

  6. On the energy-momentum tensor in Moyal space

    Energy Technology Data Exchange (ETDEWEB)

    Balasin, Herbert; Schweda, Manfred [Vienna University of Technology, Institute for Theoretical Physics, Vienna (Austria); Blaschke, Daniel N. [Los Alamos National Laboratory, Theory Division, Los Alamos, NM (United States); Gieres, Francois [Universite de Lyon, Universite Claude Bernard Lyon 1 et CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne (France)


    We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)

  7. The Effects of a Couple Communication Program on Passive Conflict Tendency among Married Couples (United States)

    Karahan, T. Fikret


    The present study examined the effect of a 10-session couple communication program developed by the researcher on passive conflict tendencies among married couples. The research was carried out with 28 married couples, 14 participants in the control group, and 14 participants in the experimental group. The design of the research was an…

  8. Tensors and their applications

    CERN Document Server

    Islam, Nazrul


    About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplines of science and engineering, in a lucid manner. The text has been explained section wise, every concept has been narrated in the form of definition, examples and questions related to the concept taught. The overall package of the book is highly useful and interesting for the people associated with the field. Contents: Preliminaries Tensor Algebra Metric Tensor and Riemannian Metric Christoffel`s Symbols and Covariant Differentiation Riemann-Christoffel Tensor The e-Systems and the Generalized Krönecker Deltas Geometry Analytical Mechanics Curvature of a Curve, Geodesic Parallelism of Vectors Ricci`s Coefficients of Rotation and Congruence Hyper Surfaces

  9. Orthogonal tensor decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Tamara G. Kolda


    The authors explore the orthogonal decomposition of tensors (also known as multi-dimensional arrays or n-way arrays) using two different definitions of orthogonality. They present numerous examples to illustrate the difficulties in understanding such decompositions. They conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl. 269(1998):307--329].

  10. Hyperspectral Image Denoising Based on Tensor Group Sparse Representation

    Directory of Open Access Journals (Sweden)

    WANG Zhongmei


    Full Text Available A novel algorithm for hyperspectral image (HSI denoising is proposed based on tensor group sparse representation. A HSI is considering as 3 order tensor. First, a HSI is divided into small tensor blocks. Second, similar blocks are gathered into clusters, and then a tensor group sparse representation model is constructed based on every cluster. Through exploiting HSI spectral correlation and nonlocal similarity over space, the model constrained tensor group sparse representation can be decomposed into a series of unconstrained low-rank tensor approximation problems, which can be solved using the tensor decomposition technique. The experiment results on the synthetic and real hyperspectral remote sensing images demonstrate the effectiveness of the proposed approach.

  11. Long-term effects of radiation therapy on white matter of the corpus callosum: a diffusion tensor imaging study in children. (United States)

    Makola, Monwabisi; Douglas Ris, M; Mahone, E Mark; Yeates, Keith Owen; Cecil, Kim M


    Despite improving survival rates, children are at risk for long-term cognitive and behavioral difficulties following the diagnosis and treatment of a brain tumor. Surgery, chemotherapy and radiation therapy have all been shown to impact the developing brain, especially the white matter. The purpose of this study was to determine the long-term effects of radiation therapy on white matter integrity, as measured by diffusion tensor imaging, in pediatric brain tumor patients 2 years after the end of radiation treatment, while controlling for surgical interventions. We evaluated diffusion tensor imaging performed at two time points: a baseline 3 to 12 months after surgery and a follow-up approximately 2 years later in pediatric brain tumor patients. A region of interest analysis was performed within three regions of the corpus callosum. Diffusion tensor metrics were determined for participants (n=22) who underwent surgical tumor resection and radiation therapy and demographically matched with participants (n=22) who received surgical tumor resection only. Analysis revealed that 2 years after treatment, the radiation treated group exhibited significantly lower fractional anisotropy and significantly higher radial diffusivity within the body of the corpus callosum compared to the group that did not receive radiation. The findings indicate that pediatric brain tumor patients treated with radiation therapy may be at greater risk of experiencing long-term damage to the body of the corpus callosum than those treated with surgery alone.

  12. Cosmologies in Horndeski's second-order vector-tensor theory

    CERN Document Server

    Barrow, John D; Yamamoto, Kei


    Horndeski derived a most general vector-tensor theory in which the vector field respects the gauge symmetry and the resulting dynamical equations are of second order. The action contains only one free parameter, $\\lambda$, that determines the strength of the non-minimal coupling between the gauge field and gravity. We investigate the cosmological consequences of this action and discuss observational constraints. For $\\lambda<0$ we identify singularities where the deceleration parameter diverges within a finite proper time. This effectively rules out any sensible cosmological application of the theory for a negative non-minimal coupling. We also find a range of parameter that gives a viable cosmology and study the phenomenology for this case. Observational constraints on the value of the coupling are rather weak since the interaction is higher-order in space-time curvature.

  13. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang


    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  14. Tensor analysis for physicists

    CERN Document Server

    Schouten, J A


    This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory. The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapte...

  15. Tensor Field Visualization in Geomechanics Applications (United States)

    Hotz, I.; Feng, L.; Hamann, B.; Joy, K.; Manaker, D.; Billen, M. I.; Kellogg, L. H.


    , indicating compression, we obtain a dense compressed texture. By animating the various parameters of our technique, the impression of stretching, compressing and bending can be enhanced, or used to represent time-varying data sets. The method is based on two steps: first, we define a positive definite metric with the same topological structure as the tensor field; second, we visualize the resulting metric. Every principal direction is represented using line-integral convolution (LIC). Here, a white-noise texture is blurred according to the tensor field, resulting in a high correlation of pixels along the principal lines, whereas almost no correlation appears in directions perpendicular to these lines. The resulting visualizations are highly effective depictions of the principal direction behavior over the entire field. In each LIC image, the eigenvalues of every eigenvector field are used to define the free parameters of the underlaying noise image (density, spot size) and the convolution (length of a filter kernel). In addition to these three ``structural'' parameters, color intensity can be used to enhance the impression of compression and stretching. We use a continuous color mapping, ranging from red for the smallest negative eigenvalues, white for zero eigenvalues, to green for largest positive eigenvalues. Finally, the resulting LIC images are overlaid to generate the fabric-like texture.

  16. Measuring Nematic Susceptibilities from the Elastoresistivity Tensor (United States)

    Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian

    The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  17. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard


    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables....... Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of systems...

  18. Inter-dot coupling effects on transport through correlated parallel ...

    Indian Academy of Sciences (India)

    The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots. Keywords. Coupled quantum dots ...

  19. The simplicial Ricci tensor

    Energy Technology Data Exchange (ETDEWEB)

    Alsing, Paul M; McDonald, Jonathan R [Information Directorate, Air Force Research Laboratory, Rome, NY 13441 (United States); Miller, Warner A, E-mail: [Department of Physics, Florida Atlantic University, Boca Raton, FL 33431 (United States)


    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area-an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.

  20. Low-frequency centroid-moment-tensor inversion from superconducting-gravimeter data: The effect of seismic attenuation (United States)

    Zábranová, Eliška; Matyska, Ctirad


    After the 2010 Maule and 2011 Tohoku earthquakes the spheroidal modes up to 1 mHz were clearly registered by the Global Geodynamic Project (GGP) network of superconducting gravimeters (SG). Fundamental parameters in synthetic calculations of the signals are the quality factors of the modes. We study the role of their uncertainties in the centroid-moment-tensor (CMT) inversions. First, we have inverted the SG data from selected GGP stations to jointly determine the quality factors of these normal modes and the three low-frequency CMT components, Mrr,(Mϑϑ-Mφφ)/2 and Mϑφ, that generate the observed SG signal. We have used several-days-long records to minimize the trade-off between the quality factors and the CMT but it was not eliminated completely. We have also inverted each record separately to get error estimates of the obtained parameters. Consequently, we have employed the GGP records of 60-h lengths for several published modal-quality-factor sets and inverted only the same three CMT components. The obtained CMT tensors are close to the solution from the joint Q-CMT inversion of longer records and resulting variability of the CMT components is smaller than differences among routine agency solutions. Reliable low-frequency CMT components can thus be obtained for any quality factors from the studied sets.

  1. Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: The slow-roll approximation

    CERN Document Server

    Brizuela, David; Kraemer, Manuel


    We continue our study on corrections from canonical quantum gravity to the power spectra of gauge-invariant inflationary scalar and tensor perturbations. A direct canonical quantization of a perturbed inflationary universe model is implemented, which leads to a Wheeler-DeWitt equation. For this equation, a semiclassical approximation is applied in order to obtain a Schroedinger equation with quantum-gravitational correction terms, from which we calculate the corrections to the power spectra. We go beyond the de Sitter case discussed earlier and analyze our model in the first slow-roll approximation, considering terms linear in the slow-roll parameters. We find that the dominant correction term from the de Sitter case, which leads to an enhancement of power on the largest scales, gets modified by terms proportional to the slow-roll parameters. A correction to the tensor-to-scalar ratio is also found at second order in the slow-roll parameters. Making use of the available experimental data, the magnitude of the...

  2. Evaluation of bayesian tensor estimation using tensor coherence. (United States)

    Kim, Dae-Jin; Kim, In-Young; Jeong, Seok-Oh; Park, Hae-Jeong


    Fiber tractography, a unique and non-invasive method to estimate axonal fibers within white matter, constructs the putative streamlines from diffusion tensor MRI by interconnecting voxels according to the propagation direction defined by the diffusion tensor. This direction has uncertainties due to the properties of underlying fiber bundles, neighboring structures and image noise. Therefore, robust estimation of the diffusion direction is essential to reconstruct reliable fiber pathways. For this purpose, we propose a tensor estimation method using a Bayesian framework, which includes an a priori probability distribution based on tensor coherence indices, to utilize both the neighborhood direction information and the inertia moment as regularization terms. The reliability of the proposed tensor estimation was evaluated using Monte Carlo simulations in terms of accuracy and precision with four synthetic tensor fields at various SNRs and in vivo human data of brain and calf muscle. Proposed Bayesian estimation demonstrated the relative robustness to noise and the higher reliability compared to the simple tensor regression.

  3. Evaluation of Bayesian tensor estimation using tensor coherence (United States)

    Kim, Dae-Jin; Kim, In-Young; Jeong, Seok-Oh; Park, Hae-Jeong


    Fiber tractography, a unique and non-invasive method to estimate axonal fibers within white matter, constructs the putative streamlines from diffusion tensor MRI by interconnecting voxels according to the propagation direction defined by the diffusion tensor. This direction has uncertainties due to the properties of underlying fiber bundles, neighboring structures and image noise. Therefore, robust estimation of the diffusion direction is essential to reconstruct reliable fiber pathways. For this purpose, we propose a tensor estimation method using a Bayesian framework, which includes an a priori probability distribution based on tensor coherence indices, to utilize both the neighborhood direction information and the inertia moment as regularization terms. The reliability of the proposed tensor estimation was evaluated using Monte Carlo simulations in terms of accuracy and precision with four synthetic tensor fields at various SNRs and in vivo human data of brain and calf muscle. Proposed Bayesian estimation demonstrated the relative robustness to noise and the higher reliability compared to the simple tensor regression.

  4. Quantum dissipative effect of one dimension coupled anharmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, A. [Badan Pengkajian dan Penerapan Teknologi, BPPT Bld. II (19thfloor), Jl. M.H. Thamrin 8, Jakarta 10340 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10, Bandung 40132 (Indonesia); Zen, Freddy P. [Theoretical Physics Laboratory (THEPI), Department of Physics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10, Bandung 40132 (Indonesia)


    Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.

  5. Evolution of Dark Energy Perturbations in Scalar-Tensor Cosmologies


    Sanchez, J. C. Bueno; Perivolaropoulos, L.


    We solve analytically and numerically the generalized Einstein equations in scalar-tensor cosmologies to obtain the evolution of dark energy and matter linear perturbations. We compare our results with the corresponding results for minimally coupled quintessence perturbations. Our results for natural (O(1)) values of parameters in the Lagrangian which lead to a background expansion similar to LCDM are summarized as follows: 1. Scalar-Tensor dark energy density perturbations are amplified by a...

  6. Gogny interactions with tensor terms

    Energy Technology Data Exchange (ETDEWEB)

    Anguiano, M.; Lallena, A.M.; Bernard, R.N. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain); Co' , G. [INFN, Lecce (Italy); De Donno, V. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Grasso, M. [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay (France)


    We present a perturbative approach to include tensor terms in the Gogny interaction. We do not change the values of the usual parameterisations, with the only exception of the spin-orbit term, and we add tensor terms whose only free parameters are the strengths of the interactions. We identify observables sensitive to the presence of the tensor force in Hartree-Fock, Hartree-Fock-Bogoliubov and random phase approximation calculations. We show the need of including two tensor contributions, at least: a pure tensor term and a tensor-isospin term. We show results relevant for the inclusion of the tensor term for single-particle energies, charge-conserving magnetic excitations and Gamow-Teller excitations. (orig.)

  7. Energy-Momentum Tensor Improvements in Two Dimensions


    Deser, S.; Jackiw, R.


    We discuss some aspects of the two-dimensional scalar field, considering particularly the action for the conformal anomaly as an ``improved'' gravitational coupling, and the possibility of introducing a dual coupling, which provides a ``chiral'' energy-momentum tensor improvement.

  8. High-Resolution Diffusion Tensor MR Imaging for Evaluating Myocardial Anisotropy and Fiber Tracking at 3T: the Effect of the Number of Diffusion- Sensitizing Gradient Directions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Il; Kang, Joon Won; Lim, Tae Hwan [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Chun, Eun Ju [Seoul National University Bundang Hospital, Sengnam (Korea, Republic of); Choi, Seong Hoon [Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of)


    We wanted to evaluate the effect of the number of diffusion-sensitizing gradient directions on the image quality for evaluating myocardial anisotropy and fiber tracking by using in vitro diffusion tensor MR imaging (DT-MRI). The DT-MR images, using a SENSE-based echoplanar imaging technique, were acquired from ten excised porcine hearts by using a 3T MR scanner. With a b-value of 800 s/mm{sup 2}, the diffusion tensor images were obtained for 6, 15 and 32 diffusion-sensitizing gradient directions at the midventricular level. The number of tracked fibers, the fractional anisotropy (FA), and the length of the tracked fibers were measured for the quantitative analysis. Two radiologists assessed the image quality of the fiber tractography for the qualitative analysis. By increasing the number of diffusion-sensitizing gradient directions from 6 to 15, and then to 32, the FA and standard deviation were significantly reduced (p < 0.01), and the number of tracked fibers and the length of the tracked fibers were significantly increased (p < 0.01). The image quality of the fiber tractography was significantly increased with the increased number of diffusion sensitizing gradient directions (p < 0.01). The image quality of in vitro DT-MRI is significantly improved as the number of diffusion-sensitizing gradient directions is increased.

  9. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: evaluation using a diffusional anisotropic phantom. (United States)

    Kim, Sang Joon; Choi, Choong Gon; Kim, Jeong Kon; Yun, Sung-Cheol; Jahng, Geon-Ho; Jeong, Ha-Kyu; Kim, Eun Ju


    To validate the usefulness of a diffusional anisotropic capillary array phantom and to investigate the effects of diffusion tensor imaging (DTI) parameter changes on diffusion fractional anisotropy (FA) and apparent diffusion coefficient (ADC) using the phantom. Diffusion tensor imaging of a capillary array phantom was performed with imaging parameter changes, including voxel size, number of sensitivity encoding (SENSE) factor, echo time (TE), number of signal acquisitions, b-value, and number of diffusion gradient directions (NDGD), one-at-a-time in a stepwise-incremental fashion. We repeated the entire series of DTI scans thrice. The coefficients of variation (CoV) were evaluated for FA and ADC, and the correlation between each MR imaging parameter and the corresponding FA and ADC was evaluated using Spearman's correlation analysis. The capillary array phantom CoVs of FA and ADC were 7.1% and 2.4%, respectively. There were significant correlations between FA and SENSE factor, TE, b-value, and NDGD, as well as significant correlations between ADC and SENSE factor, TE, and b-value. A capillary array phantom enables repeated measurements of FA and ADC. Both FA and ADC can vary when certain parameters are changed during diffusion experiments. We suggest that the capillary array phantom can be used for quality control in longitudinal or multicenter clinical studies.

  10. Applied tensor stereology

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Nyengaard, Jens Randel; Jensen, Eva B. Vedel

    In the present paper, statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles are developed. The focus of this work is on the case where the particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle...... shape and orientation, and stereological estimators of the tensors are derived. It is shown that these estimators can be combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends...... on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under all rotations, then the covariance matrix is proportional to the identity matrix. A non-parametric test for such isotropy is developed. A flexible L\\'evy-based particle model is proposed, which...

  11. An Alternative to Tensors (United States)

    Brown, Eric


    Some of the most beautiful and complex theories in physics are formulated in the language of tensors. While powerful, these methods are sometimes daunting to the uninitiated. I will introduce the use of Clifford Algebra as a practical alternative to the use of tensors. Many physical quantities can be represented in an indexless form. The boundary between the classical and the quantum worlds becomes a little more transparent. I will review some key concepts, and then talk about some of the things that I am doing with this interesting and powerful tool. Of note to some will be the development of rigid body dynamics for a game engine. Others may be interested in expressing the connection on a spin bundle. My intent is to prove to the audience that there exists an accessible mathematical tool that can be employed to probe the most difficult of topics in physics.

  12. Stochastic analysis of transverse dispersion in density-coupled transport in aquifers (United States)

    Welty, C.; Kane, A. C.; Kauffman, L.J.


    Spectral perturbation techniques have been used previously to derive integral expressions for dispersive mixing in concentration-dependent transport in three-dimensional, heterogeneous porous media, where fluid density and viscosity are functions of solute concentration. Whereas earlier work focused on evaluating longitudinal dispersivity in isotropic media and incorporating the result in a mean one-dimensional transport model, the emphasis of this paper is on evaluation of the complete dispersion tensor, including the more general case of anisotropic media. Approximate analytic expressions for all components of the macroscopic dispersivity tensor are derived, and the tensor is shown to be asymmetric. The tensor is separated into its symmetric and antisymmetric parts, where the symmetric part is used to calculate the principal components and principal directions of dispersivity, and the antisymmetric part of the tensor is shown to modify the velocity of the solute body compared to that of the background fluid. An example set of numerical simulations incorporating the tensor illustrates the effect of density-coupled dispersivity on a sinking plume in an aquifer. The simulations show that the effective transverse vertical spreading in a sinking plume to be significantly greater than would be predicted by a standard density-coupled transport model that does not incorporate the coupling in the dispersivity tensor.

  13. The Simplicial Ricci Tensor

    CERN Document Server

    Alsing, Paul M; Miller, Warner A; 10.1088/0264-9381/28/15/155007


    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of ...

  14. Sparse tensor discriminant analysis. (United States)

    Lai, Zhihui; Xu, Yong; Yang, Jian; Tang, Jinhui; Zhang, David


    The classical linear discriminant analysis has undergone great development and has recently been extended to different cases. In this paper, a novel discriminant subspace learning method called sparse tensor discriminant analysis (STDA) is proposed, which further extends the recently presented multilinear discriminant analysis to a sparse case. Through introducing the L1 and L2 norms into the objective function of STDA, we can obtain multiple interrelated sparse discriminant subspaces for feature extraction. As there are no closed-form solutions, k-mode optimization technique and the L1 norm sparse regression are combined to iteratively learn the optimal sparse discriminant subspace along different modes of the tensors. Moreover, each non-zero element in each subspace is selected from the most important variables/factors, and thus STDA has the potential to perform better than other discriminant subspace methods. Extensive experiments on face databases (Yale, FERET, and CMU PIE face databases) and the Weizmann action database show that the proposed STDA algorithm demonstrates the most competitive performance against the compared tensor-based methods, particularly in small sample sizes.

  15. Black holes with surrounding matter in scalar-tensor theories. (United States)

    Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P


    We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.

  16. Tensor Factorization for Low-Rank Tensor Completion. (United States)

    Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao


    Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.

  17. Disentangling running coupling and conformal effects in QCD

    CERN Document Server

    Brodsky, S J; Grunberg, G; Rathsman, J


    We investigate the relation between a postulated skeleton expansion and the conformal limit of QCD. We begin by developing some consequences of an Abelian-like skeleton expansion, which allows one to disentangle running-coupling effects from the remaining skeleton coefficients. The latter are by construction renormalon free, and hence hopefully better behaved. We consider a simple ansatz for the expansion, where an observable is written as a sum of integrals over the running coupling. We show that in this framework one can set a unique Brodsky-Lepage-Mackenzie (BLM) scale-setting procedure as an approximation to the running-coupling integrals, where the BLM coefficients coincide with the skeleton ones. Alternatively, the running-coupling integrals can be approximated using the effective charge method. We discuss the limitations in disentangling running coupling effects in the absence of a diagrammatic construction of the skeleton expansion. Independently of the assumed skeleton structure we show that BLM coef...

  18. The effect of anxiety and depression scores of couples who ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to determine the effect of anxiety and depression scores of couples who underwent Assisted Reproductive Techniques (ART) on pregnancy outcomes. Method: This study was conducted as a prospective and comparative study with 217 couples. The study data was collected by using a ...

  19. Effects of shear coupling on shear properties of wood (United States)

    Jen Y. Liu


    Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...

  20. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging. (United States)

    Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei


    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  1. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Trong-Kha Truong


    Full Text Available In most diffusion tensor imaging (DTI studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR. However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact. Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2*-weighting (i.e., Type 3 artifact. These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  2. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils


    of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination......We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...

  3. Tensor norms and operator ideals

    CERN Document Server

    Defant, A; Floret, K


    The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exer

  4. Experimental determination of the effective strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch


    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  5. Black holes in vector-tensor theories (United States)

    Heisenberg, Lavinia; Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji


    We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic and quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.

  6. Asymptotic tensor rank of graph tensors: beyond matrix multiplication

    NARCIS (Netherlands)

    M. Christandl (Matthias); P. Vrana (Péter); J. Zuiddam (Jeroen)


    textabstractWe present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on $k$ vertices. For $k\\geq4$, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per

  7. Transversely isotropic higher-order averaged structure tensors (United States)

    Hashlamoun, Kotaybah; Federico, Salvatore


    For composites or biological tissues reinforced by statistically oriented fibres, a probability distribution function is often used to describe the orientation of the fibres. The overall effect of the fibres on the material response is accounted for by evaluating averaging integrals over all possible directions in space. The directional average of the structure tensor (tensor product of the unit vector describing the fibre direction by itself) is of high significance. Higher-order averaged structure tensors feature in several models and carry similarly important information. However, their evaluation has a quite high computational cost. This work proposes to introduce mathematical techniques to minimise the computational cost associated with the evaluation of higher-order averaged structure tensors, for the case of a transversely isotropic probability distribution of orientation. A component expression is first introduced, using which a general tensor expression is obtained, in terms of an orthonormal basis in which one of the vectors coincides with the axis of symmetry of transverse isotropy. Then, a higher-order transversely isotropic averaged structure tensor is written in an appropriate basis, constructed starting from the basis of the space of second-order transversely isotropic tensors, which is constituted by the structure tensor and its complement to the identity.

  8. Visualizing Tensor Normal Distributions at Multiple Levels of Detail. (United States)

    Abbasloo, Amin; Wiens, Vitalis; Hermann, Max; Schultz, Thomas


    Despite the widely recognized importance of symmetric second order tensor fields in medicine and engineering, the visualization of data uncertainty in tensor fields is still in its infancy. A recently proposed tensorial normal distribution, involving a fourth order covariance tensor, provides a mathematical description of how different aspects of the tensor field, such as trace, anisotropy, or orientation, vary and covary at each point. However, this wealth of information is far too rich for a human analyst to take in at a single glance, and no suitable visualization tools are available. We propose a novel approach that facilitates visual analysis of tensor covariance at multiple levels of detail. We start with a visual abstraction that uses slice views and direct volume rendering to indicate large-scale changes in the covariance structure, and locations with high overall variance. We then provide tools for interactive exploration, making it possible to drill down into different types of variability, such as in shape or orientation. Finally, we allow the analyst to focus on specific locations of the field, and provide tensor glyph animations and overlays that intuitively depict confidence intervals at those points. Our system is demonstrated by investigating the effects of measurement noise on diffusion tensor MRI, and by analyzing two ensembles of stress tensor fields from solid mechanics.

  9. Tensor B mode and stochastic Faraday mixing

    CERN Document Server

    Giovannini, Massimo


    This paper investigates the Faraday effect as a different source of B mode polarization. The E mode polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are absent and we argue that the B mode recently detected by the Bicep2 collaboration cannot be explained by a large-scale magnetic field rotating, through the Faraday effect, the well established E mode polarization. In this case, the observed temperature autocorrelations would be excessively distorted by the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor par...

  10. Effects of structural coupling on mistuned cascade flutter and response (United States)

    Kielb, R. E.; Kaza, K. R. V.


    The effects of structural coupling on mistuned cascade flutter and response are analytically investigated using an extended typical section model. This model includes both structural and aerodynamic coupling between the blades. The model assumes that the structurally coupled system natural modes were determined and are represented in the form of N bending and N torsional uncoupled modes for each blade, where N is the number of blades and, hence, is only valid for blade dominated motion. The aerodynamic loads are calculated by using two dimensional unsteady cascade theories in the subsonic and supersonic flow regimes. The results show that the addition of structural coupling can affect both the aeroelastic stability and frequency. The stability is significantly affected only when the system is mistuned. The resonant frequencies can be significantly changed by structural coupling in both tuned and mistuned systems, however, the peak response is significantly affected only in the latter.

  11. Depth inpainting by tensor voting. (United States)

    Kulkarni, Mandar; Rajagopalan, Ambasamudram N


    Depth maps captured by range scanning devices or by using optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections, etc. In this paper, we propose a fast and reliable algorithm for depth map inpainting using the tensor voting (TV) framework. For less complex missing regions, local edge and depth information is utilized for synthesizing missing values. The depth variations are modeled by local planes using 3D TV, and missing values are estimated using plane equations. For large and complex missing regions, we collect and evaluate depth estimates from self-similar (training) datasets. We align the depth maps of the training set with the target (defective) depth map and evaluate the goodness of depth estimates among candidate values using 3D TV. We demonstrate the effectiveness of the proposed approaches on real as well as synthetic data.

  12. Page 1 On energy-momentum tensors as sources of spin-2 fields 31 ...

    Indian Academy of Sciences (India)

    (actually a linearised version of the harmonic co-ordinate condition). With this subsidiary condition, the theory given by eq. (6) is simply the conventional mass- less spin-2 theory with the Belinfante tensor as its source, to first order in the coupling constant: Clxuv = 2kBay + O (k”). (10). The improved energy-momentum tensor ...

  13. PPN parameters in gravitational theory with non-minimally derivative coupling

    CERN Document Server

    Zhu, Yi


    The non-minimal coupling of the kinetic term to Einstein's tensor helps the implementation of inflationary models due to the gravitationally enhanced friction. We calculate the parameterized post-Newtonian parameters for the scalar-tensor theory of gravity with non-minimally derivative coupling. We find that under experiment constraint from the orbits of millisecond pulsars in our galaxy, the theory deviates from Einstein's general relativity in the order of $10^{-20}$, and the effect of the non-minimal coupling is negligible if we take the scalar field as dynamical dark energy. Under the assumed conditions, the scalar field is required to be massless.

  14. Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

    Directory of Open Access Journals (Sweden)

    Yue Gao


    Full Text Available Diversity antennas play an important role in wireless communications. However, mutual coupling between multiple ports of a diversity antenna has significant effects on wireless radio links and channel capacity. In this paper, dual-port pattern diversity antennas for femtocell applications are proposed to cover GSM1800, UMTS, and WLAN frequency bands. The channel capacities of the proposed antennas and two ideal dipoles with different mutual coupling levels are investigated in an indoor environment. The relation between mutual coupling and channel capacity is observed through investigations of these antennas.

  15. Tensor Network Contractions for #SAT (United States)

    Biamonte, Jacob D.; Morton, Jason; Turner, Jacob


    The computational cost of counting the number of solutions satisfying a Boolean formula, which is a problem instance of #SAT, has proven subtle to quantify. Even when finding individual satisfying solutions is computationally easy (e.g. 2-SAT, which is in ), determining the number of solutions can be #-hard. Recently, computational methods simulating quantum systems experienced advancements due to the development of tensor network algorithms and associated quantum physics-inspired techniques. By these methods, we give an algorithm using an axiomatic tensor contraction language for n-variable #SAT instances with complexity where c is the number of COPY-tensors, g is the number of gates, and d is the maximal degree of any COPY-tensor. Thus, n-variable counting problems can be solved efficiently when their tensor network expression has at most COPY-tensors and polynomial fan-out. This framework also admits an intuitive proof of a variant of the Tovey conjecture (the r,1-SAT instance of the Dubois-Tovey theorem). This study increases the theory, expressiveness and application of tensor based algorithmic tools and provides an alternative insight on these problems which have a long history in statistical physics and computer science.

  16. Electron-phonon coupling of light-actinides. Effect of spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Castelazo, Paola; Pena-Seaman, Omar de la [Benemerita Universidad Autonoma de Puebla (BUAP), Institute of Physics (IFUAP) (Mexico); Heid, Rolf; Bohnen, Klaus-Peter [Karlsruher Institut fuer Technologie (KIT), Institut fuer Festkoerperphysik (IFP) (Germany)


    The physics of actinide metals is quite complex and rich due to the behavior of 5f electrons in the valence region: it goes from itinerant on the early stages of the actinide series to highly localized for the elements with a higher number of 5f electrons involved. In addition, in this systems should be mandatory the inclusion of spin-orbit coupling (SOC). However, only in few cases on electronic and lattice dynamical properties the SOC has been taking into account, while for the electron-phonon (e-ph) coupling such analysis has not been performed so far. Thus, as a first approach we have systematically studied the SOC influence on the full-phonon dispersion and the e-ph coupling for the simplest light-actinide metals: Ac and Th. These elements have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method. The full-phonon dispersion as well as the Eliashberg spectral function and the electron-phonon coupling parameter have been calculated with and without SOC. The observed effects of SOC in the full-phonon dispersion and Eliashberg function are discussed in detail, together with an analysis of the differences on the electronic properties due to the SOC inclusion in the calculations.

  17. Interplay between tensor force and deformation in even–even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Rémi N., E-mail:; Anguiano, Marta


    In this work we study the effect of the nuclear tensor force on properties related with deformation. We focus on isotopes in the Mg, Si, S, Ar, Sr and Zr chains within the Hartree–Fock–Bogoliubov theory using the D1ST2a Gogny interaction. Contributions to the tensor energy in terms of saturated and unsaturated subshells are analyzed. Like–particle and proton–neutron parts of the tensor term are independently examinated. We found that the tensor term may considerably modify the potential energy landscapes and change the ground state shape. We analyze too how the pairing characteristics of the ground state change when the tensor force is included.

  18. Tensor-based dynamic reconstruction method for electrical capacitance tomography (United States)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.


    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  19. Tensor-based Dictionary Learning for Spectral CT Reconstruction (United States)

    Zhang, Yanbo; Wang, Ge


    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  20. Exact tensor network ansatz for strongly interacting systems (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  1. Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging (United States)

    Bondiau, Pierre-Yves; Clatz, Olivier; Sermesant, Maxime; Marcy, Pierre-Yves; Delingette, Herve; Frenay, Marc; Ayache, Nicholas


    Glioblastoma multiforma (GBM) is one of the most aggressive tumors of the central nervous system. It can be represented by two components: a proliferative component with a mass effect on brain structures and an invasive component. GBM has a distinct pattern of spread showing a preferential growth in the white fiber direction for the invasive component. By using the architecture of white matter fibers, we propose a new model to simulate the growth of GBM. This architecture is estimated by diffusion tensor imaging in order to determine the preferred direction for the diffusion component. It is then coupled with a mechanical component. To set up our growth model, we make a brain atlas including brain structures with a distinct response to tumor aggressiveness, white fiber diffusion tensor information and elasticity. In this atlas, we introduce a virtual GBM with a mechanical component coupled with a diffusion component. These two components are complementary, and can be tuned independently. Then, we tune the parameter set of our model with an MRI patient. We have compared simulated growth (initialized with the MRI patient) with observed growth six months later. The average and the odd ratio of image difference between observed and simulated images are computed. Displacements of reference points are compared to those simulated by the model. The results of our simulation have shown a good correlation with tumor growth, as observed on an MRI patient. Different tumor aggressiveness can also be simulated by tuning additional parameters. This work has demonstrated that modeling the complex behavior of brain tumors is feasible and will account for further validation of this new conceptual approach.

  2. Colored Tensor Models - a Review

    Directory of Open Access Journals (Sweden)

    Razvan Gurau


    Full Text Available Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions, non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.

  3. Effects of relationship education on couple communication and satisfaction: A randomized controlled trial with low-income couples. (United States)

    Williamson, Hannah C; Altman, Noemi; Hsueh, JoAnn; Bradbury, Thomas N


    Although preventive educational interventions for couples have been examined in more than 100 experimental studies, the value of this work is limited by reliance on economically advantaged populations and by an absence of data on proposed mediators and moderators. Data from the Supporting Healthy Marriage Project-a randomized, controlled trial of relationship education for couples living with low incomes-were therefore analyzed to test whether intervention effects on relationship satisfaction would be mediated by observational assessments of relationship communication and whether any such effects would be moderated by couples' pretreatment risk. Within the larger sample of Supporting Healthy Marriage Project couples randomized to a relationship education or no-treatment control condition, the present analyses focus on the 1,034 couples who provided (a) data on sociodemographic risk at baseline, (b) observational data on couple communication 12 months after randomization, and (c) reports of relationship satisfaction 30 months after randomization. Intervention couples reported higher satisfaction at 30 months than control couples, regardless of their level of pretreatment risk. Among higher risk couples, the intervention improved observed communication as well. Contrary to prediction, treatment effects on satisfaction were not mediated by improvements in communication, and improvements in communication did not translate into greater satisfaction. Relationship education programs produce small improvements in relationship satisfaction and communication, particularly for couples at elevated sociodemographic risk. The absence of behavioral effects on satisfaction indicates, however, that the mechanisms by which couples may benefit from relationship education are not yet well understood. (c) 2016 APA, all rights reserved).

  4. Computation of hyperfine tensors for dinuclear Mn(III) Mn(IV) complexes by broken-symmetry approaches: anisotropy transfer induced by local zero-field splitting. (United States)

    Schraut, Johannes; Arbuznikov, Alexei V; Schinzel, Sandra; Kaupp, Martin


    Based on broken-symmetry density functional calculations, the (55)Mn hyperfine tensors of a series of exchange-coupled, mixed-valence, dinuclear Mn(III) Mn(IV) complexes have been computed. We go beyond previous quantum chemical work by fully including the effects of local zero-field splitting (ZFS) interactions in the spin projection, following the first-order perturbation formalism of Sage et al. [J. Am. Chem. Soc. 1989, 111, 7239]. This allows the ZFS-induced transfer of hyperfine anisotropy from the Mn(III) site to the Mn(IV) site to be described with full consideration of the orientations of local hyperfine and ZFS tensors. After scaling to correct for systematic deficiencies in the quantum chemically computed local ZFS tensors, good agreement with experimental (55)Mn anisotropies at the Mn(IV) site is obtained. The hyperfine coupling anisotropies on the Mn(III) site depend sensitively on structural distortions for a d(4) ion. The latter are neither fully reproduced by using a DFT-optimized coordination environment nor by using experimental structures. For very small exchange-coupling constants, the perturbation treatment breaks down and a dramatic sensitivity to the scaling of the local ZFS tensors is observed. These results are discussed with respect to ongoing work to elucidate the structure of the oxygen-evolving complex of photosystem II by analysis of the EPR spectra. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. De Sitter ground state of scalar-tensor gravity and its primordial perturbation

    CERN Document Server

    Zhang, Hongsheng


    We find an exact de Sitter solution of scalar-tensor gravity, in which the non-minimal coupling scalar is rolling along a non-constant potential. We investigated its primordial quantum perturbation around the adiabatic vacuum. We put forward for the first time that exact de Sitter generates non-exactly scale invariant perturbations. In the conformal coupling case, this model predicts that the tensor mode of the perturbation (gravity wave) is strongly depressed.

  6. Positivity and conservation of superenergy tensors

    CERN Document Server

    Pozo, J M


    Two essential properties of energy-momentum tensors T submu subnu are their positivity and conservation. This is mathematically formalized by, respectively, an energy condition, as the dominant energy condition, and the vanishing of their divergence nabla supmu T submu subnu = 0. The classical Bel and Bel-Robinson superenergy tensors, generated from the Riemann and Weyl tensors, respectively, are rank-4 tensors. But they share these two properties with energy-momentum tensors: the dominant property (DP) and the divergence-free property in the absence of sources (vacuum). Senovilla defined a universal algebraic construction which generates a basic superenergy tensor T left brace A right brace from any arbitrary tensor A. In this construction, the seed tensor A is structured as an r-fold multivector, which can always be done. The most important feature of the basic superenergy tensors is that they satisfy automatically the DP, independently of the generating tensor A. We presented a more compact definition of T...

  7. Effect of interlayer exchange coupling on magnetic chiral structures

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. P.; Kwon, H. Y.; Kim, H. S.; Shim, J. H.; Won, C. [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of)


    We numerically investigated the effect of interlayer exchange coupling on magnetic chiral structures, such as a helical/cycloidal spin structure and magnetic skyrmion crystal (SkX), which are produced in a magnetic system involving the Dzyaloshinskii-Moriya interaction (DMI). We report the existence of a phase transition where the length scale of magnetic structure discontinuously changes, and that there can be a novel magnetic structure around the phase boundary that exhibits double-ordering lengths of magnetic structure. Therefore, the system has multiple ground phases determined by the ratio of interlayer exchange coupling strength and DMI strength. Furthermore, we investigated the critical condition of the external perpendicular field required for the SkX. The critical field is significantly reduced under the effect of interlayer exchange coupling, which can stabilize the SkX without the external field.

  8. Flavour Geometry and Effective Yukawa Couplings in the MSSM

    CERN Document Server

    Ellis, John; Lee, Jae Sik; Pilaftsis, Apostolos


    We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive the necessary and sufficient conditions for a linearly-independent basis of matrices related to the completeness of the internal [SU(3) x U(1)]^5 flavour space. In a second step, we calculate the effective Yukawa couplings that are enhanced at large values of tan(beta) for general soft supersymmetry-breaking mass parameters. We highlight the contributions due to non-universal terms in the flavour decompositions of the sfermion mass matrices. We present numerical examples illustrating how such terms are induced by renormalization-group evolution starting from universal input boundary conditions, and demonstrate their importance for the flavour-violating effective Yukawa couplings of quarks.

  9. Obtaining orthotropic elasticity tensor using entries zeroing method. (United States)

    Gierlach, Bartosz; Danek, Tomasz


    A generally anisotropic elasticity tensor obtained from measurements can be represented by a tensor belonging to one of eight material symmetry classes. Knowledge of symmetry class and orientation is helpful for describing physical properties of a medium. For each non-trivial symmetry class except isotropic this problem is nonlinear. A common method of obtaining effective tensor is a choosing its non-trivial symmetry class and minimizing Frobenius norm between measured and effective tensor in the same coordinate system. Global optimization algorithm has to be used to determine the best rotation of a tensor. In this contribution, we propose a new approach to obtain optimal tensor, with the assumption that it is orthotropic (or at least has a similar shape to the orthotropic one). In orthotropic form tensor 24 out of 36 entries are zeros. The idea is to minimize the sum of squared entries which are supposed to be equal to zero through rotation calculated with optimization algorithm - in this case Particle Swarm Optimization (PSO) algorithm. Quaternions were used to parametrize rotations in 3D space to improve computational efficiency. In order to avoid a choice of local minima we apply PSO several times and only if we obtain similar results for the third time we consider it as a correct value and finish computations. To analyze obtained results Monte-Carlo method was used. After thousands of single runs of PSO optimization, we obtained values of quaternion parts and plot them. Points concentrate in several points of the graph following the regular pattern. It suggests the existence of more complex symmetry in the analyzed tensor. Then thousands of realizations of generally anisotropic tensor were generated - each tensor entry was replaced with a random value drawn from normal distribution having a mean equal to measured tensor entry and standard deviation of the measurement. Each of these tensors was subject of PSO based optimization delivering quaternion for optimal

  10. Batch derivation of piezoresistive coefficient tensor by matrix algebra (United States)

    Bao, Minhang; Huang, Yiping


    To commemorate the important discovery of the piezoresistance effect of germanium and silicon by C S Smith half a century ago, we present a new method of deriving the piezoresistive (PR) coefficient tensor for diamond structure material using matrix algebra. Using this method, all the components of the PR coefficient tensor (of the fourth rank) in an arbitrary Cartesian coordinate system can be obtained in a batch and the relation between the components is clearly shown.

  11. Development of the Tensoral Computer Language (United States)

    Ferziger, Joel; Dresselhaus, Eliot


    The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.

  12. The effect of anxiety and depression scores of couples who ...

    African Journals Online (AJOL)

    The effect of anxiety and depression scores of couples who underwent assisted reproductive techniques on the pregnancy outcomes. Fusun Terzioglu1, Rukiye Turk2, Cigdem Yucel1, Serdar Dilbaz3, Ozgur Cinar4, Bensu Karahalil5. 1. Hacettepe University, Faculty of Nursing, Ankara, Turkey. 2. Kafkas University, Faculty of ...

  13. The Casual Effects of Emotion on Couples' Cognition and Behavior (United States)

    Tashiro, Ty; Frazier, Patricia


    The authors conducted 2 translational studies that assessed the causal effects of emotion on maladaptive cognitions and behaviors in couples. Specifically, the authors examined whether negative emotions increased and positive emotions decreased partner attributions and demand-withdraw behaviors. Study 1 (N=164) used video clips to assess the…

  14. Site symmetry and crystal symmetry: a spherical tensor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brouder, Christian; Juhin, Amelie; Bordage, Amelie; Arrio, Marie-Anne [Institut de Mineralogie et de Physique des Milieux Condenses, CNRS UMR 7590, Universites Paris 6 et 7, IPGP, 140 rue de Lourmel, 75015 Paris (France)], E-mail:


    The relation between the properties of a specific crystallographic site and the properties of the full crystal is discussed by using spherical tensors. The concept of spherical tensors is introduced and the way it transforms under the symmetry operations of the site and from site to site is described in detail. The law of spherical tensor coupling is given and illustrated with the example of the electric dipole and quadrupole transitions in x-ray absorption spectroscopy. The main application of the formalism is the reduction of computation time in the calculation of the properties of crystals by band-structure methods. The general approach is illustrated by the examples of substitutional chromium in spinel and substitutional vanadium in garnet.

  15. Coupling liquids acoustic velocity effects on elastic metallic bioglass properties (United States)

    Metiri, W.; Hadjoub, F.; Doghmane, A.; Hadjoub, Z.


    The effect of surface acoustic wave, SAW, velocities of coupling liquids on acoustical properties of several bulk metallic glasses, BMG, has been investigated using simulation program based on acoustic microscopy. Thus, we determined variations of critical angles at which the excitation of longitudinal mode, θL and Rayleigh mode, θR occurs as a function of wave velocities in different coupling liquids, Vliq. Linear relations of the form θi =ai0 +βiVliq were deduced. The importance of such formula, used with Snell's law, lies in the direct determination of SAW velocities and consequently mechanical properties of BMGs.

  16. Magnetic and electric coupling effects of dielectric metamaterial (United States)

    Zhang, Fuli; Kang, Lei; Zhao, Qian; Zhou, Ji; Lippens, Didier


    The coupling effects of subwavelength high-permittivity (ɛr > 100) arrayed ceramics which exhibit magnetic and electric Mie resonances are investigated by electromagnetic full-wave analysis. Special attention was paid to the symmetry properties of both magnetic- and electric-induced dipoles by varying independently the array periodicity. In agreement with the interactions between electric and magnetic dipoles, it is shown that resonance frequency shifts toward lower (higher) frequencies can be obtained, which depends on the longitudinal (transverse) dipole coupling strengths. Moreover, the emergence of quasi-bound states between tightly coupled basic cells is pointed out for the electric Mie resonances, which shows an unexpected frequency shift with a reverse variation.

  17. Effect of coupled semiconductor system treating aqueous 4-nitrophenol. (United States)

    Kuo, Chao-Yin; Lin, Han-Yu


    This article describes a method for treating aqueous 4-nitrophenol by mixing with TiO2-SnO2 coupled particles. The reactivity of single photocatalysis (TiO2 and SnO2 all as 1.2 g/L) is compared with that of mixing TiO2-SnO2 (0.6 g/L + 0.6 g/L) coupled particles. Aqueous 4-nitrophenol was treated by single photocatalysis or coupled semiconducting particles in a double-layer glass batch reactor using a 15W UV fluorescent tube at 25 degrees C and 300 rpm for mixing. The results demonstrated that pH and the concentration of TiO2 were the factors that most influenced the degradation characteristics, and that the system of TiO2-SnO2 coupled particles improved the efficiency of removal of refractory organic pollutants by 15%, by the inter-particle electron transfer (IPET) effect. The results showed that the degradation of aqueous 4-nitrophenol was 75% when coupled particles were used--better than the 60% obtained using single photocatalysis--with a reaction time of 120min.

  18. Octupolar tensors for liquid crystals (United States)

    Chen, Yannan; Qi, Liqun; Virga, Epifanio G.


    A third-rank three-dimensional symmetric traceless tensor, called the octupolar tensor, has been introduced to study tetrahedratic nematic phases in liquid crystals. The octupolar potential, a scalar-valued function generated on the unit sphere by that tensor, should ideally have four maxima (on the vertices of a tetrahedron), but it was recently found to possess an equally generic variant with three maxima instead of four. It was also shown that the irreducible admissible region for the octupolar tensor in a three-dimensional parameter space is bounded by a dome-shaped surface, beneath which is a separatrix surface connecting the two generic octupolar states. The latter surface, which was obtained through numerical continuation, may be physically interpreted as marking a possible intra-octupolar transition. In this paper, by using the resultant theory of algebraic geometry and the E-characteristic polynomial of spectral theory of tensors, we give a closed-form, algebraic expression for both the dome-shaped surface and the separatrix surface. This turns the envisaged intra-octupolar transition into a quantitative, possibly observable prediction.

  19. LAMBDA LAMBDA-XI N coupling effects in light hypernuclei

    CERN Document Server

    Swe-Myint, K; Akaishi, Y


    The significance of LAMBDA LAMBDA-XI N coupling in double-LAMBDA hypernuclei has been studied. The Pauli suppression effect due to this coupling in sup 6 subLAMBDA subLAMBDA He has been found to be 0.43MeV for the coupling strength of the NSC97e potential. This indicates that the free-space LAMBDA LAMBDA interaction is stronger by an about 5 phase shift than that deduced from the empirical data of sup 6 subLAMBDA subLAMBDA He without including the Pauli suppression effect. In sup 5 subLAMBDA subLAMBDA He and sup 5 subLAMBDA subLAMBDA H, an attractive term arising from the LAMBDA LAMBDA-XI N conversion is enhanced by the formation of an alpha-particle in the intermediate XI states. According to this enhancement, we have found that the LAMBDA LAMBDA binding energy (DELTA B subLAMBDA subLAMBDA) of sup 5 subLAMBDA subLAMBDA He is about 0.27MeV larger than that of sup 6 subLAMBDA subLAMBDA He for the NSC97e coupling strength. This finding deviates from the general picture that the heavier is the core nucleus, the ...

  20. The effect of vasectomy on the sexual life of couples. (United States)

    Mohamad Al-Ali, Badereddin; Shamloul, Rany; Ramsauer, Josef; Bella, Anthony J; Scrinzi, Ulfrit; Treu, Thomas; Jungwirth, Andreas


    There are several contraceptive methods to prevent pregnancy, reversible as well as nonreversible ones. The sexual satisfaction of couples is affected by many types of contraceptives used. The aim of this study was to evaluate prospectively the effect of vasectomy on the sexual life and satisfaction of couples. Seventy-six couples took part in this evaluation and filled out respective questionnaires before and after vasectomy. All the questionnaires were evaluated statistically for differences in the respective sexual domain scores. Standardized questionnaires were used. The International Index of Erectile Function (IIEF) as well as postoperative pain score were completed by men. Female Sexual Function Index (FSFI) was completed by the female partner. For statistical analysis, the T-Square Test was used. The average age of couples, who chose the vasectomy procedure, was 37 years for women and 39 years for men. The contraception method most frequently used prior to the vasectomy was the birth control pill. For the male partner, the IIEF showed no significant change in the respective domains. Out of the 76 couples, 93% of the males and 96% of their female partners would recommend and do vasectomy again. The postoperative pain score was 3.5 on 0-10 scale, and there were no postoperative complications reported. The best improvement of the sexual function was noticed for the female partners. The FSFI showed a significant improvement in the domains desire (P sexual satisfaction of couples. Vasectomy is a safe operation with minimal complication rates. © 2014 International Society for Sexual Medicine.

  1. Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect (United States)

    Zhou, Z. D.; Yang, C. P.; Su, Y. X.; Huang, R.; Lin, X. L.


    The flexoelectric effect is a coupling of polarization and strain gradient, which exists in a wide variety of materials and may lead to strong size-dependent properties at the nanoscale. Based on an extension to the classical beam model, this paper investigates the electromechanical coupling response of piezoelectric nanobeams with different electrical boundary conditions including the effect of flexoelectricity. The electric Gibbs free energy and the variational principle are used to derive the governing equations with three types of electrical boundary conditions. Closed-form solutions are obtained for static bending of cantilever beams. The results show that the normalized effective stiffness increases with decreasing beam thickness in the open circuit electrical boundary conditions with or without surface electrodes. The induced electric potential due to the flexoelectric effect is obtained under the open circuit conditions, which may be important for sensing or energy harvesting applications. An intrinsic thickness depending on the material properties is identified for the maximum induced electric potential. The present results also show that flexoelectricity has a more significant effect on the electroelastic responses than piezoelectricity at the nanoscale. Our analysis in the present study can be useful for understanding of the electromechanical coupling in nanobeams with flexoelectricity.

  2. A linear support higher-order tensor machine for classification. (United States)

    Hao, Zhifeng; He, Lifang; Chen, Bingqian; Yang, Xiaowei


    There has been growing interest in developing more effective learning machines for tensor classification. At present, most of the existing learning machines, such as support tensor machine (STM), involve nonconvex optimization problems and need to resort to iterative techniques. Obviously, it is very time-consuming and may suffer from local minima. In order to overcome these two shortcomings, in this paper, we present a novel linear support higher-order tensor machine (SHTM) which integrates the merits of linear C-support vector machine (C-SVM) and tensor rank-one decomposition. Theoretically, SHTM is an extension of the linear C-SVM to tensor patterns. When the input patterns are vectors, SHTM degenerates into the standard C-SVM. A set of experiments is conducted on nine second-order face recognition datasets and three third-order gait recognition datasets to illustrate the performance of the proposed SHTM. The statistic test shows that compared with STM and C-SVM with the RBF kernel, SHTM provides significant performance gain in terms of test accuracy and training speed, especially in the case of higher-order tensors.

  3. Dual and mixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamics with second sound effect (United States)

    Tóth, Balázs


    Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.

  4. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.


    .e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT......The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...

  5. Classifications and canonical forms of tensor product expressions in the presence of permutation symmetries

    CERN Document Server

    Li, Zhendong; Liu, Wenjian


    Complicated mathematical equations involving tensors with permutation symmetries are frequently encountered in fields such as quantum chemistry, e.g., those in coupled cluster theories and derivatives of wavefunction parameters. In automatic derivations of these equations, a key step is the collection of product terms that can be found identical by using permutation symmetries or relabelling dummy indices. In the present work, we define a canonical form for a general tensor product in the presence of permutation symmetries as a result of the classification of all tensor products from a group theoretical point of view. To make such definition of practical use, we provide an efficient algorithm to compute the canonical form by combining the classical backtrack search for permutation groups and the idea of partitions used in graph isomorphism algorithms. The resulted algorithm can compute canonical forms and generators of the automorphism groups of tensor expressions. Moreover, for tensor products with external ...

  6. Effective squark/chargino/neutralino couplings: MadGraph implementation

    Energy Technology Data Exchange (ETDEWEB)

    Abrahantes, Arian [Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Guasch, Jaume [Universitat de Barcelona, Departament de Fisica Fonamental, Institut de Ciencies del Cosmos, Barcelona, Catalonia (Spain); Penaranda, Siannah [Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Universitat de Barcelona, Departament de Fisica Fonamental, Institut de Ciencies del Cosmos, Barcelona, Catalonia (Spain); Sanchez-Florit, Rauel [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia, Institut de Ciencies del Cosmos, Barcelona, Catalonia (Spain)


    We have included the effective description of squark interactions with charginos/neutralinos in the MadGraph MSSM model. This effective description includes the effective Yukawa couplings, and another logarithmic term which encodes the supersymmetry-breaking. We have performed an extensive test of our implementation analyzing the results of the partial decay widths of squarks into charginos and neutralinos obtained by using FeynArts/FormCalc programs and the new model file in MadGraph. We present results for the cross-section of top-squark production decaying into charginos and neutralinos. (orig.)

  7. Spin Orbit coupling and Anomalous Josephson effect in Nanowires


    Campagnano, G.; Lucignano, P.; Giuliano, D.; Tagliacozzo, A.


    A superconductor-semiconducting nanowire-superconductor heterostructure in the presence of spin orbit coupling and magnetic field can support a supercurrent even in the absence of phase difference between the superconducting electrodes. We investigate this phenomenon, the anomalous Josephson effect, employing a model capable of describing many bands in the normal region. We discuss geometrical and symmetry conditions required to have finite anomalous supercurrent and in particular we show tha...

  8. Explicit Treatment of the Tensor Force with the Method of Antisymmetrized Molecular Dynamics(Nuclear Physics)


    Akinobu, DOTE; Yoshiko, KANADA-EN'YO; Hisashi, HORIUCHI; Yoshinori, AKAISHI; Kiyomi, IKEDA; High Energy Accelerator Research Organization (KEK); Yukawa Institute for Theoretical Physics; Department of Physics, Kyoto University; College of Science and Technology, Nihon University; The Institute of Physical and Chemical Research (RIKEN)


    In order to treat the tensor force explicitly, we propose a microscopic model of nuclear structure based on antisymmetrized molecular dynamics (AMD). It is found that some extensions of the AMD method are effective for incorporating the tensor correlation into wave functions. Calculating the wave functions for deuteron, triton and He^4 with the extended version of AMD, we obtained solutions for which the contribution of the tensor force is large. By analyzing the wave function of He^4, it is ...

  9. Fitting alignment tensor components to experimental RDCs, CSAs and RQCs. (United States)

    Wirz, Lukas N; Allison, Jane R


    Residual dipolar couplings, chemical shift anisotropies and quadrupolar couplings provide information about the orientation of inter-spin vectors and the anisotropic contribution of the local environment to the chemical shifts of nuclei, respectively. Structural interpretation of these observables requires parameterization of their angular dependence in terms of an alignment tensor. We compare and evaluate two algorithms for generating the optimal alignment tensor for a given molecular structure and set of experimental data, namely SVD (Losonczi et al. in J Magn Reson 138(2):334-342, 1999), which scales as [Formula: see text], and the linear least squares algorithm (Press et al. in Numerical recipes in C. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, 1997), which scales as [Formula: see text].

  10. Vector and tensor analysis with applications

    CERN Document Server

    Borisenko, A I; Silverman, Richard A


    Concise and readable, this text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. It also includes a systematic study of the differential and integral calculus of vector and tensor functions of space and time. Worked-out problems and solutions. 1968 edition.

  11. Compact stars in vector-tensor-Horndeski theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada)


    In this paper, we will analyze a theory of modified gravity, in which the field content of general relativity will be increased to include a vector field. We will use the Horndeski formalism to non-minimally couple this vector field to the metric. As we will be using the Horndeski formalism, this theory will not contain Ostrogradsky ghost degree of freedom. We will analyze compact stars using this vector-tensor-Horndeski theory. (orig.)

  12. Desired change in couples: gender differences and effects on communication. (United States)

    Heyman, Richard E; Hunt-Martorano, Ashley N; Malik, Jill; Slep, Amy M Smith


    Using a sample (N = 453) drawn from a representative sampling frame of couples who are married or living together and have a 3 to 7 year-old child, this study investigates (a) the amount and specific areas of change desired by men and women, (b) the relation between relationship adjustment and desired change; and (c) the ways in which partners negotiate change. On the Areas of Change Questionnaire, women compared with men, wanted greater increases in their partners' emotional and companionate behaviors, instrumental support, and parenting involvement; men wanted greater increases in sex. Using the Actor-Partner Interdependence Model (Kenny, 1996), both men's and women's relationship adjustment predicted desired change (i.e., actor effects), over and above the effects of their partners' adjustment (i.e., partner effects); partner effects were not significant. Each couple was also observed discussing the man's and the woman's top desired change area. Both men and women behaved more positively during the partner-initiated conversations than during their own-initiated conversations. Women, compared with men, were more negative in their own and in their partners' conversations. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  13. The Long-Term Effects of the Couple Communication Program. (United States)

    Joanning, Harvey


    Assessed the immediate and long-term impact of the Couple Communication Program. Married couples (N=17) were assigned to training groups. Change was assessed using self-report measures of marital adjustment and communication quality along with behavioral ratings of couple verbal interaction. Couples increased significantly on all measures at…

  14. Full moment tensor analyses to investigate the dynamics of the 2001 Etna eruption (United States)

    Sarao, A.; Cocina, O.; Privitera, E.; Panza, G. F.


    The Mt. Etna eruption of July 2001 was announced by a severe seismic activity (2645 earthquakes between 12 and 18 July) and by the opening of a 7 km long field of fractures. Results from multidisciplinary approaches suggest that the observed phenomenology was related to the rapid intrusion of a vertical dike located few km south of the summit region. To add new constraints on the dynamics of the eruption process, we determine the full seismic moment tensors of 61 earthquakes (Md ≥ 2.2), selected among those occurred between July 12 and July 18, located in a depth ranging from 1 km above sea level to 3 km under the volcano. Short period seismograms recorded by the INGV-Catania seismic network have been used for the moment tensor retrieval. For our analyses we employed the INPAR method (Šílený et al., GJI 1992; Šílený, GJI 1998) that has been widely tested to define the realiability of solutions against the influence of random noise, station geometry and wave propagation effects in volcanic and geothermal environments. Our analysis revealed the presence of high percentage of double couple events, well related with the system of fractures bred just before the eruption, but also meaningful non-double couple components that can be explained as the response of the confining rocks to the magma uprising and degassing process. Most of the studied earthquakes show normal fault type mechanisms with significant strike slip components, in addition, pure strike slip and reverse fault mechanisms can be observed, in agreement with the stress regime induced by a dike injection. The space-time analysis of seismic source locations and source moment tensors 1) confirms the evidence of a vertical dike emplacement that fed the 2001 lateral eruption and 2) adds new insights supporting the hypothesis of the injection of a second aborted dike, 2 km SE far from the fractures zone.

  15. Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories (United States)

    Sakstein, Jeremy; Jain, Bhuvnesh


    The LIGO and VIRGO Collaborations have recently announced the detection of gravitational waves from a neutron star-neutron star merger (GW170817) and the simultaneous measurement of an optical counterpart (the γ -ray burst GRB 170817A). The close arrival time of the gravitational and electromagnetic waves limits the difference in speed of photons and gravitons to be less than about 1 part in 1 015. This has three important implications for cosmological scalar-tensor gravity theories that are often touted as dark energy candidates and alternatives to the Λ cold dark matter model. First, for the most general scalar-tensor theories—beyond Horndeski models—three of the five parameters appearing in the effective theory of dark energy can now be severely constrained on astrophysical scales; we present the results of combining the new gravity wave results with galaxy cluster observations. Second, the combination with the lack of strong equivalence principle violations exhibited by the supermassive black hole in M87 constrains the quartic galileon model to be cosmologically irrelevant. Finally, we derive a new bound on the disformal coupling to photons that implies that such couplings are irrelevant for the cosmic evolution of the field.

  16. Renormalized energy-momentum tensor of λΦ4 theory in curved ...

    Indian Academy of Sciences (India)

    Divergenceless expression for the energy-momentum tensor of scalar field is obtained using the momentum cut-off regularization technique. We consider a scalar field with quartic self-coupling in a spatially flat (3+1)-dimensional Robertson–Walker space-time, having arbitrary mass and coupled to gravity. As special cases ...

  17. A Study On the Effectiveness of Emotionally Focused Couple Therapy and Integrated Systemic Couple Therapy on reducing Intimacy Anxiety

    Directory of Open Access Journals (Sweden)

    هاجر فلاح زاده


    Full Text Available This study examined the effectiveness of emotionally focused couple therapy (EFT and integrated systemic couple therapy (IST on resolving intimacy anxiety. For this purpose, 30 couples were randomly selected and based on their pretests were assigned into two experimental and one control groups. Research instruments were Fear of Intimacy Scale (FIS (Descutner & Thelen, and the Dyadic Adjustment Scale (DAS (Spanier, 1976. A Nine-session of EFT was conducted for one experiment group and eight sessions of IST for the other. The control group did not receive any treatment. These three groups completed post test at the end of the experiment, and follow-up test 3 months later. Results indicated that EFT and IST significantly decreased intimacy anxiety in couples, and the treatment effect was consistent after 3 months follow-up.

  18. Surgery in colored tensor models (United States)

    Pérez-Sánchez, Carlos I.


    Rooted in group field theory and matrix models, random tensor models are a recent background-invariant approach to quantum gravity in arbitrary dimensions. Colored tensor models (CTM) generate random triangulated orientable (pseudo)-manifolds. We analyze, in low dimensions, which known spaces are triangulated by specific CTM interactions. As a tool, we develop the graph-encoded surgery that is compatible with the quantum-field-theory-structure and use it to prove that a single model, the complex φ4-interaction in rank- 2, generates all orientable 2-bordisms, thus, in particular, also all orientable, closed surfaces. We show that certain quartic rank- 3 CTM, the φ34 -theory, has as boundary sector all closed, possibly disconnected, orientable surfaces. Hence all closed orientable surfaces are cobordant via manifolds generated by the φ34 -theory.

  19. Hyperinvariant Tensor Networks and Holography (United States)

    Evenbly, Glen


    We propose a new class of tensor network state as a model for the AdS /CFT correspondence and holography. This class is demonstrated to retain key features of the multiscale entanglement renormalization ansatz (MERA), in that they describe quantum states with algebraic correlation functions, have free variational parameters, and are efficiently contractible. Yet, unlike the MERA, they are built according to a uniform tiling of hyperbolic space, without inherent directionality or preferred locations in the holographic bulk, and thus circumvent key arguments made against the MERA as a model for AdS /CFT . Novel holographic features of this tensor network class are examined, such as an equivalence between the causal cones C (R ) and the entanglement wedges E (R ) of connected boundary regions R .

  20. Chemo-Mechanical Coupling in Curing and Material-Interphase Evolution in Multi-Constituent Materials (Preprint) (United States)


    maximization of the rate of entropy production constraint, considering anisotropic effective reaction rates and the limits of diffusion- dominated...anisotropic effective reaction rates accompanied with an anisotropic tensor that provides coupling of chemical reaction and mechanical stresses. In this...a function of the reaction Γ . This function can also be developed based on the experimentally obtained density versus amine concentration plot for

  1. Diffusion tensor optical coherence tomography (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.


    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  2. Exchange bias training effect in coupled all ferromagnetic bilayer structures. (United States)

    Binek, Ch; Polisetty, S; He, Xi; Berger, A


    Exchange coupled bilayers of soft and hard ferromagnetic thin films show remarkable analogies to conventional antiferromagnetic/ferromagnetic exchange bias heterostructures. Not only do all these ferromagnetic bilayers exhibit a tunable exchange bias effect, they also show a distinct training behavior upon cycling the soft layer through consecutive hysteresis loops. In contrast with conventional exchange bias systems, such all ferromagnetic bilayer structures allow the observation of training induced changes in the bias-setting hardmagnetic layer by means of simple magnetometry. Our experiments show unambiguously that the exchange bias training effect is driven by deviations from equilibrium in the pinning layer. A comparison of our experimental data with predictions from a theory based upon triggered relaxation phenomena shows excellent agreement.

  3. Holographic duality from random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)


    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main

  4. Shape anisotropy: tensor distance to anisotropy measure (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.


    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  5. The effect of coupling on bubble fragmentation acoustics. (United States)

    Czerski, Helen; Deane, Grant B


    Understanding the formation and evolution of bubble populations is important in a wide range of situations, including industrial processes, medical applications, and ocean science. Passive acoustical techniques can be used to track changes in the population, since each bubble formation or fragmentation event is likely to produce sound. This sound potentially contains a wealth of information about the fragmentation process and the products, but to fully exploit these data it is necessary to understand the physical processes that determine its characteristics. The focus of this paper is binary fragmentation, when turbulence causes one bubble to split into two. Specifically, the effect that bubble-bubble coupling has on the sound produced is examined. A numerical simulation of the acoustical excitation of fragmenting bubbles is used to generate model acoustic signals, which are compared with experimental data. A frequency range with a suppressed acoustic output which is observed in the experimental data can be explained when coupling is taken into account. In addition, although the driving mechanism of neck collapse is always consistent with the data for the larger bubble of the newly formed pair, a different mechanism must be driving the smaller bubble in some situations.

  6. Matrix effects in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoshan [Iowa State Univ., Ames, IA (United States)


    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  7. On large N limit of symmetric traceless tensor models (United States)

    Klebanov, Igor R.; Tarnopolsky, Grigory


    For some theories where the degrees of freedom are tensors of rank 3 or higher, there exist solvable large N limits dominated by the melonic diagrams. Simple examples are provided by models containing one rank 3 tensor in the tri-fundamental representation of the O( N)3 symmetry group. When the quartic interaction is assumed to have a special tetrahedral index structure, the coupling constant g must be scaled as N -3/2 in the melonic large N limit. In this paper we consider the combinatorics of a large N theory of one fully symmetric and traceless rank-3 tensor with the tetrahedral quartic interaction; this model has a single O( N ) symmetry group. We explicitly calculate all the vacuum diagrams up to order g 8, as well as some diagrams of higher order, and find that in the large N limit where g 2 N 3 is held fixed only the melonic diagrams survive. While some non-melonic diagrams are enhanced in the O( N ) symmetric theory compared to the O( N )3 one, we have not found any diagrams where this enhancement is strong enough to make them comparable with the melonic ones. Motivated by these results, we conjecture that the model of a real rank-3 symmetric traceless tensor possesses a smooth large N limit where g 2 N 3 is held fixed and all the contributing diagrams are melonic. A feature of the symmetric traceless tensor models is that some vacuum diagrams containing odd numbers of vertices are suppressed only by N -1/2 relative to the melonic graphs.

  8. Tensor SOM and tensor GTM: Nonlinear tensor analysis by topographic mappings. (United States)

    Iwasaki, Tohru; Furukawa, Tetsuo


    In this paper, we propose nonlinear tensor analysis methods: the tensor self-organizing map (TSOM) and the tensor generative topographic mapping (TGTM). TSOM is a straightforward extension of the self-organizing map from high-dimensional data to tensorial data, and TGTM is an extension of the generative topographic map, which provides a theoretical background for TSOM using a probabilistic generative model. These methods are useful tools for analyzing and visualizing tensorial data, especially multimodal relational data. For given n-mode relational data, TSOM and TGTM can simultaneously organize a set of n-topographic maps. Furthermore, they can be used to explore the tensorial data space by interactively visualizing the relationships between modes. We present the TSOM algorithm and a theoretical description from the viewpoint of TGTM. Various TSOM variations and visualization techniques are also described, along with some applications to real relational datasets. Additionally, we attempt to build a comprehensive description of the TSOM family by adapting various data structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dipole modulation in tensor modes: signatures in CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Moslem [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Astronomy, P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of)


    In this work we consider a dipole asymmetry in tensor modes and study the effects of this asymmetry on the angular power spectra of CMB. We derive analytical expressions for the C{sub l}{sup TT} and C{sub l}{sup BB} in the presence of such dipole modulation in tensor modes for l < 100. We also discuss on the amplitude of modulation term and show that the C{sub l}{sup BB} is considerably modified due to this term. (orig.) 3.

  10. Frame-dependence of higher-order inflationary observables in scalar-tensor theories (United States)

    Karam, Alexandros; Pappas, Thomas; Tamvakis, Kyriakos


    In the context of scalar-tensor theories of gravity we compute the third-order corrected spectral indices in the slow-roll approximation. The calculation is carried out by employing the Green's function method for scalar and tensor perturbations in both the Einstein and Jordan frames. Then, using the interrelations between the Hubble slow-roll parameters in the two frames we find that the frames are equivalent up to third order. Since the Hubble slow-roll parameters are related to the potential slow-roll parameters, we express the observables in terms of the latter which are manifestly invariant. Nevertheless, the same inflaton excursion leads to different predictions in the two frames since the definition of the number of e -folds differs. To illustrate this effect we consider a nonminimal inflationary model and find that the difference in the predictions grows with the nonminimal coupling, and it can actually be larger than the difference between the first and third order results for the observables. Finally, we demonstrate the effect of various end-of-inflation conditions on the observables. These effects will become important for the analyses of inflationary models in view of the improved sensitivity of future experiments.

  11. P -wave coupled channel effects in electron-positron annihilation (United States)

    Du, Meng-Lin; Meißner, Ulf-G.; Wang, Qian


    P -wave coupled channel effects arising from the D D ¯, D D¯ *+c .c . , and D*D¯* thresholds in e+e- annihilations are systematically studied. We provide an exploratory study by solving the Lippmann-Schwinger equation with short-ranged contact potentials obtained in the heavy quark limit. These contact potentials can be extracted from the P -wave interactions in the e+e- annihilations, and then be employed to investigate possible isosinglet P -wave hadronic molecules. In particular, such an investigation may provide information about exotic candidates with quantum numbers JPC=1-+ . In the mass region of the D D ¯, D D¯ *+c .c . , and D*D¯* thresholds, there are two quark model bare states, i.e. the ψ (3770 ) and ψ (4040 ), which are assigned as (13D1) and (31S1) states, respectively. By an overall fit of the cross sections of e+e-→D D ¯, D D¯ *+c .c . , D*D¯*, we determine the physical coupling constants to each channel and extract the pole positions of the ψ (3770 ) and ψ (4040 ). The deviation of the ratios from that in the heavy quark spin symmetry (HQSS) limit reflects the HQSS breaking effect due to the mass splitting between the D and the D*. Besides the two poles, we also find a pole a few MeV above the D D¯ *+c .c . threshold which can be related to the so-called G (3900 ) observed earlier by BABAR and Belle. This scenario can be further scrutinized by measuring the angular distribution in the D*D¯* channel with high luminosity experiments.

  12. Near-wall diffusion tensor of an axisymmetric colloidal particle

    CERN Document Server

    Lisicki, Maciej; Wajnryb, Eligiusz


    Hydrodynamic interactions with confining boundaries often lead to drastic changes in the diffusive behaviour of microparticles in suspensions. For axially symmetric particles, earlier numerical studies have suggested a simple form of the near-wall diffusion matrix which depends on the distance and orientation of the particle with respect to the wall, which is usually calculated numerically. In this work, we derive explicit analytical formulae for the dominant correction to the bulk diffusion tensor of an axially symmetric colloidal particle due to the presence of a nearby no-slip wall. The relative correction scales as powers of inverse wall-particle distance and its angular structure is represented by simple polynomials in sines and cosines of the particle's inclination angle to the wall. We analyse the correction for translational and rotational motion, as well as the translation-rotation coupling. Our findings provide a simple approximation to the anisotropic diffusion tensor near a wall, which completes a...

  13. Chiral tensor particles in the early Universe — Present status (United States)

    Kirilova, D. P.; Chizhov, V. M.


    In this work, an update of the cosmological role and place of the chiral tensor particles in the Universe history is provided. We discuss an extended model with chiral tensor particles. The influence of these particles on the early Universe evolution is studied. Namely, the increase of the Universe expansion rate caused by the additional particles in this extended model is calculated, their characteristic interactions with the particles of the hot Universe plasma are studied and the corresponding times of their creation, scattering, annihilation and decay are estimated for accepted values of their masses and couplings, based on the recent experimental constraints. The period of abundant presence of these particles in the Universe evolution is determined.

  14. Unified cosmology with scalar-tensor theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)


    Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)

  15. The Topology of Symmetric Tensor Fields (United States)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval


    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  16. Low-rank factorization of electron integral tensors and its application in electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Kowalski, Karol


    In this letter, we introduce the reverse Cuthill-McKee (RCM) algorithm, which is often used for the bandwidth reduction of sparse tensors, to transform the two-electron integral tensors to their block diagonal forms. By further applying the pivoted Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates the low-rank factorization of the high-dimensional tensor contractions that are usually encountered in post-Hartree-Fock calculations. In this letter, we discuss the second-order Møller-Plesset (MP2) method and linear coupled- cluster model with doubles (L-CCD) as two simple examples to demonstrate the efficiency of the RCM-CD technique in representing two-electron integrals in a compact form.

  17. A brief summary on formalizing parallel tensor distributions redistributions and algorithm derivations.

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, Martin D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolda, Tamara G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van de Geijn, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Large-scale datasets in computational chemistry typically require distributed-memory parallel methods to perform a special operation known as tensor contraction. Tensors are multidimensional arrays, and a tensor contraction is akin to matrix multiplication with special types of permutations. Creating an efficient algorithm and optimized im- plementation in this domain is complex, tedious, and error-prone. To address this, we develop a notation to express data distributions so that we can apply use automated methods to find optimized implementations for tensor contractions. We consider the spin-adapted coupled cluster singles and doubles method from computational chemistry and use our methodology to produce an efficient implementation. Experiments per- formed on the IBM Blue Gene/Q and Cray XC30 demonstrate impact both improved performance and reduced memory consumption.

  18. Anisotropic diffusion tensor applied to temporal mammograms

    DEFF Research Database (Denmark)

    Karemore, Gopal; Brandt, Sami; Sporring, Jon


     Breast density is considered a structural property of  a  mammogram  that  can  change  in  various  ways  explaining different effects of medicinal treatments. The aim of the present work  is  to  provide  a  framework  for  obtaining  more  accurate and sensitive measurements of breast density...... changes related to  specific  effects  like  Hormonal  Replacement  Therapy  (HRT) and aging. Given effect-grouped patient data, we demonstrated how  anisotropic  diffusion  tensor  and  its  coherence  features computed in an anatomically oriented breast coordinate system followed by statistical learning...

  19. Diffusion Tensor Estimation by Maximizing Rician Likelihood. (United States)

    Landman, Bennett; Bazin, Pierre-Louis; Prince, Jerry


    Diffusion tensor imaging (DTI) is widely used to characterize white matter in health and disease. Previous approaches to the estimation of diffusion tensors have either been statistically suboptimal or have used Gaussian approximations of the underlying noise structure, which is Rician in reality. This can cause quantities derived from these tensors - e.g., fractional anisotropy and apparent diffusion coefficient - to diverge from their true values, potentially leading to artifactual changes that confound clinically significant ones. This paper presents a novel maximum likelihood approach to tensor estimation, denoted Diffusion Tensor Estimation by Maximizing Rician Likelihood (DTEMRL). In contrast to previous approaches, DTEMRL considers the joint distribution of all observed data in the context of an augmented tensor model to account for variable levels of Rician noise. To improve numeric stability and prevent non-physical solutions, DTEMRL incorporates a robust characterization of positive definite tensors and a new estimator of underlying noise variance. In simulated and clinical data, mean squared error metrics show consistent and significant improvements from low clinical SNR to high SNR. DTEMRL may be readily supplemented with spatial regularization or a priori tensor distributions for Bayesian tensor estimation.

  20. The tensor network theory library (United States)

    Al-Assam, S.; Clark, S. R.; Jaksch, D.


    In this technical paper we introduce the tensor network theory (TNT) library—an open-source software project aimed at providing a platform for rapidly developing robust, easy to use and highly optimised code for TNT calculations. The objectives of this paper are (i) to give an overview of the structure of TNT library, and (ii) to help scientists decide whether to use the TNT library in their research. We show how to employ the TNT routines by giving examples of ground-state and dynamical calculations of one-dimensional bosonic lattice system. We also discuss different options for gaining access to the software available at

  1. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)


    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  2. Gravity in warped compactications and the holographic stress tensor

    NARCIS (Netherlands)

    Haro, S. de; Skenderis, K.; Solodukhin, S.N.


    We study gravitational aspects of Brane-World scenarios. We show that the bulk Einstein equations together with the junction condition imply that the induced metric on the brane satisfies the full non-linear Einstein equations with a specific effective stress energy tensor. This result holds for

  3. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals. (United States)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian


    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same "direct relativistic mapping" between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  4. The effectiveness of collaborative couple Therapy on communication patterns and intimacy of couples referring to counseling centers of Behbahan city

    Directory of Open Access Journals (Sweden)


    Full Text Available The effectiveness of collaborative couple Therapy on communication patterns and intimacy of couples referring to counseling centers of Behbahan city Mansour sodani[1]*, Mansour shogaeyan1, Rerza khojastamhr2, Khadija shiralinia2 1Ph.D student, Faculty of educational Science and Psychology,  University of shahid Chamran, Ahvaz 2 Counselling group.Faculty of educational Science and Psychology,   University of shahid Chamran, Ahvaz, Iran Abstract Background and Objectives:Intimacy is a main and basic feature in marital relations and was numerated manifest characteristics in successful marriage also communication patterns can determine marital satisfaction.  The aim of this research was to determined effectiveness of collaborative couple therapy on communication patterns and intimacy of couples referring to counseling centers of  Behbahan city Methods: In this research was used from Single-case experimental design that entitled Single subject experiment and include of clinical testing.This design has different kinds(AB.ABAB, multiple baseline and changing criterion designs. In the research used nonconcurrent multiple baseline design. Unlike group comparison with a lot measure, this design concentrate on individual levels not mean differences in pre andpost test.The other advantage of this design need more less subjects.The couples complicated communication patterns and intimacy Questionnaire in baseline, treatment and follow-up stages. The method of sampling was purposive-volunteer. Statistical universes were all chaotic couples who referring to clinics in Behbahan. Three couples were selected according to include and exclude criteria. . The data analyzed with visual analysis, Clinically meaningful (reliable change index and normative comparison and percent improvement formula, Results: The result showed the couples have experienced improvement in intimacy (30.95% and communication pattern of  mutual constructive (%47/05 and decrease

  5. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors (United States)

    Shao, Lijing; Sennett, Noah; Buonanno, Alessandra; Kramer, Michael; Wex, Norbert


    Pulsar timing and laser-interferometer gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  6. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    Lijing Shao


    Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  7. Effects Of Emotional Intelligence On Marital Adjustment Of Couples ...

    African Journals Online (AJOL)

    Couples should be helped to develop emotion management skills. Couples should be taught emotional sensitivity skills. Our educational systems should not only develop learners' Intelligence (IQ) but their Emotional intelligence (EQI) competencies too. Emotional intelligence should form part of the criteria for marital choice ...

  8. 3D reconstruction of tensors and vectors

    Energy Technology Data Exchange (ETDEWEB)

    Defrise, Michel; Gullberg, Grant T.


    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  9. Super-acceleration from massless, minimally coupled phi sup 4

    CERN Document Server

    Onemli, V K


    We derive a simple form for the propagator of a massless, minimally coupled scalar in a locally de Sitter geometry of arbitrary spacetime dimension. We then employ it to compute the fully renormalized stress tensor at one- and two-loop orders for a massless, minimally coupled phi sup 4 theory which is released in Bunch-Davies vacuum at t=0 in co-moving coordinates. In this system, the uncertainty principle elevates the scalar above the minimum of its potential, resulting in a phase of super-acceleration. With the non-derivative self-interaction the scalar's breaking of de Sitter invariance becomes observable. It is also worth noting that the weak-energy condition is violated on cosmological scales. An interesting subsidiary result is that cancelling overlapping divergences in the stress tensor requires a conformal counterterm which has no effect on purely scalar diagrams.

  10. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail:; Gomez, Sergio S., E-mail: [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)


    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  11. Bubbling effect in the electro-optic delayed feedback oscillator coupled network (United States)

    Liu, Lingfeng; Lin, Jun; Miao, Suoxia


    Synchronization in the optical systems coupled network always suffers from bubbling events. In this paper, we numerically investigate the statistical properties of the synchronization characteristics and bubbling effects in the electro-optic delayed feedback oscillator coupled network with different coupling strength, delay time and gain coefficient. Furthermore, we compare our results with the synchronization properties of semiconductor laser (SL) coupled network, which indicates that the electro-optic delayed feedback oscillator can be better to suppress the bubbling effects in the synchronization of coupled network under the same conditions.

  12. A few cosmological implications of tensor nonlocalities (United States)

    Ferreira, Pedro G.; Maroto, Antonio L.


    We consider nonlocal gravity theories that include tensor nonlocalities. We show that in the cosmological context, the tensor nonlocalities, unlike scalar ones, generically give rise to growing modes. An explicit example with quadratic curvature terms is studied in detail. Possible consequences for recent nonlocal cosmological models proposed in the literature are also discussed.

  13. Elasticity $\\mathscr{M}$-tensors and the Strong Ellipticity Condition


    Ding, Weiyang; Liu, Jinjie; Qi, Liqun; Yan, Hong


    In this paper, we propose a class of tensors satisfying the strong ellipticity condition. The elasticity $\\mathscr{M}$-tensor is defined with respect to the M-eigenvalues of elasticity tensors. We prove that any nonsingular elasticity $\\mathscr{M}$-tensor satisfies the strong ellipticity condition by employing a Perron-Frobenius-type theorem for M-spectral radii of nonnegative elasticity tensors. We also establish other equivalent definitions of nonsingular elasticity $\\mathscr{M}$-tensors.

  14. Channel Coupling Effects in Photo-Induced ρ - N Production

    NARCIS (Netherlands)

    Usov, A.; Scholten, O.


    We present an extension of our coupled channels calculation to include photo-induced ρ - N production. We show that indirect contributions are large and can account for some of the typical discrepancies seen in a tree-level calculations.

  15. An investigation of the effects of pitch-roll (de)-coupling on helicopter handling qualities (United States)

    Ockier, C. J.; Pausder, H. J.; Blanken, C. L.


    An investigation of the effects of pitch-roll coupling on helicopter handling qualities was performed by the US Army and DLR, using a NASA ground-based and a DLR inflight simulator. Over 90 different coupling configurations were evaluated using a roll-axis tracking task. The results show that although the current ADS-33C coupling criterion discriminates against those types of coupling typical of conventionally controlled helicopters, it not always suited for the prediction of handling qualities of helicopters with modern control systems. Based on the observation that high frequency inputs during tracking are used to alleviate coupling, a frequency domain pitch-roll coupling criterion that uses the average coupling ratio between the bandwidth and neutral stability frequency is formulated. This criterion provides a more comprehensive coverage with respect to the different types of coupling and shows excellent consistency.

  16. Direct couplings of mimetic dark matter and their cosmological effects


    Shen, Liuyuan; Mou, Yicen; Zheng, Yunlong; Li, Mingzhe


    The original mimetic model was proposed to take the role of dark matter. In this paper we consider possible direct interactions of the mimetic dark matter with other matter in the universe, especially the standard model particles such as baryons and photons. By imposing shift symmetry, the mimetic dark matter field can only have derivative couplings. We discuss the possibilities of generating baryon number asymmetry and cosmic birefringence in the universe based on the derivative couplings of...

  17. Constituent quark-light vector mesons effective couplings in a weak background magnetic field (United States)

    Braghin, Fábio L.


    Effective couplings between light SU(2) vector and axial mesons and constituent quarks are calculated in the presence of a background electromagnetic field by considering a one dressed gluon exchange quark-quark interaction. The effective coupling constants, obtained from a large quark mass expansion, are expressed in terms of the Lagrangian parameters of the initial model and of components of the quark and nonperturbative gluon propagators. In spite of many possible couplings, only a few coupling constants emerge. As a second step, constituent quark-vector and axial mesons effective coupling constants are redefined to show explicit dependence on a weak background magnetic field. Ratios between the effective coupling constants are found in the limit of large quark effective mass and numerical estimates are presented.

  18. X-ray tensor tomography (United States)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.


    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  19. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhang; Chong Kang; Wang Qingtao; Lei Cheng; Zheng Caiping, E-mail: [College of Science, Harbin Engineering University, Harbin 150001 (China)


    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  20. Effect of a weak static magnetic field on nitrogen-14 quadrupole resonance in the case of an axially symmetric electric field gradient tensor. (United States)

    Guendouz, Laouès; Aissani, Sarra; Marêché, Jean-François; Retournard, Alain; Marande, Pierre-Louis; Canet, Daniel


    The application of a weak static B0 magnetic field (less than 1 mT) may produce a well-defined splitting of the (14)N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. It is theoretically shown and experimentally confirmed that the actual splitting (when it exists) as well as the line-shape and the signal intensity depends on three factors: (i) the amplitude of B0, (ii) the amplitude and pulse duration of the radio-frequency field, B1, used for detecting the NQR signal, and (iii) the relative orientation of B0 and B1. For instance, when B0 is parallel to B1 and regardless of the B0 value, the signal intensity is three times larger than when B0 is perpendicular to B1. This point is of some importance in practice since NQR measurements are almost always performed in the earth field. Moreover, in the course of this study, it has been recognized that important pieces of information regarding line-shape are contained in data points at the beginning of the free induction decay (fid) which, in practice, are eliminated for avoiding spurious signals due to probe ringing. It has been found that these data points can generally be retrieved by linear prediction (LP) procedures. As a further LP benefit, the signal intensity loss (by about a factor of three) is regained. © 2013 Published by Elsevier Inc.

  1. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani


    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.

  2. Finite coupling effects in double quantum dots near equilibrium (United States)

    Xu, Xiansong; Thingna, Juzar; Wang, Jian-Sheng


    A weak coupling quantum master equation provides reliable steady-state results only in the van Hove limit, i.e., when the system-lead coupling approaches zero. Recently, J. Thingna et al. [Phys. Rev. E 88, 052127 (2013), 10.1103/PhysRevE.88.052127] proposed an alternative approach, based on an analytic continuation of the Redfield solution, to evaluate the steady-state reduced density matrix up to second order in the system-bath coupling. The approach provides accurate results for harmonic oscillator and spin-bosonic systems. We apply this approach to study steady-state fermionic systems and the calculation on an exactly solvable double quantum dot system shows that the method is rigorously valid up to second order in system-lead coupling only near equilibrium, i.e., linear response regime. We further compare to the Redfield and the secular Redfield (Lindblad-type) master equations that are inaccurate in all parameter regimes. Lastly, we consider the nontrivial problem of strong Coulomb interaction and illustrate the interplay between system-lead coupling, interdot tunneling, and Coulomb strength that can be captured only via the analytic continuation method.

  3. New implementation of high-level correlated methods using a general block tensor library for high-performance electronic structure calculations. (United States)

    Epifanovsky, Evgeny; Wormit, Michael; Kuś, Tomasz; Landau, Arie; Zuev, Dmitry; Khistyaev, Kirill; Manohar, Prashant; Kaliman, Ilya; Dreuw, Andreas; Krylov, Anna I


    This article presents an open-source object-oriented C++ library of classes and routines to perform tensor algebra.The primary purpose of the library is to enable post-Hartree–Fock electronic structure methods; however, the code is general enough to be applicable in other areas of physical and computational sciences. The library supports tensors of arbitrary order (dimensionality), size, and symmetry. Implemented data structures and algorithms operate on large tensors by splitting them into smaller blocks, storing them both in core memory and in files on disk, and applying divide-and-conquer-type parallel algorithms to perform tensor algebra. The library offers a set of general tensor symmetry algorithms and a full implementation of tensor symmetries typically found in electronic structure theory: permutational, spin, and molecular point group symmetry. The Q-Chem electronic structure software uses this library to drive coupled-cluster, equation-of-motion, and algebraic-diagrammatic construction methods.

  4. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics


    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  5. Maxwell–Dirac stress–energy tensor in terms of Fierz bilinear currents

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, Shaun, E-mail:; Jarvis, Peter, E-mail:


    We analyse the stress–energy tensor for the self-coupled Maxwell–Dirac system in the bilinear current formalism, using two independent approaches. The first method used is that attributed to Belinfante: starting from the spinor form of the action, the well-known canonical stress–energy tensor is augmented, by extending the Noether symmetry current to include contributions from the Lorentz group, to a manifestly symmetric form. This form admits a transcription to bilinear current form. The second method used is the variational derivation based on the covariant coupling to general relativity. The starting point here at the outset is the transcription of the action using, as independent field variables, both the bilinear currents, together with a gauge invariant vector field (a proxy for the electromagnetic vector potential). A central feature of the two constructions is that they both involve the mapping of the Dirac contribution to the stress–energy from the spinor fields to the equivalent set of bilinear tensor currents, through the use of appropriate Fierz identities. Although this mapping is done at quite different stages, nonetheless we find that the two forms of the bilinear stress–energy tensor agree. Finally, as an application, we consider the reduction of the obtained stress–energy tensor in bilinear form, under the assumption of spherical symmetry. -- Highlights: •Maxwell–Dirac stress–energy tensor derived in manifestly gauge invariant bilinear form. •Dirac spinor Belinfante tensor transcribed to bilinear fields via Fierz mapping. •Variational stress–energy obtained via bilinearized action, in contrast to Belinfante case. •Independent derivations via the Belinfante and variational methods agree, as required. •Spherical symmetry reduction given as a working example for wider applications.

  6. Direct couplings of mimetic dark matter and their cosmological effects (United States)

    Shen, Liuyuan; Mou, Yicen; Zheng, Yunlong; Li, Mingzhe


    The original mimetic model was proposed to take the role of dark matter. In this paper we consider possible direct interactions of mimetic dark matter with other matter in the universe, especially standard model particles such as baryons and photons. By imposing shift symmetry, the mimetic dark matter field can only have derivative couplings. We discuss the possibilities of generating baryon number asymmetry and cosmic birefringence in the universe based on the derivative couplings of mimetic dark matter to baryons and photons. Supported by NSFC (11422543, 11653002)

  7. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect (United States)

    Xu, H. L.; He, L.; An, D.


    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  8. The effect of acceptance and commitment therapy on sexual satisfaction of couples in Shiraz

    Directory of Open Access Journals (Sweden)

    Mehdi Saremi Nezhad


    Full Text Available The present study aims at investigating the effectiveness of acceptance and commitment therapy on sexual satisfaction of couples in Shiraz. Methods: A pre-test, post-test methodology with one control group and one experimental group is used to examine the effectiveness of acceptance and commitment therapy on sexual satisfaction of couples. 40 couples were chosen purposefully from the statistical population of all hurt couples who referred to psychological clinics in Shiraz. The sample size of 40 couples was put in to two groups consisting of a control group and experimental group. The required data was gathered through Larson Sexual satisfaction questionnaire and an acceptance and commitment therapeutic protocol of 12 therapy sessions. The data and hypothesis were analyzed via SPSS-22, using multivariable analysis of covariance (MANCOVA. Results: The results of the study show that acceptance and commitment therapy has a meaningful effect on increasing sexual satisfaction of couples

  9. Stability of disformally coupled accretion disks (United States)

    Koivisto, Tomi S.; Nyrhinen, Hannu J.


    The no-hair theorem postulates that the only externally observable properties of a black hole are its mass, its electric charge, and its angular momentum. In scalar-tensor theories of gravity, a matter distribution around a black hole can lead to the so called ‘spontaneous scalarisation’ instability that triggers the development of scalar hair. In the Brans-Dicke type theories, this effect can be understood as a result of tachyonic effective mass of the scalar field. Here we consider the instability in the generalised class of scalar-theories that feature non-conformal, i.e. ‘disformal’, couplings to matter. Such theories have gained considerable interest in the recent years and have been studied in a wide variety of systems, both cosmological and astrophysical. In view of the prospects of gravitational wave astronomy, it is relevant to explore the implications of the theories in the strong-gravity regime. In this article, we concentrate on the spontaneous scalarisation of matter configurations around Schwarzschild and Kerr black holes. We find that in the more generic scalar-tensor theories, the instability of the Brans-Dicke theory can be enhanced, suggesting violations of the no-hair theorem. On the other hand, we find that, especially if the coupling is very strong, or if the gradients in the matter distribution are negligible, the disformal coupling tends to stabilise the system.

  10. Structure of tensor operators in SU3

    Energy Technology Data Exchange (ETDEWEB)

    Biedenharn, L.C.; Flath, D.E.


    A global algebraic formulation of SU3 tensor operator structure is achieved. A single irreducible unitary representation (irrep), V, of kappa(6, 2) is constructed which contains every SU3 irrep precisely once. An algebra of polynomial differential operators A acting on V is given. The algebra A is shown to consist of linear combinations of all SU3 tensor operators with polynomial invariant operators as coefficients. By carrying out an analysis of A, the multiplicity problem for SU3 tensor operators is resolved.

  11. Comparison of the cable coupling effects under two kinds of HEMP environment

    CERN Document Server

    Sun Bei Yun; Xie Yan Zhao


    There are various kinds of HEMP environment definitions. The coupling effects of electronic system are more different under different HEMP environment. The responds of cable of different length are investigated under 1976 HEMP and 1996 HEMP environment. The results indicate that the cable coupling effects under 1976 HEMP environment are more serious than those under 1996 HEMP environment

  12. Effect of the isovector coupling channel on the macroscopic part of ...

    Indian Academy of Sciences (India)

    The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied using the relativistic density-dependent Thomas–Fermi approach. The dependency of this effect on the number of neutrons and protons is also studied. The isovector coupling channel leads to increased nuclear binding ...

  13. The effect of anxiety and depression scores of couples who ...

    African Journals Online (AJOL)

    sisted Reproductive Techniques (ART) on pregnancy outcomes. Method: This study was conducted as a prospective and comparative study with 217 couples. The study data was collected by using a semi-structured questionnaire and the Turkish version of the State-Trait Anxiety Inventory (STAI), and Beck Depression.

  14. Inter-dot coupling effects on transport through correlated parallel ...

    Indian Academy of Sciences (India)

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  15. Extended Thomas-Fermi density functionals in the presence of a tensor interaction in spherical symmetry (United States)

    Bartel, J.; Bencheikh, K.; Meyer, J.


    For a one-body Hamiltonian obtained from the energy-density functional associated with a Skyrme effective interaction, including a tensor force, semiclassical functional densities are derived in the framework of the Extended Thomas-Fermi method, in spherical symmetry, for the kinetic energy and spin-orbit density. The structure of the self-consistent mean-field potentials constructed with such semiclassical functionals is studied. The impact of the tensor force in particular on the spin-orbit form factor clearly indicates the necessity of including such tensor-force terms in the theoretical description of atomic nuclei and their possible influence on the shell structure of exotic nuclei.

  16. A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise. (United States)

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang


    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.

  17. A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise

    Directory of Open Access Journals (Sweden)

    Xianpeng Wang


    Full Text Available In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD and the direction of arrival (DOA for bistatic multiple-input multiple-output (MIMO radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen’s method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.

  18. A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise (United States)

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang


    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313

  19. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data. (United States)

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K


    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts.

  20. Poincare Algebra Extension with Tensor Generator


    Soroka, Dmitrij V.; Soroka, Vyacheslav A.


    A tensor extension of the Poincar\\'e algebra is proposed for the arbitrary dimensions. Casimir operators of the extension are constructed. A possible supersymmetric generalization of this extension is also found in the dimensions $D=2,3,4$.

  1. Seamless warping of diffusion tensor fields

    DEFF Research Database (Denmark)

    Xu, Dongrong; Hao, Xuejun; Bansal, Ravi


    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create "seams" or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template...... space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation...

  2. Entangled scalar and tensor fluctuations during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Hael; Vardanyan, Tereza [Department of Physics, Carnegie Mellon University,5000 Forbes Avenue, Pittsburgh, Pennsylvania (United States)


    We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.

  3. Quantum theory with bold operator tensors. (United States)

    Hardy, Lucien


    In this paper, we present a formulation of quantum theory in terms of bold operator tensors. A circuit is built up of operations where an operation corresponds to a use of an apparatus. We associate collections of operator tensors (which together comprise a bold operator) with these apparatus uses. We give rules for combining bold operator tensors such that, for a circuit, they give a probability distribution over the possible outcomes. If we impose certain physicality constraints on the bold operator tensors, then we get exactly the quantum formalism. We provide both symbolic and diagrammatic ways to represent these calculations. This approach is manifestly covariant in that it does not require us to foliate the circuit into time steps and then evolve a state. Thus, the approach forms a natural starting point for an operational approach to quantum field theory. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. An introduction to linear algebra and tensors

    CERN Document Server

    Akivis, M A; Silverman, Richard A


    Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.

  5. Correlators in tensor models from character calculus (United States)

    Mironov, A.; Morozov, A.


    We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz) character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.

  6. Correlators in tensor models from character calculus

    Directory of Open Access Journals (Sweden)

    A. Mironov


    Full Text Available We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.

  7. Calculus of tensors and differential forms

    CERN Document Server

    Sinha, Rajnikant


    Calculus of tensors and differential forms is an introductory-level textbook. Through this book, students will familiarize themselves with tools they need in order to use for further study on general relativity and research, such as affine tensors, tensor calculus on manifolds, relative tensors, Lie derivatives, wedge products, differential forms, and Stokes' theorem. The treatment is concrete and in detail, so that abstract concepts do not deter even physics and engineering students. This self contained book requires undergraduate-level calculus of several variables and linear algebra as prerequisite. Fubini's theorem in real analysis, to be used in Stokes' theorem, has been proved earlier than Stokes' theorem so that students don't have to search elsewhere.

  8. Tensor extension of the Poincare algebra

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, Dmitrij V. [Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine)]. E-mail:; Soroka, Vyacheslav A. [Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine)]. E-mail:


    A tensor extension of the Poincare algebra is proposed for the arbitrary dimensions. Casimir operators of the extension are constructed. A possible supersymmetric generalization of this extension is also found in the dimensions D=2,3,4.

  9. Strong coupling and degeneracy effects in inertial confinement fusion implosions. (United States)

    Hu, S X; Militzer, B; Goncharov, V N; Skupsky, S


    Accurate knowledge about the equation of state (EOS) of deuterium is critical to inertial confinement fusion (ICF). Low-adiabat ICF implosions routinely access strongly coupled and degenerate plasma conditions. Using the path integral Monte Carlo method, we have derived a first-principles EOS (FPEOS) table of deuterium. It is the first ab initio EOS table which completely covers typical ICF implosion trajectory in the density and temperature ranges of ρ=0.002-1596  g/cm3 and T=1.35  eV-5.5  keV. Discrepancies in internal energy and pressure have been found in strongly coupled and degenerate regimes with respect to SESAME EOS. Hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table have indicated significant differences in peak density, areal density (ρR), and neutron yield relative to SESAME simulations.

  10. Stabilization effect of fission source in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)


    A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.





    The focus of this paper is on exploring linkages among Open Innovation practices and firm performance. While, in the last ten years, a certain amount of papers facing such issue has been published, most of them treat inbound, outbound, and coupled innovation practice processes separately respect to different dimensions of innovation and financial performance. We argue that the concurrent influence of specific Open Innovation practices on both innovation and economic-financial firms' performan...

  12. Wrist kinematic coupling and performance during functional tasks: effects of constrained motion. (United States)

    Garg, Rohit; Kraszewski, Andrew P; Stoecklein, Holbrook H; Syrkin, Grisha; Hillstrom, Howard J; Backus, Sherry; Lenhoff, Mark L; Wolff, Aviva L; Crisco, Joseph J; Wolfe, Scott W


    To quantify the coupled motion of the wrist during selected functional tasks and to determine the effects of constraining this coupled motion using a radial-ulnar deviation blocking splint on performance of these tasks. Ten healthy, right-handed men performed 15 trials during selected functional tasks with and without a splint, blocking radial and ulnar deviation. The following tasks were performed: dart throwing, hammering, basketball free-throw, overhand baseball and football throwing, clubbing, and pouring. Kinematic coupling parameters (coupling, kinematic path length, flexion-extension range of motion, radial-ulnar deviation range of motion, flexion-extension offset, and radial-ulnar deviation offset) and performance were determined for each functional task. A generalized estimation equation model was used to determine whether each kinematic coupling parameter was significantly different across tasks. A repeated-measures generalized estimation equation model was used to test for differences in performance and kinematic coupling parameters between the free and splinted conditions. Wrist motion exhibited linear coupling between flexion-extension and radial-ulnar deviation, demonstrated by R(2) values from 0.70 to 0.99. Average wrist coupling and kinematic path lengths were significantly different among tasks. Coupling means and kinematic path lengths were different between free and splinted conditions across all tasks other than pouring. Performance was different between wrist conditions for dart throwing, hammering, basketball shooting, and pouring. Wrist kinematic coupling parameters are task specific in healthy individuals. Functional performance is decreased when wrist coupling is constrained by an external splint. Surgical procedures that restrict wrist coupling may have a detrimental effect on functional performance as defined in the study. Patients may benefit from surgical reconstructive procedures and wrist rehabilitation protocols designed to restore

  13. Enhancement of Faraday effect in one-dimensional magneto-optical photonic crystal including a magnetic layer with wavelength dependent off-diagonal elements of dielectric constant tensor

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Chie; Ozaki, Shinsuke; Kura, Hiroaki [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi 223-8522 (Japan); Sato, Tetsuya, E-mail: [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi 223-8522 (Japan)


    Optical and magneto-optical properties of one-dimensional magneto-optical photonic crystal (1-D MPC) prepared by the sol-gel dip-coating method, including a magnetic defect layer composed of mixture of CoFe{sub 2}O{sub 4} and SiO{sub 2}, are investigated from both the experimental and theoretical standpoints. The resonant transmission of light was observed around 570 nm in the photonic band gap. The Faraday rotation angle {theta}{sub F} showed two maxima at 490 and 640 nm, and the wavelength dependence of {theta}{sub F} above 760 nm was similar to that of the CoFe{sub 2}O{sub 4}+SiO{sub 2} single-layer film. The two maxima of {theta}{sub F} are attributed to the enhanced Faraday rotation of nonmagnetic TiO{sub 2} layers in the cavity structure and that in magnetic CoFe{sub 2}O{sub 4}+SiO{sub 2} layer through the light localization in MPC. The maximum value of {theta}{sub F} due to the magnetic CoFe{sub 2}O{sub 4}+SiO{sub 2} layer in the MPC was 22-times larger than that in the single-layer film. The simulation study of MPC with CoFe{sub 2}O{sub 4}+SiO{sub 2} magnetic defect layer, based on the matrix approach method, showed that the resonant light transmission was accompanied by the localization of electric field, and large enhancement of {theta}{sub F} appeared at different wavelengths so as to agree with the experimental features. This can be explained in terms of the wavelength dependent off-diagonal components of the dielectric constant tensor in addition to the large extinction coefficient in the CoFe{sub 2}O{sub 4}+SiO{sub 2} magnetic defect layer. - Highlights: > 1-D magnetic photonic crystal (MPC) prepared by sol-gel method. > Enhancement of Faraday rotation due to the magnetic defect layer of CoFe{sub 2}O{sub 4}. > Shift of wavelength of Faraday rotation maximum from resonant light transmission.

  14. Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam (United States)

    Sourki, R.; Hosseini, S. A.


    An analytical solution to the flexural vibration of a weakened nanobeam on the basis of the nonlocal modified couple stress theory including surface effects is under consideration. In this investigation nanobeams are studied within the framework of the Euler-Bernoulli beam theory. The nanobeam is weakened by a crack modeled as a rotational spring at the crack position. This assumption divides the beam into two sections, invoking additional conditions on the beam. The governing equations and boundary conditions for the beam are obtained by applying the Hamilton principle. The natural frequencies for the cracked nanobeam are determined to investigate the effects of crack severity, crack position, nonlocal parameter, material length scale parameter and surface effect parameters. It has been found that the mentioned parameters have considerable effects on stiffness and have a significant impact the dynamic behavior of the nanobeam.

  15. Charged black holes in a generalized scalar–tensor gravity model

    Directory of Open Access Journals (Sweden)

    Yves Brihaye


    Full Text Available We study 4-dimensional charged and static black holes in a generalized scalar–tensor gravity model, in which a shift symmetry for the scalar field exists. For vanishing scalar field the solution corresponds to the Reissner–Nordström (RN solution, while solutions of the full scalar-gravity model have to be constructed numerically. We demonstrate that these black holes support Galilean scalar hair up to a maximal value of the scalar–tensor coupling that depends on the value of the charge and can be up to roughly twice as large as that for uncharged solutions. The Hawking temperature TH of the hairy black holes at maximal scalar–tensor coupling decreases continuously with the increase of the charge and reaches TH=0 for the highest possible charge that these solutions can carry. However, in this limit, the scalar–tensor coupling needs to vanish. The limiting solution hence corresponds to the extremal RN solution, which does not support regular Galilean scalar hair due to its AdS2×S2 near-horizon geometry.

  16. Charged black holes in a generalized scalar-tensor gravity model (United States)

    Brihaye, Yves; Hartmann, Betti


    We study 4-dimensional charged and static black holes in a generalized scalar-tensor gravity model, in which a shift symmetry for the scalar field exists. For vanishing scalar field the solution corresponds to the Reissner-Nordström (RN) solution, while solutions of the full scalar-gravity model have to be constructed numerically. We demonstrate that these black holes support Galilean scalar hair up to a maximal value of the scalar-tensor coupling that depends on the value of the charge and can be up to roughly twice as large as that for uncharged solutions. The Hawking temperature TH of the hairy black holes at maximal scalar-tensor coupling decreases continuously with the increase of the charge and reaches TH = 0 for the highest possible charge that these solutions can carry. However, in this limit, the scalar-tensor coupling needs to vanish. The limiting solution hence corresponds to the extremal RN solution, which does not support regular Galilean scalar hair due to its AdS2 ×S2 near-horizon geometry.

  17. Dynamics of dissipative coupled spins: decoherence, relaxation and effects of a spin-boson bath

    Energy Technology Data Exchange (ETDEWEB)

    Naegele, P; Campagnano, G; Weiss, U [II Institut fuer Theoretische Physik, Universitaet Stuttgart, D-70550 Stuttgart (Germany)], E-mail:, E-mail:, E-mail:


    We study the reduced dynamics of interacting spins, each coupled to its own bath of bosons. We derive the solution in analytic form in the white-noise limit and analyze the rich behaviors in diverse limits ranging from weak coupling and/or low temperature to strong coupling and/or high temperature. We also view the single spin as being coupled to a spin-boson environment and consider the regimes in which it is effectively nonlinear and in which it can be regarded as a resonant bosonic environment.

  18. Medium effect on the characteristics of the coupled seismic and electromagnetic signals. (United States)

    Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John


    Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.

  19. Effects of Coping-Oriented Couples Therapy on Depression: A Randomized Clinical Trial (United States)

    Bodenmann, Guy; Plancherel, Bernard; Beach, Steven R. H.; Widmer, Kathrin; Gabriel, Barbara; Meuwly, Nathalie; Charvoz, Linda; Hautzinger, Martin; Schramm, Elisabeth


    The aim of this study was to evaluate the effectiveness of treating depression with coping-oriented couples therapy (COCT) as compared with cognitive-behavioral therapy (CBT; A. T. Beck, C. Ward, & M. Mendelson, 1961) and interpersonal psychotherapy (IPT; M. M. Weissman, J. C. Markowitz, & G. L. Klerman, 2000). Sixty couples, including 1…

  20. Effects of quantum coupling on the performance of metal-oxide ...

    Indian Academy of Sciences (India)

    Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled ...

  1. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide (United States)

    Vawter, G Allen [Corrales, NM


    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  2. Short- and Long-Term Effectiveness of Two Communication Training Modalities with Distressed Couples. (United States)

    Schindler, Ludwig; And Others


    Investigated the effectiveness of communication training in treating marital discord for conjoint and conjoint group modalities. Results showed that conjoint couples (N=16) improved on five of seven outcome variables, while conjoint group couples (N=13) improved on two. One-year follow-up showed substantial reduction in treatment gains. (WAS)

  3. Spin-orbit coupling and anomalous Josephson effect in nanowires. (United States)

    Campagnano, G; Lucignano, P; Giuliano, D; Tagliacozzo, A


    A superconductor-semiconducting nanowire-superconductor heterostructure in the presence of spin-orbit coupling and magnetic field can support a supercurrent even in the absence of phase difference between the superconducting electrodes. We investigate this phenomenon—the anomalous Josephson effect—employing a model capable of describing many bands in the normal region. We discuss the geometrical and symmetry conditions required to have a finite anomalous supercurrent, and in particular we show that this phenomenon is enhanced when the Fermi level is located close to a band opening in the normal region.

  4. Non-perturbative effects on seven-brane Yukawa couplings

    CERN Document Server

    Marchesano, Fernando


    We analyze non-perturbative corrections to the superpotential of seven-brane gauge theories on type IIB and F-theory warped Calabi-Yau compactifications. We show in particular that such corrections modify the holomorphic Yukawa couplings by an exponentially suppressed contribution, generically solving the Yukawa rank-one problem present in F-theory local models. We provide explicit expressions for the non-perturbative correction to the seven-brane superpotential, and check that it is related to a non-commutative deformation to the tree-level superpotential via the Seiberg-Witten map.

  5. Coupled aggregation and sedimentation processes: the sticking probability effect. (United States)

    Odriozola, G; Leone, R; Schmitt, A; Moncho-Jordá, A; Hidalgo-Alvarez, R


    The influence of the sticking probability P and the drift velocity on kinetics and structure formation arising in coupled aggregation and sedimentation processes was studied by means of simulations. For this purpose, a large prism with no periodical conditions for the sedimentation direction was considered allowing for sediment formation at the prism base. The time evolution of the cluster size distribution (CSD) and weight-average cluster size (n(w)) were determined in three different regions of the prism. The cluster morphology and the sediment structure were also analyzed. We found that the coupled aggregation and sedimentation processes in the bulk are governed by P for short times, and controlled by the Péclet number Pe for long times. In the lower part of the reaction volume, where the sediment grows, the local n(w) grows at sufficiently large times analytically with an exponent of four. This behavior seems to be independent of Pe and P. The obtained results are in good agreement with the experimental data reported by C. Allain, M. Cloitre, and M. Wafra [Phys. Rev. Lett. 74, 1478 (1995)] and support the idea of a possible internal cluster rearrangement for the experiments. Finally, we discuss how the scale dependent fractal character of the sediment is related to the different stages of the aggregation process.

  6. Stabilization effect of fission source in coupled Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Börge Olsen


    Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  7. Tensor network state correspondence and holography (United States)

    Singh, Sukhwinder


    In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.

  8. Coupling effects in bilayer thick metal films perforated with rectangular nanohole arrays

    Directory of Open Access Journals (Sweden)

    Li Yuan


    Full Text Available The coupling effects in bilayer thick metal (silver films perforated with rectangular nanohole arrays are investigated using the finite-difference time-domain technique. Many interesting light phenomena are observed as the distance between the metal rectangular nanohole arrays varies. Coupling effects are found to play very important roles on the optical and electronic properties of bilayer metal rectangular nanohole arrays: antisymmetric coupling between surface plasmon polaritons near the top and bottom film plane, and antisymmetric coupling between localized surface plasmon resonances near the two long sides of the rectangular hole, are probably excited in each layer of bilayer metal rectangular nanohole arrays; antisymmetric and symmetric magnetic coupling probably occur between the metal rectangular nanohole arrays.

  9. Gamma radiation effect on sisal / polyurethane composites without coupling agents

    Directory of Open Access Journals (Sweden)

    Marina Cardoso Vasco

    Full Text Available Abstract Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms.

  10. Gamma radiation effect on sisal / polyurethane composites without coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Marina Cardoso; Claro Neto, Salvador; Nascimento, Eduardo Mauro; Azevedo, Elaine, E-mail: [University of Patras (Greece); Universidade de Sao Paulo (USP) Sao Carlos, SP (Brazil); Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)


    Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms. (author)

  11. [Effects of a Taegyo program on parent-fetal attachment and parenthood in first pregnancy couples]. (United States)

    Yang, Kyung Mi; Kim, Soon-Lae


    The purpose of this study was to explore the effects of a Taegyo program on parents-fetal attachment and parenthood in first pregnancy couples (mothers and spouses). The research design was a nonequivalent control group pretest-posttest experiment. Study participants were 52 first pregnancy couples visiting two medium-scale obstetrics and gynecology clinics located in Gwangju. A total of 52 couples were assigned to the experimental group (25 couples) and the control group (27 couples). The experimental couples were provided with a Taegyo program for 4 weeks. Data were analyzed by chi square test, t-test, and ANCOVA using the SPSS program. Post-treatment maternal-fetal attachment, paternal-fetal attachment and motherhood significantly increased in the experimental group as compared to the control group, but post-treatment fatherhood, anxiety, blood pressure and pulse of participants in the experimental group showed no significant difference from those in the control group. From these results, it is suggested that the Taegyo program has beneficial effects in enhancing parent-fetal attachment and motherhood in first pregnancy couples. Therefore, a Taegyo program can be recommended as a nursing intervention program for first pregnancy couples.

  12. Identifying Isotropic Events Using a Regional Moment Tensor Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Dreger, D S; Walter, W R


    We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.

  13. Defining the coupled effects of cryogenic, space-radiation, and hypervelocity impact damamge on COPV's Project (United States)

    National Aeronautics and Space Administration — The objective of the research proposed herein is to define the coupled (combined) effect of critical environments on the structural performance of composite overwrap...

  14. Experimental Effects of Student Evaluations Coupled with Collaborative Consultation on College Professors' Instructional Skills

    NARCIS (Netherlands)

    Knol, M.H.; in 't Veld, R.; Vorst, H.C.M.; van Driel, J.H.; Mellenbergh, G.J.


    This experimental study concerned the effects of repeated students’ evaluations of teaching coupled with collaborative consultation on professors’ instructional skills. Twenty-five psychology professors from a Dutch university were randomly assigned to either a control group or an experimental

  15. Process intensification by coupling the Joule effect with pervaporation and sweeping gas membrane distillation

    NARCIS (Netherlands)

    Shukla, S.; Méricq, J. P.; Belleville, M.P.; Hengl, N.; Benes, N. E.; Vankelecom, I.; Sanchez Marcano, Jose


    This work concerns the intensification of membrane processes by coupling the Joule effect with two membrane processes: pervaporation and sweeping gas membrane distillation. For this purpose, conducting metallic hollow fibers impregnated or coated with polydimethyl siloxane were simultaneously used

  16. Short and long-term effectiveness of couple counselling: a study protocol

    National Research Council Canada - National Science Library

    Schofield, Margot J; Mumford, Nicholas; Jurkovic, Dubravko; Jurkovic, Ivancica; Bickerdike, Andrew


    .... Two types of relationship services (couple counselling and relationship education) have demonstrated efficacy in many controlled studies but evidence of the effectiveness of community-based relationship services has lagged behind...

  17. Smartphone dependence classification using tensor factorization. (United States)

    Choi, Jingyun; Rho, Mi Jung; Kim, Yejin; Yook, In Hye; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young


    Excessive smartphone use causes personal and social problems. To address this issue, we sought to derive usage patterns that were directly correlated with smartphone dependence based on usage data. This study attempted to classify smartphone dependence using a data-driven prediction algorithm. We developed a mobile application to collect smartphone usage data. A total of 41,683 logs of 48 smartphone users were collected from March 8, 2015, to January 8, 2016. The participants were classified into the control group (SUC) or the addiction group (SUD) using the Korean Smartphone Addiction Proneness Scale for Adults (S-Scale) and a face-to-face offline interview by a psychiatrist and a clinical psychologist (SUC = 23 and SUD = 25). We derived usage patterns using tensor factorization and found the following six optimal usage patterns: 1) social networking services (SNS) during daytime, 2) web surfing, 3) SNS at night, 4) mobile shopping, 5) entertainment, and 6) gaming at night. The membership vectors of the six patterns obtained a significantly better prediction performance than the raw data. For all patterns, the usage times of the SUD were much longer than those of the SUC. From our findings, we concluded that usage patterns and membership vectors were effective tools to assess and predict smartphone dependence and could provide an intervention guideline to predict and treat smartphone dependence based on usage data.

  18. Smartphone dependence classification using tensor factorization.

    Directory of Open Access Journals (Sweden)

    Jingyun Choi

    Full Text Available Excessive smartphone use causes personal and social problems. To address this issue, we sought to derive usage patterns that were directly correlated with smartphone dependence based on usage data. This study attempted to classify smartphone dependence using a data-driven prediction algorithm. We developed a mobile application to collect smartphone usage data. A total of 41,683 logs of 48 smartphone users were collected from March 8, 2015, to January 8, 2016. The participants were classified into the control group (SUC or the addiction group (SUD using the Korean Smartphone Addiction Proneness Scale for Adults (S-Scale and a face-to-face offline interview by a psychiatrist and a clinical psychologist (SUC = 23 and SUD = 25. We derived usage patterns using tensor factorization and found the following six optimal usage patterns: 1 social networking services (SNS during daytime, 2 web surfing, 3 SNS at night, 4 mobile shopping, 5 entertainment, and 6 gaming at night. The membership vectors of the six patterns obtained a significantly better prediction performance than the raw data. For all patterns, the usage times of the SUD were much longer than those of the SUC. From our findings, we concluded that usage patterns and membership vectors were effective tools to assess and predict smartphone dependence and could provide an intervention guideline to predict and treat smartphone dependence based on usage data.

  19. Smartphone dependence classification using tensor factorization (United States)

    Kim, Yejin; Yook, In Hye; Yu, Hwanjo; Kim, Dai-Jin


    Excessive smartphone use causes personal and social problems. To address this issue, we sought to derive usage patterns that were directly correlated with smartphone dependence based on usage data. This study attempted to classify smartphone dependence using a data-driven prediction algorithm. We developed a mobile application to collect smartphone usage data. A total of 41,683 logs of 48 smartphone users were collected from March 8, 2015, to January 8, 2016. The participants were classified into the control group (SUC) or the addiction group (SUD) using the Korean Smartphone Addiction Proneness Scale for Adults (S-Scale) and a face-to-face offline interview by a psychiatrist and a clinical psychologist (SUC = 23 and SUD = 25). We derived usage patterns using tensor factorization and found the following six optimal usage patterns: 1) social networking services (SNS) during daytime, 2) web surfing, 3) SNS at night, 4) mobile shopping, 5) entertainment, and 6) gaming at night. The membership vectors of the six patterns obtained a significantly better prediction performance than the raw data. For all patterns, the usage times of the SUD were much longer than those of the SUC. From our findings, we concluded that usage patterns and membership vectors were effective tools to assess and predict smartphone dependence and could provide an intervention guideline to predict and treat smartphone dependence based on usage data. PMID:28636614

  20. Asymptotics of QCD traveling waves with fluctuations and running coupling effects (United States)

    Beuf, Guillaume


    Extending the Balitsky-Kovchegov (BK) equation independently to running coupling or to fluctuation effects due to pomeron loops is known to lead in both cases to qualitative changes of the traveling-wave asymptotic solutions. In this paper we study the extension of the forward BK equation, including both running coupling and fluctuations effects, extending the method developed for the fixed coupling case [E. Brunet, B. Derrida, A.H. Mueller, S. Munier, Phys. Rev. E 73 (2006) 056126, cond-mat/0512021]. We derive the exact asymptotic behavior in rapidity of the probabilistic distribution of the saturation scale.

  1. Effects of Herzberg-Teller vibronic coupling on coherent excitation energy transfer (United States)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Yan, YiJing


    In this work, we study the effects of non-Condon vibronic coupling on the quantum coherence of excitation energy transfer, via the exact dissipaton-equation-of-motion evaluations on excitonic model systems. Field-triggered excitation energy transfer dynamics and two dimensional coherent spectroscopy are simulated for both Condon and non-Condon vibronic couplings. Our results clearly demonstrate that the non-Condon vibronic coupling intensifies the dynamical electronic-vibrational energy transfer and enhances the total system-and-bath quantum coherence. Moreover, the hybrid bath dynamics for non-Condon effects enriches the theoretical calculation, and further sheds light on the interpretation of the experimental nonlinear spectroscopy.


    Directory of Open Access Journals (Sweden)

    Hasan KAPLAN


    Full Text Available In multi-story buildings, shear walls are used against the horizontal loads because their stiffness are greater than those of columns. The lateral deflections of tall building structures due to earthquake or wind is important role on the damage of buildings during the earthquake. The effectiveness of coupled shear walls in resisting horizontal loading depends on strongly on the rigidty of the coupling beams. In this study, In this study, using by finite element the shear walls with coupled lintel beams are investigated. The effects of uperstory lintel beam rigidity on strength and deformation were determined.

  3. Human action recognition based on point context tensor shape descriptor (United States)

    Li, Jianjun; Mao, Xia; Chen, Lijiang; Wang, Lan


    Motion trajectory recognition is one of the most important means to determine the identity of a moving object. A compact and discriminative feature representation method can improve the trajectory recognition accuracy. This paper presents an efficient framework for action recognition using a three-dimensional skeleton kinematic joint model. First, we put forward a rotation-scale-translation-invariant shape descriptor based on point context (PC) and the normal vector of hypersurface to jointly characterize local motion and shape information. Meanwhile, an algorithm for extracting the key trajectory based on the confidence coefficient is proposed to reduce the randomness and computational complexity. Second, to decrease the eigenvalue decomposition time complexity, a tensor shape descriptor (TSD) based on PC that can globally capture the spatial layout and temporal order to preserve the spatial information of each frame is proposed. Then, a multilinear projection process is achieved by tensor dynamic time warping to map the TSD to a low-dimensional tensor subspace of the same size. Experimental results show that the proposed shape descriptor is effective and feasible, and the proposed approach obtains considerable performance improvement over the state-of-the-art approaches with respect to accuracy on a public action dataset.

  4. Tensor renormalization group methods for spin and gauge models (United States)

    Zou, Haiyuan

    The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.

  5. TensorPack: a Maple-based software package for the manipulation of algebraic expressions of tensors in general relativity (United States)

    Huf, P. A.; Carminati, J.


    In this paper we: (1) introduce TensorPack, a software package for the algebraic manipulation of tensors in covariant index format in Maple; (2) briefly demonstrate the use of the package with an orthonormal tensor proof of the shearfree conjecture for dust. TensorPack is based on the Riemann and Canon tensor software packages and uses their functions to express tensors in an indexed covariant format. TensorPack uses a string representation as input and provides functions for output in index form. It extends the functionality to basic algebra of tensors, substitution, covariant differentiation, contraction, raising/lowering indices, symmetry functions and other accessory functions. The output can be merged with text in the Maple environment to create a full working document with embedded dynamic functionality. The package offers potential for manipulation of indexed algebraic tensor expressions in a flexible software environment.

  6. The Racah-Wigner algebra and coherent tensors (United States)

    Rowe, D. J.; Repka, J.


    We present a set of tensors which are shift tensors (Wigner tensors) in accordance with the definitions of Biedenharn and Louck and satisfy the coherence conditions of Flath and Towber. Our tensors are defined for all connected compact Lie groups and for finite-dimensional representations of connected reductive Lie groups. Thus, we have a realization of the coherent tensors in a rather general setting. Moreover, this realization enables us to confirm most of the conjectures of Flath and Towber concerning the properties of coherent tensors.

  7. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. (United States)

    Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik


    In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.

  8. The effects of partnered exercise on physical intimacy in couples coping with prostate cancer. (United States)

    Lyons, Karen S; Winters-Stone, Kerri M; Bennett, Jill A; Beer, Tomasz M


    The study examined whether couples coping with prostate cancer participating in a partnered exercise program-Exercising Together (ET)-experienced higher levels of physical intimacy (i.e., affectionate and sexual behavior) than couples in a usual care (UC) control group. Men and their wives (n = 64 couples) were randomly assigned to either the ET or UC group. Couples in the ET group engaged in partnered strength-training twice weekly for 6 months. Multilevel modeling was used to explore the effects of ET on husband and wife engagement in both affectionate and sexual behaviors over time. Controlling for relationship quality, wives in ET showed significant increases in engagement in affectionate behaviors compared to wives in UC. No intervention effects were found for husbands. Couple-based approaches to physical intimacy, after a cancer diagnosis, that facilitate collaborative engagement in nonsexual physical activities for the couple have potential to be effective for wives. More research is needed in this area to determine couples most amenable to such exercise strategies, optimal timing in the cancer trajectory, and the benefits of combining partnered exercise with more traditional relationship-focused strategies. (c) 2016 APA, all rights reserved).

  9. The effect of unexpected bereavement on mortality in older couples. (United States)

    Shah, Sunil M; Carey, Iain M; Harris, Tess; Dewilde, Stephen; Victor, Christina R; Cook, Derek G


    We sought to determine whether unexpected bereavement has a greater impact on mortality in the surviving partner than death of a partner with preexisting chronic disease or disability. In a UK primary care database (The Health Improvement Network), we identified 171,720 couples aged 60 years and older. We compared the rise in mortality in the first year after bereavement in those whose partner died without recorded chronic disease (unexpected bereavement) to those whose deceased partner had a diagnosis of chronic disease (known morbidity). For unexpected bereavement (13.4% of all bereavements), the adjusted hazard ratio for death in the first year after bereavement was 1.61 (95% confidence interval [CI] = 1.39, 1.86) compared with 1.21 (95% CI = 1.14, 1.30) where the partner had known morbidity. Differences between bereaved groups were significant (P = .001) and present for both men and women. Unexpected bereavement has a greater relative mortality impact than bereavement preceded by chronic disease. Our findings highlight the potential value of preparing individuals for the death of a spouse with known morbidity and providing extra support after bereavement for those experiencing sudden unexpected bereavement.

  10. Permittivity and permeability tensors for cloaking applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan


    This book is focused on derivations of analytical expressions for stealth and cloaking applications. An optimal version of electromagnetic (EM) stealth is the design of invisibility cloak of arbitrary shapes in which the EM waves can be controlled within the cloaking shell by introducing a prescribed spatial variation in the constitutive parameters. The promising challenge in design of invisibility cloaks lies in the determination of permittivity and permeability tensors for all the layers. This book provides the detailed derivation of analytical expressions of the permittivity and permeability tensors for various quadric surfaces within the eleven Eisenhart co-ordinate systems. These include the cylinders and the surfaces of revolutions. The analytical modeling and spatial metric for each of these surfaces are provided along with their tensors. This mathematical formulation will help the EM designers to analyze and design of various quadratics and their hybrids, which can eventually lead to design of cloakin...

  11. Spacetime Encodings III - Second Order Killing Tensors

    CERN Document Server

    Brink, Jeandrew


    This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher- order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture of what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require...

  12. Tensor calculus for engineers and physicists

    CERN Document Server

    de Souza Sánchez Filho, Emil


    This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of N dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without need...

  13. The pressure tensor in tangential equilibria

    Directory of Open Access Journals (Sweden)

    F. Mottez


    Full Text Available The tangential equilibria are characterized by a bulk plasma velocity and a magnetic field that are perpendicular to the gradient direction. Such equilibria can be spatially periodic (like waves, or they can separate two regions with asymptotic uniform conditions (like MHD tangential discontinuities. It is possible to compute the velocity moments of the particle distribution function. Even in very simple cases, the pressure tensor is not isotropic and not gyrotropic. The differences between a scalar pressure and the pressure tensor derived in the frame of the Maxwell-Vlasov theory are significant when the gradient scales are of the order of the Larmor radius; they concern mainly the ion pressure tensor.

  14. Quantum Critical Scaling of the Geometric Tensors (United States)

    Campos Venuti, Lorenzo; Zanardi, Paolo


    Berry phases and the quantum-information theoretic notion of fidelity have been recently used to analyze quantum phase transitions from a geometrical perspective. In this Letter we unify these two approaches showing that the underlying mechanism is the critical singular behavior of a complex tensor over the Hamiltonian parameter space. This is achieved by performing a scaling analysis of this quantum geometric tensor in the vicinity of the critical points. In this way most of the previous results are understood on general grounds and new ones are found. We show that criticality is not a sufficient condition to ensure superextensive divergence of the geometric tensor, and state the conditions under which this is possible. The validity of this analysis is further checked by exact diagonalization of the spin-1/2 XXZ Heisenberg chain.

  15. Spectral analysis of the full gravity tensor (United States)

    Rummel, R.; van Gelderen, M.


    It is shown that, when the five independent components of the gravity tensor are grouped into (Gamma-zz), (Gamma-xz, Gamma-yz), and (Gamma-xx - Gamma-yy, 2Gamma-xy) sets and expanded into an infinite series of pure-spin spherical harmonic tensors, it is possible to derive simple eigenvalue connections between these three sets and the spherical harmonic expansion of the gravity potential. The three eigenvalues are (n + 1)(n + 2), -(n + 2) sq rt of n(n + 1), and sq rt of (n - 1)n(n + 1)(n + 2). The joint ESA and NASA Aristoteles mission is designed to measure with high precision the tensor components Gamma-zz, Gamma-yz, and Gamma-yy, which will make it possible to determine the global gravity field in six months time with a high precision.

  16. Calibration of magnetic gradient tensor measurement array in magnetic anomaly detection (United States)

    Chen, Jinfei; Zhang, Qi; Pan, Mengchun; Weng, Feibing; Chen, Dixiang; Pang, Hongfeng


    Magnetic anomaly detection based on magnetic gradient tensor has become more and more important in civil and military applications. Compared with methods based on magnetic total field or components measurement, magnetic gradient tensor has some unique advantages. Usually, a magnetic gradient tensor measurement array is constituted by four three-axis magnetometers. The prominent problem of magnetic gradient tensor measurement array is the misalignment of sensors. In order to measure the magnetic gradient tensor accurately, it is quite essential to calibrate the measurement array. The calibration method, which is proposed in this paper, is divided into two steps. In the first step, each sensor of the measurement array should be calibrated, whose error is mainly caused by constant biases, scale factor deviations and nonorthogonality of sensor axes. The error of measurement array is mainly caused by the misalignment of sensors, so that triplets' deviation in sensors array coordinates is calibrated in the second step. In order to verify the effectiveness of the proposed method, simulation was taken and the result shows that the proposed method improves the measurement accuracy of magnetic gradient tensor greatly.

  17. High precision microseismic source mechanism determined by iterative relative moment tensor inversion (United States)

    Imanishi, K.; Uchide, T.


    There is a growing interest in source mechanisms of microearthquakes particularly for induced microseismic events in oil, gas, and geothermal fields. However, their reliable estimate is a difficult task due to low S/N ratio and poor knowledge of the underground structure. Dahm (1996) develop a relative moment tensor inversion (RMTI) method for earthquake source clusters, in which relative body-wave amplitudes for two earthquakes recorded at a common station are used to eliminate the effect of propagation paths. If the source mechanism of one of those earthquakes is known a priori, the other source mechanisms can be determined without a computation of Green's function. A difficulty in this method is that errors in the mechanism of reference events may lead to biased solutions for other events. In order to avoid this problem, we propose a method that iteratively applies the RMTI to source clusters improving each moment tensor. The procedure is as follows: (1) Sample co-located multiple earthquakes. At this time, their source mechanisms are not always accurately determined. (2) Apply the RMTI to estimate the source mechanism of each event relative to those of the other events. (3) Repeat the step 2 for the modified source mechanisms until the total residual becomes almost constant. We conducted numerical tests on synthetic data, where amplitudes were computed assuming double-couple sources, amplifying by factor between 0.3 and 5 as site effects, and adding 10% random noise. Initial solutions were given by adding 20-degree-wide random noises to strike, dip, and rake angles of input mechanisms. In a test with eight sources at 12 stations, the total residual rapidly drops during the first few iterations and settles down afterwards. After the three iterations, the solutions almost reach the input mechanisms. In contrast, both of the original RMTI (i.e., without iteration) and a general MTI (i.e., single-source, absolute MTI) could not reproduce the input mechanisms, where

  18. An investigation of the effects of pitch-roll (de)coupling on helicopter handling qualities (United States)

    Blanken, C. L.; Pausder, H. J.; Ockier, C. J.


    An extensive investigation of the effects of pitch-roll coupling on helicopter handling qualities was performed by the U.S. Army and Deutsche Forschungsanstalt fur Luft- und Raumfahrt (DLR), using a NASA ground-based and a DLR in-flight simulator. Over 90 different coupling configurations were evaluated using a high gain roll-axis tracking task. The results show that although the current ADS-33C coupling criterion discriminates against those types of coupling typical of conventionally controlled helicopters, it is not always suited for the prediction of handling qualities of helicopters with modern control systems. Based on the observation that high frequency inputs during tracking are used to alleviate coupling, a frequency domain pitch-roll coupling criterion that uses the average coupling ratio between the bandwidth and neutral stability frequency is formulated. This criterion provides a more comprehensive coverage with respect to the different types of coupling, shows excellent consistency, and has the additional benefit that compliance testing data are obtained from the bandwidth/phase delay tests, so that no additional flight testing is needed.

  19. Effects of coupled dark energy on the Milky Way and its satellites (United States)

    Penzo, Camilla; Macciò, Andrea V.; Baldi, Marco; Casarini, Luciano; Oñorbe, Jose; Dutton, Aaron A.


    We present the first numerical simulations in coupled dark energy cosmologies with high enough resolution to investigate the effects of the coupling on galactic and subgalactic scales. We choose two constant couplings and a time-varying coupling function and we run simulations of three Milky Way-sized haloes (˜1012 M⊙), a lower mass halo (6 × 1011 M⊙) and a dwarf galaxy halo (5 × 109 M⊙). We resolve each halo with several million dark matter particles. On all scales, the coupling causes lower halo concentrations and a reduced number of substructures with respect to Λ cold dark matter (ΛCDM). We show that the reduced concentrations are not due to different formation times. We ascribe them to the extra terms that appear in the equations describing the gravitational dynamics. On the scale of the Milky Way satellites, we show that the lower concentrations can help in reconciling observed and simulated rotation curves, but the coupling values necessary to have a significant difference from ΛCDM are outside the current observational constraints. On the other hand, if other modifications to the standard model allowing a higher coupling (e.g. massive neutrinos) are considered, coupled dark energy can become an interesting scenario to alleviate the small-scale issues of the ΛCDM model.

  20. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models (United States)

    Eshagh, Mehdi; Tenzer, Robert


    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  1. Stealth configurations in vector-tensor theories of gravity (United States)

    Chagoya, Javier; Tasinato, Gianmassimo


    Studying the physics of compact objects in modified theories of gravity is important for understanding how future observations can test alternatives to General Relativity. We consider a subset of vector-tensor Galileon theories of gravity characterized by new symmetries, which can prevent the propagation of the vector longitudinal polarization, even in absence of Abelian gauge invariance. We investigate new spherically symmetric and slowly rotating solutions for these systems, including an arbitrary matter Lagrangian. We show that, under certain conditions, there always exist stealth configurations whose geometry coincides with solutions of Einstein gravity coupled with the additional matter. Such solutions have a non-trivial profile for the vector field, characterized by independent integration constants, which extends to asymptotic infinity. We interpret our findings in terms of the symmetries and features of the original vector-tensor action, and on the number of degrees of freedom that it propagates. These results are important to eventually describe gravitationally bound configurations in modified theories of gravity, such as black holes and neutron stars, including realistic matter fields forming or surrounding the object.

  2. Adaptive stochastic Galerkin FEM with hierarchical tensor representations

    KAUST Repository

    Eigel, Martin


    PDE with stochastic data usually lead to very high-dimensional algebraic problems which easily become unfeasible for numerical computations because of the dense coupling structure of the discretised stochastic operator. Recently, an adaptive stochastic Galerkin FEM based on a residual a posteriori error estimator was presented and the convergence of the adaptive algorithm was shown. While this approach leads to a drastic reduction of the complexity of the problem due to the iterative discovery of the sparsity of the solution, the problem size and structure is still rather limited. To allow for larger and more general problems, we exploit the tensor structure of the parametric problem by representing operator and solution iterates in the tensor train (TT) format. The (successive) compression carried out with these representations can be seen as a generalisation of some other model reduction techniques, e.g. the reduced basis method. We show that this approach facilitates the efficient computation of different error indicators related to the computational mesh, the active polynomial chaos index set, and the TT rank. In particular, the curse of dimension is avoided.

  3. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom. (United States)

    Wodyński, Artur; Malkina, Olga L; Pecul, Magdalena


    The (2)JCC, (3)JCC, and (4)JCC spin-spin coupling constants in the systems with a heavy atom (Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po) in the coupling path have been calculated by means of density functional theory. The main goal was to estimate the relativistic effects on spin-spin coupling constants and to explore the factors which may influence them, including the nature of the heavy atom and carbon hybridization. The methods applied range, in order of reduced complexity, from the Dirac-Kohn-Sham (DKS) method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component zeroth-order regular approximation (ZORA) Hamiltonians, to scalar effective core potentials (ECPs) with the nonrelativistic Hamiltonian. The use of DKS and ZORA methods leads to very similar results, and small-core ECPs of the MDF and MWB variety reproduce correctly the scalar relativistic effects. Scalar relativistic effects usually are larger than the spin-orbit coupling effects. The latter tend to influence the most the coupling constants of the sp(3)-hybridized carbon atoms and in compounds of the p-block heavy atoms. Large spin-orbit coupling contributions for the Po compounds are probably connected with the inverse of the lowest triplet excitation energy.

  4. Semi-analytic stellar structure in scalar-tensor gravity (United States)

    Horbatsch, M. W.; Burgess, C. P.


    Precision tests of gravity can be used to constrain the properties of hypothetical very light scalar fields, but these tests depend crucially on how macroscopic astrophysical objects couple to the new scalar field. We study the equations of stellar structure using scalar-tensor gravity, with the goal of seeing how stellar properties depend on assumptions made about the scalar coupling at a microscopic level. In order to make the study relatively easy for different assumptions about microscopic couplings, we develop quasi-analytic approximate methods for solving the stellar-structure equations rather than simply integrating them numerically. (The approximation involved assumes the dimensionless scalar coupling at the stellar center is weak, and we compare our results with numerical integration in order to establish its domain of validity.) We illustrate these methods by applying them to Brans-Dicke scalars, and their generalization in which the scalar-matter coupling slowly runs — or `walks' — as a function of the scalar field: a(phi) simeq as+bsphi. (Such couplings can arise in extra-dimensional applications, for instance.) The four observable parameters that characterize the fields external to a spherically symmetric star are the stellar radius, R, mass, M, scalar `charge', Q, and the scalar's asymptotic value, phi∞. These are subject to two relations because of the matching to the interior solution, generalizing the usual mass-radius, M(R), relation of General Relativity. Since phi∞ is common to different stars in a given region (such as a binary pulsar), all quantities can be computed locally in terms of the stellar masses. We identify how these relations depend on the microscopic scalar couplings, agreeing with earlier workers when comparisons are possible. Explicit analytical solutions are obtained for the instructive toy model of constant-density stars, whose properties we compare to more realistic equations of state for neutron star models.

  5. Tensor network models of multiboundary wormholes (United States)

    Peach, Alex; Ross, Simon F.


    We study the entanglement structure of states dual to multiboundary wormhole geometries using tensor network models. Perfect and random tensor networks tiling the hyperbolic plane have been shown to provide good models of the entanglement structure in holography. We extend this by quotienting the plane by discrete isometries to obtain models of the multiboundary states. We show that there are networks where the entanglement structure is purely bipartite, extending results obtained in the large temperature limit. We analyse the entanglement structure in a range of examples.

  6. Improving Tensor Based Recommenders with Clustering

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Zemaitis, Valdas


    Social tagging systems (STS) model three types of entities (i.e. tag-user-item) and relationships between them are encoded into a 3-order tensor. Latent relationships and patterns can be discovered by applying tensor factorization techniques like Higher Order Singular Value Decomposition (HOSVD),...... of the recommendations and execution time are improved and memory requirements are decreased. The clustering is motivated by the fact that many tags in a tag space are semantically similar thus the tags can be grouped. Finally, promising experimental results are presented...

  7. Blue running of the primordial tensor spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk, E-mail: [Asia Pacific Center for Theoretical Physics, Pohang 790-784 (Korea, Republic of)


    We examine the possibility of positive spectral index of the power spectrum of the primordial tensor perturbation produced during inflation in the light of the detection of the B-mode polarization by the BICEP2 collaboration. We find a blue tilt is in general possible when the slow-roll parameter decays rapidly. We present two known examples in which a positive spectral index for the tensor power spectrum can be obtained. We also briefly discuss other consistency tests for further studies on inflationary dynamics.

  8. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...

  9. Generalising the coupling between spacetime and matter (United States)

    Carloni, Sante


    We explore the idea that the coupling between matter and spacetime is more complex than the one originally envisioned by Einstein. We propose that such coupling takes the form of a new fundamental tensor in the Einstein field equations. We then show that the introduction of this tensor can account for dark phenomenology in General Relativity, maintaining a weak field limit compatible with standard Newtonian gravitation. The same paradigm can be applied any other theory of gravitation. We show, as an example, that in the context of conformal gravity a generalised coupling is able to solve compatibility issues between the matter and the gravitational sector.

  10. Generalising the coupling between spacetime and matter

    Directory of Open Access Journals (Sweden)

    Sante Carloni


    Full Text Available We explore the idea that the coupling between matter and spacetime is more complex than the one originally envisioned by Einstein. We propose that such coupling takes the form of a new fundamental tensor in the Einstein field equations. We then show that the introduction of this tensor can account for dark phenomenology in General Relativity, maintaining a weak field limit compatible with standard Newtonian gravitation. The same paradigm can be applied any other theory of gravitation. We show, as an example, that in the context of conformal gravity a generalised coupling is able to solve compatibility issues between the matter and the gravitational sector.

  11. Generalising the coupling between spacetime and matter

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, Sante, E-mail:


    We explore the idea that the coupling between matter and spacetime is more complex than the one originally envisioned by Einstein. We propose that such coupling takes the form of a new fundamental tensor in the Einstein field equations. We then show that the introduction of this tensor can account for dark phenomenology in General Relativity, maintaining a weak field limit compatible with standard Newtonian gravitation. The same paradigm can be applied any other theory of gravitation. We show, as an example, that in the context of conformal gravity a generalised coupling is able to solve compatibility issues between the matter and the gravitational sector.

  12. The Lightning Electromagnetic Pulse Coupling Effect Inside the Shielding Enclosure With Penetrating Wire (United States)

    Jiao, Xue; Yang, Bo


    To study the lightning electromagnetic pulse (LEMP) coupling and protection problems of shielding enclosure with penetrating wire, we adopt the model with proper size which is close to the practical engineering and the two-step finite-difference time-domain (FDTD) method is used for calculation in this paper. It is shown that the coupling voltage on the circuit lead inside the enclosure increases about 34 dB, when add 1.0 m long penetrating wire at the aperture, comparing with the case without penetrating wire. Meanwhile, the waveform, has the same wave outline as the lightning current source, shows that the penetrating wire brings a large number of low frequency component into the enclosure. The coupling effect in the enclosure will reduce greatly when penetrating wire has electrical connection with the enclosure at the aperture and the coupling voltage increase only about 12 dB than the case without penetrating wire. Moreover, the results show that though the waveguide pipe can reduce the coupling effect brought by the penetrating wire, the exposing part of penetrating wire can increase the coupling when the penetrating wire outside the enclosure is longer than the waveguide pipe and the longer the exposing part is, the stronger the coupling is.

  13. On the coupling effects of piezoelectricity and flexoelectricity in piezoelectric nanostructures (United States)

    He, Liwen; Lou, Jia; Zhang, Aibing; Wu, Huaping; Du, Jianke; Wang, Ji


    Flexoelectricity is a novel kind of electromechanical coupling phenomenon that is prevalent in all solid dielectrics and usually of vital importance in nanostructures and soft materials. Although the fundamental theory of flexoelectric solids and related beam or plate theories were extensively studied in recent years, the coupling effect of flexoelectricity and piezoelectricity in piezoelectric nanostructures has not been completely clarified yet. In the present work, a geometrically nonlinear piezoelectric plate model is established with a focus on the coupling effect. The constitutive equations for piezoelectric plates are derived under both the electrically short-circuit and open-circuit conditions. It is found that due to the coupling between flexoelectricity and piezoelectricity, stretching-bending coupling stiffness arises in the homogeneous plate and its specific value relies on the applied electrical boundary conditions. The effects of the flexoelectric-piezoelectric coupling on the effective mechanical behavior and the electromechanical behavior of nanobeams and nanoplates are also discussed. The developed model and presented results are expected to benefit the design and analysis of piezoelectric and flexoelectric devices and systems.

  14. Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order

    CERN Document Server

    Mirshekari, Saeed


    We calculate the explicit equations of motion for non-spinning compact objects to 2.5 post-Newtonian order, or O(v/c)^5 beyond Newtonian gravity, in a general class of scalar-tensor theories of gravity. We use the formalism of the Direct Integration of the Relaxed Einstein Equations (DIRE), adapted to scalar-tensor theory, coupled with an approach pioneered by Eardley for incorporating the internal gravity of compact, self-gravitating bodies. For the conservative part of the motion, we obtain the two-body Lagrangian and conserved energy and momentum through second post-Newtonian order. We find the 1.5 post-Newtonian and 2.5 post-Newtonian contributions to gravitational radiation reaction, the former corresponding to the effects of dipole gravitational radiation, and verify that the resulting energy loss agrees with earlier calculations of the energy flux. For binary black holes we show that the motion through 2.5 post-Newtonian order is observationally identical to that predicted by general relativity. For mi...

  15. Baryon non-invariant couplings in Higgs effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fsica Teorica, IFT-UAM/CSIC, Madrid (Spain)


    The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)

  16. A Family of Cost-Effective Magnetically-Coupled Impedance Source Inverters

    DEFF Research Database (Denmark)

    Li, Kerui; Yang, Yongheng; Qin, Zian


    This paper presents a family of cost-effective magnetically-coupled impedance source inverters for renewable energy systems. The inverters are derived from magnetically-coupled impedance source networks, featuring low cost and no ground leakage current when used in PV system. The numbers of requi......This paper presents a family of cost-effective magnetically-coupled impedance source inverters for renewable energy systems. The inverters are derived from magnetically-coupled impedance source networks, featuring low cost and no ground leakage current when used in PV system. The numbers...... of required semiconductor switches is reduced. More important, the elimination of leakage currents makes it particularly suitable for high-efficiency photovoltaic (PV) applications. A comparison among prior-art PV inverters is then performed. The Performances of the inverters are evaluated analytically...

  17. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hsien, E-mail: [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)


    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.

  18. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects (United States)

    Smith, David D.


    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  19. Observations About the Projective Tensor Product of Banach Spaces

    African Journals Online (AJOL)

    , 46B, 46E, 47B. Keywords: tensor, Banach, banach space, tensor product, projective norm, greatest crossnorm, semi-embedding, Radon-Nikodym property, absolutely p-summable sequence, strongly p-summable sequence, topological linear ...

  20. Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives


    Yoshihara, Kumiko; Nagaoka, Noriyuki; Sonoda, Akinari; Maruo, Yukinori; Makita, Yoji; Okihara, Takumi; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart


    OBJECTIVE: For bonding indirect restorations, some 'universal' adhesives incorporate a silane coupling agent to chemically bond to glass-rich ceramics so that a separate ceramic primer is claimed to be no longer needed. With this work, we investigated the effectiveness/stability of the silane coupling function of the silanecontaining experimentally prepared adhesives and Scotchbond Universal (3MESPE). METHODS AND MATERIALS: Experimental adhesives consisted of Scotchbond Universa...

  1. Effects of radiation on charge-coupled devices (United States)

    Carnes, J. E.; Cope, A. D.; Rockett, L. R.; Schlesier, K. M.


    The effects of 1 MeV electron irradiation upon the performance of two phase, polysilicon aluminum gate CCDs are reported. Both n- and p-surface channel and n-buried channel devices are investigated using 64- and 128-stage line arrays. Characteristics measured as a function of radiation dose include: Transfer inefficiency, threshold voltage, field effect mobility, interface state density, full well signal level and dark current. Surface channel devices are found to degrade considerably at less than 10 to the 5th power rads (Si) due to the large increase in fast interface state density caused by radiation. Buried channel devices maintain efficient operation to the highest dose levels used.

  2. Renormalized stress-energy tensor for stationary black holes

    CERN Document Server

    Levi, Adam


    We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the $t$-splitting variant of the method, which was first presented for $\\left\\langle\\phi^{2}\\right\\rangle_{ren}$, to compute the RSET in a stationary, asymptotically-flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally-coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.

  3. Emergent gravity from vanishing energy-momentum tensor (United States)

    Carone, Christopher D.; Erlich, Joshua; Vaman, Diana


    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. We comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.

  4. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong


    between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  5. Tensor completion for PDEs with uncertain coefficients and Bayesian Update

    KAUST Repository

    Litvinenko, Alexander


    In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.

  6. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    ... ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is constructed. It is used to derive Einstein's planetary equation of motion and photon equation of motion in the vicinity of the rotating homogeneous spherical mass.

  7. Scalable Tensor Factorizations with Missing Data

    DEFF Research Database (Denmark)

    Acar, Evrim; Dunlavy, Daniel M.; Kolda, Tamara G.


    is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram...

  8. Families of twisted tensor product codes


    Giuzzi, Luca; Pepe, Valentina


    Using geometric properties of the variety $\\cV_{r,t}$, the image under the Grassmannian map of a Desarguesian $(t-1)$-spread of $\\PG(rt-1,q)$, we introduce error correcting codes related to the twisted tensor product construction, producing several families of constacyclic codes. We exactly determine the parameters of these codes and characterise the words of minimum weight.

  9. Tensors in image processing and computer vision

    CERN Document Server

    De Luis García, Rodrigo; Tao, Dacheng; Li, Xuelong


    Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the developments in this branch of signal processing, offering research and discussions by experts in the area. It is suitable for advanced students working in the area of computer vision and image processing.

  10. Fermionic topological quantum states as tensor networks (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.


    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  11. Visualization and processing of tensor fields

    CERN Document Server

    Weickert, Joachim


    Presents information on the visualization and processing of tensor fields. This book serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as a textbook for specialized classes and seminars for graduate and doctoral students.

  12. Magnetotelluric impedance tensor analysis for identification of ...

    Indian Academy of Sciences (India)

    We present the results of magnetotelluric (MT) impedance tensors analyses of 18 sites located along a profile cutting various faults in the uplifted Wagad block of the Kachchh basin. The MT time series of 4–5 days recording duration have been processed and the earth response functions are estimated in broad frequency ...

  13. Radiation Forces and Torques without Stress (Tensors) (United States)

    Bohren, Craig F.


    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  14. Introduction to vector and tensor analysis

    CERN Document Server

    Wrede, Robert C


    A broad introductory treatment, this volume examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, fundamental notions in n-space, Riemannian geometry, algebraic properties of the curvature tensor, and more. 1963 edition.

  15. Holographic coherent states from random tensor networks (United States)

    Qi, Xiao-Liang; Yang, Zhao; You, Yi-Zhuang


    Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We setup a framework in which all possible bulk spatial geometries, characterized by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded in this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.

  16. Survey the Effect of Pre-marriage Counseling on Knowledge and Attitudes Couple in Yazd

    Directory of Open Access Journals (Sweden)

    ss Mazloomi mahmodabad


    Full Text Available Abstract Introduction : Holding true premarital counseling courses helps to couples to acquire the necessary knowledge in the field of reproductive health issues. The aim of this study was determination of effect of pre-marriage counseling on knowledge and attitudes couple in Yazd. Methods: This was an semi experimental and pre and post study In which 200 couples participating in premarital counseling courses were selected randomly. Finally, the data were analysed by SPSS18 software and t-test and ANOVA statistical tests. Results: The data showen that  couples before attending in counseling courses have acquired respectively 37.6%  and 48.1%  and after training respectively 65.1% and 57.6% from knowledge and attitude scores. Also mean score of knowledge and attitude according to sex, education level and occupation were statistically significant (P≤0.05. Conclusion: Considering to small change of attitude couples, it is suggested after counseling classes are given the opportunity into couple that express your questions privately. Also to achieve a relatively stable behavior in young couples and promoting their health levels, must besides holding training courses before marriage, pay more attention to the quality of these courses. 

  17. Plasma effect in silicon charge coupled devices (CCDs)

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, J., E-mail: [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Molina, J., E-mail: [Facultad de Ingenieria, Universidad Nacional de Asuncion, Laboratorio de Mecanica y Energia, Campus de la UNA, San Lorenzo 2160 (Paraguay); Blostein, J.J., E-mail: [CONICET (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Bariloche (Argentina); Fernandez, G., E-mail: [Universidad Nacional del Sur, Bahia Blanca (Argentina)


    Plasma effect is observed in CCDs exposed to heavy ionizing {alpha}-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region ({>=}3.5 MeV). The measurements were extended to lower energies using {alpha}-particles produced by (n,{alpha}) reactions of neutrons in a {sup 10}B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of {alpha} particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  18. Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, Alessandro, E-mail: [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy); Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, IT-10129 Torino (Italy); Allia, Paolo [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy); Graziano, Mariagrazia [Electronic and Telecommunication Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy)


    Physical limitations foreshadow the eventual end to traditional Complementary Metal Oxide Semiconductor (CMOS) scaling. Therefore, interest has turned to various materials and technologies aimed to succeed to traditional CMOS. Magnetic Quantum dot Cellular Automata (MQCA) are one of these technologies. Working MQCA arrays require very complex techniques and an excellent control on the geometry of the nanomagnets and on the quality of the magnetic thin film, thus limiting the possibility for MQCA of representing a definite solution to cost-effective, high density and low power consumption device demand. Counter-intuitively, moving towards bigger sizes and lighter technologies it is still possible to develop multi-state logic devices, as we demonstrated, whose main advantage is cost-effectiveness. Applications may be seen in low cost logic devices where integration and computational power are not the main issue, eventually using flexible substrates and taking advantage of the intrinsic mechanical toughness of systems where long range interactions do not need wirings. We realized cobalt micrometric MQCA arrays by means of Electron Beam Lithography, exploiting cost-effective processes such as lift-off and RF sputtering that usually are avoided due to their low control on array geometry and film roughness. Information relative to the magnetic configuration of MQCA elements including their eventual magnetic interactions was obtained from Magnetic Force Microscope (MFM) images, enhanced by means of a numerical procedure and presented in differential maps. We report the existence of bi-stable magnetic patterns, as detected by MFM while sampling the z-component of magnetic induction field, arising from dipolar inter-element magnetostatic coupling, able to store and propagate binary information. This is achieved despite the array quality and element magnetic state, which are low and multi-domain, respectively. We discuss in detail shape, inter-element spacing and dot profile

  19. On the Effects of Pickup Ion-driven Waves on the Diffusion Tensor of Low-energy Electrons in the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, N. Eugene, E-mail: [Center for Space Research, North-West University, Potchefstroom, 2522 (South Africa)


    The effects of Alfvén cyclotron waves generated due to the formation in the outer heliosphere of pickup ions on the transport coefficients of low-energy electrons is investigated here. To this end, parallel mean free path (MFP) expressions are derived from quasilinear theory, employing the damping model of dynamical turbulence. These are then used as inputs for existing expressions for the perpendicular MFP and turbulence-reduced drift coefficient. Using outputs generated by a two-component turbulence transport model, the resulting diffusion coefficients are compared with those derived using a more typically assumed turbulence spectral form, which neglects the effects of pickup ion-generated waves. It is found that the inclusion of pickup ion effects greatly leads to considerable reductions in the parallel and perpendicular MFPs of 1–10 MeV electrons beyond ∼10 au, which are argued to have significant consequences for studies of the transport of these particles.

  20. Efficient MATLAB computations with sparse and factored tensors.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)


    In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.

  1. The effect of noise and coupling on beta cell excitation dynamics

    DEFF Research Database (Denmark)

    system, but with a quantitative description of the effect of noise. This approach supports previous investigations of the channel sharing hypothesis. For beta cells coupled via gap junctions we briefly discuss the effects of the ATP driven potassium ion gate on reaction diffusion type waves. It is shown......Bursting electrical behavior is commonly observed in a variety of nerve and endocrine cells, including that in electrically coupled β-cells located in intact pancreatic islets. However, individual β-cells usually display either spiking or very fast bursting behavior, and the difference between...... isolated and coupled cells has been suggested to be due to stochastic fluctuations of the plasma membrane ion channels, which are supposed to have a stronger effect on single cells than on cells situated in clusters (the channel sharing hypothesis). This effect of noise has previously been studied using...

  2. The Numerical Simulation of Coupling Behavior of Soil with Chemical Pollutant Effects (United States)

    Liu, Z. J.; Li, X. K.; Tang, L. Q.


    The coupling behavior of clay plays a role in the integrity of clay barriers used in landfills. The clay barriers are subjected to mechanical and thermal effects coupled with hydraulic behavior, also, if the leachates become in contact with the clay liner, chemical effects may lead to some drastic changes in the properties of the clay. A numerical method to simulate the coupling behavior of soil with chemical pollutant effects is presented. Within the framework of Gens-Alonso model describing the constitutive behavior of unsaturated clay presented in reference[1], basing on the work of Wu[2] and Hueckel[3], a constitutive model describing the chemo-thermo-hydro-mechanical(CTHM) coupling behavior of clays in contact with a single organic contaminant is presented. The thermical softening and chemical softening is considered in the presented model. The strain arising in the material due to chemical and thermical effects can be decomposed into two parts: elastic expansion and plastic compaction. The chemical effects are described in terms of the mass concentration of the contaminant. The increases in temperature and contaminant concentration cause decreases of the pre-consolidation pressure and the cohesion. The mechanisms are called thermical softening and chemical softening. The presented coupled CTHM constitutive model has been integrated into the coupled thermo-hydro-mechanical mathematical model including contaminant transport in porous media. To solve the equilibrium equations, the grogram of finite element methods is developed with a stagger algorithm. The mechanisms taking place due to the coupling behaviour of the clay with a single contaminant solute are analysed with the presented numerical method.

  3. The effects of music therapy on engagement in family caregiver and care receiver couples with dementia. (United States)

    Clair, Alicia Ann


    The purpose of this study was to examine the effects of caregiver-implemented music applications on engagement with their care receivers. Eight couples participated individually in a series of sessions, where a music therapist trained and cued the caregivers to implement a music application of choice. Changes in engagement frequency over a series of five sessions was highly statistically significant. The authors conclude that music therapy applications are effective in increasing mutual engagement in caregiving and care receiving couples with dementia, and that caregivers can effectively facilitate the engagement using music. Furthermore, once the engagement is established, it carries over into visitation without music.

  4. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields (United States)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes


    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  5. The operator tensor formulation of quantum theory. (United States)

    Hardy, Lucien


    In this paper, we provide what might be regarded as a manifestly covariant presentation of discrete quantum theory. A typical quantum experiment has a bunch of apparatuses placed so that quantum systems can pass between them. We regard each use of an apparatus, along with some given outcome on the apparatus (a certain detector click or a certain meter reading for example), as an operation. An operation (e.g. B(b(2)a(3))(a(1))) can have zero or more quantum systems inputted into it and zero or more quantum systems outputted from it. The operation B(b(2)a(3))(a(1)) has one system of type a inputted, and one system of type b and one system of type a outputted. We can wire together operations to form circuits, for example, A(a(1))B(b(2)a(3))(a(1))C(b(2)a(3)). Each repeated integer label here denotes a wire connecting an output to an input of the same type. As each operation in a circuit has an outcome associated with it, a circuit represents a set of outcomes that can happen in a run of the experiment. In the operator tensor formulation of quantum theory, each operation corresponds to an operator tensor. For example, the operation B(b(2)a(3))(a(1)) corresponds to the operator tensor B(b(2)a(3))(a(1)). Further, the probability for a general circuit is given by replacing operations with corresponding operator tensors as in Prob(A(a(1))B(b(2)a(3))(a(1))C(b(2)a(3))) = Â(a(1))B(b(2)a(3))(a(1))C(b(2)a(3)). Repeated integer labels indicate that we multiply in the associated subspace and then take the partial trace over that subspace. Operator tensors must be physical (namely, they must have positive input transpose and satisfy a certain normalization condition).

  6. Multidimensional seismic data reconstruction using tensor analysis (United States)

    Kreimer, Nadia

    Exploration seismology utilizes the seismic wavefield for prospecting oil and gas. The seismic reflection experiment consists on deploying sources and receivers in the surface of an area of interest. When the sources are activated, the receivers measure the wavefield that is reflected from different subsurface interfaces and store the information as time-series called traces or seismograms. The seismic data depend on two source coordinates, two receiver coordinates and time (a 5D volume). Obstacles in the field, logistical and economical factors constrain seismic data acquisition. Therefore, the wavefield sampling is incomplete in the four spatial dimensions. Seismic data undergoes different processes. In particular, the reconstruction process is responsible for correcting sampling irregularities of the seismic wavefield. This thesis focuses on the development of new methodologies for the reconstruction of multidimensional seismic data. This thesis examines techniques based on tensor algebra and proposes three methods that exploit the tensor nature of the seismic data. The fully sampled volume is low-rank in the frequency-space domain. The rank increases when we have missing traces and/or noise. The methods proposed perform rank reduction on frequency slices of the 4D spatial volume. The first method employs the Higher-Order Singular Value Decomposition (HOSVD) immersed in an iterative algorithm that reinserts weighted observations. The second method uses a sequential truncated SVD on the unfoldings of the tensor slices (SEQ-SVD). The third method formulates the rank reduction problem as a convex optimization problem. The measure of the rank is replaced by the nuclear norm of the tensor and the alternating direction method of multipliers (ADMM) minimizes the cost function. All three methods have the interesting property that they are robust to curvature of the reflections, unlike many reconstruction methods. Finally, we present a comparison between the methods

  7. Frequency enhancement in coupled noisy excitable elements: effects of network topology (United States)

    Chiang, Wei-Yin; Lai, Pik-Yin; Chan, Chi-Keung


    Coupled excitable elements in the presence of noise can exhibit oscillatory behavior with non-trivial frequency dependence as the coupling strength of the system increases. The phenomenon of frequency enhancement (FE) occurs in some coupling regime, in which the elements can oscillate with a frequency higher than their uncoupled frequencies. In this paper, details of the FE are investigated by simulations of the FitzHugh-Nagumo model with different network topologies. It is found that the characteristics of FE, such as the maximal enhancement coupling, enhancement level etc, are functions of the network topology and spatial dimensions. The effect of excitability and the spatio-temporal patterns during FE are investigated to provide an intuitive picture for the enhancement mechanism. Interestingly, some of these characteristics of FE can be described by scaling laws; suggesting the existence of universality in the FE phenomenon. The relevance of these results to biological rhythms are also discussed.

  8. Velocity selective optical pumping effects on 85 Rb atoms from various coupling beam polarization configurations (United States)

    Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae


    We have investigated velocity selective spectral profile variations of probe beam transmittance at Fg = 3 →Fe = 2 , 3, and 4 hyperfine manifolds of 85 Rb atoms along with coherence effects at the Fg = 3 →Fe = 4 transition with various coupling laser polarization configurations and a fixed probe polarization (σ+). Laser linewidth, atomic velocity distributions, frequency mixing of the coupling and probe laser beams between degenerate magnetic sublevels, and polarization variations of the coupling beam with the probe beam fixed at the Fg = 3 →Fe = 4 transition were used to simulate the line profiles. The calculated transmittance signals are in good agreement with observed signals for each coupling laser polarization configuration.

  9. The Effect of Provision of Information Regarding Infertility Treatment Strategies on Anxiety Level of Infertile Couples

    Directory of Open Access Journals (Sweden)

    Mustafa Hamdieh


    Full Text Available Background: Infertility may have many emotional and psychological implications on infertilecouples. So far, different methods for reducing anxiety in infertile couples have been evaluated. Thegoal of this study is to evaluate the effect of provision of information regarding infertility treatmentto infertile couples on their anxiety levels.Materials and Methods: This study was conducted as a before and after clinical trial. Forty-twoindividuals were considered as cases and 40 as controls. In order to evaluate anxiety and depressionin participants, the Hamilton Anxiety and Depression Scale (HADS questionnaire was used. Theintervention group received information about infertility treatment through a two hour face-to-facemeeting and was provided with a brochure. Anxiety level was assessed at the time of admission,immediately after the session and two weeks later. Assessment was performed twice for the controlgroup; once at the time of admission and secondly, two weeks later.Results: Our results show that receiving information about infertility treatment significantlydecreases anxiety among infertile couples two weeks post-training. This decline does not have asignificant correlation with age, sex, education level of the couple, and neither with the durationnor the cause of infertility. Providing information does not have any significant effect on the rate ofdepression among couples.Conclusion: It is recommended that provision of information regarding infertility treatmentmethods should be considered as a means of decreasing anxiety among infertile couples who referto infertility treatment centers.

  10. Effect of the isovector coupling channel on the macroscopic part of ...

    Indian Academy of Sciences (India)

    United States of America, the SPIRAL2 at GANIL/France, and the GSI Facility FAIR in. Germany, which produce new data for neutron-rich nuclei. In this work, the effect of isovector coupling channel of the nucleon–nucleon inter- action on the macroscopic part of the binding energy is studied, and the dependency of this effect ...

  11. The Effectiveness of the Minnesota Couple Communication Program: A Review of Research. (United States)

    Wampler, Karen Smith


    Reviews 19 research studies on the Minnesota Couple Communication Program (CCP) which indicates an immediate positive effect on communication behavior and relationship satisfaction. Found CCP does not alter reported levels of self-disclosure or self-esteem. Positive changes persisted in some studies, but evidence of the durability of effects is…

  12. Effect of practical application of intimate relationship skills program in marital commitment of couples

    Directory of Open Access Journals (Sweden)

    Bahareh Chitsazzadeh Alaf


    Full Text Available Nowadays, due to the increasing rate of divorce and betrayals, the marital commitment has been concerned in marriage and family studies. The research aimed to evaluate the effect of Practical Application of Intimate Relationship Skills (PAIRS program in marital commitment of couples. The method was quasi-experimental and the design was pretest-posttest with a control group. The convenience sampling method was employed to choose 16 couples whose marital commitment score was below the mean in Isfahan, Iran. These couples were randomly assigned to the experimental and control groups (N=8 in each group. Data gathering was carried out using Adams and Jones dimensions of commitment inventory (DCI that was filled out by the members of both groups in the pretest stage. Then, the experimental group received the PAIRS training program in thirteen 90-minute sessions. 35 percent of the total variance belongs to the group membership due to the effectiveness of this educational program. This educational program attempts to make couples aware of themselves and their spouses, enhance, intimacy and empathy and develop effective relationship skills and problem-solving skills. The results demonstrated that the PAIRS program showed a positive effect on marital commitment. Hence, the PAIRS program can be employed to prevent divorce by increasing marital commitment in couples.

  13. Simplifying the EFT of Inflation: generalized disformal transformations and redundant couplings (United States)

    Bordin, Lorenzo; Cabass, Giovanni; Creminelli, Paolo; Vernizzi, Filippo


    We study generalized disformal transformations, including derivatives of the metric, in the context of the Effective Field Theory of Inflation. All these transformations do not change the late-time cosmological observables but change the coefficients of the operators in the action: some couplings are effectively redundant. At leading order in derivatives and up to cubic order in perturbations, one has 6 free functions that can be used to set to zero 6 of the 17 operators at this order. This is used to show that the tensor three-point function cannot be modified at leading order in derivatives, while the scalar-tensor-tensor correlator can only be modified by changing the scalar dynamics. At higher order in derivatives there are transformations that do not affect the Einstein-Hilbert action: one can find 6 additional transformations that can be used to simplify the inflaton action, at least when the dynamics is dominated by the lowest derivative terms. We also identify the leading higher-derivative corrections to the tensor power spectrum and bispectrum.

  14. Enhanced coupling effects in vertical double-gate FinFETs (United States)

    Chang, Sung-Jae; Bawedin, Maryline; Guo, Yufeng; Liu, Fanyu; Akarvardar, Kerem; Lee, Jong-Hyun; Lee, Jung-Hee; Ionica, Irina; Cristoloveanu, Sorin


    Vertical double-gate (DG) FinFETs fabricated on SOI wafers show good gate control, reasonable threshold voltage and high carrier mobility despite the absence of the top-gate. The 3D coupling effect between the two lateral-gates and the back-gate is investigated based on experimental and simulation results. We compare DG and triple-gate FinFETs with various fin widths. Front-channel characteristics are easily tuned by applied bias at the back-gate if the fin is not too narrow. We highlight that vertical DG FinFET is more appropriate device for dynamic threshold voltage adjustment than triple-gate FinFET. An analytical model is proposed to quantify the coupling effect in DG FinFET by solving 2D Poisson equation. The body potential profile and coupling effect are modeled. A very good agreement is obtained between experiments, 3D simulations and the proposed model.

  15. The effects of cracks on the quantification of the cancellous bone fabric tensor in fossil and archaeological specimens: a simulation study. (United States)

    Bishop, Peter J; Clemente, Christofer J; Hocknull, Scott A; Barrett, Rod S; Lloyd, David G


    Cancellous bone is very sensitive to its prevailing mechanical environment, and study of its architecture has previously aided interpretations of locomotor biomechanics in extinct animals or archaeological populations. However, quantification of architectural features may be compromised by poor preservation in fossil and archaeological specimens, such as post mortem cracking or fracturing. In this study, the effects of post mortem cracks on the quantification of cancellous bone fabric were investigated through the simulation of cracks in otherwise undamaged modern bone samples. The effect on both scalar (degree of fabric anisotropy, fabric elongation index) and vector (principal fabric directions) variables was assessed through comparing the results of architectural analyses of cracked vs. non-cracked samples. Error was found to decrease as the relative size of the crack decreased, and as the orientation of the crack approached the orientation of the primary fabric direction. However, even in the best-case scenario simulated, error remained substantial, with at least 18% of simulations showing a > 10% error when scalar variables were considered, and at least 6.7% of simulations showing a > 10° error when vector variables were considered. As a 10% (scalar) or 10° (vector) difference is probably too large for reliable interpretation of a fossil or archaeological specimen, these results suggest that cracks should be avoided if possible when analysing cancellous bone architecture in such specimens. © 2016 Anatomical Society.

  16. Role of the Skyrme tensor force in heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Stevenson P. D.


    Full Text Available We make use of the Skyrme effective nuclear interaction within the time-dependent Hartree-Fock framework to assess the effect of inclusion of the tensor terms of the Skyrme interaction on the fusion window of the 16O–16O reaction. We find that the lower fusion threshold, around the barrier, is quite insensitive to these details of the force, but the higher threshold, above which the nuclei pass through each other, changes by several MeV between different tensor parametrisations. The results suggest that eventually fusion properties may become part of the evaluation or fitting process for effective nuclear interactions.

  17. Regional, Local, and In-mine Moment Tensors for the 2013 Rudna Mine collapse (United States)

    Whidden, K. M.; Rudzinski, L.; Lizurek, G.; Pankow, K. L.


    and time windows of 5 seconds, including P and S waves, also indicates an implosion source. However, a moment tensor calculated using an in-mine network of 26 short-period vertical seismometers with distances from 100 m to 8 km and first amplitude strategy to moment tensor solution, indicates a predominantly double-couple mechanism. Careful selection of time windows and moment tensor inversion method may be necessary to capture the full source for discrimination between tectonic and non-double-couple sources. Finally we compare the Rudna collapse to two other room-and-pillar mine collapses in the western United States. Their sources are similar although there are clear differences in Love wave amplitudes. Future work will investigate the relationship between seismic source, velocity structure, and shear wave generation for isotropic sources.

  18. Anisotropy without tensors: a novel approach using geometric algebra. (United States)

    Matos, Sérgio A; Ribeiro, Marco A; Paiva, Carlos R


    The most widespread approach to anisotropic media is dyadic analysis. However, to get a geometrical picture of a dielectric tensor, one has to resort to a coordinate system for a matrix form in order to obtain, for example, the index-ellipsoid, thereby obnubilating the deeper coordinate-free meaning of anisotropy itself. To overcome these shortcomings we present a novel approach to anisotropy: using geometric algebra we introduce a direct geometrical interpretation without the intervention of any coordinate system. By applying this new approach to biaxial crystals we show the effectiveness and insight that geometric algebra can bring to the optics of anisotropic media.

  19. Improvements in closeness, communication, and psychological distress mediate effects of couple therapy for veterans. (United States)

    Doss, Brian D; Mitchell, Alexandra; Georgia, Emily J; Biesen, Judith N; Rowe, Lorelei Simpson


    Empirically based couple therapy results in significant improvements in relationship satisfaction for the average couple; however, further research is needed to identify mediators that lead to change and to ensure that improvements in mediators predict subsequent-not just concurrent-relationship satisfaction. In addition, given that much of the current literature on couple therapy examines outcomes in a research environment, it is important to examine mediators in a treatment-as-usual setting. To address these questions, 161 heterosexual couples (322 individuals) received treatment-as-usual couple therapy at one of two Veteran Administration Medical Centers (M = 5.0 and 13.0 sessions at the two sites) and were assessed before every session. The majority of couples were married (85%) and had been together for a median of 7.8 years (SD = 13). Participants were primarily White, non-Hispanic (69%), African American (21%), and White, Hispanic/Latino (8%). Individuals' own self-reported improvements in communication, emotional closeness, and psychological distress (but not frequency of behaviors targeted in treatment) mediated the effect of treatment on their subsequent relationship satisfaction. When all significant mediators were examined simultaneously, improvements in men's and women's emotional closeness and men's psychological distress independently mediated subsequent relationship satisfaction. In contrast, improvements in earlier relationship satisfaction mediated the effect of treatment only on subsequent psychological distress. This study identifies unique mediators of treatment effects and shows that gains in mechanisms predict subsequent relationship satisfaction. Future investigations should focus on the role of emotional closeness and psychological distress-constructs that have often been neglected-in couple therapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  20. Effect of IVF failure on quality of life and emotional status in infertile couples. (United States)

    Karaca, Nilay; Karabulut, Aysun; Ozkan, Sevgi; Aktun, Hale; Orengul, Fatma; Yilmaz, Rabiye; Ates, Seda; Batmaz, Gonca


    To investigate the effect of a previous IVF failure on the quality of life and emotional distress, in couples undergoing IVF treatment. Experiencing IVF failure might cause differences on the anxiety-depression and quality of life scores of the couples, compared to the ones who were undergoing IVF treatment for the first time. This study included 64 couples who had previously experienced at least one IVF failure (Group 1) and 56 couples without history of IVF failure (Group 2) in a private Assisted Reproductive Center, Istanbul, Turkey. A sociodemographic data form, the FertiQoL International and Hospital Anxiety (HAD-A) and Depression scale (HAD-D) for evaluating the status of distress, were administered for the study. FertiQoL scores were compared between the groups, the environment scale of the quality of life in treatment section was found to be significantly higher in Group 1 compared with Group 2 (p=0.009). The HAD-A and HAD-D scores did not differ significantly between the groups. Group-variables were investigated using multilevel analysis, the infertility duration and income level were found to have an effect on the subscales of quality of life (p=0.009 and p=0.001 respectively) in Group 2. Depression scores were higher in couples with infertility duration of below five years in Group 1 and Group 2 compared to couples with infertility duration of five years or above (MANOVA analysis). The level of education was found to affect the scores of HAD-D in Group 2, but not in Group 1 (p=0.011). The score of HAD-D was significantly affected by the family type only in Group 2 (p=0.009); the depression score of the couples living with a nuclear family was found to be higher compared with the couples living in a traditional family (p=0.021). Fertility-specific quality of life scores reveals better results regarding the orientation to the treatment environment in the couples with a previous IVF failure, compared to first IVF cycle couples. Treatment failure does not

  1. Effect Of Rotation On Thermal Instability In Couple-Stress Elastico-Viscous Fluid (United States)

    Kumar, Pardeep; Lal, Roshan; Sharma, Poonam


    The thermal instability of a layer of a couple-stress fluid acted on by a uniform rotation is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection it is found that rotation has a stabilizing effect, whereas the couple-stress has both stabilizing and destabilizing effects. It is found that the presence of rotation introduces oscillatory modes in the system. A sufficient condition for the non-existence of overstability is also obtained.

  2. Coupling effects on photoluminescence of exciton states in asymmetric quantum dot molecules. (United States)

    Fino, Nelson R; Camacho, Angela S; Ramírez, Hanz Y


    We present a theoretical study of photoluminescence from exciton states in InAs/GaAs asymmetric dot pairs, where interdot coupling is reached via magnetic field in the Faraday configuration. Electronic structure is obtained by finite element calculations, and Coulomb effects are included using a perturbative approach. According to our simulated spectra, bright excited states may become optically accessible at low temperatures in hybridization regimes where intermixing with the ground state is achieved. Our results show effective magnetic control on the energy, polarization and intensity of emitted light, and suggest these coupled nanostructures as relevant candidates for implementation of quantum optoelectronic devices.

  3. Evolution of nanoscale interstitial dislocation loops under coupling effect of stress and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Shen, Tielong; Kurtz, Richard; Wang, Zhiguang; Gao, Fei


    The properties of nano-scale interstitial dislocation loops under the coupling effect of stress and temperature are studied using atomistic simulation methods and experiments. The decomposition of a loop by the emission of smaller loops is identified as one of the major mechanisms to release the localized stress induced by the coupling effect, which is validated by the TEM observations. The classical conservation law of Burgers vector cannot be applied during such decomposition process. The dislocation network is formed from the decomposed loops, which may initiate the irradiation creep much earlier than expected through the mechanism of climb-controlled glide of dislocations.

  4. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K


    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  5. Inversed Vernier effect based single-mode laser emission in coupled microdisks (United States)

    Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai


    Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser.

  6. The simplest non-minimal matter-geometry coupling in the f( R, T) cosmology (United States)

    Moraes, P. H. R. S.; Sahoo, P. K.


    f( R, T) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f( R, T) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter-geometry coupling within the f( R, T) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter-geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f( R, T) formalism in order to check its reliability in other fields, rather than cosmology.

  7. The simplest non-minimal matter-geometry coupling in the f(R, T) cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, P.H.R.S. [ITA - Instituto Tecnologico de Aeronautica, Departamento de Fisica, Sao Paulo (Brazil); Sahoo, P.K. [Birla Institute of Technology and Science-Pilani, Department of Mathematics, Hyderabad (India)


    f(R, T) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f(R, T) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter-geometry coupling within the f(R, T) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter-geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f(R, T) formalism in order to check its reliability in other fields, rather than cosmology. (orig.)

  8. A dyadic analysis of relationships and health: does couple-level context condition partner effects? (United States)

    Barr, Ashley B; Simons, Ronald L


    Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g., dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g., partner strain and support), predicted young adults' physical and mental health. Using dyadic data from a sample of 249 young, primarily Black couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence, more so than marital status, may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types.

  9. The effects of marriage education for army couples with a history of infidelity. (United States)

    Allen, Elizabeth S; Rhoades, Galena K; Stanley, Scott M; Loew, Benjamin; Markman, Howard J


    While existing literature has begun to explore risk factors which may predict differential response to marriage education, a history of couple infidelity has not been examined to determine whether infidelity moderates the impacts of marriage education. The current study evaluated self-report marital satisfaction and communication skills in a sample of 662 married Army couples randomly assigned to marriage education (i.e., PREP) or a no-treatment control group and assessed prior to intervention, post intervention, and at 1 year after intervention. Of these, 23.4% couples reported a history of infidelity in their marriage. Multilevel modeling analyses indicated that having a history of infidelity significantly moderated the impact of PREP for marital satisfaction, with a trend for a similar effect on communication skills. However, couples with a history of infidelity assigned to PREP did not reach the same levels of marital satisfaction after intervention seen in the group of couples without infidelity assigned to PREP, although they did show comparable scores on communication skills after intervention. Implications of these findings for relationship education with couples with a history of infidelity are discussed.

  10. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient (United States)

    Lal, Shankar; Pant, K. K.


    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  11. Chameleons with Field Dependent Couplings

    CERN Document Server

    Brax, Philippe; Mota, David F; Nunes, Nelson J; Winther, Hans A


    Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power run-away potentials and field independent couplings to matter. In this paper we investigate field-theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for E\\"ot-Wash experiments, fifth-force searches and Casimir force experiments. Requiring that the scalar-field evades gravitational tests, we find that the coupling is sensitive to a mass-scale which is of order of the Hubble scale today.

  12. The effects of relationship enrichment program on compatibility and marital satisfaction of infertile couples

    Directory of Open Access Journals (Sweden)

    Mohammadreza Miri


    Full Text Available Background and objective: Infertility as a crisis in couples' life, not only creates psychological problems, but also, it can act as a powerful impact on the relationships between couples. The purpose of this paper is to study the effects of relationship enrichment on compatibility and marital satisfaction of infertile couples. Methods: This is a semi experimental study with pre-test and post-test on control group. Statistical population of this study was an infertile couple in Birjand. The couples were randomly divided to control groups (17 couples and experimental groups (15 couples. The research instrument was marital adjustment questionnaire. That completed before, immediately and 3 months after intervention. The intervention consisted of 6 training session. Data were analyzed using SPSS software (version 16. Results: Before the intervention, mean scores were matched the two groups. After the intervention, the experimental group increased average compatibility from 101.5±22/4 to 129.33±10.6 , marital satisfaction from 33/8±8 to 44±4.8 , marital solidarity from12±3.8 to 16.1±2.2 , couples agreement from 44.6±10.5 to 54.8±6.1 , expression of love from 11±3.7 to 14.2± 1.(p<0.05 Conclusion: Relationship enrichment increased the marital compatibility and marital satisfaction. Therefore recommended using relationship enrichment program to increase compatibility and marital satisfaction. Paper Type: Research Article.

  13. On magnetoelectric coupling at equilibrium in continua with microstructure (United States)

    Romeo, Maurizio


    A theory of micromorphic continua, applied to electromagnetic solids, is exploited to study magnetoelectric effects at equilibrium. Microcurrents are modeled by the microgyration tensor of stationary micromotions, compatibly with the balance equations for null microdeformation. The equilibrium of the continuum subject to electric and magnetic fields is reformulated accounting for electric multipoles which are related to microdeformation by evolution equations. Polarization and magnetization are derived for uniform fields under the micropolar reduction in terms of microstrain and octupole structural parameters. Nonlinear dependance on the electromagnetic fields is evidenced, compatibly with known theoretical and experimental results on magnetoelectric coupling.

  14. Effects of a Randomized Couple-Based Intervention on Quality of Life of Breast Cancer Patients and Their Partners (United States)

    Kayser, Karen; Feldman, Barry N.; Borstelmann, Nancy A.; Daniels, Ann A.


    The purpose of this study was to determine the effectiveness of a couple-based intervention on the quality of life (QOL) of early-stage breast cancer patients and their partners. A randomized controlled design was used to assign couples to either the hospital standard social work services (SSWS) or a couple-based intervention, the Partners in…

  15. Migration of Couples with Non-Employed and Employed Wives in the Netherlands: the Changing Effects of Partner's Characteristics

    NARCIS (Netherlands)

    Smits, J.P.J.M.; Mulder, C.H.; Hooimeijer, P.


    Data for 1977 and 1995/96 are used to study (changes in) the effects of the partners’ resources on long-distance migration of couples in the Netherlands. The analyses were performed separately for couples with employed and with non-employed women. In 1977, couples with non-employed women showed

  16. Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density (United States)

    Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing


    Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.

  17. Some late-time asymptotics of general scalar-tensor cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, John D [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Shaw, Douglas J [Astronomy Unit, Queen Mary University, Mile End Rd., London E1 4NS (United Kingdom)


    We study the asymptotic behaviour of isotropic and homogeneous universes in general scalar-tensor gravity theories containing a p = -{rho} vacuum fluid stress and other sub-dominant matter stresses. It is shown that in order for there to be an approach to a de Sitter spacetime at large 4-volumes the coupling function, {omega}({phi}), which defines the scalar-tensor theory, must diverge faster than |{phi}{sub {infinity}} - {phi}|{sup -1+{epsilon}} for all {epsilon} > 0 as {phi} {yields} {phi}{sub {infinity}} {ne} 0 for large values of the time. Thus, for a given theory, specified by {omega}({phi}), there must exist some {phi}{sub {infinity}} element of (0, {infinity}) such that {omega} {yields} {infinity} and {omega}'/{omega}{sup 2+{epsilon}} {yields} 0 as {phi} {yields} {phi}{sub {infinity}} in order for cosmological solutions of the theory to approach de Sitter expansion at late times. We also classify the possible asymptotic time variations of the gravitation 'constant' G(t) at late times in scalar-tensor theories. We show that (unlike in general relativity) the problem of a profusion of 'Boltzmann brains' at late cosmological times can be avoided in scalar-tensor theories, including Brans-Dicke theory, in which {phi} {yields} {infinity} and {omega} {approx}o({phi}{sup 1/2}) at asymptotically late times.

  18. Algebraic and computational aspects of real tensor ranks

    CERN Document Server

    Sakata, Toshio; Miyazaki, Mitsuhiro


    This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...

  19. Short and long-term effectiveness of couple counselling: a study protocol

    Directory of Open Access Journals (Sweden)

    Schofield Margot J


    Full Text Available Abstract Background Healthy couple relationships are fundamental to a healthy society, whereas relationship breakdown and discord are linked to a wide range of negative health and wellbeing outcomes. Two types of relationship services (couple counselling and relationship education have demonstrated efficacy in many controlled studies but evidence of the effectiveness of community-based relationship services has lagged behind. This study protocol describes an effectiveness evaluation of the two types of community-based relationship services. The aims of the Evaluation of Couple Counselling study are to: map the profiles of clients seeking agency-based couple counselling and relationship enhancement programs in terms of socio-demographic, relationship, health, and health service use indicators; to determine 3 and 12-month outcomes for relationship satisfaction, commitment, and depression; and determine relative contributions of client and therapy factors to outcomes. Methods/Design A quasi-experimental pre-post-post evaluation design is used to assess outcomes for couples presenting for the two types of community-based relationship services. The longitudinal design involves a pre-treatment survey and two follow-up surveys at 3- and 12-months post-intervention. The study is set in eight Relationships Australia Victoria centres, across metropolitan, outer suburbs, and regional/rural sites. Relationships Australia, a non-government organisation, is the largest provider of couple counselling and relationship services in Australia. The key outcomes are couple satisfaction, relationship commitment, and depression measured by the CESD-10. Multi-level modelling will be used to account for the dyadic nature of couple data. Discussion The study protocol describes the first large scale investigation of the effectiveness of two types of relationship services to be conducted in Australia. Its significance lies in providing more detailed profiles of couples who

  20. Impact of the coupling effect and the configuration on a compact rectenna array (United States)

    Rivière, J.; Douyere, A.; Luk, J. D. Lan Sun


    This paper proposes an experimental study of the coupling effect of a rectenna array. The rectifying antenna consists of a compact and efficient rectifying circuit in a series topology, coupled with a small metamaterial-inspired antenna. The measurements are investigated in the X plane on the rectenna array's behavior, with series and parallel DC- combining configuration of two and three spaced rectennas from 3 cm to 10 cm. This study shows that the maximum efficiency is reached for the series configuration, with a resistive load of 10 kQ. The optimal distance is not significant for series or parallel configuration. Then, a comparison between a rectenna array with non-optimal mutual coupling and a more traditional patch rectenna is performed. Finally, a practical application is tested to demonstrate the effectiveness of such small rectenna array.

  1. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A


    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  2. The effect of psycho-educational strategies on marital conflict among dual-career couples

    Directory of Open Access Journals (Sweden)

    Mohammad Ghamari


    Full Text Available The aim of this study was to determine the effect of psycho--educational strategies on decreasing the components of marital conflict among dual-career couples. The method of research was experimental design. 11 couples were selected using random sampling and then were assigned into the groups of experimental and control. The experimental group participated in psycho-educational sessions. Data were collected using Barati and Sanai’s marital conflict questionnaire and analyzed using repeated measure test. Results showed that psycho-educational strategies are effective in decreasing all components of marital conflict among dual-career couples (p<0/01 except for two components of seeking child support and separating financial events.

  3. Local Residents Trained As ‘Influence Agents’ Most Effective In Persuading African Couples On HIV Counseling and Testing


    LAMBDIN, Barrot; Kanweka, William; Inambao, Mubiana; Mwananyanda, Lawrence; Shah, Heena; Linton, Sabriya; Wong, Frank,; Luisi, Nicole; Tichacek, Amanda; Kalowa, James; Chomba, Elwyn; Allen, Susan


    Couples in sub-Saharan Africa are the largest group in the world at risk for HIV infection. Couples counseling and testing programs have been shown to reduce HIV transmission, but such programs remain rare in Africa. Before couples counseling and testing can become the norm, it is essential to increase demand for the services. We evaluated the effectiveness of several promotional strategies during a two -year program in Kitwe and Ndola, Zambia. The program attracted more than 7,600 couples th...

  4. Tensor modes on the string theory landscape

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, Alexander


    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  5. Challenges in inflationary magnetogenesis: Constraints from strong coupling, backreaction, and the Schwinger effect (United States)

    Sharma, Ramkishor; Jagannathan, Sandhya; Seshadri, T. R.; Subramanian, Kandaswamy


    Models of inflationary magnetogenesis with a coupling to the electromagnetic action of the form f2Fμ νFμ ν , are known to suffer from several problems. These include the strong coupling problem, the backreaction problem and also strong constraints due to the Schwinger effect. We propose a model which resolves all these issues. In our model, the coupling function, f , grows during inflation and transits to a decaying phase post-inflation. This evolutionary behavior is chosen so as to avoid the problem of strong coupling. By assuming a suitable power-law form of the coupling function, we can also neglect backreaction effects during inflation. To avoid backreaction post-inflation, we find that the reheating temperature is restricted to be below ≈1.7 ×104 GeV . The magnetic energy spectrum is predicted to be nonhelical and generically blue. The estimated present day magnetic field strength and the corresponding coherence length taking reheating at the QCD epoch (150 MeV) are 1.4 ×10-12 G and 6.1 ×10-4 Mpc , respectively. This is obtained after taking account of nonlinear processing over and above the flux-freezing evolution after reheating. If we consider also the possibility of a nonhelical inverse transfer, as indicated in direct numerical simulations, the coherence length and the magnetic field strength are even larger. In all cases mentioned above, the magnetic fields generated in our models satisfy the γ -ray bound below a certain reheating temperature.

  6. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach. (United States)

    Jiancheng, Shi; Min, Luo; Chusheng, Huang


    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  7. Comparison of quality control software tools for diffusion tensor imaging. (United States)

    Liu, Bilan; Zhu, Tong; Zhong, Jianhui


    Image quality of diffusion tensor imaging (DTI) is critical for image interpretation, diagnostic accuracy and efficiency. However, DTI is susceptible to numerous detrimental artifacts that may impair the reliability and validity of the obtained data. Although many quality control (QC) software tools are being developed and are widely used and each has its different tradeoffs, there is still no general agreement on an image quality control routine for DTIs, and the practical impact of these tradeoffs is not well studied. An objective comparison that identifies the pros and cons of each of the QC tools will be helpful for the users to make the best choice among tools for specific DTI applications. This study aims to quantitatively compare the effectiveness of three popular QC tools including DTI studio (Johns Hopkins University), DTIprep (University of North Carolina at Chapel Hill, University of Iowa and University of Utah) and TORTOISE (National Institute of Health). Both synthetic and in vivo human brain data were used to quantify adverse effects of major DTI artifacts to tensor calculation as well as the effectiveness of different QC tools in identifying and correcting these artifacts. The technical basis of each tool was discussed, and the ways in which particular techniques affect the output of each of the tools were analyzed. The different functions and I/O formats that three QC tools provide for building a general DTI processing pipeline and integration with other popular image processing tools were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Numerical CP Decomposition of Some Difficult Tensors

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Phan, A. H.; Cichocki, A.


    Roč. 317, č. 1 (2017), s. 362-370 ISSN 0377-0427 R&D Projects: GA ČR(CZ) GA14-13713S Institutional support: RVO:67985556 Keywords : Small matrix multiplication * Canonical polyadic tensor decomposition * Levenberg-Marquardt method Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.357, year: 2016 pdf

  9. Vector-tensor interaction of gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuan-zhong; Guo han-ying


    In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.

  10. Tensor Fusion Network for Multimodal Sentiment Analysis


    Zadeh, Amir; Chen, Minghai; Poria, Soujanya; Cambria, Erik; Morency, Louis-Philippe


    Multimodal sentiment analysis is an increasingly popular research area, which extends the conventional language-based definition of sentiment analysis to a multimodal setup where other relevant modalities accompany language. In this paper, we pose the problem of multimodal sentiment analysis as modeling intra-modality and inter-modality dynamics. We introduce a novel model, termed Tensor Fusion Network, which learns both such dynamics end-to-end. The proposed approach is tailored for the vola...

  11. Monte Carlo Volcano Seismic Moment Tensors (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.


    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  12. Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction. (United States)

    Luo, Yuan; Ahmad, Faraz S; Shah, Sanjiv J


    Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome that may benefit from improved subtyping in order to better characterize its pathophysiology and to develop novel targeted therapies. The United States Precision Medicine Initiative comes amid the rapid growth in quantity and modality of clinical data for HFpEF patients ranging from deep phenotypic to trans-omic data. Tensor factorization, a form of machine learning, allows for the integration of multiple data modalities to derive clinically relevant HFpEF subtypes that may have significant differences in underlying pathophysiology and differential response to therapies. Tensor factorization also allows for better interpretability by supporting dimensionality reduction and identifying latent groups of data for meaningful summarization of both features and disease outcomes. In this narrative review, we analyze the modest literature on the application of tensor factorization to related biomedical fields including genotyping and phenotyping. Based on the cited work including work of our own, we suggest multiple tensor factorization formulations capable of integrating the deep phenotypic and trans-omic modalities of data for HFpEF, or accounting for interactions between genetic variants at different omic hierarchies. We encourage extensive experimental studies to tackle challenges in applying tensor factorization for precision medicine in HFpEF, including effectively incorporating existing medical knowledge, properly accounting for uncertainty, and efficiently enforcing sparsity for better interpretability.

  13. Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints. (United States)

    Zhu, Yanjie; Peng, Xi; Wu, Yin; Wu, Ed X; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong


    To develop a new model-based method with spatial and parametric constraints (MB-SPC) aimed at accelerating diffusion tensor imaging (DTI) by directly estimating the diffusion tensor from highly undersampled k-space data. The MB-SPC method effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images using an L1-L2 norm and the smoothness of the diffusion tensor using a total variation seminorm. The undersampled k-space datasets were obtained from fully sampled DTI datasets of a simulated phantom and an ex-vivo experimental rat heart with acceleration factors ranging from 2 to 4. The diffusion tensor was directly reconstructed by solving a minimization problem with a nonlinear conjugate gradient descent algorithm. The reconstruction performance was quantitatively assessed using the normalized root mean square error (nRMSE) of the DTI indices. The MB-SPC method achieves acceptable DTI measures at an acceleration factor up to 4. Experimental results demonstrate that the proposed method can estimate the diffusion tensor more accurately than most existing methods operating at higher net acceleration factors. The proposed method can significantly reduce artifact, particularly at higher acceleration factors or lower SNRs. This method can easily be adapted to MR relaxometry parameter mapping and is thus useful in the characterization of biological tissue such as nerves, muscle, and heart tissue. © 2016 American Association of Physicists in Medicine.

  14. Moment Tensor Estimation using a Grid-Search approach for the Pawnee, Oklahoma Mw 5.8 Earthquake (United States)

    Friberg, P. A.; Stachnik, J.; Baker, B. I.


    Following the 5.8 Mw earthquake in Pawnee, Oklahoma, a series of moment tensor solutions were published by the National Earthquake Information Center (NEIC). While all solutions were in relative agreement that the focal mechanism was vertical strike slip in nature there is a great deal of variance in the optimal depth and double couple percentage. Such a variance in depth solutions is particularly important in interpretation as Oklahoma is actively engaging in hydrocarbon production and waste-water disposal. The GCMT solution using teleseismic long period surface waves favors a deep ( 18 km) strong double couple solution ( 97%). In contrast, long period body wave and regional moment tensor solutions favor intermediate depth ( 10 km) and double couple solutions ( 75%) and the high frequency body wave solutions prefers a shallow depth ( 2 km) marginal double couple solution ( 56%). The depth using traditional travel time location techniques at the NEIC was 5.6 +/- 1.3km. The intent of this study is to assess the uncertainty in the moment tensor estimation using an exhaustive parameter grid-search strategy recently developed by Tape and Tape (2015). Using this approach we systematically scan through depths and moment tensors and for each depth moment tensor pair compute a misfit function. To better understand how our different datasets add information to estimating the unknown parameters we apply the proposed methodology to regional surface waves, teleseismic body waves, and, finally, both surface and teleseismic body waves. We present not only the best solution but a set of plausible moment tensors at each depth. A desirable consequence of this abstract would be to demonstrate that the differing solutions submitted to the NEIC are plausible in the sense that they best explain the data used in their respective inversions but may not necessarily adequately resolve a particular model parameter.

  15. The Effect of Uncertainty Reducing Strategies on Young Couples' Relational Repair and Intimacy. (United States)

    Emmers, Tara M.; Canary, Daniel J.


    Examines, relying on uncertainty reduction theory, the effect of communication strategies on assessments of relational repair and intimacy. Finds that 100 heterosexual romantically involved couples nominated unfaithfulness, third-party competition, and geographic distance as most negatively affecting their relationships. Finds that perceptions of…

  16. A novel effective approach for systems of coupled Schrödinger ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 1. A novel effective ... Keywords. Partial differential equation; systems of coupled Schrödinger equation; new homotopy perturbation method. Abstract. Schrödinger equations arise in modelling various physical and engineering problems. In this paper, we ...

  17. Effective relational dynamics of the closed FRW model universe minimally coupled to a massive scalar field

    NARCIS (Netherlands)

    Höhn, P.A.|info:eu-repo/dai/nl/330827952; Kubalová, E.; Tsobanjan, A.


    We apply the effective approach to evaluating semiclassical relational dynamics to the closed Friedman–Robertson–Walker cosmological model filled with a minimally coupled massive scalar field. This model is interesting for studying relational dynamics in a more general setting because (i) it

  18. Couple-based Intervention for Depression: An Effectiveness Study in the National Health Service in England. (United States)

    Baucom, Donald H; Fischer, Melanie S; Worrell, Michael; Corrie, Sarah; Belus, Jennifer M; Molyva, Efthymia; Boeding, Sara E


    This study represents an effectiveness study and service evaluation of a cognitive behavioral, couple-based treatment for depression (BCT-D) provided in London services that are part of the "Improving Access to Psychological Therapies" (IAPT) program in England. Twenty-three therapists in community clinics were trained in BCT-D during a 5-day workshop, followed by monthly group supervision for 1 year. The BCT-D treatment outcome findings are based on 63 couples in which at least one partner was depressed and elected to receive BCT-D. Eighty-five percent of couples also demonstrated relationship distress, and 49% of the nonclient partners also met caseness for depression or anxiety. Findings demonstrated a recovery rate of 57% with BCT-D, compared to 41% for all IAPT treatments for depression in London. Nonclient partners who met caseness demonstrated a 48% recovery rate with BCT-D, although they were not the focus of treatment. BCT-D was equally effective for clients regardless of the clinical status of the nonclient partner, suggesting its effectiveness in assisting both members of the couple simultaneously. Likewise, treatment was equally effective whether or not both partners reported relationship distress. The findings are promising regarding the successful application of BCT-D in routine clinical settings. © 2017 Family Process Institute.

  19. The Effects of the Cognitive-Behavioral Marriage Enrichment Program on the Dysfunctional Attitudes of Couples (United States)

    Kalkan, Melek; Ersanli, Ercumend


    The aim of this study is to investigate the effectiveness of cognitive-behavioral marriage enrichment program to decrease the level of the dysfunctional attitudes of the couples. Forty participants with dysfunctional attitudes determined by The Dysfunctional Attitude Scale were randomly chosen as experimental and control groups. The results of the…

  20. Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices (United States)

    Michael Bevers; Curtis H. Flather


    We examine habitat size, shape, and arrangement effects on populations using a discrete reaction-diffusion model. Diffusion is modeled passively and applied to a cellular grid of territories forming a coupled map lattice. Dispersal mortality is proportional to the amount of nonhabitat and fully occupied habitat surrounding a given cell, with distance decay. After...

  1. The Effect of the Family Training Program on Married Women's Couple-Burnout Levels (United States)

    Sirin, Hatice Deveci; Deniz, M. Engin


    This study aims to investigate the effect of Modules 2 and 3 of the Family Communication Section of the Family Training Program as prepared by the Ministry of Family and Social Policies on married women's couple-burnout levels. The study group consists of 40 married women in total: 20 constituting the experimental group and the remaining 20…

  2. The effects of interfacial exchange coupling in Fe/ErFeO3 heterostructures (United States)

    Tang, J.; Ke, Y. J.; He, W.; Zhang, X. Q.; Zhang, Y. S.; Zhang, W.; Li, Y.; Ahmad, S. S.; Cheng, Z. H.


    Exploring exchange bias in ferromagnetic (FM)/antiferromagnetic (AFM) heterostructures is vital for both fundamental magnetism and practical application. However, in the case of conventional FM/AFM systems, the essential field cooling process above the Néel temperature of AFM materials hinders their application if the Néel temperature is far higher than room-temperature. Here, we report the effects of interfacial exchange coupling in Fe/ErFeO3 heterostructures. The magnetic-field-induced switchable exchange bias, originating from the AFM exchange coupling between Fe film and Dzyaloshinskii-Moriya-interaction-induced net moment of ErFeO3 along c axis, is successfully achieved without field cooling or in-field growth process of AFM. Different from the most previous pinning layer using a hard FM or traditional AFM, ErFeO3 pinning layer has the advantages of both the magnetic field sensitivity (~780 Oe) and ultrahigh dynamic frequency. In addition, although Fe film is polycrystalline, it exhibits a strong uniaxial magnetic anisotropy resulted from the so-called ‘spin-flop-coupling effect’, i.e. the magnetic coupling between Fe film and the compensated G-type AFM spins of EFO along a axis. Interestingly, the exchange bias field and asymmetric switching field offer entirely different information about the asymmetry of magnetization reversal near hard axis. The asymmetric switching field is further proved to be an effective measure to determine the weak unidirectional magnetic anisotropy for film with nearly 180° domain wall displacement. Our experimental results provide a practical method to establish room-temperature exchange bias in FM/G-type AFM without field cooling. Furthermore, the magnetic-field-induced switchable exchange-bias, the spin-flop coupling effect and the angular dependent asymmetry of magnetization reversal in the vicinity of hard axis in Fe/ErFeO3 heterostructures may provide new insights on the interfacial exchange coupling in FM/AFM systems.

  3. The effect of daily challenges in children with autism on parents' couple problem-solving interactions. (United States)

    Hartley, Sigan L; Papp, Lauren M; Blumenstock, Shari M; Floyd, Frank; Goetz, Greta L


    The vulnerability-stress-adaptation model guided this examination of the impact of daily fluctuations in the symptoms and co-occurring behavior problems of children with autism spectrum disorder (ASD) on parents' couple problem-solving interactions in natural settings and as these interactions spontaneously occur. A 14-day daily diary was completed by mothers and fathers in 176 families who had a child with ASD. On each day of the diary, parents separately reported on the child with ASD's daily level of symptoms and co-occurring behavior problems and the topic and level of negative affect in their most meaningful or important daily couple problem-solving interaction. Multilevel modeling was used to account for the within-person, within-couple nested structure of the data. Results indicated that many parents are resilient to experiencing a day with a high level of child ASD symptoms and co-occurring behavior problems and do not report more negative couple problem-solving interactions. However, household income, level of parental broader autism phenotype, and presence of multiple children with special care needs served as vulnerability factors in that they were related to a higher overall rating of negative affect in couple interactions and moderated the impact of reporting a day with a high level of child ASD symptoms and co-occurring behavior problems on next-day ratings of negative couple problem-solving interactions. The magnitude of these effects was small. Understanding mechanisms that support adaptive couple interactions in parents of children with ASD is critical for promoting best outcomes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. FEA study of non-linear effect of coupling media to Sonic infrared imaging (United States)

    Song, Yuyang; Han, Xiaoyan


    Sonic Infrared (IR) imaging technique is a promising NDE technology to find cracks through thermography analysis of vibration-induced crack heating. In Sonic IR, coupling materials are usually engaged between an ultrasound transducer and a sample. It was discovered by the authors that coupling materials actually has strong nonlinear effect to the vibration and the temperature increase in cracks in the target. In this paper, we will present our research results using a 3-D finite element analysis. The predicted results are used for validation of the experimental results as well. The site to site comparison between experiment and FEA analysis is laid out in this paper.

  5. Renormalized energy-momentum tensor of λΦ4 theory in curved ...

    Indian Academy of Sciences (India)

    space-time. Keywords. Curved space-time; scalar field; enery-momentum tensor; effective potential. PACS Nos 04.62.+v; 11.10.Gh. 1. Introduction. Quantum gravity, a complete quantised theory of gravity – still being a distant dream – to study the effects of gravity on quantum fields we must opt for some semi-classical.

  6. Bayesian ISOLA: new tool for automated centroid moment tensor inversion (United States)

    Vackář, Jiří; Burjánek, Jan; Gallovič, František; Zahradník, Jiří; Clinton, John


    Focal mechanisms are important for understanding seismotectonics of a region, and they serve as a basic input for seismic hazard assessment. Usually, the point source approximation and the moment tensor (MT) are used. We have developed a new, fully automated tool for the centroid moment tensor (CMT) inversion in a Bayesian framework. It includes automated data retrieval, data selection where station components with various instrumental disturbances and high signal-to-noise are rejected, and full-waveform inversion in a space-time grid around a provided hypocenter. The method is innovative in the following aspects: (i) The CMT inversion is fully automated, no user interaction is required, although the details of the process can be visually inspected latter on many figures which are automatically plotted.(ii) The automated process includes detection of disturbances based on MouseTrap code, so disturbed recordings do not affect inversion.(iii) A data covariance matrix calculated from pre-event noise yields an automated weighting of the station recordings according to their noise levels and also serves as an automated frequency filter suppressing noisy frequencies.(iv) Bayesian approach is used, so not only the best solution is obtained, but also the posterior probability density function.(v) A space-time grid search effectively combined with the least-squares inversion of moment tensor components speeds up the inversion and allows to obtain more accurate results compared to stochastic methods. The method has been tested on synthetic and observed data. It has been tested by comparison with manually processed moment tensors of all events greater than M≥3 in the Swiss catalogue over 16 years using data available at the Swiss data center ( The quality of the results of the presented automated process is comparable with careful manual processing of data. The software package programmed in Python has been designed to be as versatile as possible in

  7. Late Time Acceleration From Matter-Curvature Coupling

    CERN Document Server

    Zaregonbadi, Raziyeh


    We consider f(R,T) modified theory of gravity, in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We mainly focus on a particular model wherein matter is minimally coupled to the geometry in the metric formalism. In this type of the theory, the coupling energy-momentum tensor is not conserved; it determines the appearance of an extra force acting on the particles, and can cause the late time acceleration in the evolution of the universe. To check such a kind of effect, we obtain the corresponding Raychaudhuri dynamical equation that gives the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can cover the dynamic of the universe in the late time accelerating phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the...

  8. DOA Estimation under Unknown Mutual Coupling and Multipath with Improved Effective Array Aperture. (United States)

    Wang, Yuexian; Trinkle, Matthew; Ng, Brian W-H


    Subspace-based high-resolution direction of arrival (DOA) estimation significantly deteriorates under array manifold perturbation and rank deficiency of the covariance matrix due to mutual coupling and multipath propagation, respectively. In this correspondence, the unknown mutual coupling can be circumvented by the proposed method without any passive or active calibration process, and the DOA of the coherent signals can be accurately estimated accordingly. With a newly constructed matrix, the deficient rank can be restored, and the effective array aperture can be extended compared with conventional spatial smoothing. The proposed method achieves a good robustness and DOA estimation accuracy with unknown mutual coupling. The simulation results demonstrate the validity and efficiency of the proposed method.

  9. Study of turning takeoff maneuver in free-flying dragonflies: effect of dynamic coupling

    CERN Document Server

    Zeyghami, Samane


    Turning takeoff flights of several dragonflies were recorded during which a dragonfly takes off while changing the flight direction at the same time. Center of mass was elevated about 1-2 body lengths. Five of these maneuvers were selected for 3D body surface reconstruction and the body orientation measurement. In oppose to conventional banked turn model, which neglects interactions between the rotational motions, in this study we investigated the strength of the dynamic coupling by dividing pitch, roll and yaw angular accelerations into two contributions: one from aerodynamic torque and one from dynamic coupling effect. The latter term is referred to as Dynamic Coupling Acceleration (DCA). The DCA term can be measured directly from instantaneous rotational velocities of the insect. We found a strong correlation between pitch and yaw velocities at the end of each wingbeat and the time integral of the corresponding DCA term. Generation of pitch, roll and yaw torques requires different aerodynamic mechanisms an...

  10. The effective U(1)-Higgs theory at strong coupling on optical lattices?

    CERN Document Server

    Bazavov, Alexei; Tsai, Shan-Wen; Meurice, Yannick


    We discuss the U(1)-Higgs model in two dimensions in the strongly coupled regime. If we neglect the plaquette interactions, we generate an effective theory where link variables are integrated out, producing 4-field operators. Plaquette interactions can be restored order by order as in recent calculations with staggered fermions. In the case of a SU(2) gauge theory with fermions, this strong coupling expansion can be related to the strong coupling expansion of Fermi-Hubbard models possibly implementable on optical lattice. We would like to provide a similar construction relating the U(1)-Higgs model to some Bose-Hubbard model. As a first step in this direction, we discuss a recent proposal to implement the O(2) model on optical lattices using a 87Rb and 41K Bose-Bose mixture of cold atoms.

  11. Mutual Coupling Effects for Radar Cross Section (RCS of a Series-Fed Dipole Antenna Array

    Directory of Open Access Journals (Sweden)

    H. L. Sneha


    Full Text Available The estimation of RCS of a phased array depends on various parameters, namely, array geometry, operational frequency, feed network, mutual coupling between the antenna elements and so fourth. This paper presents the estimation of RCS of linear dipole array with series-feed network by tracing the signal path from the antenna aperture into the feed network. The effect of mutual coupling exhibited by the dipole antenna is considered for three configurations namely, side by side, collinear, and parallel in echelon. It is shown that the mutual coupling affects the antenna pattern (and hence RCS significantly for larger scan angles. Further it is inferred that the RCS of phased array can be optimized by (i reducing the length of the dipole, (ii termination of the isolation port of the coupler with a suitable load, and (iii using suitable amplitude distribution.

  12. On the heterotic effective action at one-loop, gauge couplings and the gravitational sector

    CERN Document Server

    Kiritsis, E.; Petropoulos, P.M.; Rizos, J.


    We present in detail the procedure for calculating the heterotic one-loop effective action. We focus on gravitational and gauge couplings. We show that the two-derivative couplings of the gravitational sector are not renormalized at one loop when the ground state is supersymmetric. Arguments are presented that this non-renormalization theorem persists to all orders in perturbation theory. Arguments are presented that this non-renormalization theorem persists to all orders in perturbation theory. We also derive the full one-loop correction to the gauge coupling. For a class of N=2 ground states, namely those that are obtained by toroidal compactification to four dimensions of generic six-dimensional N=1 models, we give an explicit formula for the gauge-group independent thresholds, and show that these are equal within the whole family.

  13. Ionic Hamiltonians for transition metal atoms: effective exchange coupling and Kondo temperature (United States)

    Flores, F.; Goldberg, E. C.


    An ionic Hamiltonian for describing the interaction between a metal and a d-shell transition metal atom having an orbital singlet state is introduced and its properties analyzed using the Schrieffer-Wolf transformation (exchange coupling) and the poor man’s scaling method (Kondo temperature). We find that the effective exchange coupling between the metal and the atom has an antiferromagnetic or a ferromagnetic interaction depending on the kind of atomic fluctuations, either S\\to S-1/2 or S\\to S+1/2 , associated with the metal-atom coupling. We present a general scheme for all those processes and calculate, for the antiferromagnetic interaction, the corresponding Kondo-temperature.

  14. Forces in EDO-TTF: Theoretical study of isotope and charge effects on vibronic coupling (United States)

    Tokunaga, Ken

    Isotope and charge effects on vibronic coupling constant (V) and energy gradient (g) of ethylenedioxy-tetrathiafulvalen (EDO-TTF) upon the electron injection into cation and electron removal from neutral molecule are investigated. It is found that normal modes which include C = C stretching motion generally have large V and g. For electron removal, three normal modes (v460, v470, and v480) have large Vi+ and gi+, and deuteration results in decrease of V46+ and increase of V47+. For electron injection, five normal modes (ν+42, ν+44, ν+45, ν+47, and ν+48) have large vi0 and gi0 deuteration results in increase of V045 and V048 and decrease of V047. From the analysis of vibronic coupling constants using vibronic coupling density (VCD), regional vibronic coupling constant (RVCC), and atomic vibronic coupling constant (AVCC), it is revealed that the change in normal mode vectors (d) due to the deuteration and electron removal (or injection) leads to the change in V.

  15. Thermoelastic damping in torsion microresonators with coupling effect between torsion and bending (United States)

    Tai, Yongpeng; Li, Pu; Fang, Yuming


    Predicting thermoelastic damping (TED) is crucial in the design of high Q MEMS resonators. In the past, there have been few works on analytical modeling of thermoelastic damping in torsion microresonators. This could be related to the assumption of pure torsional mode for the supporting beams in the torsion devices. The pure torsional modes of rectangular supporting beams involve no local volume change, and therefore, they do not suffer any thermoelastic loss. However, the coupled motion of torsion and bending usually exists in the torsion microresonator when it is not excited by pure torque. The bending component of the coupled motion causes flexural vibrations of supporting beams which may result in significant thermoelastic damping for the microresonator. This paper presents an analytical model for thermoelastic damping in torsion microresonators with the coupling effect between torsion and bending. The theory derives a dynamic model for torsion microresonators considering the coupling effect, and approximates the thermoelastic damping by assuming the energy loss to occur only in supporting beams of flexural vibrations. The thermoelastic damping obtained by the present model is compared to the measured internal friction of single paddle oscillators. It is found that thermoelastic damping contributes significantly to internal friction for the case of the higher modes at room temperature. The present model is validated by comparing its results with the finite-element method (FEM) solutions. The effects of structural dimensions and other parameters on thermoelastic damping are investigated for the representative case of torsion microresonators.

  16. Structural-Acoustic Coupling Effects on the Non-Vacuum Packaging Vibratory Cylinder Gyroscope (United States)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang


    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm. PMID:24351631

  17. Effect of multimodal coupling in imaging micro-endoscopic fiber bundle on optical coherence tomography. (United States)

    Han, Jae-Ho; Kang, Jin U


    The effect of higher order modes in fiber bundle imager-based optical coherence tomography (OCT) has been theoretically modeled using coupled fiber mode analysis ignoring the polarization and core size variation in order to visualize the pure effect of multimodal coupling of the imaging bundle. In this model, the optical imaging fiber couples several higher order modes in addition to the fundamental one due to its high numerical aperture for achieving light confinement to the single core pixel. Those modes become evident in a distance domain using A-mode (depth) OCT based on a mirror sample experiment where multiple peaks are generated by the spatial convolution and coherence function of the light source. The distance between the peaks corresponding to each mode can be estimated by considering the effective indices of coupled (guided) modes obtained from numerically solving the fiber mode characteristics equations and the fiber length. The results have been compared for various types (fiber dimensions and wavelengths) and lengths of fibers, which have mode separation of 715 μm (1404 μm) and 764 μm (1527 μm) for the measurement and analysis, respectively in a 152.5 mm (305 mm)-long imaging fiber.

  18. Shape evolution of Ne isotopes and Ne hypernuclei: The interplay of pairing and tensor interactions

    Directory of Open Access Journals (Sweden)

    Li A.


    Full Text Available We study tensor and pairing effects on the quadruple deformation of neon isotopes based on a deformed Skyrme-Hartree-Fock model with BCS approximation for the pairing channel. We extend the Skyrme-Hartree-Fock formalism for the description of hypernuclei adopting the recently-proposed ESC08b hyperon-nucleon interaction. It is found that the interplay of pairing and tensor interactions is crucial to derive the deformations in several neon isotopes. Especially, the shapes of 26,30Ne are studied in details in comparisons with experimentally observed shapes. Furthermore the deformations of the hypernuclei are compared with the corresponding neon isotopic cores in the presence of tensor force. We find the same shapes with somewhat smaller deformations for single Λ-hypernuclei compared with their core deformations.

  19. Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate. (United States)

    Liu, Haofei; Sun, Wei


    Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.

  20. Coupling marine monitoring and risk assessment by integrating exposure, bioaccumulation and effect studies

    DEFF Research Database (Denmark)

    Strand, J.

    and ecotoxicological effects in Danish and Greenlandic waters. The amount of field data (from own, national and regional studies and surveys) presented in this thesis has provided an opportunity to integrate actual measured concentrations of contaminants with biological effect studies in a case study that couples...... marine monitoring and risk assessment for the organotin compounds. Thereby the thesis may also be seen as model for integrated risk assessment of other hazardous substances....

  1. Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

    CERN Document Server

    Zhou, Z L; Ferro-Luzzi, M; Passchier, E; Alarcon, R; Anghinolfi, M; Arenhövel, H; Van Bommel, R; Botto, T; Van den Brand, J F J; Bulten, H J; Choi, S; Comfort, J; Dolfini, S M; Ent, R; Gaulard, C; Higinbotham, D W; De Jager, C W; Konstantinov, E S; Lang, J; Leidemann, W; De Lange, D J; Miller, M A; Lenko, D N; Papadakis, N H; Passchier, I; Poolman, H R; Popov, S G; Rachek, Igor A; Ripani, M; Six, E; Steijger, J J M; Taiuti, M; Unal, O; Vodinas, N P; De Vries, H


    We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm$^{-1}$. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/$c$ with a tensor polarized $^2$H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.

  2. Modifications to cosmological power spectra from scalar-tensor entanglement and their observational consequences

    Energy Technology Data Exchange (ETDEWEB)

    Bolis, Nadia; Albrecht, Andreas [Department of Physics, University of California at Davis,One Shields Ave, Davis CA 95616 (United States); Holman, R. [Physics Department, Carnegie Mellon University,Pittsburgh, PA 15213 (United States); College of Computational Sciences, Minerva University,1145 Market Street, San Francisco, CA 94103 (United States)


    We consider the effects of entanglement in the initial quantum state of scalar and tensor fluctuations during inflation. We allow the gauge-invariant scalar and tensor fluctuations to be entangled in the initial state and compute modifications to the various cosmological power spectra. We compute the angular power spectra (C{sub l}’s) for some specific cases of our entangled state and discuss what signals one might expect to find in CMB data. This entanglement also can break rotational invariance, allowing for the possibility that some of the large scale anomalies in the CMB power spectrum might be explained by this mechanism.

  3. Correlated four-component EPR g-tensors for doublet molecules

    DEFF Research Database (Denmark)

    Vad, M.S.; Pedersen, M.N.; Nørager, A.


    The first correlated ab initio four-component calculations of electron paramagnetic resonance (EPR) g-tensors for doublet radicals are reported. We have implemented a first-order degenerate perturbation theory approach based on the four-component Dirac-Coulomb Hamiltonian and fully relativistic...... configuration interaction wave functions in the DIRAC program package. We find that the correlation effects on the g-tensors can be sufficiently well described with manageable basis sets of triple-zeta quality and manageable configuration spaces. The new fully relativistic EPR module in DIRAC should be useful...

  4. Hydrogen Burning in Low Mass Stars Constrains Scalar-Tensor Theories of Gravity. (United States)

    Sakstein, Jeremy


    The most general scalar-tensor theories of gravity predict a weakening of the gravitational force inside astrophysical bodies. There is a minimum mass for hydrogen burning in stars that is set by the interplay of plasma physics and the theory of gravity. We calculate this for alternative theories of gravity and find that it is always significantly larger than the general relativity prediction. The observation of several low mass red dwarf stars therefore rules out a large class of scalar-tensor gravity theories and places strong constraints on the cosmological parameters appearing in the effective field theory of dark energy.

  5. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai


    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  6. Traffic Volume Data Outlier Recovery via Tensor Model

    Directory of Open Access Journals (Sweden)

    Huachun Tan


    Full Text Available Traffic volume data is already collected and used for a variety of purposes in intelligent transportation system (ITS. However, the collected data might be abnormal due to the problem of outlier data caused by malfunctions in data collection and record systems. To fully analyze and operate the collected data, it is necessary to develop a validate method for addressing the outlier data. Many existing algorithms have studied the problem of outlier recovery based on the time series methods. In this paper, a multiway tensor model is proposed for constructing the traffic volume data based on the intrinsic multilinear correlations, such as day to day and hour to hour. Then, a novel tensor recovery method, called ADMM-TR, is proposed for recovering outlier data of traffic volume data. The proposed method is evaluated on synthetic data and real world traffic volume data. Experimental results demonstrate the practicability, effectiveness, and advantage of the proposed method, especially for the real world traffic volume data.

  7. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases (United States)

    Huang, Xu-Guang


    The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects.

  8. Analysis of Coupling Effectiveness on Concealed Signal Cable Slot with Different Shapes

    Directory of Open Access Journals (Sweden)

    Chun-Jiang Shuai


    Full Text Available It is important to study the shielding effectiveness to reduce the electromagnetic interference and to protect electronic components. Taking the concealed signal cable which is set in shielding shell as the research object. The influence of different slot shapes on shielding effectiveness was analyzed by applying the mixed methods (Quadric FE-BEM. The results show that the coupling capacitance of a trapezoidal slot is the biggest, the one of rectangular slot is medium, and the one of a taper slot is the smallest for shielding pair cable, but their change trend are almost the same. In addition, with the various slot shapes width increasing, shielding pair cable coupling capacitance is little changed. The study is instructive for more effective to defense EMI and will improve the agricultural concealed shielding cable electromagnetic compatibility.

  9. Novel metamaterial based on the coupling effect of a dielectric trimer

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui; Chen, Wan, E-mail:; Lv, Bo; Wang, Zhefei


    Highlights: • Novel metamaterial based on the coupling effect of a dielectric trimer is proposed. • The phenomenon of vanishing mode is explained by the zero-sum effect. • Due to the vanishing mode, the bandwidth of the dielectric trimer has been expanded to 37%. - Abstract: In this paper, a novel periodic 2D all-dielectric metamaterial based on dielectric trimer is proposed. The electromagnetic responses are explained by the corrected equations of motion using coupled mode theory (CMT). An abnormal vanishment mode phenomenon is also discovered and explained using the zero-sum effect of magnetic dipole, by which the relative bandwidth of the metamaterial has been improved significantly compared with other structures. The presented design is easy for fabrication and can be applied in microwave region by scaling the dimensions of the cubes.

  10. Thermal Impedance Model of High Power IGBT Modules Considering Heat Coupling Effects

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede


    Thermal loading of Insulated Gate Bipolar Transistor (IGBT) modules is important for the reliability performance of power electronic systems, thus the thermal information of critical points inside module like junction temperature must be accurately modeled and predicted. Usually in the existing...... thermal models, only the self-heating effects of the chips are taken into account, while the thermal coupling effects among chips are less considered. This could result in inaccurate temperature estimation, especially in the high power IGBT modules where the chips are allocated closely to each other...... with large amount of heat generated. In this paper, both the self-heating and heat-coupling effects in the of IGBT module are investigated based on Finite Element Method (FEM) simulation, a new thermal impedance model is thereby proposed to better describe the temperature distribution inside IGBT modules...

  11. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir


    An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...

  12. Couple disagreement about short-term fertility desires in Austria: Effects on intentions and contraceptive behaviour

    Directory of Open Access Journals (Sweden)

    Maria Rita Testa


    Full Text Available BACKGROUND Because of the dyadic nature of reproduction, the couple is the most suitable context forstudying reproductive decision-making. OBJECTIVE I investigate the effects of couple disagreement about short-term childbearing desires on the formulation and implementation of fertility intentions. Do men and women incorporate the perception of a disagreement with the partner about wanting a(nother child now in their reports on short-term fertility intentions and contraceptive behaviour? Are there relevant differences by type of disagreement, parity, gender and gender equality within the couple? METHODS Using individual-level data from the Austrian Generation and Gender Survey conductedin 2008, I regress respondent's short-term fertility intentions (ordinal regression modelsand non-use of contraception (logistic regression model on couple's short-term childbearing desires and a set of background variables. RESULTS The findings show that disagreement is shifted toward a pregnancy intentionpregnancy-seeking behaviour at parity zero and toward avoiding pregnancy and maintainingcontraceptive use at higher parities. Childless women are less responsive to the perceptionof their partner's desires than childless men when they express their short-termchildbearing intentions. Neither women nor men are likely to stop contraception if they perceive a disagreement with their partner about wanting a(nother child. Moreover, if theman is actively involved in childcare duties the chance to resolve the couple conflict in favour of childbearing increases. CONCLUSIONS This paper calls for the collection of data from both members of each couple so that theanalysis of the partner's actual desires can complement the analysis of the partner's perceived desires.

  13. The Effect of Teaching Communicative Patterns of Pluralistic Family on Couples Happiness

    Directory of Open Access Journals (Sweden)

    H Molavi


    Full Text Available Introduction & Objective: One of the basic elements declared in positive psychology is the concept of happiness. Researches have shown that without concerning how achieved, happiness can enhance our health. People who are happy feel more secure, decide easier, and are more satisfied of the people who live with. The aim of the present study was to measure the efficiency of teaching communicative pattern of pluralistic family on the happiness of couples. Materials & Method:This experimental study was designed to have a pre-test and post test and also a control group. Subjects of this study were comprised of consultation centers clients in Shiraz and was based on random sampling. Forty couples were selected according to the revised version of family communication patterns of Koerner and Fitzpatrick. Two dimensions, namely laisseze fair and protective family patterns, were taken into account through the process of selection . Oxford Happiness Invintory was administered to 40 couples and they were randomly divided into a control and an experimental group. Ten training sessions, 90- minute each, were held for experimental group exposed to pluralistic communication patterns. Three Couples declined and finally 34 couples were analyzed.The test was run for both groups and data was analyzed with covariance analysis method using SPSSI5. Results:The results of the present study revealed that with regard to happiness, there is a meaningful difference in both groups (p<0.005. The difference also existed between the pretest and post test scores of happiness test in both groups (p<0.0001. However, communication patterns and interaction between both groups did not reach a meaningful level. Conclusion: Based on the finding, it can be concluded that listening to and speaking with each other play a key role in happiness, therefore pluralistic communication methods based on high levels of listing speaking interactions can be effective happiness of couples.

  14. Tensor-based fusion of EEG and FMRI to understand neurological changes in Schizophrenia

    DEFF Research Database (Denmark)

    Evrim, Acar Ataman; Levin-Schwartz, Yuri; Calhoun, Vince D.


    Neuroimaging modalities such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) provide information about neurological functions in complementary spatiotemporal resolutions; therefore, fusion of these modalities is expected to provide better understanding of brain...... activity. In this paper, we jointly analyze fMRI and multi-channel EEG signals collected during an auditory oddball task with the goal of capturing brain activity patterns that differ between patients with schizophrenia and healthy controls. Rather than selecting a single electrode or matricizing the third......-order tensor that can be naturally used to represent multi-channel EEG signals, we preserve the multi-way structure of EEG data and use a coupled matrix and tensor factorization (CMTF) model to jointly analyze fMRI and EEG signals. Our analysis reveals that (i) joint analysis of EEG and fMRI using a CMTF model...

  15. Momentum analyticity of transverse polarization tensor in the normal phase of a holographic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lei [Institute of Physics, Academica Sinica, Taipei 11529 (China); Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS),Central China Normal University, Wuhan, 430079 (China); Ren, Hai-cang [Physics Department, The Rockefeller University, 1230 York Avenue, New York, 10021-6399 (United States); Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS),Central China Normal University, Wuhan, 430079 (China); Lee, Ting Kuo [Institute of Physics, Academica Sinica, Taipei 11529 (China); Hou, Defu [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS),Central China Normal University, Wuhan, 430079 (China)


    We explore the momentum analyticity of the static transverse polarization tensor of a 2+1 dimensional holographic superconductor in its normal phase, aiming at finding the holographic counterpart of the singularities underlying the Friedel oscillations of an ordinary field theory. We prove that the polarization tensor is a meromorphic function with an infinite number of poles located on the complex momentum plane off real axis. With the aid of the WKB approximation these poles are found to lies asymptotically along two straight lines parallel to the imaginary axis for a large momentum magnitude. The similarity between the holographic Green’s function and that of an weakly coupled ordinary field theory (e.g., 2+1 dimensional QED) regarding the location of the momentum singularities offers further support to the validity of the gauge/gravity duality.

  16. Coupling and corona effects research plan for transmission lines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, J E; Formanek, V C


    Concern has arisen over the possible effects of electric and magnetic fields produced by EHV-UHV transmission lines. Past and ongoing research concerning the electric and magnetic field effects from EHV-UHV transmission lines was reviewed as it pertains to the following areas: (1) electromagnetic interference, (2) acoustic noise, (3) generation of gaseous effluents, and (4) safety considerations of induced voltages and currents. The intent of this review was to identify the short and long range research projects required to address these areas. The research plan identifies and gives priority to twenty programs in corona and coupling effects. In the case of the corona effects, a number of programs were recommended for acoustic noise and electromagnetic interference to delineate improved power line design criteria in terms of social, meteorological, geographical and cost constraints. Only one project is recommended in the case of ozone generation, because the results of comprehensive analyses, laboratory studies and field measurements have demonstrated that power lines do not contribute significant quantities of ozone. In the case of the coupling effects, a number of programs are recommended for HVAC transmission lines to improve the theoretically developed design guidelines by considering practical constraints. For HVDC transmission lines, programs are suggested to engender a better theoretical understanding and practical measurements capability for the coupling mechanisms of the dc electric and magnetic field with nearby objects. The interrelationship of the programs and their role in a long-term research plan is also discussed.

  17. Redberry: a computer algebra system designed for tensor manipulation (United States)

    Poslavsky, Stanislav; Bolotin, Dmitry


    In this paper we focus on the main aspects of computer-aided calculations with tensors and present a new computer algebra system Redberry which was specifically designed for algebraic tensor manipulation. We touch upon distinctive features of tensor software in comparison with pure scalar systems, discuss the main approaches used to handle tensorial expressions and present the comparison of Redberry performance with other relevant tools.

  18. D-brane disformal coupling and thermal dark matter (United States)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne


    Conformal and disformal couplings between a scalar field and matter occur naturally in general scalar-tensor theories. In D-brane models of cosmology and particle physics, these couplings originate from the D-brane action describing the dynamics of its transverse (the scalar) and longitudinal (matter) fluctuations, which are thus coupled. During the post-inflationary regime and before the onset of big bang nucleosynthesis (BBN), these couplings can modify the expansion rate felt by matter, changing the predictions for the thermal relic abundance of dark matter particles and thus the annihilation rate required to satisfy the dark matter content today. We study the D-brane-like conformal and disformal couplings effect on the expansion rate of the Universe prior to BBN and its impact on the dark matter relic abundance and annihilation rate. For a purely disformal coupling, the expansion rate is always enhanced with respect to the standard one. This gives rise to larger cross sections when compared to the standard thermal prediction for a range of dark matter masses, which will be probed by future experiments. In a D-brane-like scenario, the scale at which the expansion rate enhancement occurs depends on the string coupling and the string scale.

  19. Symmetric Topological Phases and Tensor Network States (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  20. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...


    Directory of Open Access Journals (Sweden)

    Nikken Prima Puspita


    Full Text Available In this Paper introduced a coring from tensor product of bialgebra. An algebra with compatible coalgebrastructure are known as bialgebra. For any bialgebra B we can obtained tensor product between B anditself. Defined a right and left B -action on the tensor product of bialgebra B such that we have tensorproduct of B and itself is a bimodule over B. In this note we expect that the tensor product B anditself becomes a B -coring with comultiplication and counit.Keywords : action, algebra, coalgebra, coring.

  2. The Topology of Three-Dimensional Symmetric Tensor Fields (United States)

    Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus


    We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.

  3. 3D Inversion of SQUID Magnetic Tensor Data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn


    Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...

  4. p-Norm SDD tensors and eigenvalue localization

    Directory of Open Access Journals (Sweden)

    Qilong Liu


    Full Text Available Abstract We present a new class of nonsingular tensors (p-norm strictly diagonally dominant tensors, which is a subclass of strong H $\\mathcal{H}$ -tensors. As applications of the results, we give a new eigenvalue inclusion set, which is tighter than those provided by Li et al. (Linear Multilinear Algebra 64:727-736, 2016 in some case. Based on this set, we give a checkable sufficient condition for the positive (semidefiniteness of an even-order symmetric tensor.



    Li, N.; Liu, C; Pfeifer, N; Yin, J. F.; Liao, Z.Y.; Zhou, Y


    Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could kee...


    Directory of Open Access Journals (Sweden)

    N. Li


    Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  7. Tuning the effective coupling of an AFM lever to a thermal bath

    Energy Technology Data Exchange (ETDEWEB)

    Jourdan, G [Institut Neel CNRS Grenoble BP 166 38042, Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chevrier, J [Institut Neel CNRS Grenoble BP 166 38042, Grenoble Cedex 9 (France); Comin, F [ESRF, 6 rue Jules Horowitz, BP220, 38043 Grenoble Cedex (France)


    Fabrication of high quality nano-electromechanical systems (NEMS) is nowadays extremely efficient. These NEMS will be used as sensors and actuators in integrated systems. Their use, however, raises questions about their interface (actuation, detection, read out) with external detection and control systems. Their operation implies many fundamental questions related to single particle effects such as Coulomb blockade, light matter interactions such as radiation pressure, thermal effects, Casimir forces and the coupling of nanosystems to the external world (thermal fluctuations, back action effect). Here we specifically present how the damping of an oscillating cantilever can be tuned in two radically different ways: (i) through an electromechanical coupling in the presence of a strong Johnson noise, (ii) through an external feedback control of thermal fluctuations which is the cold damping closely related to Maxwell's demon. This shows how the interplay between external control of micro-EMS (MEMS) or NEMS and their coupling to a thermal bath can lead to a wealth of effects that are nowadays extensively studied in different areas.

  8. Effects of oxytocin on cortisol reactivity and conflict resolution behaviors among couples with substance misuse. (United States)

    Flanagan, Julianne C; Fischer, Melanie S; Nietert, Paul J; Back, Sudie E; Maria, Megan Moran-Santa; Snead, Alexandra; Brady, Kathleen T


    Social stress, particularly in the form of dyadic conflict, is a well-established correlate of substance use disorders (SUD). The neuropeptide oxytocin can enhance prosocial behavior and mitigate addictive behaviors. These effects may be, in part, a result of oxytocin's ability to attenuate hypothalamic-pituitary-adrenal (HPA) axis dysregulation. However, only one study to date has examined the effects of oxytocin on neuroendocrine reactivity or conflict resolution behavior among couples. Participants (N = 33 couples or 66 total participants) were heterosexual couples in which one or both partners endorsed substance misuse. Using a double-blind, placebo-controlled, repeated-measures design and an evidence-based behavioral coding system, we compared the impact of oxytocin (40 IU) vs. placebo on cortisol reactivity and conflict resolution behaviors. Among women, oxytocin attenuated cortisol response following the task. Oxytocin was also associated with increased Distress Maintaining Attributions and decreased Relationship Enhancing Attributions. Among men, oxytocin was associated with decreased Distress Maintaining Attributions, and both oxytocin and placebo yielded declines in Relationship Enhancing Attributions. The findings support emerging hypotheses that oxytocin may have differential effects in men and women, and indicate the need for future efforts to translate oxytocin's positive neurobiological effects into therapeutic behavioral changes. Copyright © 2017. Published by Elsevier B.V.

  9. Tensor Decompositions for Learning Latent Variable Models (United States)


    for several popular latent variable models Tensor Decompositions for Learning Latent Variable Models Anima Anandkumar1, Rong Ge2, Daniel Hsu3, Sham M...the ARO Award W911NF-12-1-0404. References [AFH+12] A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y.-K. Liu . A spectral algorithm for latent...volume 13. Cambridge University Press, 2005. [PSX11] A. Parikh, L. Song , and E. P. Xing. A spectral algorithm for latent tree graphical models. In

  10. Scalable tensor factorizations for incomplete data

    DEFF Research Database (Denmark)

    Acar, Evrim; Dunlavy, Daniel M.; KOlda, Tamara G.


    experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 × 1000 × 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP......-WOPT on two real-world applications: a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes and the problem of modeling computer network traffic where data may be absent due to the expense of the data collection process....

  11. A Case of Tensor Fasciae Suralis Muscle


    Miyauchi, Ryosuke; Kurihara, Kazushige; Tachibana, Gen


    An anomalous muscle was found on the dorsum of the right lower limb of a 67-year-old Japanese male. It originated by two heads from the semitendinosus and long head of the biceps femoris and ran distally to insert into the deep surface of the sural fascia. The origin, insertion and location of the muscle were compared with those of the various supernumerary muscles hitherto published. The muscle is consequently regarded as being the tensor fasciae suralis. This is the fifth case in Japan.

  12. Radiation forces and torques without stress (tensors)

    Energy Technology Data Exchange (ETDEWEB)

    Bohren, Craig F, E-mail: [Department of Meteorology, Pennsylvania State University, University Park, PA 16802 (United States)


    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce within illuminated objects. This can be shown directly by deriving the radiation force and torque resulting from normal-incidence illumination of a planar interface between free space and an arbitrary medium. Every point of the medium contributes to the total force and torque, which are therefore not localized.

  13. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus


    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise...

  14. Manuel Rocha Medal recipient - A relative moment tensor inversion technique applied to seismicity induced by mining

    CSIR Research Space (South Africa)

    Linzer, LM


    Full Text Available . These methods involve different iterative weighting schemes designed to enhance the accuracy of the computed moment tensors by decreasing the effect of outliers (data points whose residuals lie 'far' from the mean or median error). The additional information...

  15. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang


    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  16. Field effects on the vortex states in spin–orbit coupled Bose–Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liang-Liang; Liu, Yong-Kai; Feng, Shiping; Yang, Shi-Jie, E-mail:


    Multi-quantum vortices can be created in the ground state of rotating Bose–Einstein condensates with spin–orbit couplings. We investigate the effects of external fields, either a longitudinal field or a transverse field, on the vortex states. We reveal that both fields can effectively reduce the number of vortices. In the latter case we further find that the condensate density packets are pushed away in the horizontal direction and the vortices finally disappear to form a plane wave phase. - Highlights: • Vortex states of rotational spin–orbit coupled BEC have been studied. • Both longitudinal field and transverse field reduce vortices. • The transverse field pushes condensates to one direction.

  17. Modeling the coupling effect of jitter and attitude control on TDICCD camera imaging (United States)

    Li, Yulun; Yang, Zhen; Ma, Xiaoshan; Ni, Wei


    The vibration has an important influence on space-borne TDICCD imaging quality. It is generally aroused by an interaction between satellite jitter and attitude control. Previous modeling for this coupling relation is mainly concentrating on accurate modal analysis, transfer path and damping design, etc. Nevertheless, when controlling attitude, the coupling terms among three body axes are usually ignored. This is what we try to study in this manuscript. Firstly, a simplified formulation dedicated to this problem is established. Secondly, we use Dymola 2016 to execute the simulation model profiting Modelica synchronous feature, which has been proposed in recent years. The results demonstrate that the studied effect can introduce additional oscillatory modes and lead the attitude stabilization process slower. In addition, when fully stabilized, there seems time-statistically no difference but it still intensifies the motion-blur by a tiny amount. We state that this effect might be worth considering in image restoration.

  18. Strong coupling effects in near-barrier heavy-ion elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, N. [National Centre for Nuclear Research, Otwock (Poland); Kemper, K.W. [The Florida State University, Department of Physics, Tallahassee, Florida (United States); University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Rusek, K. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland)


    Accurate elastic scattering angular distribution data measured at bombarding energies just above the Coulomb barrier have shapes that can markedly differ from or be the same as the expected classical Fresnel scattering pattern depending on the structure of the projectile, the target or both. Examples are given such as {sup 18}O + {sup 184}W and {sup 16}O + {sup 148,} {sup 152}Sm, where the expected rise above Rutherford scattering due to Coulomb-nuclear interference is damped by coupling to the target excited states, and the extreme case of {sup 11}Li scattering, where coupling to the {sup 9}Li + n + n continuum leads to an elastic scattering shape that cannot be reproduced by any standard optical model parameter set. An early indication that the projectile structure can modify the elastic scattering angular distribution was the large vector analyzing powers observed in polarised {sup 6}Li scattering. The recent availability of high-quality {sup 6}He, {sup 11}Li and {sup 11}Be data provides further examples of the influence that coupling effects can have on elastic scattering. Conditions for strong projectile-target coupling effects are presented with special emphasis on the importance of the beam-target charge combination being large enough to bring about the strong coupling effects. Several measurements are proposed that can lead to further understanding of strong coupling effects by both inelastic excitation and nucleon transfer on near-barrier elastic scattering. A final note on the anomalous nature of {sup 8}B elastic scattering is presented as it possesses a more or less normal Fresnel scattering shape whereas one would a priori not expect this due to the very low breakup threshold of {sup 8}B. The special nature of {sup 11}Li is presented as it is predicted that no matter how far above the Coulomb barrier the elastic scattering is measured, its shape will not appear as Fresnel like whereas the elastic scattering of all other loosely bound nuclei studied to

  19. Comparing the level of bystander effect in a couple of tumor and normal cell lines


    Soleymanifard, Shokouhozaman; Bahreyni, Mohammad T. Toossi


    Radiation-induced bystander effect refers to radiation responses which occur in non-irradiated cells. The purpose of this study was to compare the level of bystander effect in a couple of tumor and normal cell lines (QU-DB and MRC5). To induce bystander effect, cells were irradiated with 0.5, 2, and 4 Gy of 60Co gamma rays and their media were transferred to non-irradiated (bystander) cells of the same type. Cells containing micronuclei were counted in bystander subgroups, non-irradiated, and...

  20. Effects of transverse coupling on transverse beam size, simulation and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Halling, A.M.


    The equations of motion for particles in an accelerator lattice show that a larger physical aperture is required to hold a beam of constant invariant emittance if there is transverse coupling of the tunes. The results of a tracking simulation of particle motion in the Fermilab accumulator ring are discussed, and results are shown from beam tests carried out in the accumulator to demonstrate this effect.

  1. On the importance of nonlocal effects on the description of emitter-plasmon coupling

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger


    light to subwavelength regions, and largely modify the local density of states, on which their interaction with an emitter mainly depends, thus paving new routes for exploring light-matter interactions. Advances in nanotechnology and nanofabrication have recently led to the minimisation of relative...... become relevant [1, 2]. Here we explore the influence of the latter, larger-scale effect, on the coupling of various emitters with canonical plasmonic nanostructures....

  2. Cosmological evolution and Solar System consistency of massive scalar-tensor gravity (United States)

    de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás


    The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.

  3. The Effectiveness of Couple and Individual Relationship Education: Distress as a Moderator. (United States)

    Carlson, Ryan G; Rappleyea, Damon L; Daire, Andrew P; Harris, Steven M; Liu, Xiaofeng


    Current literature yields mixed results about the effectiveness of relationship education (RE) with low-income participants and those who experience a high level of individual or relational distress. Scholars have called for research that examines whether initial levels of distress act as a moderator of RE outcomes. To test whether initial levels of relationship and/or individual distress moderate the effectiveness of RE, this study used two samples, one of couples who received couple-oriented relationship education with their partner (n = 192 couples) and one of individuals in a relationship who received individual-oriented RE by themselves (n = 60 individuals). We delivered RE in a community-based setting serving primarily low-income participants. For those attending with a partner, there was a significant interaction between gender, initial distress, and time. Findings indicate that women who were relationally distressed before RE reported the largest pre-postgains. Those who attended an individual-oriented RE program reported significant decreases in individual distress from pre to post, but no significant relationship gains. Findings also suggest that initial levels of distress did not moderate the effectiveness of individual-oriented RE. © 2015 Family Process Institute.

  4. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme. (United States)

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang


    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  5. Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography. (United States)

    Chen, Zhenrui; Tie, Yanmei; Olubiyi, Olutayo; Rigolo, Laura; Mehrtash, Alireza; Norton, Isaiah; Pasternak, Ofer; Rathi, Yogesh; Golby, Alexandra J; O'Donnell, Lauren J


    Diffusion imaging tractography is increasingly used to trace critical fiber tracts in brain tumor patients to reduce the risk of post-operative neurological deficit. However, the effects of peritumoral edema pose a challenge to conventional tractography using the standard diffusion tensor model. The aim of this study was to present a novel technique using a two-tensor unscented Kalman filter (UKF) algorithm to track the arcuate fasciculus (AF) in brain tumor patients with peritumoral edema. Ten right-handed patients with left-sided brain tumors in the vicinity of language-related cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-Tesla magnetic resonance imaging (MRI) including a diffusion-weighted dataset with 31 directions. Fiber tractography was performed using both single-tensor streamline and two-tensor UKF tractography. A two-regions-of-interest approach was applied to perform the delineation of the AF. Results from the two different tractography algorithms were compared visually and quantitatively. Using single-tensor streamline tractography, the AF appeared disrupted in four patients and contained few fibers in the remaining six patients. Two-tensor UKF tractography delineated an AF that traversed edematous brain areas in all patients. The volume of the AF was significantly larger on two-tensor UKF than on single-tensor streamline tractography (p brain tumor patients.

  6. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    Energy Technology Data Exchange (ETDEWEB)

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J. [Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 (United States); Dey, Krishna K. [Department of Physics, Dr. H. S. Gour University, Sagar, Madhya Pradesh 470003 (India); Baltisberger, Jay H. [Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403 (United States)


    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  7. Interactive Volume Rendering of Diffusion Tensor Data

    Energy Technology Data Exchange (ETDEWEB)

    Hlawitschka, Mario; Weber, Gunther; Anwander, Alfred; Carmichael, Owen; Hamann, Bernd; Scheuermann, Gerik


    As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions, advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Our goal was to develop a tool that unifies interactive manipulation and context preserving visualization of medical images with a special focus on diffusion tensor imaging (DTI) data. At each image voxel, DTI provides a 3 x 3 tensor whose entries represent the 3D statistical properties of water diffusion locally. Water motion that is preferential to specific spatial directions suggests structural organization of the underlying biological tissue; in particular, in the human brain, the naturally occuring diffusion of water in the axon portion of neurons is predominantly anisotropic along the longitudinal direction of the elongated, fiber-like axons [MMM+02]. This property has made DTI an emerging source of information about the structural integrity of axons and axonal connectivity between brain regions, both of which are thought to be disrupted in a broad range of medical disorders including multiple sclerosis, cerebrovascular disease, and autism [Mos02, FCI+01, JLH+99, BGKM+04, BJB+03].

  8. Automated hydraulic tensor for Total Knee Arthroplasty. (United States)

    Marmignon, C; Leimnei, A; Lavallée, S; Cinquin, P


    To obtain a long lifespan of knee prosthesis, it is necessary to restore the alignment of the lower limb. In some cases of severe arthrosis, the ligament envelope of the joint may be deformed, inducing an asymmetric laxity once the lower limb is realigned. Because there is not yet unanimity regarding how to optimally measure or implement soft tissue balance, we provide a means to acquire a variety of measurements. In traditional surgery, the surgeon sometimes uses a "tensor", which acts like a forceps. This system was redesigned, instrumented, actuated, and integrated into a navigation system for orthopaedic surgery. Improving the perception of the surgeon, it helps him to address the ligament balancing problem. Our first prototype has been tested on sawbones before being validated in an experiment on two cadavers. In our first attempt, the surgeon was able to assess soft tissue balance but judged the device not powerful enough, which led us to develop a new more powerful hydraulic system. In this paper, we present our approach and the first results of the new hydraulic tensor which is currently in an integration process. Copyright 2005 John Wiley & Sons, Ltd.

  9. Effectiveness of psychiatric and counseling interventions On fertility rate in infertile couples

    Directory of Open Access Journals (Sweden)

    Ramezanzadeh F.


    Full Text Available Background: Considering the psycho-social model of diseases, the aim of this study was to evaluate the effect of psychiatric intervention on the pregnancy rate of infertile couples.Methods: In a randomized clinical trial, 638 infertile patients referred to a university infertility clinic were evaluated. Among them, 140 couples with different levels of depression in at least one of the spouses were included in this substudy. These couples were divided randomly into two groups. The patients in the case group received 6-8 sessions of psychotherapy before starting infertility treatment and were given fluoxetine 20-60 mg per day during the same period. The control group did not receive any intervention. Three questionnaires including the Beck Depression Inventory (BDI, Holmes-Rahe stress scale and a socio-demographic questionnaire were applied for all patients. The clinical pregnancy rates of the two groups, based on sonographic detection of the gestational sac six weeks after LMP, were compared. The data were analyzed by paired-T test, T-test, χ2 and the logistic regression method. Results: The pregnancy rate was 47.1% in the case group and 7.1% in the control group. The pregnancy rate was significantly related to the duration and cause of infertility and the level of stress in both groups (p< 0.001. The pregnancy rate was shown to be higher in couples in which the male has a secondary level of education (p< 0.001.Conclusions: Psychiatric interventions greatly improve pregnancy rates, and it is therefore crucial to mandate psychiatric counseling in all fertility centers in order to diagnose and treat infertile patients with psychiatric disorders and help couples deal with stress.

  10. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter


    a labor market position for (female) spouses with limited alternative opportunities. This decision has positive effects: the financial benefits for each of the spouses, and especially the fe-male, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. This also......We study motivations for and outcomes of couples starting up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010, while comparing them to a set of comparable firms and couples. The main motivation for joint entrepreneurship is to create...

  11. The effects of salinity on coupled nitrification and aerobic denitrification in an estuarine system. (United States)

    Yang, Mengfan; Xue, Dongmei; Meng, Fanqiao; Wang, Zhong-Liang


    Salinity has significant effects on nitrification and denitrification processes, particularly in estuarine systems. A dissolved oxygen-enriched river and its estuary in northern China were selected to investigate the impact of salinity gradients (0.6, 4, 7.6, 11.4 and 14.7‰) obtained from the mixing of river samples and estuarine samples with different proportions on coupled nitrification and aerobic denitrification via incubation experiments (35 and 10 °C). Results indicated that: (a) nitrification and coupled nitrification-aerobic denitrification occurred for all treatments, which resulted in NO3- being either accumulated or removed at the end of the incubation; (b) a suitable range of salinity is 4.0-11.4‰ for nitrification and 4.0-7.6‰ for coupled nitrification-aerobic denitrification; and (c) the relatively higher temperature (35 °C) can effectively stimulate N transformation processes compared to the lover temperature (10 °C) in the incubation experiment.

  12. Synchronous bladder tumors in a married couple: Effect of treatment options on quality of life

    Directory of Open Access Journals (Sweden)

    Hüseyin Aydemir


    Full Text Available Bladder carcinoma is frequently seen in the geriatric age group. Environmental factors and life style are risk fac - tors in the development of bladder carcinoma. Smoking is one of the most important risk factor and passive smok - ing should be taken into consideration in married couples. Additionally quality of life is now a well-recognized and important outcome measure that should be considered when deciding the treatment option for bladder cancer. In this case presentation, risk factors and environmental fac tors in the development of synchronous bladder tumors in a couple married for 43 years are evaluated. We would also like to emphasize the effects of treatments for blad der tumors with and without muscle invasion on the qual ity of life of the geriatric population in need of home care.

  13. Strong coupling effects between a meta-atom and MIM nanocavity

    Directory of Open Access Journals (Sweden)

    San Chen


    Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.

  14. Spin-orbit coupling effects, interactions and superconducting transport in nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Andreas


    In the present thesis we study the electronic properties of several low dimensional nanoscale systems. In the first part, we focus on the combined effect of spin-orbit coupling (SOI) and Coulomb interaction in carbon nanotubes (CNTs) as well as quantum wires. We derive low energy theories for both systems, using the bosonization technique and obtain analytic expressions for the correlation functions that allow us to compute basically all observables of interest. We first focus on CNTs and show that a four channel Luttinger liquid theory can still be applied when SOI effects are taken into account. Compared to previous formulations, the low-energy Hamiltonian is characterized by different Luttinger parameters and plasmon velocities. Notably, the charge and spin modes are coupled. Our theory allows us to compute an asymptotically exact expression for the spectral function of a metallic carbon nanotube. We find modifications to the previously predicted structure of the spectral function that can in principle be tested by photoemission spectroscopy experiments. We develop a very similar low energy description for an interacting quantum wire subject to Rashba spin-orbit coupling (RSOC). We derive a two component Luttinger liquid Hamiltonian in the presence of RSOC, taking into account all e-e interaction processes allowed by the conservation of total momentum. The effective low energy Hamiltonian includes an additional perturbation due to intraband backscattering processes with band flip. Within a one-loop RG scheme, this perturbation is marginally irrelevant. The fixed point model is then still a two channel Luttinger liquid, albeit with a non standard form due to SOI. Again, the charge and spin mode are coupled. Using our low energy theory, we address the problem of the RKKY interaction in an interacting Rashba wire. The coupling of spin and charge modes due to SO effects implies several modifications, e.g. the explicit dependence of the power-law decay exponent of

  15. Testing crossover effects in an actor-partner interdependence model among Chinese dual-earner couples. (United States)

    Liu, Huimin; Cheung, Fanny M


    The purpose of the present study is to examine the crossover effects from one partner's work-family interface (work-family conflict [WFC] and work-family enrichment [WFE]) to the other partner's four outcomes (psychological strain, life satisfaction, marital satisfaction and job satisfaction) in a sample of Chinese dual-earner couples. Married couples (N = 361) completed a battery of questionnaires, including the work-family interface scale, the psychological strain scale, the life, marital, as well as job satisfaction scale. Results from the actor-partner interdependence model (APIM) analyses showed that wives' WFE was negatively associated with husbands' psychological strain, and positively associated with husbands' life, marital and job satisfaction. Furthermore, husbands' WFC was negatively related to wives' marital satisfaction, whereas husbands' WFE was positively related to wives' marital satisfaction. Theoretical and practical implications were discussed, and future research directions were provided. © 2014 International Union of Psychological Science.

  16. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult


    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  17. Tempting today, troubling tomorrow: the roots of the precarious couple effect. (United States)

    Swann, William B; Sellers, Jennifer Guinn; McClarty, Katie Larsen


    The precarious couple effect occurs when men pair with women who are both critical and more verbally disinhibited than them. Evidence that dissatisfaction runs high in such relationships makes one ask why people enter them in the first place. In Study 1, respondents recalled that past partners who were verbally disinhibited were relatively active in initiating the relationship. In Study 2, verbally inhibited men evidenced ambivalence in that they disliked disinhibited women more than inhibited ones but these feelings of disliking did not translate into expectations of feeling tense during the interaction. Study 3 revealed that initial interactions between inhibited men and disinhibited women go smoothly unless (a) the women are critical and (b) the pair discusses a stressful topic. The authors suggest that members of precarious couples are drawn to one another because, in initial encounters, their communication styles are relatively symbiotic. Alas, this initial chemistry does not always endure.

  18. Aeroelasticity in Turbomachines: Some Aspects of the Effect of Coupling Modeling and Blade Material Changes

    Directory of Open Access Journals (Sweden)

    François Moyroud


    Full Text Available Two methods are generally used for the aeroelastic analysis of bladed-disc assemblies. The first, often referred to as the energy method, assumes that the fluid does not modify invacuum structural dynamic behavior. On the other hand, the second, based on an eigenvalue approach, considers the feedback effect of the fluid on the structure. In this paper, these methods are compared using different test cases, in order to highlight the limitations of the energy method. Within this comparison, the effect of material modifications on the coupled behavior of the assembly is examined.

  19. Cost of Motherhood |Effects of childbirth on Women's and Couple's earnings (in Japanese)


    Mamiko Takeuchi; Yoshiko Otani


    The number of full-time women fs worker is increased in high income family for one decade from 1992 when child care leave policy began in Japan. We focus on this fact, and analysis the effect of children and career interruptions on the family gap and income gap is based on Japanese panel data. The results show that, the negative effect of children on mothers f and couple fs earnings is very small subsequently, when they take formal childcare leaves; apart from this, there is stronger negative...

  20. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas


    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively low...... contact resistances. The model suggests proportionality between the error in the phase measurements and the product of the wire-to-ground capacitance, the contact resistance, the dipole size and the frequency of the measurement. The model behavior is illustrated and confirmed by field data collected...