WorldWideScience

Sample records for tension surfactant flooding

  1. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  2. Phase behavior and interfacial tension studies of surfactant systems

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I.

    1979-01-01

    Parallel studies of isomerically pure sodium P(1-heptylnonyl) benzene sulfoante, Texas No. 1, its mixture with sodium dodecyl sulfate (SDS), and the petroleum sulfonate TRS 10-80 were made. Phase behavior in water, in decane, and in water-decane mixtures was studied by spectroturbidimetry, polarizing light microscopy, ultracentrifugation, ultrafiltration, densitometry, conductimetry, low-frequency, 0.2 to 20 kHz, dielectric relaxation, isopiestic vapor pressure, and nuclear magnetic resonance spectroscopy. It was deduced that ultralow tensions (less than 0.01 dyn/cm) arise from the dispersed microcrystallites which form a third, usually liquid crystalline, phase at the decane-brine interfacial region. It appears that neither molecular adsorption from solution for micelles have anything to do with ultralow tensions, which appear to be sensitive to the third phase microstructure. The implications of these results for the mechanism of ultralow tensions in surfactant flooding processes for enhanced petroleum recovery are discussed.

  3. Numerical approach for enhanced oil recovery with surfactant flooding

    Directory of Open Access Journals (Sweden)

    Sadegh Keshtkar

    2016-03-01

    Full Text Available The remained oil in the reservoir after conventional water-flooding processes, forms a dispersed phase in the form of oil drops which is trapped by capillary forces and is almost about 70% of the original oil in the place (OOIP. To reduce oil residual saturation in laboratory experiments and field projects, surfactant flooding is effective via decreasing the interfacial tension mobility ratio between oil and water phases. Estimation of the role of design variables, like chemical concentrations, partition coefficient and injection rate in different performance quantities, considering a heterogeneous and multiphase oil reservoir is a critical stage for optimal design. Increasing demand for oil production from water-flooded reservoirs has caused an increasing interest in surfactant-polymer (SP and alkali-surfactant-polymer (ASP. Modeling minimizes the risk of high cost of chemicals by improving our insight of process. In the present paper, a surfactant compositional flood model for a three-component (water, petroleum and surfactant, two phase (aqueous and oleic system is studied. A homogeneous, two-dimensional, isothermal reservoir with no free gas or alkali is assumed. The governing equations are in three categories: the continuity equations for the transport of each component, Darcy's equation for the transport of each phase and other auxiliary equations. The equations are solved by finite-differences using a procedure implicit in pressure and explicit in saturation. The validation of the model is achieved through comparing the modeling results with CMG simulators and Buckley–Leverett theory. The results of modeling showed good agreement with CMG results, and the comparison with Buckley–Leverett theory is explained according to different assumptions. After validation of the model, in order to investigate sensitivity analysis, the effects of system variables (partition coefficient, surface tension, oil viscosity and surface injection

  4. Pulmonary surfactant surface tension influences alveolar capillary shape and oxygenation.

    Science.gov (United States)

    Ikegami, Machiko; Weaver, Timothy E; Grant, Shawn N; Whitsett, Jeffrey A

    2009-10-01

    Alveolar capillaries are located in close proximity to the alveolar epithelium and beneath the surfactant film. We hypothesized that the shape of alveolar capillaries and accompanying oxygenation are influenced by surfactant surface tension in the alveolus. To prove our hypothesis, surfactant surface tension was regulated by conditional expression of surfactant protein (SP)-B in Sftpb(-/-) mice, thereby inhibiting surface tension-lowering properties of surfactant in vivo within 24 hours after depletion of Sftpb. Minimum surface tension of isolated surfactant was increased and oxygen saturation was significantly reduced after 2 days of SP-B deficiency in association with deformation of alveolar capillaries. Intravascularly injected 3.2-mum-diameter microbeads through jugular vein were retained within narrowed pulmonary capillaries after reduction of SP-B. Ultrastructure studies demonstrated that the capillary protrusion typical of the normal alveolar-capillary unit was reduced in size, consistent with altered pulmonary blood flow. Pulmonary hypertension and intrapulmonary shunting are commonly associated with surfactant deficiency and dysfunction in neonates and adults with respiratory distress syndromes. Increased surfactant surface tension caused by reduction in SP-B induced narrowing of alveolar capillaries and oxygen desaturation, demonstrating an important role of surface tension-lowering properties of surfactant in the regulation of pulmonary vascular perfusion.

  5. Surface tension in situ in flooded alveolus unaltered by albumin

    Science.gov (United States)

    Kharge, Angana Banerjee; Wu, You

    2014-01-01

    In the acute respiratory distress syndrome, plasma proteins in alveolar edema liquid are thought to inactivate lung surfactant and raise surface tension, T. However, plasma protein-surfactant interaction has been assessed only in vitro, during unphysiologically large surface area compression (%ΔA). Here, we investigate whether plasma proteins raise T in situ in the isolated rat lung under physiologic conditions. We flood alveoli with liquid that omits/includes plasma proteins. We ventilate the lung between transpulmonary pressures of 5 and 15 cmH2O to apply a near-maximal physiologic %ΔA, comparable to that of severe mechanical ventilation, or between 1 and 30 cmH2O, to apply a supraphysiologic %ΔA. We pause ventilation for 20 min and determine T at the meniscus that is present at the flooded alveolar mouth. We determine alveolar air pressure at the trachea, alveolar liquid phase pressure by servo-nulling pressure measurement, and meniscus radius by confocal microscopy, and we calculate T according to the Laplace relation. Over 60 ventilation cycles, application of maximal physiologic %ΔA to alveoli flooded with 4.6% albumin solution does not alter T; supraphysiologic %ΔA raise T, transiently, by 51 ± 4%. In separate experiments, we find that addition of exogenous surfactant to the alveolar liquid can, with two cycles of maximal physiologic %ΔA, reduce T by 29 ± 11% despite the presence of albumin. We interpret that supraphysiologic %ΔA likely collapses the interfacial surfactant monolayer, allowing albumin to raise T. With maximal physiologic %ΔA, the monolayer likely remains intact such that albumin, blocked from the interface, cannot interfere with native or exogenous surfactant activity. PMID:24970853

  6. Surface tension in situ in flooded alveolus unaltered by albumin.

    Science.gov (United States)

    Kharge, Angana Banerjee; Wu, You; Perlman, Carrie E

    2014-09-01

    In the acute respiratory distress syndrome, plasma proteins in alveolar edema liquid are thought to inactivate lung surfactant and raise surface tension, T. However, plasma protein-surfactant interaction has been assessed only in vitro, during unphysiologically large surface area compression (%ΔA). Here, we investigate whether plasma proteins raise T in situ in the isolated rat lung under physiologic conditions. We flood alveoli with liquid that omits/includes plasma proteins. We ventilate the lung between transpulmonary pressures of 5 and 15 cmH2O to apply a near-maximal physiologic %ΔA, comparable to that of severe mechanical ventilation, or between 1 and 30 cmH2O, to apply a supraphysiologic %ΔA. We pause ventilation for 20 min and determine T at the meniscus that is present at the flooded alveolar mouth. We determine alveolar air pressure at the trachea, alveolar liquid phase pressure by servo-nulling pressure measurement, and meniscus radius by confocal microscopy, and we calculate T according to the Laplace relation. Over 60 ventilation cycles, application of maximal physiologic %ΔA to alveoli flooded with 4.6% albumin solution does not alter T; supraphysiologic %ΔA raise T, transiently, by 51 ± 4%. In separate experiments, we find that addition of exogenous surfactant to the alveolar liquid can, with two cycles of maximal physiologic %ΔA, reduce T by 29 ± 11% despite the presence of albumin. We interpret that supraphysiologic %ΔA likely collapses the interfacial surfactant monolayer, allowing albumin to raise T. With maximal physiologic %ΔA, the monolayer likely remains intact such that albumin, blocked from the interface, cannot interfere with native or exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  7. Surfactant-enhanced alkaline flooding for light oil recovery. [Annual report], 1993--1994

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1995-03-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (2) investigated the kinetics of oil removal from a silica surface, and (3) developed a theoretical interfacial activity model for determining equilibrium interfacial tension. The results of the studies conducted during the course of this project are presented.

  8. Development of cost-effective surfactant flooding technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

  9. Alkali/Surfactant/Polymer Flooding in the Daqing Oilfield Class II Reservoirs Using Associating Polymer

    Directory of Open Access Journals (Sweden)

    Ru-Sen Feng

    2013-01-01

    Full Text Available Hydrophobically modified associating polyacrylamide (HAPAM has good compatibility with the Daqing heavy alkylbenzene sulfonate surfactant. The HAPAM alkali/surfactant/polymer (ASP system can generate ultralow interfacial tension in a wide range of alkali/surfactant concentrations and maintain stable viscosity and interfacial tension for 120 days. The HAPAM ASP system has good injectivity for the Daqing class II reservoirs (100–300 × 10−3 μm2 and can improve oil recovery by more than 25% on top of water flooding. In the presence of both the alkali and the surfactant, the surfactant interacts with the associating groups of the polymer to form more micelles, which can significantly enhance the viscosity of the ASP system. Compared with using HPAM (Mw = 2.5 MDa, using HAPAM can reduce the polymer use by more than 40%.

  10. Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-07-01

    Full Text Available Abstract Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL® 816 and AEROSIL® 200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample (solid phase and surfactant solution (aqueous phase. The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.

  11. Dynamic surface tension of natural surfactant extract under superimposed oscillations.

    Science.gov (United States)

    Reddy, Prasika I; Al-Jumaily, Ahmed M; Bold, Geoff T

    2011-01-04

    Surfactant dysfunction plays a major role in respiratory distress syndrome (RDS). This research seeks to determine whether the use of natural surfactant, Curosurf™ (Cheisi Farmaceutici, Parma, Italy), accompanied with pressure oscillations at the level of the alveoli can reduce the surface tension in the lung, thereby making it easier for infants with RDS to maintain the required level of functional residual capacity (FRC) without collapse. To simulate the alveolar environment, dynamic surface tension measurements were performed on a modified pulsating bubble surfactometer (PBS) type device and showed that introducing superimposed oscillations about the tidal volume excursion between 10 and 70 Hz in a surfactant bubble lowers interfacial surface tension below values observed using tidal volume excursion alone. The specific mechanisms responsible for this improvement are yet to be established; however it is believed that one mechanism may be the rapid transient changes in the interfacial area increase the number of interfacial binding sites for surfactant molecules, increasing adsorption and diffusion to the interface, thereby decreasing interfacial surface tension. Existing mathematical models in the literature reproduce trends noticed in experiments in the range of breathing frequencies only. Thus, a modification is introduced to an existing model to both incorporate superimposed pressure oscillations and demonstrate that these may improve the dynamic surface tension in the alveoli. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  13. A Study on the Optimization of Surfactants in the Main and Vice Slug in Weak Base ASP Flooding

    Directory of Open Access Journals (Sweden)

    Bin Huang

    2017-03-01

    Full Text Available In ASP (Alkali-Surfactant-Polymer flooding processes, surfactants help to enhance oil recovery by lowering the interfacial tension between the oil and water. However, due to the high cost of surfactants and the stability of the emulsion that varies with surfactant concentration, it is necessary to optimize the surfactant concentration in ASP flooding. In this study, we combined numerical simulation and physical experimental research to solve this problem. In order to screen for the optimal surfactant concentration in the main and vice slugs, CMG (Computer Measurement Group numerical simulation software was used to change the surfactant concentration in the injected compound system and the oil recovery factor and the recovery percent of reserves were compared. The physical experiments were also carried out with different surfactant concentrations and the results verified the simulation results. It shows that the recovery factor increases with the surfactant concentration. The optimal surfactant concentration in the main and vice slug are 0.3% and 0.15%, respectively. As for improving the recovery factor, it is more efficient to increase the mass fraction of the surfactant in the vice slug than in the main slug. It demonstrates that the amount of surfactant in the main slug plays a more important role in displacing oil from the formation.

  14. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  15. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR.

    Directory of Open Access Journals (Sweden)

    Caili Dai

    Full Text Available An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS for enhanced oil recovery (EOR. The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  16. Main Controlling Factor of Polymer-Surfactant Flooding to Improve Recovery in Heterogeneous Reservoir

    Directory of Open Access Journals (Sweden)

    Dandan Yin

    2017-01-01

    Full Text Available This study aims to analyze the influence of viscosity and interfacial tension (IFT on the recovery in heterogeneous reservoir and determines the main controlling factors of the polymer-surfactant (SP flooding. The influence of the salinity and shearing action on the polymer viscosity and effects of the surfactant concentration on the IFT and emulsion behavior between chemical agent and oil were studied through the static and flooding experiments. The results show that increasing the concentration of polymer GF-11 (HPAM can reduce the influence of the salinity and GF-11 has high shear-resistance property. In the condition of the Jilin Oilfield, the oil/water IFT can reach 10−3 mN/m when the surfactant concentration is 0.3 wt%. The lower the IFT is, the easier the emulsion of SP and oil is formed. Seven flooding experiments are conducted with the SP system. The results show that the recovery can be improved for 5.02%–15.98% under the synergistic effect of the polymer and surfactant. In the heterogeneous reservoir, the contribution of oil recovery is less than that of the sweep volume.

  17. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    behavior inside the reservoir can be manipulated by the injection of surfactants and co-surfactants, creating advantageous conditions in order to mobilize trapped oil. Correctly designed surfactant systems together with the crude oil can create microemulsions at the interface between crude oil and water...... at constant salinity (6.56 %), constant surfactant-alcohol ratio (SAR) but with varying water-oil ratios (WOR). At all temperatures it was very clear that the effect of pressure was significant. The system changed from the two phase region, Winsor II, to the three phase region, Winsor III, as pressure...... characterization of the two crude oils using gas chromatography and SARA analysis confirmed that the heavier components in the crude oils, (in the case of the Latin American crude oil), are correlated to the observed decrease of viscosity, where the viscosity decrease may be explained from change of the shape...

  18. Surface tension model for surfactant solutions at the critical micelle concentration.

    Science.gov (United States)

    Burlatsky, Sergei F; Atrazhev, Vadim V; Dmitriev, Dmitry V; Sultanov, Vadim I; Timokhina, Elena N; Ugolkova, Elena A; Tulyani, Sonia; Vincitore, Antonio

    2013-03-01

    A model for the limiting surface tension of surfactant solutions (surface tension at and above the critical micelle concentration, cmc) was developed. This model takes advantage of the equilibrium between the surfactant molecules on the liquid/vacuum surface and in micelles in the bulk at the cmc. An approximate analytical equation for the surface tension at the cmc was obtained. The derived equation contains two parameters, which characterize the intermolecular interactions in the micelles, and the third parameter, which is the surface area per surfactant molecule at the interface. These parameters were calculated using a new atomistic modeling approach. The performed calculations of the limiting surface tension for four simple surfactants show good agreement with experimental data (~30% accuracy). The developed model provides the guidance for design of surfactants with low surface tension values. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Studies on a Foam System of Ultralow Interfacial Tension Applied in Daqing Oilfield after Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Hong-sheng Liu

    2013-01-01

    Full Text Available In order to study the effects of oil displacement by a foam system of ultralow interfacial tension, the interfacial activities and foam properties of a nonionic gemini surfactant (DWS were investigated under Daqing Oilfield reservoir conditions. Injection methods and alternate cycle of the foam system were discussed here on the basis of results from core flow experiments. It was obtained that the surface tension of DWS was approximately 25 mN/m, and ultralow interfacial tension was reached between oil and DWS with a surfactant concentration between 0.05wt% and 0.4wt%. The binary system showed splendid foam performances, and the preferential surfactant concentration was 0.3wt% with a polymer concentration of 0.2wt%. When gas and liquid were injected simultaneously, flow control capability of the foam reached its peak at the gas-liquid ratio of 3 : 1. Enhanced oil recovery factor of the binary foam system exceeded 10% in a parallel natural cores displacement after polymer flooding.

  20. Surface Tension Characteristics of Aqueous Lithium Bromide Solution with Alcoholic Surfactant

    Science.gov (United States)

    Sasaki, Naoe; Ogawa, Kiyoshi

    At present, the combination of aqueous lithium bromide (LiBr) solution as an absorbent and water as a refrigerant have widely been used as the working fluid for absorption refrigerating machines. In order to obtain absorption enhancement of water vapor into the LiBr solution by Marangoni convection, an alcoholic surfactant is being added in the LiBr solution. In that case, the surface tension of the LiBr solution with the surfactant plays an important role for the vapor absorption. In this study, the surface tensions of the LiBr solution with several alcoholic surfactants such as 1-butanol, 1-hexanol, 2-ethyl-1-butanol, 2-methyl-1-pentanol, 1-heptanol, 1-octanol and 2-ethyl-1-hexanol were measured by Wilhelmy plate method. As a result, the surface tensions of 50 wt% LiBr solution with several surfactants were obtained over the LiBr solution temperature range from 298 K to 318 K and the surfactant concentration range from 0 to 104 ppm by mass. The measured surface tension has decreased with the increasing number of carbons included in the surfactant at constant concentration, and the surface tension has increased with the increasing temperature of 50 wt% LiBr solution. The surface tension increase of 1-octanol became greater than any other surfactant used in this work. The effective carbon number of the surfactant for the absorption enhancement was in the range from 7 to 8.

  1. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, January 1--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wasan, D.T.

    1994-06-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. Last quarter we investigated the phase behavior and the regions where in the middle phase occurs. The optimum phase was found to go through a maximum with pH, sodium concentration and surfactant concentration. The optimum pH is about 12.0 to 13.5, the optimum sodium concentration is about 0.513 mol/liter, and the optimum surfactant concentration is about 0.2%. The effect of surfactant type was also investigated. Petrostep B-105 was found to give the most middle phase production. This quarter, we investigated the contact angle of Long Beach oil, Adena oil, and a model oil on a solid glass surface in contact with an aqueous alkaline solution both with and without added preformed surfactant. The contact angle with Long Beach and Adena oils showed oil-wet conditions, whereas the model oil showed both oil-wet and water-wet conditions depending on the pH of the aqueous phase. The addition of surfactant to the alkaline solution resulted in making the system less oil-wet. Spreading of the oil on the glass surface was observed in all three systems investigated.

  2. Effects of interplay of nanoparticles, surfactants and base fluid on the interfacial tension of nanocolloids

    CERN Document Server

    Harikrishnan, A R; Agnihotri, PK; Gedupudi, Sateesh; Das, Sarit K

    2016-01-01

    A systematically designed study has been conducted to understand and clearly demarcate the degree of contribution by the constituting elements to the surface tension of nanocolloids. The effects of elements such as surfactants, particles and the combined effects of these on the interfacial tension of these complex fluids are studied employing pendant drop shape analysis method by fitting Young Laplace equation. Only particle has shown considerable increase in surface tension with particle concentration in a polar medium like DI water whereas only marginal effect particles on surface tension in weakly polar mediums like glycerol and ethylene glycol. Such behaviour has been attributed to the enhanced desorption of particles to the interface and a mathematical framework has been derived to quantify this. Combined particle and surfactant effect on surface tension of complex nanofluid system showed a decreasing behaviour with respect to the particle and surfactant concentration with a considerably feeble effect of...

  3. Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids.

    Science.gov (United States)

    Harikrishnan, A R; Dhar, Purbarun; Agnihotri, Prabhat K; Gedupudi, Sateesh; Das, Sarit K

    2017-05-01

    A systematically designed study has been conducted to understand and demarcate the degree of contribution by the constituting elements to the surface tension of nanocolloids. The effects of elements such as surfactants, particles and the combined effects of these on the surface tension of these complex fluids are studied employing the pendant drop shape analysis method by fitting the Young-Laplace equation. Only the particle has shown an increase in the surface tension with particle concentration in a polar medium like DI water, whereas only a marginal effect of particles on surface tension in weakly polar mediums like glycerol and ethylene glycol has been demonstrated. Such behaviour has been attributed to the enhanced desorption of particles to the interface and a theory has been presented to quantify this. The combined particle and surfactant effect on the surface tension of a complex nanofluid system showed a decreasing behaviour with respect to the particle and surfactant concentration with a considerably feeble effect of particle concentration. This combined colloidal system recorded a surface tension value below the surface tension of an aqueous surfactant system at the same concentration, which is a counterintuitive observation as only the particle results in an increase in the surface tension and only the surfactant results in a decrease in the surface tension. The possible physical mechanism behind such an anomaly happening at the complex fluid air interface has been explained. Detailed analyses based on thermodynamic, mechanical and chemical equilibrium of the constituents and their adsorption-desorption characteristics as extracted from the Gibbs adsorption analysis have been provided. The present paper conclusively explains several physical phenomena observed, yet hitherto unexplained, in the case of the surface tension of such complex fluids by segregating the individual contributions of each component of the colloidal system.

  4. Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry

    Science.gov (United States)

    Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek

    Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.

  5. Microscale distribution and dynamic surface tension of pulmonary surfactant normalize the recruitment of asymmetric bifurcating airways.

    Science.gov (United States)

    Yamaguchi, Eiichiro; Nolan, Liam P; Gaver, Donald P

    2017-05-01

    We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (P Hyd ) and capillary (P Cap ) pressure drops. These studies demonstrate the extraordinary importance of P Cap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates P Cap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury. Copyright © 2017 the American Physiological Society.

  6. Dynamic Surface Tension of Heterogemini Surfactants with Quaternary Ammonium Salt and Gluconamide or Sulfobetaine Headgroups.

    Science.gov (United States)

    Yoshimura, Tomokazu; Nyuta, Kanae

    2017-10-01

    Dynamic surface tensions of two types of heterogemini surfactants with nonidentical hydrophilic headgroups consisting of a quaternary ammonium salt (cationic) and a gluconamide (nonionic) or sulfobetaine (zwitterionic) group were measured using the maximum bubble pressure method. For these compounds, effects of alkyl chain length, structure of the hydrophilic groups, and surfactant concentration were investigated using diffusion coefficients and parameter x. The parameter x is related to the difference between the energies of adsorption and desorption of the surfactant. The values of x of heterogemini surfactants increased as the alkyl chain length increased, and they were slightly larger than that for the corresponding monomeric surfactant. This is because of an increase in hydrophobicity caused by two alkyl chains, as well as interactions between two different hydrophilic groups. Adsorption rate of the heterogemini surfactants decreased with increasing alkyl chain length, indicating slow dynamics, and inhibited adsorption to the air/water interface as the chain length increased. However, at higher concentrations, the heterogemini surfactants showed rapid and effective adsorption and increased adsorption rates at higher concentrations. Diffusion coefficients of the heterogemini surfactants decreased with increasing concentrations for all chain lengths, indicating diffusion of the solute molecules to the subsurface and adsorption of the solute from the subsurface to the surface.

  7. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.

    Science.gov (United States)

    Wu, You; Kharge, Angana Banerjee; Perlman, Carrie E

    2014-10-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  8. Discrepancies over the onset of surfactant monomer aggregation interpreted by fluorescence, conductivity and surface tension methods

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Carvalho Costa

    1998-06-01

    Full Text Available Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac of polymer-surfactant complexes and the critical micellar concentration (cmc of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS mixtures, solutions containing poly(ethylene oxide-SDS, poly(vinylpyrrolidone-SDS and poly(acrylic acid-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.

  9. Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Romo, David M; Nima, Neda; Do, Aissa Y T; Michaud, Joseph M; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Zuo, Yi Y; Steppe, Kathy; Jansen, Steven

    2017-02-01

    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory1[OPEN

    Science.gov (United States)

    Espino, Susana; Nima, Neda; Do, Aissa Y.T.; Michaud, Joseph M.; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Steppe, Kathy

    2017-01-01

    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. PMID:27927981

  11. The dependence of surface tension on surface properties of ionic surfactant solution and the effects of counter-ions therein.

    Science.gov (United States)

    Wang, Chuangye; Morgner, Harald

    2014-11-14

    In the present paper, we aim to investigate the dependence of surface tension on the surface properties and reveal the counter-ion effects on the adsorption of ionic surfactants on the solution surface. The surface tension, surface excess and surface concentration (defined as the amount of surfactant adsorbed in the surface phase divided by the surface area) of two anionic surfactants, namely dodecyl sulfate sodium and dodecyl sulfate caesium, dissolved in non-aqueous polar solvent formamide have been separately measured at 6 °C through independent experiments. Then, the correlation of surface tension with surface concentration and that of surface tension with surface excess is inspected in detail. It was found that there is a linear relationship between the surface tension and the surface concentration for the pure solutions of each surfactant, but their surface tension and surface excess cannot be correlated linearly. It is striking that the same surface tension-surface concentration linearity holds for two different surfactants, although they have apparently distinct counter-ions. Based on this finding, it is derived that the surface tension is decided by surface concentration of the surface active ions. After analyzing the surface structure, it is concluded that the counter-ions affect the surface tension indirectly through modifying the adsorption amount of the surface active ions in the surface layer.

  12. Effect of two hydrocarbon and one fluorocarbon surfactant mixtures on the surface tension and wettability of polymers.

    Science.gov (United States)

    Szymczyk, Katarzyna; González-Martín, Maria Luisa; Bruque, Jose Morales; Jańczuk, Bronisław

    2014-03-01

    The advancing contact angle of water, formamide and diiodomethane on polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA) surfaces covered with the film of ternary mixtures of surfactants including p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethyleneglycols), Triton X-100 (TX100) and Triton X-165 (TX165) and the fluorocarbon surfactants, Zonyl FSN-100 (FSN100) or Zonyl FSO-100 (FSO100) was measured. The obtained results were used for the surface tension of PTFE and PMMA covered with this film determination from the Young equation on the basis of van Oss et al. and Neumann et al. approaches to the interfacial tension. The surface tension of PTFE and PMMA was also determined using the Neumann et al. equation and the contact angle values for the aqueous solutions of the above mentioned ternary surfactants mixtures which were taken from the literature. As follows from our calculations mainly the presence of the fluorocarbon surfactant in the mixture considerably changes the surface properties of PTFE and PMMA causing that in contrast to hydrocarbon surfactants and their mixtures there is no linear dependence between adhesion and surface tension in the whole range of concentration of the ternary mixtures of surfactants including the fluorocarbon one. The behavior of fluorocarbon surfactants at the polymer-air and polymer-water interfaces is quite different from those of hydrocarbons. In the case of fluorocarbon surfactants not only adsorption but also sorption can occur on the polymer surface. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    DEFF Research Database (Denmark)

    Müller, Hanna; End, Caroline; Renner, Marcus

    2007-01-01

    to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. CONCLUSION: Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated...... that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease....

  14. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev

    2016-03-01

    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  15. Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study

    Science.gov (United States)

    Xu, Jiafang; Zhang, Yang; Chen, Haixiang; Wang, Pan; Xie, Zhenhua; Yao, Yongji; Yan, Youguo; Zhang, Jun

    2013-11-01

    In the article, four anionic surfactants with different headgroups and same alkyl tail, sodium dodecyl sulfonate (SDSn), sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium dodecyl-di(oxyethylene) ether sulfate (AES), are adopted to investigate the influence of headgroup structure on oil-water interfacial tensions. The measured experimental results present that the capability of the four surfactants reducing interfacial tension follows the order of AES > SDBS > SDS > SDSn. Furthermore, molecular dynamic simulation (MD) is conducted to investigate the interfacial property of the four surfactants, and three parameters, interface formation energy, interfacial thickness, interaction between surfactant and water, are proposed to reveal the effecting mechanism of molecular structure on interfacial tension. And then, the polarity is studied by quantum mechanics calculation (QM) to investigate the interaction between headgroup and water molecule. The researched results indicate the addition of oxygen, benzene ring and oxyethyl group would enhance the polarity of surfactant, which induce the increase of interaction between headgroup and water molecule. The inferred interfacial tensions from MD and QM follow the order of AES > SDBS > SDS > SDSn, which is according with the experimental results. The researches explore the correlation between interfacial tensions and different headgroup structures, and these results maybe have some references for designing of high-efficient surfactant.

  16. A theoretical study on surfactant adsorption kinetics: effect of bubble shape on dynamic surface tension.

    Science.gov (United States)

    Yang, Ming-Wei; Wei, Hsien-Hung; Lin, Shi-Yow

    2007-12-04

    A planar or spherical fluid-liquid interface was commonly assumed on studying the surfactant adsorption kinetics for a pendant bubble in surfactant solutions. However, the shape of a pendant bubble deviates from a sphere unless the bubble's capillary constant is close to zero. Up to date, the literature has no report about the shape effect on the relaxation of surface tension due to the shape difference between a pendant bubble and a sphere. The dynamic surface tension (DST), based on the actual shape of a pendant bubble with a needle, of the diffusion-controlled process is simulated using a time-dependent finite element method in this work. The shape effect and the existence of a needle on DST are investigated. This numerical simulation resolves also the time-dependent bulk surfactant concentration. The depth of solution needed to satisfy the classical Ward-Tordai infinite-solution assumption was also studied. For a diffusion-controlled adsorption process, bubble shape and needle size are two major factors affecting the DST. The existence of a needle accelerates the bulk diffusion for a small bubble; however, the shape of a large pendant bubble decelerates the bulk diffusion. An example using this method on the DST data of C12E4 is illustrated at the end of this work.

  17. A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants

    Science.gov (United States)

    George, Jijo Easo; Chidangil, Santhosh; George, Sajan D.

    2017-07-01

    Fabrication of hydrophobic/hydrophilic surfaces by biomimicking nature has attracted significant attention recently due to their potential usage in technologies, ranging from self-cleaning to DNA condensation. Despite the potential applications, compared to surfaces of tailored wettability, less attention has been paid towards development and understanding of air bubble adhesion and its dynamics on surfaces with varying wettability. In this manuscript, following the commonly used approach of oxygen plasma treatment, polydimethylsiloxane surfaces with tunable wettability are prepared. The role of plasma treatment conditions on the surface hydrophilicity and the consequent effect on adhesion dynamics of an underwater air bubble is explored for the first time. The ATR-FTIR spectroscopic analysis reveals that the change in hydrophilicity arises from the chemical modification of the surface, manifested as Si-OH vibrations in the spectra. The thickness of the formed thin liquid film at the surface responsible for the experimentally observed air bubble repellency is estimated from the augmented Young-Laplace equation. The concentration dependent studies using cationic as well as anionic surfactant elucidate that the reduced surface tension of the aqueous solution results in a stable thicker film and causes non-adherence of air bubble to the aerophilic surface. Furthermore, the study carried out to understand the combined effect of plasma treatment and surfactants reveals that even below critical micelle concentration, a negatively charged surface results in air bubble repellency for the anionic surfactant, whereas only enhanced air bubble contact angle is observed for the cationic surfactant.

  18. The Potential of a Surfactant/Polymer Flood in a Middle Eastern Reservoir

    Directory of Open Access Journals (Sweden)

    Meshal Algharaib

    2012-01-01

    Full Text Available An integrated full-field reservoir simulation study has been performed to determine the reservoir management and production strategies in a mature sandstone reservoir. The reservoir is a candidate for an enhanced oil recovery process or otherwise subject to abandonment. Based on its charateristics, the reservoir was found to be most suited for a surfactant/polymer (SP flood. The study started with a large data gathering and the building of a full-field three-dimensional geological model. Subsequently, a full field simulation model was built and used to history match the water flood. The history match of the water flood emphasizes the areas with remaining high oil saturations, establishes the initial condition of the reservoir for an SP flood, and generates a forecast of reserves for continued water flood operations. A sector model was constructed from the full field model and then used to study different design parameters to maximize the project profitability from the SP flood. An economic model, based on the estimated recovery, residual oil in-place, oil price, and operating costs, has been implemented in order to optimize the project profitability. The study resulted in the selection of surfactant and polymer concentrations and slug size that yielded the best economic returns when applied in this reservoir. The study shows that, in today’s oil prices, surfactant/polymer flood when applied in this reservoir has increased the ultimate oil recovery and provide a significant financial returns.

  19. Effects of Added Salts on Surface Tension and Aggregation of Crown Ether Surfactants.

    Science.gov (United States)

    Suzuki, Maki; Fujio, Katsuhiko

    2016-01-01

    Two crown ether surfactants, dodecanoyloxymethyl- (C11Φ6) and octanoyloxymethyl-18-crown-6 (C7Φ6), were synthesized and the surface tension dependence on surfactant concentration of their aqueous solutions was measured both in the absence and presence of alkali chlorides to confirm the critical micelle concentration (CMC) is highest for the added cation that have an ionic diameter comparable to the hole size of the crown ether ring and that several break points on the surface tension vs. concentration curves occur for these crown ether surfactants. For C11Φ6 and C7Φ6, in the absence of salt, the surface tension vs. concentration curves had two break points. Using the solubilization of a water-insoluble dye as an indicator, we found that the break point at the higher concentration (m0) for C7Φ6 was due to micelle formation. Two break points were also observed for the aqueous solution of C11Φ6 in the presence of NaCl, KCl, RbCl, and CsCl salts at concentrations of 0.22 mol kg(-1) and for C7Φ6 with 0.22 mol kg(-1) KCl added. The CMC (m0) was found to be the highest for solutions containing K(+) salts because K(+) has an ionic diameter comparable to the hole size of 18-crown-6 ring. Furthermore, the CMC decreased as the ionic diameters of the added cations deviated from the hole size. The molecular areas at two break points, estimated by the Gibbs adsorption isotherm, except for that at the break point at mI of C7Φ6, were very small for an adsorbed monolayer. Further investigation is required to elucidate the reason for the break point at mI.

  20. The dynamic surface tension of atmospheric aerosol surfactants reveals new aspects of cloud activation

    Science.gov (United States)

    Nozière, Barbara; Baduel, Christine; Jaffrezo, Jean-Luc

    2014-01-01

    The activation of aerosol particles into cloud droplets in the Earth’s atmosphere is both a key process for the climate budget and a main source of uncertainty. Its investigation is facing major experimental challenges, as no technique can measure the main driving parameters, the Raoult’s term and surface tension, σ, for sub-micron atmospheric particles. In addition, the surfactant fraction of atmospheric aerosols could not be isolated until recently. Here we present the first dynamic investigation of the total surfactant fraction of atmospheric aerosols, evidencing adsorption barriers that limit their gradient (partitioning) in particles and should enhance their cloud-forming efficiency compared with current models. The results also show that the equilibration time of surfactants in sub-micron atmospheric particles should be beyond the detection of most on-line instruments. Such instrumental and theoretical shortcomings would be consistent with atmospheric and laboratory observations and could have limited the understanding of cloud activation until now. PMID:24566451

  1. The Systematic Screening Methodology for Surfactant Flooding Chemicals in Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Cholpraves, Cholathis; Rattanaudom, Pattamas; Suriyapraphadilok, Uthaiporn

    2017-01-01

    The product design framework for systematic screening & selection of surfactants consists of four main steps: problem definition, target properties specification, data collection & model development, and screening-selection. The Hydrophilic-Lipophilic Deviation (HLD) value has been identified...... as the main target property because it is related to the microemulsion type of a surfactant-oil-water system. That is, when the HLD value is zero, the middle-phase microemulsion, which has the lowest interfacial tension of oil and water, is formed. The model for HLD estimation needs a parameter Cc, which...

  2. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher

  3. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    Science.gov (United States)

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  4. Applicability of the Gibbs Adsorption Isotherm to the analysis of experimental surface-tension data for ionic and nonionic surfactants.

    Science.gov (United States)

    Martínez-Balbuena, L; Arteaga-Jiménez, Araceli; Hernández-Zapata, Ernesto; Márquez-Beltrán, César

    2017-09-01

    The Gibbs Adsorption Isotherm equation is a two-dimensional analogous of the Gibbs-Duhem equation, and it is one of the cornerstones of interface science. It is also widely used to estimate the surface excess concentration (SEC) for surfactants and other compounds in aqueous solution, from surface tension measurements. However, in recent publications some authors have cast doubt on this method. In the present work, we review some of the best available surface tension experimental data, and compare estimations of the SEC, using the Gibbs isotherm method (GIM), to direct measurements reported in the literature. This is done for both nonionic and ionic surfactants, with and without added salt. Our review leads to the conclusion that the GIM has a very solid agreement with experiments, and that it does estimate accurately the SEC for surfactant concentrations smaller than the critical micellar concentration (CMC). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Performance of Surfactant-Polymer Flooding in Horizontal Wells Consisting of Multilayers in a Reservoir System

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-03-01

    Full Text Available Surfactant-polymer (SP flooding has been demonstrated to be an effective method to recover oil in the enhanced oil recovery (EOR stage when water flooding is no longer relevant. Theoretically, adding surfactant causes the reduction of the interfacial tension between oil and water in pores, therefore reducing the residual oil saturation, whereas the sweep efficiency will be significantly improved by the polymer injection as a result of proper mobility control. With regard to the well patterns, water flooding has demonstrated a high productivity in horizontal wells. Recently, other EOR processes have been increasingly applied to the horizontal wells in various well patterns. In this study, the efficiency of SP flooding applied to horizontal wells in various well configurations is investigated in order to select the best EOR performance in terms of either a technical or economical point of view. Furthermore, the reservoir is assumed to be anisotropic with four different layers that have same porosity but different permeability between each layer. The study figures out that, the utilization of a horizontal injector and producer always gives a higher oil production in comparison with the reference case of a conventional vertical injector and producer; however, the best EOR performances that demonstrate the higher oil recovery and lower fluid injected volume than those of the reference case are achieved when the production well is located in bottom layers and parallel with the injection well at a distance. While the location of producer decides oil productivity, the location of injector yet affects the uniformity of fluids propagation in the reservoir. A predefined feasibility factor is also taken into consideration in order to reject the infeasible cases that might give a high oil production but require a higher injected volume than the reference case. This factor is used as an economic parameter to evaluate the success of the EOR performance. The

  6. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  7. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    Science.gov (United States)

    Müller, Hanna; End, Caroline; Renner, Marcus; Helmke, Burkhard M; Gassler, Nikolaus; Weiss, Christel; Hartl, Dominik; Griese, Matthias; Hafner, Mathias; Poustka, Annemarie; Mollenhauer, Jan; Poeschl, Johannes

    2007-01-01

    Background Deleted in Malignant Brain Tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease. PMID:17908325

  8. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl

    Science.gov (United States)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen

    2017-09-01

    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  9. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.

    Science.gov (United States)

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-08-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil-gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency. In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×105 Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas

  10. Influence of nitrogen, oxygen, air and alveolar gas upon surface tension of lung surfactant.

    Science.gov (United States)

    Wildeboer-Venema, F

    1984-10-01

    Surface tension (s.t.) of lung surfactant (l.s.) was measured at 37 degrees C in a closed box, filled with completely humidified gas (mixtures) such as room air, O2, N2, or alveolar gas. The film was compressed to 20% of the original area and expanded, with cycling times of 10 to 20 sec. Switching from one gas mixture to another nearly always caused a fall of s.t., but in general only temporarily. Only a gas phase containing CO2, like alveolar gas, caused a permanent fall of s.t. and a rise after its withdrawal. This was not due to a direct influence of CO2, but rather to the induced change of hypophase pH; the reaction of s.t. at end-expansion (gamma max) decreased and that at end-compression (gamma min) disappeared with a buffered hypophase. By using buffered or unbuffered hypophases, we were able to create pH values in a wide range and relate them to s.t. and CO2 concentration. With pH 5.5, the mean values of s.t. at end-compression and end-expansion were 20.2 and 51.2 mN/m, respectively. They reached the significantly higher values of 25.3 and 55.4 mN/m with pH = 8.5. With 5.6% CO2 in the atmosphere, which is comparable to alveolar gas, gamma min and gamma max had mean values of 22.9 and 52.8 mN/m, respectively. Such values correspond with a pH in the range of 6.7 to 7.1, which is supposed to be the range of pH of the pulmonary interstitium.

  11. Surface free energy of the human skin and its critical surface tension of wetting in the skin/surfactant aqueous solution/air system.

    Science.gov (United States)

    Krawczyk, J

    2015-05-01

    The purpose of these studies was to determine the surface free energy of the human skin and its critical surface tension of wetting in the skin--surfactant aqueous solution--air system in relation to different types of surfactants. The surface free energy of the skin and its components was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the forearm skin surface. Next, taking into account the measured values of the contact angle of aqueous solutions of SDDS, CTAB, TX-100 and TX-114 on the skin surface and data of their surface tension, the critical surface tension of the skin wetting was determined. We can classify the skin surface as low-energetic one. The critical surface tension of the skin wetting depends on the type of surfactant. It is possible to determine the critical surface tension of the human skin wetting on the basis of the values of the contact angle of aqueous solutions of surfactants and their surface tension. In this respect, nonionic surfactants seem to be the most appropriate. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Enhanced oil recovery using water as a driving fluid - 10. field applications of surfactant/polymer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Mungan, N.

    1982-05-01

    Selection of a suitable reservoir, studies required to support a field application, pilot testing, minifield tests and a review of field applications to date are discussed. It is concluded that surfactant/polymer flooding has a greater potential than other chemical flood processes to mobilize and recover waterflood residual oil. However, the process is complex and costly and requires the utmost in technical expertise and economic incentives to be made to work profitably. 9 refs.

  13. A model for monomer and micellar concentrations in surfactant solutions: application to conductivity, NMR, diffusion, and surface tension data.

    Science.gov (United States)

    Al-Soufi, Wajih; Piñeiro, Lucas; Novo, Mercedes

    2012-03-15

    An empirical model for the concentrations of monomeric and micellized surfactants in solution is presented as a consistent approach for the quantitative analysis of data obtained with different experimental techniques from surfactant solutions. The concentration model provides an objective definition of the critical micelle concentration (cmc) and yields precise and well defined values of derived physical parameters. The use of a general concentration model eliminates subjective graphical procedures, reduces methodological differences, and thus allows one to compare directly the results of different techniques or to perform global fits. The application and validity of the model are demonstrated with electrical conductivity, surface tension, NMR chemical shift, and self-diffusion coefficient data for the surfactants SDS, CTAB, DTAB, and LAS. In all cases, the derived models yield excellent fits of the data. It is also shown that there is no need to assume the existence of different premicellar species in order to explain the chemical shifts and self-diffusion coefficients of SDS as claimed recently by some authors. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. The Influence of Surface Tension Gradients on Surfactant Tracer Measurement of Air-Water Interfacial Area in Porous Media

    Science.gov (United States)

    Costanza-Robinson, M. S.; Estabrook, B. D.; Henry, E. J.

    2009-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer, such as delivery of oxygen to roots and volatilization of methane from landfills. Despite this importance, significant method-dependence is observed among techniques used to determine AI in porous media. In this work, possible low bias in conventional aqueous interfacial-partitioning tracer methodology (IPT) was examined by comparison of IPT-AI estimates with more direct estimates obtained using synchrotron X-ray microtomographic (µCT) imaging. Sodium dodecyl benzene sulfonate and pentafluorobenzoate were used as interfacial and nonreactive tracers, respectively, to measure AI at three water saturations (Sw) in a natural fine sand. IPT-AI exhibited expected trends, with higher areas associated with drier conditions, but the magnitude of AI was as much as 50% lower than those measured by µCT. IPT-AI values for the driest system agreed most closely with microtomography data. Real-time system mass measurements revealed that upon introduction of the surfactant tracer, system Sw decreased by 15-30%; the driest system exhibited the least drainage. This drainage is consistent with a reduction in capillarity caused by the lower surface tension of the surfactant solution as compared to the surfactant-free resident fluid. Drainage in the direction of flow would lead to earlier breakthrough of the surfactant tracer and a lower AI-estimate. In fact, the magnitude of drainage and magnitude of AI-underestimation relative to µCT were qualitatively correlated. Although this effect was expected, its magnitude and potential influence on AI was previously unknown and was larger than anticipated.

  15. Application of the maximum bubble pressure technique for dynamic surface tension studies of surfactant solutions using the Sugden two-capillary method.

    Science.gov (United States)

    Fainerman, V B; Mys, V D; Makievski, A V; Miller, R

    2006-12-01

    Exact knowledge of the dead time as part of the bubble lifetime in the maximum bubble pressure method is an important prerequisite for accurate dynamic surface tension measurements. The duration of the dead time depends essentially on the capillary geometry and affects significantly the measured surface tensions of concentrated surfactant solutions. Increase of the dead time leads to a significant surface tension decrease of a freshly formed bubble surface due to the significantly higher residual adsorption of the surfactant molecules. It is shown that correct dynamic surface tensions are obtained with the experimental procedure of Sugden's method only when in addition to the fixed frequency of bubble formation, also the dead time values for the two capillaries are kept constant.

  16. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison.

    Science.gov (United States)

    Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute

    2018-01-01

    Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.

  17. Antimicrobial Effect and Surface Tension of Some Chelating Solutions with Added Surfactants.

    Science.gov (United States)

    Giardino, Luciano; Andrade, Flaviana Bombarda de; Beltrami, Riccardo

    2016-01-01

    This study assessed the antimicrobial efficacy and surface tension of established irrigating solutions with a new experimental chelating solution in infected dentin tubes. Twenty-five specimens were randomly assigned to each of the irrigating solutions. Twenty specimens were used as negative and positive controls. After 21 days of contamination with E. faecalis, the irrigating solutions MTAD, QMiX and Tetraclean NA were delivered into each infected root canal. The solutions were removed and dentin samples were withdrawn from the root canals with sterile low-speed round burs with increasing ISO diameters. The dentin powder samples obtained with each bur were immediately collected in separate test tubes containing 3 mL of BHI broth. After that, 100 μL from each test tube was cultured on blood agar. The grown colonies were counted and recorded as colony-forming units (CFU). The surface tension of the irrigants was measured using a Cahn DCA-322 Dynamic Contact Angle Analyzer. A Kruskal Wallis nonparametric ANOVA and a Friedman test were used (psurface tension and CFU values than MTAD and QMiX. Better antibacterial action and low surface tension were observed for Tetraclean NA, probably due to the improved penetration into the root canal and dentinal tubes.

  18. Effect of Added Surfactants on the Dynamic Interfacial Tension Behaviour of Alkaline/Diluted Heavy Crude Oil System Effet de l’ajout de tensioactifs sur le comportement dynamique de la tension interfaciale du système solution alcaline/brut dilué

    Directory of Open Access Journals (Sweden)

    Trabelsi S.

    2013-02-01

    Full Text Available This study has been undertaken to get a better understanding of the interactions between Enhanced Oil Recovery (EOR surfactants used in chemical flooding and in situ surfactants present in an heavy oil. We report an experimental study of dynamic Interfacial Tension (IFT behaviour of diluted heavy oil/surfactant enhanced-alkaline systems. The dynamic IFT was measured using pendant drop and spinning drop tensiometers. The dynamic IFT between diluted heavy oil and alkaline solution (pH 11 with no added surfactant increased sharply with time, which was attributed to the transfer of the in situ surfactant (produced by saponification of the acids groups present in the crude oil across the oil/water interface. The addition of Sodium Dodecyl Benzene Sulfonate (SDBS above the Critical Micellar Concentration (CMC ~ 0.002%, changed completely the dynamic IFT behaviour of the diluted heavy oil as the IFT strongly decreased and finally reached a plateau, of about 1.5 × 10-3 mN/m at a concentration of only 0.02%. We attributed the efficiency of SDBS to a synergistic effect between the in situ surfactant and the added surfactant that form a mixed interfacial monolayer, which is very efficient in decreasing the IFT to ultra low values and in resisting mass transfer across the oil/water interface. Cette étude a été réalisée pour mieux comprendre les interactions entre les tensioactifs utilisés pour la récupération assistée de pétrole et les tensioactifs in situ présents dans le brut. Nous expérimentons le comportement dynamique des tensions interfaciales (mesurées par les méthodes de goutte pendante et goutte tournante entre le brut lourd dilué et les solutions alcalines avec ajout de tensioactif. La tension interfaciale dynamique entre le brut dilué et une solution alcaline (pH 11 sans ajout de tensioactif croît fortement au cours du temps, cette augmentation est attribuée au transfert des tensioactifs in situ (produits par saponification des

  19. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  20. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli.

    Science.gov (United States)

    Kharge, Angana Banerjee; Wu, You; Perlman, Carrie E

    2015-02-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. Copyright © 2015 the American Physiological Society.

  1. Aggregation behavior of sodium dioctylsulfosuccinate in aqueous ethylene glycol medium. A case of hydrogen bonding between surfactant and solvent and its manifestation in the surface tension isotherm.

    Science.gov (United States)

    Das, D; Dey, J; Chandra, A K; Thapa, U; Ismail, K

    2012-11-13

    The dependence of critical micelle concentration (cmc) of sodium dioctylsulfosuccinate (AOT) on the amount of ethylene glycol (EG) in water + EG medium was reported to be unusual and different from that of other surfactants to the extent that the cmc of AOT in EG is lower than in water. It is yet to be understood why AOT behaves so in water + EG medium, although AOT is known to have some special properties. Hence in the present study cmc of AOT in water + EG medium in the range from 0 to 100% (by weight) EG is measured by using surface tension and fluorescence emission methods. In contrast to what was reported, this study revealed that with respect to EG amount the cmc of AOT follows the general trend and AOT has higher cmc in EG than in water. On the other hand, it was surprisingly found that a break in the surface tension isotherm occurs in the premicellar region when the amount of EG exceeds 50% rendering a bisigmoidal shape to the surface tension isotherm. UV spectral study showed that AOT and EG undergo hydrogen bonding in the premicellar region when the EG amount is ≥50% and this hydrogen bonding becomes less on adding NaCl. The density functional theory calculations also showed formation of hydrogen bonds between EG and AOT through the sulfonate group of AOT providing thereby support to the experimental findings. The calculations predicted a highly stable AOT-EG-H(2)O trimer complex with a binding energy of -37.93 kcal mol(-1). The present system is an example, which is first of its kind, of a case where hydrogen bonding with surfactant and solvent molecules results in a surface tension break.

  2. Surfactant flooding with hard water: A case study solved by HLB gradient

    Energy Technology Data Exchange (ETDEWEB)

    Minssieux, L.

    1987-11-01

    Surfactant formulations were designed for field application of micellar processes in a salty environment on the basis of a mixture of one synthetic sulfonate with two types of nonionic agents. This formulation led to the required Winsor-III-type phase diagram in the presence of reservoir fluids at reservoir temperatures. The main difficulty in this study was the high level of surfactant retention in the reservoir rock. The sacrificial agents tested but did not reduce these surfactant losses significantly. The solution found to be efficient consisted of creating a hydrophile-lipophile balance (HLB) gradient of the additives used in situ by injecting a desorbing agent with high HLB behind the micellar slug containing the nonionic cosurfactants with lower HLB. The interpretation proposed for such a procedure shows that the mechanisms involved produce the same beneficial effects as the salinity gradient technique. The good results obtained indicate the potential importance of the HLB gradient when the salinity gradient cannot be used in the miscellar processes under consideration.

  3. Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-12-01

    Full Text Available Chemical flooding has been widely utilized to recover a large portion of the oil remaining in light and viscous oil reservoirs after the primary and secondary production processes. As core-flood tests and reservoir simulations take time to accurately estimate the recovery performances as well as analyzing the feasibility of an injection project, it is necessary to find a powerful tool to quickly predict the results with a level of acceptable accuracy. An approach involving the use of an artificial neural network to generate a representative model for estimating the alkali-surfactant-polymer flooding performance and evaluating the economic feasibility of viscous oil reservoirs from simulation is proposed in this study. A typical chemical flooding project was referenced for this numerical study. A number of simulations have been made for training on the basis of a base case from the design of 13 parameters. After training, the network scheme generated from a ratio data set of 50%-20%-30% corresponding to the number of samples used for training-validation-testing was selected for estimation with the total coefficient of determination of 0.986 and a root mean square error of 1.63%. In terms of model application, the chemical concentration and injection strategy were optimized to maximize the net present value (NPV of the project at a specific oil price from the just created ANN model. To evaluate the feasibility of the project comprehensively in terms of market variations, a range of oil prices from 30 $/bbl to 60 $/bbl referenced from a real market situation was considered in conjunction with its probability following a statistical distribution on the NPV computation. Feasibility analysis of the optimal chemical injection scheme revealed a variation of profit from 0.42 $MM to 1.0 $MM, corresponding to the changes in oil price. In particular, at the highest possible oil prices, the project can earn approximately 0.61 $MM to 0.87 $MM for a quarter

  4. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  5. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of

  6. Floods

    Science.gov (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  7. Medidas de tensão superficial pelo método de contagem de gotas: descrição do método e experimentos com tensoativos não-iônicos etoxilados Surface tension measurement by drop counting method: method description and experiments with etoxilated non-ionic surfactants

    Directory of Open Access Journals (Sweden)

    Érico Teixeira Neto

    2009-01-01

    Full Text Available Surface tension knowledge of surfactants aqueous solutions is important during amphiphilic molecule manufacturing and new product development, as feedback information to handle synthesis parameters to target performance. Drop counting method is an interesting simplification of drop weight method for surface tension measurements. A simple laboratory measurement device, with capability for temperature control, was assembled to allow investigation of ethoxylated surfactants. The implementation of the method was preceded by a detailed investigation of two factors that may affect the measured surface tension: drop formation velocity and surfactant ethoxylation degree. The limitations of the method are discussed on this basis.

  8. Surface Tension Flows inside Surfactant-Added Poly(dimethylsiloxane Microstructures with Velocity-Dependent Contact Angles

    Directory of Open Access Journals (Sweden)

    Jyh Jian Chen

    2014-03-01

    Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.

  9. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  10. Towards unravelling surfactant transport

    Science.gov (United States)

    Sellier, Mathieu; Panda, Satyananda

    2015-11-01

    Surfactant transport arises in many natural or industrial settings. Examples include lipid tear layers in the eye, pulmonary surfactant replacement therapy, or industrial coating flows. Flows driven by the surface tension gradient which arises as a consequence of surfactant concentration inhomogeneity, also known as Marangoni-driven flows, have attracted the attention of fluid dynamists for several decades and has led to the development of sophisticated models and the undeniable advancement of the understanding of such flows. Yet, experimental confirmation of these models has been hampered by the difficulty in reliably and accurately measuring the surfactant concentration and its temporal evolution. In this contribution, we propose a methodology which may help shed some light on surfactant transport at the surface of thin liquid films. The surface stress induced by surfactant concentration induces a flow at the free surface which is visible and measurable. In the context of thin film flows for which the lubrication approximation hold, we demonstrate how the knowledge of this free surface flow field provides sufficient information to reconstruct the surfactant tension field. From the surface tension and an assumed equation of state, the local surfactant concentration can also be calculated and other transport parameters such as the surfactant surface diffusivity indirectly inferred. In this contribution, the proposed methodology is tested with synthetic data generated by the forward solution of the governing partial differential equations in order to illustrate the feasibility of the algorithm and highlight numerical challenges.

  11. Flood

    OpenAIRE

    Karasakal, Çev. Şaban

    2015-01-01

    The big calamity that believed to be sent by Allah to a nation in order to punish them, according to Holy Scriptures and many myths during history of humanbeing, is named as tufan (=flood). The details of this flood varies from culture to other, however, the best known is that of Noah. The mythological kind knowledges concerned with Noah (pbuh) and flood, that is involved in İsrailiyat and took place in Siyer and Tefsir books have been narrated for centuries. These knowledges, generally, foc...

  12. Effect of chromatographic separation on ASP system interface tension and the countermeasures

    Directory of Open Access Journals (Sweden)

    Jiawei REN

    2016-06-01

    Full Text Available Because of the existing chromatographic separation phenomenon, ASP flooding changes original nature of the system. Therefore, in laboratory ultra-low interfacial tension ASP system is preferred for sand packs flow experiment to research on the effect of chromatographic separation on ASP system interface tension. The two parameters of "breakthrough time" and "output difference" are used to describe the degree of chromatographic separation, and the produced fluid interfacial tensions at the outlet end at 120 min is measured. The research shows that there exists chromatographic separation between three chemicals of ASP system, with first polymer breakthrough and finally surfactant breakthrough; there is most serious chromatographic separation between surfactant and polymer, while minimum chromatographic separation between alkali and polymer; chromatographic separation makes ASP interfacial tension increase from 10-3 magnitude to 10-2 magnitude, affecting flooding effect of ASP system. Thus, reducing the loss of surfactant in the formation will be the main measure to reduce the degree of chromatographic separation. Using sophorolipid as sacrificial agent to replace part of the surfactant injected into formation before ASP system can effectively reduce the impact of chromatography separation and more effectively improve the ultimate recovery ratio.

  13. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process

    OpenAIRE

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-01-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly us...

  14. Mixed surfactant systems for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  15. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    P. Somasundaran

    2008-09-20

    /conformation of the adsorbed layers), as well as precipitation/abstraction characteristics. (3) Investigation of the role of dissolved species, especially multivalent ions, on interactions between reservoir minerals and surfactants and/or polymers leading to surfactant precipitation or activated adsorption. (4) Solution behavior tests--surface tension, interaction, ultra filtration, and other tests. (5) Surfactant-mineral interactions relative to adsorption, wettability, and electrophoresis. (6) Work on the effects of multivalent ions, pH, temperature, salinity, and mixing ratio on the adsorption. Developments of adsorption models to explain interactions between surfactants/polymers/minerals. (7) General guidelines for the use of certain surfactants, polymers and their mixtures in micelle flooding processes.

  16. Improving Gas Flooding Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability

  17. Phosphine oxide surfactants revisited.

    Science.gov (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Interfacial behaviour between oil/water systems using ionic surfactants from regional vegetable industry and animal pet

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Francisco Klebson G.; Alves, Juan V.A.; Dantas, Tereza N. Castro; Dutra Junior, Tarcilio V.; Barros Neto, Eduardo L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Interfacial tension (IFT) is one of the most important physical properties in the study of fluid-fluid interfaces. In this research the surfactants - saponified coconut oil, saponified castor oil, saponified soybean oil, saponified sunflower oil and basis soap - were synthesized in laboratory, using carboxylic acids from regional industry and animal fat (bovine fat). This study focuses on the search of a high-efficient, low-cost, and safe for the environment flooding system to be applied in enhanced oil recovery. The principal aim of this work is the obtaining of interfacial tensions between oil/water systems, using the developed ionic surfactants. Results showed that the studied surfactants are able to reduce the IFT between oil and brine. The surfactant that was more effective in reducing the IFT value was the one from animal fat. The composition, as well as the kind of the bond, as saturated or unsaturated, of the surfactants has influence in the IFT value. The ionic surfactants from regional industry and animal fat besides presenting low cost propitiate very low interfacial tensions between oil and brine, favoring the interactions with residual oil and thus increasing oil recovery. (author)

  19. Surfactants at the Design Limit.

    Science.gov (United States)

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  20. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    Science.gov (United States)

    Idrees Al-Mossawy, Mohammed; Demiral, Birol; Raja, D. M. Anwar

    2013-04-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front.

  1. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    Energy Technology Data Exchange (ETDEWEB)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses

  2. Development of improved mobility control agents for surfactant/polymer flooding. Second annual report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.D.; Donaruma, L.G.; Hatch, M.J.

    1981-04-01

    The objective of this laboratory work is to develop improved mobility control agents that are more effective than the commercial polymers currently used in this process. During the second year of the project, the baseline testing of commercial products was completed. These baseline tests with polymers include studies on mobility control, retention, and shear degradation in Berea cores, the effect of common ions on rheological properties, thermal stability, microbial degradation, and surfactant-polymer interactions. These data are used for comparison of the commercial agents at standardized sets of conditions, and are also used to evaluate new, modified, or improved polymers. Work was also initiated on the synthesis, characterization, and preliminary screening of new and modified polymers. Testing of these analogs provides systematic correlations of polymer performance with polymer structure. This preliminary testing consists of measurements of shear degradation and viscosity loss in NaCl brines by the use of a simplified screening procedure. To date, a number of potential structure-utility relationships have been observed. Solution viscosities of all nonionic polymers tested are essentially insensitive to changes in NaCl concentration. Increasing the charge-to-mass ratio (degree of hydrolysis) of either polyacrylamides or N-alkyl analogs enhances the ability of these polymers to build viscosity in low salinity NaCl brines. However, such polymers are increasingly subject to viscosity loss as the salinity is increased. Above a certain critical molecular weight, polymers become more susceptible to shear degradation. Many of the polymers that possess stiffer backbones exhibit improved brine and shear stability. The results of these studies will be used to develop an improved mobility control polymer in the next phase of this project.

  3. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Quarterly technical progress report, January 1, 1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, R.B.; Schechter, D.S.

    1996-06-01

    The objective of this research project is to improve the effectiveness of CO{sub 2} flooding in heterogeneous reservoirs. Research is being conducted in three related tasks: (1) exploring further the applicability of selective mobility reduction (SMR) in the use of foam flooding, (2) exploring the possibility of higher economic viability of floods at reduced CO{sub 2} injection pressures, and (3) understanding low interfacial tension (IFT) mechanisms with application to CO{sub 2} flooding in tight vertically fractured reservoirs. Progress made this quarter in each of the three tasks is discussed. Some of the highlights are: two new surfactants (CD 1040 and Dowfax 8390) were tested and found to reduce mobility; CO{sub 2}-reservoir phase behavior tests in a static cell have been completed on recombined Spraberry reservoir oil; coreflood foam tests were performed at various CO{sub 2} by simultaneously injecting CO{sub 2} and surfactant solution into a surfactant solution saturated core until a steady-state pressure drop across the core was obtained; results indicate that the CO{sub 2}-surfactant solution mobilities were always higher than the baseline tests; and for task 3, research continued in understanding the fundamentals of low interfacial tension behavior via theory and experiment and the influence on multiphase flow behavior, and modeling low IFT gravity drainage for application of gas injection in fractured reservoirs.

  4. Experimental Study on the Properties and Displacement Effects of Polymer Surfactant Solution

    Directory of Open Access Journals (Sweden)

    Ke-Liang Wang

    2013-01-01

    Full Text Available Based on the characteristics of oil reservoirs and the requirements of further enhancing oil recovery at high water cut stage of Pubei Oilfield, the displacement performance of polymer surfactant is evaluated. Reasonable injection parameters and oil displacement effects after water flooding are also researched. Compared with conventional polymer with intermediate molecular weight, polymer surfactant has the properties of higher viscosity at low concentration condition and lower interfacial tension. Laboratory experiments indicate that the displacement effect of polymer surfactant is much better than that of conventional polymer at a slug size of 0.57 PV. The oil recovery of polymer surfactant increases by more than 10% after water flooding. Considering the actual situation of low-permeability of Pubei Oilfield reservoirs, the system viscosity of 30 mPa·s is chosen. The corresponding concentration of Type III polymer surfactant is 600 mg/L and the injected slug is 0.57 PV and the oil recovery can be increased by 11.69%.

  5. Polymeric surfactants for enhanced oil recovery : A review

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    Chemical enhanced oil recovery (EOR) is surely a topic of interest, as conventional oil resources become more scarce and the necessity of exploiting heavy and unconventional oils increases. EOR methods based on polymer flooding, surfactant-polymer flooding and alkali-surfactant-polymer flooding are

  6. Proficiency feasibility of multi-walled carbon nanotubes in the presence of polymeric surfactant on enhanced oil recovery

    Science.gov (United States)

    Nezhad, Javad Razavi; Jafari, Arezou; Abdollahi, Mahdi

    2018-01-01

    Enhanced heavy oil recovery methods are widely utilized to increase oil recovery. For this purpose, polymer and surfactant flooding have been used extensively. Recently, polymeric surfactant flooding has become an attractive alternative to sole polymer flooding due to their capability of providing an increase in solution viscosity and a decrease in interfacial tension, which are both beneficial for efficiency of the process. Applying nanoparticles as an additive to polymer solutions is a method to improve viscosity and alter rock wettability. Therefore, in this research, multi-walled carbon nanotube (MWCNT) was mixed with a polymeric surfactant of polyacrylamide-graft-lignin copolymer (PAM-g-L) synthesized via radical grafting reaction. Moreover, several solutions with different concentrations of nanoparticles with PAM-g-L were prepared. The solutions were injected into a micromodel to evaluate the PAM-g-L flooding efficiency in presence of the multi-walled carbon nanotubes. The results of micromodel flooding showed that increasing MWCNT concentration results in lower sweep efficiencies; and consequently, oil production will decrease. Therefore, MWCNT along with PAM-g-L has an unacceptable performance in enhanced heavy oil recovery. But data of wettability tests revealed that MWCNT can change the wettability from oil-wet to water-wet. In addition, the combination of the PAM-g-L and MWCNT in a solution will cause more water-wet condition.

  7. Update on microemulsion flooding

    Energy Technology Data Exchange (ETDEWEB)

    Poettmann, F.H.

    1975-11-01

    In a test plot of the Robinson sand of Illinois, a surfactant slug was followed by a polymer flood and a waterflood. Polyacrylamide was used as the polymer. Ultimate recovery in the test area should approach 45 percent of the oil in place. A second test using a surfactant slug and Dow Pusher 500 polymer flood on the Bradford Third sand in Pennsylvania, is expected to have an ultimate recovery of 50 percent of the post-waterflood oil saturation. The surfactant, petroleum sulfonate, was made using lease crude oil.

  8. X-ray reflectivity and interfacial tension study of the structure and phase behavior of the interface between water and mixed surfactant solutions of CH3(CH2)19OH and CF3(CF2)7(CH2)2OH in hexane.

    Science.gov (United States)

    Pingali, Sai Venkatesh; Takiue, Takanori; Luo, Guangming; Tikhonov, Aleksey M; Ikeda, Norihiro; Aratono, Makoto; Schlossman, Mark L

    2005-01-27

    The interface between water and mixed surfactant solutions of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH in hexane was studied with interfacial tension and X-ray reflectivity measurements. Measurements of the tension as a function of temperature for a range of total bulk surfactant concentrations and for three different values of the molal ratio of fluorinated to total surfactant concentration (0.25, 0.28, and 0.5) determined that the interface can be in three different monolayer phases. The interfacial excess entropy determined for these phases suggests that two of the phases are condensed single surfactant monolayers of CH(3)(CH(2))(19)OH and CF(3)(CF(2))(7)(CH(2))(2)OH. By studying four different compositions as a function of temperature, X-ray reflectivity was used to determine the structure of these monolayers in all three phases at the liquid-liquid interface. The X-ray reflectivity measurements were analyzed with a layer model to determine the electron density and thickness of the headgroup and tailgroup layers. The reflectivity demonstrates that phases 1 and 2 correspond to an interface fully covered by only one of the surfactants (liquid monolayer of CH(3)(CH(2))(19)OH in phase 1 and a solid condensed monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH in phase 2). This was determined by analysis of the electron density profile as well as by direct comparison to reflectivity studies of the liquid-liquid interface in systems containing only one of the surfactants (plus hexane and water). The liquid monolayer of CH(3)(CH(2))(19)OH undergoes a transition to the solid monolayer of CF(3)(CF(2))(7)(CH(2))(2)OH with increasing temperature. Phase 3 and the transition regions between phases 1 and 2 consist of a mixed monolayer at the interface that contains domains of the two surfactants. In phase 3 the interface also contains gaseous regions that occupy progressively more of the interface as the temperature is increased. The reflectivity determined the coverage of

  9. Surfactant Adsorption: A Revised Physical Chemistry Lab

    Science.gov (United States)

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  10. Hyaluronan decreases surfactant inactivation in vitro.

    Science.gov (United States)

    Lu, Karen W; Goerke, Jon; Clements, John A; Taeusch, H William

    2005-02-01

    Hyaluronan (HA) is an anionic polymer and a constituent of alveolar fluid that can bind proteins, phospholipids, and water. Previous studies have established that nonionic polymers improve the surface activity of pulmonary surfactants by decreasing inactivation of surfactant. In this work, we investigate whether HA can also have beneficial effects when added to surfactants. We used a modified pulsating bubble surfactometer to measure mixtures of several commercially available pulmonary surfactants or native calf surfactant with and without serum inactivation. Surface properties such as equilibrium surface tension, minimum and maximum surface tensions on compression and expansion of a surface film, and degree of surface area reduction required to reach a surface tension of 10 mN/m were measured. In the presence of serum, addition of HA dramatically improved the surface activities of all four surfactants and in some cases in the absence of serum as well. These results indicate that HA reduces inactivation of surfactants caused by serum and add evidence that endogenous HAs may interact with alveolar surfactant under normal and abnormal conditions.

  11. A Review on Progress in QSPR Studies for Surfactants

    Science.gov (United States)

    Hu, Jiwei; Zhang, Xiaoyi; Wang, Zhengwu

    2010-01-01

    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for nonionic surfactants), biodegradation potential and some other properties of surfactants are evaluated. PMID:20479997

  12. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    Science.gov (United States)

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  13. Surface Tension

    Science.gov (United States)

    Theissen, David B.; Man, Kin F.

    1996-01-01

    The effect of surface tension is observed inmany everyday situations. For example, a slowly leaking faucet drips because the force surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free.

  14. Tension Headache

    Science.gov (United States)

    ... your head Tenderness on your scalp, neck and shoulder muscles Tension headaches are divided into two main categories — ... that monitor and give you feedback on body functions such as muscle tension, heart rate and blood pressure. You then ...

  15. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  16. Cholesterol-mediated surfactant dysfunction is mitigated by surfactant protein A.

    Science.gov (United States)

    Hiansen, Joshua Qua; Keating, Eleonora; Aspros, Alex; Yao, Li-Juan; Bosma, Karen J; Yamashita, Cory M; Lewis, James F; Veldhuizen, Ruud A W

    2015-03-01

    The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-β-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Study of polyacrylamide-surfactant system on the water–oil interface properties and rheological properties for EOR

    Directory of Open Access Journals (Sweden)

    S.Z. Mahdavi

    2017-12-01

    Full Text Available Nowadays, due to the remarkable oil reduction in oil fields, enhanced oil recovery (EOR techniques have been considered by a large number of scientists and company. Situ oil extraction is normally done by these techniques with high efficiency. In this particular study, five different surface active agents (surfactant, two kinds of oil with various API, two kinds of sulfonated polyacrylamide, two different electrolyte solutions with various TDS and two distinctive alcohols were tested and evaluated. An optimal formulation in terms of the properties and quantity of materials has to be used in order to enhance oil recovery, achieved by investigation of surface tension and the phase behavior of mentioned substances. Rheological behavior of polymer flooding and surfactant was studied. Employing this formulation, the maximum micro emulsion of oil in water occurred. Due to the synergy between surfactant and alcohol (as a co-surfactant, relatively lower amounts of surfactants were used which led to the dip in the cost of operation, and ultimately the efficiency of operation improved.

  18. Pulmonary Surfactant Function in Alveoli and Conducting Airways

    Directory of Open Access Journals (Sweden)

    Goran Enhorning

    1996-01-01

    Full Text Available Surface tension plays a very important role in aeration of the neonate's lungs. Pulmonary surfactant, which is inadequate in the premature infant, modifies surface tension during the act of breathing and is necessary for maintenance of alveolar stability. These facts led to the development of the concept that it might be possible to treat the premature infant by supplementing the infant's inadequate surfactant supply. In addition to maintaining alveolar stability, pulmonary surfactant might also be of vital importance for maintenance of small airway patency. Various conditions, most importantly asthma, might be the reason for a surfactant dysfunction to develop. This in turn might cause airway resistance to increase.

  19. Switchable Surfactants

    National Research Council Canada - National Science Library

    Yingxin Liu; Philip G. Jessop; Michael Cunningham; Charles A. Eckert; Charles L. Liotta

    2006-01-01

    .... We report that long-chain alkyl amidine compounds can be reversibly transformed into charged surfactants by exposure to an atmosphere of carbon dioxide, thereby stabilizing water/alkane emulsions...

  20. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  1. MICROBIAL SURFACTANTS. II. LIPOPEPTIDES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2014-04-01

    Full Text Available The classification and the chemical structure of the lipopeptides and their producers (bacteria of the genera Bacillus and Pseudomonas are given. The role of the lipopeptides in cells motility, biofilm formation, metal binding and xenobiotics degradation and their action on the cells of pro- and eukaryotes is summarized. The stages of the nonribosomal lipopeptides synthesis and the role of two-component (GacA/GacS, ComA/ComP and the quorum system regulation of this process are shown. The potential of lactic acid bacteria and marine microorganisms as alternative surfactants producers (glycolipids, lipopeptides, phospholipids and fatty acids, glycolipopeptides are discussed. Their productivity and advantages over traditional producers are given as well. The properties of surfactants synthesized by lactic acid bacteria (the reduction of the surface tension, the critical micelle concentration, the stability in a wide range of pH, the temperature, the biological activity are summarized. Surfactants of nonpathogenic probiotic bacteria could be used as effective antimicrobial agents and antiadhesive and marine producers which able to synthesize unique metabolites that are not produced by other microorganisms.

  2. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  3. Influência dos Íons Mg, Ca, Fe, Cu e Zn sobre a tensão superficial estática de soluções contendo surfatante Influence of Mg, Ca, Fe, Cu and Zn Ions on static surface tension of surfactant solutions

    Directory of Open Access Journals (Sweden)

    F.M.L. Silva

    2006-09-01

    Full Text Available O objetivo do estudo foi avaliar a influência da presença de cinco íons em uma calda de pulverização contendo o surfatante Aterbane. A tensão superficial foi analisada por meio da medição da massa de um conjunto de 25 gotas, com quatro repetições constituindo um tratamento. O trabalho foi dividido em duas etapas. Na primeira, os tratamentos foram combinados em esquema fatorial 9x5x2, sendo nove concentrações do surfatante Aterbane (0,01; 0,025; 0,05; 0,1; 0,2; 0,5; 1; 2; e 3%, cinco íons (Mg++, Ca++, Fe+++, Cu+++ e Zn+++ e duas concentrações desses elementos (10 e 100 ppm. Na segunda etapa, os tratamentos foram combinados em esquema fatorial 5x5x1, utilizandose os mesmos cinco elementos (Mg++, Ca++, Fe+++, Cu+++ e Zn+++, em cinco concentrações (1, 5, 20, 50 e 200 ppm, com apenas uma concentração do surfatante Aterbane (0,025%. Outros nove tratamentos permitiram avaliar as tensões superficiais das concentrações do surfatante (0,01; 0,025; 0,05; 0,1; 0,2; 0,5; 1; 2; e 3% sem a adição dos íons. Os resultados mostraram que houve interferência dos íons sobre as soluções, já que, com exceção do Fe+++ (na concentração de 10 e 100 ppm e do Cu+++ (na concentração de 100 ppm, todos os íons reduziram a tensão mínima alcançada e aumentaram a eficiência do surfatante, implicando benefícios à ação do surfatante e sobre as características de possíveis soluções de aplicação. Todos os íons avaliados promoveram reduções nas tensões superficiais de soluções do surfatante na concentração de 0,025%.The objective of this study was to evaluate the influence of 5 ions on a spray solution containing the surfactant aterbane. Surface tension was analyzed by measuring the mass of a set of 25 drops, with four repetitions constituting a treatment. The work was divided in two stages. In the first, the treatments were arranged in a 9x5x2 factorial design, nine Aterbane concentrations (0.01; 0.025; 0.05; 0.1; 0.2; 0

  4. Palm oil based surfactant products for petroleum industry

    Science.gov (United States)

    Permadi, P.; Fitria, R.; Hambali, E.

    2017-05-01

    In petroleum production process, many problems causing reduced production are found. These include limited oil recovery, wax deposit, asphaltene deposit, sludge deposit, and emulsion problem. Petroleum-based surfactant has been used to overcome these problems. Therefore, innovation to solve these problems using surfactant containing natural materials deserves to be developed. Palm oil-based surfactant is one of the potential alternatives for this. Various types of derivative products of palm oil-based surfactant have been developed by SBRC IPB to be used in handling problems including surfactant flooding, well stimulation, asphaltene dissolver, well cleaning, and wax removal found in oil and gas industry.

  5. A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling

    NARCIS (Netherlands)

    Banerjee, S.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    Surfactants soluble in liquid CO2 are rare and knowledge on interfacial and self-assembly behaviour is fragmented. We found that polyoxyethylene (5) isooctylphenyl ether is interfacially active at the water–liquid CO2 interface. Water–liquid CO2 interfacial tension was measured at various surfactant

  6. Tensão superficial dinâmica e ângulo de contato de soluções aquosas com surfatantes em superfícies artificiais e naturais Dynamic surface tension and contact angle of water solutions with spray surfactants in artificial and natural surfaces

    Directory of Open Access Journals (Sweden)

    Cristina A. R. Iost

    2010-08-01

    Full Text Available O trabalho objetivou avaliar o efeito de surfatantes em soluções aquosas sobre a tensão superficial dinâmica e ângulo de contato das gotas em diferentes superfícies: artificiais (lâmina de vidro e de óxido de alumínio e naturais (superfícies adaxiais de folhas de Euphorbia heterophylla, Ipomoea grandifolia e Brachiaria plantaginea. Seis formulações de surfatantes (Antideriva®; Uno®; Pronto 3®; Li-700®; Supersil® e Silwet L-77®, respectivamente nas doses recomendadas do produto comercial (0,050; 0,025; 0,100; 0,250; 0,100 e 0,100 % v v-1 e o dobro delas, foram avaliadas em soluções aquosas. A tensão superficial dinâmica e o ângulo de contato formado sobre as superfícies naturais foram medidos por tensiômetro. Os ângulos de contato formados pelas gotas nas superfícies artificiais foram obtidos por análise de imagens capturadas por uma câmera digital. Os surfatantes influenciam nas propriedades físico-químicas de soluções aquosas. As soluções contendo os surfatantes Silwet L-77® e Supersil®; nas doses de 0,100 e 0,200% v v-1; proporcionaram maiores reduções na tensão superficial dinâmica e menores ângulos de contato das gotas sobre as superfícies artificiais e naturais. Os surfatantes organossiliconados em solução aquosa foram mais eficientes na redução da tensão superficial e proporcionaram maior molhamento de superfícies natural e artificial. Em alvos naturais, essas propriedades obtidas com organossiliconados são dependentes das características de superfície das espécies vegetais.The aim of the work was to evaluate the effect of surfactants in water solutions on dynamic surface tension and contact angle formed by the spray droplets in different surfaces: artificial (glass and aluminum oxide slides and natural (leaves surface of three species of weeds: Euphorbia heterophylla, Ipomoea grandifolia e Brachiaria plantaginea. Were studied six surfactants formulations (AntiderivaTM; UnoTM; Pronto 3TM

  7. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    Science.gov (United States)

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Investigation of certain physical-chemical features of oil recovery by an optimized alkali-surfactant-foam (ASF) system.

    Science.gov (United States)

    Hosseini-Nasab, S M; Zitha, P L J

    2017-01-01

    The objective of this study is to discover a synergistic effect between foam stability in bulk and micro-emulsion phase behaviour to design a high-performance chemical system for an optimized alkaline-surfactant-foam (ASF) flooding for enhanced oil recovery (EOR). The focus is on the interaction of ASF chemical agents with oil in the presence and absence of a naphthenic acid component and in situ soap generation under bulk conditions. To do so, the impact of alkalinity, salinity, interfacial tension (IFT) reduction and in situ soap generation was systematically studied by a comprehensive measurement of (1) micro-emulsion phase behaviour using a glass tube test method, (2) interfacial tension and (3) foam stability analysis. The presented alkali-surfactant (AS) formulation in this study lowered IFT between the oil and aqueous phases from nearly 30 to 10(-1)-10(-3) mN/m. This allows the chemical formulation to create considerably low IFT foam flooding with a higher capillary number than conventional foam for displacing trapped oil from porous media. Bulk foam stability tests demonstrated that the stability of foam diminishes in the presence of oil with large volumes of in situ soap generation. At lower surface tensions (i.e. larger in situ soap generation), the capillary suction at the plateau border is smaller, thus uneven thinning and instabilities of the film might happen, which will cause acceleration of film drainage and lamellae rupture. This observation could also be interpreted by the rapid spreading of oil droplets that have a low surface tension over the lamella. The spreading oil, by augmenting the curvature radius of the bubbles, decreases the surface elasticity and surface viscosity. Furthermore, the results obtained for foam stability in presence of oil were interpreted in terms of phenomenological theories of entering/spreading/bridging coefficients and lamella number.

  9. Simultaneous injection of polymer and surfactant for improving oil recovery; Injecao simultanea de polimero e surfactante para aumento da recuperacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Ana C.R.; Valentim, Adriano C.M.; Marcelino, Cleuton P.; Fagundes, Fabio P.; Girao, Joaquim H.S.; Garcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Pesquisa em Petroleo (LAPET)

    2004-07-01

    The injection of polymeric solutions in petroleum reservoirs is a supplemental method of petroleum recovery, that seeks to increase the volumetric efficiency of swept of the oil with the decrease of the mobility of the injection water. In the contact between two non miscible fluids, superficial tensions are established, that can influence the relations between the rock and the fluids, depending on the nature of both. Therefore, the combined injection of a surfactant and a polymer can promote improvements in the injectivity and in the global recovery efficiency. In this work it was used samples of commercial polyacrylamide, which were characterized through hydrolysis degree, molecular weight and rheological behavior. From these results it was chosen one sample to be used associated to a polymeric surfactant. Through a core flood system, the following tests were done: injection of polymer solution; injection of surfactant solution followed by polymer solution and injection of surfactant / polymer mixture. The results showed that the injection of surfactant / polymer mixture promoted a significant increase in the residual resistance factor, in relation to the other situations. (author)

  10. The effect of pressure on the phase behavior of surfactant systems: An experimental study

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow; Stenby, Erling Halfdan; von Solms, Nicolas

    2012-01-01

    Enhanced oil recovery is employed in many mature oil reservoirs to maintain or increase the reservoir recovery factor. In this context, surfactant flooding has recently gained interest again. Surfactant flooding is the injection of surfactants (and co-surfactants) into the reservoir, in order...... is influenced to an even greater extent. It was concluded that at certain compositions of the surfactant system (near to the phase boundary found at atmospheric pressure) the increase in pressure changed the phase behavior (for example causing the system to move from two phases to three or vice versa...

  11. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension

    Science.gov (United States)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-01-01

    Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

  12. An Overview of Pulmonary Surfactant in the Neonate: Genetics, Metabolism, and the Role of Surfactant in Health and Disease

    Science.gov (United States)

    Nkadi, Paul O.; Merritt, T. Allen; Pillers, De-Ann M.

    2009-01-01

    Pulmonary surfactant is a complex mixture of phospholipids (PL) and proteins (SP) that reduce surface tension at the air-liquid interface of the alveolus. It is made up of about 70% to 80% PL, mainly dipalmitoylphosphatidylcholine (DPPC), 10% SP-A, B, C and D, and 10% neutral lipids, mainly cholesterol. Surfactant is synthesized, assembled, transported and secreted into the alveolus where it is degraded and then recycled. Metabolism of surfactant is slower in newborns, especially preterm, than in adults. Defective pulmonary surfactant metabolism results in respiratory distress with attendant morbidity and mortality. This occurs due to accelerated breakdown by oxidation, proteolytic degradation, inhibition or inherited defects of surfactant metabolism. Prenatal corticosteroids, surfactant replacement, whole lung lavage and lung transplantation have yielded results in managing some of these defects. Gene therapy could prove valuable in treating inherited defects of surfactant metabolism. PMID:19299177

  13. Efeitos de surfatantes sobre a tensão superficial e a área de molhamento de soluções de glyphosate sobre folhas de tiririca Effects of surfactants on surface tension and foliar wetting solutions of glyphosate over purple nutsedge leaves

    Directory of Open Access Journals (Sweden)

    Cristiane G. de Mendonça

    1999-12-01

    Full Text Available Com o objetivo de avaliar a eficiência da agregação de surfatantes ao herbicida glyphosate analisou-se a tensão superficial de diferentes soluções de pulverização contendo o hebicida e o surfatante, e a área de molhamento destas soluções nas folhas de Cyperus rotundus L.. Foram desenvolvidos métodos para avaliação da tensão superficial e da área de molhamento. Para analisar a tensão fez-se pesagens das gotas formadas na extremidade de uma bureta, com os seguintes tratamentos combinados de forma fatorial (3 x 5 x 11: 3 surfatantes (Extravon, Aterbane e Silwet L-77, 5 concentrações do herbicida, produto comercial Roundup (0; 1; 2; 3,5 e 5 % e 11 concentrações de cada surfatantes (0; 0,005; 0,01; 0,02; 0,05; 0,1; 0,2; 0,5; 1; 2 e 3,5 %, num total de 165 tratamentos. Para avaliar a área de molhamento nas folhas de tiririca aplicou-se gotas de 0,48 .l. Os dados foram ajustados pelo modelo de Mitscherlich e, observou-se que para o surfatante Extravon que a eficiência decrescia gradativamente a medida em que aumentava a concentração do herbicida; para o Aterbane a eficiência foi reduzida apenas em baixas concentrações; já o surfatante Silwet L-77 apresentou eficiência bem superior aos demais e sua eficiência foi pouco alterada com a adição herbicida. Houve uma correlação positiva entre área de molhamento e tensão superficial. Concluiu-se, ainda, que não basta um surfatante reduzir a tensão superficial da água destilada, para que possa ser recomendado seu uso agrícola, assim, o surfatante deve ser submetido a testes preliminares com os defensivos em que serão conjugados para posterior recomendação.This research was undertaken to develop methods to evaluate the surface tension and foliar wetting of surfactant added in herbicide. It used three surfactants (Extravon, Aterbane and Silwet, five concentration of herbicide and eleven surfactant concentrations each. Surface tension and foliar wetting were evaluated by

  14. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  15. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Annual report, June 1, 1997--May 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, R.B.; Schechter, D.S.

    1998-07-01

    The goal of this project is to improve the efficiency of miscible CO{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the first year of the three-year project that will be exploring three principle areas: (1) Fluid and matrix interactions (understanding the problems): interfacial tension (IFT), phase behavior, miscibility, capillary number, injectivity, wettability, and gravity drainage; (2) Conformance control/sweep efficiency (solving the problems): reduction of mobility using foam, diversion by selective mobility reduction (SMR) using foam, improved injectivity, alternating water and gas injection, and using horizontal wells; and (3) Reservoir simulation for improved oil recovery (predicting results): gravity drainage, SMR, CO{sub 2}-foam flooding, interfacial tension, injectivity profile, horizontal wells, and naturally fractured reservoirs. Studies of surfactant foam quality were performed during this first year. Simulation studies on a foam pilot area resulted in an acceptable history match model. The results confirm that the communication path between the foam injection well and a production well had a strong impact on the production performance. A laboratory study to aid in the development of a gravity drainage reservoir was undertaken on the Wellman Unit. Experiments were begun meant to duplicate situations of injectivity loss in WAG flooding and identify factors affecting the injectivity loss. The preliminary results indicate that for a given rock the injectivity loss depends on oil saturation in the core during WAG flooding. The injectivity loss is higher in cores with high in-situ oil saturations during WAG flooding. This effect is being verified by more experimental data.

  16. Alkyl-imidazolium glycosides: non-ionic-cationic hybrid surfactants from renewable resources.

    Science.gov (United States)

    Salman, Abbas Abdulameer; Tabandeh, Mojtaba; Heidelberg, Thorsten; Hussen, Rusnah Syahila Duali; Ali, Hapipah Mohd

    2015-08-14

    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pulmonary surfactant function is abolished by an elevated proportion of cholesterol.

    Science.gov (United States)

    Gunasekara, Lasantha; Schürch, Samuel; Schoel, W Michael; Nag, Kaushik; Leonenko, Zoya; Haufs, Michael; Amrein, Matthias

    2005-10-15

    A molecular film of pulmonary surfactant strongly reduces the surface tension of the lung epithelium-air interface. Human pulmonary surfactant contains 5-10% cholesterol by mass, among other lipids and surfactant specific proteins. An elevated proportion of cholesterol is found in surfactant, recovered from acutely injured lungs (ALI). The functional role of cholesterol in pulmonary surfactant has remained controversial. Cholesterol is excluded from most pulmonary surfactant replacement formulations, used clinically to treat conditions of surfactant deficiency. This is because cholesterol has been shown in vitro to impair the surface activity of surfactant even at a physiological level. In the current study, the functional role of cholesterol has been re-evaluated using an improved method of evaluating surface activity in vitro, the captive bubble surfactometer (CBS). Cholesterol was added to one of the clinically used therapeutic surfactants, BLES, a bovine lipid extract surfactant, and the surface activity evaluated, including the adsorption rate of the substance to the air-water interface, its ability to produce a surface tension close to zero and the area compression needed to obtain that low surface tension. No differences in the surface activity were found for BLES samples containing either none, 5 or 10% cholesterol by mass with respect to the minimal surface tension. Our findings therefore suggest that the earlier-described deleterious effects of physiological amounts of cholesterol are related to the experimental methodology. However, at 20%, cholesterol effectively abolished surfactant function and a surface tension below 15 mN/m was not obtained. Inhibition of surface activity by cholesterol may therefore partially or fully explain the impaired lung function in the case of ALI. We discuss a molecular mechanism that could explain why cholesterol does not prevent low surface tension of surfactant films at physiological levels but abolishes surfactant

  18. Improved Efficiency of Miscible C02 Floods and Enhanced Prospects for C02 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Boyn (Gordon) Guo; David S. Schechter; Jyun-Syung Tsau; Reid B. Grigg; Shih-Hsien (Eric) Chang

    1996-10-10

    Surfactant and foam properties have been evaluated at high pressure using the foam durability apparatus. For a number of surfactant solutions the interfacial tension with cense CO2, critical micelle concentrations, foaming ability, and foam stability were determined. Preliminary results show that these tests correlate well to predict surfactant properties and mobility in cores. Work has also restarted in the parallel-dual permeability system.

  19. A study of surfactant-assisted waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  20. Efficient Interfacially Driven Vehiculization of Corticosteroids by Pulmonary Surfactant.

    Science.gov (United States)

    Hidalgo, Alberto; Salomone, Fabrizio; Fresno, Nieves; Orellana, Guillermo; Cruz, Antonio; Perez-Gil, Jesus

    2017-08-15

    Pulmonary surfactant is a crucial system to stabilize the respiratory air-liquid interface. Furthermore, pulmonary surfactant has been proposed as an effective method for targeting drugs to the lungs. However, few studies have examined in detail the mechanisms of incorporation of drugs into surfactant, the impact of the presence of drugs on pulmonary surfactant performance at the interface under physiologically meaningful conditions, or the ability of pulmonary surfactant to use the air-liquid interface to vehiculise drugs to long distances. This study focuses on the ability of pulmonary surfactant to interfacially vehiculize corticosteroids such as beclomethasone dipropionate (BDP) or Budesonide (BUD) as model drugs. The main objectives have been to (a) characterize the incorporation of corticosteroids into natural and synthetic surfactants, (b) evaluate whether the presence of corticosteroids affects surfactant functionality, and (c) determine whether surfactant preparations enable the efficient spreading and distribution of BDP and BUD along the air-liquid interface. We have compared the performance of a purified surfactant from porcine lungs and two clinical surfactants: Poractant alfa, a natural surfactant of animal origin extensively used to treat premature babies, and CHF5633, a new synthetic surfactant preparation currently under clinical trials. Both, natural and clinical surfactants spontaneously incorporated corticosteroids up to at least 10% by mass with respect to phospholipid content. The presence of the drugs did not interfere with their ability to efficiently adsorb into air-liquid interfaces and form surface active films able to reach and sustain very low surface tensions (<2 mN/m) under compression-expansion cycling mimicking breathing dynamics. Furthermore, the combination of clinical surfactant with corticosteroids efficiently promoted the active diffusion of the drug to long distances along the air-liquid interface. This effect could not be

  1. Influence of metacide - surfactant complexes on agricultural crops

    Directory of Open Access Journals (Sweden)

    Orynkul Esimova

    2014-12-01

    Full Text Available The complexes based on surfactants and polyhexamethyleneguanidine hydrochloride (metacide are important for agriculture. This paper considers compositions of known bactericidal metacide with different surfactants: anionic surfactant sodium dodecylsulphate (DDSNa and nonionic surfactant Tween 80 (monooleate of oxyethylenated anhydrosorbitols. The effect of individual components and associates of metacide and surfactants on productivity and infection of cereals was studied. According to the study, the highest productivity and infection rate were shown by the associate of metacide and Tween-80. At concentration of Tween-80 in aqueous solution equal to 0.001% in combination with metacide, efficiency was 98% at 0% infection. The surface tension and the wetting of metacide, DDSNa, Tween-80, and associates of metacide with surfactants were studied. In comparison with individual components, metacide-DDSNa and metacide-Tween-80 associates have higher surface activity.

  2. Gemini imidazolium surfactants: synthesis and their biophysiochemical study.

    Science.gov (United States)

    Kamboj, Raman; Singh, Sukhprit; Bhadani, Avinash; Kataria, Hardeep; Kaur, Gurcharan

    2012-08-21

    New gemini imidazolium surfactants 9-13 have been synthesized by a regioselective epoxy ring-opening reaction under solvent-free conditions. The surface properties of these new gemini surfactants were evaluated by surface tension and conductivity measurements. These surfactants have been found to have low critical micelle concentration (cmc) values as compared to other categories of gemini cationic surfactants and also showed the tendency to form premicellar aggregates in solution at sufficiently low concentration below their cmc values. The thermal degradation of these surfactants was determined by thermograviometry analysis (TGA). These new cationic surfactants have a good DNA binding capability as determined by agarose gel electrophoresis and ethidium bromide exclusion experiments. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.

  3. Restoring pulmonary surfactant membranes and films at the respiratory surface.

    Science.gov (United States)

    Echaide, Mercedes; Autilio, Chiara; Arroyo, Raquel; Perez-Gil, Jesus

    2017-09-01

    Pulmonary surfactant is a complex of lipids and proteins assembled and secreted by the alveolar epithelium into the thin layer of fluid coating the respiratory surface of lungs. There, surfactant forms interfacial films at the air-water interface, reducing dramatically surface tension and thus stabilizing the air-exposed interface to prevent alveolar collapse along respiratory mechanics. The absence or deficiency of surfactant produces severe lung pathologies. This review describes some of the most important surfactant-related pathologies, which are a cause of high morbidity and mortality in neonates and adults. The review also updates current therapeutic approaches pursuing restoration of surfactant operative films in diseased lungs, mainly through supplementation with exogenous clinical surfactant preparations. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases].

    Science.gov (United States)

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan

    2016-08-01

    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases.

  5. How nanobubbles lose stability: Effects of surfactants

    Science.gov (United States)

    Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Zhang, Xianren

    2017-09-01

    In contrast to stability theories of nanobubbles, the molecular mechanism of how nanobubbles lose stability is far from being understood. In this work, we try to interpret recent experimental observations that the addition of surfactants destabilizes nanobubbles with an unclear mechanism. Using molecular dynamics simulations, we identify two surfactant-induced molecular mechanisms for nanobubbles losing stability, either through depinning of a contact line or reducing vapor-liquid surface tension. One corresponds to the case with significant adsorption of surfactants on the substrates, which causes depinning of the nanobubble contact line and thus leads to nanobubble instability. The other stresses surfactant adsorption on the vapor-liquid interface of nanobubbles, especially for insoluble surfactants, which reduces the surface tension of the interface and leads to an irreversible liquid-to-vapor phase transition. Our finding can help improve our understanding in nanobubble stability, and the insight presented here has implications for surface nanobubbles involving with other amphiphilic molecules, such as proteins and contaminations.

  6. Influence of surfactant and polymer injection order on the parameters of rock-fluid interaction; Influencia da ordem de injecao de surfactante e polimero sobre os parametros de interacao rocha-fluido

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Ana Catarina da Rocha; Fagundes, Fabio Pereira; Garcia, Rosangela Balaban [Rio Grande do Norte Uni., Natal, RN (Brazil). Dept. de Quimica. Lab. de Pesquisa em Petroleo]. E-mail: acrmedeiros@ig.com.br

    2003-07-01

    The injection of polymeric solutions in petroleum reservoirs is a supplemental method of petroleum recovery, that seeks to increase the sweep volumetric efficiency of the oil with the decrease of the injection water mobility. Nevertheless, in the contact between two non miscible fluids, superficial tensions are established, that can influence the relations between the rock and the fluids, depending on the nature of both. Therefore, the combined injection of a surfactant and a polymer can promote improvements in the injectivity and in the global recovery efficiency. In this work it was choose one sample of commercial polyacrylamide to be used associated to a polymeric surfactant, sodium lignosulfonate. Through a core flood system, the following tests were done: injection of only polymer solution; injection of surfactant solution (sodium lignosulfonate) followed by polymer solution; and injection of surfactant / polymer mixture. The results showed that the injection of surfactant / polymer mixture promoted a significant increase in the residual resistance factor, in relation to the other situations. (author)

  7. [Exogenous surfactant therapy: new synthetic surfactants].

    Science.gov (United States)

    Lacaze-Masmonteil, Th

    2008-06-01

    There are numerous pulmonary conditions in which qualitative or quantitative anomalies of the surfactant system have been demonstrated. In premature newborns with immature lungs, a functional deficit in surfactant is the main physiopathologic mechanism of the neonatal respiratory distress syndrome (RDS). Since the landmark pilot study of Fujiwara, published more than 20 years ago, the efficacy of exogenous surfactant for the treatment of neonatal RDS has been established by numerous controlled studies and meta-analyses. Enlightened by a growing insight into both the structure and function of the different surfactant components, a new generation of synthetic surfactants has been developed. Various complementary approaches have confirmed the fundamental role of the two hydrophobic proteins, SP-B and SP-C, in the surfactant system, thus opening the way to the design of analogues, either by chemical synthesis or expression in a prokaryotic system. An example of these peptide-containing synthetic surfactant preparations, lucinactant (Surfaxin), has been recently tested in comparison to a synthetic surfactant that does not contain protein as well as to animal derived surfactant preparations. Major clinical outcomes between lucinactant and animal-derived surfactant preparations were fund similar in two randomized controlled trials, opening the way to a new generation of synthetic surfactants in the near future.

  8. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  9. Visualization of surfactant enhanced NAPL mobilization and solubilization in a two-dimensional micromodel

    Energy Technology Data Exchange (ETDEWEB)

    ZHONG,LIRONG; MAYER,ALEX; GLASS JR.,ROBERT J.

    2000-03-08

    Surfactant-enhanced aquifer remediation is an emerging technology for aquifers contaminated with nonaqueous phase liquids (NAPLs). A two-dimensional micromodel and image capture system were applied to observe NAPL mobilization and solubilization phenomena. In each experiment, a common residual NAPL field was established, followed by a series of mobilization and solubilization experiments. Mobilization floods included pure water floods with variable flow rates and surfactant floods with variations in surfactant formulations. At relatively low capillary numbers (N{sub ca}<10{sup {minus}3}), the surfactant mobilization floods resulted in higher NAPL saturations than for the pure water flood, for similar N{sub ca}.These differences in macroscopic saturations are explained by differences in micro-scale mobilization processes. Solubilization of the residual NAPL remaining after the mobilization stage was dominated by the formation of dissolution fingers, which produced nonequilibrium NAPL solubilization. A macroemulsion phase also as observed to form spontaneously and persist during the solubilization stage of the experiments.

  10. Competitive adsorption: a physical model for lung surfactant inactivation.

    Science.gov (United States)

    Fernsler, Jonathan G; Zasadzinski, Joseph A

    2009-07-21

    Charged, surface-active serum proteins can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the alveolar air-liquid interface via a kinetically controlled competitive adsorption process. The decreased surfactant concentration at the interface leads to higher surface tensions during the compression of the interface during breathing. The correspondence between the factors governing colloid stability and competitive adsorption is validated via a new method of measuring surfactant and serum protein adsorption rates to the air-water interface, using quantitative Brewster angle microscopy (BAM). Competitive adsorption from a 10 mg/mL albumin subphase prevents the adsorption of lung surfactant from even high subphase concentrations due to the fast diffusion of the water-soluble proteins to the interface. The formation of an albumin film causes an electrostatic and steric barrier to subsequent surfactant adsorption, which can destroy the necessary properties of functional lung surfactant: low surface tension during compression and rapid respreading after film collapse. Surfactant inactivation is at least partially due to decreased surfactant adsorption; such decreased adsorption due to the presence of serum proteins may play a role in the development and severity of acute respiratory distress syndrome.

  11. A comparative study of mechanisms of surfactant inhibition.

    Science.gov (United States)

    Gunasekara, Lasantha; Schoel, W Michael; Schürch, Samuel; Amrein, Matthias W

    2008-02-01

    Pulmonary surfactant spreads to the hydrated air-lung interface and reduces the surface tension to a very small value. This function fails in acute respiratory distress syndrome (ARDS) and the surface tension stays high. Dysfunction has been attributed to competition for the air-lung interface between plasma proteins and surfactant or, alternatively, to ARDS-specific alterations of the molecular profile of surfactant. Here, we compared the two mechanisms in vitro, to assess their potential role in causing respiratory distress. Albumin and fibrinogen exposure at or above blood level concentrations served as the models for testing competitive adsorption. An elevated level of cholesterol was chosen as a known adverse change in the molecular profile of surfactant in ARDS. Bovine lipid extract surfactant (BLES) was spread from a small bolus of a concentrated suspension (27 mg/ml) to the air-water interface in a captive bubble surfactometer (CBS) and the bubble volume was cyclically reduced and increased to assess surface activity of the spread material. Concentrations of inhibitors and the concentration and spreading method of pulmonary surfactant were chosen in an attempt to reproduce the exposure of surfactant to inhibitors in the lung. Under these conditions, neither serum albumin nor fibrinogen was persistently inhibitory and normal near-zero minimum surface tension values were obtained after a small number of cycles. In contrast, inhibition by an increased level of cholesterol persisted even after extensive cycling. These results suggest that in ARDS, competitive adsorption may not sufficiently explain high surface tension, and that disruption of the surfactant film needs to be given causal consideration.

  12. Competitive Adsorption: A Physical Model for Lung Surfactant Inactivation

    OpenAIRE

    Fernsler, Jonathan G.; Zasadzinski, Joseph A.

    2009-01-01

    Charged, surface-active serum proteins can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the alveolar air-liquid interface via a kinetically controlled competitive adsorption process. The decreased surfactant concentration at the interface leads to higher surface tensions during the compression of the interface during breathing. The correspondence between the factors governing colloid stability and competitive adsorption is validated via a new method of m...

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  14. Thermally cleavable surfactants

    Science.gov (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Surface tension of Nanofluid-type fuels containing suspended nanomaterials.

    Science.gov (United States)

    Tanvir, Saad; Qiao, Li

    2012-04-18

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  16. Surface tension of Nanofluid-type fuels containing suspended nanomaterials

    Science.gov (United States)

    2012-01-01

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039

  17. The unusual symmetric reopening effect induced by pulmonary surfactant.

    Science.gov (United States)

    Yamaguchi, Eiichiro; Giannetti, Matthew J; Van Houten, Matthew J; Forouzan, Omid; Shevkoplyas, Sergey S; Gaver, Donald P

    2014-03-15

    This study investigates the stability of a finger of air as it propagates into a liquid-filled model of a liquid-filled model of a pulmonary bifurcation. We seek to elucidate the stability characteristics of the reopening of daughter airways, an event that may be important to the treatment of acute lung disease. To do so, we investigated the symmetry of reopening under conditions of nearly constant surface tension with 1) purified H2O or 2) an anionic surfactant (sodium dodecyl sulfate). Dynamic surface tension was investigated using pulmonary surfactant (Infasurf) with and without the presence of albumin. Flow visualization was accomplished using a microparticle image velocimetry (μ-PIV)/shadowgraph system through which we measured 1) the propagation velocity of the finger of air that reopens each daughter branch, and 2) the instantaneous and averaged velocity field of liquid phase surrounding the tip of the propagating bubble. Only pulmonary surfactant demonstrated the ability of maintaining a nearly symmetric propagation in the daughter channels, which is likely to lead to homogeneous airway reopening. In contrast, when pulmonary surfactant was inactivated by albumin or when the system was held at a nearly constant surface tension, reopening occurred asymmetrically. Our analysis suggests that Infasurf's dynamic surface tension qualities are important to stabilize the removal of liquid obstructions. This demonstrates a new important function of pulmonary surfactant for airway reopening of a multibranched network.

  18. Surfactant alteration and replacement in acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Walmrath Dieter

    2001-10-01

    Full Text Available Abstract The acute respiratory distress syndrome (ARDS is a frequent, life-threatening disease in which a marked increase in alveolar surface tension has been repeatedly observed. It is caused by factors including a lack of surface-active compounds, changes in the phospholipid, fatty acid, neutral lipid, and surfactant apoprotein composition, imbalance of the extracellular surfactant subtype distribution, inhibition of surfactant function by plasma protein leakage, incorporation of surfactant phospholipids and apoproteins into polymerizing fibrin, and damage/inhibition of surfactant compounds by inflammatory mediators. There is now good evidence that these surfactant abnormalities promote alveolar instability and collapse and, consequently, loss of compliance and the profound gas exchange abnormalities seen in ARDS. An acute improvement of gas exchange properties together with a far-reaching restoration of surfactant properties was encountered in recently performed pilot studies. Here we summarize what is known about the kind and severity of surfactant changes occuring in ARDS, the contribution of these changes to lung failure, and the role of surfactant administration for therapy of ARDS.

  19. Synthesis and surface activity of diether-linked phosphoglycerols: potential applications for exogenous lung surfactants.

    Science.gov (United States)

    Notter, Robert H; Wang, Zhongyi; Wang, Zhengdong; Davy, Jason A; Schwan, Adrian L

    2007-01-01

    The synthesis of three phosphoglycerols is described, one of which contains the previously unknown phosphonoglycerol headgroup. The surface tension-lowering capabilities of synthetic lung surfactant mixtures containing the PG analogs were measured on the pulsating bubble surfactometer and compared to known controls. The PG-containing mixtures exhibited superior surface tension-lowering properties indicating the significant potential of these analogs as components in synthetic exogenous lung surfactants.

  20. Surfactants in microbiology and biotechnology: Part 2. Application aspects.

    Science.gov (United States)

    Singh, Ajay; Van Hamme, Jonathan D; Ward, Owen P

    2007-01-01

    Surfactants are amphiphilic compounds which can reduce surface and interfacial tensions by accumulating at the interface of immiscible fluids and increase the solubility, mobility, bioavailability and subsequent biodegradation of hydrophobic or insoluble organic compounds. Chemically synthesized surfactants are commonly used in the petroleum, food and pharmaceutical industries as emulsifiers and wetting agents. Biosurfactants produced by some microorganisms are becoming important biotechnology products for industrial and medical applications due to their specific modes of action, low toxicity, relative ease of preparation and widespread applicability. They can be used as emulsifiers, de-emulsifiers, wetting and foaming agents, functional food ingredients and as detergents in petroleum, petrochemicals, environmental management, agrochemicals, foods and beverages, cosmetics and pharmaceuticals, and in the mining and metallurgical industries. Addition of a surfactant of chemical or biological origin accelerates or sometimes inhibits the bioremediation of pollutants. Surfactants also play an important role in enhanced oil recovery by increasing the apparent solubility of petroleum components and effectively reducing the interfacial tensions of oil and water in situ. However, the effects of surfactants on bioremediation cannot be predicted in the absence of empirical evidence because surfactants sometimes stimulate bioremediation and sometimes inhibit it. For medical applications, biosurfactants are useful as antimicrobial agents and immunomodulatory molecules. Beneficial applications of chemical surfactants and biosurfactants in various industries are discussed in this review.

  1. Surfactant in airway disease.

    Science.gov (United States)

    Enhorning, Goran

    2008-04-01

    Beta(2)-adrenergic agonists cause a release of pulmonary surfactant into lung airways. The surfactant phospholipids maintain the patency of the conducting airways, but this function is inhibited by plasma proteins entering an inflamed airway. The physical behavior of the surfactant can be studied with a pulsating bubble surfactometer and a capillary surfactometer. Calf lung surfactant extract was found to be inhibited by plasma proteins and by a lowering of temperature. Severe breathing difficulties and malfunctioning surfactant developed in BALB/c mice inhaling ozone or infected with respiratory syncytial virus, mainly as a result of proteins invading the airways. Patients with asthma were challenged with allergens in an area of one lung. BAL fluid (BALF) from such an area contained a surfactant that functioned poorly (ie, an inability to maintain airway openness) compared with BALF from the other lung or from the lungs of healthy volunteers. When proteins in the BALF were removed, surfactant performance clearly improved. Eosinophils, so prominent in asthmatic patients, synthesize the enzyme lysophospholipase, which, together with the enzyme phospholipase A(2), catalyzes the hydrolysis of the main component of the surfactant, phosphatidylcholine. Such hydrolysis incapacitates the ability of the surfactant to maintain airway patency. The treatment of asthma with beta(2)-adrenergic agonists and steroids will have a valuable effect on the surfactant system. It will cause a release of fresh surfactant into terminal airways. Surfactant can also be nebulized and inhaled, which has been shown to be an effective treatment.

  2. A Comparative Study of the Effect of Surfactant and Temperature in Fluid Interfaces

    Science.gov (United States)

    Cortes-Estrada, Aldo H.; Ibarra-Bracamontes, Laura A.; Aguilar-Corona, Alicia; Viramontes-Gamboa, Gonzalo

    2016-11-01

    A fluid interface is the boundary region formed when two immiscible fluids come into contact. One of the most important properties of fluid interfaces is the interfacial tension. The interfacial tension between two fluids can be modified by the presence of surfactant. In addition, the temperature is a relevant factor that can also modify the interfacial properties. In this work the behavior of the interface formed by oil and water in the presence of surfactant at different temperatures is presented. Interfacial tension measurements were obtained by the Pendant Drop technique. Two types of surfactant were tested, Sodium Dodecyl Sulfate (SDS) as a hydrophilic surfactant, and Sorbitan Monooleate (Span 80) as a lipophilic surfactant. The range of variations in temperature was from 25 to 60 Celsius degree. Hexane or Dodecane was used as the oil phase. The main results showed that the lipophilic surfactant showed a greater efficiency with respect to the hydrophilic surfactant used. As the temperature increased in the range considered an exponential decay for the interfacial tension was observed. This decay was dominated by the surfactant concentration. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.

  3. Effect of Oil on Gravity Segregation in SAG Foam Flooding

    NARCIS (Netherlands)

    Hussain, A.A.A.; Amin, A.; Vincent-Bonnieu, S.Y.F.; Andrianov, A; Abdul Hamid, P.; Rossen, W.R.

    2017-01-01

    We report a simulation study of surfactant-alternating-gas (SAG) foam injection into a waterflooded oil reservoir. We show the effects of oil, and of SAG cycle size and number on sweep efficiency, and the longterm impact of a single surfactant slug on the areal sweep efficiency of a gas-flood. Shan

  4. Syntheses of surfactants from oleochemical epoxides

    Directory of Open Access Journals (Sweden)

    Warwel Siegfried

    2001-01-01

    Full Text Available Sugar-based surfactants were obtained in good yields (up to 100% under mild conditions (70°C, methanol or mixtures of methanol and water by ring-opening of terminal epoxides with aminopolyols, derived from glucose. Reaction of N-methyl glucamine with epoxides from even-numbered C4-C18 alpha-olefins or from terminal unsaturated fatty acid methyl esters leads to linear products, while corresponding reactions with N-dodecyl glucamine or glucamine yield surfactants with different Y-structures. Products obtained by conversion of omega-epoxy fatty acid methyl esters were saponificated with NaOH or hydrolyzed enzymatically to sodium salts or free acids respectively, which are amphoteric surfactants. Studies of the surfactants at different pH-values demonstrate different surface active properties in aqueous solutions. Critical micelle concentrations (c.m.c. in a range between 2 and 500mg/l and surface tensions of 25-40mN/m were measured for several of the synthesized sugar-based surfactants. The ring-opening products are rather poor foamers, whereas some of the corresponding hydrobromides show good foaming properties.

  5. Arbitrary Lagrangian-Eulerian method for computation of impinging droplet with soluble surfactants and dynamic contact angle

    CERN Document Server

    Ganesan, Sashikumaar

    2014-01-01

    An arbitrary Lagrangian--Eulerian (ALE) finite element scheme for computations of soluble surfactant droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent Navier--Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model through the surfactant-dependent surface tension and dynamic contact angle. In particular, the dynamic contact angle of the droplet is defined as a function of surfactants using the nonlinear equation of state for surface tension. Further, the surface forces are included in the model using the Boussinesq-Scriven law that allows to incorporate the Marangoni effects without evaluating the gradients of surfactant concentration on the free surface. In addition to a mesh convergence study ...

  6. Diester-containing Zwitterionic Gemini Surfactants with Different Spacer and Its Impact on Micellization Properties and Viscosity of Aqueous Micellar Solution.

    Science.gov (United States)

    Patil, Sachin Vasant; Patil, Sanyukta Arun; Pratap, Amit Prabhakar

    2016-09-01

    A series of diester containing zwitterionic gemini surfactants, N,N-dimethyl-N-alkyl-2-[[hydroxy (alkoxy) phosphinyl]oxy]-alkylammonium designated as C8(-)-S-Cn(+), S = 2 and 3, n = 12, 14 and 16, were synthesized and characterized by instrumental techniques namely FT-IR, (1)H NMR, (13)C NMR, (31)P NMR and Mass spectral studies. These new gemini surfactants further investigated for their various surfactant properties. The critical micelle concentration (cmc) and the effectiveness of surface tension reduction (Πcmc) were determined as a function of surfactant concentration by means of surface tension measurement. Micellization and viscosity properties were investigated by surface tension, electrical conductivity, dye micellization and rheology techniques. The findings of the aqueous surfactant system obtained were impacted by polarity, size and the nature of zwitterions as the surface. The thermodynamic and viscosity properties of these surfactants found to be based on the structures of gemini surfactants.

  7. Soluble oil flooding

    Energy Technology Data Exchange (ETDEWEB)

    Holm, L.W.; Knight, R.K.

    1976-11-01

    A soluble oil-polymer flooding process used in previously waterflooded reservoirs utilizes oleic, micellar solutions which, when injected as small slugs and driven by polymer thickened water, are capable of displacing all oil and water contacted. During the micellar flood, oil and water are displaced from reservoir rock by one or more of the following mechanisms: (1) miscible-type displacement of oil by soluble oil; (2) miscible-type displacement of resident water by injection water and soluble oil; (3) formation of microemulsions by the intermingling of soluble oil and injected water; and (4) reduction of interfacial tension between oil and water phases where both are present. The Higgs Unit, site of a field test of soluble oil flooding, is a small pool in the Jones County Regular field near Abilene, Tex. Field data, special equipment, test evaluation, and field test conclusions are given for this operation.

  8. Novel fluorinated gemini surfactants with γ-butyrolactone segments.

    Science.gov (United States)

    Kawase, Tokuzo; Okada, Kazuyuki; Oida, Tatsuo

    2015-01-01

    In this work, novel γ-butyrolactone-type monomeric and dimeric (gemini) surfactants with a semifluoroalkyl group [Rf- (CH2)3-; Rf = C4F9, C6F13, C8F17] as the hydrophobic group were successfully synthesized. Dimethyl malonate was dimerized or connected using Br(CH2)sBr (s = 0, 1, 2, 3) to give tetraesters, and they were bis-allylated. Radical addition of fluoroalkyl using Rf-I and an initiator, i.e., 2,2'-azobisisobutyronitrile for C4F9 or di-t-butyl peroxide for C6F13 and C8F17, was perform at high temperature, with prolonged heating, to obtain bis(semifluoroalkyl)-dilactone diesters. These dilactone diesters were hydrolyzed using KOH/EtOH followed by decarboxylation in AcOH to afford γ-butyrolactonetype gemini surfactants. Common 1 + 1 semifluoroalkyl lactone surfactants were synthesized using the same method. Their surfactant properties [critical micelle concentration (CMC), γCMC, pC20, ΓCMC, and AG] were investigated by measuring the surface tension of the γ-hydroxybutyrate form prepared in aqueous tetrabutylammonium hydroxide solution. As expected, the CMC values of the gemini surfactants were more than one order of magnitude smaller than those of the corresponding 1 + 1 surfactants. Other properties also showed the excellent ability of the gemini structure to reduce the surface tension. These surfactants were easily and quantitatively recovered by acidification. The monomeric surfactant was recovered in the γ-hydroxybutyric acid form, and the gemini surfactant as a mixture of γ-butyrolactone and γ-hydroxybutyric acid forms.

  9. Synthesis, surface properties and oil solubilisation capacity of cationic gemini surfactants

    NARCIS (Netherlands)

    Dam, Th.; Engberts, J.B.F.N.; Karthäuser, J.; Karaborni, S.; Os, N.M. van

    1996-01-01

    The critical micelle concentration (CMC) and the surface tension at the CMC have been determined for the gemini surfactants alkanediyl-u,w-bis(dimethyla1kylammoniubmr omide) by means of dynamic surface tension measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic

  10. Surfactant-induced flow compromises determination of air-water interfacial areas by surfactant miscible-displacement.

    Science.gov (United States)

    Costanza-Robinson, Molly S; Henry, Eric J

    2017-03-01

    Surfactant miscible-displacement (SMD) column experiments are used to measure air-water interfacial area (AI) in unsaturated porous media, a property that influences solute transport and phase-partitioning. The conventional SMD experiment results in surface tension gradients that can cause water redistribution and/or net drainage of water from the system ("surfactant-induced flow"), violating theoretical foundations of the method. Nevertheless, the SMD technique is still used, and some suggest that experimental observations of surfactant-induced flow represent an artifact of improper control of boundary conditions. In this work, we used numerical modeling, for which boundary conditions can be perfectly controlled, to evaluate this suggestion. We also examined the magnitude of surfactant-induced flow and its impact on AI measurement during multiple SMD flow scenarios. Simulations of the conventional SMD experiment showed substantial surfactant-induced flow and consequent drainage of water from the column (e.g., from 75% to 55% SW) and increases in actual AI of up to 43%. Neither horizontal column orientation nor alternative boundary conditions resolved surfactant-induced flow issues. Even for simulated flow scenarios that avoided surfactant-induced drainage of the column, substantial surfactant-induced internal water redistribution occurred and was sufficient to alter surfactant transport, resulting in up to 23% overestimation of AI. Depending on the specific simulated flow scenario and data analysis assumptions used, estimated AI varied by nearly 40% and deviated up to 36% from the system's initial AI. We recommend methods for AI determination that avoid generation of surface-tension gradients and urge caution when relying on absolute AI values measured via SMD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enhanced oil recovery with modified nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, A.; Littmann, W.

    1982-01-01

    Practically all work on chemical flooding, both in the laboratory and in the field, has been focused on petroleum sulphonates. However, as soon as the concentration of electrolyes, especially of divalent ions, exceeds a critical value, the use of this class of anionic surfactants becomes troublesome. Some of the difficulties may be overcome by the use of additives, preferably ether sulphates or ether sulphonates. Hence, the favourable properties of nonionic substances, such as excellent stability to electrolytes, have been combined with those of anionics, and thus the so-called modified nonionics are available for chemical flooding. These products offer the possibility of chemical adaption to the reservoir conditions, are very stable toward electrolytes, and their solubility does not depend on the temperature. The latter is a drawback of nonionic products (cloud point). The modified nonionics are essentially anionics based on ethene oxide derivatives of alcohols or alkylphenols, with subsequent incorporation of sulphate, sulphonate, carboxyl or phosphate groups. On the basis of the reservoir conditions, crude oil properties, and reservoir water, various processes have been screened for enhanced oil recovery in the Velebit reservoir. It was decided to simultaneously inject modified nonionic surfactants and polymers. In part of the reservoir, this process will be tested in two stages in a line drive with several injection wells and production wells. The total area is about 20,000 m/sup 3/. The first stage involves water flooding of about half the area, in order to collect additional data on the reservoir. During the second stage, simultaneous injection of surfactants and polymers will take place. The reservoir is described, and possible EOR processes, the flooding concept and selection of chemicals are discussed.

  12. Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry

    Science.gov (United States)

    Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)

    2002-01-01

    While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).

  13. Pulmonary surfactant therapy.

    OpenAIRE

    Poulain, F R; Clements, J. A.

    1995-01-01

    Surfactant replacement therapy is now an integral part of the care of neonates since several clinical trials of natural surfactant extracts and synthetic preparations have shown efficacy in the treatment of infants with hyaline membrane disease. In these studies, early treatment with exogenous surfactant substantially reduced mortality and the incidence of air leak, although it did not appear to reduce the incidence of other complications, in particular bronchopulmonary dysplasia. Early repor...

  14. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  15. Role of surfactants in the number of secondary droplet generation during drop coalescence

    Science.gov (United States)

    Haldar, Krishnayan; Chakraborty, Sudipto

    The current study focuses on the variation in secondary droplet generation number with surfactant types and concentrations while surfactant laden drop impinges on a water pool. Cationic, anionic and non-ionic surfactant solutions of different concentrations are used as liquid drop. We observe from high speed imaging technique that secondary droplet generation number increases with increasing concentration for cationic and nonionic whereas it decreases for anionic surfactants. The variation of dimensionless viscosity to surface tension ratio of each surfactant determines the droplet generation number. Also the empirical relations between dimensionless coalescence time and Reynolds, Ohnesorge Number for the impinging drops reveal the dominance of viscous force over inertial and surface forces during the cascade. High viscous force, low inertial force and low surface force reduces the coalescence time. Hence, partial coalescence is faster for drops which high viscosity, low surface tension and low impact velocity and consequently the number of secondary droplet generation in the cascade will also increase.

  16. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Second annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, M.J.

    1995-04-01

    {open_quotes}Investigation of Oil Recovery Improvement by Coupling an Interfacial Tension Agent and a Mobility Control Agent in Light Oil Reservoirs{close_quotes} is studying two major areas concerning co-injecting an interfacial tension reduction agent(s) and a mobility control agent. The first area defines the interactions of alkaline agents, surfactants, and polymers on a fluid-fluid and a fluid-rock basis. The second area concerns the economic improvement of the combined technology. This report continues the fluid-fluid interaction evaluations and begins the fluid-rock studies. Fluid-fluid interfacial tension work determined that replacing sodium ion with either potassium or ammonium ion in solutions with interfacial tension reduction up to 19,600 fold was detrimental and had little or no effect on alkali-surfactant solutions with interfacial tension reduction of 100 to 200 fold. Reservoir brine increases interfacial tension between crude oil and alkaline-surfactant solutions. Na{sub 2}CO{sub 3}-surfactant solutions maintained ultra low and low interfacial tension values better than NaOH-surfactant solutions. The initial phase of the fluid-rock investigations was adsorption studies. Surfactant adsorption is reduced when co-dissolved with alkali. Na{sub 2}CO{sub 3} and Na{sub 3}PO{sub 4} are more efficient at reducing surfactant adsorption than NaOH. When polymer is added to the surfactant solution, surfactant adsorption is reduced as well. When both polymer and alkali are added, polymer is the dominate component, reducing the Na{sub 2}CO{sub 3} and NaOH effect on adsorption. Substituting sodium ion with potassium or ammonium ion increased or decreased surfactant adsorption depending on surfactant structure with alkali having a less significant effect. No consistent change of surfactant adsorption with increasing salinity was observed in the presence or absence of alkali or polymer.

  17. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Quarterly technical progress report, October 1--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, R.B.; Schechter, D.S.

    1997-03-01

    Progress has been made in each of the three project areas during this quarter. Each quarter the authors highlight one project area. This quarter, Task 1 is being highlighted with expanded details. In Task 1, a foam-durability apparatus was used to evaluate surfactant and foam properties (interfacial tension (IFT) of surfactant solution with dense CO{sub 2}, the critical micelle concentration, foaming ability of the mixture and foam stability) at high pressure condition. These data were correlated with the dynamic properties of foam measured in coreflooding experiments. For the five surfactants tested the results show that effectiveness of mobility reduction of foam in porous media is strongly correlated with the stability of foam in the bulk phase and the mobility reduction factor increases with the reduction of IFT. During this quarter in Task 2 a new series of core flood tests was completed, that measured the effects of CO{sub 2} flow fraction and rock permeability on foam-flow behavior. Also, an apparatus was designed, built, and tested under reservoir conditions that measures volume and composition of CO{sub 2} hydrocarbon extractable components. In Task 3 this quarter, a core was prepared to aid in the determination of the effect of water saturation on the efficiency of CO{sub 2} gravity drainage.

  18. Measurement of dynamic surface tension by mechanically vibrated sessile droplets.

    Science.gov (United States)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  19. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  20. Nucleate pool boiling heat transfer in aqueous surfactant solutions

    Science.gov (United States)

    Wasekar, Vivek Mahadeorao

    Saturated, nucleate pool boiling in aqueous surfactant solutions is investigated experimentally. Also, the role of Marangoni convection, driven both by temperature and surfactant concentration gradients at the vapor-liquid interface of a nucleating bubble is computationally explored. Experimental measurements of dynamic and equilibrium sigma using the maximum bubble pressure method indicate dynamic sigma to be higher than the corresponding equilibrium value, both at room and elevated temperatures. Also, nonionic surfactants (Triton X-100, Triton X-305) show larger sigma depression than anionic surfactants (SDS, SLES), and a normalized representation of their dynamic adsorption isotherms is shown to be helpful in generalizing the surfactant effectiveness to reduce surface tension. The dynamic sigma has a primary role in the modification of bubble dynamics and associated heat transfer, and is dictated by the adsorption kinetics of the surfactant molecules at boiling temperatures. In general, an enhancement in heat transfer is observed, which is characterized by an early incipience and an optimum boiling performance at or around the critical micelle concentration of the surfactant. The optimum performances, typically in the fully developed boiling regime ( q''w > 100 kW/m2), show a reverse trend with respect to surfactant molecular weights M, i.e., higher molecular weight additives promote lower enhancement. Normalized boiling performance using the respective solution's dynamic sigma correlates heat transfer coefficient by M-0.5 for anionics and M 0 for nonionics. This has been shown to be brought about by the surfactant concentration and its interfacial activity in a concentration sublayer around the growing vapor bubble, which governs the bubble growth behavior through the mechanism of dynamic sigma. The ionic nature of the surfactant influences the thickness and molecular makeup of the enveloping sublayer, thereby affecting the bubble dynamics and boiling heat

  1. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; Krumm, Christoph; Ren, Limin; Damen, Jonathan N.; Shete, Meera H.; Lee, Han Seung; Zuo, Xiaobing; Lee, Byeongdu; Fan, Wei; Vlachos, Dionisios G.; Lobo, Raul F.; Tsapatsis, Michael; Dauenhauer, Paul J.

    2016-11-23

    An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water while simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.

  2. Mechanisms to explain surfactant responses.

    Science.gov (United States)

    Jobe, Alan H

    2006-01-01

    Surfactant is now standard of care for infants with respiratory distress syndrome. Surfactant treatments are effective because of complex metabolic interactions between surfactant and the preterm lung. The large treatment dose functions as substrate; it is taken up by the preterm lung and is reprocessed and secreted with improved function. The components of the treatment surfactant remain in the preterm lung for days. If lung injury is avoided, then surfactant inhibition is minimized. Prenatal corticosteroids complement surfactant to further enhance lung function. The magic of surfactant therapy results from the multiple interactions between surfactant and the preterm lung. Copyright (c) 2006 S. Karger AG, Basel.

  3. Improved Efficiency of Miscible C02 Floods and Enhanced Prospects for C02 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Boyun (Gordon) Guo; David S. Schechter; Jyun-Syung Tsau; Reid B. Grigg; Shih-Hsien (Eric) Chang

    1997-01-23

    A grant, �Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs,� DOE Contract No. DE-FG26-97BC15047, was awarded and started on June 1, 1997. This project examines three major areas in which CO2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. In this quarter we continued the examination of synergistic effects of mixed surfactant versus single surfactant systems to enhance the properties of foams used for improving oil recovery in CO2 floods. The purpose is to reduce the concentration of surfactants and find less expensive surfactants. Also, we are refining reservoir models to handle the complex relationships of CO2-foam and heterogeneous reservoirs. The third area of our report this quarter comprises the results from experiments on CO2-assisted gravity drainage in naturally fractured oil reservoirs. Two more CO2 core flood experiments have been conducted under reservoir conditions to investigate the effect of pressure on oil recovery efficiency during CO2-assisted gravity drainage.

  4. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2003-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have acquired field oil and core samples and field brine compositions from Marathon. We have conducted preliminary adsorption and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Receding contact angles increase with surfactant adsorption. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  5. Skin tension related to tension reduction sutures.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon; Kim, Kyung Yong; Han, Seung Ho; Hwang, Se Jin

    2015-01-01

    The aim of this study was to compare the skin tension of several fascial/subcutaneous tensile reduction sutures. Six upper limbs and 8 lower limbs of 4 fresh cadavers were used. At the deltoid area (10 cm below the palpable acromion) and lateral thigh (midpoint from the palpable greater trochanter to the lateral border of the patella), and within a 3 × 6-cm fusiform area of skin, subcutaneous tissue defects were created. At the midpoint of the defect, a no. 5 silk suture was passed through the dermis at a 5-mm margin of the defect, and the defect was approximated. The initial tension to approximate the margins was measured using a tensiometer.The tension needed to approximate skin without any tension reduction suture (S) was 6.5 ± 4.6 N (Newton). The tensions needed to approximate superficial fascia (SF) and deep fascia (DF) were 7.8 ± 3.4 N and 10.3 ± 5.1 N, respectively. The tension needed to approximate the skin after approximating the SF was 4.1 ± 3.4 N. The tension needed to approximate the skin after approximating the DF was 4.9 ± 4.0 N. The tension reduction effect of approximating the SF was 38.8 ± 16.4% (2.4 ± 1.5 N, P = 0.000 [ANOVA, Scheffé]). The tension reduction effect of approximating the DF was 25.2% ± 21.9% (1.5 ± 1.4 N, P = 0.001 [ANOVA, Scheffé]). The reason for this is thought to be that the SF is located closely to the skin unlike the DF. The results of this study might be a basis for tension reduction sutures.

  6. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-01-01

    Reasonable suspicion has accumulated that inhaled nano-scale particulate matter influences the biophysical function of the pulmonary surfactant system. Hence, it is evident to provide novel insights into the extent and mechanisms of nanoparticle-surfactant interactions in order to facilitate the fabrication of safe nanomedicines suitable for pulmonary applications. Negatively- and positively-charged poly(styrene) nanoparticles (diameters of ~100nm) served as model carriers. Nanoparticles were incubated with several synthetic and naturally-derived pulmonary surfactants to characterize the sensitivity of each preparation to biophysical inactivation. Changes in surface properties (i.e. adsorption and dynamic surface tension behavior) were monitored in a pulsating bubble surfactometer. Both nanoparticle formulations revealed a dose-dependent influence on the biophysical behavior of all investigated pulmonary surfactants. However, the surfactant sensitivity towards inhibition depended on both the carrier type, where negatively-charged nanoparticles showed increased inactivation potency compared to their positively-charged counterparts, and surfactant composition. Among the surfactants tested, synthetic mixtures (i.e. phospholipids, phospholipids supplemented with surfactant protein B, and Venticute®) were more susceptible to surface-activity inhibition as the more complex naturally-derived preparations (i.e. Alveofact® and large surfactant aggregates isolated from rabbit bronchoalveolar lavage fluid). Overall, nanoparticle characteristics and surfactant constitution both influence the extent of biophysical inhibition of pulmonary surfactants. © 2013.

  7. Influence of age on surfactant isolated from healthy horses maintained on pasture.

    Science.gov (United States)

    Christmann, U; Hite, R D; Witonsky, S G; Elvinger, F; Werre, S R; Thatcher, C D; Tan, R H H; Buechner-Maxwell, V A

    2009-01-01

    Surfactant alterations are described in horses after exercise, anesthesia, and prolonged transport, in horses with recurrent airway obstruction, and in neonatal foals. The effect of horse age or bronchoalveolar lavage fluid (BALF) sample characteristics on surfactant is unknown. To evaluate surfactant phospholipid composition and function in healthy horses, and to investigate the influence of age and BALF sample characteristics on surfactant. Seventeen healthy horses 6-25 years of age maintained on pasture year-round. BALF was collected by standard procedures and was assessed for recovery volume, nucleated cell count (NCC), and cytology. Cell-free BALF was separated into crude surfactant pellet (CSP) and surfactant supernatant (Supe) by ultracentrifugation. Phospholipid and protein content were determined from both fractions. CSP phospholipid composition was analyzed by high-performance liquid chromatography with an evaporative light scatter detector. Surface tension of CSP was evaluated with a pulsating bubble surfactometer. Regression analysis was used to evaluate associations between age, BALF sample characteristics, and surfactant variables. Results and conclusions were derived from 15 horses. Increasing age was associated with decreased phospholipid content in CSP but not Supe. Age did not affect protein content of CSP or Supe, or surfactant phospholipid composition or function. Age-related surfactant changes were unaffected by BALF recovery percentage, NCC, and cytological profile. Older horses have decreased surfactant phospholipid content, which might be because of age-related pulmonary changes. Surfactant composition is unaffected by BALF sample characteristics at a BALF recovery percentage of at least 50%.

  8. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo.

  9. Demonstration of Surface Tension.

    Science.gov (United States)

    Rosenthal, Andrew J.

    2001-01-01

    Surface tension is a fundamental obstacle in the spontaneous formation of bubbles, droplets, and crystal nuclei in liquids. Describes a simple overhead projector demonstration that illustrates the power of surface tension that can prevent so many industrial processes. (ASK)

  10. Lung surfactant function and composition in neonatal foals and adult horses.

    Science.gov (United States)

    Christmann, Undine; Livesey, Leanda C; Taintor, Jennifer S; Waldridge, Bryan M; Schumacher, John; Grier, Bonnie L; Hite, R Duncan

    2006-01-01

    Lung surfactant function and composition are varied and adapted to the specific respiratory physiology of all mammalian species. Lung surfactant function and composition are different in neonatal foals as compared to adult horses. Six adult horses, 7 term foals (surfactant into crude surfactant pellets (CSP) and supernatant. Both fractions were analyzed for phospholipid and protein content with the Bartlett and bicinchoninic acid method, respectively. Phospholipid composition of the CSP was determined by using high-performance liquid chromatography with an evaporative light scatter detector. Surface tension of the CSP was measured with a pulsating bubble surfactometer. Results from term foals (surfactant in neonatal foals are significantly different compared to adult horses. These changes may influence biophysical and immunologic functions of surfactant.

  11. Unique solution properties of quaternized oligomeric surfactants derived from ethylenediamine or G0 poly (amidoamine) dendrimers.

    Science.gov (United States)

    Yoshimura, Tomokazu; Abe, Shunsuke; Esumi, Kunio

    2012-01-01

    New quaternized oligomeric surfactants containing 4 or 8 alkyl chains were synthesized using ethylenediamine or poly(amidoamine) dendrimers as the central scaffold. Electrical conductivity, surface tension, and pyrene fluorescence measurements, as well as dynamic light scattering were used to characterize their properties. In addition, the dependence of these properties on the alkyl chain length, number of chains, and dendrimer generation was determined through comparison with previously reported oligomeric surfactants. The relation between surface tension and concentration for the oligomeric surfactants exhibited clear breakpoints, which reflect the critical micelle concentration (cmc). Both cmc and surface tension were lower than those of monomeric alkyltrimethylammonium bromide surfactants, indicating that the synthesized oligomeric surfactants have excellent micelle-forming ability in solution and high adsorption ability at the air/water interface, in spite of the large bulky structure containing multiple alkyl chains and headgroups within one molecule. When the alkyl chain length or the number of chains of the oligomeric surfactants was increased, a unique behavior was observed in that adsorption at the air/water interface and solution aggregation occurred simultaneously at a concentration below cmc (as determined by the surface tension method). This suggests that aggregate formation occurs readily in solution along with the adsorption at the interface because of strong attractive interactions between multiple alkyl chains.

  12. Preparation and evaluation of some amide ether carboxylate surfactants

    Directory of Open Access Journals (Sweden)

    M.M.A. El-Sukkary

    2012-06-01

    Full Text Available A homologous series of new mild surfactants, namely: Alkyl amide ether carboxylates surfactants (AEC RCO–NHCH2CH2O (CH2CH2O6CH2COONa, were synthesized by esterification, amidation, ethoxylation and carboxymethylation reaction steps of fatty acids (Lauric, Myristic, palmitic, stearic, oleic or linoleic. The chemical structures of the prepared compounds were confirmed using different spectroscopic techniques, FTIR spectroscopy, mass spectra and HNMR. The surface properties including surface and interfacial tensions, foaming height, emulsification power, calcium ion stability, stability to hydrolysis and critical micelle concentration (cmc were determined. The study of their surface properties showed their stability in hard water and in acidic and alkaline media. These compounds have high calcium ion stability. The low foaming power could have an application in the dyeing auxiliary industry. The lower values of the interfacial tension values indicate the ability of using these surfactants in several applications as corrosion inhibitors and biocides. The data revealed various advantages and potentials as a main surfactant as well as co- surfactants.

  13. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Akiba, Kazuki

    2016-01-01

    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.

  14. Use of nanoparticles to improve the performance of sodium dodecyl sulfate flooding in a sandstone reservoir

    Science.gov (United States)

    Ahmadi, Mohammad Ali

    2016-12-01

    One of the prominent enhanced oil recovery (EOR) methods in oil reservoirs is surfactant flooding. The purpose of this research is to study the effect of nanoparticles on the surfactant adsorption. Real reservoir sandstone rock samples were implemented in adsorption tests. The ranges of the initial surfactant and nano silica concentrations were from 500 to 5000 ppm and 500 ppm to 2000 ppm, respectively. The commercial surfactant used is sodium dodecyl sulfate (SDS) as an ionic surfactant and two different types of nano silica were employed. The rate of surfactant losses extremely depends on the concentration of surfactant in the system, and it was found that the adsorption of surfactant decreased with increasing the concentration of nano silica. Also, it was found that hydrophobic nano silica is more effective than hydrophilic nanoparticles.

  15. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  16. Meconium impairs pulmonary surfactant by a combined action of cholesterol and bile acids.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Echaide, Mercedes; Cruz, Antonio; Taeusch, H William; Perez-Gil, Jesus

    2011-02-02

    Mechanisms for meconium-induced inactivation of pulmonary surfactant as part of the meconium aspiration syndrome in newborn infants, to our knowledge, are not clearly understood. Here we have studied the biophysical mechanisms of how meconium affects surface activity of pulmonary surfactant and whether the membrane-perturbing effects of meconium can be mimicked by exposure of surfactant to a mixture of bile acids and cholesterol. Surface activity of pulmonary surfactant complexes purified from animal lungs was analyzed in the absence and in the presence of meconium in standard surface balances and in a captive bubble surfactometer. We have also evaluated accumulation of surfactant at the air-liquid interface by what we believe to be a novel microtiter plate fluorescent assay, and the effect of meconium components on surfactant membrane fluidity using Laurdan fluorescence thermotropic profiles and differential scanning calorimetry thermograms. Rapid interfacial adsorption, low surface tension upon film compression, efficient film replenishment upon expansion, and thermotropic properties of surfactant complexes are all adversely affected by meconium, and, in a similar manner, they are affected by cholesterol/taurocholate mixtures but not by taurocholate alone. We conclude that inhibition of surfactant by meconium can be mimicked by a bile salt-promoted incorporation of excess cholesterol into surfactant complexes. These results highlight the potential pathogenic role of cholesterol-mobilizing agents as a crucial factor resulting in cholesterol induced alterations of structure and dynamics of surfactant membranes and films. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury.

    Science.gov (United States)

    Vockeroth, Dan; Gunasekara, Lasantha; Amrein, Matthias; Possmayer, Fred; Lewis, James F; Veldhuizen, Ruud A W

    2010-01-01

    Mechanical ventilation may lead to an impairment of the endogenous surfactant system, which is one of the mechanisms by which this intervention contributes to the progression of acute lung injury. The most extensively studied mechanism of surfactant dysfunction is serum protein inhibition. However, recent studies indicate that hydrophobic components of surfactant may also contribute. It was hypothesized that elevated levels of cholesterol significantly contribute to surfactant dysfunction in ventilation-induced lung injury. Sprague-Dawley rats (n = 30) were randomized to either high-tidal volume or low-tidal volume ventilation and monitored for 2 h. Subsequently, the lungs were lavaged, surfactant was isolated, and the biophysical properties of this isolated surfactant were analyzed on a captive bubble surfactometer with and without the removal of cholesterol using methyl-beta-cyclodextrin. The results showed lower oxygenation values in the high-tidal volume group during the last 30 min of ventilation compared with the low-tidal volume group. Surfactant obtained from the high-tidal volume animals had a significant impairment in function compared with material from the low-tidal volume group. Removal of cholesterol from the high-tidal volume group improved the ability of the surfactant to reduce the surface tension to low values. Subsequent reconstitution of high-cholesterol values led to an impairment in surface activity. It is concluded that increased levels of cholesterol associated with endogenous surfactant represent a major contributor to the inhibition of surfactant function in ventilation-induced lung injury.

  18. Nonionic polymers reverse inactivation of surfactant by meconium and other substances.

    Science.gov (United States)

    William Taeusch, H; Lu, K W; Goerke, J; Clements, J A

    1999-05-01

    A variety of substances including human meconium have been found to affect adversely the surface tension-lowering activity of pulmonary surfactants, and this effect may be important in the pathogenesis of a number of human diseases. To find whether inactivation of surfactant could be prevented or reduced by nonionic polymers, we added dextrans, polyethylene glycols (PEGs), or polyvinylpyrrolidones (PVPs) of various molecular weights to pulmonary surfactants. One to 3% human meconium or other inactivating substances were then added to the mixtures, which were tested in a modified pulsating bubble surfactometer. Polymers (3.3-500 kD) in 1-10% concentrations enhanced the ability of a commercial surfactant replacement (Survanta) to lower the minimum surface tension in the presence of meconium, serum, or lysophosphatidylcholine. Similar effects were seen when polymers were added after mixing of surfactant and meconium or other inhibitors, indicating that polymers are capable of reversing the inactivation. Results from rat experiments indicate that total lung capacity is increased when PEG is first added to the Survanta, then mixed with meconium and instilled into the lungs. We postulate that polymers separate meconium-surfactant complexes, permitting surfactant components better access to the air-liquid interface. Taeusch HW, Lu KW, Goerke J, Clements JA. Nonionic polymers reverse inactivation of surfactant by meconium and other substances.

  19. Respiratory and Systemic Effects of LASSBio596 Plus Surfactant in Experimental Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    Johnatas Dutra Silva

    2016-02-01

    Full Text Available Background/Aims: Exogenous surfactant has been proposed as adjunctive therapy for acute respiratory distress syndrome (ARDS, but it is inactivated by different factors present in the alveolar space. We hypothesized that co-administration of LASSBio596, a molecule with significant anti-inflammatory properties, and exogenous surfactant could reduce lung inflammation, thus enabling the surfactant to reduce edema and improve lung function, in experimental ARDS. Methods: ARDS was induced by cecal ligation and puncture surgery in BALB/c mice. A sham-operated group was used as control (CTRL. After surgery (6 hours, CTRL and ARDS animals were assigned to receive: (1 sterile saline solution; (2 LASSBio596; (3 exogenous surfactant or (4 LASSBio596 plus exogenous surfactant (n = 22/group. Results: Regardless of exogenous surfactant administration, LASSBio596 improved survival rate and reduced collagen fiber content, total number of cells and neutrophils in PLF and blood, cell apoptosis, protein content in BALF, and urea and creatinine levels. LASSBio596 plus surfactant yielded all of the aforementioned beneficial effects, as well as increased BALF lipid content and reduced surface tension. Conclusion: LASSBio596 exhibited major anti-inflammatory and anti-fibrogenic effects in experimental sepsis-induced ARDS. Its association with surfactant may provide further advantages, potentially by reducing surface tension.

  20. Effect of anionic surfactants on grafting density of gelatin modified with PDMS-E.

    Science.gov (United States)

    Xu, Jing; Xu, Zhen; Qiao, Cong-De; Li, Tian-Duo

    2014-02-01

    The effect of anionic surfactants on the interfacial compatibility in mono epoxy terminated polydimethylsiloxane (PDMS-E) macromonomer and gelatin mixed system was studied by Gibbs free energy (ΔGM), which played a crucial role in deciding the grafting density of immiscible polymer in heterogeneous system. Aggregation behavior of gelatin chains at boundary between gelatin phase and solvent phase was investigated using viscosity, surface tension and conductivity measurements. Viscosity analysis showed a regular increase in viscosity with the increasing alkyl chain length from C7 to C16 of the homologous alkyl sulfate surfactants. Changes of surface tension exhibited the regular curves of polyelectrolyte-anionic surfactant for alkyl sulfate surfactant systems. The results demonstrated that aggregate structure of gelatin-sulfate surfactants was dominated by electrostatic and hydrophobic interactions, which resulted in a self-assembly process of the hydrophobic segments and hydrophilic segments among gelatin chains and surfactant molecules. However, the interactions between gelatin and alkyl sulfonate surfactants were mainly governed by hydrophobic interactions, which induced conformation change of gelatin molecules. Well-ordered arrangement of gelatin chains at a fluid interface has observed by high-resolution transmission electron microscopy (HR-TEM). It is a key factor to contribute to the reduction of interfacial free energy, which mainly depends on the hydrophobic interaction between gelatin and alkyl sulfate/sulfonate surfactants. MD simulations conclusions are great agreement with our experimental results. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Measuring Surface Tension of a Flowing Soap Film

    Science.gov (United States)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  2. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    Science.gov (United States)

    Mendenhall, Jonathan D.

    Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc

  3. Anomalous behavior during leveling of thin coating layers with surfactant

    Science.gov (United States)

    Schwartz, L. W.; Cairncross, R. A.; Weidner, D. E.

    1996-07-01

    Our recently-published linear analysis [Schwartz et al., Langmuir 11, 3690 (1995)] demonstrated that an initially rippled thin layer of Newtonian liquid with uniformly distributed surfactant may level in unexpected ways. While the presence of surfactant will, in general, slow the rate of leveling compared to that of a perfectly clean system, there was shown to exist a realistic parameter range where increasing, rather than reducing, the amount of surfactant present will hasten leveling. Here, for the two-dimensional problem, we investigate the importance of nonlinearity though numerical solution of (i) the unsteady lubrication form of the evolution equations with surfactant, and (ii) finite-element solution of the exact governing equations for slow viscous flow. Confirmation of the linear results is demonstrated and quantitative discrepancy only appears for large-amplitude and short-wavelength ripples. Surface tension gradient driven flow explains the anomalies; for moderate surfactants, the surface quickly `hardens,' leading to a decay rate of one-quarter of the clean-surface rate, while for weak surfactants, leveling proceeds to a plateau level which decays much slower than the hard-surface result.

  4. Enantioselectivity of vesicle-forming chiral surfactants in capillary electrophoresis. Role of the surfactant headgroup structure.

    Science.gov (United States)

    Mohanty, Ashok; Dey, Joykrishna

    2006-09-22

    Two vesicle-forming single-tailed amino acid derivatized surfactants sodium N-[4-n-dodecyloxybenzoyl]-L-leucinate (SDLL) and sodium N-[4-n-dodecyloxybenzoyl]-L-isoleucinate (SDLIL) have been synthesized and used as pseudo-stationary phase in micellar electrokinetic chromatography to evaluate the role of steric factor of amino acid headgroup and hydrophobic/hydrophilic interactions for enantiomeric separations. The aggregation behavior of the surfactants has been studied in aqueous buffered solution using surface tension and fluorescence probe techniques. Results of these studies have suggested formation of vesicles in aqueous solutions. Microenvironment of the vesicle, which determines the depth of penetration of the analytes into vesicle was determined by fluorescence probe technique using pyrene, N-phenyl-1-naphthylamine (NPN), and 1,6-diphenyl-1,3,5-hexatriene (DPH) as probe molecules. Atropisomeric compounds (+/-)-1,1'-bi-2-naphthol (BOH), (+/-)-1,1'-binaphthyl-2,2'-diamine (BDA), (+/-)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate (BNP) and Tröger's base (TB) and chiral compound benzoin (BZN) has been enantioseparated. The separations were optimized with respect to surfactant concentration, pH, and borate buffer concentration. SDLL was found to provide better resolution for BOH, BNP, and BZN. On the other hand, SDLIL offers better resolution for BDA. The chromatographic results have been discussed in the light of the aggregation behavior of the surfactants and the interaction of the solutes with the vesicles.

  5. The effects of ambient impurities on the surface tension

    Directory of Open Access Journals (Sweden)

    Ponce-Torres A.

    2016-01-01

    Full Text Available A liquid bridge is a liquid column held captive between two coaxial and parallel solid disks. It is an excellent test bench where measuring the surface tension. In this paper, we used this fluid configuration to examine experimentally the effects of ambient impurities on the surface tension over time. For this purpose, the liquid bridge equilibrium shape was analyzed when the liquid bridge was surrounded by three environments: the uncontrolled ambient, and both air and argon encapsulated in a small glass cover. Ambient contamination produced a sharp decrease of the surface tension of ultra-pure water. The presence of an anionic surfactant in the free surface of an aqueous solution did not inhibit the action of impurities coming from the ambient. Impurities can influence the dynamical behavior of the free surface in flows dominated by the surface tension. Therefore, a careful control of that influence can be crucial in many applications of fluid mechanics.

  6. First-principles prediction of liquid/liquid interfacial tension

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Bennetzen, M.V.; Klamt, A.

    2014-01-01

    The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation...... of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid...

  7. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    Science.gov (United States)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  8. Permanent tensions in organization.

    Science.gov (United States)

    Jansson, Noora

    2015-01-01

    The purpose of this paper is to investigate the relationship between permanent tensions and organizational change. This study used paradox theory and a case study. The case organization is a public university hospital in Finland involving several stakeholders. The analysis suggests that the relationship between permanent tensions and organizational change is a paradox that is part of organizational reality. As an organization learns to live with its permanent tensions, the renewal paradox settles into equilibrium. When tensions are provoked, the paradox is disturbed until it finds a new balance. This flexible nature of the paradox is the force that keeps the different stakeholders simultaneously empowered to maintain their unique missions and cohesive in order to benefit from the larger synergy. This research suggests that identification and evaluation of each permanent tension within an organization is important when executing organizational change. The fact that certain tensions are permanent and cannot be solved may have an influence on how planned change initiatives are executed. The results show that permanent tensions may be harnessed for the benefit of an organizational change. This research demonstrates originality by offering an alternative view of tensions, a view which emphasizes not only their permanent and plural nature but their importance for enabling the organization to change at its own, non-disruptive pace. The research also proposes a new concept, the "renewal paradox", to enhance understanding of the relationship between permanent tensions and organizational change.

  9. The Effect of Surfactants on the Stability of Sodium Hypochlorite Preparations.

    Science.gov (United States)

    Guastalli, Andrea R; Clarkson, Roger M; Rossi-Fedele, Giampiero

    2015-08-01

    The purpose of the present study was to assess the effect of the presence of surfactants over time on free available chlorine (FAC), pH, viscosity, and surface tension of sodium hypochlorite (NaOCl) preparations. Three preparations containing surfactant (Chlor-XTRA 6% [Vista Dental Products, Racine, WI], Hypocelle 4% Forte [Dentalife, Ringwood, Australia], and White King Lemon [Pental, Shepparton, Australia]) and 2 without, Vista 6% (Vista Dental Products) and Hypocelle 4% Forte plain (Dentalife), were tested. The solutions were stored in closed plastic bottles and protected from light at a constant 20°C for 213 days. FAC was measured using iodometric titration, whereas pH, surface tension, and viscosity were measured using a pH meter, pendant drop method, and rheometer, respectively. The influence of the type of solution and the presence of surfactant over time on FAC was compared with the aid of linear regression models. Two-way analysis of variance was used to evaluate the effect of passage of time and the type of solution on surface tension and the effect of the presence or absence of surfactant on the solutions. The Bonferroni test was used for multiple comparisons (post hoc) and to evaluate the effect of the presence of surfactant between solutions from the same manufacturer (α = 0.05). Degradation of available chlorine was faster in the presence of surfactant when comparing solutions from the same manufacturer [Chlor-XTRA versus Vista (P < .001) and for Hypocelle 4% Forte versus Hypocelle 4% Forte plain (P = .024)]. There was a gradual decline in pH over time, but viscosity remained stable. The surface tension of all products decreased over time (P = .025, F). The presence of surfactant hastened the degradation of FAC in all affected NaOCl solutions. The observed changes in pH and viscosity were minor, whereas their surface tension showed a significant decrease. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights

  10. Alkyl polyglycoside/1-naphthol formulations. A case study of surfactant enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Iglauer, Stefan; Wu, Yongfu; Shuler, Patrick; Tang, Yongchun [California Institute of Technology, Covina, CA (United States). Div. of Chemistry and Chemical Engineering; Goddard, William A. III [California Institute of Technology, Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering

    2011-03-15

    We present a case study of surfactant enhanced oil recovery using Alkyl polyglucoside/1-naphthol formulations. Alkyl polyglucosides are a green, non-toxic and renewable surfactant class synthesized out of agricultural raw materials. We measured interfacial tensions versus n-octane and viscosities of these formulations and conducted one coreflood enhanced oil recovery (EOR) experiment where we recovered 82.6 % of initial oil in place demonstrating that these formulations are efficient EOR agents. (orig.)

  11. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections

    Science.gov (United States)

    Han, SeungHye

    2015-01-01

    Pulmonary surfactant is essential for life as it lines the alveoli to lower surface tension, thereby preventing atelectasis during breathing. Surfactant is enriched with a relatively unique phospholipid, termed dipalmitoylphosphatidylcholine, and four surfactant-associated proteins, SP-A, SP-B, SP-C, and SP-D. The hydrophobic proteins, SP-B and SP-C, together with dipalmitoylphosphatidylcholine, confer surface tension–lowering properties to the material. The more hydrophilic surfactant components, SP-A and SP-D, participate in pulmonary host defense and modify immune responses. Specifically, SP-A and SP-D bind and partake in the clearance of a variety of bacterial, fungal, and viral pathogens and can dampen antigen-induced immune function of effector cells. Emerging data also show immunosuppressive actions of some surfactant-associated lipids, such as phosphatidylglycerol. Conversely, microbial pathogens in preclinical models impair surfactant synthesis and secretion, and microbial proteinases degrade surfactant-associated proteins. Deficiencies of surfactant components are classically observed in the neonatal respiratory distress syndrome, where surfactant replacement therapies have been the mainstay of treatment. However, functional or compositional deficiencies of surfactant are also observed in a variety of acute and chronic lung disorders. Increased surfactant is seen in pulmonary alveolar proteinosis, a disorder characterized by a functional deficiency of the granulocyte-macrophage colony-stimulating factor receptor or development of granulocyte-macrophage colony-stimulating factor antibodies. Genetic polymorphisms of some surfactant proteins such as SP-C are linked to interstitial pulmonary fibrosis. Here, we briefly review the composition, antimicrobial properties, and relevance of pulmonary surfactant to lung disorders and present its therapeutic implications. PMID:25742123

  12. Reduction of water surface tension significantly impacts gecko adhesion underwater.

    Science.gov (United States)

    Stark, Alyssa Y; McClung, Brandon; Niewiarowski, Peter H; Dhinojwala, Ali

    2014-12-01

    The gecko adhesive system is dependent on weak van der Waals interactions that are multiplied across thousands of fine hair-like structures (setae) on geckos' toe pads. Due to the requirements of van der Waals forces, we expect that any interruption between the setae and substrate, such as a water layer, will compromise adhesion. Our recent results suggest, however, that the air layer (plastron) surrounding the superhydrophobic toe pads aid in expelling water at the contact interface and create strong shear adhesion in water when in contact with hydrophobic surfaces. To test the function of the air plastron, we reduced the surface tension of water using two surfactants, a charged anionic surfactant and a neutral nonionic surfactant. We tested geckos on three substrates: hydrophilic glass and two hydrophobic surfaces, glass with a octadecyl trichlorosilane self-assembled monolayer (OTS-SAM) and polytetrafluoroethylene (PTFE). We found that the anionic surfactant inhibited the formation of the air plastron layer and significantly reduced shear adhesion to all three substrates. Interestingly, the air plastron was more stable in the nonionic surfactant treatments than the anionic surfactant treatments and we found that geckos adhered better in the nonionic surfactant than in the anionic surfactant on OTS-SAM and PTFE but not on glass. Our results have implications for the evolution of a superhydrophobic toe pad and highlight some of the challenges faced in designing synthetic adhesives that mimic geckos' toes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    Science.gov (United States)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional

  14. Tensions in Distributed Leadership

    Science.gov (United States)

    Ho, Jeanne; Ng, David

    2017-01-01

    Purpose: This article proposes the utility of using activity theory as an analytical lens to examine the theoretical construct of distributed leadership, specifically to illuminate tensions encountered by leaders and how they resolved these tensions. Research Method: The study adopted the naturalistic inquiry approach of a case study of an…

  15. Parametric analysis of surfactant-aided imbibition in fractured carbonates.

    Science.gov (United States)

    Adibhatla, B; Mohanty, K K

    2008-01-15

    Many carbonate oil reservoirs are oil-wet and fractured; waterflood recovery is very low. Dilute surfactant solution injection into the fractures can improve oil production from the matrix by altering the wettability of the rock to a water-wetting state. A 2D, two-phase, multicomponent, finite-volume, fully-implicit numerical simulator calibrated with our laboratory results is used to assess the sensitivity of the process to wettability alteration, IFT reduction, oil viscosity, surfactant diffusivity, matrix block dimensions, and permeability heterogeneity. Capillarity drives the oil production at the early stage, but gravity is the major driving force afterwards. Surfactants which alter the wettability to a water-wet regime give higher recovery rates for higher IFT systems. Surfactants which cannot alter wettability give higher recovery for lower IFT systems. As the wettability alteration increases the rate of oil recovery increases. Recovery rate decreases with permeability significantly for a low tension system, but only mildly for high tension systems. Increasing the block dimensions and increasing oil viscosity decreases the rate of oil recovery and is in accordance with the scaling group for a gravity driven process. Heterogeneous layers in a porous medium can increase or decrease the rate of oil recovery depending on the permeability and the aspect ratio of the matrix block.

  16. Chemoenzymatic synthesis and properties of novel lactone-type anionic surfactants.

    Science.gov (United States)

    Mori, Keisuke; Matsumura, Shuichi

    2012-01-01

    Two series of lactone-type surfactants with and without a hexyl side chain were prepared by the cyclocondensation of dimethyl alkanedioates with unsaturated diols, such as cis-2-butene-1,4-diol and ricinoleyl alcohol, using a lipase, followed by the addition of hydrophilic 3-mercaptopropionic acid in the presence of triethylamine. The lactone-type surfactants showed clear cmc values and surface tension lowering in aqueous solution irrespective of the hexyl side chain. It was found that the cmc values of lactone-type surfactants were lower than that of typical anionics, e.g., sodium laurate, and the cmc value became lower with increasing size of the lactone ring. The adsorption area at the surface of the aqueous lactone-type surfactant solution was larger when compared to the corresponding non-lactone-type surfactants. Lactone-type surfactants without the hexyl side chain aggregated quickly, forming 3-10 nm micelles; on the other hand, lactone-type surfactants with the hexyl side chain formed significantly larger micelles. This is due to the steric hindrance of the hexyl group on the lactone ring. The solubilization ability of the lactone-type surfactants with a hexyl side chain was superior to those without a hexyl side chain. The lactone-type surfactants showed a high foaming power and low foaming stability. They were also biodegraded by activated sludge.

  17. Mixtures of hydrocarbon and fluoro-carbon surfactants in micelles and at phase boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, M.Y.; Frolov, Y.G.; Remizov, Y.V.

    1986-07-01

    A deviation from the additivity of the surface and interphase tension of aqueous solutions of mixtures of sodium lauryl sulfate with the sodium and ammonium salt of perfluoropelargonic acid was found. The antagonism of the surfactants consists of the fact that the critical micelle concentration (CMC) of their mixtures is higher than the CMC of the individual components and in the presence of a critical concentration of demicellization of the surfactants detected in solubilization of the dye. The aqueous films containing the surfactants investigated are stable on the surface of CCl/sub 4/, decrease the rate of its evaporation and promote foaming.

  18. [Effect of bile acids on surface tension of bronchoalveolar lavage fluid in rabbits].

    Science.gov (United States)

    Wang, Fei; Zhao, Cong; Tian, Yinghong; Yin, Yanru

    2014-10-01

    To observe changes in surface tension of bronchoalveolar lavage fluids (BALF) in rabbits with hyperbilirubinemia and the influence of bile diluents and 5 different bile acids on BALF surface tension to provide better insight into the regulatory role of bile acids on respiratory function. Bronchoalveolar lavage with 0.9% normal saline was carried out in 30 male New Zealand rabbits and the surface tensions of BALF were measured. The changes in BALF surface tension was measured in rabbits with hyperbilirubinemia. Different concentrations of bile diluents, normal saline, or water solutions of 5 bile acids were added into the collected BALF to test their influence on the surface tension of BALF. The BALF from rabbits with hyperbilirubinemia showed a significantly increased surface tension (Psurface tension of the BALF by 21.15%, 26.09%, and 19.64%, respectively. Among the water solutions of the 5 bile acids, UDCA produced no significant influence on the surface tension of BALF while CDCA, CA, LCA, and DCA increased the surface tension by 16.10%, 21.66%, 14.21%, and 13.05%, respectively. The surface tension of BALF increases significantly during hyperbilirubinemia. Bile diluents as well as the free bile acids CDCA, CA, LCA and DCA, but not UDCA, can increase the surface tension of BALF, suggesting that these bile acids may emulsify pulmonary alveolar surfactants to increase the alveolar surface tension.

  19. Structures of pulmonary surfactant films adsorbed to an air-liquid interface in vitro.

    Science.gov (United States)

    Bachofen, H; Gerber, U; Gehr, P; Amrein, M; Schürch, S

    2005-12-30

    Phospholipid films can be preserved in vitro when adsorbed to a solidifiable hypophase. Suspensions of natural surfactant, lipid extract surfactants, and artificial surfactants were added to a sodium alginate solution and filled into a captive bubble surfactometer (CBS). Surfactant film was formed by adsorption to the bubble of the CBS for functional tests. There were no discernible differences in adsorption, film compressibility or minimal surface tension on quasi-static or dynamic compression for films formed in the presence or absence of alginate in the subphase of the bubble. The hypophase-film complex was solidified by adding calcium ions to the suspension with the alginate. The preparations were stained with osmium tetroxide and uranyl acetate for transmission electron microscopy. The most noteworthy findings are: (1) Surfactants do adsorb to the surface of the bubble and form osmiophilic lining layers. Pure DPPC films could not be visualized. (2) A distinct structure of a particular surfactant film depends on the composition and the concentration of surfactant in the bulk phase, and on whether or not the films are compressed after their formation. The films appear heterogeneous, and frequent vesicular and multi-lamellar film segments are seen associated with the interfacial films. These features are seen already upon film formation by adsorption, but multi-lamellar segments are more frequent after film compression. (3) The rate of film formation, its compressibility, and the minimum surface tension achieved on film compression appear to be related to the film structure formed on adsorption, which in turn is related to the concentration of the surfactant suspension from which the film is formed. The osmiophilic surface associated surfactant material seen is likely important for the surface properties and the mechanical stability of the surfactant film at the air-fluid interface.

  20. The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

    Directory of Open Access Journals (Sweden)

    Braun Armin

    2009-09-01

    Full Text Available Abstract Background Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO2 nanosized particles (NSP and microsized particles (MSP on biophysical surfactant function after direct particle contact and after surface area cycling in vitro. In addition, TiO2 effects on surfactant ultrastructure were visualized. Methods A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml of TiO2 NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope. Results TiO2 NSP, but not MSP, induced a surfactant dysfunction. For TiO2 NSP, adsorption surface tension (γads increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p min slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p 2 NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γads (63.6 ± 0.4 mN/m and γmin (21.1 ± 0.4 mN/m. Interestingly, TiO2 NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae. Conclusion TiO2 nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.

  1. Polymer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  2. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    2010-02-01

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  3. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  4. Modification of shape oscillations of an attached bubble by surfactants

    Directory of Open Access Journals (Sweden)

    Tihon J.

    2013-04-01

    Full Text Available Surface-active agents (surfactants, e.g. washing agents strongly modifies properties of gas-liquid interface. We have carried out extensive experiments, in which we study effect of surfactants on the shape oscillations of a bubble, which is attached at a tip of a capillary. In the experiments, shape oscillations of a bubble are invoked by a motion of a capillary, to which the bubble is injected. Decaying oscillations are recorded and their frequency and damping are evaluated. By changing the excitation frequency, three lowest oscillation modes are studied. Experiments were repeated in aqueous solution of several surfactants (terpineol, SDS, CTAB, Triton X-100, Triton X-45 at various concentrations. Generally, these features are observed: Initially a surfactant addition leads to an increase of the oscillation frequency (though surface tension is decreasing; this effect can be attributed to the increasing interfacial elasticity. The decay time of oscillation is strongly decreasing, as a consequence of energy dissipation linked with Marangoni stresses. At a certain critical concentration, frequency decreases abruptly and the decay time passes by a minimum. With further addition of surfactant, frequency decreases, and the decay time slightly lengthens. Above critical micelle concentration, all these parameters stabilize. Interestingly, the critical concentration, at which frequency drop occurs, depends on mode order. This clearly shows that the frequency drop and minimum decay time are not a consequence of some abrupt change of interfacial properties, but are a consequence of some phenomena, which still need to be explained.

  5. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    Science.gov (United States)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  6. Gemini (dimeric) Surfactants

    Indian Academy of Sciences (India)

    carboxylate, sulphonate), or nonionic (polyether, sugar). (iv) gemini surfactants. Symmetrical and nonsymmetrical GS are known (see[2]), that is, these mayor may not have two identical polar groups and two identical chains. (v) GS with three or more polar groups or chains are also known. Some representative examples [2] ...

  7. Gemini (dimeric) Surfactants

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 3. Gemini (dimeric) Surfactants - The Two-Faced Molecules. B S Sekhon. General Article Volume 9 Issue 3 March 2004 pp 42-49. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/009/03/0042-0049 ...

  8. Effect of inorganic additives on solutions of nonionic surfactants III: CMC's and surface properties.

    Science.gov (United States)

    Schott, H; Han, S K

    1976-07-01

    Continuing work on the interaction of inorganic additives with nonionic surfactants in aqueous solution dealt with their effect on the CMC and surface tension. The surfactants were octoxynol and polyoxyethylated oleyl alcohol, containing an average of 9.5 and 10 ethylene oxide units, respectively. Their CMC values were lowered by most electrolytes studied, representing salting out of the surfactants. The steepest reductions in the CMC were produced by the nitrates of sodium and potassium, which had been found to lower the cloud points of nonionic surfactants, salting them out because of the inability of their cations to form complexes with the ether oxygen linkages of the polyoxyethylene moieties. However, even electrolytes with cations such as hydrogen, lithium, calcium, nickel, lead, and aluminum capable of forming complexes with the ether oxygens, thereby increasing the cloud points of the surfactants, lowered their CMC values. In the presence of increasing concentrations of the latter electrolytes, the CMC values frequently went through minima and approached the CMC of the surfactant in the absence of additives. Increases in the CMC over the entire range of additive concentrations investigated were produced by cadmium nitrate for octoxynol, urea for polyoxyethylated oleyl alcohol, and magnesium nitrate for both. Net increases in the plateau or micellar surface tension of polyoxyethylated oleyl alcohol, i.e., in the constant surface tension of surfactant solutions above the CMC, were brought about by the nitrates of cadmium, aluminum, and magnesium at low concentrations only and by urea at all concentrations. This increase is interpreted as salting in. The area per surfactant molecule adsorbed at the air-water interface was reduced by all added electrolytes. Urea caused no such reduction.

  9. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  10. Diseases of Pulmonary Surfactant Homeostasis

    Science.gov (United States)

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  11. Tension-filled Governance?

    DEFF Research Database (Denmark)

    Celik, Tim Holst

    on the statesituated tension-filled functional relationship between legitimation and accumulation, the study both historically and theoretically reworks this approach and reapplies it for the post-1970s/1990s governance period. It asks whether and to what extent governance has served as a distinctive post- 1970s/1990s...... state-facilitated way of bridging/altering the tension-filled relationship between legitimation and fiscal accumulation in Western European liberal-capitalist democratic polities....

  12. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  13. Analysis of the structure and surfactant activity of novel formulations containing exogenous pulmonary surfactant and glucocorticoids.

    Science.gov (United States)

    Cimato, Alejandra; Hoyos Obando, Andres; Facorro, Graciela; Martínez Sarrasague, María

    2016-11-01

    Exogenous pulmonary surfactant (EPS) could be used as carrier of glucocorticoids (GCs) in therapy for respiratory diseases. We formulated novel combination drug products containing bovine EPS and one GC (10wt%): beclomethasone (Be), budesonide (Bu) or fluticasone (Flu), and studied the GCs action on the surface activity and biophysical properties of EPS. Subtype ratio was evaluated by phospholipid determination; surface tension (ST) with a pulsating bubble surfactometer and conformational changes by Electron Spin Resonance (ESR). GCs were incorporated into EPS in more than 80%. None of them generated disaggregation of surfactant, only Bu was found in the light subtype. Bu and Be caused minimal changes in fluidity on polar region of bilayers, but these changes were not enough to inactivate the surfactant. Flu did not significantly alter any biophysical properties or surface activity. These novel combination EPS-GC products might be a promising strategy in the therapy of pulmonary diseases as the incorporation of the GCs tested did not cause detrimental effects on EPS functionality. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges.

    Science.gov (United States)

    Liao, Ying-Chih; Subramani, Hariprasad J; Franses, Elias I; Basaran, Osman A

    2004-11-09

    Surfactants are routinely used to control the breakup of drops and jets in many applications such as inkjet printing, crop spraying, and DNA or protein microarraying. The breakup of surfactant-free drops and jets has been extensively studied. By contrast, little is known about the closely related problem of interface rupture when surfactants are present. Solutions of a nonionic surfactant, pentaethylene glycol monododecyl ether, or C12E5, in water and in 90 wt % glycerol/water are used to show the effects of surfactant and viscosity on the deformation and breakup dynamics of stretching liquid bridges. Equilibrium surface tensions for both solutions can be fitted with the Langmuir-Szyskowski equation. All experiments have been done at 24 degrees C. The critical micelle concentrations for C12E5 are 0.04 and 0.4 mM in water and the glycerol/water solution, respectively. With high-speed imaging, the dynamic shapes of bridges held captive between two rods of 3.15 mm diameter are captured and analyzed with a time resolution of 0.1-1 ms. The bridge lengths are 3.15 mm initially and about 5-7 mm at pinch-off. Breakup occurs after stretching for about 0.2-0.3 s, depending on the solution viscosity and the surfactant concentration. When the liquid bridges break up, the volume of the sessile drop left on the bottom rod is about 3 times larger than that of the pendant drop left on the top rod. This asymmetry is due to gravity and is influenced by the equilibrium surface tensions. Surfactant-containing low-viscosity water bridges are shown to break up faster than surfactant-free ones because of the effect of gravity. With or without surfactant, water bridges form satellite drops. Surfactant-containing high-viscosity glycerol/water bridges break up more slowly than surfactant-free ones because of strong viscous effects. Moreover, the shapes of the sessile drops close to breakup exhibit a "pear-like" tip; whether a satellite forms depends on the surface age of the bridge before

  15. The surface activity of pulmonary surfactant from diving mammals.

    Science.gov (United States)

    Miller, Natalie J; Daniels, Christopher B; Schürch, Samuel; Schoel, W Michael; Orgeig, Sandra

    2006-02-28

    Pinnipeds (seals and sea lions) have developed a specialised respiratory system to cope with living in a marine environment. They have a highly reinforced lung that can completely collapse and reinflate during diving without any apparent side effects. These animals may also have a specialised surfactant system to augment the morphological adaptations. The surface activity of surfactant from four species of pinniped (California sea lion, Northern elephant seal, Northern fur seal and Ringed seal) was measured using a captive bubble surfactometer (CBS), and compared to two terrestrial species (sheep and cow). The surfactant of Northern elephant seal, Northern fur seal and Ringed seal was unable to reduce surface tension (gamma) to normal levels after 5 min adsorption (61.2, 36.7, and 46.2 +/- 1.7 mN/m, respectively), but California sea lion was able to reach the levels of the cow and sheep (23.4 mN/m for California sea lion, 21.6 +/- 0.3 and 23.0 +/- 1.5 mN/m for cow and sheep, respectively). All pinnipeds were also unable to obtain the very low gamma(min) achieved by cow (1.4 +/- 0.1 mN/m) and sheep (1.5 +/- 0.4 mN/m). These results suggest that reducing surface tension to very low values is not the primary function of surfactant in pinnipeds as it is in terrestrial mammals, but that an anti-adhesive surfactant is more important to enable the lungs to reopen following collapse during deep diving.

  16. Mobility control and scaleup for chemical flooding. Annual report, October 1981-September 1982

    Energy Technology Data Exchange (ETDEWEB)

    Pope, G.A.

    1984-11-01

    The ongoing objectives of this project are: (1) to determine quantitatively the effects of dispersion, relative permeabilities, apparent viscosity and inaccessible pore volume on micellar/polymer flooding, and (2) to develop numerical simulators which incorporate these and other features of the process, so that mobility control design and scaleup of the micellar/polymer flooding process can be better accomplished. Section 2 of this report includes the results for capillary desaturation experiments for low tension fluids in Berea. These results show that some residual brine remains during microemulsion flooding even at the highest capillary number obtained in this experiment. Section 2 also includes more extensive results from the dispersion and relative permeability experiments. This section also includes data which extends the dispersion and relative permeability results from the case of two-phase flow to include initial results of three-phase flow at steady state. Section 3 is a complete description of our updated simulator. Section 4 describes and gives the results of an oil recovery experiment. Section 5 compares the results of this oil recovery experiment with our simulator. The agreement is the best obtained so far. Section 6 compares our simulator with a Sloss experiment reported by Gupta. Again, the agreement is good and demonstrates the capability of the improved simulator to account for the separation of alcohol and surfactant. Section 7 contains the results of several 2-D areal simulations involving new features of the 2-D simulator reported last year. Section 8 is a list of some of the major conclusions of this simulation research. Section 9 is an SPE paper combining the results of Senol with Walsh, a Ph.D. student of Lake and Schechter. Her polymer experiments were interpreted using Walsh's geochemical simulator. 133 references, 118 figures, 21 tables.

  17. Surfactant-Induced Changes of Water Flow and Solute Transport in Soils

    Science.gov (United States)

    Kinsey, E. N.; Korte, C.; Peng, Z.; Yu, C.; Powelson, D.; Jacobson, A. R.; Baveye, P. C.; Darnault, C. J. G.

    2016-12-01

    Surfactants are present in the environment due to agricultural practices such as irrigation with wastewater, biosolid soil amendments, and/or environmental engineering remediation. Furthermore, surfactants occur widely in soils due to the application of pesticides in surfactant solution sprays, or the application of surfactants as soil wetting agents. Surfactants, because they are amphiphilic and impact the surface tension of aqueous solutions and the contact angle between aqueous and solid phases have the potential to influence water flow in porous media and the physicochemical properties of soils. The objective of this study was to assess the impact of surfactant on the soil infiltration process. Four different soils were used in this study: two sandy loam soils (Lewiston and Greenson series) and two loamy sand soils (Sparta and Gilford series). Rainfall was simulated to flow through different columns filled with the four different types of soil and effluent samples were collected at the end of each column. Each type of soil had two columns, one with a non-ionic surfactant Aerosol®22 at twice the critical micelle concentration, in the rainfall solution and one without. A conservative tracer, potassium bromide, was added to all rainfalls to monitor the infiltration process in soil. Tracer breakthrough curves were used to characterize flow in soils. Flow rates were also recorded for each soil. The presence of surfactant decreased the flow rate by a significant amount in most soil types. The decrease in flow rate can be attributed to the effects on the soil properties of hydraulic conductivity and soil aggregates. A decrease in pore space from the swelling of the soil particles can decrease the hydraulic conductivity. The properties in surfactants also decrease the surface tension and therefore soil particles are able to be dislodged from soil aggregates and cause potential soil clogging.

  18. Activity and biophysical inhibition resistance of a novel synthetic lung surfactant containing Super-Mini-B DATK peptide

    Directory of Open Access Journals (Sweden)

    Robert H. Notter

    2016-01-01

    Full Text Available Background/objectives. This study examines the surface activity, resistance to biophysical inhibition, and pulmonary efficacy of a synthetic lung surfactant containing glycerophospholipids combined with Super Mini-B (S-MB DATK, a novel and stable molecular mimic of lung surfactant protein (SP-B. The objective of the work is to test whether S-MB DATK synthetic surfactant has favorable biophysical and physiological activity for future use in treating surfactant deficiency or dysfunction in lung disease or injury.Methods. The structure of S-MB DATK peptide was analyzed by homology modeling and by FTIR spectroscopy. The in vitro surface activity and inhibition resistance of synthetic S-MB DATK surfactant was assessed in the presence and absence of albumin, lysophosphatidylcholine (lyso-PC, and free fatty acids (palmitoleic and oleic acid. Adsorption and dynamic surface tension lowering were measured with a stirred subphase dish apparatus and a pulsating bubble surfactometer (20 cycles/min, 50% area compression, 37 °C. In vivo pulmonary activity of S-MB DATK surfactant was measured in ventilated rabbits with surfactant deficiency/dysfunction induced by repeated lung lavages that resulted in arterial PO2 values <100 mmHg.Results. S-MB DATK surfactant had very high surface activity in all assessments. The preparation adsorbed rapidly to surface pressures of 46–48 mN/m at 37 °C (low equilibrium surface tensions of 22–24 mN/m, and reduced surface tension to <1 mN/m under dynamic compression on the pulsating bubble surfactometer. S-MB DATK surfactant showed a significant ability to resist inhibition by serum albumin, C16:0 lyso-PC, and free fatty acids, but surfactant inhibition was mitigated by increasing surfactant concentration. S-MB DATK synthetic surfactant quickly improved arterial oxygenation and lung compliance after intratracheal instillation to ventilated rabbits with severe surfactant deficiency.Conclusions. S-MB DATK is an active mimic

  19. A model of flow and surfactant transport in an oscillatory alveolus partially filled with liquid

    Science.gov (United States)

    Wei, Hsien-Hung; Fujioka, Hideki; Hirschl, Ronald B.; Grotberg, James B.

    2005-03-01

    The flow and transport in an alveolus are of fundamental importance to partial liquid ventilation, surfactant transport, pulmonary drug administration, cell-cell signaling pathways, and gene therapy. We model the system in which an alveolus is partially filled with liquid in the presence of surfactants. By assuming a circular interface due to sufficiently strong surface tension and small surfactant activity, we combine semianalytical and numerical techniques to solve the Stokes flow and the surfactant transport equations. In the absence of surfactants, there is no steady streaming because of reversibility of Stokes flow. The presence of surfactants, however, induces a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns (e.g., number of vortices) particularly depend on the ratio of inspiration to expiration periods (I :E ratio) and the sorption parameter K. For an insoluble surfactant, a single vortex is formed when the I :E ratio is either smaller or larger than 1:1, but the recirculations have opposite directions in the two cases. A soluble surfactant can lead to more complex flow patterns such as three vortices or saddle-point flow structures. The estimated unsteady velocity is 10-3cm/s, and the corresponding Péclet number for transporting respiratory gas is O(1). For a cell-cell signaling molecule such as surfactant-associated protein-A for regulating surfactant secretion, the Péclet number could be O(10) or higher. Convection is either comparable to or more dominant than diffusion in these processes. The estimated steady velocity ranges from 10-6to10-4cm /s, depending on I :E and K, and the corresponding steady Péclet number is between 10-8/Dm and 10-6/Dm (Dm is the molecular diffusivity with units of cm2/s). Therefore, for Dm⩽10-8cm2/s, the convective transport dominates.

  20. The influence of surfactants on thermocapillary flow instabilities in low Prandtl melting pools

    NARCIS (Netherlands)

    Kidess, A.; Kenjeres, S.; Kleijn, C.R.

    2016-01-01

    Flows in low Prandtl number liquid pools are relevant for various technical applications and have so far only been investigated for the case of pure fluids, i.e., with a constant, negative surface tension temperature coefficient ∂γ/γT. Real-world fluids containing surfactants have a temperature

  1. A Comprehensive Framework for Surfactant Selection and Design for Emulsion Based Chemical Product Design

    DEFF Research Database (Denmark)

    Mattei, Michele; Kontogeorgis, Georgios; Gani, Rafiqul

    2014-01-01

    ) needed for the solution of the design algorithm. These models are then applied togetherwith established predictive models for pure component properties of ionic surfactants and for standardmixture properties such as the density, the viscosity, the surface and the interfacial tension, but also thetype...

  2. Size influences the effect of hydrophobic nanoparticles on lung surfactant model systems

    NARCIS (Netherlands)

    Dwivedi, M.V.; Harishchandra, R.K.; Koshkina, O.; Maskos, M.; Galla, H.J.

    2014-01-01

    The alveolar lung surfactant (LS) is a complex lipid protein mixture that forms an interfacial monolayer reducing the surface tension to near zero values and thus preventing the lungs from collapse. Due to the expanding field of nanotechnology and the corresponding unavoidable exposure of human

  3. Importance of head group polarity in controlling aggregation properties of cationic gemini surfactants.

    Science.gov (United States)

    Borse, Mahendra S; Devi, Surekha

    2006-11-16

    Cationic gemini surfactants have been extensively studied in the recent past and the effect of chain length, spacer length and nature on aggregation behavior has been examined. But the effect of variation in head group polarity on micellization has not been examined. Hence, the effect of head group polarity of the butane-1,4-bis(dodecyldimethylammonium bromide) surfactants on aggregation properties is studied through conductance, surface tension, viscosity, and small-angle neutron scattering (SANS) measurements. The critical micellar concentration (cmc), average degree of micelle ionization (beta(ave)), minimum area per molecule of surfactant at air-water interface (A(min)), surface excess concentration (Gamma(max)) and Gibbs free energy change of micellization (DeltaG degrees (mic)) of the surfactants were determined from conductance and surface tension data. The aggregation numbers (N), dimension of micelle (b/a), effective fractional charge per monomer (alpha) were determined from SANS and hydration of micelle (h(m)) from viscosity data. The increasing head group polarity of gemini surfactant having spacer chain length of 4 methylene units promotes micellar growth, leading to decrease in cmc, beta(ave), DeltaG degrees (mic) and increase in N and b/a. This is well supported by the observed increase in hydration (h(m)) of micelle with increase in aggregation number (N) and dimension (b/a) of micelle. The Kraft temperature (k(T)), foamability and foam stability as a function of head group polarity of gemini surfactants were also examined.

  4. Surfactant Variations in Porous Media Localize Capillary Instabilities during Haines Jumps

    Science.gov (United States)

    Edery, Yaniv; Weitz, David; Berg, Steffen

    2018-01-01

    We use confocal microscopy to measure velocity and interfacial tension between a trapped wetting phase with a surfactant and a flowing, invading nonwetting phase in a porous medium. We relate interfacial tension variations at the fluid-fluid interface to surfactant concentration and show that these variations localize the destabilization of capillary forces and lead to rapid local invasion of the nonwetting fluid, resulting in a Haines jump. These spatial variations in surfactant concentration are caused by velocity variations at the fluid-fluid interfaces and lead to localization of the Haines jumps even in otherwise very uniform pore structure and pressure conditions. Our results provide new insight into the nature of Haines jumps, one of the most ubiquitous and important instabilities in flow in porous media.

  5. Membrane tension and membrane fusion

    OpenAIRE

    Kozlov, Michael M.; Chernomordik, Leonid V.

    2015-01-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually la...

  6. MICROBIAL SURFACTANTS. I. GLYCOLIPIDS

    Directory of Open Access Journals (Sweden)

    Pirog T. Р.

    2014-02-01

    Full Text Available The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates are summarized. It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.

  7. Ice Accretion with Varying Surface Tension

    Science.gov (United States)

    Bilanin, Alan J.; Anderson, David N.

    1995-01-01

    During an icing encounter of an aircraft in flight, super-cooled water droplets impinging on an airfoil may splash before freezing. This paper reports tests performed to determine if this effect is significant and uses the results to develop an improved scaling method for use in icing test facilities. Simple laboratory tests showed that drops splash on impact at the Reynolds and Weber numbers typical of icing encounters. Further confirmation of droplet splash came from icing tests performed in the NaSA Lewis Icing Research Tunnel (IRT) with a surfactant added to the spray water to reduce the surface tension. The resulting ice shapes were significantly different from those formed when no surfactant was added to the water. These results suggested that the droplet Weber number must be kept constant to properly scale icing test conditions. Finally, the paper presents a Weber-number-based scaling method and reports results from scaling tests in the IRT in which model size was reduced up to a factor of 3. Scale and reference ice shapes are shown which confirm the effectiveness of this new scaling method.

  8. Surface Tension of Spacetime

    Science.gov (United States)

    Perko, Howard

    2017-01-01

    Concepts from physical chemistry and more specifically surface tension are introduced to spacetime. Lagrangian equations of motion for membranes of curved spacetime manifold are derived. The equations of motion in spatial directions are dispersion equations and can be rearranged to Schrodinger's equation where Plank's constant is related to membrane elastic modulus. The equation of motion in the time-direction has two immediately recognizable solutions: electromagnetic waves and corpuscles. The corpuscular membrane solution can assume different genus depending on quantized amounts of surface energy. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found that satisfies general relativity. Application of the surface tension to quantum electrodynamics and implications for quantum chromodynamics are discussed. Although much work remains, it is suggested that spacetime surface tension may provide a classical explanation that combines general relativity with field theories in quantum mechanics and atomic particle physics.

  9. Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles.

    Science.gov (United States)

    Kondej, Dorota; Sosnowski, Tomasz R

    2013-02-01

    The influence of five different types of aluminosilicate nanoparticles (NPs) on the dynamic surface activity of model pulmonary surfactant (PS) (Survanta) was studied experimentally using oscillating bubble tensiometry. Bentonite, halloysite and montmorillonite (MM) NPs, which are used as fillers of polymer composites, were characterized regarding the size distribution, morphology and surface area. Particle doses applied in the studies were estimated based on the inhalation rate and duration, taking into account the expected aerosol concentration and deposition efficiency after penetration of NPs into the alveolar region. The results indicate that aluminosilicate NPs at concentrations in the pulmonary liquid above 0.1 mg cm(-3) are capable of promoting alterations of the original dynamic biophysical activity of the PS. This effect is indicated by deviation of the minimum surface tension, stability index and the size of surface tension hysteresis. Such response is dependent on the type of NPs present in the system and is stronger when particle concentration increases. It is suggested that interactions between NPs and the PS must be related to the surfactant adsorption on the suspended particles, while in the case of surface-modified clay NPs the additional washout of surface-active components may be expected. It is speculated that observed changes in surface properties of the surfactant may be associated with undesired health effects following extensive inhalation of aluminosilicate NPs in the workplace.

  10. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    Directory of Open Access Journals (Sweden)

    Roza Bouchal

    2016-02-01

    Full Text Available Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC, and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK, critical micelle concentration (CMC, minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH° were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.

  11. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    Science.gov (United States)

    Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy

    2016-01-01

    Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309

  12. Synthetic Tracheal Mucus with Native Rheological and Surface Tension Properties

    Science.gov (United States)

    Hamed, R.; Fiegel, J.

    2016-01-01

    In this study the development of a model tracheal mucus with chemical composition and physical properties (bulk viscoelasticity and surface tension) matched to that of native tracheal mucus is described. The mucus mimetics were formulated using components that are abundant in tracheal mucus (glycoproteins, proteins, lipids, ions and water) at concentrations similar to those found natively. Pure solutions were unable to achieve the gel behavior observed with native mucus. The addition of a bi-functional crosslinking agent enabled control over the viscoelastic properties of the mucus mimetics by tailoring the concentration of the crosslinking agent and the duration of crosslinking. Three mucus mimetic formulations with different bulk viscoelastic properties, all within the normal range for non-diseased tracheal mucus, were chosen for investigation of surfactant spreading at the air-mimetic interface. Surfactant spread quickly and completely on the least viscoelastic mimetic surface, enabling the surface tension of the mimetic to be lowered to match native tracheal mucus. However, surfactant spreading on the more viscoelastic mimetics was hindered, suggesting that the bulk properties of the mimetics dictate the range of surface properties that can be achieved. PMID:23813841

  13. Solution properties and emulsification properties of amino acid-based gemini surfactants derived from cysteine.

    Science.gov (United States)

    Yoshimura, Tomokazu; Sakato, Ayako; Esumi, Kunio

    2013-01-01

    Amino acid-based anionic gemini surfactants (2C(n)diCys, where n represents an alkyl chain with a length of 10, 12, or 14 carbons and "di" and "Cys" indicate adipoyl and cysteine, respectively) were synthesized using the amino acid cysteine. Biodegradability, equilibrium surface tension, and dynamic light scattering were used to characterize the properties of gemini surfactants. Additionally, the effects of alkyl chain length, number of chains, and structure on these properties were evaluated by comparing previously reported gemini surfactants derived from cystine (2C(n)Cys) and monomeric surfactants (C(n)Cys). 2C(n)diCys shows relatively higher biodegradability than does C(n)Cys and previously reported sugar-based gemini surfactants. Both critical micelle concentration (CMC) and surface tension decrease when alkyl chain length is increased from 10 to 12, while a further increase in chain length to 14 results in increased CMC and surface tension. This indicates that long-chain gemini surfactants have a decreased aggregation tendency due to the steric hindrance of the bulky spacer as well as premicelle formation at concentrations below the CMC and are poorly packed at the air/water interface. Formation of micelles (measuring 2 to 5 nm in solution) from 2C(n)diCys shows no dependence on alkyl chain length. Further, shaking the mixtures of aqueous 2C(n)diCys surfactant solutions and squalane results in the formation of oil-in-water type emulsions. The highly stable emulsions are formed using 2C₁₂diCys or 2C₁₄diCys solution and squalane in a 1:1 or 2:1 volume ratio.

  14. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity.

    Science.gov (United States)

    Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra

    2012-07-01

    The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from

  15. Synthesis and bio-physicochemical properties of amide-functionalized N-methylpiperazinium surfactants.

    Science.gov (United States)

    Chauhan, Vinay; Singh, Sukhprit; Mishra, Rachana; Kaur, Gurcharan

    2014-12-15

    Four new amide functionalized N-methylpiperazinium amphiphiles having tetradecyl, hexadecyl alkyl chain lengths and counterions; chloride or bromide have been synthesized and characterized by various spectroscopic techniques. These new surfactants have been investigated in detail for their self-assembling behavior by surface tension, conductivity and fluorescence measurements. The thermodynamic parameters of these surfactants indicate that micellization is exothermic and entropy-driven. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) experiments have been performed to insight the aggregate size of these cationics. Thermal degradation of these new surfactants has also been evaluated by thermal gravimetric analysis (TGA). These new surfactants form stable complexes with DNA as acknowledged by agarose gel electrophoresis, ethidium bromide exclusion and zeta potential measurements. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Spreading of oil on water in the surface-tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.; Berg, J.C.

    1987-11-01

    Data which describe the unidirectional spreading of several pure oils and oil-surfactant mixtures on water in the surface-tension regime are reported. Leading-edge position and profiles of velocity, thickness and film tension are given as functions of time. The data are consistent with the numerical similarity solution of Foda and Cox (1980), although the measured dependence of the film tension on the film thickness often differs from the equilibrium relationship. The configuration of the oil film near the spreading origin may be either a coherent multimolecular layer or a multitude of thinning, outward-moving lenses surrounded by monolayer. The pure oils show an acceleration zone connecting the slow-moving inner region to a fast-moving outer region, while the oil-surfactant mixtures show a much more gradual increase in film velocity.

  17. Tension-type headache

    DEFF Research Database (Denmark)

    Bendtsen, Lars; Jensen, Rigmor

    2009-01-01

    The substantial societal and individual burdens associated with tension-type headache (TTH) constitute a previously overlooked major public health issue. TTH is prevalent, affecting up to 78% of the general population, and 3% suffer from chronic TTH. Pericranial myofascial nociception probably...

  18. Social and environmental tensions

    DEFF Research Database (Denmark)

    Saito, Moeko; Rutt, Rebecca Leigh; Chhetri, Bir Bahadur Khanal

    2014-01-01

    to forests. Our case highlights the risk that the mere application of affirmative measures may give rise to difficult social and environmental tensions. Thus, this paper calls for such measures to effectively incorporate local perspectives in their designs and to be reflective, by allowing for regular...

  19. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T

    2004-01-01

    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta...

  20. Rein tension during canter

    NARCIS (Netherlands)

    Egenvall, Agneta; Eisersiö, Marie; Rhodin, Marie; van Weeren, P.R.|info:eu-repo/dai/nl/074628550; Roepstorff, Lars

    2015-01-01

    Riders generally use reins as a means for communication with the horse. At present, the signalling pattern is poorly understood. The aim of this study was to illustrate and analyse the rein tension patterns in a number of rider/horse combinations across a variety of exercises in the canter gait. Our

  1. Adsorption of ionic surfactants at microscopic air-water interfaces using the micropipette interfacial area-expansion method

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-01-01

    The dynamic adsorption of ionic surfactants at air-water interfaces have been less-well studied than that of the simpler non-ionics since experimental limitations on dynamic surface tension (DST) measurements create inconsistencies in their kinetic analysis. Using our newly designed "Micropipette...... for the "ideal ionic activity", A±i, can renormalize both equilibrium and dynamic surface tension measurements and provide better estimates of the diffusion coefficient of ionic surfactants in aqueous media obtained from electroneutral models, namely extended Frumkin isotherm and Ward-Tordai adsorption models...

  2. A study of polymer-surfactant interactions by neutron reflectivity

    CERN Document Server

    Warren, N

    1999-01-01

    surfactants and their relative levels of interaction with the polymer. The surface behaviour of these systems was observed to be in many ways more remarkable than that of the bulk solution. In the high total surfactant concentration range, once all polymer molecules were associated with bound micelles, the extent of adsorption at the air-liquid interface was found to be dominated largely, as might be expected, by the solution monomer concentrations of the two surfactants. Prior to this, however, adsorption was dominated by the presence of a very surface active polymer-SDS complex which gave rise to enhanced SDS adsorption and low surface tensions compared with those found in polymer-free systems. The origin of this effect, being the stabilisation of the adsorbed SDS monolayer due to a reduction in the inter-headgroup repulsions through screening, by the charged polymer segments, suggests that this may be a characteristic feature of systems continuing a polyelectrolyte and an oppositely charged surfactant. In ...

  3. Evaluation and application of surfactants synthesized from asphalt components

    Directory of Open Access Journals (Sweden)

    E.R. Souaya

    2012-06-01

    Full Text Available The synthesis, characterization, surface activity and applications of nonionic surfactants derived from the asphalt components (maltenes M are presented. These compounds were synthesized by the sulfonation of (maltene, then the prepared maltene sulfonic acid (MS was reacted with hexadecylamine giving maltene sulfonamide product (A which undergoes an alkali-catalyzed ethoxylation at (135–150 °C. Several surfactants (M-10 to M-40 were formed with different ethylene oxide units (from 10 up to 40 and were characterized by molecular weight determinations, elemental analyses and FTIR analysis. Surface tension, as a function of concentration of the surfactants in the aqueous media, was measured at 25 °C. From these measurements, the critical micelle concentration (CMC, the maximum surface excess concentration (Гmax, Minimum area per molecule (Amin, effectiveness of surface reduction (ПCMC and the efficiency (pC20 were calculated. The prepared surfactants were applied as emulsifying agents for making asphalt emulsions. Storage stability, (Saybolt Furol viscosity, settlement (water content difference %, coating ability and water resistance were measured. The results indicated that M-20 (maltene sulfonamide ethoxylated with 20 units of ethylene oxides gives a maximum stability.

  4. Tsunami flooding

    Science.gov (United States)

    Geist, Eric; Jones, Henry; McBride, Mark; Fedors, Randy

    2013-01-01

    Panel 5 focused on tsunami flooding with an emphasis on Probabilistic Tsunami Hazard Analysis (PTHA) as derived from its counterpart, Probabilistic Seismic Hazard Analysis (PSHA) that determines seismic ground-motion hazards. The Panel reviewed current practices in PTHA and determined the viability of extending the analysis to extreme design probabilities (i.e., 10-4 to 10-6). In addition to earthquake sources for tsunamis, PTHA for extreme events necessitates the inclusion of tsunamis generated by submarine landslides, and treatment of the large attendant uncertainty in source characterization and recurrence rates. Tsunamis can be caused by local and distant earthquakes, landslides, volcanism, and asteroid/meteorite impacts. Coastal flooding caused by storm surges and seiches is covered in Panel 7. Tsunamis directly tied to earthquakes, the similarities with (and path forward offered by) the PSHA approach for PTHA, and especially submarine landslide tsunamis were a particular focus of Panel 5.

  5. Surfactant dysfunction in lung contusion with and without superimposed gastric aspiration in a rat model.

    Science.gov (United States)

    Raghavendran, Krishnan; Davidson, Bruce A; Knight, Paul R; Wang, Zhengdong; Helinski, Jadwiga; Chess, Patricia R; Notter, Robert H

    2008-11-01

    This study investigates surfactant dysfunction in rats with lung contusion (LC) induced by blunt chest trauma. Rats at 24 h postcontusion had a decreased percent content of large surfactant aggregates in cell-free bronchoalveolar lavage (BAL) and altered large-aggregate composition with decreased phosphatidylcholine (PC), increased lyso-PC, and increased protein compared with uninjured controls. The surface activity of large aggregates on a pulsating bubble surfactometer was also severely impaired at 24 h postcontusion. Decreases in large surfactant aggregate content and surface activity were improved, but still apparent, at 48 and 72 h postcontusion compared with uninjured control rats and returned to normal by 96 h postcontusion. The functional importance of surfactant abnormalities in LC injury was documented in pilot studies showing that exogenous surfactant replacement at 24 h postcontusion improved inflation/deflation lung volumes. Additional experiments investigated a clinically relevant combination of LC plus gastric aspiration (combined acid and small gastric food particles) and found reductions in large surfactant aggregates in BAL similar to those for LC. However, rats given LC + combined acid and small gastric food particles versus LC had more severe surfactant dysfunction based on decreases in surface activity and alterations in large aggregate composition. Combined data for all animal groups had strong statistical correlations between surfactant dysfunction (increased minimum surface tension, decreased large aggregates in BAL, decreased aggregate PC, and increased aggregate lyso-PC) and the severity of inflammatory lung injury (increased total protein, albumin, protein/phospholipid ratio, neutrophils, and erythrocytes in BAL plus increased whole lung myeloperoxidase activity). These results show that surfactant dysfunction is important in the pathophysiology of LC with or without concurrent gastric aspiration and provides a rationale for surfactant

  6. Surface tension of spherical drops from surface of tension

    Energy Technology Data Exchange (ETDEWEB)

    Homman, A.-A.; Bourasseau, E. [CEA/DAM DIF, F-91297 Arpajon Cedex (France); Stoltz, G. [Université Paris-Est, CERMICS (ENPC), INRIA, F-77455 Marne-la-Vallée (France); Malfreyt, P. [Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, UMR CNRS 6296, ICCF, BP 10448, F-63000 Clermont-Ferrand (France); Strafella, L.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr [Institut de Physique de Rennes, Université de Rennes 1 UMR 6251 CNRS, 263 avenue Général Leclerc, 35042 Rennes (France)

    2014-01-21

    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  7. Use of Viscosity to Probe the Interaction of Anionic Surfactants with a Coagulant Protein from Moringa oleifera Seeds

    Directory of Open Access Journals (Sweden)

    Raymond Maikokera

    2009-01-01

    Full Text Available The intrinsic viscosity of the coagulant protein was evaluated from the flow times of the protein solutions through a capillary viscometer, and the results suggested the coagulant protein to be globular. The interactions of the coagulant protein with anionic surfactant sodium dodecyl sulphate (SDS and sodium dodecyl benzene sulfonate (SDBS were also investigated by capillary viscometry. We conclude that there is strong protein-surfactant interaction at very low surfactant concentrations, and the behavior of the anionic surfactants in solutions containing coagulant protein is very similar. The viscometry results of protein-SDS system are compared with surface tension, fluorescence, and circular dichroism reported earlier. Combining the results of the four studies, the four approaches seem to confirm the same picture of the coagulant protein-SDS interaction. All the physical quantities when studied as function of surfactant concentration for 0.05% (w/v protein solution either exhibited a maximum or minimum at a critical SDS concentration.

  8. Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films.

    Science.gov (United States)

    Lopez-Rodriguez, Elena; Pascual, Alicia; Arroyo, Raquel; Floros, Joanna; Perez-Gil, Jesus

    2016-08-09

    Pulmonary surfactant is a lipoprotein complex that reduces surface tension to prevent alveolar collapse and contributes to the protection of the respiratory surface from the entry of pathogens. Surfactant protein A (SP-A) is a hydrophilic glycoprotein of the collectin family, and its main function is related to host defense. However, previous studies have shown that SP-A also aids in the formation and biophysical properties of pulmonary surfactant films at the air-water interface. Humans, unlike rodents, have two genes, SFTPA1 and SFTPA2. The encoded proteins, SP-A1 and SP-A2, differ quantitatively or qualitatively in function. It has been shown that both gene products are necessary for tubular myelin formation, an extracellular structural form of lung surfactant. The goal of this study was to investigate potential differences in the biophysical properties of surfactants containing human SP-A1, SP-A2, or both. For this purpose, we have studied for the first time, to our knowledge, the biophysical properties of pulmonary surfactant from individual humanized transgenic mice expressing human SP-A1, SP-A2, or both SP-A1 and SP-A2, in the captive bubble surfactometer. We observed that pulmonary surfactant containing SP-A1 reaches lower surface tension after postexpansion interfacial adsorption than surfactants containing no SP-A or only SP-A2. Under interfacial compression-expansion cycling conditions, surfactant films containing SP-A1 also performed better, particularly with respect to the reorganization of the films that takes place during compression. On the other hand, addition of recombinant SP-A1 to a surfactant preparation reconstituted from the hydrophobic fraction of a porcine surfactant made it more resistant to inhibition by serum than the addition of equivalent amounts of SP-A2. We conclude that the presence of SP-A1 allows pulmonary surfactant to adopt a particularly favorable structure with optimal biophysical properties. Copyright © 2016 Biophysical

  9. Quasi-immiscible spreading of aqueous surfactant solutions on entangled aqueous polymer solution subphases.

    Science.gov (United States)

    Sharma, Ramankur; Corcoran, Timothy E; Garoff, Stephen; Przybycien, Todd M; Swanson, Ellen R; Tilton, Robert D

    2013-06-26

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface-active dye, was added to the surfactant solution. The spreading progresses through a series of events. Marangoni stresses initiate the convective spreading of the drop. Simultaneously, surfactant escapes across the drop's contact line within a second of deposition and causes a change in subphase surface tension outside the drop on the order of 1 mN/m. Convective spreading of the drop ends within 2-3 s of drop deposition, when a new interfacial tension balance is achieved. Surfactant escape depletes the drop of surfactant, and the residual drop takes the form of a static lens of nonzero contact angle. On longer time scales, the surfactant dissolves into the subphase. The lens formed by the water in the deposited drop persists for as long as 3 min after the convective spreading process ends due to the long diffusional time scales associated with the underlying entangled polymer solution. The persistence of the lens suggests that the drop phase behaves as if it were immiscible with the subphase during this time period. Whereas surfactant escapes the spreading drop and advances on the subphase/vapor interface, hydrophilic dye molecules in the drop do not escape but remain with the drop throughout the convective spreading. The quasi-immiscible nature of the spreading event suggests that the chemical properties of the surfactant and subphase are much less important than their physical properties, consistent with prior qualitative studies of spreading of different types of surfactants on entangled polymer subphases: the selection of

  10. Sequential analysis of surfactant, lung function and inflammation in cystic fibrosis patients

    Directory of Open Access Journals (Sweden)

    Paul Karl

    2005-11-01

    Full Text Available Abstract Background In a cross-sectional analysis of cystic fibrosis (CF patients with mild lung disease, reduced surfactant activity was correlated to increased neutrophilic airway inflammation, but not to lung function. So far, longitudinal measurements of surfactant function in CF patients are lacking and it remains unclear how these alterations relate to the progression of airway inflammation as well as decline in pulmonary function over time. Methods As part of the BEAT trial, a longitudinal study to assess the course of airway inflammation in CF, we studied lung function, surfactant function and endobronchial inflammation using bronchoalveolar lavage fluid from 20 CF patients with normal pulmonary function (median FEV1 94% of predicted at three times over a three year period. Results There was a progressive loss of surfactant function, assessed as minimal surface tension. The decline in surfactant function was negatively correlated to an increase in neutrophilic inflammation and a decrease in lung function, assessed by FEV1, MEF75/25%VC, and MEF25%VC. The concentrations of the surfactant specific proteins A, C and D did not change, whereas SP-B increased during this time period. Conclusion Our findings suggest a link between loss of surfactant function driven by progressive airway inflammation and loss of small airway function in CF patients with limited lung disease.

  11. Biophysical activity of animal-derived exogenous surfactants mixed with rifampicin.

    Science.gov (United States)

    Kolomaznik, M; Calkovska, A; Herting, E; Stichtenoth, G

    2015-01-01

    Exogenous pulmonary surfactant is a potential delivery system for topical medications via the conducting airways. Due to the sensitivity to inactivation of surfactant, mutual interaction with the shipped drug should be evaluated. Little is known about the interactions between surfactant and antimicrobial drugs. The aim of the present study was to evaluate whether biophysical properties of animal-derived surfactants are modified by the bactericidal antibiotic rifampicin. An intracellular activity and a broad antimicrobiotic spectrum toward Gram-negative and Gram-positive bacteria make rifampicin an interesting substance against pulmonary infections. Curosurf® (porcine surfactant from minced lungs) and Survanta® (bovine surfactant extract) were diluted to 2.5-5.0 mg/ml of phospholipids in 0.9 % NaCl and rifampicin (RIF) was added at 1, 5, and 10 % (w/w). Minimum (γ(min)) and maximum (γ(max)) surface tension of a cyclically compressed bubble in the mixture was assessed with a pulsating bubble surfactometer. After 5 min, γ(min) of Survanta at a concentration of 3 mg/ml was significantly increased after addition of 5 and 10 % RIF (both p surfactant is able to retain good surface activity when mixed with antibiotics.

  12. Factors influencing the mechanism of surfactant catalyzed reaction of vitamin C-ferric chloride hexahydrate system

    Science.gov (United States)

    Farrukh, Muhammad Akhyar; Kauser, Robina; Adnan, Rohana

    2013-09-01

    The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5-4.5) and temperature (15-35°C) in the presence and absence of surfactant were investigated. Activation parameters, Δ E a, Δ H #, Δ S #, Δ G ≠, for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule ( A min), average area occupied by each molecule of surfactant ( a), surface pressure at the CMC (Πmax), Gibb's energy of micellization (Δ G M°), Gibb's energy of adsorption (Δ G ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.

  13. Propyl-ended hemifluorinated surfactants: synthesis and self-assembling properties.

    Science.gov (United States)

    Abla, Maher; Durand, Grégory; Pucci, Bernard

    2011-04-01

    The advantages of using hemifluorinated surfactants as an efficient alternative to detergents for manipulating membrane proteins in aqueous solution have been demonstrated in recent reports. However, the large-scale synthesis of these surfactants is still considered as a major matter and has limited their use for biochemical purposes. We report herein the synthesis of a novel series of perfluorohexane-based surfactants endowed with a short propyl hydrocarbon tip and whose polar head size is modulated by the presence of two or three glucose moieties. The synthetic route is based on the radical addition of two alkenes onto the 1,6-diiodoperfluorohexane using AIBN as a radical initiator, affording the surfactants in satisfactory overall yields. The self-assembling properties of these hemifluorinated surfactants were studied by surface tension measurements, dynamic light scattering, as well as their behavior upon reversed-phase chromatography and were compared with those of their perfluorinated analogues. Our findings strongly suggest the predominant influence of the propyl tip on both adsorption and micellization phenomena as well as on the hydrophobic character of the surfactants, whereas as previously observed, the shorter ethyl tip does not greatly affect these properties when compared to the perfluorinated analogues. Moreover, all the surfactants reported here self-assemble into small and monodisperse aggregates, a feature of crucial importance for biochemistry applications.

  14. Level-set simulations of soluble surfactant driven flows

    Science.gov (United States)

    Cleret de Langavant, Charles; Guittet, Arthur; Theillard, Maxime; Temprano-Coleto, Fernando; Gibou, Frédéric

    2017-11-01

    We present an approach to simulate the diffusion, advection and adsorption-desorption of a material quantity defined on an interface in two and three spatial dimensions. We use a level-set approach to capture the interface motion and a Quad/Octree data structure to efficiently solve the equations describing the underlying physics. Coupling with a Navier-Stokes solver enables the study of the effect of soluble surfactants that locally modify the parameters of surface tension on different types of flows. The method is tested on several benchmarks and applied to three typical examples of flows in the presence of surfactant: a bubble in a shear flow, the well-known phenomenon of tears of wine, and the Landau-Levich coating problem.

  15. Aqueous behaviour of cationic surfactants containing a cleavable group.

    Science.gov (United States)

    Samakande, Austin; Chaghi, Radhouane; Derrien, Gaelle; Charnay, Clarence; Hartmann, Patrice C

    2008-04-01

    The aggregation behaviour of two novel cationic RAFT agents (transfer surfactants); N,N-dimethyl-N-(4-(((phenylcarbonothioyl)thio)methyl)benzyl)ethanammonium bromide (PCDBAB) and N-(4-((((dodecylthio)-carbonothioyl)thio)methyl)benzyl)-N,N-dimethylethanammonium bromide (DCTBAB) in diluted solutions have been investigated by surface tension, conductimetry and microcalorimetry measurements. The thermodynamic parameters i.e. the critical micelle concentration (cmc), the degree of micelle ionization (alpha), the head group surface area (a 0), Delta H mic, Delta G mic and T Delta S mic are reported at 303 K. The thermodynamic parameters have been compared to those of the conventional surfactant cetyltrimethylammonium bromide (CTAB) in order to specify structural relationships. The obtained results have been discussed considering the hydrophobic behaviour of the S-C=S- linkage and the specific interactions that arise from the introduction of the benzene ring into the hydrophobic part.

  16. Properties of modified natural surfactant after exposure to fibrinogen in vitro and in an animal model of respiratory distress syndrome.

    Science.gov (United States)

    Calkovska, Andrea; Linderholm, Bim; Haegerstrand-Björkman, Marie; Curstedt, Tore

    2012-09-01

    Plasma proteins are known to interfere with pulmonary surfactant. Studies have proven the hypothesis that fibrinogen preserves exogenous surfactant subjected to long-term surface area cycling. The exogenous surfactant Curosurf was subjected to long-term surface area cycling without or with fibrinogen (ratio 2:1 w/w) and was tested by captive bubble surfactometer and on newborn premature rabbits. Surface tension increased in Curosurf (80 mg/ml) samples without fibrinogen after 6-12 d of cycling. In samples with fibrinogen the cycling time had no effect on surface tension. Addition of fibrinogen to surfactant prevented lipid peroxidation. Lung gas volumes of animals with noncycled Curosurf or Curosurf cycled with fibrinogen for 6 d were comparable and higher than in rabbits with Curosurf cycled without fibrinogen. Alveolar volume density was higher in groups with noncycled Curosurf or Curosurf cycled with fibrinogen than in Curosurf cycled without fibrinogen (both P surfactant cycled at 37 °C depends both on surfactant concentration and cycling time. At high phospholipid concentration used in clinical practice fibrinogen has a protective effect on biophysical and physiological properties of natural modified surfactant subjected to surface area cycling. This effect is partially mediated by reduction in lipid peroxidation.

  17. ADSORPTION OF SURFACTANT ON CLAYS

    Science.gov (United States)

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  18. Novel Approaches to Surfactant Administration

    OpenAIRE

    Gupta, Samir; Donn, Steven M.

    2012-01-01

    Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. For the most part, surfactant is administered intratracheally, followed by mechanical ventilation. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. This paper will review these techniques and the associated clinical evidence.

  19. Immunomodulatory properties of surfactant preparations.

    Science.gov (United States)

    Bersani, Iliana; Kunzmann, Steffen; Speer, Christian P

    2013-01-01

    Surfactant replacement significantly decreased acute pulmonary morbidity and mortality among preterm neonates with respiratory distress syndrome. Besides improving lung function and oxygenation, surfactant is also a key modulator of pulmonary innate and acquired immunity regulating lung inflammatory processes. In this review, we describe the immunomodulatory features of surfactant preparations. Various surfactant preparations decrease the proinflammatory cytokine and chemokine release, the oxidative burst activity, and the nitric oxide production in lung inflammatory cells such as alveolar neutrophils, monocytes and macrophages; they also affect lymphocyte proliferative response and immunoglobulin production, as well as natural killer and lymphokine-activated killer cell activity. In addition, surfactant preparations are involved in airway remodeling, as they decrease lung fibroblast proliferation capacity and the release of mediators involved in remodeling. Moreover, they increase cell transepithelial resistance and VEGF synthesis in lung epithelial cells. A number of different signaling pathways and molecules are involved in these processes. Because the inhibition of local immune response may decrease lung injury, surfactant therapeutic efficacy may be related not only to its biophysical characteristics but, at least in part, to its anti-inflammatory features and its effects on remodeling processes. However, further studies are required to identify which surfactant preparation ensures the highest anti-inflammatory activity, thereby potentially decreasing the inflammatory process underlying respiratory distress syndrome. In perspective, detailed characterization of these anti-inflammatory effects could help to improve the next generation of surfactant preparations.

  20. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface.

    Science.gov (United States)

    Bernardino de la Serna, Jorge; Vargas, Rodolfo; Picardi, Victoria; Cruz, Antonio; Arranz, Rocío; Valpuesta, José M; Mateu, Leonardo; Pérez-Gil, Jesús

    2013-01-01

    Pulmonary surfactant is a lipid-protein complex essential to stabilize alveoli, by forming surface active films able to reach and sustain very low surface tensions (surfactant, including a high proportion of dipalmitoylphosphatidylcholine (DPPC), induces segregation of fluid ordered and disordered phases in surfactant membranes and films at physiological temperatures. The segregation of DPPC-enriched ordered phase has been related with the ability of surfactant films to produce very low tensions, while the presence in surfactant of two specific hydrophobic polypeptides, SP-B and SP-C, is absolutely required to facilitate surfactant dynamics, including film formation and re-spreading during expansion at inspiration. In the present study, we have used X-ray scattering to analyze the structure of (1) whole native surfactant membranes purified from porcine lungs, (2) membranes reconstituted from the organic extract of surfactant containing the full lipid complement and the physiological proportion of SP-B and SP-C, and (3) membranes reconstituted from the lipid fraction of surfactant depleted of proteins. Small angle X-ray scattering data from whole surfactant or from membranes reconstituted from surfactant organic extract indicated the co-existence of two lamellar phases with different thicknesses. Such phase coexistence disappeared upon heating of the samples at temperatures above physiological values. When assessed in a captive bubble surfactometer, which mimics interfacial compression-expansion dynamics, the ability of surfactant films to produce very low tensions is only maintained at temperatures permitting the coexistence of the two lamellar phases. On the other hand, membranes reconstituted in the absence of proteins produced diffractograms indicative of the existence of a single dominant lamellar phase at all temperatures. These data suggest that SP-B and SP-C establish membrane-membrane interactions coupling the stacks of different segregated phases. The low

  1. Dynamic surface activity of phenylalanine glycerol-ether surfactant solutions measured by a differential maximum bubble pressure tensiometer.

    Science.gov (United States)

    Kalogianni, Eleni P; Varka, Evi M; Karapantsios, Thodoris D; Pegiadou, Sofia

    2006-01-03

    A refined differential maximum bubble pressure tensiometer was used for measuring the dynamic surface tension at various concentrations of a nonconventional surfactant, a member of a new homologous series of phenylalanine glycerol-ether amphiphiles, with 10 carbon atoms to the hydrophobic alkyl chain (C(10)-PhGE). The effective bubble formation frequency for the examined surfactant concentrations was varied from 2 bubbles per second to 1 bubble per 20 s. The variation of equilibrium surface tension with concentration as well as the critical micelle concentration were determined by a Wilhelmy plate technique. Comparisons between dynamic and equilibrium surface tension values demonstrate that, under the employed surface deformation rates, the equilibrium surface tension is a misleading indicator of surface activity. This is also supported by simple surface rheology considerations. Results based on a diffusion-controlled kinetic analysis provide further evidence on the strong dependence of surface activity on the particular time scale of deformation.

  2. Surface Tension and Capillary Rise

    Science.gov (United States)

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  3. Improved efficiency of miscible CO2 floods and enhanced prospects for CO2 flooding heterogeneous reservoirs. Final report, April 17, 1991--May 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, R.B.; Schechter, D.S.

    1998-02-01

    From 1986 to 1996, oil recovery in the US by gas injection increased almost threefold, to 300,000 bbl/day. Carbon dioxide (CO{sub 2}) injection projects make up three-quarters of the 191,139 bbl/day production increase. This document reports experimental and modeling research in three areas that is increasing the number of reservoirs in which CO{sub 2} can profitably enhance oil recovery: (1) foams for selective mobility reduction (SMR) in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low interfacial tension (97) processes and the possibility of CO{sub 2} flooding in naturally fractured reservoirs. CO{sub 2} injection under miscible conditions can effectively displace oil, but due to differences in density and viscosity the mobility of CO{sub 2} is higher than either oil or water. High CO{sub 2} mobility causes injection gas to finger through a reservoir, causing such problems as early gas breakthrough, high gas production rates, excessive injection gas recycling, and bypassing of much of the reservoir oil. These adverse effects are exacerbated by increased reservoir heterogeneity, reaching an extreme in naturally fractured reservoirs. Thus, many highly heterogeneous reservoirs have not been considered for CO{sub 2} injection or have had disappointing recoveries. One example is the heterogeneous Spraberry trend in west Texas, where only 10% of its ten billion barrels of original oil in place (OOIP) are recoverable by conventional methods. CO{sub 2} mobility can be reduced by injecting water (brine) alternated with CO{sub 2} (WAG) and then further reduced by adding foaming agents-surfactants. In Task 1, we studied a unique foam property, selective mobility reduction (SMR), that effectively reduces the effects of reservoir heterogeneity. Selective mobility reduction creates a more uniform displacement by decreasing CO{sub 2} mobility in higher permeability zones more than in lower permeability zones.

  4. Molecular simulations of droplet coalescence in oil/water/surfactant systems.

    Science.gov (United States)

    Rekvig, Live; Frenkel, Daan

    2007-10-07

    We report a molecular simulation study of the mechanism by which droplets covered with a surfactant monolayer coalesce. We study a model system where the rate-limiting step in coalescence is the rupture of the surfactant film. Our simulations allow us to focus on the stages at the core of the coalescence process: the initial rupture of the two surfactant monolayers, the rearrangement of the surfactant molecules to form a channel connecting the two droplets, and the expansion of the radius of the resulting channel. For our numerical study, we made use of the dissipative particle dynamics method. We used a coarse-grained description of the oil, water, and surfactant molecules. The rupture of the surfactant film is a rare event on the molecular time scale. To enhance the sampling of the rupture of the surfactant film, we used forward flux sampling (FFS). FFS not only allows us to estimate coalescence rates, it also provides insight into the molecular structure and free energy of the "transition" state. For an oil-water-oil film without surfactant, the rupture rate decreases exponentially with increasing film thickness. The critical state is different in thin and thick films: Thin films break following a large enough thickness fluctuation. Thicker films break only after a sufficiently large hole fluctuation-they can heal. Next, we designed surfactant molecules with positive, zero, and negative natural curvatures. For a water film between two surfactant-covered oil droplets, the rupture rate is highest when the surfactant has a negative natural curvature, lowest when it has zero natural curvature, and lying in between when it has a positive natural curvature. This nonmonotonic variation with curvature stems from two effects: First, the surfactants with a large absolute value of the natural curvature have lower interfacial tension and bending rigidity. This promotes the interfacial fluctuations required to nucleate a channel. Second, the sign of the natural curvature

  5. Surface active complexes formed between keratin polypeptides and ionic surfactants.

    Science.gov (United States)

    Pan, Fang; Lu, Zhiming; Tucker, Ian; Hosking, Sarah; Petkov, Jordan; Lu, Jian R

    2016-12-15

    Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C12TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes. Copyright © 2016. Published by Elsevier Inc.

  6. Water surface tension modulates the swarming mechanics of Bacillus subtilis.

    Science.gov (United States)

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation.

  7. Innovation in surfactant therapy II: surfactant administration by aerosolization.

    Science.gov (United States)

    Pillow, J Jane; Minocchieri, S

    2012-01-01

    Instilled bolus surfactant is the only approved surfactant treatment for neonatal respiratory distress syndrome. However, recent trends towards increased utilization of noninvasive respiratory support for preterm infants with surfactant deficiency have created a demand for a similarly noninvasive means of administering exogenous surfactant. Past approaches to surfactant nebulization met with varying success due to inefficient aerosol devices resulting in low intrapulmonary delivery doses of surfactant with variable clinical effectiveness. The recent development of vibrating membrane nebulizers, coupled with appropriate positioning of the interface device, indicates that efficient delivery of aerosolized surfactant is now a realistic goal in infants. Evidence of clinical effect despite low total administered dose in pilot studies, together with suggestions of enhanced homogeneity of pulmonary distribution indicate that this therapy may be applied in a cost-effective manner, with minimal patient handling and disruption. These studies need to be subjected to appropriately designed randomized controlled trials. Further work is also required to determine the optimum delivery route (mask, intranasal prong, nasopharyngeal or laryngeal), dosing amount and redosing interval. Copyright © 2012 S. Karger AG, Basel.

  8. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability

  9. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species.

    Science.gov (United States)

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T; Mussone, Paolo G

    2011-04-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus aucuparia over 3 months. We measured the instantaneous surface tension and followed changes over a period of 0.5-5 h using the pendant drop technique. In all three species the instantaneous surface tension was equal to or within a few percent of that of pure water. Further, in B. papyrifera and S. aucuparia the change over time following drop establishment, although significant, was very small. In P. tremuloides, however, there was a steep decline in surface tension over time that leveled off towards values 21-27% lower than that of pure water. This indicated the presence of surfactants. The values were lower for thinner distal branch segments than for proximal ones closer to the trunk. In some species it appears valid to assume that the surface tension of xylem sap is equal to that of water. However, in branch segments of P. tremuloides close to the terminal bud and hence potentially in other species as well, it may be necessary to take into account the presence of surfactants that reduce the surface tension over time.

  10. Dynamic surface activity of a fully synthetic phospholipase-resistant lipid/peptide lung surfactant.

    Science.gov (United States)

    Walther, Frans J; Waring, Alan J; Hernandez-Juviel, Jose M; Gordon, Larry M; Schwan, Adrian L; Jung, Chun-Ling; Chang, Yusuo; Wang, Zhengdong; Notter, Robert H

    2007-10-17

    This study examines the surface activity and resistance to phospholipase degradation of a fully-synthetic lung surfactant containing a novel diether phosphonolipid (DEPN-8) plus a 34 amino acid peptide (Mini-B) related to native surfactant protein (SP)-B. Activity studies used adsorption, pulsating bubble, and captive bubble methods to assess a range of surface behaviors, supplemented by molecular studies using Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and plasmon resonance. Calf lung surfactant extract (CLSE) was used as a positive control. DEPN-8+1.5% (by wt.) Mini-B was fully resistant to degradation by phospholipase A(2) (PLA(2)) in vitro, while CLSE was severely degraded by this enzyme. Mini-B interacted with DEPN-8 at the molecular level based on FTIR spectroscopy, and had significant plasmon resonance binding affinity for DEPN-8. DEPN-8+1.5% Mini-B had greatly increased adsorption compared to DEPN-8 alone, but did not fully equal the very high adsorption of CLSE. In pulsating bubble studies at a low phospholipid concentration of 0.5 mg/ml, DEPN-8+1.5% Mini-B and CLSE both reached minimum surface tensions bubble. In captive bubble studies, DEPN-8+1.5% Mini-B and CLSE both generated minimum surface tensions surfactants for treating diseases of surfactant deficiency or dysfunction.

  11. Viscous Fingering on an Immiscible Reactive Interface with Variation of Interfacial Tension

    Science.gov (United States)

    Tsuzuki, Reiko; Nagatsu, Yuichiro; Li, Qian; Chen, Ching-Yao

    2017-11-01

    The effects of chemical reaction, in which surfactants are produced on the interface of two immiscible fluids, on viscous fingering in a radial Hele-Shaw flow are numerically investigated. The presence of surfactants reduces interfacial tension, which is an important factor to the fingering pattern formation. In the present study, influences of reaction rate and dispersion of produced surfactants, represented respectively by dimensionless parameters of Damkohler number and Peclet number, are evaluated systematically. Secondary fingering instability, e.g., tip-splitting and side-branching, is triggered by chemical reactions. Weaker surface tension generally induces tip-splitting. For the case of high Damkohler number, because of the vortex pairs generated within each finger, surfactant tends to accumulate significantly on the side of finger, so that side-branching is preferred. Nevertheless, side-branching is suppressed in the cases associated with low Peclet number, in which strong dispersion reduces the local variation of surfactant concentration. Considering the coupled effects by Damkohler number and Peclet number, the patterns obtained by the simulations qualitatively agree with the observations in the experiments.

  12. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  13. Surfactant-driven flow transitions in evaporating droplets

    CERN Document Server

    Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J

    2015-01-01

    An evaporating droplet is a dynamic system in which flow is spontaneously generated to minimize the surface energy, dragging particles to the borders and ultimately resulting in the so-called "coffee-stain effect". The situation becomes more complex at the droplet's surface, where surface tension gradients of different nature can compete with each other yielding different scenarios. With careful experiments and with the aid of 3D particle tracking techniques, we are able to show that different types of surfactants turn the droplet's surface either rigid or elastic, which alters the evaporating fluid flow, either enhancing the classical coffee-stain effect or leading to a total flow inversion. Our measurements lead to unprecedented and detailed measurements of the surface tension difference along an evaporating droplet's surface with good temporal and spatial resolution.

  14. Myristate is selectively incorporated into surfactant and decreases dipalmitoylphosphatidylcholine without functional impairment.

    Science.gov (United States)

    Pynn, Christopher J; Picardi, M Victoria; Nicholson, Tim; Wistuba, Dorothee; Poets, Christian F; Schleicher, Erwin; Perez-Gil, Jesus; Bernhard, Wolfgang

    2010-11-01

    Lung surfactant mainly comprises phosphatidylcholines (PC), together with phosphatidylglycerols and surfactant proteins SP-A to SP-D. Dipalmitoyl-PC (PC16:0/16:0), palmitoylmyristoyl-PC (PC16:0/14:0), and palmitoylpalmitoleoyl-PC (PC16:0/16:1) together comprise 75-80% of surfactant PC. During alveolarization, which occurs postnatally in the rat, PC16:0/14:0 reversibly increases at the expense of PC16:0/16:0. As lipoproteins modify surfactant metabolism, we postulated an extrapulmonary origin of PC16:0/14:0 enrichment in surfactant. We, therefore, fed rats (d19-26) with trilaurin (C12:0(3)), trimyristin (C14:0(3)), tripalmitin (C16:0(3)), triolein (C18:1(3)) or trilinolein (C18:2(3)) vs. carbohydrate diet to assess their effects on surfactant PC composition and surface tension function using a captive bubble surfactometer. Metabolism was assessed with deuterated C12:0 (ω-d(3)-C12:0) and ω-d(3)-C14:0. C14:0(3) increased PC16:0/14:0 in surfactant from 12 ± 1 to 45 ± 3% and decreased PC16:0/16:0 from 47 ± 1 to 29 ± 2%, with no impairment of surface tension function. Combined phospholipase A(2) assay and mass spectrometry revealed that 50% of the PC16:0/14:0 peak comprised its isomer 1-myristoyl-2-palmitoyl-PC (PC14:0/16:0). While C12:0(3) was excluded from incorporation into PC, it increased PC16:0/14:0 as well. C16:0(3), C18:1(3), and C18:2(3) had no significant effect on PC16:0/16:0 or PC16:0/14:0. d(3)-C14:0 was enriched in lung PC, either via direct supply or via d(3)-C12:0 elongation. Enrichment of d(3)-C14:0 in surfactant PC contrasted its rapid turnover in plasma and liver PC, where its elongation product d(3)-C16:0 surmounted d(3)-C14:0. In summary, high surfactant PC16:0/14:0 during lung development correlates with C14:0 and C12:0 supply via specific C14:0 enrichment into lung PC. Surfactant that is high in PC16:0/14:0 but low in PC16:0/16:0 is compatible with normal respiration and surfactant function in vitro.

  15. Capillary pressure across a pore throat in the presence of surfactants

    Science.gov (United States)

    Jang, Junbong; Sun, Zhonghao; Santamarina, J. Carlos

    2016-12-01

    Capillarity controls the distribution and transport of multiphase and immiscible fluids in soils and fractured rocks; therefore, capillarity affects the migration of nonaqueous contaminants and remediation strategies for both LNAPLs and DNAPLs, constrains gas and oil recovery, and regulates CO2 injection and geological storage. Surfactants alter interfacial tension and modify the invasion of pores by immiscible fluids. Experiments are conducted to explore the propagation of fluid interfaces along cylindrical capillary tubes and across pore constrictions in the presence of surfactants. Measured pressure signatures reflect the interaction between surface tension, contact angle, and the pore geometry. Various instabilities occur as the interface traverses the pore constriction, consequently, measured pressure signatures differ from theoretical trends predicted from geometry, lower capillary pressures are generated in advancing wetting fronts, and jumps are prone to under-sampling. Contact angle and instabilities are responsible for pronounced differences between pressure signatures recorded during advancing and receding tests. Pressure signatures gathered with surfactant solutions suggest changes in interfacial tension at the constriction; the transient surface tension is significantly lower than the value measured in quasi-static conditions. Interface stiffening is observed during receding fronts for solutions near the critical micelle concentration. Wetting liquids tend to form plugs at pore constrictions after the invasion of a nonwetting fluid; plugs split the nonwetting fluid into isolated globules and add resistance against fluid flow.

  16. Capillary pressure across a pore throat in the presence of surfactants

    KAUST Repository

    Jang, Junbong

    2016-11-22

    Capillarity controls the distribution and transport of multiphase and immiscible fluids in soils and fractured rocks; therefore, capillarity affects the migration of nonaqueous contaminants and remediation strategies for both LNAPLs and DNAPLs, constrains gas and oil recovery, and regulates CO2 injection and geological storage. Surfactants alter interfacial tension and modify the invasion of pores by immiscible fluids. Experiments are conducted to explore the propagation of fluid interfaces along cylindrical capillary tubes and across pore constrictions in the presence of surfactants. Measured pressure signatures reflect the interaction between surface tension, contact angle, and the pore geometry. Various instabilities occur as the interface traverses the pore constriction, consequently, measured pressure signatures differ from theoretical trends predicted from geometry, lower capillary pressures are generated in advancing wetting fronts, and jumps are prone to under-sampling. Contact angle and instabilities are responsible for pronounced differences between pressure signatures recorded during advancing and receding tests. Pressure signatures gathered with surfactant solutions suggest changes in interfacial tension at the constriction; the transient surface tension is significantly lower than the value measured in quasi-static conditions. Interface stiffening is observed during receding fronts for solutions near the critical micelle concentration. Wetting liquids tend to form plugs at pore constrictions after the invasion of a nonwetting fluid; plugs split the nonwetting fluid into isolated globules and add resistance against fluid flow.

  17. Cable tensioned membrane solar collector module with variable tension control

    Science.gov (United States)

    Murphy, Lawrence M.

    1985-01-01

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  18. The role of multilayers in preventing the premature buckling of the pulmonary surfactant.

    Science.gov (United States)

    Al-Saiedy, Mustafa; Tarokh, Ali; Nelson, Sultan; Hossini, Kiavash; Green, Francis; Ling, Chang-Chun; Prenner, Elmar J; Amrein, Matthias

    2017-08-01

    The pulmonary surfactant is a protein-lipid mixture that spreads into a film at the air-lung interface. The highly-compacted molecules of the film keep the interface from shrinking under the influence of otherwise high surface tension and thus prevent atelectasis. We have previously shown that for the film to withstand a high film pressure without collapsing it needs to assume a specific architecture of a molecular monolayer with islands of stacks of molecular multilayers scattered over the area. Surface activity was assessed in a captive bubble surfactometer (CBS) and the role of cholesterol and oxidation on surfactant function examined. The surfactant film was conceptualized as a plate under pressure. Finite element analysis was used to evaluate the role of the multilayer stacks in preventing buckling of the plate during compression. The model of film topography was constructed from atomic force microscope (AFM) scans of surfactant films and known physical properties of dipalmitoylphosphatidylcholine (DPPC), a major constituent of surfactant, using ANSYS structural-analysis software. We report that multilayer structures increase film stability. In simulation studies, the critical load required to induce surfactant film buckling increased about two-fold in the presence of multilayers. Our in vitro surfactant studies showed that surface topography varied between functional and dysfunctional films. However, the critical factor for film stability was the anchoring of the multilayers. Furthermore, the anchoring of multilayers and mechanical stability of the film was dependent on the presence of hydrophobic surfactant protein-C. The current study expands our understanding of the mechanism of surfactant inactivation in disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Determination of aggregation thresholds of UV absorbing anionic surfactants by frontal analysis continuous capillary electrophoresis.

    Science.gov (United States)

    Le Saux, Thomas; Varenne, Anne; Gareil, Pierre

    2004-06-04

    Aggregation of anionic surfactants was investigated by frontal analysis continuous capillary electrophoresis (FACCE), a method involving the continuous electrokinetic introduction of the surfactant sample into the separation capillary. This process results in a partial separation of the monomeric and aggregated forms without perturbing the monomer-aggregate equilibrium. The critical micelle concentration (CMC) can then be easily derived from the height of the firstly detected migration front, corresponding to the monomeric form. This approach is exemplified with octyl and dodecylbenzenesulfonates and compared with conductimetry and surface tension measurements. FACCE turns out to be an effective method for the determination of CMC and intermediate aggregation phenomena with very small sample and short time requirements.

  20. Ion Specificity and Micellization of Ionic Surfactants: A Monte Carlo Study

    CERN Document Server

    Santos, Alexandre P dos; Levin, Yan

    2014-01-01

    We develop a simulation method which allows us to calculate the critical micelle concentrations for ionic surfactants in the presence of different salts. The results are in good agreement with the experimental data. The simulations are performed on a simple cubic lattice. The anionic interactions with the alkyl chains are taken into account based on the previously developed theory of the interfacial tensions of hydrophobic interfaces: the kosmotropic anions do not interact with the hydrocarbon tails of ionic surfactants, while chaotropic anions interact with the alkyl chains through a dispersion potential proportional to the anionic polarizability.

  1. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  2. Surfactant alterations in horses with recurrent airway obstruction at various clinical stages.

    Science.gov (United States)

    Christmann, Undine; Hite, R Duncan; Tan, Rachel H H; Thatcher, Craig D; Witonsky, Sharon G; Werre, Stephen R; Buechner-Maxwell, Virginia A

    2010-04-01

    To evaluate the phospholipid composition and function of surfactant in horses with recurrent airway obstruction (RAO) at various clinical stages and compare these properties with findings in horses without RAO. 7 horses with confirmed RAO and 7 without RAO (non-RAO horses). Pairs of RAO-affected and non-RAO horses were evaluated before, during, and after exposure to hay. Evaluations included clinical scoring, lung function testing, airway endoscopy, and bronchoalveolar lavage fluid (BALF) absolute and differential cell counts. Cell-free BALF was separated into crude surfactant pellet and supernatant by ultracentrifugation, and phospholipid and protein concentrations were determined. Phospholipid composition of crude surfactant pellets and surface tension were evaluated with high-performance liquid chromatography and a pulsating bubble surfactometer, respectively. Findings were compared statistically via mixed-effects, repeated-measures ANOVA. Total phospholipid concentration in BALF was lower in RAO-affected versus non-RAO horses at all sample collection times. In the RAO-affected group, total phospholipid concentration was lower during exposure to hay than before or after exposure. There were no significant differences in BALF protein concentration, percentages of phospholipid classes, or surface tension between or within groups of horses. All clinical stages of RAO-affected horses were characterized by low surfactant concentration in BALF. Exacerbation of RAO led to an additional decrease in surfactant concentration. Causes for low surfactant concentration in RAO-affected horses remain to be determined. Low phospholipid concentration may render RAO-affected horses more susceptible than unaffected horses to surfactant alterations and contribute to clinical disease status and progression.

  3. Experimental and theoretical approach to nonequivalent adsorption of novel dicephalic ammonium surfactants at the air/solution interface.

    Science.gov (United States)

    Skrzela, Renata; Para, Grazyna; Warszyński, Piotr; Wilk, Kazimiera A

    2010-08-19

    The interfacial behavior of novel dicephalic cationic surfactants, N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dimethylsulfates, was analyzed both experimentally and theoretically in comparison to their linear standards, 3-[(trimethylammonio)propyl]dodecanamide bromide and 3-[(trimethylammonio)propyl]dodecanamide methylsulfate. Adsorption of the studied double head-single tail surfactants depends strongly upon their structure, making them less surface active in comparison to the single head-single tail structures having the same alkyl chain length. Surface tension isotherms of aqueous solutions of the studied dicephalic derivatives were measured using the pendant drop shape analysis method and interpreted with the so-called surface quasi-two-dimensional electrolyte (STDE) model of ionic surfactant adsorption. The model is based on the assumption that the surfactant ions and counterions (bromide and methylsulfate ions in the studied case) undergo nonequivalent adsorption within the Stern layer, and it allows for accounting for the formation of surfactant ion-counterion associates in the case of multivalent surfactant headgroup ions. As a result, good agreement between theory and experiment was obtained. Additionally, the presence of surfactant-counterion complexes was successfully confirmed by both measurements of the concentration of free bromide ions in solution and molecular modeling simulations. The results of the present study may prove useful in the potential application of the investigated dicephalic cationic surfactants.

  4. Stabilization of diketo tautomer of curcumin by premicellar anionic surfactants: UV-Visible, fluorescence, tensiometric and TD-DFT evidences

    Science.gov (United States)

    Dutta, Anisha; Boruah, Bornali; Manna, Arun K.; Gohain, Biren; Saikia, Palash M.; Dutta, Robin K.

    2013-03-01

    A newly observed UV band of aqueous curcumin, a biologically important molecule, in presence of anionic surfactants, viz., sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and sodium dodecylsulfonate (SDSN) in buffered aqueous solutions has been studied experimentally and theoretically. The 425 nm absorption band of curcumin disappears and a new UV-band is observed at 355 nm on addition of the surfactants in the submicellar concentration range which is reversed as the surfactant concentration approaches the critical micelle concentration (CMC). The observed spectral absorption, fluorescence intensity and surface tension behavior, under optimal experimental conditions of submicellar concentration ranges of the surfactants in the pH range of 2.00-7.00, indicate that the new band is due to the β-diketo tautomer of curcumin stabilized by interactions between curcumin and the anionic surfactants. The stabilization of the diketo tautomer by submicellar anionic surfactants described here as well as by submicellar cationic surfactant, reported recently, is unique as this is the only such behavior observed in presence of submicellar surfactants of both charge types. The experimental results are in good agreement with the theoretical calculations using ab initio density functional theory combined with time dependent density functional theory (TD-DFT) calculations.

  5. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    Science.gov (United States)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)

    2001-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which

  6. A freeze-fracture transmission electron microscopy and small angle x-ray diffraction study of the effects of albumin, serum, and polymers on clinical lung surfactant microstructure.

    Science.gov (United States)

    Braun, Andreas; Stenger, Patrick C; Warriner, Heidi E; Zasadzinski, Joseph A; Lu, Karen W; Taeusch, H William

    2007-07-01

    Freeze-fracture transmission electron microscopy shows significant differences in the bilayer organization and fraction of water within the bilayer aggregates of clinical lung surfactants, which increases from Survanta to Curosurf to Infasurf. Albumin and serum inactivate all three clinical surfactants in vitro; addition of the nonionic polymers polyethylene glycol, dextran, or hyaluronic acid also reduces inactivation in all three. Freeze-fracture transmission electron microscopy shows that polyethylene glycol, hyaluronic acid, and albumin do not adsorb to the surfactant aggregates, nor do these macromolecules penetrate the interior water compartments of the surfactant aggregates. This results in an osmotic pressure difference that dehydrates the bilayer aggregates, causing a decrease in the bilayer spacing as shown by small angle x-ray scattering and an increase in the ordering of the bilayers as shown by freeze-fracture electron microscopy. Small angle x-ray diffraction shows that the relationship between the bilayer spacing and the imposed osmotic pressure for Curosurf is a screened electrostatic interaction with a Debye length consistent with the ionic strength of the solution. The variation in surface tension due to surfactant adsorption measured by the pulsating bubble method shows that the extent of surfactant aggregate reorganization does not correlate with the maximum or minimum surface tension achieved with or without serum in the subphase. Albumin, polymers, and their mixtures alter the surfactant aggregate microstructure in the same manner; hence, neither inhibition reversal due to added polymer nor inactivation due to albumin is caused by alterations in surfactant microstructure.

  7. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant

  8. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces

    Science.gov (United States)

    Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.

    2017-11-01

    Any efficient exploitation of new petroleum reservoirs necessitates developing methods to mobilize the crude oils from such reservoirs. Here silicon dioxide nanoparticles (SiO2 NPs) were used to improve the efficiency of the chemical-enhanced oil recovery process that uses surfactant flooding. Specifically, SiO2 NPs (i.e., 0, 0.001, 0.005, 0.01, 0.05, and 0.1 wt%) and Tween®20, a nonionic surfactant, at 0, 0.5, and 2 critical micelle concentration (CMC) were varied to determine their effect on the stability of nanofluids and the interfacial tension (IFT) at the oil-aqueous interface for 5 wt% brine-surfactant-SiO2 nanofluid-oil systems for West Texas Intermediate light crude oil, Prudhoe Bay medium crude oil, and Lloydminster heavy crude oil. Our study demonstrates that SiO2 NPs may either decrease, increase the IFT of the brine-surfactant-oil systems, or exhibit no effects at all. For the brine-surfactant-oil systems, the constituents of the oil and aqueous substances affected the IFT behavior, with the nanoparticles causing a contrast in IFT trends according to the type of crude oil. For the light oil system (0.5 and 2 CMC Tween®20), the IFT increased as a function of SiO2 NP concentration, while a threshold concentration of SiO2 NPs was observed for the medium (0.5 and 2 CMC Tween®20) and heavy (2 CMC Tween®20) oil systems in terms of IFT trends. Concentrations below the SiO2 NP threshold concentration resulted in a decrease in IFT, and concentrations above this threshold resulted in an increase in IFT. The IFT decreased until the NP concentration reached a threshold concentration where synergetic effects between nonionic surfactants and SiO2 NPs are the opposite and result in antagonistic effects. Adsorption of both SiO2 NPs and surfactants at an interface caused a synergistic effect and an increased reduction in IFT. The effectiveness of the brine-surfactant-SiO2 nanofluids in decreasing the IFT between the oil-aqueous phase for the three tested crude oils

  9. Chemistry and technology of surfactants

    National Research Council Canada - National Science Library

    Farn, Richard J

    2006-01-01

    ... 2.3.1 Micelles and critical micelle concentration 2.3.2 Aggregate structures and shapes 2.4 Adsorption of surfactants at surfaces 2.4.1 Adsorption at liquid- gas and liquid- liquid interfaces 2.4....

  10. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.

    Science.gov (United States)

    Ni, Hewei; Zhou, Wenjun; Zhu, Lizhong

    2014-05-01

    The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (soils. In the concentration range of 60-150 mg/kg, both ryegrass roots and shoots could accumulate 2-3 times the phenanthrene and pyrene with mixed surfactants than with Tween 80. These results may be explained by the lower sorption loss and reduced interfacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Competitive adsorption of the protein hydrophobin and an ionic surfactant: Parallel vs sequential adsorption and dilatational rheology

    NARCIS (Netherlands)

    Stanimirova, R.; Marinova, K.G.; Danov, K.D.; Kralchevsky, P.A.; Basheva, E.S.; Stoyanov, S.D.; Pelan, E.G.

    2014-01-01

    The competitive adsorption of the protein HFBII hydrophobin and the anionic surfactant sodium dodecyl sulfate (SDS) is investigated in experiments on parallel and sequential adsorption of the two components. The dynamic surface tension and the surface storage and loss dilatational moduli are

  12. On understanding microemulsions : I. Interfacial tensions and adsorptions of SDS and pentanol at the cyclohexane/water interface

    NARCIS (Netherlands)

    Verhoeckx, G.J.; Bruyn, P.L. de; Overbeek, J.Th.G.

    1987-01-01

    We measured interfacial tensions using the spinning drop technique in two-phase oil/water (O/W) systems containing sodium dodecyl sulfate (SDS), n-pentanol, NaCl, cyclohexane, and water. The systems contained only small amounts of SDS (mostly Surfactant activities were obtained from measured

  13. Interaction of surfactants with block-copolymer systems in the presence of Hofmeister anions

    Science.gov (United States)

    Jadoon, Quratulain; Bibi, Iram; Mehmood, Khalid; Sajjad, Saman; Nawaz, Mohsan; Ali, Farman; Bibi, Saira; ur-Rehman, Wajid; Bano, Shakeela; Usman, Mohammad

    2017-03-01

    The interactions of block copolymers poly (ethylene oxide butylene oxide), E58B7 and E58B11 with anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethylammonium bromide were studied by using different techniques such as surface tension, conductivity, and dynamic light scattering. The effect of salts in the Hofmeister series on polymer-surfactant systems was also investigated. The interactions were found to be dependent on both surfactant and polymer concentrations. The results were utilized to compute different thermodynamic parameters including enthalpy of micellization (ΔH m), entropy of micellization (ΔS m), free energy of adsorption (ΔG ads) and free energy of micellization (ΔG mic). For diblock-copolymer surfactant systems the negative value of (ΔG mic) shows that the process of micelle formation is thermodynamically favorable. The solubilization in surfactant micelles altered the physicochemical properties of the block copolymer. The value of critical aggregation concentration decreases with the addition of Hofmeister anions, and the decrease is more pronounced for sodium fluoride as compared to sodium iodide.

  14. Joint Intratracheal Surfactant-Antibacterial Therapy in Experimental Pseudomonas-Induced Pneumonia.

    Science.gov (United States)

    Birkun, Alexei A; Kubyshkin, Anatoly V; Novikov, Nikolai Y; Krivorutchenko, Yuri L; Fedosov, Michael I; Postnikova, Olga N; Snitser, Anatoly A

    2015-08-01

    The application of an exogenous pulmonary surfactant as a carrier for intratracheally administered antimicrobials represents a promising therapeutic modality that is still on its way to clinical practice. Owing to its ability to decrease surface tension, exogenous surfactant may enhance delivery of antibiotics into foci of pulmonary infection, thus increasing efficiency and safety of topical antimicrobial therapy in bacterial lung diseases. To assess potential interactions between exogenous surfactant and amikacin in vitro, and to study the effects of their joint intratracheal instillation in rats with acute pneumonia caused by Pseudomonas aeruginosa. The antibacterial and surface-active properties of amikacin (Amicil, Kievmedpreparat, Ukraine), porcine pulmonary surfactant (Suzacrin, Docpharm, Ukraine), and their combination were studied in vitro using standard microbiologic procedures and modified Pattle method (estimation of bubble diameter). Similar methods were utilized to study bacterial contamination of lungs and blood, and to assess the surface activity of bronchoalveolar wash (BAW) in 119 Wistar rats, including infected (intratracheal introduction of P. aeruginosa ATCC 27853) and noninfected animals. Histopathologic findings, differential leukocyte counts, and oxygenation parameters were recorded. Antibacterial and surface-active properties of the surfactant and amikacin remained unimpaired in vitro. In rats anti-pseudomonal and anti-inflammatory effects of the surfactant-amikacin mixture were more pronounced (psurfactant-amikacin therapy of Pseudomonas-induced pneumonia may suggest further clinical trials.

  15. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    Science.gov (United States)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  16. "SP-G", a putative new surfactant protein--tissue localization and 3D structure.

    Directory of Open Access Journals (Sweden)

    Felix Rausch

    Full Text Available Surfactant proteins (SP are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.

  17. Synthesis, surface properties and antimicrobial activity of some germanium nonionic surfactants.

    Science.gov (United States)

    Zaki, Mohamed F; Tawfik, Salah M

    2014-01-01

    Esterification reaction between different fatty acid namely; lauric, stearic, oleic and linoleic acids and polyethylene glycol-400 were performed. The produced polyethylene glycol ester were reacted with p-amine benzoic acid followed by condensation reaction with germanium dioxide in presence of sodium carbonate to form desired germinate surfactants. The chemical structures of the synthesized surfactants were determined using different spectra tools. The surface parameter including: the critical micelle concentration (CMC), effectiveness (π(cmc)), efficiency (Pc20), maximum surface excess (Γ(max)) and minimum surface area (A(min)), were calculated from the surface tension measurements. The synthesized surfactants showed higher surface activity. The thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the synthesized nonionic surfactants showed their tendency towards adsorption at the interfaces and also micellization in the bulk of their solutions. The synthesized surfactants were tested against different strain of bacteria using inhibition zone diameters. The synthesized surfactants showed good antimicrobial activities against the tested microorganisms including Gram positive, Gram negative as well as fungi. The promising inhibition efficiency of these compounds against the sulfate reducing bacteria facilitates them to be applicable as new categories of sulfate reducing bacteria biocides.

  18. Comparative evaluation of heterologous production systems for recombinant pulmonary surfactant protein D

    Directory of Open Access Journals (Sweden)

    Daniela eSalgado

    2014-12-01

    Full Text Available Commercial surfactant products derived from animal lungs are used for the treatment of respiratory diseases in premature neonates. These products contain lipids and the hydrophobic surfactant proteins B and C, which help to lower the surface tension in the lungs. Surfactant products are less effective when pulmonary diseases involve inflammatory complications because two hydrophilic surfactant proteins (A and D are lost during the extraction process, yet surfactant protein D (SP-D is a component of the innate immune system that helps to reduce lung inflammation. The performance of surfactant products could therefore be improved by supplementing them with an additional source of SP-D. Recombinant SP-D is produced in mammalian cells and bacteria (Escherichia coli, and also experimentally in the yeast Pichia pastoris. Mammalian cells produce full-size SP-D, but the yields are low and the cost of production is high. In contrast, bacteria produce a truncated form of SP-D, which is active in vitro and in vivo, and higher yields can be achieved at a lower cost. We compare the efficiency of production of recombinant SP-D in terms of the total yields achieved in each system and the amount of SP-D needed to meet the global demand for the treatment of pulmonary diseases, using respiratory distress syndrome as a case study.

  19. Visualization of TCE recovery mechanisms using surfactant-polymer solutions in a two-dimensional heterogeneous sand model.

    Science.gov (United States)

    Robert, Thomas; Martel, Richard; Conrad, Stephen H; Lefebvre, René; Gabriel, Uta

    2006-06-30

    This research focused on the optimization of TCE dissolution in a physical two-dimensional model providing a realistic representation of a heterogeneous granular aquifer. TCE was infiltrated in the sand pack where it resided both in pools and in zones of residual saturation. Surfactant was initially injected at low concentration to minimize TCE remobilization at first contact but was incrementally increased later during the experiment. Xanthan gum was added to the injected surfactant solution to optimize the sweep efficiency through the heterogeneous medium. Photographs and digital image analysis illustrated the interactions between TCE and the injected fluids. During the polymer flood, the effects of heterogeneities inside the sand pack were greatly reduced by the increased fluid viscosity and the shear-thinning effects of the polymer. The polymer also improved the contact between the TCE ganglia and the surfactant-polymer solution, thereby promoting dissolution. Surfactants interacted with the polymer reducing the overall viscosity of the solution. At first contact with a 0.5%(mass) surfactant solution, the TCE pools drained and some remobilization occurred. However, no TCE bank was formed and TCE did not penetrate into any previously uncontaminated areas. As a result, TCE surface area was increased. Subsequent surfactant floods at higher surfactant concentrations did not trigger more remobilization. TCE was mainly dissolved by the solution with the highest surfactant concentration. Plugging from bacterial growth or microgel formation associated to the polymer at the inflow screen prevented the full completion of the experiment. However, more than 90% of TCE was recovered with the circulation of less than 6 pore volumes of surfactant-polymer solution.

  20. Relation between the EACNmin concept and surfactant HLB. [Extrapolated alkane carbon number (EACN) and hydrophile-lipophile balance (HLB)

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, M.E.; El-Emary, M.; Schechter, R.S.; Wade, W.H.

    1979-03-01

    The ability of surfactants to generate ultra-low (10/sup -2/ to 10/sup -5/ dynes/cm) interfacial tensions (lift) in oil/water systems has received increasing attention in recents years. To date, however, no one has successfully correlated lift behavior with other surfactant characterization parameters. In this work it is shown that the hydrophile-lipophile balance (HLB) number can be related to the lift behavior of ethoxylated surfactants. The point is made that not only does EACNmin (extrapolated alkane carbon number) vary simply with HLB, but the HBL values at which EACNmin in the range of 5 to 20 are very reasonable ones in that the region where HLB = 11 to 12 corresponds to the HLBs in the transition region between oil- and water-solubility. This may be significant in view of the apparent requirement of near-unity partition coefficients for low interfacial tensions. 16 references.

  1. Flooding and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  2. The effect of temperature and pH variations on the surface tension of EDTA solutions.

    Science.gov (United States)

    Yılmaz, Zeliha; Aktemur, Sevinc; Buzoglu, Hatice Dogan; Gümüsderelioglu, Menemse

    2011-06-01

    Surface tension of a liquid is one of the major factors that affect the wetting of a solid. The reduction in surface tension could improve the contact of irrigants with the dentinal walls of the root canal system. This in vitro study was conducted to evaluate the effect of pH and temperature variations on the surface tension of EDTA solutions. Three solutions, 17% EDTA, REDTA, and EDTA-T, were prepared and adjusted to have a pH of 5.5, 7.5, and 10.5. The surface tension of the test solutions was measured at 22 °C by the pendant drop technique, and the measurement was repeated after heating the solution at 37 °C. Differences among the experimental groups were statistically analyzed using three-way analysis of variance followed by the Bonferroni test for pair-wise comparison. The results of this study showed that there were significant differences in the surface tension values of solutions depending on the pH and temperature (P surface tension level of the EDTA solution dramatically decreased when surfactant was added to the EDTA solution in both pH and temperature variations (P surface tension value at a pH of 5.5 of all EDTA solutions, at a pH of 7.5 of EDTA and REDTA solutions, and at a pH of 10.5 of only REDTA solution (P surface tension of EDTA with and without surfactant is influenced by pH and temperature. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  4. Systematic Phase Behaviour Study and Foam Stability Analysis for Optimal Alkaline/Surfactant/Foam Enhanced Oil Recovery

    NARCIS (Netherlands)

    Hosseini Nasab, S.M.; Zitha, P.L.J.

    2015-01-01

    Alkaline-Surfactant-Foam (ASF) flooding is a recently introduced enhanced oil recovery (EOR) method. This paper presents laboratory study of this ASF to better understand its mechanisms. The focus is on the interaction of ASF chemical agents with oil and in the presence and absence of naphthenic

  5. Biomimicry of surfactant protein C.

    Science.gov (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  6. Flavonoid-surfactant interactions: A detailed physicochemical study

    Science.gov (United States)

    Singh, Onkar; Kaur, Rajwinder; Mahajan, Rakesh Kumar

    2017-01-01

    The aim of this article is to study the interactions between flavonoids and surfactants with attention of finding the probable location of flavonoids in micellar media that can be used for controlling their antioxidant behavior. In present study, the micellar and interfacial behavior of twin tailed anionic surfactants viz. sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium bis(2-ethylhexyl)phosphate (NaDEHP) in the presence of two flavonoids, namely quercetin (QUE) and kaempferol (KFL) have been studied by surface tension measurements. UV-visible, fluorescence and differential pulse voltammetric (DPV) measurements have been employed to predict the probable location of flavonoids (QUE/KFL) within surfactant (AOT/NaDEHP) aggregates. Dynamic light scattering (DLS) measurements further confirmed the solubilization of QUE/KFL in AOT/NaDEHP aggregates deduced from increased hydrodynamic diameter (Dh) of aggregates in the presence of flavonoids. Both radical scavenging activity (RSA) and degradation rate constant (k) of flavonoids are found to be higher in NaDEHP micelles as compared to AOT micelles.

  7. Flood risk management

    OpenAIRE

    Blanksby, J.R.

    2012-01-01

    The EU Flood Directive requires member states to develop flood risk management plans by 22nd December 2015. Along the way, member states are required to carry out preliminary flood risk assessments by 22nd December 2011, and detailed flood risk and hazard maps by 22nd December 2013. Following these initial submissions, the assessments, maps and plans will be reviewed and updated in six yearly cycles. Many countries have already carried out preliminary assessments and produced flood risk and h...

  8. Surface Tension Gradient Driven Spreading on Aqueous Mucin Solutions: A Possible Route to Enhanced Pulmonary Drug Delivery

    Science.gov (United States)

    Koch, Kevin; Dew, Beautia; Corcoran, Timothy E.; Przybycien, Todd M.; Tilton, Robert D.; Garoff, Stephen

    2011-01-01

    Surface tension gradient driven, or “Marangoni,” flow can be used to move exogenous fluid, either surfactant dispersions or drug carrying formulations, through the lung. In this paper, we investigate the spreading of aqueous solutions of water-soluble surfactants over entangled, aqueous mucin solutions that mimic the airway surface liquid of the lung. We measure the movement of the formulation by incorporating dyes into the formulation while we measure surface flows of the mucin solution subphase using tracer particles. Surface tension forces and/or Marangoni stresses initiate a convective spreading flow over this rheologically complex subphase. As expected, when the concentration of surfactant is reduced until its surface tension is above that of the mucin solution, the convective spreading does not occur. The convective spreading front moves ahead of the drop containing the formulation. Convective spreading ends with the solution confined to a well-defined static area which must be governed by a surface tension balance. Further motion of the spread solution progresses by much slower diffusive processes. Spreading behaviors are qualitatively similar for formulations based on anionic, cationic, or nonionic surfactants, containing either hydrophilic or hydrophobic dyes, on mucin as well as on other entangled aqueous polymer solution subphases. This independence of qualitative spreading behaviors from the chemistry of the surfactant and subphase indicates that there is little chemical interaction between the formulation and the subphase during the spreading process. The spreading and final solution distributions are controlled by capillary and hydrodynamic phenomena and not by specific chemical interactions among the components of the system. It is suggested that capillary forces and Marangoni flows driven by soluble surfactants may thereby enhance the uniformity of drug delivery to diseased lungs. PMID:21250745

  9. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  10. Holding the Tension.

    Science.gov (United States)

    Feudtner, Chris

    2016-05-01

    My colleagues and I had been asked by a member of a clinical team to help sort through the ethics of stopping a life-sustaining intervention for a very ill child. We had already talked with the parents, the physicians, and the folks from nursing, social work, and chaplaincy. Terms like "suffering," "cruel," "compassion," and "moral distress" had been uttered, as had terms like "inappropriate," "unethical," "neglectful," and "risk-management." The group had now stuffed all of these polarizing thoughts and feelings into this cramped room with only one door. And everyone was looking at me. What skill, competency, or inner capacity must one possess to hold and manage such tension? © 2016 The Hastings Center.

  11. Sequential adsorption of an irreversibly adsorbed nonionic surfactant and an anionic surfactant at an oil/aqueous interface.

    Science.gov (United States)

    Kirby, Stephanie M; Anna, Shelley L; Walker, Lynn M

    2015-04-14

    Aerosol-OT (AOT) and Tween 80 are two of the main surfactants in commercial dispersants used in response to oil spills. Understanding how multicomponent surfactant systems interact at oil/aqueous interfaces is crucial for improving both dispersant design and application efficacy. This is true of many multicomponent formulations; a lack of understanding of competition for the oil/water interface hinders formulation optimization. In this study, we have characterized the sequential adsorption behavior of AOT on squalane/aqueous interfaces that have been precoated with Tween 80. A microtensiometer is used to measure the dynamic interfacial tension of the system. Tween 80 either partially or completely irreversibly adsorbs to squalane/aqueous interfaces when rinsed with deionized water. These Tween 80 coated interfaces are then exposed to AOT. AOT adsorption increases with AOT concentration for all Tween 80 coverages, and the resulting steady-state interfacial tension values are interpreted using a Langmuir isotherm model. In the presence of 0.5 M NaCl, AOT adsorption significantly increases due to counterion charge screening of the negatively charged head groups. The presence of Tween 80 on the interface inhibits AOT adsorption, reducing the maximum surface coverage as compared to a clean interface. Tween 80 persists on the interface even after exposure to high concentrations of AOT.

  12. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    Science.gov (United States)

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    Science.gov (United States)

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  14. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    Science.gov (United States)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  15. Simulating Surfactant Spreading: Impact of a Physically Motivated Equation of State

    CERN Document Server

    Sinclair, Dina; Daniels, Karen E

    2016-01-01

    For more than two decades, a single model for the spreading of a surfactant-driven thin liquid film has dominated the applied mathematics literature on the subject. Recently, through the use of fluorescently-tagged lipids, it has become possible to make direct, quantitative comparisons between experiments and models. These comparisons have revealed two important discrepancies between simulations and experiments: the spatial distribution of the surfactant layer, and the timescale over which spreading occurs. In this paper, we present numerical simulations that demonstrate the impact of the particular choice of the equation of state (EoS) relating the surfactant concentration to the surface tension. Previous choices of the model EoS have been an ad-hoc decreasing function. Here, we instead propose an empirically-motivated equation of state; this provides a route to resolving some discrepancies and raises new issues to be pursued in future experiments. In addition, we test the influence of the choice of initial ...

  16. Mechanical Characterization of Ultralow Interfacial Tension Oil-in-Water Droplets by Thermal Capillary Wave Analysis in a Microfluidic Device.

    Science.gov (United States)

    Bolognesi, Guido; Saito, Yuki; Tyler, Arwen I I; Ward, Andrew D; Bain, Colin D; Ces, Oscar

    2016-04-19

    Measurements of the ultralow interfacial tension and surfactant film bending rigidity for micron-sized heptane droplets in bis(2-ethylhexyl) sodium sulfosuccinate-NaCl aqueous solutions were performed in a microfluidic device through the analysis of thermally driven droplet interface fluctuations. The Fourier spectrum of the stochastic droplet interface displacement was measured through bright-field video microscopy and a contour analysis technique. The droplet interfacial tension, together with the surfactant film bending rigidity, was obtained by fitting the experimental results to the prediction of a capillary wave model. Compared to existing methods for ultralow interfacial tension measurements, this contactless, nondestructive, all-optical approach has several advantages, such as fast measurement, easy implementation, cost-effectiveness, reduced amount of liquids, and integration into lab-on-a-chip devices.

  17. Effect of synthetic surfactants, salinity and alkalinity on the properties of asphalt emulsions

    OpenAIRE

    Márquez, G.; Martín, J. J.; Alejandre, F. J.; Fortes, J. C.; Prat, F.; Dávila, J. M.

    2009-01-01

    This paper studies the effect of salinity, alkalinity and amount of ionic and non-ionic synthetic surfactants in the aqueous emulsifier used to prepare oil-in-water or asphaltic emulsions on the performance of such substances as waterproofing on buildings. The emulsion systems studied here were prepared with Venezuelan extra heavy oil. The findings showed that the four variables modified viscosity, surface tension and mean particle size, physical properties that are instrumental to asphalt em...

  18. Surface tension of aqueous humor.

    Science.gov (United States)

    Ross, Andrew; Blake, Robert C; Ayyala, Ramesh S

    2010-09-01

    To measure and compare the surface tension of aqueous humor in patients with and without glaucoma. The surface tension of aqueous humor was measured using a commercially available instrument and software that were validated by using a known fluid (deionized water and methanol). Analysis of aqueous and vitreous samples obtained from 20 rabbit eyes showed that the system could be used successfully for small amounts of ocular fluid. The effect of glaucoma drugs on the surface tension of aqueous humor was then studied in a rabbit model. Comparison of aqueous humor from 66 patients with glaucoma and 53 patients with cataracts but no glaucoma was carried out. The surface tension of rabbit aqueous humor was 65.9 ± 1.2; vitreous, 60.6 ± 2.6; and balanced salt solution, 70.7 ± 0.9. Timolol and latanoprost did not alter the surface tension of the aqueous humor in the rabbit model. The average surface tension of human aqueous humor was 63.33 ± 4.0 (glaucomatous eyes) and 66.19 ± 2.64 (nonglaucomatous eyes with cataracts) (P=0.0001). A technique of measuring the surface tension from small quantities of aqueous humor is validated. Surface tension of the aqueous humor in glaucoma patients was less than that of cataract patients.

  19. The spatial turn and the scenario approach in flood risk management—Implementing the European Floods Directive in the Netherlands

    Directory of Open Access Journals (Sweden)

    Leon J. van Ruiten

    2016-10-01

    Full Text Available The European Floods Directive requires member states to prepare flood risk management plans for their river catchments. The first generation of those plans was just developed at the end of 2015; the next revision is due in 2021. The new instrument institutionalizes an ongoing paradigm shift from flood protection to flood risk management in Europe. It implies two major governance challenges: the spatial turn and the scenario approach. This contribution studies the implementation of these two governance challenges in the Netherlands, where the paradigm shift is considered to be advanced. Therefore, the spatial turn and the scenario approach are operationalized. The spatial turn consists of three aspects: space for the river, an integrated approach, and beyond structural measures. The scenario approach introduces the vulnerability of society in flood risk management. It is discussed how the challenges of spatial turn and the scenario approach—and thus the shift towards flood risk management—have an effect on the prevailing modes of governance in water management in the Netherlands. This helps understand the tensions and frictions with implementing the plans, but also illustrates how the European Floods Directive institutionalizes the shift towards flood risk management. The analytical scheme, consists mainly of operationalization, can foster future comparative studies with other countries and over time, to trace the changes in approaches to flood risks in Europe.

  20. Gene targeting of the cysteine peptidase cathepsin H impairs lung surfactant in mice.

    Directory of Open Access Journals (Sweden)

    Frank Bühling

    Full Text Available BACKGROUND: The 11 human cysteine cathepsins are proteases mainly located in the endolysosomal compartment of all cells and within the exocytosis pathways of some secretory cell types. Cathepsin H (Ctsh has amino- and endopeptidase activities. In vitro studies have demonstrated Ctsh involvement in the processing and secretion of the pulmonary surfactant protein B (SP-B. Furthermore, Ctsh is highly expressed in the secretory organelles of alveolar type II pneumocytes where the surfactant proteins are processed. METHODOLOGY/PRINCIPAL FINDINGS: Hence, we generated Ctsh null mice by gene targeting in embryonic stem cells to investigate the role of this protease in surfactant processing in vivo. The targeting construct contains a ß-galactosidase (lacZ reporter enabling the visualisation of Ctsh expression sites. Ctsh-deficiency was verified by northern blot, western blot, and measurement of the Ctsh aminopeptidase activity. Ctsh(-/- mice show no gross phenotype and their development is normal without growth retardation. Broncho-alveolar lavage (BAL from Ctsh(-/- mice contained lower levels of SP-B indicating reduced SP-B secretion. The BAL phospholipid concentration was not different in Ctsh(+/+ and Ctsh(-/- mice, but measurement of surface tension by pulsating bubble surfactometry revealed an impairment of the tension reducing function of lung surfactant of Ctsh(-/- mice. CONCLUSIONS/SIGNIFICANCE: We conclude that cathepsin H is involved in the SP-B production and reduced SP-B levels impair the physical properties of the lung surfactant. However, Ctsh defiency does not reproduce the severe phenotype of SP-B deficient mice. Hence, other proteases of the secretory pathway of type II pneumocytes, i.e. cathepsins C or E, are still able to produce surfactant of sufficient quality in absence of Ctsh.

  1. Gene targeting of the cysteine peptidase cathepsin H impairs lung surfactant in mice.

    Science.gov (United States)

    Bühling, Frank; Kouadio, Martin; Chwieralski, Caroline E; Kern, Ursula; Hohlfeld, Jens M; Klemm, Nicole; Friedrichs, Nicole; Roth, Wera; Deussing, Jan M; Peters, Christoph; Reinheckel, Thomas

    2011-01-01

    The 11 human cysteine cathepsins are proteases mainly located in the endolysosomal compartment of all cells and within the exocytosis pathways of some secretory cell types. Cathepsin H (Ctsh) has amino- and endopeptidase activities. In vitro studies have demonstrated Ctsh involvement in the processing and secretion of the pulmonary surfactant protein B (SP-B). Furthermore, Ctsh is highly expressed in the secretory organelles of alveolar type II pneumocytes where the surfactant proteins are processed. Hence, we generated Ctsh null mice by gene targeting in embryonic stem cells to investigate the role of this protease in surfactant processing in vivo. The targeting construct contains a ß-galactosidase (lacZ) reporter enabling the visualisation of Ctsh expression sites. Ctsh-deficiency was verified by northern blot, western blot, and measurement of the Ctsh aminopeptidase activity. Ctsh(-/-) mice show no gross phenotype and their development is normal without growth retardation. Broncho-alveolar lavage (BAL) from Ctsh(-/-) mice contained lower levels of SP-B indicating reduced SP-B secretion. The BAL phospholipid concentration was not different in Ctsh(+/+) and Ctsh(-/-) mice, but measurement of surface tension by pulsating bubble surfactometry revealed an impairment of the tension reducing function of lung surfactant of Ctsh(-/-) mice. We conclude that cathepsin H is involved in the SP-B production and reduced SP-B levels impair the physical properties of the lung surfactant. However, Ctsh defiency does not reproduce the severe phenotype of SP-B deficient mice. Hence, other proteases of the secretory pathway of type II pneumocytes, i.e. cathepsins C or E, are still able to produce surfactant of sufficient quality in absence of Ctsh.

  2. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    Science.gov (United States)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  3. A hybrid interface tracking-level set technique for multiphase flow with soluble surfactant in Blue

    Science.gov (United States)

    Matar, Omar K.; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Kahouadji, Lyes; Craster, Richard V.

    2017-11-01

    We adapt a formulation for surfactant transport in multiphase flows presented by Muradoglu & Tryggvason to the context of the Level Contour Reconstruction Method, a hybrid method that combines the front-tracking and level-set methods. Attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with previous experimental and numerical results yielding good agreement. We also demonstrate that our approach applies easily to massively-parallel simulations. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM), Basic Science Research Program through the National Research Foundation of Korea (NRF-2014R1A2A1A11051346), computing time at IDRIS of the CNRS in France.

  4. Effects of surfactant and electrolyte concentrations on bubble formation and stabilization.

    Science.gov (United States)

    Xu, Qingyi; Nakajima, Mitsutoshi; Ichikawa, Sosaku; Nakamura, Nobutaka; Roy, Poritosh; Okadome, Hiroshi; Shiina, Takeo

    2009-04-01

    As interest in the application of microbubbles grows, it is becoming increasingly important to understand the factors affecting their formation and properties in order to effectively generate microbubbles. This paper investigates the effect of surfactant concentration and electrolyte addition on the size distribution and stability of microbubbles. The anionic surfactant sodium dodecyl sulfate (SDS) was used as the surfactant. Minimum bubble diameter and maximum stability were achieved at surfactant concentrations above the CMC. The effect of the electrolyte addition was studied by adding sodium chloride (NaCl) at an SDS concentration below the critical micelle concentration (CMC). Addition of NaCl decreased bubble size and improved bubble preparation to a certain extent. The addition of salt at low concentrations did not affect the surface tension; however, the surface tension was reduced as salt concentration was increased and reached a constant value for NaCl concentrations above 0.25%. The presence of NaCl resulted in a significant decrease in zeta-potential, implying a reduction in the surface charge of SDS micelles. This result suggests that the presence of NaCl may improve the generation and stability of bubbles by enhancing the structures of the adsorption monolayer and interfacial film.

  5. Synthesis and characterization of dialkanolamides from castor oil (Ricinus communis) as nonionic surfactant

    Science.gov (United States)

    Anwar, M.; Wahyuningsih, T. D.

    2017-12-01

    Nonionic surfactant of dialkanolamide derivates was synthesized and characterized from castor oil (Ricinus comunnis). Ricinoleic acid was isolated from castor oil by hydrolysis in alkaline (KOH) condition at 65 °C. Oxidation of ricinoleic acid by dilute potassium permanganate (KMnO4) in alkaline condition at 75-90 °C gave dicarboxylic acid which was then reacted with ethanolamine at 140-160 °C for 6 hours. The product was recrystallized with isopropanol, and the structure elucidation was performed by FTIR, 1HNMR spectrometer, and GC-MS with silylation method. Characterization of surfactants was carried out by surface tension measurement (capillary rise method), Critical Micelle Concentration (CMC) based on turbidity method and calculation of Hydrophilic-Lipophilic Balance (HLB) value with Griffin method and Bancroft rule. The result showed that ricinoleic acid in castor oil is 86.19 % and it is oxidation give an azelaic acid and octanedioic acid in 53.25 %. Amidation of a dicarboxylic acid and ethanolamine at 140-160 °C for 6 hours yielded of N1,N9-bis(2-hydroxyethyl)nona diamide in 49.35 %. Surfactant characterization indicates that dialkanolamide derivates can be used as a surfactant due to its ability to reduce the surface tension of ethanol with CMC at 1.2 g/L, HLB value is 5.58 and can be used as emulsifier water in oil (W/O).

  6. Dimeric and monomeric surfactants derived from sulfur-containing amino acids.

    Science.gov (United States)

    Faustino, Célia M C; Calado, António R T; Garcia-Rio, Luís

    2010-11-15

    Anionic urea-based dimeric (gemini) surfactants derived from the amino acids L-cystine, D-cystine and DL-cystine, as well as monomeric surfactants derived from L-cysteine, L-methionine and L-cysteic acid were synthesized and their solution properties characterized by electrical conductivity, equilibrium surface tension, and steady-state fluorescence spectroscopy techniques. The geminis studied showed the lowest critical micelle concentration (cmc) values, however the monomeric cysteine counterpart exhibited superior efficiency in lowering surface tension, an unusual finding that can be attributed to the free sulfhydryl group. Chirality seems to play a role in the surface active properties of the gemini surfactants, but not on micelle formation. All the surfactants studied showed a higher preference for adsorption at the air/water interface rather than to form micelles, a fact that may be related to the urea moiety. The polarity of the interfacial region, measured with the solvatochromic probe E(T)(30) (Reichardt's betaine dye), was similar to sodium dodecyl sulphate (SDS) micelles. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  8. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers.

    Science.gov (United States)

    Haftka, Joris J-H; Scherpenisse, Peter; Oetter, Günter; Hodges, Geoff; Eadsforth, Charles V; Kotthoff, Matthias; Hermens, Joop L M

    2016-09-01

    The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC. © 2016 SETAC.

  9. A Proposed In Vitro Method to Assess Effects of Inhaled Particles on Lung Surfactant Function.

    Science.gov (United States)

    Sørli, Jorid B; Da Silva, Emilie; Bäckman, Per; Levin, Marcus; Thomsen, Birthe L; Koponen, Ismo K; Larsen, Søren T

    2016-03-01

    The lung surfactant (LS) lining is a thin liquid film covering the air-liquid interface of the respiratory tract. LS reduces surface tension, enabling lung surface expansion and contraction with minimal work during respiration. Disruption of surface tension is believed to play a key role in severe lung conditions. Inhalation of aerosols that interfere with the LS may induce a toxic response and, as a part of the safety assessment of chemicals and inhaled medicines, it may be relevant to study their impact on LS function. Here, we present a novel in vitro method, based on the constrained drop surfactometer, to study LS functionality after aerosol exposure. The applicability of the method was investigated using three inhaled asthma medicines, micronized lactose, a pharmaceutical excipient used in inhaled medication, and micronized albumin, a known inhibitor of surfactant function. The surfactometer was modified to allow particles mixed in air to flow through the chamber holding the surfactant drop. The deposited dose was measured with a custom-built quartz crystal microbalance. The alterations allowed the study of continuously increasing quantified doses of particles, allowing determination of the dose of particles that affects the LS function. The tested pharmaceuticals did not inhibit the function of a model LS even at extreme doses--neither did lactose. Micronized albumin, however, impaired surfactant function. The method can discriminate between safe inhaled aerosols--as exemplified by the approved inhaled medicines and the pharmaceutical excipient lactose--and albumin known to impair lung functionality by inhibiting LS function.

  10. Groundwater flood or groundwater-induced flood?

    OpenAIRE

    Robins, N.S.; Finch, J.W.

    2012-01-01

    A number of ‘groundwater flood’ events have been recorded over the Chalk aquifer in southern England since the 1994 occurrence at Chichester, Sussex. Reporting of this event and subsequent groundwater floods indicates that there are two types of groundwater flood event. Type 1 is the true groundwater flood in which the water table elevation rises above the ground elevation, and Type 2 occurs when intense groundwater discharge via bourne springs and highly permeable shallow horizons discharges...

  11. Surfactant adsorption study in sandstone for enhanced oil recovery; Estudo da adsorcao de tensoativos em arenitos para recuperacao avancada de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Fabiola D.S.; Santanna, Vanessa C.; Barros Neto, Eduardo L. de; Dutra Junior, Tarcilio V.; Dantas Neto, Afonso A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Garnica, Alfredo I.C. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Tecnologia Quimica e de Alimentos; Lucena Neto, Marciano [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Dantas, Tereza N.C. [Faculdade Natalense para o Desenvolvimento do RN (FARN), Natal, RN (Brazil)

    2004-07-01

    Adsorption of surfactants from aqueous solutions in porous media is very important in Enhanced Oil Recovery (EOR) of oil reservoirs because surfactant loss due to adsorption on the reservoir rocks weakens the effectiveness of the injected chemical slug in reducing oil-water tension (IFT) and makes the process uneconomical. In this paper, two nonionic surfactants, such as alkyl phenol polyoxyethylene, with different ethoxylation degrees were studied, ENP95 and ENP150. The results of flow experiments of surfactant solutions in porous media showed that adsorption was higher for ENP95 because it has smaller ethoxylation degree than ENP150. This occurs what with increasing length of the head group, the molecules become more hydrophilic and, in associated structures, the steric hindrance between the head groups increases. Generally speaking, adsorption appears to be a cooperative process involving lateral interaction between surfactant and weak interaction with the solid surface. (author)

  12. Synthesis of carbohydrate-based surfactants

    Science.gov (United States)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  13. Fungal growth on anion surfactant medium.

    Science.gov (United States)

    Hamada, Nobuo; Abe, Niichiro

    2009-12-01

    Before the present study, no fungi using anion surfactant as a nutrient had been identified, although some fungi were known to use nonion surfactant. Washing water collected from 63 washing machines was inoculated onto 0.1% LAS (Sodium dodecyl benzenesulfonate) anion surfactant media to identify fungi that can feed on anion-surfactant. Small dark colonies of fungi were found on several of the Petri-dishes from 12 days after inoculation. These were identified as Cladophialophora boppii and Exophiala spinifera using morphological features and rDNA data. A number of the isolates of C. boppii specifically were recognized as using anion surfactant as a nutrient. The growth characteristics of the two fungal species were examined on surfactant media of three kinds. Apart from anion surfactant, the fungi were also able to grow on nonion surfactant and on soap. The application of these fungi for environmental cleansing after detergent pollution is also discussed.

  14. Surface tension of HCl-based stimulation fluids at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nasr-El-Din, H.A.; Al-Othman, A.M.; Taylor, K.C.; Al-Ghamdi, A.H. [RandD Center, Saudi Aramco, PO Box 62, Dhahran 31311 (Saudi Arabia)

    2004-06-01

    Surface tension of hydrochloric acid (HCl) solutions plays a key role in matrix stimulation of gas wells. A low surface tension is required to reduce the capillary forces that trap the aqueous phase in the formation. Accumulation of the aqueous phase near the well-bore area, known as water blockage, leads to a significant reduction in gas production. This work provides, for the first time, surface tension of acid-stimulating fluids at temperatures up to 120 C, HCl concentrations up to 28 wt.%, and pressures up to 220 bar. A pendant drop apparatus specially designed for corrosive fluids was used to measure the surface tension between acid solutions and nitrogen. The effects of commonly used acid additives on the surface tension of HCl solutions were also studied in detail. These additives included corrosion inhibitors, acetic acid, formic acid, methanol, mutual solvent, a nonionic fluorocarbon surfactant, iron control chemicals, and hydrogen sulfide scavengers. In addition to surface tension values of HCl up to 28 wt.% HCl at temperatures up to 120 C, experimental results indicated that several acid additives are capable of significantly lowering the surface tension of HCl solutions. The trends discussed in this study can be used to better design acid formulae used to stimulate deep gas wells.

  15. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  16. Dissolution of anionic surfactant mesophases.

    Science.gov (United States)

    Poulos, Andreas S; Jones, Christopher S; Cabral, João T

    2017-08-09

    Linear and circular solvent penetration experiments are used to study the dissolution of anionic SLE3S surfactant mesophases in water. We show that a lamellar (Lα) phase in contact with water will transit through a series of cubic, hexagonal, and micellar phase bands with sharp interfaces identified from their optical textures. In both linear and circular geometries, the kinetics of front propagation and eventual dissolution are well described by diffusive penetration of water, and a simple model applies to both geometries, with a different effective diffusion coefficient for water Df as the only fitting parameter. Finally, we show a surprising variation of dissolution rates with initial surfactant concentration that can be well explained by assuming that the driving force for solvent penetration is the osmotic pressure difference between neat water and the aqueous fraction of the mesophase that is highly concentrated in surfactant counterions.

  17. Effects of the combination between bio-surfactant product types and washing times on the removal of crude oil in nonwoven fabric

    Science.gov (United States)

    Triawan, Agus; Ni'matuzahroh, Supriyanto, Agus

    2017-06-01

    This research aimed to characterize bio-surfactants produced by Bacillus subtilis 3KP, Pseudomonas putida T1-8, Micrococcus sp. L II 61 and Acinetobacter sp. P 2(1) and to investigate its combination's effects on the removal of crude oil in nonwoven fabric with different washing times vary from 12, 24 to 36 hours. The production of bio-surfactants was done on Synthetic Mineral Water mixed with molasses 4% within four days. The bio-surfactant products were characterized by measuring the Surface Tension (ST) (mN/m) and Emulsion Activity (EA) (%). Oil removal experiment was done by mixing 10 mL bio-surfactant with nonwoven fabric that contains crude oil into 50 mL bottle inside a shaker. The removed crude oil was extracted with n-hexane and measured gravimetrically. The results were then being analyzed with two ways ANOVA and Duncan test. Bio-surfactant produced by four bacteria has variations of Surface Tension and Emulsion Activity values. Bio-surfactant produced by Bacillus subtilis 3KP and Pseudomonas putida T1-8 showed the increasing of crude oil removal as washing times increase, while bio-surfactant produced by Micrococcus sp. L II 61 and Acinetobacter sp. P2(1) showed the decreasing result at 36 hours. However, the combination that showed the best result was Acinetobacter sp. P 2(1) at 24 hours valued 65,3%.

  18. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.

    Science.gov (United States)

    Banno, Taisuke; Kuroha, Rie; Toyota, Taro

    2012-01-17

    Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant. © 2011 American Chemical Society

  19. Cationic surfactants as the hydrolytic micellar catalysts

    OpenAIRE

    Janošcová, Petra

    2013-01-01

    Cationic surfactants as the hydrolytic micellar catalysts Petra Janošcová The effectiveness of hydrolytic cleavage of the pesticide fenitrothionin cationic surfactants micellar media has been tested. All used surfactants increased the rate of fenitrothionhydrolysis, which was the evidence of micellar catalysis. For some surfactants decreases has been evident at the highest rate of hydrolysis concentrations. It has been the result of a phenomenon called the effect of empty micelles. High hydro...

  20. Development of a Synthetic Surfactant Using a Surfactant Protein-C Peptide Analog: In Vitro Studies of Surface Physical Properties.

    Science.gov (United States)

    Bae, Chong Woo; Chung, Sung Hoon; Choi, Yong Sung

    2016-01-01

    Pulmonary surfactant (PS) replacement has been the gold standard therapy for neonatal respiratory distress syndrome; however, almost all commercial PSs contain animal proteins. We prepared a synthetic PS by using a human surfactant protein (SP) analog and evaluated its in vitro properties. A peptide sequence (CPVHLKRLLLLLLLLLLLLLLLL) of human SP-C was chosen to develop the peptide analog (SPa-C). The new synthetic SP-C PS (sSP-C PS) was synthesized from SPa-C, dipalmitoyl phosphatidylcholine, phosphatidyl glycerol, and palmitic acid. Physical properties of the sSP-C PS were evaluated by measuring the maximum and minimum surface tensions (STs), surfactant spreading, and adsorption rate. In addition, we recorded an ST-area diagram. The data obtained on sSP-C PS were subsequently compared with those of purified natural bovine surfactant (PNBS), and the commercial product, Surfacten®. The sSP-C PS and Surfacten® were found to have maximum ST values of 32-33 mN/m, whereas that of PNBS was much lower at 19 mN/m. The minimum ST values of all three products were less than 10 mN/m. The values that were measured for the equilibrium ST of rapidly spreading sSP-C PS, Surfacten®, and PNBS were 27, 27, and 24 mN/m, respectively. The surface adsorptions were found to be the same for all three PSs (20 mN/m). ST-area diagrams of sSP-C PS and Surfacten® revealed similar properties. In an in vitro experiment, the physical properties exhibited by sSP-C PS were similar to those of Surfacten®. Further study is required to evaluate the in vivo efficacy.

  1. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  2. SURFACTANT ENHANCED AQUIFER REMEDIATION WITH SURFACTANT REGENERATION/REUSE

    Science.gov (United States)

    A demonstration of surfactant-enhanced aquifer remediation was conducted during the spring of 1999 at Marine Corps Base, Camp LeJeune, NC. A PCE-DNAPL zone was identified and delineated by extensive soil sampling in 1997, and was further characteized by a partitioning interwell t...

  3. Base Flood Elevation

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  4. Flood Hazard Area

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  5. Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  6. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.

    2015-01-01

    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  7. USING PHASE DIAGRAMS TO PREDICT THE PERFORMANCE OF COSOLVENT FLOODS FOR NAPL REMEDIATION

    Science.gov (United States)

    Cosolvent flooding using water miscible solvents such as alcohols has been proposed as an in-situ NAPL remediation technique. This process is conceptually similar to enhanced oil recovery (EOR) using alcohols and some surfactant formulations. As a result of interest in the EOR ...

  8. Dropwise condensation of low surface tension fluids on omniphobic surfaces.

    Science.gov (United States)

    Rykaczewski, Konrad; Paxson, Adam T; Staymates, Matthew; Walker, Marlon L; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H; Chinn, Jeff; Scott, John Henry J; Varanasi, Kripa K

    2014-03-05

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.

  9. Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces

    Science.gov (United States)

    Rykaczewski, Konrad; Paxson, Adam T.; Staymates, Matthew; Walker, Marlon L.; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H.; Chinn, Jeff; Scott, John Henry J.; Varanasi, Kripa K.

    2014-01-01

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient. PMID:24595171

  10. A Combination of Short and Simple Surfactant Protein B and C Analogues as a New Synthetic Surfactant: In Vitro and Animal Experiments.

    Science.gov (United States)

    Choi, Yong Sung; Chung, Sung Hoon; Bae, Chong Woo

    2017-07-01

    Pulmonary surfactants for preterm infants contain mostly animal-derived surfactant proteins (SPs), which are essential for lowering surface tension. We prepared artificial pulmonary surfactants using synthetic human SP analogs and performed in vitro and in vivo experiments. We synthesized peptide analogues that resemble human SP-B (RMLPQLVCRLVLRCSMD) and SP-C (CPVHLKRLLLLLLLLLLLLLLLL). Dipalmitoylphosphatidylcholine (DPPC), phosphatidylglycerol (PG), and palmitic acid (PA) were added and mixed in lyophilized to render powdered surfactant. Synsurf-1 was composed of DPPC:PG:PA:SP-B (75:25:10:3, w/w); Synsurf-2 was composed of DPPC:PG:PA:SP-C (75:25:10:3, w/w); and Synsurf-3 was composed of DPPC:PG:PA:SP-B:SP-C (75:25:10:3:3, w/w). We performed in vitro study to compare the physical characteristics using pulsating bubble surfactometer and modified Wilhelmy balance test. Surface spreading and adsorption test of the surfactant preparations were measured. In vivo test was performed using term and preterm rabbit pups. Pressure-volume curves were generated during the deflation phase. Histologic findings were examined. Pulsating bubble surfactometer readings revealed following minimum and maximum surface tension (mN/m) at 5 minutes: Surfacten® (5.5±0.4, 32.8±1.6), Synsurf-1 (16.7±0.6, 28.7±1.5), Synsurf-2 (7.9±1.0, 33.1±1.6), and Synsurf-3 (7.1±0.8, 34.5±1.0). Surface spreading rates were as follows: Surfacten® (27 mN/m), Synsurf-1 (43 mN/m), Synsurf-2 (27 mN/m), and Synsurf-3 (27 mN/m). Surface adsorption rate results were as follows: Surfacten® (28 mN/m), Synsurf-1 (35 mN/m), Synsurf-2 (29 mN/m), and Synsurf-3 (27 mN/m). The deflation curves were best for Synsurf-3; those for Synsurf-2 were better than those for Surfacten®. Synsurf-1 was the worst surfactant preparation. Microscopic examination showed the largest aerated area of the alveoli in the Synsurf-3 group, followed by Synsurf-1 and Surfacten®; Synsurf-2 was the smallest. Synsurf-3 containing both SP

  11. The role of charged amphipathic helices in the structure and function of surfactant protein B.

    Science.gov (United States)

    Waring, A J; Walther, F J; Gordon, L M; Hernandez-Juviel, J M; Hong, T; Sherman, M A; Alonso, C; Alig, T; Braun, A; Bacon, D; Zasadzinski, J A

    2005-12-01

    Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct (Mini-B) based on the primary sequences of the N- and C-terminal domains. Consistent with theoretical predictions of the full-length protein, both isotope-enhanced Fourier transform infrared (FTIR) spectroscopy and molecular modeling confirm the presence of charged amphipathic alpha-helices in Mini-B. Similar to that observed with native SP-B, Mini-B in model surfactant lipid mixtures exhibits marked in vitro activity, with spread films showing near-zero minimum surface tensions during cycling using captive bubble surfactometry. In vivo, Mini-B shows oxygenation and dynamic compliance that compare favorably with that of full-length SP-B. Mini-B variants (i.e. reduced disulfides or cationic residues replaced by uncharged residues) or Mini-B fragments (i.e. unlinked N- and C-terminal domains) produced greatly attenuated in vivo and in vitro surfactant properties. Hence, the combination of structure and charge for the amphipathic alpha-helical N- and C-terminal domains are key to SP-B function.

  12. Regulation of pulmonary surfactant secretion in the developing lizard, Pogona vitticeps.

    Science.gov (United States)

    Sullivan, Lucy C; Orgeig, Sandra; Daniels, Christopher B

    2002-11-01

    Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar type II cells in the lungs of all air-breathing vertebrates. Pulmonary surfactant functions to reduce the surface tension in the lungs and, therefore, reduce the work of breathing. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones and autonomic neurotransmitters. We have used a co-culture system of embryonic type II cells and lung fibroblasts to investigate the ability of dexamethasone, tri-iodothyronine (T(3)), adrenaline and carbamylcholine (carbachol) to stimulate the cellular secretion of phosphatidylcholine in the bearded dragon (Pogona vitticeps) at day 55 (approx. 92%) of incubation and following hatching. Adrenaline stimulated surfactant secretion both before and after hatching, whereas carbachol stimulated secretion only at day 55. Glucocorticoids and triiodothyronine together stimulated secretion at day 55 but did not after hatching. Therefore, adrenaline, carbachol, dexamethasone and T(3), are all involved in the development of the surfactant system in the bearded dragon. However, the efficacy of the hormones is attenuated during the developmental process. These differences probably relate to the changes in the cellular environment during development and the specific biology of the bearded dragon.

  13. Changes in air saturation and air water interfacial area during surfactant-enhanced air sparging in saturated sand

    Science.gov (United States)

    Kim, Heonki; Choi, Kyong-Min; Moon, Ji-Won; Annable, Michael D.

    2006-11-01

    Reduction in the surface tension of groundwater, prior to air sparging for removal of volatile organic contaminant from aquifer, can greatly enhance the air content and the extent of influence when air sparging is implemented. However, detailed information on the functional relationship between water saturation, air-water contact area induced by air sparging and the surface tension of water has not been available. In this study, the influence of adding water-soluble anionic surfactant (sodium dodecyl benzene sulfonate) into groundwater before air sparging on the air-water interfacial area and water saturation was investigated using a laboratory-scale sand packed column. It was found that water saturation decreases with decreasing surface tension of water until it reaches a point where this trend is reversed so that water saturation increases with further decrease in the surface tension. The lowest water saturation of 0.58 was achieved at a surface tension of 45.4 dyn/cm, which is considered as the optimum surface tension for maximum de-saturation for the initially water-saturated sand used in this study. The air-water contact area generated in the sand column due to air sparging was measured using a gaseous interfacial tracer, n-decane, and was found to monotonically increase with decreasing water saturation. The results of this study provide useful design information for surfactant-enhanced air sparging removal of volatile contaminants from aquifers.

  14. ENSO floods on river ecosystems: catastrophes or myths?

    Energy Technology Data Exchange (ETDEWEB)

    Neiff, J.J. [CECOAL, Corrientes (Argentina). Littoral Applied Ecology Centre; Mendiondo, E.M. [Kassel Univ. (Germany). Hydraulic Structures and Water-Resources Engineering; Univ. Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Pesquisas Hidraulicas; Depettris, C.A. [Northeast National Univ.-UNNE, Chaco (Argentina). Dept. Hydraulics

    2000-07-01

    Very extreme floods ranging from 38000 to 62000 m{sup 3}s{sup -1}, draining a 2 million km{sup 2} catchment area and severe inundations downstream of the Paraguay-Parana confluence in South America are related to the El Nino Southern Oscillation -ENSO-. This paper links ENSO floods to natural ecosystems, e.g. the flood plain patchiness, the biodiversity and the ecosystem structure. River behaviour may be described with parameters, such as frequency, intensity, tension, regularity, amplitude and seasonality. According to the 20th century river time series, noteworthy fluvial changes are related to extreme floods through actual time. Nevertheless, the ecosystem recovers itself by means of resilience and is here assessed by remote sensing. This lack of understanding is at the origin of enormous economic losses in ecosystems impacted by ENSO floods during the 1983-98 period going from catastrophes to myths. Although flood plain ecosystems are often well adapted to ENSO floods, the risks of the latter must be properly addressed. Therefore, adaptations to land use are discussed, demanding a change of attitude of the society to cope with river behaviour and to put the ENSO flood myth into question. (orig.)

  15. An investigation of small-molecule surfactants to potentially replace pluronic F-68 for reducing bubble-associated cell damage.

    Science.gov (United States)

    Hu, Weiwei; Rathman, James J; Chalmers, Jeffrey J

    2008-09-01

    It is well known that bubble rupture has a detrimental effect on mammalian cells. As a result, Pluronic F-68 (PF-68), a nonionic surfactant, is commonly used to reduce bubble-associated cell damage in sparged bioreactors. While PF-68 is currently effective, there is a concern with respect to its decrease in effectiveness as cell concentrations increase (Ma et al., 2004, Biotechnol Prog 20:1183-1191). In addition, having more than one effective surfactant for cell culture is also highly desirable. Given the empirical nature in which PF-68 was initially discovered as a cell culture additive, a structure-performance study of small molecule surfactants, a distinct group which have been previously investigated for other purposes, was performed in an attempt to find a replacement for PF-68. In this study, a generic platform was established to initially screen both the type and concentration of these surfactants for cytotoxicity. Promising candidates where then evaluated for their ability to rapidly lower the surface tension (dynamic surface tension) of culture media and their ability to prevent cell-bubble attachment in a specially developed bubble creation and collection system. Several promising small- molecule surfactants, and their effective concentration, were identified, which can reduce cell-bubble attachment efficiently without being harmful to cells.

  16. Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: Polyoxyethylene Sorbitan Fatty Acid Esters

    Directory of Open Access Journals (Sweden)

    Ehsan Mohajeri

    2012-01-01

    Full Text Available In this study, non-ionic surfactants, polyoxyethylene sorbitan fatty acid esters (polysorbate are chosen to examine the temperature effect on the CMC over a wide temperature range. The enthalpy and entropy of micelle formation are evaluated according to the phase separation model. The surface tension of solutions was determined by means of Du Nöuys ring. The CMC values were taken from the sharp breaks in the surface tension vs. logarithms of surfactant concentration plots. As the surfactants' chain length increases the CMC at a constant temperature decreases, which is directly related to the decrease of hydrophilicity of the molecules. For each surfactant, as the system temperature increases, the CMC initially decreases and then increases, owing to the smaller probability of hydrogen bond formation at higher temperatures. The onset of micellization tends to occur at higher concentrations as the temperature increases. To evaluate the enthalpy of micellization, the CMCs are first correlated by a polynomial equation. It is found that ∆Gºm decreases monotonically as the temperature increases over the whole temperature range. Both ∆Hºm and ∆Sºm appear to be decrease monotonically with an increase in temperature. The compensation temperature was found to be 42 ºC by linear regression over the whole temperature range and for all three surfactant systems together.

  17. Flood Wave Propagation

    Indian Academy of Sciences (India)

    The flash floods had rendered 25,000 people homeless, apart from causing huge economic loss. The re-construction of the hydrograph downstream of the dam showed that the peak reservoir outflow was about 20 times greater than the largest recorded floods at that site. Flood routing is used in designing the urban storm ...

  18. Aerosol delivery of synthetic lung surfactant

    Directory of Open Access Journals (Sweden)

    Frans J. Walther

    2014-05-01

    Full Text Available Background. Nasal continuous positive airway pressure (nCPAP is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV and intratracheal instillation of clinical lung surfactant.Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits.Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant, a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant, with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity, we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV.Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg, aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of ventilatory

  19. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  20. The late administration of surfactant

    African Journals Online (AJOL)

    Arterial/alveolar oxygen ratio following administration of surfactant. Hours After Dosing. The outcome of infants receiving delayed SRT was good. The mean duration of ventilation of surviving infants was. 7,9 ± 4,3 days. Oxygen therapy post ventilation was required for a mean of 5,7 ± 4,5 days and infants were hospitalised ...

  1. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  2. Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury

    Directory of Open Access Journals (Sweden)

    Frans J. Walther

    2014-05-01

    Full Text Available Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI/acute respiratory distress syndrome (ARDS. Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions.Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS.Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB, a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight, the clinical surfactant Infasurf®, a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS assays.Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary

  3. Interfacial behavior and structural properties of a clinical lung surfactant from porcine source.

    Science.gov (United States)

    Blanco, Odalys; Cruz, Antonio; Ospina, Olga L; López-Rodriguez, Elena; Vázquez, Luis; Pérez-Gil, Jesús

    2012-11-01

    Surfacen® is a clinical surfactant preparation of porcine origin, partly depleted of cholesterol, which is widely used in Cuba to treat pre-term babies at risk or already suffering neonatal respiratory distress. In the present study we have characterized the interfacial behavior of Surfacen in several in vitro functional models, including spreading and compression-expansion cycling isotherms in surface balances and in a captive bubble surfactometer, in comparison with the functional properties of whole native surfactant purified from porcine lungs and its reconstituted organic extract, the material from which Surfacen is derived. Surfacen exhibited similar properties to native porcine surfactant or its organic extract to efficiently form stable surface active films at the air-liquid interface, able to consistently reach surface tensions below 5mN/m upon repetitive compression-expansion cycling. Surfacen films, however, showed a substantially larger and stable compression-driven segregation of condensed lipid phases than exhibited by films formed by native surfactant or its organic extract. In spite of structural differences observed at microscopic level, Surfacen membranes showed a similar thermotropic behavior to membranes from native surfactant or its organic extract, characterized by calorimetry or fluorescence spectroscopy of samples doped with the Laurdan probe. On the other hand, analysis by atomic force microscopy of films formed by Surfacen or by the organic extract of native porcine surfactant revealed a similar network of interconnected condensed nanostructures, suggesting that the organization of the films at the submicroscopic level is the essential feature to support the proper stability and mechanical properties permitting the interfacial surfactant films to facilitate the work of breathing. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Activity and inhibition resistance of a phospholipase-resistant synthetic surfactant in rat lungs.

    Science.gov (United States)

    Wang, Zhengdong; Chang, Yusuo; Schwan, Adrian L; Notter, Robert H

    2007-10-01

    This study investigates the activity and inhibition resistance in excised rat lungs of a novel synthetic surfactant containing the phospholipase-resistant diether phosphonolipid DEPN-8 plus 1.5% bovine surfactant protein (SP)-B/C compared to calf lung surfactant extract (CLSE). DEPN-8 + 1.5% SP-B/C surpassed CLSE in normalizing surfactant-deficient pressure-volume (P-V) deflation mechanics in lavaged excised lungs in the presence of phospholipase A(2) (PLA(2)) or C18:1 lyso-phosphatidylcholine (LPC). DEPN-8 + 1.5% SP-B/C had activity equal to CLSE in normalizing P-V mechanics in the absence of inhibitors or in the presence of serum albumin. These physiologic activity findings were directly consistent with surface activity measurements on the pulsating bubble surfactometer. In the absence of inhibitors, DEPN-8 + 1.5% SP-B/C and CLSE rapidly reached minimum surface tensions surfactant phospholipid/ml). DEPN-8 + 1.5% SP-B/C maintained its high surface activity in the presence of PLA(2), while the surface activity of CLSE was significantly inhibited by exposure to this enzyme. DEPN-8 + 1.5% SP-B/C also had greater surface activity than CLSE in the presence of LPC, and the two surfactants had equivalent surface activity in the presence of albumin. DEPN-8 + 1.5% SP-B/C also had slightly greater surface activity than CLSE when exposed to peroxynitrite in pulsating bubble studies. These results support the potential of developing highly active and inhibition-resistant synthetic exogenous surfactants containing DEPN-8 + apoprotein/peptide constituents for use in treating direct pulmonary forms of clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS).

  5. Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran

    Directory of Open Access Journals (Sweden)

    Stichtenoth Guido

    2006-06-01

    Full Text Available Abstract Background Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM and stereology allows the differentiation of active (large aggregates = LA and inactive (small aggregates = SA subtypes. Methods To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf, Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL, multilamellar vesicles (MV, unilamellar vesicles (UV] were determined stereologically. Results All preparations contained LBL and MV (corresponding to LA as well as UV (corresponding to SA. The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV ratio (resembling the SA/LA ratio increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. Conclusion Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation.

  6. Lung surfactant: Function and composition in the context of development and respiratory physiology.

    Science.gov (United States)

    Bernhard, Wolfgang

    2016-11-01

    Lung surfactant is a complex with a unique phospholipid and protein composition. Its specific function is to reduce surface tension at the pulmonary air-liquid interface. The underlying Young-Laplace equation, applying to the surface of any geometrical structure, is the more important the smaller its radii are. It therefore applies to the alveoli and bronchioli of mature lungs, as well as to the tubules and saccules of immature lungs. Surfactant comprises 80% phosphatidylcholine (PC), of which dipalmitoyl-PC, palmitoyl-myristoyl-PC and palmitoyl-palmitoleoyl-PC together are 75%. Anionic phosphatidylglycerol and cholesterol are about 10% each, whereas surfactant proteins SP-A to -D comprise 2-5%. Maturation of the surfactant system is not essentially due to increased synthesis but to decreased turnover of specific components. Molecular differences correlate with resting respiratory rate (RR), where PC16:0/16:0 is the lower the higher RR is. PC16:0/14:0 is increased during alveolar formation, and decreases immune reactions that might impair alveolar development. In rigid bird lungs, with air-capillaries rather than alveoli, and no surface area changes during the respiratory cycle, PC16:0/16:0 is highest and PC16:0/14:0 absent. As there is no need for a surface-associated surfactant reservoir, SP-C is absent in birds as well. Airflow is lowest and particle sedimentation highest in the extrapulmonary air-sacs, rather than in the gas-exchange area. Consequently, SP-A and -D for particle opsonization are absent in bird surfactant. In essence, comparative analysis is consistent with the concept that surfactant is adapted to the physiologic needs of a given vertebrate species at a given developmental stage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Managing tension headaches at home

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000421.htm Managing tension headaches at home To use the sharing ... have glasses, use them. Learn and practice stress management. Some people find relaxation exercises or meditation helpful. ...

  8. Tension pneumocephalus: Mount Fuji sign

    Directory of Open Access Journals (Sweden)

    Pulastya Sanyal

    2015-01-01

    Full Text Available A 13-year-old male was operated for a space occupying lesion in the brain. A noncontrast computed tomography scan done in the late postoperative period showed massive subdural air collection causing compression of bilateral frontal lobes with widening of interhemispheric fissure and the frontal lobes acquiring a peak like configuration - causing tension pneumocephalus-"Mount Fuji sign." Tension pneumocephalus occurs when air enters the extradural or intradural spaces in sufficient volume to exert a mass or pressure effect on the brain, leading to brain herniation. Tension pneumocephalus is a surgical emergency, which needs immediate intervention in the form of decompression of the cranial cavity by a burr hole or needle aspiration. The Mount Fuji sign differentiates tension pneumocephalus from pneumocephalus.

  9. Tension pile study : final report.

    Science.gov (United States)

    1970-07-01

    This report contains the results of a short term study of a pile in tension loads. The piles tested were driven on Louisiana Department of Highway's property in response to preceding research work entitled "Stability of Slender Prestressed Concrete P...

  10. Effects of the human pulmonary surfactant protein-C (SP-C), SP-CL16(6-28) on surface activities of surfactants with various phospholipids.

    Science.gov (United States)

    Otsubo, Eiji; Takei, Tsunetomo

    2002-10-01

    We previously reported that a human analogue of pulmonary surfactant protein-C (SP-C), SP-CL16(6-28), with 23 residues was the most active analogue in a reconstituted lipid mixture and had the shortest chain among the poly-leucine-analogues examined. There has been little research on the chemical components of synthetic lung surfactants (SLSs). In the present study, we attempted to compare SLS with various phospholipids in surface activity. That is, SP-CL16(6-28) plus various phosphatidylglycerols (PG) were tested for surface activity in a Langmuir-Wilhelmy surface balance (WSB) apparatus and pulsating bubble surfactmeter (PBS). Further, SLSs were examined for biological properties using an animal model of surfactant deficiency, infant respiratory distress syndrome (IRDS), in vivo. Palmitoyl-oleoyl-phosphatidylglycerol (POPG)-SLS exhibited minimum and maximum surface tensions of 1.7 mN/m and 28.6 mN/m in WSB and 8.5 mN/m and 36.2 mN/m in PBS, respectively. Moreover, in the IRDS model, POPG-SLS remarkably improved the lung volume (LV) of a premature lagomorph fetus at LV30 cmH2O and LV5 cmH2O. That is, a significant improvement equal to the LV of a full-term fetus was observed. The level of LV exhibited respiratory improvement equivalent to surfactant-TA. SLS seemed comparable in surface activity with Surfacten (Surfactant-TA), a modified surfactant preparation which has been used for the treatment of RDS.

  11. Interactions of surfactants with lipid membranes.

    Science.gov (United States)

    Heerklotz, Heiko

    2008-01-01

    Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.

  12. Carbon dioxide flooding as an enhanced oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Mungan, N. (Alberta Energy Co. Ltd., AB (Canada))

    1992-11-01

    A description is presented of the state-of-the-art on carbon dioxide flooding and how it relates to recovery of heavy oils. Carbon dioxide flooding enhances recovery due to a number of mechanisms: reduction of oil viscosity, swelling of oil, vaporization of oil, miscibility effects, reduction of interfacial tension, solution gas drive, and increases in injectivity. Three types of reservoir are particularly well suited to carbon dioxide flooding: carbonate formations which may not have a high enough injectivity to make waterflooding successful; reservoirs containing undersaturated crude oils; and certain heavy oil reservoirs. A detailed description is presented of preparation for a field test, pressure-volume-temperature data for light and heavy crude oils, and a pilot testing of CO[sub 2] flooding. To the extent that it is possible, the pilot should closely represent the formation and fluid properties and the pressures that exist in the reservoir. 7 refs., 4 figs.

  13. The influence of surfactant on the propagation of a semi-infinite bubble through a liquid-filled compliant channel

    Science.gov (United States)

    Halpern, David; Gaver, Donald P.

    2012-01-01

    We investigate the influence of a soluble surfactant on the steady-state motion of a finger of air through a compliant channel. This study provides a basic model from which to understand the fluid–structure interactions and physicochemical hydrodynamics of pulmonary airway reopening. Airway closure occurs in lung diseases such as respiratory distress syndrome and acute respiratory distress syndrome as a result of fluid accumulation and surfactant insufficiency. This results in ‘compliant collapse’ with the airway walls buckled and held in apposition by a liquid occlusion that blocks the passage of air. Airway reopening is essential to the recovery of adequate ventilation, but has been associated with ventilator-induced lung injury because of the exposure of airway epithelial cells to large interfacial flow-induced pressure gradients. Surfactant replacement is helpful in modulating this deleterious mechanical stimulus, but is limited in its effectiveness owing to slow surfactant adsorption. We investigate the effect of surfactant on micro-scale models of reopening by computationally modelling the steady two-dimensional motion of a semi-infinite bubble propagating through a liquid-filled compliant channel doped with soluble surfactant. Many dimensionless parameters affect reopening, but we primarily investigate how the reopening pressure pb depends upon the capillary number Ca (the ratio of viscous to surface tension forces), the adsorption depth parameter λ (a bulk concentration parameter) and the bulk Péclet number Peb (the ratio of bulk convection to diffusion). These studies demonstrate a dependence of pb on λ, and suggest that a critical bulk concentration must be exceeded to operate as a low-surface-tension system. Normal and tangential stress gradients remain largely unaffected by physicochemical interactions – for this reason, further biological studies are suggested that will clarify the role of wall flexibility and surfactant on the protection of

  14. PLUNC is a novel airway surfactant protein with anti-biofilm activity.

    Directory of Open Access Journals (Sweden)

    Lokesh Gakhar

    2010-02-01

    Full Text Available The PLUNC ("Palate, lung, nasal epithelium clone" protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP family. Two members of this family--the bactericidal/permeability increasing protein (BPI and the lipopolysaccharide binding protein (LBP--are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways.Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model.Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen.

  15. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  16. Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

    KAUST Repository

    Torrealba, V. A.

    2017-11-08

    This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh\\'s equation and is coupled to phase behavior so that simultaneous tuning of both interfacial tension (IFT) and phase behavior is possible. The oil-water interfacial tension and characteristic length are shown to be related to each other through the hydrophilic-lipophilic deviation (HLD). The phase behavior is tied to the micelle curvatures, without the need for using the net average curvature (NAC). The interfacial tension model is related to solubilization ratios in order to introduce a coupled interfacial tension-phase behavior model for all phase environments. The approach predicts two- and three-phase interfacial tensions and phase behavior (i.e., tie lines and tie triangles) for changes in composition and HLD input parameters, such as temperature, pressure, surfactant structure, and oil equivalent alkane carbon number. Comparisons to experimental data show excellent fits and predictive capability.

  17. Synthetic lung surfactants containing SP-B and SP-C peptides plus novel phospholipase-resistant lipids or glycerophospholipids.

    Science.gov (United States)

    Notter, Robert H; Gupta, Rohun; Schwan, Adrian L; Wang, Zhengdong; Shkoor, Mohanad Gh; Walther, Frans J

    2016-01-01

    This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB) DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP)-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG), while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight). The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary) for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance) in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt) of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with 9:1 DEPN-8:PG-1 or 5:3:2 DPPC:POPC:POPG had the greatest in vivo activity in improving arterial oxygenation and dynamic lung

  18. Synthetic lung surfactants containing SP-B and SP-C peptides plus novel phospholipase-resistant lipids or glycerophospholipids

    Directory of Open Access Journals (Sweden)

    Robert H. Notter

    2016-10-01

    Full Text Available Background This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC and palmitoyl-oleoyl phosphatidylglycerol (POPG, while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight. The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. Methods Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to <100 mmHg, consistent with clinical acute respiratory distress syndrome (ARDS. Results Synthetic surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with

  19. Alkaline flooding for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  20. The effect of surfactant on headspace single drop microextraction for the determination of some volatile aroma compounds in citronella grass and lemongrass leaves by gas chromatography

    Science.gov (United States)

    A rapid method for the determination of some volatile aromatic compounds (VACs), including citronellal, citronellol, neral, geranial, geraniol, and eugenol in citronella grass and lemongrass leaves, was developed using surfactant as a surface tension modifier while performing headspace single drop m...

  1. Surface tension and stability of foams based of keratin hydrolyzate

    Directory of Open Access Journals (Sweden)

    Zhanar Ospanova

    2015-03-01

    Full Text Available The protein obtained in the alkali hydrolysis consist of amino acid residues that are natural macromolecular surfactants and they can may be used as effective foam stabilizers. The features of dynamic surface tension and stability of foams on based of aqueous solutions of keratin hydrolyzate in a concentration range of 1-10% were studied. The relaxation time – of the adsorption layers of keratin hydrolyzate is equaled to 10-12 min. The parameters of adsorption at the liquid – gas interface were defined. The maximum surface activity, foaming and foam stability corresponds to a neutral pH close to isoelectric state of the protein. Increase the foam stability at pH ~ 7 proceeds due to the conformational changes of macro-molecules of the protein at the interface liquid – gas, forming particles of colloidal size, clogging channels Plateau-Gibbs and preventing expiration of the liquid film between.

  2. Efficient control of the rheological and surface properties of surfactant solutions containing C8-C18 fatty acids as cosurfactants.

    Science.gov (United States)

    Mitrinova, Z; Tcholakova, S; Popova, Z; Denkov, N; Dasgupta, Bivash R; Ananthapadmanabhan, K P

    2013-07-02

    Systematic experimental study is performed about the effects of chain length (varied between C8 and C18) and concentration of fatty acids (FAc), used as cosurfactants to the mixture of the anionic surfactant SLES and the zwitterionic surfactant CAPB. The following properties are studied: bulk viscosity of the concentrated solutions (10 wt % surfactants), dynamic and equilibrium surface tensions, surface modulus, and foam rheological properties for the diluted foaming solutions (0.5 wt % surfactants). The obtained results show that C8-C10 FAc induce formation of wormlike micelles in the concentrated surfactant solutions, which leads to transformation of these solutions into viscoelastic fluids with very high apparent viscosity. The same FAc shorten the characteristic adsorption time of the diluted solutions by more than 10 times. In contrast, C14-C18 FAc have small effect on the viscosity of the concentrated solutions but increase the surface modulus above 350 mN/m, which leads to higher friction inside sheared foams and to much smaller bubbles in the formed foams. The intermediate chain C12 FAc combines some of the properties seen with C10 FAc and other properties seen with C14 FAc. These results clearly demonstrate how appropriate cosurfactants can be used for efficient control of the rheological properties of concentrated surfactant solutions and of some important foam attributes, such as bubble size and foam rheology.

  3. Surface tension prevails over solute effect in organic-influenced cloud droplet activation.

    Science.gov (United States)

    Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin

    2017-06-29

    The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future

  4. Surfactants in tribology, v.3

    CERN Document Server

    Biresaw, Girma

    2013-01-01

    The manufacture and use of almost every consumer and industrial product rely on application of advanced knowledge in surface science and tribology. These two disciplines are of critical importance in major economic sectors, such as mining, agriculture, manufacturing (including metals, plastics, wood, computers, MEMS, NEMS, appliances), construction, transportation, and medical instruments, transplants, and diagnostic devices. An up-to-date reference with contributions by experts in surface science and tribology, Surfactants in Tribology, Volume 3 discusses some of the underlying tribological a

  5. Surfactant transport on viscous bilayers

    Science.gov (United States)

    Matar, Omar; Craster, Richard; Warner, Mark

    2001-11-01

    We model the external delivery of surfactant to pulmonary airways, an integral part of Surfactant Replacement Therapy (SRT), a method of treatment of Respiratory Distress Syndrome in neonates. We examine the spreading dynamics of insoluble surfactant by Marangoni stresses along the mucus-perciliary liquid bilayers that line the inside of airways. The bilayer is modelled as a thin highly viscous mucus surface film (mucus) overlying a much less viscous perciliary liquid layer (PCL); this is appropriate for small airways. By exploiting this large viscosity constrast, a variant of standard lubrication theory is adopted wherein terms, which would have otherwise been neglected in the lubrication approximation, are promoted in order to model correctly the presence of the mucus. Inclusion of van der Waals forces in the model permit the study of the effect of this mucus 'skin' on the possibility of bilayer rupture, a potential cause of failure of SRT. We find that increasing the viscosity contrast and initial mucus layer thickness delays the onset of rupture, while increasing the relative significance of Marangoni stresses leads to more marked thinning and rapid bilayer rupture [1]. [1] O. K. Matar, R. V. Craster and M. R. Warner, submitted to J. Fluid Mech. (2001).

  6. Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants

    Science.gov (United States)

    Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.

    2013-03-01

    Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL

  7. Oscillatory thermocapillary instability in liquid layer with insoluble surfactant

    Science.gov (United States)

    Allias, Razihan; Nasir, Mohd. Agos Salim; Kechil, Seripah Awang

    2017-11-01

    Oscillatory convective flow is undesirable because it can produce bubbles, striation and dendrites in the manufactured products. The ability to control the complex convective flow patterns is important in technological processes and fundamental science. One of the factors that can alter the dynamics of the surface tension of thin fluid film is the surface-active agents. In this work, the influence of the insoluble surface-active agents on thermocapillary convective instability in a liquid layer for non-deformable free surface is examined. Uniform temperature and uniform heat flux for the temperature condition at the bottom surface are considered. The linear stability analysis is used to assess the effects of elasticity number, Lewis number, Prandtl number and Biot number on the onset of oscillatory convection. The existence of insoluble surfactant stabilizes the fluid layer system. The system is more stable in the case of uniform temperature. The presence of surfactant and temperature setting at the bottom boundary can suppress the onset of oscillatory instability.

  8. Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure.

    Science.gov (United States)

    Devínsky, Ferdinand; Pisárcik, Martin; Lacko, Ivan

    2009-06-01

    The present study deals with the determination of hydrodynamic size of DNA/cationic gemini surfactant complex in sodium bromide solution using the dynamic light scattering method. Cationic gemini surfactants with polymethylene spacer of variable length were used for the interaction with DNA. The scattering experiments were performed at constant DNA and sodium bromide concentrations and variable surfactant concentration in the premicellar and micellar regions as a function of surfactant spacer length. It was found that the DNA conformation strongly depends on the polymethylene spacer length as well as on the surfactant concentration relative to the surfactant critical micelle concentration. Gemini surfactant molecules with 4 methylene groups in the spacer were found to be the least efficient DNA compacting agent in the region above the surfactant cmc. Gemini molecules with the shortest spacer length (2 methylene groups) and the longest spacer length (8 methylene groups) investigated showed the most efficient DNA compaction ability.

  9. Surfactant inhibition in acute respiratory failure : consequences for exogenous surfactant therapy

    NARCIS (Netherlands)

    E.P. Eijking (Eric)

    1993-01-01

    textabstractThe neonatal respiratory distress syndrome (RDS) is characterized by immaturity of the lung, resulting in relative or absolute absence of pulmonary surfactant. Worldwide, neonates suffering from RDS have been treated successfully with exogenous surfactant preparations. Currently,

  10. Historical Tensions in Engineering Education

    DEFF Research Database (Denmark)

    Jamison, Andrew; Heymann, Matthias

    2012-01-01

    Ever since institutions for educating engineers first began to be ­established in Europe, there have been a number of fundamental tensions as to how that ­educating should best be conducted, what it should consist of, and who should do the educating. These tensions are based on different styles...... or approaches to ­engineering education that have developed historically in different parts of Europe and which have led to what we characterize as “theory-driven,” “practice-driven,” and “technology-driven” approaches. This chapter explores some of the historical roots of these tensions in medieval Europe...... and briefly traces their developmental trajectories through the subsequent formation of institutions of engineering ­education. It has been written as part of PROCEED (Program of Research on Opportunities and Challenges in Engineering Education in Denmark)....

  11. Acute Pathophysiological Effects of Intratracheal Instillation of Budesonide and Exogenous Surfactant in a Neonatal Surfactant-depleted Piglet Model

    Directory of Open Access Journals (Sweden)

    Chia-Feng Yang

    2010-08-01

    Conclusions: Intratracheal instillation of surfactant or surfactant plus budesonide can improve oxygenation and pulmonary histologic outcome in neonatal surfactant-depleted lungs. The additional use of budesonide does not disturb the function of the exogenous surfactant. Intratracheal administration of a corticosteroid combined with surfactant may be an effective method for alleviating local pulmonary inflammation in severe RDS.

  12. Surfactant inhibition in acute respiratory failure : consequences for exogenous surfactant therapy

    OpenAIRE

    Eijking, Eric

    1993-01-01

    textabstractThe neonatal respiratory distress syndrome (RDS) is characterized by immaturity of the lung, resulting in relative or absolute absence of pulmonary surfactant. Worldwide, neonates suffering from RDS have been treated successfully with exogenous surfactant preparations. Currently, exogenous surfactant administration has been accepted as a valuable treatment for this syndrome. Nevertheless, many questions on exogenous surfactant treatment remain unanswered. It has been observed that...

  13. Influence of surfactant on gas bubble stability.

    Science.gov (United States)

    Hanwright, Jennifer; Zhou, James; Evans, Geoffrey M; Galvin, Kevin P

    2005-05-24

    Gas-bubble stability is achieved either by a reduction in the Laplace pressure or by a reduction in the permeability of the gas-liquid interface. Although insoluble surfactants have been shown definitively in many studies to lower the permeability of the gas-liquid interface and hence increase the resistance to interfacial mass transfer, remarkably little work has been done on the effects of soluble surfactants. An experimental system was developed to measure the effect of the soluble surfactant dodecyl trimethylammonium bromide on the desorption and absorption of carbon dioxide gas through a quiescent planar interface. The desorption experiments conformed to the model of non-steady-state molecular diffusion. The absorption experiments, however, produced an unexpected mass transfer mechanism, with surface renewal, probably because of instability in the density gradient formed by the carbon dioxide. In general, the soluble surfactant produced no measurable reduction in the rate of interfacial mass transfer for desorption or absorption. This finding is consistent with the conclusion of Caskey and Barlage that soluble surfactants produce a significantly lower resistance to interfacial mass transfer than do insoluble surfactants. The dynamic adsorption and desorption of the surfactant molecules at the gas-liquid interface creates short-term vacancies, which presumably permit the unrestricted transfer of the gas molecules through the interface. This surfactant exchange does not occur for insoluble surfactants. Gas bubbles formed in the presence of a high concentration of soluble surfactant were observed to dissolve completely, while those formed in the presence of the insoluble surfactant stearic acid did not dissolve easily, and persisted for very long periods. The interfacial concentration of stearic acid rises during bubble dissolution, as it is insoluble, and must eventually achieve full monolayer coverage and a state of compression, lowering the permeability of the

  14. Surfactant Therapy of ALI and ARDS

    Science.gov (United States)

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exogenous surfactant therapy is a routine intervention in neonatal intensive care, and is life-saving in preventing or treating the neonatal respiratory distress syndrome (NRDS) in premature infants. In applications relevant for lung injury-related respiratory failure and ALI/ARDS, surfactant therapy has been shown to be beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. Coverage here reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, particularly focusing on its potential advantages in patients with direct pulmonary forms of these syndromes. Also discussed is the rationale for mechanism-based therapies utilizing exogenous surfactant in combination with agents targeting other aspects of the multifaceted pathophysiology of inflammatory lung injury. Additional factors affecting the efficacy of exogenous surfactant therapy in ALI/ARDS are also described, including the difficulty of effectively delivering surfactants to injured lungs and the existence of activity differences between clinical surfactant drugs. PMID:21742216

  15. Wetting Resistance of Commercial Membrane Distillation Membranes in Waste Streams Containing Surfactants and Oil

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-01-01

    Full Text Available Water management is becoming increasingly challenging and several technologies, including membrane distillation (MD are emerging. This technology is less affected by salinity compared to reverse osmosis and is able to treat brines up to saturation. The focus of MD research recently shifted from seawater desalination to industrial applications out of the scope of reverse osmosis. In many of these applications, surfactants or oil traces are present in the feed stream, lowering the surface tension and increasing the risk for membrane wetting. In this study, the technological boundaries of MD in the presence of surfactants are investigated using surface tension, contact angle and liquid entry pressure measurements together with lab-scale MD experiments to predict the wetting resistance of different membranes. Synthetic NaCl solutions mixed with sodium dodecyl sulfate (SDS were used as feed solution. The limiting surfactant concentration was found to be dependent on the surface chemistry of the membrane, and increased with increasing hydrophobicity and oleophobicity. Additionally, a hexadecane/SDS emulsion was prepared with a composition simulating produced water, a waste stream in the oil and gas sector. When hexadecane is present in the emulsion, oleophobic membranes are able to resist wetting, whereas polytetrafluoretheen (PTFE is gradually wetted by the feed liquid.

  16. Synthesis and Biocidal Activity of Some Naphthalene-Based Cationic Surfactants.

    Science.gov (United States)

    Aiad, Ismail A; Badawi, Abdelfatah M; El-Sukkary, Mohammed M; El-Sawy, Abdallah A; Adawy, Ahmed I

    2012-03-01

    In this study, different cationic surfactants were prepared by reacting dodecyl bromide with tertiary amines to produce a series of quaternary ammonium salts that were converted subsequently to stannous and cobalt cationic complexes via complexing them with stannous (II) or cobalt (II) ions. Surface properties such as surface- and interfacial-tension, and the emulsifying power of these surfactants were investigated. The surface parameters including critical micelle concentration, maximum surface excess, minimum surface area, tension lowering efficiency and effectiveness were studied. The free energy of micellization and adsorption were calculated. Antimicrobial activity was determined via the inhibition zone diameter of the prepared compounds, which was measured against six strains of a representative group of microorganisms. The antimicrobial activity of some of the prepared surfactants against sulfate reducing bacteria was determined by the dilution method. FTIR spectra, elemental analysis and a H(1) NMR spectrum were examined to confirm compound structure and purity. The results obtained indicate that these compounds have good surface properties and good biocidal effect on broad spectrum of micro organisms.

  17. Camp Marmal Flood Study

    Science.gov (United States)

    2012-03-01

    Afghanistan, provide support to coalition operations in the area. The airfield is located on an alluvial fan with steep and flat terrain and...majority of the flooding. Figures 35 – 41 present a series of time lapse contour plots illustrating the dynamic behavior of the flood during simulation of... dynamic behavior of the flood event during simulation for Alternative 1-B. Figure 34. Alternative 1-A maxiumum inundation depth, 20 year event, m. N

  18. Synthesis and Solution Properties of Adamantane Containing Quaternary Ammonium Salt-type Cationic Surfactants: Hydrocarbon-based, Fluorocarbonbased and Bola-type.

    Science.gov (United States)

    Yoshimura, Tomokazu; Okada, Mari; Matsuoka, Keisuke

    2016-10-01

    Quaternary ammonium salt-type cationic surfactants with an adamantyl group (hydrocarbon-type; CnAdAB, fluorocarbon-type; Cm(F)C3AdAB, bola-type; Ad-s-Ad, where n, m and s represent hydrocarbon chain lengths of 8-16, fluorocarbon chain lengths of 4-8, and spacer chain length of 10-12) were synthesized via quaternization of N, N-dimethylaminoadamantane and n-alkyl bromide or 1, n-dibromoalkane. Conductivity and surface tension were measured to characterize the solution properties of the synthesized adamantyl group-containing cationic surfactants. In addition, the effects of hydrocarbon and fluorocarbon chain lengths and spacer chain length between headgroups on the measured properties were evaluated by comparison with those of conventional cationic surfactants. The critical micelle concentration (CMC) of CnAdAB and Ad-s-Ad was 2/5 of that for the corresponding conventional surfactants CnTAB and bola-type surfactants with similar number of carbons in the alkyl or alkylene chain; this was because of the increased hydrophobicity due to the adamantyl group. A linear relationship between the logarithm of CMC and the hydrocarbon chain length for CnAdAB was observed, as well as for CnTAB. The slope of the linear correlation for both surfactants was almost the same, indicating that the adamantyl group does not affect the CMC with variations in the hydrocarbon chain length. Similar to conventional surfactants CnTAB, the hydrocarbon-type CnAdAB is highly efficient in reducing the surface tension of water, despite the large occupied area per molecule resulting from the relatively bulky structure of the adamantane skeleton. On the other hand, the bola-type Ad-s-Ad resulted in increased surface tension compared to CnAdAB, indicating that the curved chain between adamantyl groups leads to poor adsorption and orientation at the air-water interface.

  19. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform

  20. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  1. A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction.

    Science.gov (United States)

    Eaker, Collin B; Khan, M Rashed; Dickey, Michael D

    2016-01-26

    Controlling interfacial tension is an effective method for manipulating the shape, position, and flow of fluids at sub-millimeter length scales, where interfacial tension is a dominant force. A variety of methods exist for controlling the interfacial tension of aqueous and organic liquids on this scale; however, these techniques have limited utility for liquid metals due to their large interfacial tension. Liquid metals can form soft, stretchable, and shape-reconfigurable components in electronic and electromagnetic devices. Although it is possible to manipulate these fluids via mechanical methods (e.g., pumping), electrical methods are easier to miniaturize, control, and implement. However, most electrical techniques have their own constraints: electrowetting-on-dielectric requires large (kV) potentials for modest actuation, electrocapillarity can affect relatively small changes in the interfacial tension, and continuous electrowetting is limited to plugs of the liquid metal in capillaries. Here, we present a method for actuating gallium and gallium-based liquid metal alloys via an electrochemical surface reaction. Controlling the electrochemical potential on the surface of the liquid metal in electrolyte rapidly and reversibly changes the interfacial tension by over two orders of magnitude ( ̴500 mN/m to near zero). Furthermore, this method requires only a very modest potential (tension is due primarily to the electrochemical deposition of a surface oxide layer, which acts as a surfactant; removal of the oxide increases the interfacial tension, and vice versa. This technique can be applied in a wide variety of electrolytes and is independent of the substrate on which it rests.

  2. Photoisomerization of merocyanine 540 in polymer–surfactant ...

    Indian Academy of Sciences (India)

    Unknown

    surfactant aggregate. 1. Introduction. Many biological and technological processes involve polymer-surfactant interaction 1–17. ... model' (figure 1), structure of the polymer-surfactant aggregate is like a necklace with .... group projected into bulk water.

  3. The study of The study of the influence of temperature on surfactants – polyethylene glycol layers The study of the influence of temperature on surfactants – polyethylene glycol layers on liquid-gas interface liquid-gas interfacethe influence of temperature on surfactants – polyethylene glycol layers on liquid-gas interfaceThe study of the influence of temperature on surfactants – polyethylene glycol layers on liquid-gas interface

    Directory of Open Access Journals (Sweden)

    Seryk Boloshaan

    2015-03-01

    Full Text Available The surface tension of compositions consisting of nonionic polyethylene glycol and surface active substances of different nature and influence of temperatures on properties of their adsorption layers were studied. To be taken into account the basics of classical chemical thermodynamics and colloidal chemistry, the thermodynamic parameters were determined for the adsorption of glycol, cetyl pyridinium bromide, Tween- 80 and sodium dodecyl sulfate. Adsorption speed was valuated By Kinetic curves of a liquid /gas interfaces. As a surfactants were taken the anionic surfactant – sodium dodecylsulphate, cationic surfactant cetylpyridinium bromide and nonionic Tween-80. The reason of using nonionic polyethyleneglycol as polymer is that the polymer is not toxic, biodegradable and it has no harm to the human body. That is why they are largely used in food industry, pharmaceutics, cosmetics and household chemical products.

  4. NASA Global Flood Mapping System

    Science.gov (United States)

    Policelli, Fritz; Slayback, Dan; Brakenridge, Bob; Nigro, Joe; Hubbard, Alfred

    2017-01-01

    Product utility key factors: Near real time, automated production; Flood spatial extent Cloudiness Pixel resolution: 250m; Flood temporal extent; Flash floods short duration on ground?; Landcover--Water under vegetation cover vs open water

  5. Tension type headaches: a review

    African Journals Online (AJOL)

    Acetaminophen (paracetamol) 500-1 000 mg and aspirin 500-. 1 000 mg, have been demonstrated to be an effective first-line treatment for episodic tension-type headaches in most placebo- controlled trials. 23,24 Fast absorptive formulations of the latter are preferred for rapidity of action.25 It is worth noting that these.

  6. Abolishing the maximum tension principle

    Directory of Open Access Journals (Sweden)

    Mariusz P. Da̧browski

    2015-09-01

    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  7. Headache (chronic tension-type).

    Science.gov (United States)

    Krishnan, Anita; Silver, Nicholas

    2009-07-22

    Chronic tension-type headache (CTTH) is a disorder that evolves from episodic tension-type headache, with daily or very frequent episodes of headache lasting minutes to days. It affects 4.1% of the general population in the USA, and is more prevalent in women (up to 65% of cases). We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments for chronic tension-type headache? What are the effects of non-drug treatments for chronic tension-type headache? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2007 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 50 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review, we present information relating to the effectiveness and safety of the following interventions: acupuncture; amitriptyline; analgesics; anticonvulsant drugs; benzodiazepines; botulinum toxin; chiropractic and osteopathic manipulations; cognitive behavioural therapy (CBT); Indian head massage; mirtazapine; relaxation and electromyographic biofeedback; selective serotonin reuptake inhibitor antidepressants (SSRIs); and tricyclic antidepressants (other than amitriptyline).

  8. CALCULATION OF TENSION FORCE OF BELT CONVEYOR

    OpenAIRE

    Ismet Ibishi; Ahmet Latifi; Gzim Ibishi; Kadri Sejdiu; Melihate Shala-Galica; Bekim Latifi

    2012-01-01

    In this paper is done the explanation on tension fashion of the belt conveyor which is employed in Kosovo Energy Corporation – KEK, for coal transportation to provide electric power plant. The aim of the paper enables to recognize tension forces not to pass with deformation of belt so that this problem will damage the workingprocess. Work principle is based on initial tension and tension during working process. The fact is known that the tension starts from the carriage on the way to tension ...

  9. A Theoretical Study of Remobilizing Surfactant Retarded Fluid Particle Interfaces

    Science.gov (United States)

    Wang, Yanping; Papageorgiou, Dimitri; Maldarelli, Charles

    1996-01-01

    Microgravity processes must rely on mechanisms other than bouyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. When a fluid particle contacts this gradient, one pole of the particle becomes warmer than the opposing pole. The interfacial tension between the drop or bubble phase and the continuous phase usually decreases with temperature. Thus the cooler pole is of higher interfacial tension than the warmer pole, and the interface is tugged in the direction of the cooler end. This thermocapillary or thermally induced Marangoni surface stress causes a fluid streaming in the continuous phase from which develops a viscous shear traction and pressure gradient which together propel the particle in the direction of the warmer fluid. In this paper, we provide a theoretical basis for remobilizing surfactant retarded fluid particle interfaces in an effort to make viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity,

  10. Hemolysis by surfactants--A review.

    Science.gov (United States)

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant.

    Science.gov (United States)

    Keating, Eleonora; Rahman, Luna; Francis, James; Petersen, Anne; Possmayer, Fred; Veldhuizen, Ruud; Petersen, Nils O

    2007-08-15

    Pulmonary surfactant is a complex mixture of lipids and proteins that forms a surface-active film at the air-water interface of alveoli capable of reducing surface tension to near 0 mN/m. The role of cholesterol, the major neutral lipid component of pulmonary surfactant, remains uncertain. We studied the physiological effect of cholesterol by monitoring blood oxygenation levels of surfactant-deficient rats treated or not treated with bovine lipid extract surfactant (BLES) containing zero or physiological amounts of cholesterol. Our results indicate no significant difference between BLES and BLES containing cholesterol immediately after treatment; however, during ventilation, BLES-treated animals maintained higher PaO2 values compared to BLES+cholesterol-treated animals. We used a captive bubble tensiometer to show that physiological amounts of cholesterol do not have a detrimental effect on the surface activity of BLES at 37 degrees C. The effect of cholesterol on topography and lateral organization of BLES Langmuir-Blodgett films was also investigated using atomic force microscopy. Our data indicate that cholesterol induces the formation of domains within liquid-ordered domains (Lo). We used time-of-flight-secondary ion mass spectrometry and principal component analysis to show that cholesterol is concentrated in the Lo phase, where it induces structural changes.

  12. Impact of triblock copolymers on the biophysical function of naturally-derived lung surfactant.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruge, Christian A; Bohr, Adam

    2017-08-01

    The current study aimed at investigating the general applicability of triblock copolymers consisting of poly(ethylene glycol) and poly(propylene glycol) (Pluronic®) as excipients for lung delivery. After thorough physicochemical characterization of the diverse polymers, their cytotoxicity was evaluated using alveolar epithelial cells. Next, a naturally-derived lung surfactant was challenged with the distinct triblock copolymers with respect to changes in microstructure, adsorption to the air/liquid interface and dynamic surface tension behavior under bubble pulsation. Biocompatibility assessment of triblock copolymers in A549 cells demonstrated some cytotoxicity, dependent on the hydrophobicity and dose of the substance applied (effective at ≥0.1mg/ml). Supplementing triblock copolymers onto Alveofact® had an obvious influence on the aggregation state and surface activity (>25 and >5mN/m during adsorption and bubble pulsation, respectively) of the lung surfactant. Interestingly, Pluronic® F127, a rather hydrophilic triblock copolymer, showed the most intense effect on the microstructure and biophysical performance of Alveofact®. This is likely due to the synergistic interplay of its low critical micelle concentration and rather high molecular weight, leading to the penetration of lung surfactant film/vesicles and accompanied by a partial replacement of relevant surfactant components from the air/liquid interface. Overall, suitable compositions and concentrations of triblock copolymers were identified with respect to compatibility with the physiological environment of the deep lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Growth and decay of localized disturbances on a surfactant-coated spreading film

    Science.gov (United States)

    Fischer, Benjamin J.; Troian, Sandra M.

    2003-01-01

    If the surface of a quiescent thin liquid film is suddenly coated by a patch of surface active material like a surfactant monolayer, the film is set in motion and begins spreading. An insoluble surfactant will rapidly attempt to coat the entire surface of the film thereby minimizing the liquid’s surface tension. The shear stress that develops during the spreading process produces a maximum in surface velocity in the region where the moving film meets the quiescent layer. This region is characterized by a shock front with large interfacial curvature and a corresponding local buildup of surfactant which creates a spike in the concentration gradient. In this paper, we investigate the sensitivity of this region to infinitesimal disturbances. Accordingly, we introduce a measure of disturbance amplification and transient growth analogous to a kinetic energy that couples variations in film thickness to the surfactant concentration. These variables undergo significant amplification during the brief period in which they are convected past the downstream tip of the monolayer, where the variation in concentration gradient and surface curvature are largest. Once they migrate past this sensitive area, the perturbations weaken considerably and the system approaches a stable configuration. It appears that the localized disturbances of the type we consider here, cannot sustain asymptotic instability. Nonetheless, our study of the dynamics leading to the large transient growth clearly illustrates how the coupling of Marangoni and capillary forces work in unison to stabilize the spreading process against localized perturbations.

  14. Effects of Soluble Surfactant on Lateral Migration of a Bubble in a Shear Flow

    Science.gov (United States)

    Muradoglu, Metin; Tryggvason, Gretar

    2014-11-01

    Motivated by the recent experimental study of Takagi et al. (2008), direct numerical simulations are performed to examine effects of soluble surfactant on the lateral migration of a deformable bubble in a pressure-driven channel flow. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. A multiscale method is developed to handle the mass exchange between the interface and bulk fluid at high Peclet numbers, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. It is found that the surfactant induced Marangoni stresses can dominate over the shear-induced lift force and thus alter the behavior of the bubble completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel in contrast with the corresponding clean bubble that drifts toward the wall and stabilizes near the wall. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant 112M181 and Turkish Academy of Sciences (TUBA).

  15. Aggregation of a Cationic Gemini Surfactant with a Chelating Molecule and Effects from Calcium Ions.

    Science.gov (United States)

    Zhao, Weiwei; Song, Kai; Chen, Yao; Wang, Hua; Liu, Zhang; Shi, Qiang; Huang, Jianbin; Wang, Yilin

    2017-11-07

    The aggregation behavior of cationic ammonium gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) with chelating molecule ethylenediaminetetraacetic acid (EDTA) and the effects of calcium bromide (CaBr2) on the structure and morphology of the aggregates in the mixture have been investigated by surface tension, isothermal titration microcalorimetry, electrical conductivity, ζ potential, dynamic light scattering, cryogenic transmission electron microscopy, freeze-fracture transmission electron microscopy, and 1H NMR techniques. It was found that the electrostatic attraction between the carboxyl groups of EDTA and the headgroups of 12-6-12 leads to the formation of oligomeric-like surfactant EDTA(12-6-12)2 at an EDTA/12-6-12 molar ratio of 0.50. The critical aggregation concentration of the EDTA(12-6-12)2 complexes is much lower than that of 12-6-12, and the complexes form loose, large network-like premicellar aggregates and then transfer into small micelles with an increase in concentration. Moreover, the addition of CaBr2 induces the transition from the loose aggregates and micelles to vesicles owing to the coordination interaction between the calcium ion and EDTA and the electrostatic interaction between EDTA and 12-6-12. The work reveals that as a bridging molecule between the calcium ion and the gemini surfactant, the chelating molecule greatly promotes the assembly of the gemini surfactant and strengthens the molecular packing in the presence of calcium ions.

  16. Discrete Fractional Component Monte Carlo Simulation Study of Dilute Nonionic Surfactants at the Air-Water Interface.

    Science.gov (United States)

    Yoo, Brian; Marin-Rimoldi, Eliseo; Mullen, Ryan Gotchy; Jusufi, Arben; Maginn, Edward J

    2017-09-26

    We present a newly developed Monte Carlo scheme to predict bulk surfactant concentrations and surface tensions at the air-water interface for various surfactant interfacial coverages. Since the concentration regimes of these systems of interest are typically very dilute (≪10-5 mol. frac.), Monte Carlo simulations with the use of insertion/deletion moves can provide the ability to overcome finite system size limitations that often prohibit the use of modern molecular simulation techniques. In performing these simulations, we use the discrete fractional component Monte Carlo (DFCMC) method in the Gibbs ensemble framework, which allows us to separate the bulk and air-water interface into two separate boxes and efficiently swap tetraethylene glycol surfactants C10E4 between boxes. Combining this move with preferential translations, volume biased insertions, and Wang-Landau biasing vastly enhances sampling and helps overcome the classical "insertion problem", often encountered in non-lattice Monte Carlo simulations. We demonstrate that this methodology is both consistent with the original molecular thermodynamic theory (MTT) of Blankschtein and co-workers, as well as their recently modified theory (MD/MTT), which incorporates the results of surfactant infinite dilution transfer free energies and surface tension calculations obtained from molecular dynamics simulations.

  17. Simple one step synthesis of nonionic dithiol surfactants and their self-assembling with silver nanoparticles: Characterization, surface properties, biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elaal, Ali A., E-mail: ali_ashour5@yahoo.com; Tawfik, Salah M.; Shaban, Samy M.

    2015-07-01

    Graphical abstract: - Highlights: • Nonionic dithiol surfactants were synthesized by simple one step esterification. • The surface activity of the synthesized dithiol surfactants showed high tendency toward adsorption and micellization. • The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared. • The silver nanoparticles enhanced the biological activity of the synthesized dithiol surfactants. - Abstract: Simple esterification of 2-mercaptoacetic acid and polyethylene glycol with different molecular weights was done to form the desired nonionic dithiol surfactants. The chemical structures of synthesized thiol surfactants were confirmed using FT-IR and {sup 1}H NMR spectra. The surface activity of the synthesized surfactants was determined by measurement of the surface tension at different temperatures. The surface activity measurements showed their high tendency towards adsorption and micellization. The thermodynamic parameters of micellization (ΔG{sub mic}, ΔH{sub mic} and ΔS{sub mic}) and adsorption (ΔG{sub ads}, ΔG{sub ads} and ΔS{sub ads}) showed their tendency toward adsorption at the interfaces and also micellization in the bulk of their solutions. The nanostructure of the synthesized nonionic dithiol surfactants with silver nanoparticles was prepared and investigated using UV and TEM techniques. Screening tests of the synthesized dithiol surfactants and their nanostructure with silver nanoparticles, against gram positive bacteria (Bacillus subtilis and Microccus luteus), gram negative bacteria (Escherichia coli and Bordatella pertussis) and fungi (Aspergillus niger and Candida albicans) showed that they are highly active biocides. The presence of silver nanoparticles enhancement the biological activities of the individual synthesized nonionic dithiol surfactants.

  18. Discover Floods Educators Guide

    Science.gov (United States)

    Project WET Foundation, 2009

    2009-01-01

    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  19. Core vs. Bulk Samples in Soil-Moisture Tension Analyses

    Science.gov (United States)

    Walter M. Broadfoot

    1954-01-01

    The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...

  20. Oscillating drop/bubble tensiometry: effect of viscous forces on the measurement of interfacial tension.

    Science.gov (United States)

    Freer, E M; Wong, H; Radke, C J

    2005-02-01

    The oscillating drop/bubble technique is increasingly popular for measuring the interfacial dilatational properties of surfactant/polymer-laden fluid/fluid interfaces. A caveat of this technique, however, is that viscous forces are important at higher oscillation frequencies or fluid viscosities; these can affect determination of the interfacial tension. Here, we experimentally quantify the effect of viscous forces on the interfacial-tension measurement by oscillating 100 and 200 cSt poly(dimethylsiloxane) (PDMS) droplets in water at small amplitudes and frequencies ranging between 0.01 and 1 Hz. Due to viscous forces, the measured interfacial tension oscillates sinusoidally with the same frequency as the oscillation of the drop volume. The tension oscillation precedes that of the drop volume, and the amplitude varies linearly with Capillary number, Ca=DeltamuomegaDeltaV/gammaa(2), where Deltamu=mu(D)-mu is the difference between the bulk Newtonian viscosities of the drop and surrounding continuous fluid, omega is the oscillation frequency of the drop, DeltaV is the amplitude of volume oscillation, gamma is the equilibrium interfacial tension between the PDMS drop and water, and a is the radius of the capillary. A simplified model of a freely suspended spherical oscillating-drop well explains these observations. Viscous forces distort the drop shape at Ca>0.002, although this criterion is apparatus dependent.

  1. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  2. Combined and independent action of proteins SP-B and SP-C in the surface behavior and mechanical stability of pulmonary surfactant films.

    Science.gov (United States)

    Schürch, David; Ospina, Olga L; Cruz, Antonio; Pérez-Gil, Jesús

    2010-11-17

    The hydrophobic proteins SP-B and SP-C are essential for pulmonary surfactant function, even though they are a relatively minor component (surfactant dry mass). Despite countless studies, their specific differential action and their possible concerted role to optimize the surface properties of surfactant films have not been completely elucidated. Under conditions kept as physiologically relevant as possible, we tested the surface activity and mechanical stability of several surfactant films of varying protein composition in vitro using a captive bubble surfactometer and a novel (to our knowledge) stability test. We found that in the naturally derived surfactant lipid mixtures, surfactant protein SP-B promoted film formation and reextension to lower surface tensions than SP-C, and in particular played a vital role in sustaining film stability at the most compressed states, whereas SP-C produced no stabilization. Preparations containing both proteins together revealed a slight combined effect in enhancing film formation. These results provide a qualitative and quantitative framework for the development of future synthetic therapeutic surfactants, and illustrate the crucial need to include SP-B or an efficient SP-B analog for optimal function. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Directory of Open Access Journals (Sweden)

    Alejandro Cerrada

    Full Text Available Lung alveolar type II (ATII cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs have been differentiated into Alveolar Type II- Like Cells (ATII-LCs, which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  4. Surfactants and submicron sea spray generation

    NARCIS (Netherlands)

    Sellegri, K.; O'Dowd, C.D.; Yoon, Y.J.; Jennings, S.G.; Leeuw, G. de

    2006-01-01

    Laboratory experiments have been carried out to elucidate the role of surfactants on the primary marine aerosol production of submicron marine aerosols. A synthetic surfactant SDS was used in conjunction with artificially generated seawater, and the resultant bubble-mediated aerosol produced was

  5. Surfactant effects on soil aggregate tensile strength

    Science.gov (United States)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  6. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  7. Surfactant producing TNT-degrading microorganisms for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyov, A.; Marchenko, A.; Rudneva, O.; Borovick, R. [Research Center for Toxicology and Hygienic Regulation of Biopreparations, Serpukhov, Moscow region (Russian Federation); Radosevich, M. [Univ. of Delaware, Newark (United States). Dept. of Plant and Soil Sciences

    2003-07-01

    In general the biodegradation of nitroaromatic hydrocarbons is influenced by their bioavailability. 2,4,6-trinitrotoluene is very poorly soluble in water. TNT is easily adsorbed to clay or humus fractions in the soil, and pass very slowly to the aqueous phase, where microorganisms metabolize it. Biosurfactants that increase TNT solubility and improve its bioavailability can thereby accelerate degradation. Pure cultures of microorganisms-TNT degraders were isolated by the method of enrichment cultures from samples of different-type soil contaminated by TNT (soddy-podzol, black earth, and gray forest ones). From 28 soil samples 35 isolates of microorganisms degrading TNT were taken. The isolated soil samples had been tested for availability of microbial activity towards TNT. By10 g of air-dried soil, 10 ml of distilled water, and 2 mg of TNT were placed into 750 ml shaken flasks. The flasks were incubated at 150 rev/min and 24 C. Glucose, sodium succinate or sodium acetate had been used as co-substrates. The ability of the strains to produce surfactants was studied by drop collapsing test and direct measuring of surface tension of cultural liquid after cultivation with TNT. Cells of the strains were cultivated on solid and liquid nutrient media. For drop collapsing test the cells were cultivated on solid nutrient media; the separated colonies were suspended in distilled water. Drop sustainability test ws conducted on a standard 96-well plates coated with a thin layer of vaseline oil. Surface tension of cultural liquid ws measured after cultivation of strains in the presence of TNT with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. (orig.)

  8. Actin cortex architecture regulates cell surface tension.

    Science.gov (United States)

    Chugh, Priyamvada; Clark, Andrew G; Smith, Matthew B; Cassani, Davide A D; Dierkes, Kai; Ragab, Anan; Roux, Philippe P; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K

    2017-06-01

    Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.

  9. Light Scattering by Surface Tension Waves.

    Science.gov (United States)

    Weisbuch, G.; Garbay, F.

    1979-01-01

    This simple and inexpensive experiment is an illustration of the physical concepts of interaction between light and surface tension waves, and provides a new method of measuring surface tension. (Author/GA)

  10. SURFACE TENSION TECHNIQUES FOR MOLTEN SALTS

    Science.gov (United States)

    Some 200 surface tension determinations were made on 107 single-salt melts using eight experimental techniques. From a consideration of the... surface tension range of applicability and temperature limitation for these techniques are briefly considered.

  11. A TOGgle for Tension at Kinetochores

    OpenAIRE

    Cheerambathur, Dhanya K.; Prevo, Bram; Desai, Arshad

    2016-01-01

    Differential stability of kinetochore-microtubule attachments at low versus high tension is critical for accurate chromosome segregation. Miller et al. find that a TOG domain microtubule-binding protein imparts intrinsic tension selectivity to kinetochore-microtubule attachments.

  12. MOCVD growth of gallium nitride with indium surfactant

    Science.gov (United States)

    Won, Dong Jin

    grow beyond the critical radius. Thus, introduction of indium surfactant and Si doping was found to be the most favorable conditions for V-defect formation in Ga-polar GaN films grown on Si-face SiC substrates. The nucleation and growth model predicted that V-defects may not form in homoepitaxy because the energy barrier for V-defect formation approaches infinity due to zero misfit stress. When indium surfactant and Si dopant were introduced simultaneously during the homoepitaxial growth, V-defects did not form in 1.8 microm thick Ga-polar GaN films grown at 950 °C on bulk GaN that had very low threading dislocation density, as predicted by the nucleation and growth model. Ga-polar GaN films grown on Si(111) substrates using indium surfactant showed that additional tensile stress was induced by indium with respect to the reference GaN. Since cracking is known to be a stress relaxation mechanism for tension, the In-induced additional tensile stress is thus detrimental to the GaN films which experience the tensile thermal stress associated with the difference in coefficient of thermal expansion between GaN and the substrate during cooling after growth. The generation of tensile stress by indium seemed correlated with a reduction of V-defects since a high density of V-defects formed under the initial compressive stress at the GaN nucleation stage and then V-defect density decreased as the film grew. Even though the initial misfit stress of the GaN film grown on Si(111) was lower than that of GaN grown on SiC, a high density of V-defects were created under the initial compressive stress. Therefore, the high density of threading dislocations was believed to strongly drive the V-defect formation under In-rich conditions. Consequently, without using high quality bulk GaN substrates, V-defects could not be avoided in Ga-polar GaN films grown on foreign substrates such as Si-face SiC and Si(111) in the presence of indium surfactant and Si dopants during growth. Thus, N

  13. The future of exogenous surfactant therapy.

    Science.gov (United States)

    Willson, Douglas F; Notter, Robert H

    2011-09-01

    Since the identification of surfactant deficiency as the putative cause of the infant respiratory distress syndrome (RDS) by Avery and Mead in 1959, our understanding of the role of pulmonary surfactant in respiratory physiology and the pathophysiology of acute lung injury (ALI) has advanced substantially. Surfactant replacement has become routine for the prevention and treatment of infant RDS and other causes of neonatal lung injury. The role of surfactant in lung injury beyond the neonatal period, however, has proven more complex. Relative surfactant deficiency, dysfunction, and inhibition all contribute to the disturbed physiology seen in ALI and acute respiratory distress syndrome (ARDS). Consequently, exogenous surfactant, while a plausible therapy, has proven to be less effective in ALI/ARDS than in RDS, where simple deficiency is causative. This failure may relate to a number of factors, among them inadequacy of pharmaceutical surfactants, insufficient dosing or drug delivery, poor drug distribution, or simply an inability of the drug to substantially impact the underlying pathophysiology of ALI/ARDS. Both animal and human studies suggest that direct types of ALI (eg, aspiration, pneumonia) may be more responsive to surfactant therapy than indirect lung injury (eg, sepsis, pancreatitis). Animal studies are needed, however, to further clarify aspects of drug composition, timing, delivery, and dosing before additional human trials are pursued, as the results of human trials to date have been inconsistent and largely disappointing. Further study and perhaps the development of more robust pharmaceutical surfactants offer promise that exogenous surfactant will find a place in our armamentarium of treatment of ALI/ARDS in the future. 2011 Daedalus Enterprises

  14. Flow in porous media, phase and ultralow interfacial tensions: Mechanisms of enhanced petroleum recovery

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.T.; Scriven, L.E.

    1991-07-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The original focus was surfactant-based chemical flooding, but the approach taken was sufficiently fundamental that the research, longer-ranged than industrial efforts, has become quite multidirectional. Topics discussed are volume controlled porosimetry; fluid distribution and transport in porous media at low wetting phase saturation; molecular dynamics of fluids in ultranarrow pores; molecular dynamics and molecular theory of wetting and adsorption; new numerical methods to handle initial and boundary conditions in immiscible displacement; electron microscopy of surfactant fluid microstructure; low cost system for animating liquid crystallites viewed with polarized light; surfaces of constant mean curvature with prescribed contact angle.

  15. Intraoperative Development of Tension Pneumocephalus in a ...

    African Journals Online (AJOL)

    Included is a literature review of studies discussing the role of N2O in the development of tension pneumocephalus. N2O is associated with tension pneumocephalus especially in the setting of preexisting pneumocephalus. Tension pneumocephalus can manifest as Cushing response and immediate decompression is ...

  16. COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION.

    Science.gov (United States)

    Massinon, M; De Cock, N; Salah, S Ouled Taleb; Lebeau, F

    2015-01-01

    A spray retention model was used in this study to explore theoretically the effect of a range of mixture surface tension on the spray retention and the variability of deposits. The spray retention model was based on an algorithm that tested whether droplets from a virtual nozzle intercepted a 3D plant model. If so, the algorithm determined the contribution of the droplet to the overall retention depending on the droplet impact behaviour on the leaf; adhesion, rebound or splashing. The impact outcome probabilities, function of droplet impact energy, were measured using high-speed imaging on an excised indoor grown barley leaf (BBCH12) both for pure water (surface tension of 0.072 N/m) and a non-ionic super spreader (static surface tension of 0.021 N/m) depending on the surface orientation. The modification of spray mixture properties in the simulations was performed by gradually changing the spray the droplet impact probabilities between pure water and a solution with non-ionic surfactant exhibiting super spreading properties. The plant architecture was measured using a structured light scanner. The final retention was expressed as the volume of liquid retained by the whole plant relative to the projected leaf surface area in the main spray direction. One hundred simulations were performed at different volumes per hectare and flat-fan nozzles for each formulation surface tension. The coefficient of variation was used as indicator of variability of deposits. The model was able to discriminate between mixture surface tension. The spray retention increased as the mixture surface tension decreased. The variability of deposits also decreased as the surface tension decreased. The proposed modelling approach provides a suited tool for sensitivity analysis: nozzle kind, pressure, volume per hectare applied, spray mixture physicochemical properties, plant species, growth stage could be screened to determine the best spraying characteristics maximizing the retention. The

  17. Remobilizing the Interface of Thermocapillary Driven Bubbles Retarded By the Adsorption of a Surfactant Impurity on the Bubble Surface

    Science.gov (United States)

    Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)

    2001-01-01

    Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow that propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillary to direct the movement of bubbles in space is the fact that surfactant impurities, which are unavoidably present in the continuous phase, can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature-induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have be retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use surfactant

  18. The Plastic Tension Field Method

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    . The emphasis is attached to the presentation of a design method based on the diagonal tension field theory. Also, how to determine the load-carrying capacity of a given steel plate girder with transverse web stiffeners, is briefly presented. The load-carrying capacity may be predicted by applying both......This paper describes a calculation method for steel plate girders with transverse web stiffeners subjected to shear. It may be used for predicting the failure load or, as a design method, to determine the optimal amount of internal web stiffeners. The new method is called the plastic tension field...... method. The method is based on the theory of plasticity and is analogous to the so-called diagonal compression field method developed for reinforced concrete beams with transverse stirrups, which is adopted in the common European concrete code (Eurocode 2). Many other theories have been developed...

  19. Dynamic surface activity of a fully synthetic phospholipase-resistant lipid/peptide lung surfactant.

    Directory of Open Access Journals (Sweden)

    Frans J Walther

    2007-10-01

    Full Text Available This study examines the surface activity and resistance to phospholipase degradation of a fully-synthetic lung surfactant containing a novel diether phosphonolipid (DEPN-8 plus a 34 amino acid peptide (Mini-B related to native surfactant protein (SP-B. Activity studies used adsorption, pulsating bubble, and captive bubble methods to assess a range of surface behaviors, supplemented by molecular studies using Fourier transform infrared (FTIR spectroscopy, circular dichroism (CD, and plasmon resonance. Calf lung surfactant extract (CLSE was used as a positive control.DEPN-8+1.5% (by wt. Mini-B was fully resistant to degradation by phospholipase A(2 (PLA(2 in vitro, while CLSE was severely degraded by this enzyme. Mini-B interacted with DEPN-8 at the molecular level based on FTIR spectroscopy, and had significant plasmon resonance binding affinity for DEPN-8. DEPN-8+1.5% Mini-B had greatly increased adsorption compared to DEPN-8 alone, but did not fully equal the very high adsorption of CLSE. In pulsating bubble studies at a low phospholipid concentration of 0.5 mg/ml, DEPN-8+1.5% Mini-B and CLSE both reached minimum surface tensions <1 mN/m after 10 min of cycling. DEPN-8 (2.5 mg/ml+1.5% Mini-B and CLSE (2.5 mg/ml also reached minimum surface tensions <1 mN/m at 10 min of pulsation in the presence of serum albumin (3 mg/ml on the pulsating bubble. In captive bubble studies, DEPN-8+1.5% Mini-B and CLSE both generated minimum surface tensions <1 mN/m on 10 successive cycles of compression/expansion at quasi-static and dynamic rates.These results show that DEPN-8 and 1.5% Mini-B form an interactive binary molecular mixture with very high surface activity and the ability to resist degradation by phospholipases in inflammatory lung injury. These characteristics are promising for the development of related fully-synthetic lipid/peptide exogenous surfactants for treating diseases of surfactant deficiency or dysfunction.

  20. Robust Tensioned Kevlar Suspension Design

    Science.gov (United States)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.

    2012-01-01

    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  1. Dip-angle influence on areal DNAPL recovery by co-solvent flooding with and without pre-flooding.

    Science.gov (United States)

    Boyd, Glen R; Li, Minghua; Husserl, Johana; Ocampo-Gómez, Ana M

    2006-01-10

    A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol ( approximately 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15 degrees and 30 degrees dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89-93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70-77% for a 15 degrees dip angle and 57-59% for a 30 degrees dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57-60% at the 30

  2. Flood insurance in Canada: implications for flood management and residential vulnerability to flood hazards.

    Science.gov (United States)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  3. Health impacts of floods.

    Science.gov (United States)

    Du, Weiwei; FitzGerald, Gerard Joseph; Clark, Michele; Hou, Xiang-Yu

    2010-01-01

    Floods are the most common hazard to cause disasters and have led to extensive morbidity and mortality throughout the world. The impact of floods on the human community is related directly to the location and topography of the area, as well as human demographics and characteristics of the built environment. The aim of this study is to identify the health impacts of disasters and the underlying causes of health impacts associated with floods. A conceptual framework is developed that may assist with the development of a rational and comprehensive approach to prevention, mitigation, and management. This study involved an extensive literature review that located >500 references, which were analyzed to identify common themes, findings, and expert views. The findings then were distilled into common themes. The health impacts of floods are wide ranging, and depend on a number of factors. However, the health impacts of a particular flood are specific to the particular context. The immediate health impacts of floods include drowning, injuries, hypothermia, and animal bites. Health risks also are associated with the evacuation of patients, loss of health workers, and loss of health infrastructure including essential drugs and supplies. In the medium-term, infected wounds, complications of injury, poisoning, poor mental health, communicable diseases, and starvation are indirect effects of flooding. In the long-term, chronic disease, disability, poor mental health, and poverty-related diseases including malnutrition are the potential legacy. This article proposes a structured approach to the classification of the health impacts of floods and a conceptual framework that demonstrates the relationships between floods and the direct and indirect health consequences.

  4. Numerical Modeling of Surfactant-Induced Flow During Laboratory Measurement of Air-Water Interfacial Area

    Science.gov (United States)

    Henry, E. J.; Costanza-Robinson, M. S.

    2010-12-01

    An understanding of the relationship between air-water interfacial area (AI) and moisture saturation (SW) is necessary for the accurate prediction of the subsurface transport of solutes that partition to the interface or are readily transferred across the interface. Interfacial areas are commonly measured in a laboratory soil column using the aqueous interfacial-partitioning tracer methodology (IPT), in which AI is calculated based on the ratio of travel times of interfacial and non-reactive tracers. IPTs are conducted in uniformly-wetted soil columns and therefore, allow the determination of AI at a particular value of SW. The interfacial tracers used are typically surfactants, such as sodium dodecyl benzene sulfonate (SDBS), which are reversibly retained the air-water interface. At the SDBS concentrations often used, the aqueous surface tension of the interfacial tracer solution is approximately 30% lower than that of the non-reactive tracer solution. Because capillary pressure gradients caused by surfactant-induced surface tension gradients can induce unsaturated flow, we used numerical modeling to examine the potential for perturbations in unsaturated flow, and thus non-uniform distributions in SW, to occur during IPT tests. We used HYDRUS 1D, modified to include concentration-dependent surfactant effects on capillary pressure, in order to simulate a typical IPT experimental configuration in which SDBS was the interfacial tracer. Linear partitioning of the tracer to the air-water interface and sorption to the solid were included as SDBS retention mechanisms. The simulation results indicated that the surface tension changes caused by SDBS were sufficient to induce significant transient unsaturated flow, which was manifested as localized drainage and wetting as the SDBS passed through the column. Average SW in the column subsequently rebounded and reached a new steady-state flow condition once SDBS had displaced resident tracer-free water. The average SW at the

  5. Controlling the Mobility of the Fluid Interface of Moving Gas Bubbles or Liquid Drops by Using Micellar Solutions of Surfactants

    Science.gov (United States)

    Maldarelli, Charles; Papageorgiou, Demetrios

    1998-01-01

    convective rate in the thermocapillary process of interest. To measure the kinetic rate, we measure the dynamic tension change accompanying adsorption onto an initially clean interface, or the re-equilibration in tension when an equilibrium interface is compressed. The dynamic tension measurements are made by a pendant bubble method, in which surfactant adsorbs onto a pendant bubble, and the tension is measured by analyzing the shape change in the bubble. We conclude this report by detailing the publications, presentations and doctoral thesis completed under the auspices of this grant.

  6. Palm oil anionic surfactants based emulsion breaker (Case study of emulsions breaker at Semanggi Field production wells)

    Science.gov (United States)

    Muhpidah; Hambali, E.; Suryani, A.; Kartika, I. A.

    2017-05-01

    The presence of emulsion in oil production process is undesirable. The emulsion will increase the production costs, transportation and costs related to emulsion separation process between water and oil. The development of palm oil-based surfactant as an emulsion breaker needs to be conducted given the availability of abundant raw materials in Indonesia and as an alternative to petroleum-based surfactant. The purpose of this study is to produce palm oil-based emulsion breaker, assessing the effect of additive application to the emulsion breaker and analyze the performance of the emulsion breaker. This research was conducted by formulating palm oil anionic surfactant in water formation with the addition of co-surfactant additive and co-solvent. Palm oil anionic surfactant-based emulsion breaker with 0.5% concentration in water can reduce 50% of emulsions with the interfacial tension (IFT) of 2.33x10-2 dyne/cm. The addition of co-solvent (toluene: xylene) is able to remove the emulsion formed with a lower IFT namely 10-3 dyne / cm. The resulting emulsion breaker is capable to remove the emulsion between water and oil. The performance test of emulsion breaker show that the emulsion is able to maintain its performance at reservoir temperature with no indicate of plugging and the value generated incremental oil recovery values is 13%.

  7. Synthesis of methyl ester sulfonate surfactant from crude palm oil as an active substance of laundry liquid detergent

    Science.gov (United States)

    Slamet, Ibadurrohman, Muhammad; Wulandari, Pangiastika Putri

    2017-11-01

    Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.

  8. [Surfactant and water balance of lung in intracerebral hemorrhage at conditions of capsaicin blockade of vagus nerve].

    Science.gov (United States)

    Urakova, M A; Bryndina, I G

    2015-03-01

    It is known that intracranial hemorrhage (ICH) is accompanied by the development of neurogenic pulmonary edema and insufficiency of surfactant function. The present study was undertaken for evaluation of the role of vagal afferents in the mechanisms of ICH effects on pulmonary surfactant and water balance of the lung. We explored the surface activity and biochemical composition of surfactant, as well as blood supply, total, intravascular and extravascular fluid content in lung after ICH, simulated by intraventricular administration of autologous blood against the background of bilateral blockade of capsaicin-sensitive vagal affere its. The blockade was caused by the capsaicin application (50 mcmol) on the cervical part of the nerves. Intracerebralhemorrhage was accompanied by the decrease of surfactant activity which appeared by the enhancement of minimal, maximal and static surface tension of bronchoalveolar lavage fluid (BAL), the reduction of total phospholipids including their main fraction phosphatidylcholine, the increase of lysophosphatidyicholine content and hyperhydration of the lung. The level of total proteins in BAL elevated, confirmed the enhanced permeability of the alveolar-blood barrier. The exhaustion of neuropeptides in capsaicin-sensitive vagal afferents led to the partial restoration of surface active properties of lung, normalization of phospholipids and protein contents and water balance parameters. The obtained results suggest that capsaicin-sensitive vagal afferents play a pivotal role in the disturbances of surfactant function and water balance of the lung after ICH.

  9. Effect of Surfactants on the Deformation and Detachment of Oil Droplets in a Model Laminar Flow Cell

    Directory of Open Access Journals (Sweden)

    Fréville V.

    2013-10-01

    Full Text Available Sugar-based surfactants are increasingly present in the development of eco-friendly detergents due to current regulations and consumer demand. In order to assess the degreasing performance of these new surfactants, the behavior of model oil droplets subjected to the action of a flow of surfactant solutions of different concentrations was studied in a laminar flow cell and related to the physico-chemical properties measured at the liquid/liquid (interfacial tension and solid/liquid/liquid interfaces (contact angle. With the surfactant solutions and the model oils employed in this study, three main behaviors were observed when a critical flow rate was reached: elongation, fragmentation or spontaneous detachment of the droplet. The analysis of the results leads to a correlation between the droplet behavior and the balance of the forces applied on the droplet in its initial position, in particular the gravity force Fg, which tends to move the oil droplet upwards (given the density difference, and the capillary force Fc, which tends to keep the droplet spherical. A state diagram could be established, based on the dimensionless Bond number (Fg/Fc and cosθ, θ being the initial contact angle of the drop on the surface before the establishment of the flow. One can thus predict the droplet behavior as a function of the system initial characteristics. The results allowed the comparison of degreasing performance of the different surfactants used and illustrated the potential of AlkylPolyPentosides (APP for detergent formulations.

  10. D-glucose derived novel gemini surfactants: synthesis and study of their surface properties, interaction with DNA, and cytotoxicity.

    Science.gov (United States)

    Kumar, Vikash; Chatterjee, Amrita; Kumar, Nupur; Ganguly, Anasuya; Chakraborty, Indranil; Banerjee, Mainak

    2014-10-09

    Four new D-glucose derived m-s-m type gemini surfactants with variable spacer and tail length have been synthesized by a simple and efficient synthetic methodology utilizing the free C-3 hydroxy group of diisopropylidene glucose. The synthetic route to these gemini surfactants with a quaternary ammonium group as polar head group involves a sequence of simple reactions including alkylation, imine formation, quaternization of amine etc. The surface properties of the new geminis were evaluated by surface tension and conductivity measurements. These gemini surfactants showed low cytotoxicity by MTT assay on HeLa cell line. The DNA binding capabilities of these surfactants were determined by agarose gel electrophoresis, fluorescence titration, and DLS experiments. The preliminary studies by agarose gel electrophoresis indicated chain length dependent DNA binding abilities, further supported by ethidium bromide exclusion experiments. Two of the D-glucose derived gemini surfactants showed effective binding with pET-28a plasmid DNA (pDNA) at relatively low N/P ratio (i.e., cationic nitrogen/DNA phosphate molar ratio). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

    Directory of Open Access Journals (Sweden)

    Alexei Birkun

    2014-01-01

    Full Text Available Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium in vitro and to identify appropriate combination(s for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa. Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia.

  12. Urban pluvial flood prediction

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer

    2016-01-01

    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numerically both...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0–2 h lead time, and numerical weather models with lead times up to 24 h are used as inputs...

  13. Using Archives of Past Floods to Estimate Future Flood Hazards

    OpenAIRE

    Swierczynski, Tina; Ionita, Monica; Pino González, David

    2017-01-01

    Worldwide, floods cause greater economic damage and loss of human life than any other type of natural disaster. We urgently need better assessments of flood hazards to reduce the societal impact of extreme floods caused by Earth’s rapidly changing climate, among other factors. One way of assessing flood hazards is to examine past floods using the records provided by hydrological instruments. We can extend this knowledge back through the Holocene period or beyond using historical documents...

  14. Effects of length and hydrophilicity/hydrophobicity of diamines on self-assembly of diamine/SDS gemini-like surfactants.

    Science.gov (United States)

    Chen, Zhidi; Penfold, Jeffrey; Li, Peixun; Doutch, James; Fan, Yaxun; Wang, Yilin

    2017-12-06

    This work studied gemini-like surfactants formed from anionic surfactant sodium dodecyl sulfate (SDS) and cationic charged bola-type diamines with hydrophilic or hydrophobic spacers of different lengths using surface tension, small angle neutron scattering, isothermal titration microcalorimetry and cryogenic transmission electron microscopy. The critical micelle concentrations (CMC) and the surface tension at CMC (γ CMC ) for all the diamine/SDS mixtures are markedly lower than that of SDS. The shorter diamines reduce γ CMC to a greater extent regardless of the hydrophilicity/hydrophobicity of the diamines. Meanwhile, either the hydrophobic diamine with a longer spacer or the hydrophilic diamine with a shorter spacer is more beneficial to decrease CMC and leads to the transition from spherical micelles into rodlike or wormlike micelles. This is principally because of the formation of gemini-like surfactants by the electrostatic binding between SDS and the diamines, where the electrostatic repulsion between the adjacent headgroups of SDS becomes much weaker due to the electrostatic binding of oppositely charged diamine with SDS, and the longer hydrophobic spacer may also bend into the hydrophobic domain of micelles to promote micellar growth. However, the hydrophilic spacers are more compatible with the headgroup region, leading to micelles with a larger curvature. This work contributes to the understanding of the relationship between the properties of constructed gemini-like surfactants and the natures of connecting molecules, and provides guidance to efficiently improve the performance of surfactants.

  15. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    Science.gov (United States)

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  16. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    Science.gov (United States)

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  17. FLOOD CHARACTERISTICS AND MANAGEMENT ADAPTATIONS ...

    African Journals Online (AJOL)

    Dr Osondu

    2011-10-26

    Oct 26, 2011 ... This paper examined the physical characteristics of floods and management adaptations to flood hazards in the Imo River basin. From the study, it was determined that the pre and post flood disaster management is a yearly event. The extent and time of commencement usually differs in each flood season ...

  18. Highly methyl-branched hydrocarbon surfactant as a CO₂-philic solubilizer for water/supercritical CO₂ microemulsion.

    Science.gov (United States)

    Sagisaka, Masanobu; Kudo, Kotaro; Nagoya, Shota; Yoshizawa, Atsushi

    2013-01-01

    To develop an efficient and fluorine-free solubilizer for a water/supercritical CO₂ microemulsion (W/CO₂ μE), in this study, a highly methyl-branched alkyl, isostearyl group was focused on as a CO₂-philic tail, and the custom-made isostearyl surfactant, sodium 2-(4,4-dimethylpentan-2-yl)-5,7,7-trimethyloctyl sulfate (SIS1) was synthesized. The surface tension (γ) of an aqueous SIS1 solution was measured at ambient pressure as a function of surfactant concentration, and it was found to be 25 mN/m at concentrations of > 1.5 mM. A low γ value can generally be reached only by a fluorocarbon surfactant, which implies that SIS1 has an excellent solubilizing power for the W/CO₂ μE, similar to some fluorocarbon surfactants reported previously. Visual observations of the SIS1/W/CO₂ mixtures revealed the formation of transparent single phases without separated water, identified as W/CO₂ μE. The μE was well-stabilized at pressures > 210 bar and temperatures > 55 °C. At 75 °C and 370 bar, SIS1 was found by spectral measurements using a water-soluble UV-light absorber to solubilize water contents up to a maximum water-to-surfactant molar ratio (W0) = 50. The achievement of W0 = 50 in a W/CO₂ μE system has not been reported previously in similar hydrocarbon surfactant/W/CO₂ systems, and this demonstrates that a highly methyl-branched alkyl group can act as a good CO₂-philic group for a W/CO₂ -type surfactant.

  19. Modeling of Multiphase with Respect to Low Interfacial Tension by Pseudo-Two-Phase Relative Permeability Functions Modélisation d'un écoulement polyphasique à faible tension interfaciale par des fonctions pseudo-biphasiques de perméabilité relative

    Directory of Open Access Journals (Sweden)

    Pusch G.

    2006-11-01

    Full Text Available A new 2-parameter desaturation function is introduced which offers a broader range of applicability to reservoir rock. Based on this function two-phase relative permeabilities are derived for oil phase and microemulsion flow. These functions are used to match a laboratory experiment by using surfactant flooding for a single surfactant system. Les auteurs présentent une nouvelle fonction de désaturation à deux paramètres qui offre une plus large gamme de possibilités d'application aux roches réservoir. On tire de cette fonction des perméabilités relatives biphasiques pour l'écoulement de la phase pétrole et d'une microémulsion. Ces fonctions sont utilisées pour reproduire une expérience de laboratoire avec injection de surfactant pour un seul système surfactant.

  20. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  2. Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium.

    Science.gov (United States)

    Jiang, Lifang; Shen, Chong; Long, Xuwei; Zhang, Guoliang; Meng, Qin

    2014-12-01

    Biosurfactant rhamnolipids have been claimed to show biological activities of inhibiting the proliferation of cancer cells. In this study, the cytotoxicity of rhamnolipids was examined on four cancer cells (HepG2, Caco-2, Hela, MCF-7 cells) and two normal cells (HK-2 cell, primary hepatocyte). Interestingly, both cancer cells and normal cells exhibited similar sensitivities to the addition of rhamnolipids in culture medium, and the cytotoxicity was largely attenuated by the presence of fetal bovine serum (FBS) in culture medium. In correlation of the mono-/di-rhamnolipid cytotoxicity with the surface tension of culture medium, it was found that rhamnolipids triggered cytotoxicity whenever the surface tension of culture medium decreased below 41 mN/m irrespective of the FBS content in culture medium, cell line, or rhamnolipid congener. Similarly, each chemical surfactant (Tween-80, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate) could cause cytotoxicity on HepG2 cells whenever its addition made the surface tension under 41 mN/m in culture medium with or without the presence of FBS. It seems that rhamnolipids, like chemical surfactants, exhibited cytotoxicity by reducing the surface tension of culture medium rather than by changing its specific molecular structure, which had no selection on tumor cells. This study could offer helps to correct the misleading biological activity of rhamnolipids and to avoid the possible large wastes of time and expenses on developing the applications in antitumor drugs.

  3. Numerical Simulation and Optimization of Enhanced Oil Recovery by the In Situ Generated CO2 Huff-n-Puff Process with Compound Surfactant

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2016-01-01

    Full Text Available This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2 Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2 and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2 Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2 process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.

  4. Self-destruction and dewetting of thin polymer films the role of interfacial tensions

    CERN Document Server

    Reiter, G; Sharma, A

    2003-01-01

    We present real-time optical microscopy observations of the pattern evolution in self-destruction and subsequent dewetting of thin polymer films based on experiments with polydimethylsiloxane films sandwiched between silicon wafers and aqueous surfactant solutions. A clear scenario consisting of four distinct stages has been identified: amplification of surface fluctuations, break-up of the film and formation of holes, growth and coalescence of holes, and droplet formation and ripening. Besides a linear dependence on film viscosity and surface tension, the time tau for film rupture varied significantly with film thickness h (tau approx h sup 5), as expected from theory. While the role of long-range forces is dominant only in the first stage, the later stages are controlled by the combination of interfacial tensions resulting in the contact angle characterizing the three-phase contact line. During the first stage, the characteristic distance of the pattern remains constant, represented by a time-independent wa...

  5. Adsorption and Co-Adsorption of Polyaldehyde Dextran Nanoparticles and Nonionic Surfactant at an Air–Water Interface: Potential Implications for Pulmonary Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jabłczyńska Katarzyna

    2017-03-01

    Full Text Available Measurements of dynamic surface tension were carried out in aqueous systems (water or 0.1 mM Triton X-100 comprising nanoparticles formed from chemically modified polyaldehyde dextran (PAD. The nanostructures, considered as potential drug carriers in aerosol therapy, were obtained from biocompatible polysaccharides by successive oxidation and reactive coiling in an aqueous solution. The dynamic surface tension of the samples was determined by the maximum bubble pressure (MBP method and by the axisymmetric drop shape analysis (ADSA. Experiments with harmonic area perturbations were also carried out in order to determine surface dilatational viscoelasticity. PAD showed a remarkable surface activity. Ward-Tordai equation was used to determine the equilibrium surface tension and diffusion coefficient of PAD nanoparticles (D = 2.3×10-6 m2/s. In a mixture with Triton X-100, PAD particles showed co-adsorption and synergic effect in surface tension reduction at short times (below 10 s. Tested nanoparticles had impact on surface rheology in a mixed system with nonionic surfactant, suggesting their possible interactions with the lung surfactant system after inhalation. This preliminary investigation sets the methodological approach for further research related to the influence of inhaled PAD nanoparticles on the lung surfactant and mass transfer processes in the respiratory system.

  6. Hyaluronan with dextran added to therapeutic lung surfactants improves effectiveness in vitro and in vivo.

    Science.gov (United States)

    Lu, Karen W; Taeusch, H William; Clements, John A

    2013-01-01

    Surfactants in current clinical use are largely ineffective in treating acute lung injury (ALI)/ acute respiratory distress syndrome. In part, this ineffectiveness is due to inactivation of surfactant by serum leakage into the alveoli. Previously, we reported that adding hyaluronan and some nonionic polymers to synthetic lipids combined with native SP-B and SP-C enhanced surface activity. In this study, we first tested two therapeutic lung surfactants and then retested after adding hyaluronan, polyethylene glycol or dextran alone or in two-polymer combinations including hyaluronan in the absence or presence of serum. Surface activities were measured in a modified bubble surfactometer. Results indicate that the inhibition threshold (defined as the amount of serum required to produce a minimum surface tension above 10 mN/m after 5 minutes of cycling) was 35 times higher with hyaluronan plus dextran added to Infasurf than with Infasurf alone, and better than all other mixtures tested. The threshold for Survanta with hyaluronan plus polyethylene glycol was 7 times higher than Survanta alone. We next tested selected surfactant mixtures in an animal model that mimicked ALI. All measurements of lung function showed significant improvement (P ≤ .05) with hyaluronan, or with hyaluronan and dextran added to Infasurf compared to Infasurf alone. Also, for these two groups, lung function was still improving at the end of the experiment. We conclude that certain polymers added to clinical surfactants can greatly increase resistance to inactivation in vitro, while in vivo, both Infasurf mixtures containing hyaluronan tended to normalize measures of lung function unlike other mixtures tested.

  7. Electrostatic interactions and aqueous two-phase separation modes of aqueous mixed oppositely charged surfactants system.

    Science.gov (United States)

    Hao, Li-Sheng; Gui, Yuan-Xiang; Chen, Yan-Mei; He, Shao-Qing; Nan, Yan-Qing; You, Yi-Lan

    2012-08-30

    Electrostatic interactions play an important role in setting the aqueous two-phase separation behaviors of mixtures of oppositely charged surfactants. The aqueous mixture of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (AS) is actually a five-component system, comprised of CTAB, AS, complex salt (cetyltrimethylammonium dodecylsulfonate, abbreviated as CTA(+)AS(-)), NaBr, and water. In the three-dimensional pyramid phase diagram, the aqueous two-phase region with excess AS or with excess CTAB extends successively from the region very near to the NaBr-H2O line through the CTAB-AS-H2O conventional mixing plane to the CTA(+)AS(-)-AS-H2O side plane or to the CTA(+)AS(-)-CTAB-H2O side plane, respectively. Large or small molar ratios between the counterions and their corresponding surfactant ions for oppositely charged surfactants located in the NaBr side or the CTA(+)AS(-) side of the pyramid imply strong or weak electrostatic screening. Electrostatic screening of counterions alters the electrostatic attractions between the oppositely charged head groups or the electrostatic repulsions between the like-charged head groups in excess, and the electrostatic free energy of aggregation thus affects the aqueous two-phase separation modes. Composition analysis, rheological property investigation, and TEM images suggest that there are two kinds of aqueous two-phase systems (ATPSs). On the basis of these experimental results and Kaler's cell model, two kinds of phase separation modes were proposed. Experimental results also indicate that all of the top phases are surfactant-rich, and all of the bottom phases are surfactant-poor; the density difference between the top phase and the bottom phase in one ATPS is very small; the interfacial tension (σ) of the ATPS is ultralow.

  8. FLOODPLAIN, FLOOD COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  9. Floods and Mold Growth

    Science.gov (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  10. Localized Flood Management

    Science.gov (United States)

    practitioners will cover a range of practices that can help communities build flood resilience, from small scale interventions such as rain gardens and permeable pavement to coordinated open space and floodplain preservation

  11. Small membranes under negative surface tension.

    Science.gov (United States)

    Avital, Yotam Y; Farago, Oded

    2015-03-28

    We use computer simulations and a simple free energy model to study the response of a bilayer membrane to the application of a negative (compressive) mechanical tension. Such a tension destabilizes the long wavelength undulation modes of giant vesicles, but it can be sustained when small membranes and vesicles are considered. Our negative tension simulation results reveal two regimes-(i) a weak negative tension regime characterized by stretching-dominated elasticity and (ii) a strong negative tension regime featuring bending-dominated elastic behavior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration experiment in giant unilamellar vesicles (GUVs) [E. Evans and W. Rawicz, Phys, Rev. Lett. 64, 2094 (1990)]. However, in GUVs the crossover between the two elasticity regimes occurs at a small positive surface tension, while in smaller membranes it takes place at a moderate negative tension. Another interesting observation concerning the response of a small membrane to negative surface tension is related to the relationship between the mechanical and fluctuation tensions, which are equal to each other for non-negative values. When the tension decreases to negative values, the fluctuation tension γ drops somewhat faster than the mechanical tension τ in the small negative tension regime, before it saturates (and becomes larger than τ) for large negative tensions. The bending modulus exhibits an "opposite" trend. It remains almost unchanged in the stretching-dominated elastic regime, and decreases in the bending-dominated regime. Both the amplitudes of the thermal height undulations and the projected area variations diverge at the onset of mechanical instability.

  12. Palmitoylation of pulmonary surfactant protein SP-C is critical for its functional cooperation with SP-B to sustain compression/expansion dynamics in cholesterol-containing surfactant films.

    Science.gov (United States)

    Baumgart, Florian; Ospina, Olga L; Mingarro, Ismael; Rodríguez-Crespo, Ignacio; Pérez-Gil, Jesús

    2010-11-17

    Recent data suggest that a functional cooperation between surfactant proteins SP-B and SP-C may be required to sustain a proper compression-expansion dynamics in the presence of physiological proportions of cholesterol. SP-C is a dually palmitoylated polypeptide of 4.2 kDa, but the role of acylation in SP-C activity is not completely understood. In this work we have compared the behavior of native palmitoylated SP-C and recombinant nonpalmitoylated versions of SP-C produced in bacteria to get a detailed insight into the importance of the palmitic chains to optimize interfacial performance of cholesterol-containing surfactant films. We found that palmitoylation of SP-C is not essential for the protein to promote rapid interfacial adsorption of phospholipids to equilibrium surface tensions (∼22 mN/m), in the presence or absence of cholesterol. However, palmitoylation of SP-C is critical for cholesterol-containing films to reach surface tensions ≤1 mN/m at the highest compression rates assessed in a captive bubble surfactometer, in the presence of SP-B. Interestingly, the ability of SP-C to facilitate reinsertion of phospholipids during expansion was not impaired to the same extent in the absence of palmitoylation, suggesting the existence of palmitoylation-dependent and -independent functions of the protein. We conclude that palmitoylation is key for the functional cooperation of SP-C with SP-B that enables cholesterol-containing surfactant films to reach very low tensions under compression, which could be particularly important in the design of clinical surfactants destined to replacement therapies in pathologies such as acute respiratory distress syndrome. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Gemini surfactants from natural amino acids.

    Science.gov (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.

  14. Mechanism of bacterial inactivation by cationic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pavlova, I.B.; Samoylenko, I.I.

    1985-03-01

    The mechanism of bacteriocidal action of the cationic surfactant dimethylbenzylammonium chloride was studied on exposure of Staphylococcus aureus, Streptococcus faecium, Bacillus subtilis and Escherichia coli to different concentrations of the agent and determinations of survival plots. The data showed that the surfactant was bacteriocidal for all the bacteria tested at a concentration of 0.0001%, but more efficient in the case of the gram positives. Electron microscopy showed considerable damage and dissarrangement of the cytoplasmic membrane, indicating that the killing mechanism involved this organelle. It appears that cationic surfactants may constitute effective disinfectant preparations. 9 references, 2 figures.

  15. Evaluation and Optimization Study on a Hybrid EOR Technique Named as Chemical-Alternating-Foam Floods

    Directory of Open Access Journals (Sweden)

    Xu Xingguang

    2017-01-01

    Full Text Available This work presents a novel Enhanced Oil Recovery (EOR method called Chemical-Alternating-Foam (CAF floods in order to overcome the drawbacks of the conventional foam flooding such as insufficient amount of in-situ foams, severe foam collapse and surfactant retention. The first part of this research focused on the comparison of conventional foam floods and CAF floods both of which had the same amount of gas and chemicals. It showed that: (1 CAF floods possessed the much greater Residual Resistance Factor (RRF at elevated temperature; (2 the accumulative oil recovery of the CAF floods was 10%-15% higher than that of the conventional foam flooding. After 1.8 Pore Volume (PV injection, the oil recovery reached the plateau for both methods; (3 CAF floods yielded the most amount of incremental oil at the 98% water cut (water content in the effluent, while the continuous foam floods achieved the best performance at 60% water cut. The second part of this work determined the optimal foam quality (gas/liquid ratio or the volume percent gas within foam, chemical/foam slug size ratio, cycle number and injection sequence for the CAF floods. It was found that the CAF was endowed with the peak performance if the foam quality, chemical/foam slug size ratio, cycle number was fixed at 80%, 1:1 and 3 respectively with the chemical slug being introduced ahead of the foam slug. Through systematic and thorough research, the proposed hybrid process has been approved to be a viable and effective method significantly strengthening the conventional foam flooding.

  16. One-step synthesis, wettability and foaming properties of high-performance non-ionic hydro-fluorocarbon hybrid surfactants

    Science.gov (United States)

    Peng, Ying-ying; Lu, Feng; Tong, Qing-Xiao

    2018-03-01

    In this work, a series of non-ionic hydro-fluorocarbon hybrid surfactants (C9F19CONH(CH2)3N(CmH2m+1)2, abbreviated as C9F19AM (m = 1), C9F19AE (m = 2) and C9F19AB (m = 4) were easily synthesized by one-step reaction and characterized by 1HNMR, 19FNMR and MS spectroscopy. Unlike conventional non-ionic surfactants (most hydrophilic units consisted of hydroxy or ether groups), their hydrophilic groups were composed of amide group, an eco-friendly unit. The surface activity, wettability, thermal stability and foaming performance were investigated. The results showed that the C9F19AE (C9F19CONH(CH2)3N[CH2CH3]2) had superior surface and interface activities, which could reduce the surface tension of water down to 15.37 mN/m and the interfacial tension (cyclohexane/water/surfactants) to 5.8 mN/m with a low cmc (critical micelle concentration) of 0.12 mmol/L. Through the calculation of Amin (the minimum area occupied per-surfactant molecule), we speculated this higher surface activity was related to the compatibility between hydrocarbon and fluorocarbon chains. When used as wetting and foaming agents, the C9F19AE also outperformed great advantages over conventional non-ionic fluorocarbon and hydrocarbon surfactants, which could decrease the contact angle of water on PTFE plate from 107.7° to 3.6°, and increase the foam integrated value F to 536 500 ± 3066.5 mL s. Moreover, the decomposition temperature (Td) of C9F19AE could reach up to 173 °C. This work demonstrates a valuable strategy to develop a kind of high-efficiency foaming agent via facile synthesis.

  17. Dynamically reconfigurable complex emulsions via tunable interfacial tensions.

    Science.gov (United States)

    Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M

    2015-02-26

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with

  18. Aggregation of sulfosuccinate surfactants in water

    Energy Technology Data Exchange (ETDEWEB)

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.

    1983-12-22

    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  19. Evaluation of Surfactant Effects on Newborns

    OpenAIRE

    N. Khalessi; K. Kamerani

    2006-01-01

    Introduction & Objective: One of the standard therapies in neonates with severe respiratory distress syndrome (RDS) is surfactant administration in early course of therapy that cause reduction in mortality, pneumothorax and need to mechanical ventilation. In this study that was carried out in Aliasghar Hospital NICU in 1994-1995 & 2001-2002, the goal was to compare two groups of neonates with severe RDS that had been ventilated in the first 24 hours but one group had received surfactant and ...

  20. Mitigating flood exposure

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  1. Update on normal tension glaucoma

    Directory of Open Access Journals (Sweden)

    Jyotiranjan Mallick

    2016-01-01

    Full Text Available Normal tension glaucoma (NTG is labelled when typical glaucomatous disc changes, visual field defects and open anterior chamber angles are associated with intraocular pressure (IOP constantly below 21 mmHg. Chronic low vascular perfusion, Raynaud's phenomenon, migraine, nocturnal systemic hypotension and over-treated systemic hypertension are the main causes of normal tension glaucoma. Goldmann applanation tonometry, gonioscopy, slit lamp biomicroscopy, optical coherence tomography and visual field analysis are the main tools of investigation for the diagnosis of NTG. Management follows the same principles of treatment for other chronic glaucomas: To reduce IOP by a substantial amount, sufficient to prevent disabling visual loss. Treatment is generally aimed to lower IOP by 30% from pre-existing levels to 12-14 mmHg. Betaxolol, brimonidine, prostaglandin analogues, trabeculectomy (in refractory cases, systemic calcium channel blockers (such as nifedipine and 24-hour monitoring of blood pressure are considered in the management of NTG. The present review summarises risk factors, causes, pathogenesis, diagnosis and management of NTG.

  2. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.

    Science.gov (United States)

    Worthen, Andrew J; Foster, Lynn M; Dong, Jiannan; Bollinger, Jonathan A; Peterman, Adam H; Pastora, Lucinda E; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-02-04

    Oil-in-water emulsions were formed and stabilized at low amphiphile concentrations by combining hydrophilic nanoparticles (NPs) (i.e., bare colloidal silica) with a weakly interacting zwitterionic surfactant, caprylamidopropyl betaine, to generate a high hydrophilic-lipophilic balance. The weak interaction of the NPs with surfactant was quantified with contact angle measurements. Emulsions were characterized by static light scattering to determine the droplet size distributions, optical photography to quantify phase separation due to creaming, and both optical and electron microscopy to determine emulsion microstructure. The NPs and surfactant acted synergistically to produce finer emulsions with a greater stability to coalescence relative to the behavior with either NPs or surfactant alone. As a consequence of the weak adsorption of the highly hydrophilic surfactant on the anionic NPs along with the high critical micelle concentration, an unusually large surfactant concentration was available to adsorb at the oil-water interface and lower the interfacial tension. The synergy for emulsion formation and stabilization for the two amphiphiles was even greater in the case of a high-salinity synthetic seawater aqueous phase. Here, higher NP adsorption at the oil-water interface was caused by electrostatic screening of interactions between (1) NPs and the anionic oil-water interface and (2) between the NPs. This greater adsorption as well as partial flocculation of the NPs provided a more efficient barrier to droplet coalescence.

  3. Probabilistic flood extent estimates from social media flood observations

    Science.gov (United States)

    Brouwer, Tom; Eilander, Dirk; van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-05-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from Twitter messages that mention locations of flooding. A deterministic flood map created for the December 2015 flood in the city of York (UK) showed good performance (F(2) = 0.69; a statistic ranging from 0 to 1, with 1 expressing a perfect fit with validation data). The probabilistic flood maps we created showed that, in the York case study, the uncertainty in flood extent was mainly induced by errors in the precise locations of flood observations as derived from Twitter data. Errors in the terrain elevation data or in the parameters of the applied algorithm contributed less to flood extent uncertainty. Although these maps tended to overestimate the actual probability of flooding, they gave a reasonable representation of flood extent uncertainty in the area. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.

  4. Evaluation of Surfactant Effects on Newborns

    Directory of Open Acc