Sample records for tension screw geometry

  1. New Tools for Computational Geometry and Rejuvenation of Screw Theory (United States)

    Hestenes, David

    Conformal Geometric Algebraic (CGA) provides ideal mathematical tools for construction, analysis, and integration of classical Euclidean, Inversive & Projective Geometries, with practical applications to computer science, engineering, and physics. This paper is a comprehensive introduction to a CGA tool kit. Synthetic statements in classical geometry translate directly to coordinate-free algebraic forms. Invariant and covariant methods are coordinated by conformal splits, which are readily related to the literature using methods of matrix algebra, biquaternions, and screw theory. Designs for a complete system of powerful tools for the mechanics of linked rigid bodies are presented.

  2. Biomechanical comparison of the bioabsorbable RetroScrew system, BioScrew XtraLok with stress equalization tensioner, and 35-mm Delta Screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae. (United States)

    Chang, Haw Chong; Nyland, John; Nawab, Akbar; Burden, Robert; Caborn, David N M


    Achieving effective soft tissue graft-tibial tunnel fixation remains problematic. No differences would exist for tibialis anterior graft-tibial tunnel fixation when comparing the RetroScrew System (20-mm retrograde screw, 17-mm antegrade screw), the 35-mm tapered Delta Screw (manual tensioning), and the 35-mm BioScrew XtraLok (applied using an instrumented tensioner). Controlled laboratory study. Porcine tibiae (apparent bone mineral density, 1.3 g/cm(2)) and human tendon allografts were divided into 3 matched groups of 6 specimens each before cyclic (500 cycles, 50-250 N, 1 Hz) and load-to-failure (20 mm/min) tests. The BioScrew XtraLok (210.9 +/- 54.9 N/mm) and the 35-mm Delta Screw (224.3 +/- 43.7 N/mm) displayed superior stiffness to the RetroScrew System (114.1 +/- 23.3 N/mm) (P = .0004) during cyclic testing. The BioScrew XtraLok (1.0 +/- 0.2 mm) and the Delta Screw (0.9 +/- 0.2 mm) also displayed less displacement during cyclic testing than the RetroScrew System (1.8 +/- 0.5 mm) (P = .001). During load-to-failure testing, the BioScrew XtraLok withstood greater loads (1436.3 +/- 331.3 N) (P = .001) and displayed greater stiffness (323.6 +/- 56.8 N/mm) (P = .002) than the 35-mm Delta Screw (load, 1042.2 +/- 214.4 N; stiffness, 257.2 +/- 22.2 N/mm) and the RetroScrew System (load, 778.7 +/- 177.5 N; stiffness, 204.4 +/- 52.9 N/mm). The BioScrew XtraLok with instrumented tensioning displayed superior fixation to the RetroScrew System and the 35-mm Delta Screw applied with manual tensioning. The BioScrew XtraLok may provide superior soft tissue graft-tibial tunnel fixation. Further in vitro studies using human tissue and in vivo clinical studies are needed.

  3. Cannulated screw and cable are superior to modified tension band in the treatment of transverse patella fractures. (United States)

    Tian, Yun; Zhou, Fang; Ji, Hongquan; Zhang, Zhishan; Guo, Yan


    Although the modified tension band technique (eg, tension band supplemented by longitudinal Kirschner wires) has long been the mainstay for fixation of transverse fractures of the patella, it has shortcomings, such as bad reduction, loosening of implants, and skin irritation. We conducted a retrospective comparison of the modified tension band technique and the titanium cable-cannulated screw tension band technique. We retrospectively reviewed 101 patients aged 22 to 85 years (mean, 56.6 years) with AO/OTA 34-C1 fractures (n = 68) and 34-C2 fractures (n = 33). Fifty-two patients were in the modified tension band group and 49 were in the titanium cable-cannulated screw tension band group. Followup was at least 1 year (range, 1-3 years). Comparison criteria were fracture reduction, fracture healing time, and the Iowa score for knee function. The titanium cable-cannulated screw tension band group showed improved fracture reduction, reduced healing time, and better Iowa score, compared with the modified tension band group. In the modified tension band group, eight patients experienced wire migration, three of these requiring a second operation. There were no complications in the titanium cable-cannulated screw tension band group. The titanium cable-cannulated screw tension band technique showed superior results and should be considered as an alternative method for treatment of transverse patellar fractures. Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  4. Development of an optically-based tension-indicating implanted orthopedic screw with a luminescent spectral ruler (United States)

    Ravikumar, Nakul; Rogalski, Melissa M.; Benza, Donny; Lake, Joshua; Urban, Matthew; Pelham, Hunter; Anker, Jeffrey N.; DesJardins, John D.


    An orthopaedic screw was designed with an optical tension-indicator to non-invasively quantify screw tension and monitor the load sharing between the bone and the implant. The screw both applies load to the bone, and measures this load by reporting the strain on the screw. The screw contains a colorimetric optical encoder that converts axial strain into colorimetric changes visible through the head of the screw, or luminescent spectral changes that are detected through tissue. Screws were tested under cyclic mechanical loading to mimic in-vivo conditions to verify the sensitivity, repeatability, and reproducibility of the sensor. In the absence to tissue, color was measured using a digital camera as a function of axial load on a stainless steel cannulated (hollow) orthopedic screw, modified by adding a passive colorimetric strain gauge through the central hole. The sensor was able to quantify clinically-relevant bone healing strains. The sensor exhibited good repeatability and reproducibility but also displayed hysteresis due to the internal mechanics of the screw. The strain indicator was also modified for measurement through tissue by replacing the reflective colorimetric sensor with a low-background X-ray excited optical luminescence signal. Luminescent spectra were acquired through 6 mm of chicken breast tissue. Overall, this research shows feasibility for a unique device which quantifies the strain on an orthopedic screw. Future research will involve reducing hysteresis by changing the mechanism of strain transduction in the screw, miniaturizing the luminescent strain gauge, monitoring bending as well as tension, using alternative luminescent spectral rulers based upon near infrared fluorescence or upconversion luminescence, and application to monitoring changes in pretension and load sharing during bone healing.

  5. Internal Fixation of Transverse Patella Fractures Using Cannulated Cancellous Screws with Anterior Tension Band Wiring

    Directory of Open Access Journals (Sweden)

    Khan I


    Full Text Available Aims: To evaluate the effectiveness and safety of anterior tension band wiring technique using two cannulated cancellous screws in patients with transverse (AO34-C1 or transverse with mildly comminuted (AO34-C2 patellar fractures. Materials and Methods: This is a prospective study of 25 patients with transverse fracture or transverse fracture with mildly comminuted patella fractures. All the patients were treated with open reduction and internal fixation using two parallel cannulated screws and 18G stainless steel wire as per the tension band principle. Results: There were eighteen males (72% and seven females (28%. The age group ranged from 24 to 58 years, with mean age of 38 years. The most common mode of injury was fall (72% followed by road traffic accident (20% and violent quadriceps contraction (8%. Transverse fracture was present in 60% and transverse fracture with mild comminution in 40% of patients. Mean time to achieve union was 10.7 weeks (range 8-12 weeks. Mean ROM at three months was 113.8 degree (90-130 and at final follow up this improved to 125.4 degrees (range 100-140. There was one case of knee stiffness and no case of implant failure was observed. Patients were evaluated using Bostman scoring, the mean score at three months being 26.04 which improved to 27.36 at the end of final follow up at one year. Conclusion: Cannulated cancellous screws with anterior tension band wiring is a safe, reliable and reproducible method in management of transverse patellar fractures, with less chances of implant failure and soft tissue irritation.

  6. Biomechanical comparison of tension band- and interfragmentary screw fixation with a new implant in transverse patella fractures. (United States)

    Dargel, J; Gick, S; Mader, K; Koebke, J; Pennig, D


    The aim of the present study was to compare the primary fixation stability and initial fixation stiffness of two established fixation techniques, the tension band wiring technique and interfragmentary screw fixation, with a mini-screw fragment fixation system in a model of transverse patella fracture. It was hypothesised that the biomechanical loading performance of the fragment fixation system would not significantly differ from the loading characteristics of the two established methods currently investigated. Ninety-six calf patellae were used in this biomechanical model. A standardized transverse patella fracture was induced and three different fixation methods, including the modified tension band wiring technique, interfragmentary screw fixation, and the mini-screw fragment fixation system, were used for fragment fixation. Specimens were mounted to a loading rig which was secured within a material testing machine. In each fixation group, eight specimens were loaded to failure at a simulated knee angle of either 0 degrees or 45 degrees . Another eight specimens were submitted to a polycyclic loading protocol consisting of 30 cycles between 20N and 300N at a simulated knee angle of 0 degrees or 45 degrees . The residual displacement between the first and the last cycle was recorded. Differences in the biomechanical performance between the three fixation groups were evaluated. No significant differences between the three fixation groups were observed in the parameters maximum load to failure and linear fixation stiffness with monocyclic loading. Specimens being loaded at 45 degrees showed significantly lower maximum failure loads and linear stiffness when compared with 0 degrees . During polycyclic loading, no significant differences in the residual displacement were observed between the groups at 0 degrees loading angle, while at 45 degrees , residual displacement was significantly higher with tension band fixation when compared with interfragmentary screw

  7. Indentation of a floating elastic sheet: geometry versus applied tension (United States)

    Box, Finn; Vella, Dominic; Style, Robert W.; Neufeld, Jerome A.


    The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.

  8. A retrospective comparison of the modified tension band technique and the parallel titanium cannulated lag screw technique in transverse patella fracture. (United States)

    Wang, Cheng-Xue; Tan, Lei; Qi, Bao-Chang; Hou, Xiang-Feng; Huang, Yu-Long; Zhang, Hai-Peng; Yu, Tie-Cheng


    To compare efficacy between the modified tension band technique and the parallel titanium cannulated lag screw technique for the transverse patella fracture. Seventy-two patients were retrospectively analyzed aged 22 to 79 years (mean, 55.6 years) with transverse patella fractures, among whom 37 patients underwent the modified tension band and 35 patients received the titanium cannulated lag screw. Patients were followed up for 1-3 years. We analyzed the difference of operation time, complications, fracture reduction, fracture healing time, and the Iowa score for knee function between both groups. In modified tension band group, five patients had skin irritation and seven suffered wire migration, two of whom required a second operation. In comparison, there were no complications in the titanium cannulated lag screw group, which also had a higher fracture reduction rate and less operation time. The parallel titanium cannulated lag screw technique has superior results and should be considered as an alternative method to treat transverse patella fracture.

  9. Open reduction and internal fixation of displaced patella inferior pole fractures with anterior tension band wiring through cannulated screws. (United States)

    Chang, Shi-Min; Ji, Xiang-Ling


    To present the treatment outcome for patients with displaced inferior pole patella fractures treated with anterior tension band wiring through cannulated screws. Case series. Academic Level I trauma center. During a 2-year period between January 2007 and December 2008, 10 consecutive patients (mean age, 59.8 years) with distal pole fractures of the patella (Orthopaedic Trauma Association 45.A.1) were prospectively enrolled in this study. All 10 patients underwent vertical skin exposure, fracture open reduction, and internal fixation by anterior tension band wiring through 4.0-mm cannulated screws. The range of motion, loss of fracture reduction, implant migration, material failure, soft tissue irritation, and Bostman score and Short Musculoskeletal Functional Assessment dysfunction score were primary outcome measures. There were three single-fragment fractures and seven comminuted fractures. With 1-year follow-up, all fractures healed clinically in an average of 8 weeks and radiographically on average by 12 weeks. The average range of knee motion arc was 122.5° (range, 95°-140°). Five patients have an average flexion lag of 17° (range, 10°-30°). No patient had loss of fracture reduction, implant migration, material failure, or soft tissue irritation. The average Bostman score was 28.7 out of 30 (range, 27-30), and average Short Musculoskeletal Functional Assessment dysfunction score was 24.1 out of 100 (range, 15-39). All 10 patients stated they were highly satisfied. Anterior tension band wiring through cannulated screws for displaced inferior pole patella fractures is a safe, simple, and reliable alternative treatment with minimal soft tissue irritation. Good functional results and recovery can be expected.

  10. Double fixation of displaced patella fractures using bioabsorbable cannulated lag screws and braided polyester suture tension bands. (United States)

    Qi, Li; Chang, Cao; Xin, Tang; Xing, Pei Fu; Tianfu, Yang; Gang, Zhong; Jian, Li


    To evaluate the effectiveness and safety of a new double fixation technique for displaced patellar fractures using bioabsorbable cannulated lag screws and braided polyester suture tension bands. Fifteen patients (mean age of 46.2 years) with displaced transverse or comminuted patella fractures were enrolled in this prospective study. All of the patients were treated via the open reduction internal fixation (ORIF) procedure using bioabsorbable cannulated lag screws and braided polyester suture tension bands. The patients were followed post-surgery to evaluate (1) the time required for radiographic bone union, (2) the knee joint range of motion at the time of radiographic bone union, (3) the degree of pain assessed using the visual analogue scale (VAS), (4) the function of the knee using the Lysholm score and (5) the presence of any additional complications from the surgery. All of the patients were followed post-treatment for more than 1 year (range, 12-19 months; mean post-treatment follow up time, 14 months). The bone union of the fractures as seen radiographically occurred approximately 3 months from surgery in all cases without implant failure or redisplacement of the fractured site. The mean knee joint range of motion was from 0 to 134.6°, and the mean VAS score was 0.7 at the time of bone union. The mean Lysholm scores at the time of bone union and 12 months post-surgery were 86.7 and 95.7, respectively. No postoperative complications, such as infection, dislocation or breakage of the implants, were observed. Moreover, all of the patients returned to their previous activity level. This new double fixation technique using bioabsorbable cannulated lag screws and braided polyester suture tension bands resulted in satisfactory outcomes for patella fractures without any obvious complications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Particle actions and brane tensions from double and exceptional geometry (United States)

    Blair, Chris D. A.


    Massless particles in n + 1 dimensions lead to massive particles in n dimensions on Kaluza-Klein reduction. In string theory, wrapped branes lead to multiplets of massive particles in n dimensions, in representations of a duality group G. By encoding the masses of these particles in auxiliary worldline scalars, also transforming under G, we write an action which resembles that for a massless particle on an extended spacetime. We associate this extended spacetime with that appearing in double field theory and exceptional field theory, and formulate a version of the action which is invariant under the generalised diffeomorphism symmetry of these theories. This provides a higher-dimensional perspective on the origin of mass and tension in string theory and M-theory. Finally, we consider the reduction of exceptional field theory on a twisted torus, which is known to give the massive IIA theory of Romans. In this case, our particle action leads naturally to the action for a D0 brane in massive IIA. Here an extra vector field is present on the worldline, whose origin in exceptional field theory is a vector field introduced to ensure invariance under generalised diffeomorphisms.

  12. A network-analysis-based comparative study of the throughput behavior of polymer melts in barrier screw geometries (United States)

    Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.


    Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.

  13. A retrospective comparison of the modified tension band technique and the parallel titanium cannulated lag screw technique in transverse patella fracture

    Directory of Open Access Journals (Sweden)

    Wang Chengxue


    Full Text Available 【Abstract】Objective: To compare efficacy between the modified tension band technique and the parallel titanium cannulated lag screw technique for the transverse patella fracture. Methods:Seventy-two patients were retrospectively analyzed aged 22 to 79 years (mean, 55.6 years with transverse patella fractures, among whom 37 patients underwent the modified tension band and 35 patients received the titanium cannulated lag screw. Patients were followed up for 1-3 years. We analyzed the difference of operation time, complications, fracture reduction, fracture healing time, and the Iowa score for knee function between both groups. Results:In modified tension band group, five patients had skin irritation and seven suffered wire migration, two of whom required a second operation. In comparison, there were no complications in the titanium cannulated lag screw group, which also had a higher fracture reduction rate and less operation time. Conclusion:The parallel titanium cannulated lag screw technique has superior results and should be considered as an alternative method to treat transverse patella fracture. Key words: Fractures, bone; Patella; Titanium; Bone screws

  14. Comparison of cannulated screw with tension band wiring versus compressive cannulated locking bolt and nut device (CompresSURE) in patella fractures-a cadaveric biomechanical study. (United States)

    Domby, Brian; Henderson, Eric; Nayak, Aniruddh; Erdoğan, Murat; Gutierrez, Sergio; Santoni, Brandon G; Sagi, H Claude


    The purpose of this study was to determine if proximity of cannulated lag screws to the articular surface of the patella combined with the tension band technique affects resistance to fracture gap opening, and if an alternative locking nut and bolt device without a tension band behaves in a biomechanically similar fashion. Thirty-three cadaveric knees were allocated to 3 transverse patella fracture fixation groups: cannulated lag screw placement close to the articular (TBA) or non-articular (TBNA) surface with tension, and placement of a compressive locking nut and bolt device without tension band (CompresSURE) close to the articular surface. Knees were cycled through flexion-extension motion for 1000 cycles during which the fracture gap opening was quantified after the first flexion-extension cycle and after the 1,000 th cycle using an optoelectronic motion analysis system. After the first range of motion cycle, there was no significant difference in fracture gap opening between the 3 groups on the articular surface (P > 0.600). Total fracture gap displacement after the 1,000 th cycle was not significantly different between groups (P > 0.408). In general and irrespective of fixation technique, fractures opened in a wedge-like fashion with larger measured gap on the ventral surface relative to the articulating surface. When combined with the tension band, the proximity of cannulated lag screws to the articular surface did not affect resistance to fracture gap opening. Additionally, the stand-alone CompreSURE cannulated locking nut and bolt device without tension band was able to resist fracture gap opening in transverse fractures as effectively as the cannulated screw with tension band technique.

  15. Biomechanical cadaver testing of a fixed-angle plate in comparison to tension wiring and screw fixation in transverse patella fractures. (United States)

    Thelen, Simon; Schneppendahl, Johannes; Jopen, Eva; Eichler, Christian; Koebke, Jürgen; Schönau, Eckhard; Hakimi, Mohssen; Windolf, Joachim; Wild, Michael


    Operative treatment of patella fractures is frequently associated with implant failure and secondary dislocation which can be attributed to the employed hardware. Therefore, a 2.7 mm fixed-angle plate designed for the treatment of patella fractures was tested biomechanically against the currently preferred methods of fixation. It was hypothesized that under simulated cyclic loading fixed-angle plating would be superior to modified anterior tension wiring or cannulated lag screws with anterior tension wiring. Eighteen human cadaver knees, matched by bone mineral density and age, were divided into three groups of six. After setting a transverse patella fracture each group received one of the osteosyntheses mentioned above. Repetitive testing over 100 cycles was performed at non-destructive loads by simulating knee motion from 90° flexion to full extension. Anterior tension wiring as well as lag screws with tension wiring showed significant fracture displacement after the initial cycle already. Both constructs, lag screws plus wiring (3.7 ± 2.7 mm) as well as tension wiring alone (7.1 ± 2.2 mm) displayed fracture displacement of >2 mm which is clinically regarded as failure. Those patellae stabilized with fixed-angle plates showed no significant fracture gap widening after completion of 100 cycles (0.7 ± 0.5 mm). The differences between the fixed-angle plate group and the other two groups were statistically significant (ppatella fractures securely and sustainably. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Complications of lateral plate fixation compared with tension band wiring and pin or lag screw fixation for calcaneoquartal arthrodesis. Treatment of proximal intertarsal subluxation occurring secondary to non-traumatic plantar tarsal ligament disruption in dogs. (United States)

    Barnes, D C; Knudsen, C S; Gosling, M; McKee, M; Whitelock, R G; Arthurs, G I; Ness, M G; Radke, H; Langley-Hobbs, S J


    To compare complication rates and the outcomes of these complications after lateral plate fixation with figure-of-eight tension-band-wire and pin or lag screw fixation for arthrodesis of the calcaneoquartal joint, following non-traumatic disruption of the plantar tarsal ligament in dogs. Data were collected retrospectively from five UK referral centres. Diplomate specialists and their residents performed all procedures. Referring veterinarians were contacted for long-term follow-up. Seventy-four procedures were undertaken in 61 dogs. There were 58 arthrodeses in the lateral plate group (Plate), nine in the pin and tension-band-wire group (Pin), and seven in the lag screw and tension-band wire-group (Screw). Compared to Plate (17%), further surgical intervention was required more frequently following Pin (56%, OR = 3.2) or Screw (43%, OR = 2.5) fixation. Clinical failure of arthrodesis occurred less frequently with Plate (5%) compared with Screw (43%, OR = 8.6) and Pin fixation (22%, OR = 4.4). Cases managed with external coaptation postoperatively were more likely to suffer from postoperative complications (OR = 2.2). Lateral plating was associated with fewer postoperative complications than pin and tension-band-wire fixation for arthrodesis of the calcaneoquartal joint in dogs with non-traumatic disruption of the plantar tarsal ligament.

  17. Isolated olecranon fractures in children affected by osteogenesis imperfecta type I treated with single screw or tension band wiring system: Outcomes and pitfalls in relation to bone mineral density. (United States)

    Persiani, Pietro; Ranaldi, Filippo M; Graci, Jole; De Cristo, Claudia; Zambrano, Anna; D'Eufemia, Patrizia; Martini, Lorena; Villani, Ciro


    The purpose of this study is to compare the results of 2 techniques, tension band wiring (TBW) and fixation with screws, in olecranon fractures in children affected with osteogenesis imperfecta (OI) type I. Between 2010 and 2014, 21 olecranon fractures in 18 children with OI (average age: 12 years old) were treated surgically. Ten patients were treated with the screw fixation and 11 with TBW. A total of 65% of olecranon fractures occurred as a result of a spontaneous avulsion of the olecranon during the contraction of the triceps muscle. The average follow-up was 36 months. Among the children treated with 1 screw, 5 patients needed a surgical revision with TBW due to a mobilization of the screw. In this group, the satisfactory results were 50%. In patients treated with TBW, the satisfactory results were 100% of the cases. The average Z-score, the last one recorded in the patients before the trauma, was -2.53 in patients treated with screw fixation and -2.04 in those treated with TBW. TBW represents the safest surgical treatment for patients suffering from OI type I, as it helps to prevent the rigidity of the elbow through an earlier recovery of the range of motion, and there was no loosening of the implant. In analyzing the average Z-score before any fracture, the fixation with screws has an increased risk of failure in combination with low bone mineral density.

  18. Cyclic long-term loading of a bilateral fixed-angle plate in comparison with tension band wiring with K-wires or cannulated screws in transverse patella fractures. (United States)

    Thelen, Simon; Schneppendahl, Johannes; Baumgärtner, Ralf; Eichler, Christian; Koebke, Jürgen; Betsch, Marcel; Hakimi, Mohssen; Windolf, Joachim; Wild, Michael


    A bilateral fixed-angle plate was biomechanically compared to the two currently preferred methods of osteosynthesis for transverse patella fractures. It was hypothesized that the new angle-stable implant would provide a secure and sustainable fracture fixation, superior to the established standard techniques. Twenty-one identical patellae made of polyurethane foam (Sawbones(®)), osteotomized to create a transverse two-part fracture, were fixed with modified anterior tension wiring, cannulated lag screws with anterior tension wiring or bilateral polyaxial 2.7-mm fixed-angle plates. The testing protocol consisted of 10,000 repetitive cycles using a non-destructive physiological load between 100 and 300 N at a simulated knee flexion of 60°. All 21 Sawbone(®)-patellae sustained repetitive loading up to 10,000 cycles without failing. The anterior tension wire group displayed significant displacement of the fracture gap (0.7 ± 0.2 mm) during cyclic loading, while both lag screws with tension wiring and bilateral fixed-angle plates showed no fracture gap widening at all (p fracture gap over 10,000 tensile cycles in contrast to modified anterior tension wiring, which exhibited significant widening of the gap after initial loading. Results of in vitro testing indicate that bilateral fixed-angle plates provide sustainable fixation stability offering a promising new option in the treatment for transverse patella fractures.

  19. Clinical results of treatment using a modified K-wire tension band versus a cannulated screw tension band in transverse patella fractures: A strobe-compliant retrospective observational study. (United States)

    Tan, Honglue; Dai, Pengyi; Yuan, Yanhao


    It was a retrospective case-control study. The aim of this study was to explore the clinical efficacy and complication of treatment using a modified Kirschner wire tension band (MKTB) or a cannulated screw tension band (CSTB) in transverse patellar fractures.In total, 55 patients with transverse patellar fractures were retrospectively reviewed and divided into 2 groups according to the surgical technique: 29 patients were in the MKTB group and 26 patients in the CSTB group. B[Latin Small Letter o with Caron]stman's clinical grading scale, including range of movement (ROM), pain, ability to work, atrophy of quadriceps femoris, assistance in walking, effusion, giving way, and stair-climbing, was used to evaluate the clinical results. Complications including painful hardware, implant loosening or breakage, and bone nonunion were also assessed.Both groups were evaluated at the final follow-up before removing implant in the MKTB group. The B[Latin Small Letter o with Caron]stman's score of ROM, pain, atrophy of quadriceps femoris, and effusion were all higher in the CSTB group than in the MKTB group (P  0.05). Seventeen patients achieved excellent results, 9 had good results, and 3 reported fair results in the MKTB group; the CSTB group had excellent results in 22 patients and good results in 4 patients, showing a significant difference in the excellent rate between the 2 groups (P = 0.021). Total B[Latin Small Letter o with Caron]stman scores in the MKTB and CSTB groups (26.96 ± 4.47 and 29.42 ± 1.47, respectively) were significantly different (P = 0.01). Total scores in the MKTB group after removing implant were higher than those before removing implant (P = 0.001), and similar to those in the CSTB group (P = 0.224). Eleven patients in the MKTB group reported painful hardware, including 4 cases of implant loosening.CSTB achieves better clinical results than MKTB, meanwhile avoiding the problems of painful hardware and implant loosening

  20. Geometry

    CERN Document Server

    Pedoe, Dan


    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  1. Geometry

    Indian Academy of Sciences (India)

    of geometry he completely changed our way of thinking. Later geometers were to spend entire lifetimes trying ... dimensions up to and including three it is difficult to think of dimensions beyond except abstractly -in one's .... form I. gij ai aj is positive for any collection of numbers. (aI, ... , an). Moreover, the given form can easily ...

  2. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....

  3. In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application. (United States)

    Liebsch, Christian; Zimmermann, Julia; Graf, Nicolas; Schilling, Christoph; Wilke, Hans-Joachim; Kienle, Annette


    Biomechanical in vitro tests analysing screw loosening often include high standard deviations caused by high variabilities in bone mineral density and pedicle geometry, whereas standardized mechanical models made of PU foam often do not integrate anatomical or physiological boundary conditions. The purpose of this study was to develop a most realistic mechanical model for the standardized and reproducible testing of pedicle screws regarding the resistance against screw loosening and the holding force as well as to validate this model by in vitro experiments. The novel mechanical testing model represents all anatomical structures of a human vertebra and is consisting of PU foam to simulate cancellous bone, as well as a novel pedicle model made of short carbon fibre filled epoxy. Six monoaxial cannulated pedicle screws (Ø6.5 × 45mm) were tested using the mechanical testing model as well as human vertebra specimens by applying complex physiological cyclic loading (shear, tension, and bending; 5Hz testing frequency; sinusoidal pulsating forces) in a dynamic materials testing machine with stepwise increasing load after each 50.000 cycles (100.0N shear force + 20.0N per step, 51.0N tension force + 10.2N per step, 4.2Nm bending moment + 0.8Nm per step) until screw loosening was detected. The pedicle screw head was fixed on a firmly clamped rod while the load was applied in the vertebral body. For the in vitro experiments, six human lumbar vertebrae (L1-3, BMD 75.4 ± 4.0mg/cc HA, pedicle width 9.8 ± 0.6mm) were tested after implanting pedicle screws under X-ray control. Relative motions of pedicle screw, specimen fixture, and rod fixture were detected using an optical motion tracking system. Translational motions of the mechanical testing model experiments in the point of load introduction (0.9-2.2mm at 240N shear force) were reproducible within the variation range of the in vitro experiments (0.6-3.5mm at 240N shear force). Screw loosening occurred continuously in

  4. Designing screws for polymer compounding in twin-screw extruders = (United States)

    Teixeira, Cristina Ferreira

    Considering its modular construction, co-rotating twin screw extruders can be easily adapted to work with polymeric systems with more stringent specifications. However, their geometrical flexibility makes the performance of these machines strongly dependent on the screw configuration. Therefore, the definition of the adequate screw geometry to use in a specific polymer system is an important process requirement which is currently achieved empirically or using a trial-and-error basis. The aim of this work is to develop an automatic optimization methodology able to define the best screw geometry/configuration to use in a specific compounding/reactive extrusion operation, reducing both cost and time. This constitutes an optimization problem where a set of different screw elements are to be sequentially positioned along the screw in order to maximize the extruder performance. For that, a global modeling program considering the most important physical, thermal and rheological phenomena developing along the axis of an intermeshing co-rotating twin screw extruder was initially developed. The accuracy and sensitivity of the software to changes in the input parameters was tested for different operating conditions and screw configurations using a laboratorial Leistritz LSM 30.34 extruder. Then, this modeling software was integrated into an optimization methodology in order to be possible solving the Twin Screw Configuration Problem. Multi-objective versions of local search algorithms (Two Phase Local Search and Pareto Local Search) and Ant Colony Optimization algorithms were implemented and adapted to deal with the combinatorial, discrete and multi-objective nature of the problem. Their performance was studied making use of the hypervolume indicator and Empirical Attainment Function, and compared with the Reduced Pareto Search Genetic Algorithm (RPSGA) previously developed and applied to this problem. In order to improve the quality of the results and/or to decrease the

  5. Análisis de tensiones en árboles de geometría compleja. // Stress analysis in complex geometry shafts.

    Directory of Open Access Journals (Sweden)

    M. Sánchez Noa


    Full Text Available En el presente trabajo se exponen los resultados del análisis realizado en árboles de compleja geometría pertenecientes a unmultiplicador planetario tipo 2KH-A destinado a emplearse en aerogeneradores de electricidad. En el mismo, se presentanlos modelos físico-matemáticos de dichos árboles para ser analizados mediante el método de los elementos finitos,considerando el estado de carga que surge al funcionar el mecanismo y contemplando el efecto adicional de las cargasgiroscópicas. Se muestran las zonas de conflicto de tensiones y se analizan propuestas de diseño que permitan, garantizandola resistencia y rigidez, realizar variaciones dimensionales y mejorar la compacidad de los elementos, disminuyendo a lavez el peso de los mismos.Palabras claves: Elementos finitos, multiplicador planetario, diseño de árbol, resistencia mecánica.____________________________________________________________________________AbstractThe results of the analysis in shafts of complex geometry, belonging to a planetary multiplier type 2KH-AM to be usedin wind generators is presented. The physical-mathematical models of these shafts are analyzed by means of finiteelement method. Can increasing of load when the mechanism is working and contemplating the additional effect of thegyroscopic loads. The tension distribution are shown and design proposals are analyzed to improve the resistance, rigidityand to improve the compactness of the elements. This analysis constitutes an application of the the finite element methodof which reference doesn't existKey Words: Finite elements method, planetary gear unit, shaft design, mechanical strength.

  6. (TAD) in Dynamic Hip Screw (DHS) Fixation of Femoral Fractures

    African Journals Online (AJOL)

    Femoral neck fractures commonly occur in elderly osteoporotic females, and include extra-capsular fractures (intertrochanteric and pertrochanteric), and usually treated with the Dynamic Hip Screw (DHS). This is based on tension band principle which allows the screw to slide within the barrel to enable compression of the ...

  7. Biomechanical analysis of an interference screw and a novel twist lock screw design for bone graft fixation. (United States)

    Asnis, S; Mullen, J; Asnis, P D; Sgaglione, N; LaPorta, T; Grande, D A; Chahine, N O


    Malpositioning of an anterior cruciate ligament graft during reconstruction can occur during screw fixation. The purpose of this study is to compare the fixation biomechanics of a conventional interference screw with a novel Twist Lock Screw, a rectangular shaped locking screw that is designed to address limitations of graft positioning and tensioning. Synthetic bone (10, 15, 20lb per cubic foot) were used simulating soft, moderate, and dense cancellous bone. Screw push-out and graft push-out tests were performed using conventional and twist lock screws. Maximum load and torque of insertion were measured. Max load measured in screw push out with twist lock screw was 64%, 60%, 57% of that measured with conventional screw in soft, moderate and dense material, respectively. Twist lock max load was 78% and 82% of that with conventional screw in soft and moderate densities. In the highest bone density, max loads were comparable in the two systems. Torque of insertion with twist lock was significantly lower than with conventional interference screw. Based on geometric consideration, the twist lock screw is expected to have 35% the holding power of a cylindrical screw. Yet, results indicate that holding power was greater than theoretical consideration, possibly due to lower friction and lower preloaded force. During graft push out in the densest material, comparable max loads were achieved with both systems, suggesting that fixation of higher density bone, which is observed in young athletes that require reconstruction, can be achieved with the twist lock screw. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In-vitro comparison of biomechanical efficiency of three cannulated screws for arthrodesis of the hindfoot. (United States)

    Huber, Wolfgang O; Reihsner, Roland; Trieb, Klemens; Wanivenhaus, Axel Hugo; Beer, Rudolf


    Sufficient inter-fragmentary compression is helpful to achieve successful bony fusion in hindfoot arthrodesis using internal fixation by screws. Beside bone quality, the design of a screw influences inter-fragmentary compression. Compressive force is achievable for any kind of screw system; however, the primary deformation of the bone is different for the different screw systems. The work necessary to achieve compressive force for primary stability was measured for different screw systems and compared to an AO screw with washer. The compressive force was determined as a function of screw advancement for 3 different cannulated screw types (7.3-mm AO screw with and without washer, the 6.5-mm Herbert screw and the 6.5-mm Ideal Compression Screw (I.CO.S) using different synthetic bone density (0.16, 0.24, 0.48 g/ccm). Compressive force was measured indirectly, via screw tension measurement with strain gauges. We calculated the work to reach a limit of 60 N and the corresponding ratios to the value of the golden standard: I.CO.S (35.2%), Herbert (89.0%), AO screw without washer (116%). All screw systems yielded acceptable results but the ICOS did produce greater compression. The essential differences were the primary deformation of the bone before reaching the sufficient compressive force for primary stability.

  9. Discrete element modelling of screw conveyor-mixers

    Directory of Open Access Journals (Sweden)

    Jovanović Aca


    Full Text Available Screw conveyors are used extensively in food, plastics, mineral processing, agriculture and processing industries for elevating and/or transporting bulk materials over short to medium distances. Despite their apparent simplicity in design, the transportation action is very complex for design and constructors have tended to rely heavily on empirical performance data. Screw conveyor performance is affected by its operating conditions (such as: the rotational speed of the screw, the inclination of the screw conveyor, and its volumetric fill level. In this paper, horizontal, several single-pitch screw conveyors with some geometry variations in screw blade was investigated for mixing action during transport, using Discrete Element Method (DEM. The influence of geometry modifications on the performance of screw conveyor was examined, different screw designs were compared, and the effects of geometrical variations on mixing performances during transport were explored. During the transport, the particle tumbles down from the top of the helix to the next free surface and that segment of the path was used for auxiliary mixing action. The particle path is dramatically increased with the addition of three complementary helices oriented in the same direction as screw blades (1458.2 mm compared to 397.6 mm in case of single flight screw conveyor Transport route enlarges to 1764.4 mm, when installing helices oriented in the opposite direction from screw blades. By addition of straight line blade to single flight screw conveyor, the longest particle path is being reached: 2061.6 mm [Projekat Ministarstva nauke Republike Srbije, br. TR-31055

  10. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek


    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  11. The Assessment and Validation of Mini-Compact Tension Test Specimen Geometry and Progress in Establishing Technique for Fracture Toughness Master Curves for Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nanstad, Randy K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Assessment and validation of mini-CT specimen geometry has been performed on previously well characterized HSST Plate 13B, an A533B class 1 steel. It was shown that the fracture toughness transition temperature measured by these Mini-CT specimens is within the range of To values that were derived from various large fracture toughness specimens. Moreover, the scatter of the fracture toughness values measured by Mini-CT specimens perfectly follows the Weibull distribution function providing additional proof for validation of this geometry for the Master Curve evaluation of rector pressure vessel steels. Moreover, the International collaborative program has been developed to extend the assessment and validation efforts to irradiated weld metal. The program is underway and involves ORNL, CRIEPI, and EPRI.

  12. Surface Tension (United States)

    Theissen, David B.; Man, Kin F.


    The effect of surface tension is observed inmany everyday situations. For example, a slowly leaking faucet drips because the force surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free.

  13. Tension Headache (United States)

    ... your head Tenderness on your scalp, neck and shoulder muscles Tension headaches are divided into two main categories — ... that monitor and give you feedback on body functions such as muscle tension, heart rate and blood pressure. You then ...

  14. Sacroiliac Screw Fixation

    NARCIS (Netherlands)

    E.W. van den Bosch


    textabstractThe aim of this thesis is to evaluate three major aspects of the use of sacroiliac screws in patients with unstable pelvic ring fractures: the optimal technique for sacroiliac screw fixation, the reliability of peroperative fluoroscopy and the late results. We focused on the questions

  15. Finite element analysis of osteosynthesis screw fixation in the bone stock: an appropriate method for automatic screw modelling. (United States)

    Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer


    The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent

  16. Finite element analysis of osteosynthesis screw fixation in the bone stock: an appropriate method for automatic screw modelling.

    Directory of Open Access Journals (Sweden)

    Jan Wieding

    Full Text Available The use of finite element analysis (FEA has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with

  17. DLC screw preload. Loosening prevention

    Directory of Open Access Journals (Sweden)

    Ivete Aparecida de Mattias Sartori


    Full Text Available The screw loosening is a reason to prosthetic rehabilitation failure. However, the DLC (Diamond-like carbon screw treatment lead thefriction decrease and sliding between the components, which increases the screw preload benefit and decreases the chance of looseningoccurrence. This case shows a clinical indication of the association of the correct preload applied and the DLC screw, which can be considered an optimized protocol to solve screw loosening recidivate of unitary prosthesis in anterior maxillary site.

  18. The fate of syndesmotic screws. (United States)

    Stuart, Kyle; Panchbhavi, Vinod K


    A standard protocol for the management of syndesmosis injuries has yet to be established. Debate persists regarding number of screws, screw diameter, number of cortices purchased, and the need for and timing of screw removal. The purpose of this study was to identify factors related to screw fixation that may lead to the ultimate failure of syndesmosis fixation defined as a loss of reduction of the syndesmosis, screw breakage, screw loosening, or widening of the medial clear space. A retrospective assessment of 137 consecutive patients who underwent open reduction and internal fixation of the distal tibiofibular joint at a single institution from 2004 to 2008 was performed. Clinical and radiographic data were recorded regarding problems with questionable clinical significance (number of syndesmotic screws, number of cortices, screw diameter, screw location, hardware failure) and loss of syndesmosis reduction. A series of Fisher's exact tests were used to evaluate outcomes. A p value of 0.05 defined as significant. The 3.5-mm diameter screws were statistically more likely to break than 4- or 4.5-mm screws, but there was no difference in frequency of loss of reduction of the syndesmosis as a function of screw diameter; however, a power study revealed an n value of 1656 would be required to show a significant difference. Screw diameter may have an effect on screw breakage but clinical significance of hardware failure itself is unknown including whether or not it results in a loss of reduction or failure of syndesmotic fixation.

  19. Analysis of Modeling Parameters on Threaded Screws.

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  20. NUT SCREW MECHANISMS (United States)

    Glass, J.A.F.


    A reactor control mechanism is described wherein the control is achieved by the partial or total withdrawal of the fissile material which is in the form of a fuel rod. The fuel rod is designed to be raised and lowered from the reactor core area by means of two concentric ball nut and screw assemblies that may telescope one within the other. These screw mechanisms are connected through a magnetic clutch to a speed reduction gear and an accurately controllable prime motive source. With the clutch energized, the fuel rod may be moved into the reactor core area, and fine adjustments may be made through the reduction gearing. However, in the event of a power failure or an emergency signal, the magnetic clutch will become deenergized, and the fuel rod will drop out of the core area by the force of gravity, thus shutting down the operation of the reactor.


    Directory of Open Access Journals (Sweden)

    Hüdayim BAŞAK


    Full Text Available In this study, a expert system has been developed using Leonardo expert system package programming for screw operation, According to DIN standard norm. The designed program decide the most suitable screw type considering to material, cutting speed, working condition etc. This program also directs to user.

  2. Tension band fixation of medial malleolus fractures. (United States)

    Ostrum, R F; Litsky, A S


    A prospective study on tension band fixation of medial malleolus fractures was performed on 30 consecutive patients with 31 fractures from October 1987 until December 1990. All patients had at least a displaced medial malleolus fracture unreduced by closed methods. The fractures were classified into small, medium and large using a modified Lauge-Hansen classification. There were no nonunions or movements of wires postoperatively and only two patients had subjective complaints with reference to the wires that required hardware removal. There was one 2-mm malreduction and one patient with a wound slough and subsequent osteomyelitis. One fragment had 2 mm of displacement after fixation but went on to union. A biomechanical study was undertaken to compare fixation of the medial malleolus with K wires alone, K wires plus a tension band, and two cancellous screws. The tension band fixation provided the greatest resistance to pronation forces: for times stiffer than the two screws and 62% of the intact specimen. Tension band fixation of the medial malleolus is a biomechanically strong and clinically acceptable method of treatment for displaced medial malleolus fractures. This method of fixation may be especially useful for small fragments and in osteoporotic bone.

  3. Studies on positive conveying in helically channeled single screw extruders

    Directory of Open Access Journals (Sweden)

    L. Pan


    Full Text Available A solids conveying theory called double-flight driving theory was proposed for helically channeled single screw extruders. In the extruder, screw channel rotates against static barrel channel, which behaves as cooperative embedded twin-screws for the positive conveying. They turn as two parallel arc plates, between which an arc-plate solid-plug was assumed. By analyzing the forces on the solid-plug in the barrel channel and screw channel, the boundary conditions when the solid-plug is waived of being cut off on barrel wall, were found to have the capacity of the positive conveying. Experimental data were obtained using a specially designed extruder with a helically channeled barrel in the feeding zone and a pressure-adjustable die. The effects of the barrel channel geometry and friction coefficients on the conveying mechanism were presented and compared with the experimental results. The simulations showed that the positive conveying could be achieved after optimizing extruder designs. Compared with the traditional design with the friction-drag conveying, the throughput is higher while screw torque and energy consumption are decreased. Besides, the design criteria of the barrel channel were also discussed.

  4. Gas flow through the clearances of screw spindle vacuum pumps; Gasspaltstroemungen in Schraubenspindel-Vakuumpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Wenderott, D. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen


    The documentation `Schraubenmaschinen` deals with the subject `screw spindle vacuum pump` for the first time. Therefore, this paper presents the type of maschine `screw spindle vacuum pump`, fixes its limits to the better known screw type compressor and finally classifies it in the crossover of vacuum-technology, characteristic geometry and the numerical simulation. The suggested reflections to choose a proper model of flow are based on the geometry of the screw spindle vacuum pump and fundamentals concerning the vacuum-technology and the state of flow. (orig.) [Deutsch] Die Schriftenreihe `Schraubenmaschinen` behandelt erstmals das Thema `Schraubenspindel-Vakuumpumpe`. Aus diesem Grund stellt der vorliegende Beitrag den Maschinentyp Schraubenspindel-Vakuumpumpe vor, grenzt ihn zur bekannteren Schraubenmaschine ab und ordnet ihn in der Schnittmenge aus Vakuumtechnik, charakteristischer Maschinengeometrie und der Simulation ein. Auf den vakuumtechnischen und stroemungstechnischen Grundlagen sowie geometrischen Betrachtungen basieren die genannten Ueberlegungen zur Auswahl geeigneter Stroemungsmodelle. (orig.)

  5. Algebraic Geometry

    CERN Document Server

    Holme, Audun


    This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.

  6. A screwing device for handling and assembly of micro screws

    DEFF Research Database (Denmark)

    Gegeckaite, Asta; Hansen, Hans Nørgaard; Eriksson, Torbjörn Gerhard


    specific requirements for the torque and displacement regarding precision and repeatability. Micro screws are used as critical mechanical components in micro assemblies such as watches, dials, computers and hearing aids. These miniature parts normally require manual assembly processes under magnification...

  7. The pullout performance of pedicle screws

    CERN Document Server

    Demir, Teyfik


    This brief book systematically discusses all subjects that affect the pullout strength of pedicle screws. These screws are used in spinal surgeries to stabilize the spine. The holding strength of the pedicle screw is vital since loosening of the pedicle screws can cause revision surgeries. Once the pedicle screw is pulled out, it is harder to obtain same stabilization for the fused vertebrae. The book reviews the effect of screw designs, application techniques, cement augmentation, coating of the screw and test conditions on the pullout strength. The studies with finite element analysis were also included.

  8. Biomechanical criterion for selecting cancellous bone screws: arthrodesis in the hindfoot. (United States)

    Reihsner, Roland; Huber, Wolfgang O; Beer, Rudolf


    The aim of the paper was to compare primary biomechanical stability of different arthrodesis screws (7.3 mm AO screw with and without washer, 6.5 mm Herbert screw and 6.5 mm Ideal Compression Screw (I.CO.S)). The work necessary to achieve an adequate compressive force with them was compared to the measurement with the AO screw with washer, because this method is for the time being the most commonly used one and is called the golden standard. Compressive force was measured indirectly, via screw tension measurement, with strain gauges method. From the measurements we calculated the work to reach a limit of 60 N and the ratios corresponding to the value of the golden standard: I.CO.S (35.2%), Herbert (89.0%), AO-screw without washer (116%). The I.CO.S showed superior results. Only in the case of extremely poor bone quality, a clear advantage of I.CO.S could be expected in practice.

  9. Tension permeameter for deep borehole characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sisson, J.B.; Honeycutt, T.K. [EG and G Idaho, Inc., Idaho Falls, ID (United States)


    The permeability of geologic materials is an important variable for estimating the rate of transport of contaminants from waste sites. To date, permeability has been estimated in the laboratory from measurements made on small cores, under hydrologic conditions far removed from those of the field. Available field instruments cannot estimate permeabilities at depth under ambient conditions. The authors have constructed a borehole tension permeameter that is capable of operating at near field conditions and at depths of more than 30 m. The tension permeameter consists of a syringe pump, lightweight packer, semipermeable membrane, and pressure transducer, all controlled by a programmable logic controller. Water is metered at a fixed rate through the membrane while monitoring tension. The permeability is estimated from the steady pumping rate for the membrane geometry used at the measured water tension. The permeameter was used to estimate the permeability of Pancheri sandy loam at tensions of 0 to 150 cm.

  10. Surgeon perception of cancellous screw fixation. (United States)

    Stoesz, Michael J; Gustafson, Peter A; Patel, Bipinchandra V; Jastifer, James R; Chess, Joseph L


    The ability of surgeons to optimize screw insertion torque in nonlocking fixation constructs is important for stability, particularly in osteoporotic and cancellous bone. This study evaluated screw torque applied by surgeons during synthetic cancellous fixation. It evaluated the frequency with which screws were stripped by surgeons, factors associated with screw stripping, and ability of surgeons to recognize it. Ten surgeons assembled screw and plate fixation constructs into 3 densities of synthetic cancellous bone while screw insertion torque and axial force were measured. For each screw, the surgeon recorded a subjective rating as to whether or not the screw had been stripped. Screws were then advanced past stripping, and stripped screws were identified by comparing the insertion torque applied by the surgeon to the measured stripping torque. Surgeons stripped 109 (45.4%) of 240 screws and did not recognize stripping 90.8% of the time when it occurred. The tendency to strip screws was highly variable among individual surgeons (stripping ranging from 16.7% to 83.3%, P perception is not reliable at preventing and detecting screw stripping at clinical torque levels in synthetic cancellous bone. Less aggressive insertion or standardized methods of insertion may improve the stability of nonlocking screw and plate constructs.

  11. Novel free-hand T1 pedicle screw method: Review of 44 consecutive cases

    Directory of Open Access Journals (Sweden)

    Mark A Rivkin


    Full Text Available Summary of Background Data: Multilevel posterior cervical instrumented fusions are becoming more prevalent in current practice. Biomechanical characteristics of the cervicothoracic junction may necessitate extending the construct to upper thoracic segments. However, fixation in upper thoracic spine can be technically demanding owing to transitional anatomy while suboptimal placement facilitates vascular and neurologic complications. Thoracic instrumentation methods include free-hand, fluoroscopic guidance, and CT-based image guidance. However, fluoroscopy of upper thoracic spine is challenging secondary to vertebral geometry and patient positioning, while image-guided systems present substantial financial commitment and are not readily available at most centers. Additionally, imaging modalities increase radiation exposure to the patient and surgeon while potentially lengthening surgical time. Materials and Methods: Retrospective review of 44 consecutive patients undergoing a cervicothoracic fusion by a single surgeon using the novel free-hand T1 pedicle screw technique between June 2009 and November 2012. A starting point medial and cephalad to classic entry as well as new trajectory were utilized. No imaging modalities were employed during screw insertion. Postoperative CT scans were obtained on day 1. Screw accuracy was independently evaluated according to the Heary classification. Results: In total, 87 pedicle screws placed were at T1. Grade 1 placement occurred in 72 (82.8% screws, Grade 2 in 4 (4.6% screws and Grade 3 in 9 (10.3% screws. All Grade 2 and 3 breaches were <2 mm except one Grade 3 screw breaching 2-4 mm laterally. Only two screws (2.3% were noted to be Grade 4, both breaching medially by less than 2 mm. No new neurological deficits or returns to operating room took place postoperatively. Conclusions: This modification of the traditional starting point and trajectory at T1 is safe and effective. It attenuates additional bone

  12. Differential geometry

    CERN Document Server

    Guggenheimer, Heinrich W


    This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a

  13. Molecular geometry

    CERN Document Server

    Rodger, Alison


    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  14. Internally geared screw machines with ported end plates (United States)

    Read, M. G.; Smith, I. K.; Stosic, N.


    It is possible to design cylindrical helical gearing profiles such that an externally lobed inner gear rotates inside an internally lobed outer gear while maintaining continuous lines of contact between the gears. The continuous contact between the inner and outer rotors (analogous to the main and gate rotors in a conventional screw machine) creates a series of separate working chambers. In this type of machine the rotors have parallel axes of rotation, and if both rotors are free to rotate about their own axes, these axes can be fixed in space. The use of ported end plates is proposed to control the period during which fluid is allowed to enter or leave the working chambers of the internally geared screw machine. As with conventional screw machines, these internally geared rotors can then be used to achieve compression or expansion of a trapped mass of fluid, and the machine geometry can be designed in order to optimise performance for particular applications. This paper describes the geometrical analysis of some simple rotor profiles and explores the effect on rotor torques for particular applications of this novel screw configuration.

  15. Tolerance Geometry. (United States)

    Roberts, Fred S.

    The author cites work on visual perception which indicates that in order to study perception it is necessary to replace such classical geometrical notions as betweeness, straightness, perpendicularity, and parallelism with more general concepts. The term tolerance geometry is used for any geometry when primitive notions are obtained from the…

  16. comparative effects of screw press for honey

    African Journals Online (AJOL)


    . Different local methods of honey extraction, their strengths and weaknesses were discussed. A screw press was fabricated to facilitate honey extraction. The fabricated screw honey extractor is good alternative to the existing ...

  17. Effect of surface coating on the screw loosening of dental abutment screws (United States)

    Park, Chan-Ik; Choe, Han-Cheol; Chung, Chae-Heon


    Regardless of the type of performed restoration, in most cases, a screw connection is employed between the abutment and implant. For this reason, implant screw loosening has remained a problem in restorative practices. The purpose of this study was to compare the surface of coated/plated screws with titanium and gold alloy screws and to evaluate the physical properties of coated/plated material after scratch tests via FE-SEM (field emission scanning electron microscopy) investigation. GoldTite, titanium screws provided by 3i (Implant Innovation, USA) and TorqTite, titanium screws by Steri-Oss (Nobel Biocare, USA) and gold screws and titanium screws by AVANA (Osstem Implant, Korea) were selected for this study. The surface, crest, and root of the abutment screws were observed by FE-SEM. A micro-diamond needle was also prepared for the scratch test. Each abutment screw was fixed, and a scratch on the surface of the head region was made at constant load and thereafter the fine trace was observed with FE-SEM. The surface of GoldTite was smoother than that of other screws and it also had abundant ductility and malleability compared with titanium and gold screws. The scratch tests also revealed that teflon particles were exfoliated easily in the screw coated with teflon. The titanium screw had rough surface and low ductility. The clinical use of gold-plated screws is recommended as a means of preventing screw loosening.

  18. Architectural geometry

    KAUST Repository

    Pottmann, Helmut


    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  19. Arthroscopic Screw Removal After Arthroscopic Latarjet Procedure


    Lafosse, Thibault; Amsallem, Lior; Delgrande, Damien; Gerometta, Antoine; Lafosse, Laurent


    Arthroscopic Latarjet procedure is an efficient and reliable approach for the treatment of shoulder instability. Nevertheless, the screws fixing the bone block may sometimes be responsible for pain and uncomfortable snapping in the shoulder that is triggered during active external rotation. We propose an all-arthroscopic technique for screw removal in cases of complications involving the screws from a Latarjet procedure. The all-arthroscopic screw removal is reliable and efficient. This proce...

  20. Projective geometry

    CERN Document Server

    Faulkner, T Ewan


    This text explores the methods of the projective geometry of the plane. Some knowledge of the elements of metrical and analytical geometry is assumed; a rigorous first chapter serves to prepare readers. Following an introduction to the methods of the symbolic notation, the text advances to a consideration of the theory of one-to-one correspondence. It derives the projective properties of the conic and discusses the representation of these properties by the general equation of the second degree. A study of the relationship between Euclidean and projective geometry concludes the presentation. Nu

  1. Differential geometry

    CERN Document Server

    Graustein, William C


    This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of three dimensions. Written by an outstanding teacher and mathematician, it explains the material in the most effective way, using vector notation and technique. It also provides an introduction to the study of Riemannian geometry.Suitable for advanced undergraduates and graduate students, the text presupposes a knowledge of calculus. The first nine chapters focus on the theory, treating the basic properties of curves and surfaces, the mapping of

  2. Beautiful geometry

    CERN Document Server

    Maor, Eli


    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  3. Analysis of Eyring-Powell Fluid in Helical Screw Rheometer

    Directory of Open Access Journals (Sweden)

    A. M. Siddiqui


    Full Text Available This paper aims to study the flow of an incompressible, isothermal Eyring-Powell fluid in a helical screw rheometer. The complicated geometry of the helical screw rheometer is simplified by “unwrapping or flattening” the channel, lands, and the outside rotating barrel, assuming the width of the channel is larger as compared to the depth. The developed second order nonlinear differential equations are solved by using Adomian decomposition method. Analytical expressions are obtained for the velocity profiles, shear stresses, shear at wall, force exerted on fluid, volume flow rates, and average velocity. The effect of non-Newtonian parameters, pressure gradients, and flight angle on the velocity profiles is noticed with the help of graphical representation. The observation confirmed the vital role of involved parameters during the extrusion process.

  4. Analysis of Eyring-Powell fluid in helical screw rheometer. (United States)

    Siddiqui, A M; Haroon, T; Zeb, M


    This paper aims to study the flow of an incompressible, isothermal Eyring-Powell fluid in a helical screw rheometer. The complicated geometry of the helical screw rheometer is simplified by "unwrapping or flattening" the channel, lands, and the outside rotating barrel, assuming the width of the channel is larger as compared to the depth. The developed second order nonlinear differential equations are solved by using Adomian decomposition method. Analytical expressions are obtained for the velocity profiles, shear stresses, shear at wall, force exerted on fluid, volume flow rates, and average velocity. The effect of non-Newtonian parameters, pressure gradients, and flight angle on the velocity profiles is noticed with the help of graphical representation. The observation confirmed the vital role of involved parameters during the extrusion process.

  5. Using Ultrasound to Prevent Screw Penetration. (United States)

    Balfour, George W


    Ultrasound is a readily available, inexpensive, easy-to-use, and rapid diagnostic tool. Physicians can use ultrasound to identify excessively long screws or screw penetration into joints. This article illustrates ultrasound identification of problem screws. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  6. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz


    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  7. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon


    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  8. System and Method for Tensioning a Robotically Actuated Tendon (United States)

    Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor)


    A tendon tensioning system includes a tendon having a proximal end and a distal end, an actuator, and a motor controller. The actuator may include a drive screw and a motor, and may be coupled with the proximal end of the tendon and configured to apply a tension through the tendon in response to an electrical current. The motor controller may be electrically coupled with the actuator, and configured to provide an electrical current having a first amplitude to the actuator until a stall tension is achieved through the tendon; provide a pulse current to the actuator following the achievement of the stall tension, where the amplitude of the pulse current is greater than the first amplitude, and return the motor to a steady state holding current following the conclusion of the pulse current.

  9. Subtracted geometry (United States)

    Saleem, Zain Hamid

    In this thesis we study a special class of black hole geometries called subtracted geometries. Subtracted geometry black holes are obtained when one omits certain terms from the warp factor of the metric of general charged rotating black holes. The omission of these terms allows one to write the wave equation of the black hole in a completely separable way and one can explicitly see that the wave equation of a massless scalar field in this slightly altered background of a general multi-charged rotating black hole acquires an SL(2, R) x SL(2, R) x SO(3) symmetry. The "subtracted limit" is considered an appropriate limit for studying the internal structure of the non-subtracted black holes because new 'subtracted' black holes have the same horizon area and periodicity of the angular and time coordinates in the near horizon regions as the original black hole geometry it was constructed from. The new geometry is asymptotically conical and is physically similar to that of a black hole in an asymptotically confining box. We use the different nice properties of these geometries to understand various classically and quantum mechanically important features of general charged rotating black holes.

  10. Skin tension related to tension reduction sutures. (United States)

    Hwang, Kun; Kim, Han Joon; Kim, Kyung Yong; Han, Seung Ho; Hwang, Se Jin


    The aim of this study was to compare the skin tension of several fascial/subcutaneous tensile reduction sutures. Six upper limbs and 8 lower limbs of 4 fresh cadavers were used. At the deltoid area (10 cm below the palpable acromion) and lateral thigh (midpoint from the palpable greater trochanter to the lateral border of the patella), and within a 3 × 6-cm fusiform area of skin, subcutaneous tissue defects were created. At the midpoint of the defect, a no. 5 silk suture was passed through the dermis at a 5-mm margin of the defect, and the defect was approximated. The initial tension to approximate the margins was measured using a tensiometer.The tension needed to approximate skin without any tension reduction suture (S) was 6.5 ± 4.6 N (Newton). The tensions needed to approximate superficial fascia (SF) and deep fascia (DF) were 7.8 ± 3.4 N and 10.3 ± 5.1 N, respectively. The tension needed to approximate the skin after approximating the SF was 4.1 ± 3.4 N. The tension needed to approximate the skin after approximating the DF was 4.9 ± 4.0 N. The tension reduction effect of approximating the SF was 38.8 ± 16.4% (2.4 ± 1.5 N, P = 0.000 [ANOVA, Scheffé]). The tension reduction effect of approximating the DF was 25.2% ± 21.9% (1.5 ± 1.4 N, P = 0.001 [ANOVA, Scheffé]). The reason for this is thought to be that the SF is located closely to the skin unlike the DF. The results of this study might be a basis for tension reduction sutures.

  11. Demonstration of Surface Tension. (United States)

    Rosenthal, Andrew J.


    Surface tension is a fundamental obstacle in the spontaneous formation of bubbles, droplets, and crystal nuclei in liquids. Describes a simple overhead projector demonstration that illustrates the power of surface tension that can prevent so many industrial processes. (ASK)

  12. Metallurgical examination of gun barrel screws

    Energy Technology Data Exchange (ETDEWEB)

    Bird, E.L.; Clift, T.L.


    The examination was conducted to determine the extent of degradation that had occurred after a series of firings; these screws prevent live rounds of ammunition from being loaded into the firing chamber. One concern is that if the screw tip fails and a live round is accidentally loaded into the chamber, a live round could be fired. Another concern is that if the blunt end of the screw begins to degrade by cracking, pieces could become small projectiles during firing. All screws used in firing 100 rounds or more exhibited some degree degradation, which progressively worsened as the number of rounds fired increased. (SEM, metallography, x-ray analysis, and microhardness were used.) Presence of cracks in these screws after 100 fired rounds is a serious concern that warrants the discontinued use of these screws. The screw could be improved by selecting an alloy more resistant to thermal and chemical degradation.

  13. Analytic geometry

    CERN Document Server

    Burdette, A C


    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  14. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B


    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  15. Architectural geometry

    NARCIS (Netherlands)

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, A.; Wallner, Johannes


    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural

  16. Geometry VI

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Geometry VI - Space-the Final Frontier. Kapil H Paranjape. Series Article Volume 1 Issue 8 August 1996 pp 28-33. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  17. Geometry -----------~--------------RESONANCE

    Indian Academy of Sciences (India)

    From a different perspective artists had all along pointed out that parallel lines do meet at the horizon (Figure 1). In fact all pairs of coplanar lines meet and parallel lines .... A more advanced treatment can be found in this book. D Hilbert and S Cohn-Vossen. Geometry and the Imagination. Chelsea, NY,. USA. 1952. A difficult ...

  18. A CFD study of Screw Compressor Motor Cooling Analysis (United States)

    Branch, S.


    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  19. Fatigue Performance of Cortical Bone Trajectory Screw Compared With Standard Trajectory Pedicle Screw. (United States)

    Akpolat, Yusuf Tahiri; İnceoğlu, Serkan; Kinne, Nolan; Hunt, Devon; Cheng, Wayne K


    Cadaveric biomechanical study. To determine fatigue behavior of cortical bone trajectory (CBT) pedicle screws. Cortical bone trajectory screws have been becoming popular in spine surgery; however, the long-term fatigue behavior of the new CBT screws remains understudied and limitations not well defined. Twelve vertebrae from six cadaveric lumbar spines were obtained. After bone mineral density (BMD) measurements, each vertebral body was instrumented with screws from each group, that is, CBT (4.5 × 25 mm) or standard pedicle screw (6.5 × 55 mm). A load (± 4 Nm sagittal bending) was applied under displacement control at 1 Hz. Each construct was loaded for 100 cycles or until 6° of loosening was observed. After fatigue testing, the screws were pulled out axially at 5 mm/min. The standard pedicle screw showed better resistance against 100 cycle loading compared with the CBT screws (P standard pedicle screw testing usually required more than 100 cycles of loading to achieve the critical loosening (3592 ± 4564 cycles), whereas the CBT screw never exceeded 100 cycles (84 ± 24 cycles) (P = 0.002). Increased BMD was significantly associated with a higher number of cycles and less loosening. The standard pedicle screw group had a higher postfatigue pullout load than the CBT screw group (P = 0.001, 776 ± 370 N and 302 ± 232 N, respectively). The standard pedicle screw had a better fatigue performance compared with the CBT screw in vertebra with compromised bone quality. The proper insertion of the CBT screw might be prevented by the laminar anatomy depending on the screw head design. The CBT screw damaged the bone along its shaft by rotating around a fulcrum, located at either the pars, pedicle isthmus, or the junction of the pedicle and superior endplate, contingent upon the strength of the bone.

  20. [In vivo studies of screw-bone contact of drill-free screws and conventional self-tapping screws]. (United States)

    Heidemann, W; Terheyden, H; Gerlach, K L


    Screw-bone contact (SBC) and bone remodeling of titanium drill-free screws or self-tapping screws should be compared. Each 10 titanium self-tapping miniscrews or microscrews, and each 10 titanium drill-free miniscrews or microscrews were inserted into the anterior wall of the frontal sinus of 5 Göttingen minipigs. Intraperitoneal injections of fluochromes (Xylenol, Calcein, Alizarincomplexon and Tetrazyklin) were performed between the 2nd and 9th postoperative week. The pigs were sacrificed after 6 months, the screw-bone blocks were resected and microradiographic, histologic and fluorescence microscopic examinations were carried out. In drill-free screws mean SBC was 88.4 (miniscrews) or 93.8% (microscrews). In self-tapping miniscrews mean SBC was 54.9, in microscrews 81%; the differences were significant in statistical analysis (t-test: p ratio of residual versus newly formed bone) was measured. Significantly more of the residual bone was found in the region of the screw threads of drill-free screws (miniscrews: mean 71.8, microscrews: mean 67.9%) than in the region of screw threads of self-tapping screws (miniscrews: mean 33.1, microscrews: mean 42.4%; t-test: p midface.

  1. Riemannian geometry

    CERN Document Server

    Petersen, Peter


    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  2. Geometrie coniugate

    Directory of Open Access Journals (Sweden)

    Leonardo Paris


    Full Text Available Lo studio degli ingranaggi si basa sulle geometrie coniugate in cui due curve o due superfici si mantengono costantemente in contatto pur se in movimento reciproco. La teoria geometrica degli ingranaggi fino alla fine del XIX secolo era uno dei molteplici rami nelle applicazioni della Geometria Descrittiva. Lo studio si basa sulla conoscenza delle principali proprietà delle curve piane e gobbe e delle loro derivate. La specificità del tema è che queste geometrie nel momento in cui si devono relazionare con le loro coniugate, devono rispettare dei vincoli che altrimenti non avrebbero. Si vuole evidenziare attraverso casi concreti il ruolo della geometria descrittiva nel passaggio dal teorico al pratico riproponendo in chiave informatica, temi e procedure di indagine spesso passati in secondo piano se non addirittura dimenticati.

  3. Biomechanical Analysis of Latarjet Screw Fixation: Comparison of Screw Types and Fixation Methods. (United States)

    Shin, Jason J; Hamamoto, Jason T; Leroux, Timothy S; Saccomanno, Maristella F; Jain, Akshay; Khair, Mahmoud M; Mellano, Christen R; Shewman, Elizabeth F; Nicholson, Gregory P; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N


    To compare the initial fixation stability, failure strength, and mode of failure of 5 different screw types and fixation methods commonly used for the classic Latarjet procedure. Thirty-five fresh-frozen cadaveric shoulder specimens were allocated into 5 groups. A 25% anteroinferior glenoid defect was created, and a classic Latarjet coracoid transfer procedure was performed. All grafts were fixed with 2 screws, differing by screw type and/or fixation method. The groups included partially threaded solid 4.0-mm cancellous screws with bicortical fixation, partially threaded solid 4.0-mm cancellous screws with unicortical fixation, fully threaded solid 3.5-mm cortical screws with bicortical fixation, partially threaded cannulated 4.0-mm cancellous screws with bicortical fixation, and partially threaded cannulated 4.0-mm captured screws with bicortical fixation. All screws were stainless steel. Outcomes included cyclic creep and secant stiffness during cyclic loading, as well as load and work to failure during the failure test. Intergroup comparisons were made by a 1-way analysis of variance. There were no significant differences among different screw types or fixation methods in cyclic creep or secant stiffness after cyclic loading or in load to failure or work to failure during the failure test. Post-failure radiographs showed evidence of screw bending in only 1 specimen that underwent the Latarjet procedure with partially threaded solid cancellous screws with bicortical fixation. The mode of failure for all specimens analyzed was screw cutout. In this biomechanical study, screw type and fixation method did not significantly influence biomechanical performance in a classic Latarjet procedure. When performing this procedure, surgeons may continue to select the screw type and method of fixation (unicortical or bicortical) based on preference; however, further studies are required to determine the optimal method of treatment. Surgeons may choose the screw type and

  4. Rapid maxillary expansion screws on the test bench--a pilot study. (United States)

    Muchitsch, Alfred Peter; Wendl, B; Winsauer, H; Pichelmayer, M; Payer, M


    In order to apply high, short-term forces during rapid maxillary expansion (RME) to the sutures of the maxilla with minimum loss of force and without causing unwanted side-effects (dentoalveolar tipping, etc.), the appliance should be as rigid as possible. The retention arms of the RME screws, representing a particularly vulnerable and stressed weak point of RME appliances, were the focus of this laboratory technical study. Retention arms of 16 types of RME screws comprising four arms and one with eight arms were examined using a three-point bending test. According to their ability to absorb the applied bending loads, the screws were classified in product groups from 1 (highest) to 6 (lowest). Fifteen of the tested retention arms (stainless steel), despite having the same diameter (1.48-1.49 mm), differed up to 69.81 per cent between the highest (288.0 N) and lowest (169.6 N) maximum force parameters and up to 66.40 per cent between the highest (3325.9 N/mm(2)) and lowest (1998.7 N/mm(2)) maximum bending stress parameters. Due to optimum formability, though reduced rigidity, a titanium screw for nickel-sensitive patients (group 6) displayed the lowest force and bending tension values. The stainless steel double arms of the eight-arm screw device welded on both ends displayed the highest force data. The mean ductilities of the groups with the most and least rigid single steel arms differed by 22.77 per cent. Statistical analysis using the Pearson correlation coefficient revealed a significant indirect correlation between ductility and both maximum force (r = -0.780, P < 0.001) and maximum bending stress (r = -0.778, P < 0.001). The SUPERscrews, the Tiger Dental four-arm screw (group 1), and the eight-arm screw displayed the highest capacity to absorb an applied bending load. The screws in groups 3-6 appear acceptable for RME during the pre-pubertal period, whereas in the pubertal and post-pubertal period, groups 1 and 2 are sufficient. In early adulthood only the

  5. Permanent tensions in organization. (United States)

    Jansson, Noora


    The purpose of this paper is to investigate the relationship between permanent tensions and organizational change. This study used paradox theory and a case study. The case organization is a public university hospital in Finland involving several stakeholders. The analysis suggests that the relationship between permanent tensions and organizational change is a paradox that is part of organizational reality. As an organization learns to live with its permanent tensions, the renewal paradox settles into equilibrium. When tensions are provoked, the paradox is disturbed until it finds a new balance. This flexible nature of the paradox is the force that keeps the different stakeholders simultaneously empowered to maintain their unique missions and cohesive in order to benefit from the larger synergy. This research suggests that identification and evaluation of each permanent tension within an organization is important when executing organizational change. The fact that certain tensions are permanent and cannot be solved may have an influence on how planned change initiatives are executed. The results show that permanent tensions may be harnessed for the benefit of an organizational change. This research demonstrates originality by offering an alternative view of tensions, a view which emphasizes not only their permanent and plural nature but their importance for enabling the organization to change at its own, non-disruptive pace. The research also proposes a new concept, the "renewal paradox", to enhance understanding of the relationship between permanent tensions and organizational change.

  6. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    Directory of Open Access Journals (Sweden)

    Bo Kyun Sim


    Full Text Available The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  7. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System. (United States)

    Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho


    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  8. [Fracture of implant abutment screws and removal of a remaining screw piece

    NARCIS (Netherlands)

    Broeke, S.M. van den; Baat, C. de


    Fracture of the implant abutment screws is a complication which can render an implant useless. The prevalence of abutment screw fracture does not exceed 2.5% after 10 years. Causes are loosening of implant abutment screw, too few, too short or too narrow implants, implants not inserted perpendicular

  9. Analysis of the osseous/metal interface of drill free screws and self-tapping screws. (United States)

    Heidemann, W; Terheyden, H; Gerlach, K L


    A comparison of metal/osseous interface and bone remodelling after insertion of different types of titanium bone screws in vivo. Samples of five of each of the following bone screw types were inserted into the anterior wall of the frontal sinus of five Göttingen minipigs: self-tapping micro- (1.5mm) and miniscrews (2.0 mm) or drill free micro- (1.5 mm) and miniscrews (2.0 mm) (Martin Medizintechnik, Tuttlingen, Germany). Screw length was 7mm. Sequential intraperitoneal injections of fluorochromes were performed between the second and ninth postoperative week. After 6 months the pigs were sacrificed, the screw-bone-blocks resected, and microradiographic, histological and fluorescence microscopical examinations were carried out. Using drill free screws, mean screw/bone contact was 88.4% (miniscrews), or 93.8% (microscrews). With self-tapping miniscrews it was 54.9%, but in microscrews 81%; the differences were statistically significant (t-test: pratio of residual vs. newly formed bone) was measured. Significantly more of the residual bone was found in the region of the screw threads using drill free screws (miniscrews: mean 71.8%, microscrews: mean 67.9%) than in the region of screw threads with self-tapping screws (miniscrews: mean 33.1%, microscrews: mean 42.4%). The present data support the view that screw/bone contact with drill free screws was superior to that of self-tapping screws; the greater amount of original bone in the threads of drill free screws demonstrated that the insertion of drill free screws did not cause harm to the surrounding bone. Both results are important for osteosynthesis in regions where thin cortical bone is present, such as the central midface.

  10. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G


    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  11. Tensions in Distributed Leadership (United States)

    Ho, Jeanne; Ng, David


    Purpose: This article proposes the utility of using activity theory as an analytical lens to examine the theoretical construct of distributed leadership, specifically to illuminate tensions encountered by leaders and how they resolved these tensions. Research Method: The study adopted the naturalistic inquiry approach of a case study of an…

  12. Spinor Geometry (United States)

    Nicolaidis, A.; Kiosses, V.


    It has been proposed that quantum mechanics and string theory share a common inner syntax, the relational logic of C. S. Peirce. Along this line of thought we consider the relations represented by spinors. Spinor composition leads to the emergence of Minkowski space-time. Inversely, the Minkowski space-time is istantiated by the Weyl spinors, while the merger of two Weyl spinors gives rise to a Dirac spinor. Our analysis is applied also to the string geometry. The string constraints are represented by real spinors, which create a parametrization of the string worldsheet identical to the Enneper-Weierstass representation of minimal surfaces. Further, a spinorial study of the AdS3 space-time reveals a Hopf fibration AdS3 → AdS2. The conformal symmetry inherent in AdS3 is pointed out. Our work indicates the hidden ties between logic-quantum mechanics-string theory-geometry and vindicates the Wheeler's proposal of pregeometry as a large network of logical propositions.

  13. Simple Technique for Removing Broken Pedicular Screws

    Directory of Open Access Journals (Sweden)

    A Agrawal


    Full Text Available The procedure for removing a broken pedicle screw should ideally be technically easy and minimally invasive, as any damage to the pedicle, during removal of the broken screw, may weaken the pedicle, thus compromising on the success of re-instrumentation. We describe the case of a 32-year old man who had undergone surgery for traumatic third lumbar vertebral body fracture three years prior to current admission and had developed the complication of pedicle screw breakage within the vertebral body. The patient underwent re-exploration and removal of the distal screws. Through a paravertebral incision and muscle separation, the screws and rods were exposed and the implants were removed.

  14. Twin screw subsurface and surface multiphase pumps

    Energy Technology Data Exchange (ETDEWEB)

    Dass, P. [CAN-K GROUP OF COMPANIES, Edmonton, Alberta (Canada)


    A new subsurface twin screw multiphase pump has been developed to replace ESP and other artificial lift technologies. This technology has been under development for a few years, has been field tested and is now going for commercial applications. The subsurface twin screw technology consists of a pair of screws that do not touch and can be run with a top drive or submersible motor; and it carries a lot of benefits. This technology is easy to install and its low slippage makes it highly efficient with heavy oil. In addition twin screw multiphase pumps are capable of handling high viscosity fluids and thus their utilization can save water when used in thermal applications. It also induces savings of chemicals because asphaltenes do not break down easily as well as a reduction in SOR. The subsurface twin screw multiphase pump presented herein is an advanced technology which could be used in thermal applications.

  15. Biomechanical characteristics of bioabsorbable magnesium-based (MgYREZr-alloy) interference screws with different threads. (United States)

    Ezechieli, Marco; Ettinger, Max; König, Carolin; Weizbauer, Andreas; Helmecke, Patrick; Schavan, Robert; Lucas, Arne; Windhagen, Henning; Becher, Christoph


    Degradable magnesium implants have received increasing interest in recent years. In anterior cruciate ligament reconstruction surgery, the well-known osteoconductive effects of biodegradable magnesium alloys may be useful. The aim of this study was to examine whether interference screws made of MgYREZr have comparable biomechanical properties to commonly used biodegradable screws and whether a different thread on the magnesium screw has an influence on the fixation strength. Five magnesium (MgYREZr-alloy) screws were tested per group. Three different groups with variable thread designs (Designs 1, 2, and 3) were produced and compared with the commercially available bioabsorbable Bioacryl rapid polylactic-co-glycolic acid screw Milagro(®). In vitro testing was performed in synthetic bone using artificial ligament fixed by an interference screw. The constructs were pretensioned with a constant load of 60 N for 30 s followed by 500 cycles between 60 N and 250 N at 1 Hz. Construct displacements between the 1st and 20th and the 21st and 500th cycles were recorded. After a 30 s break, a maximum load to failure test was performed at 1 mm/s measuring the maximum pull-out force. The maximum loads to failure of all three types of magnesium interference screws (Design 1: 1,092 ± 133.7 N; Design 2: 1,014 ± 103.3 N; Design 3: 1,001 ± 124 N) were significantly larger than that of the bioabsorbable Milagro(®) interference screw (786.8 ± 62.5 N) (p magnesium screw Design 1. Except for a significant difference between Designs 1 and 2, there were no further significant differences among the four groups in displacement after the 20th cycle. Biomechanical testing showed higher pull-out forces for magnesium compared with a commercial polymer screw. Hence, they suggest better stability and are a potential alternative. The thread geometry does not significantly influence the stability provided by the magnesium implants. This study shows the first promising

  16. Mathematical model of forming screw profiles of compressor machines and pumps (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Varepo, L. G.


    The article presents the results of mathematical modeling of screw surfaces shaping for compressor machines and pumps. The study is based on a method of curve movable trihedron. A mathematical model of a flat gearing - the basis for a screw formation - is proposed. The model is based on geometric interpretation of plane curve trihedron motions and known in a geometric theory of plane mechanisms of the Bobillier construction. A geometric scheme of this construction was expanded due to introduction of evolutes simulating instantaneous motions of curves trihedra in a construction scheme. As a result, the mathematical model was obtained, which is more complete in comparison with the known models of flat gearing, which makes it possible to perform synthesis and analysis of profiled screws geometry. It realizes both direct and inverse problems of screws profiling with simultaneous obtaining the curvature of the desired profiles in absent ones. The proposed model can be used as a basis of automated system development for mutually enveloping surfaces screws shaping for compressor machines and pumps.

  17. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation. (United States)

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie; Toiviainen, Maunu; De Leersnyder, Fien; Vercruysse, Jurgen; Juuti, Mikko; Ketolainen, Jarkko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar


    of kneading discs was found to be critical for achieving a uniform distribution of the granulation liquid, the granulation performance was hampered due to insufficient solid-liquid mixing capacity of the current kneading discs which is essential for wet granulation. Thus, a balance between material throughput and screw speed should be strived for in order to achieve a specific granulation time and solid-liquid mixing for high granulation yield. Additionally, more efforts are needed both in modification of the screw configuration as well as the geometry of the mixing elements to improve the mixing capacity of the twin-screw granulator. The results from the current experimental study improved the understanding regarding the interplay between granulation time and the axial and solid-liquid mixing responsible for the granulation performance in twin-screw wet granulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Finite element analysis of the equivalent stress distribution in Schanz screws during the use of a femoral fracture distractor

    Directory of Open Access Journals (Sweden)

    Vincenzo Giordano

    Full Text Available ABSTRACT To evaluate the mechanical stress and elastic deformation exercised in the thread/shaft transition of Schanz screws in assemblies with different screw anchorage distances in the entrance to the bone cortex, through the distribution and location of tension in the samples. An analysis of 3D finite elements was performed to evaluate the distribution of the equivalent stress (triple stress state in a Schanz screw fixed bicortically and orthogonally to a tubular bone, using two mounting patterns: (1 thread/shaft transition located 20 mm from the anchorage of the Schanz screws in the entrance to the bone cortex and (2 thread/shaft transition located 3 mm from the anchorage of the Schanz screws in entrance to the bone cortex. The simulations were performed maintaining the same direction of loading and the same distance from the force vector in relation to the center of the hypothetical bone. The load applied, its direction, and the distance to the center of the bone were constant during the simulations in order to maintain the moment of flexion equally constant. The present calculations demonstrated linear behavior during the experiment. It was found that the model with a distance of 20 mm between the Schanz screws anchorage in the entrance to the bone cortex and the thread/shaft transition reduces the risk of breakage or fatigue of the material during the application of constant static loads; in this model, the maximum forces observed were higher (350 MPa. The distance between the Schanz screws anchorage at the entrance to the bone cortex and the smooth thread/shaft transition of the screws used in a femoral distractor during acute distraction of a fracture must be farther from the entrance to the bone cortex, allowing greater degree of elastic deformation of the material, lower mechanical stress in the thread/shaft transition, and minimized breakage or fatigue. The suggested distance is 20 mm.

  19. The role of imaging and in situ biomechanical testing in assessing pedicle screw pull-out strength. (United States)

    Myers, B S; Belmont, P J; Richardson, W J; Yu, J R; Harper, K D; Nightingale, R W


    This study determined the predictive ability of quantitative computed tomography, dual energy x-ray absorptiometry, pedicular geometry, and mechanical testing in assessing the strength of pedicle screw fixation in an in vitro mechanical test of intra-pedicular screw fixation in the human cadaveric lumbar spine. To test several hypotheses regarding the relative predictive value of densitometry, pedicular geometry, and mechanical testing in describing pedicle screw pull-out. Previous investigations have suggested that mechanical testing, geometry, and densitometry, determined by quantitative computed tomography or dual energy x-ray absorptiometry, predict the strength of the screw-bone system. However, no study has compared the relative predictive value of these techniques. Forty-nine pedicle screw cyclic-combined flexion-extension moment-axial pull-out tests were performed on human cadaveric lumbar vertebrae. The predictive ability of quantitative computed tomography, dual energy x-ray absorptiometry, insertional torque, in situ stiffness, and pedicular geometry was assessed using multiple regression. Several variables correlated to force at failure. However, multiple regression analysis showed that bone mineral density of the pedicle determined by quantitative computed tomography, insertional torque, and in situ stiffness when used in combination resulted in the strongest prediction of pull-out force. No other measures provided additional predictive ability in the presence of these measures. Pedicle density determined by quantitative computed tomography when used with insertional torque and in situ stiffness provides the strongest predictive ability of screw pull-out. Geometric measures of the pedicle and density determined by dual energy x-ray absorptiometry do not provide additional predictive ability in the presence of these measures.

  20. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T


    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  1. Tension-filled Governance?

    DEFF Research Database (Denmark)

    Celik, Tim Holst

    on the statesituated tension-filled functional relationship between legitimation and accumulation, the study both historically and theoretically reworks this approach and reapplies it for the post-1970s/1990s governance period. It asks whether and to what extent governance has served as a distinctive post- 1970s/1990s...... state-facilitated way of bridging/altering the tension-filled relationship between legitimation and fiscal accumulation in Western European liberal-capitalist democratic polities....

  2. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T


    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  3. Screw-released roller brake (United States)

    Vranish, John M. (Inventor)


    A screw-released roller brake including an input drive assembly, an output drive assembly, a plurality of locking sprags, a mechanical tripper nut for unlocking the sprags, and a casing therefor. The sprags consist of three dimensional (3-D) sprag members having pairs of contact surface regions which engage respective pairs of contact surface regions included in angular grooves or slots formed in the casing and the output drive assembly. The sprags operate to lock the output drive assembly to the casing to prevent rotation thereof in an idle mode of operation. In a drive mode of operation, the tripper is either self actuated or motor driven and is translated linearly up and down against a spline and at the limit of its travel rotates the sprags which unlock while coupling the input drive assembly to the output drive assembly so as to impart a turning motion thereto in either a clockwise or counterclockwise direction.

  4. Recognition of Kinematic Joints of 3D Assembly Models Based on Reciprocal Screw Theory


    Tao Xiong; Liping Chen; Jianwan Ding; Yizhong Wu; Wenjie Hou


    Reciprocal screw theory is used to recognize the kinematic joints of assemblies restricted by arbitrary combinations of geometry constraints. Kinematic analysis is common for reaching a satisfactory design. If a machine is large and the incidence of redesign frequent is high, then it becomes imperative to have fast analysis-redesign-reanalysis cycles. This work addresses this problem by providing recognition technology for converting a 3D assembly model into a kinematic joint model, which is ...

  5. Effect of screw position on single cycle to failure in bending and torsion of a locking plate-rod construct in a synthetic feline femoral gap model. (United States)

    Niederhäuser, Simone K; Tepic, Slobodan; Weber, Urs T


    To evaluate the effect of screw position on strength and stiffness of a combination locking plate-rod construct in a synthetic feline femoral gap model. 30 synthetic long-bone models derived from beechwood and balsa wood. 3 constructs (2 locking plate-rod constructs and 1 locking plate construct; 10 specimens/construct) were tested in a diaphyseal bridge plating configuration by use of 4-point bending and torsion. Variables included screw position (near the fracture gap and far from the fracture gap) and application of an intramedullary pin. Constructs were tested to failure in each loading mode to determine strength and stiffness. Failure was defined as plastic deformation of the plate or breakage of the bone model or plate. Strength, yield angle, and stiffness were compared by use of a Wilcoxon test. Placement of screws near the fracture gap did not increase bending or torsional stiffness in the locking plate-rod constructs, assuming the plate was placed on the tension side of the bone. Addition of an intramedullary pin resulted in a significant increase in bending strength of the construct. Screw positioning did not have a significant effect on any torsion variables. Results of this study suggested that, in the investigated plate-rod construct, screw insertion adjacent to the fracture lacked mechanical advantages over screw insertion at the plate ends. For surgeons attempting to minimize soft tissue dissection, the decision to make additional incisions for screw placement should be considered with even more caution.

  6. Extraction of sunflower oil by twin screw extruder: screw configuration and operating condition effects

    Energy Technology Data Exchange (ETDEWEB)

    Kartika, I.A. [FATETA-IPB, Bogor (Indonesia). Department of Agroindustrial Technology; Pontalier, P.Y.; Rigal, L. [Laboratoire de Chimie Agro-Industrielle, UMR 1010 INRA/INP-ENSIACET, Toulouse (France)


    The objective of this study was to investigate the screw configuration allowing oil extraction from sunflower seeds with a twin-screw extruder. Experiments were conducted using a co-rotating twin-screw extruder. Five screw profiles were examined to define the best performance (oil extraction yield, specific mechanical energy and oil quality) by studying the influence of operating conditions, barrel temperature, screw speed and feed rate. Generally, the position and spacing between two reversed screw elements affected oil extraction yield. An increase of oil extraction yield was observed as the reversed screw elements were moved with increased spacing between two elements and with smaller pitch elements. In addition, oil extraction yield increased as barrel temperature, screw speed and feed rate were decreased. Highest oil extraction yield (85%) with best cake meal quality (residual oil content lower than 13%) was obtained under operating conditions of 120 {sup o}C, 75 rpm and 19 kg/h. Furthermore, the operating parameters influenced energy input. A decrease in barrel temperature and feed rate followed by an increase in screw speed increased energy input, particularly specific mechanical energy input. Effect of the operating parameters on oil quality was less important. In all experiments tested, the oil quality was very good. The acid value was below 2 mg of KOH/g of oil and total phosphorus content was low, below 100 mg/kg. (author)

  7. Analysis of Third-Grade Fluid in Helical Screw Rheometer

    Directory of Open Access Journals (Sweden)

    M. Zeb


    Full Text Available The steady flow of an incompressible, third-grade fluid in helical screw rheometer (HSR is studied by “unwrapping or flattening” the channel, lands, and the outside rotating barrel. The geometry is approximated as a shallow infinite channel, by assuming that the width of the channel is large as compared to the depth. The developed second-order nonlinear coupled differential equations are reduced to single differential equation by using a transformation. Using Adomian decomposition method, analytical expressions are calculated for the the velocity profiles and volume flow rates. The results have been discussed with the help of graphs as well. We observed that the velocity profiles are strongly dependant on non-Newtonian parameter (β~, and with the increase in β~, the velocity profiles increase progressively, which conclude that extrusion process increases with the increase in β~. We also observed that the increase in pressure gradients in x- and z-direction increases the net flow inside the helical screw rheometer, which increases the extrusion process. We noticed that the flow increases as the flight angle increase.

  8. Twin Screw Mixer/Fine Grind Facility (United States)

    Federal Laboratory Consortium — The 40-mm Twin-Screw Mixer/Extruder (TSE) pilot plant is a continuous, remotely operated, flexible facility that can significantly enhance safety and environmental...

  9. Maxillary sinus perforation by orthodontic anchor screws

    National Research Council Canada - National Science Library

    Motoyoshi, Mitsuru; Sanuki-Suzuki, Rina; Uchida, Yasuki; Saiki, Akari; Shimizu, Noriyoshi


    .... The placement torque and screw mobility of each implant were determined using a torque tester and a Periotest device, and variability in these values in relation to sinus perforation was evaluated...

  10. Membrane tension and membrane fusion


    Kozlov, Michael M.; Chernomordik, Leonid V.


    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually la...

  11. Surface Tension of Spacetime (United States)

    Perko, Howard


    Concepts from physical chemistry and more specifically surface tension are introduced to spacetime. Lagrangian equations of motion for membranes of curved spacetime manifold are derived. The equations of motion in spatial directions are dispersion equations and can be rearranged to Schrodinger's equation where Plank's constant is related to membrane elastic modulus. The equation of motion in the time-direction has two immediately recognizable solutions: electromagnetic waves and corpuscles. The corpuscular membrane solution can assume different genus depending on quantized amounts of surface energy. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found that satisfies general relativity. Application of the surface tension to quantum electrodynamics and implications for quantum chromodynamics are discussed. Although much work remains, it is suggested that spacetime surface tension may provide a classical explanation that combines general relativity with field theories in quantum mechanics and atomic particle physics.

  12. Measuring Surface Tension of a Flowing Soap Film (United States)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas


    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  13. The rate of screw misplacement in segmental pedicle screw fixation in adolescent idiopathic scoliosis. (United States)

    Abul-Kasim, Kasim; Ohlin, Acke


    There are no reports in the literature on the influence of learning on the pedicle screw insertion. We studied the effect of learning on the rate of screw misplacement in patients with adolescent idiopathic scoliosis treated with segmental pedicle screw fixation. We retrospectively evaluated low-dose spine computed tomography of 116 consecutive patients (aged 16 (12-24) years, 94 females) who were operated during 4 periods over 2005-2009 (group 1: patients operated autumn 2005-2006; group 2: 2007; group 3: 2008; and group 4: 2009). 5 types of misplacement were recorded: medial cortical perforation, lateral cortical perforation, anterior cortical perforation of the vertebral body, endplate perforation, and perforation of the neural foramen. 2,201 pedicle screws were evaluated, with an average of 19 screws per patient. The rate of screw misplacement for the whole study was 14%. The rate of lateral and medial cortical perforation was 7% and 5%. There was an inverse correlation between the occurrence of misplacement and the patient number, i.e. the date of operation (r = -0.35; p skillfulness of screw insertion improved with reduction of the rate of screw misplacement from 20% in 2005-2006 to 11% in 2009, with a breakpoint at the end of the first study period (34 patients). We found a substantial learning curve; cumulative experience may have contributed to continued reduction of misplacement rate.

  14. Minimizing Pedicle Screw Pullout Risks: A Detailed Biomechanical Analysis of Screw Design and Placement. (United States)

    Bianco, Rohan-Jean; Arnoux, Pierre-Jean; Wagnac, Eric; Mac-Thiong, Jean-Marc; Aubin, Carl-Éric


    Detailed biomechanical analysis of the anchorage performance provided by different pedicle screw designs and placement strategies under pullout loading. To biomechanically characterize the specific effects of surgeon-specific pedicle screw design parameters on anchorage performance using a finite element model. Pedicle screw fixation is commonly used in the treatment of spinal pathologies. However, there is little consensus on the selection of an optimal screw type, size, and insertion trajectory depending on vertebra dimension and shape. Different screw diameters and lengths, threads, and insertion trajectories were computationally tested using a design of experiment approach. A detailed finite element model of an L3 vertebra was created including elastoplastic bone properties and contact interactions with the screws. Loads and boundary conditions were applied to the screws to simulate axial pullout tests. Force-displacement responses and internal stresses were analyzed to determine the specific effects of each parameter. The design of experiment analysis revealed significant effects (Pdesign characteristics and surgical choices, enabling to recommend strategies to improve single pedicle screw performance under axial loading.

  15. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro


    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  16. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler


    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  17. Biomechanical evaluation of magnesium-based resorbable metallic screw system in a bilateral sagittal split ramus osteotomy model using three-dimensional finite element analysis. (United States)

    Lee, Jin-Yong; Lee, Jung-Woo; Pang, Kang-Mi; Kim, Hyoun-Ee; Kim, Soung-Min; Lee, Jong-Ho


    The aim of this study was to evaluate the stress distribution of a magnesium (Mg)-based resorbable screw system in a bilateral sagittal split ramus osteotomy (BSSO) and to compare its biomechanical stability with those of titanium (Ti)-based and polymer (IN)-based systems. A 3-dimensional BSSO model (10-mm advancement and setback) was constructed with Mimics. Bicortical screw fixation using Ti, IN, and Mg screws was performed with 4 different geometries of fixation. With an occlusal load of 132 N on the lower first molar, the von Mises stress (VMS) distribution was calculated using ANSYS. The VMS distribution of Mg was more similar to that of Ti than to that of IN. In all cases, the highest VMS was concentrated on the screw at the most posterior and superior area. Stress was distributed mainly around the screw holes (cancellous bone) and the retromolar area (cortical bone). In the advancement surgery, fixation with 5 Mg screws (5A-Mg, 99.810 MPa at cortical bone) showed biomechanical stability, whereas fixation with the same number of IN screws did not (5A-IN, 109.021 MPa at cortical bone). In the setback surgery, although the maximum VMSs at cortical bone for Mg, IN, and Ti were lower than 108 MPa (yield strength of cortical bone), Mg screws showed more favorable results than IN screws because the maximum VMSs of Mg at cancellous bone were lower than those of IN. The Mg-based resorbable screw system is a promising alternative to the IN-based system. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Tension-type headache

    DEFF Research Database (Denmark)

    Bendtsen, Lars; Jensen, Rigmor


    The substantial societal and individual burdens associated with tension-type headache (TTH) constitute a previously overlooked major public health issue. TTH is prevalent, affecting up to 78% of the general population, and 3% suffer from chronic TTH. Pericranial myofascial nociception probably...

  19. Social and environmental tensions

    DEFF Research Database (Denmark)

    Saito, Moeko; Rutt, Rebecca Leigh; Chhetri, Bir Bahadur Khanal


    to forests. Our case highlights the risk that the mere application of affirmative measures may give rise to difficult social and environmental tensions. Thus, this paper calls for such measures to effectively incorporate local perspectives in their designs and to be reflective, by allowing for regular...

  20. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T


    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta...

  1. Rein tension during canter

    NARCIS (Netherlands)

    Egenvall, Agneta; Eisersiö, Marie; Rhodin, Marie; van Weeren, P.R.|info:eu-repo/dai/nl/074628550; Roepstorff, Lars


    Riders generally use reins as a means for communication with the horse. At present, the signalling pattern is poorly understood. The aim of this study was to illustrate and analyse the rein tension patterns in a number of rider/horse combinations across a variety of exercises in the canter gait. Our

  2. Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump (United States)

    Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole


    Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.

  3. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver


    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy......, line height and distance, and temperature. Focus of the work has been on predicting the equilibrium geometries with FEM simulations using as input measured adhesive wetting angles, different adhesive line distances and height. The studied substrates are glass microscope slides, PEEK and PMMA....... The studied adhesives are DYMAX 9-20318-F, 3070, 9001 version 3.5, and Sylgard 184 PDMS....

  4. Round timber bolted joints reinforced with modified washers and self-drilling screws

    Directory of Open Access Journals (Sweden)

    Antonín Lokaj


    Full Text Available Timber constructions made of round timber components are becoming more and more popular. Given that in the current European standards for the design of timber structures, timber-to-timber joint type is solved only for squared timber. This paper presents results of static tests in tension at an angle of 0°, 90°, 60° to the grain of round timber bolted joints. This research looks into reinforcement with modified washers or self-drilling screws, as these are the least labour-intensive (while economically advantageous. The joints samples were experimentally tested in the laboratory of the Faculty of Civil Engineering VŠB TU Ostrava.

  5. Standard Waste Box Lid Screw Removal Option Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  6. Transpedicular screw fixation in the thoracic and lumbar spine with a novel cannulated polyaxial screw system

    Directory of Open Access Journals (Sweden)

    Lutz Weise


    Full Text Available Lutz Weise, Olaf Suess, Thomas Picht, Theodoros KombosNeurochirurgische Klinik, Charité – Universitätsmedizin Berlin, Berlin, GermanyObjective: Transpedicular screws are commonly and successfully used for posterior fixation in spinal instability, but their insertion remains challenging. Even using navigation techniques, there is a misplacement rate of up to 11%. The aim of this study was to assess the accuracy of a novel pedicle screw system.Methods: Thoracic and lumbar fusions were performed on 67 consecutive patients for tumor, trauma, degenerative disease or infection. A total of 326 pedicular screws were placed using a novel wire-guided, cannulated, polyaxial screw system (XIA Precision®, Stryker. The accuracy of placement was assessed post operatively by CT scan, and the patients were followed-up clinically for a mean of 16 months.Results: The total medio-caudal pedicle wall perforation rate was 9.2% (30/326. In 19 of these 30 cases a cortical breakthrough of less than 2 mm occurred. The misplacement rate (defined as a perforation of 2 mm or more was 3.37% (11/326. Three of these 11 screws needed surgical revision due to neurological symptoms or CSF leakage. There have been no screw breakages or dislocations over the follow up-period.Conclusion: We conclude that the use of this cannulated screw system for the placement of pedicle screws in the thoracic and lumbar spine is accurate and safe. The advantages of this technique include easy handling without a time-consuming set up. Considering the incidence of long-term screw breakage, further investigation with a longer follow-up period is necessary.Keywords: spinal instrumentation, pedicle screws, misplacement, pedicle wall perforation

  7. Surface tension of spherical drops from surface of tension

    Energy Technology Data Exchange (ETDEWEB)

    Homman, A.-A.; Bourasseau, E. [CEA/DAM DIF, F-91297 Arpajon Cedex (France); Stoltz, G. [Université Paris-Est, CERMICS (ENPC), INRIA, F-77455 Marne-la-Vallée (France); Malfreyt, P. [Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, UMR CNRS 6296, ICCF, BP 10448, F-63000 Clermont-Ferrand (France); Strafella, L.; Ghoufi, A., E-mail: [Institut de Physique de Rennes, Université de Rennes 1 UMR 6251 CNRS, 263 avenue Général Leclerc, 35042 Rennes (France)


    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  8. Twin screw wet granulation: Binder delivery. (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D


    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  9. Surface Tension and Capillary Rise (United States)

    Walton, Alan J.


    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  10. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation. (United States)

    Vercruysse, J; Burggraeve, A; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C


    Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Adjustable patella grapple versus cannulated screw and cable technique for treatment of transverse patellar fractures. (United States)

    Yan, Ning; Yang, Anli; Liu, Xiaodong; Cai, Feng; Liu, Liang; Chang, Shimin


    Although the cannulated screw and cable (CSC) tension band technique is an effective method for fixation of transverse patellar fractures, it has shortcomings, such as extensive soft tissue damage, osseous substance damage, and complex manipulation. We conducted a retrospective comparison of the adjustable patella grapple (APG) technique and the CSC tension band technique. We retrospectively reviewed 78 patients with transverse patellar fractures (45 in the APG group and 33 in the CSC group). Follow-up was 18 months. Comparison criteria were operation time, fracture reduction, fracture healing time, the knee injury and osteoarthritis outcome score for knee function, and complications. The APG group showed shorter operation time and equal fracture reduction, fracture healing time, and knee function compared with the CSC group. Eleven patients in the APG group experienced skin irritation generated by implants. There was no complication in the CSC group. The APG technique should be considered as an alternative method for treatment of transverse patellar fractures.

  12. Biomass granular screw feeding: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jianjun; Grace, John R. [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6 T 1Z3 (Canada)


    Successful feeding is critical to biomass utilization processes, but difficult due to the heterogeneity, physical properties and moisture content of the particles. The objectives of the present study were to find the mechanisms of blockage in screw feeding and to determine the effects of particle mean size (0.5-15 mm), size distribution, shape, moisture content (10-60%), density and compressibility on biomass particle feeding at room temperature. Wood pellets, sawdust, hog fuel and wood shavings were tested in a screw feeder/lock hopper system previously employed to feed sawdust into a pilot-scale circulating fluidized-bed gasifier. Experimental results showed that large particles, wide size distributions, large bulk densities and high moisture contents generally led to larger torque requirements for screw feeding. The ''choke section'' and seal plug play important roles in determining the torque requirements. (author)

  13. The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion. (United States)

    Deng, Ting; Jiang, Minghui; Lei, Qing; Cai, Lihong; Chen, Li


    Clinical trial for cervical screw insertion by using individualized 3-dimensional (3D) printing screw insertion templates device. The objective of this study is to evaluate the safety and accuracy of the individualized 3D printing screw insertion template in the cervical spine. Ten patients who underwent posterior cervical fusion surgery with cervical pedicle screws, laminar screws or lateral mass screws between December 2014 and December 2015 were involved in this study. The patients were examined by CT scan before operation. The individualized 3D printing templates were made with photosensitive resin by a 3D printing system to ensure the screw shafts entered the vertebral body without breaking the pedicle or lamina cortex. The templates were sterilized by a plasma sterilizer and used during the operation. The accuracy and the safety of the templates were evaluated by CT scans at the screw insertion levels after operation. The accuracy of this patient-specific template technique was demonstrated. Only one screw axis greatly deviated from the planned track and breached the cortex of the pedicle because the template was split by rough handling and then we inserted the screws under the fluoroscopy. The remaining screws were inserted in the track as preoperative design and the screw axis deviated by less than 2 mm. Vascular or neurologic complications or injuries did not happen. And no infection, broken nails, fracture of bone structure, or screw pullout occurred. This study verified the safety and the accuracy of the individualized 3D printing screw insertion templates in the cervical spine as a kind of intraoperative screw navigation. This individualized 3D printing screw insertion template was user-friendly, moderate cost, and enabled a radiation-free cervical screw insertion.

  14. Notes on noncommutative geometry


    Nikolaev, Igor


    The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. A brief survey of main parts of noncommutative geometry with historical remarks, bibliography and a list of exercises is attached. Our notes are intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts in the field.

  15. [Contralateral preventive screwing in proximal femoral epiphysiolysis]. (United States)

    Ghanem, I; Damsin, J P; Carlioz, H


    The incidence of bilaterality in slipped capital femoral epiphysis (SCFE) ranges, in the literature, from 19 per cent to 80 per cent. The role of contralateral pinning is to prevent late slipping of the femoral epiphysis and its complications. The purpose of this study is to assess the usefulness of routine preventive contralateral pinning in SCFE, and to evaluate its complications. We reviewed retrospectively 74 consecutive patients treated for unilateral SCFE by associated routine preventive contralateral pinning. The age at surgery ranged from 10 years and 6 months to 16 years and 10 months. The osteosynthesis was achieved by a single cannulated holothreaded screw with a cross grooved head, with or without the use of washers. An accidental pin penetration was noted in 4 cases. The epiphyseal position of the screw was satisfactory in 56 cases. The patient was allowed to walk the second or third day after surgery with the use of crutches. All our patients were reviewed after the end of squeletal growth. The follow-up ranged from 2 to 12 years and 8 months. The age at which the patient was last seen ranged from 15 years and 7 months to 27 years. Two major complications were noted: a femoral fracture at the level of the screw penetration in one case, and secondary slipping of the epiphysis after premature removal of the screw in two cases. The removal of the screw was considered to be very difficult in 10 cases. A relative overgrowth of the greater trochanter was noted in 8 cases, and was of no clinical significance. No infection was noted. At last follow-up, the shape of the femoral head and the function of the hip were normal in all cases except for one hip where severe coxa vara developed because of a secondary slip after premature removal of the screw. There is a lot of controversy about the real necessity of routine preventive contralateral osteosynthesis in SCFE. In our experience this surgery succeeded in reducing the incidence of secondary contralateral

  16. A method for removal of broken vertebral screws. (United States)

    McGuire, R A


    A method for removal of a broken vertebral screw is described using an easily obtained 5/64-inch tungsten drill bit and a #1 screw extractor. It allows removal of the screw while retaining pedicle integrity and also minimizes potential nerve root compromise.

  17. Minimally invasive lateral mass screws in the treatment of cervical facet dislocations: technical note. (United States)

    Wang, Michael Y; Prusmack, Chad J; Green, Barth A; Gruen, J Peter; Levi, Allan D O


    The technique of lateral mass screw and rod or plate fixation is a major advancement in the posterior instrumentation of the cervical spine. This technique provides rigid three-dimensional fixation, restores the dorsal tension band, and provides highly effective stabilization in patients with many types of traumatic injuries. Patient 1 was a 32-year-old man who had been in a motor vehicle accident. He presented with right C5 radiculopathy. X-ray findings included 45% anterolisthesis of C4 on C5, bilateral facet disruption, and right unilateral C4-C5 facet fracture and dislocation. The patient was placed in Gardner-Wells tongs, and the fracture was reduced with 25 pounds of traction. Patient 2 was a 56-year-old woman who had been in a motor vehicle accident that resulted in complete quadriplegia. Her initial imaging studies revealed a C3-C4 right unilateral facet fracture with subluxation. She was placed in traction, and her neurological status was reassessed. The findings of her neurological examination revealed improvement: she was found to have Brown-Séquard syndrome. Patient 3 was a 33-year-old man who was involved in a diving accident that resulted in bilaterally jumped facets at C3-C4. The patient was neurologically intact, and attempts at closed reduction were not successful. Patients 1 and 2 underwent anterior cervical discectomy with iliac crest autograft fusion and plating. They were then placed in the prone position, and a dilator tubular retractor system was used to access the facet joint at the level of interest. The facet joints were then denuded and packed with autograft. Lateral mass screws were then placed by means of the Magerl technique, and a rod was used to connect the top-loading screws. Patient 3 underwent posterior surgery that included only removal of the superior facet, intraoperative reduction, and bilateral lateral mass screw and rod placement. This technical note describes the successful placement of lateral mass screw and rod

  18. Cable tensioned membrane solar collector module with variable tension control (United States)

    Murphy, Lawrence M.


    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  19. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise


    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  20. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy

    NARCIS (Netherlands)

    van Dijk, Joris David; Ende, Roy P.J.; Stramigioli, Stefano; Köchling, Matthias; Höss, Norbert

    STUDY DESIGN: A retrospective chart review was performed for 112 consecutive minimally invasive spinal surgery patients who underwent pedicular screw fixation in a community hospital setting. OBJECTIVE: To assess the clinical accuracy and deviation in screw positions in robot-assisted pedicle screw

  1. Nylon screws make inexpensive coil forms (United States)

    Aucoin, G.; Rosenthal, C.


    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  2. [Clinical application of percutaneous iliosacral screws combined with pubic ramus screws in Tile B pelvic fracture]. (United States)

    Xu, Qi-Fei; Lin, Kui-Ran; Zhao, Dai-Jie; Zhang, Song-Qin; Feng, Sheng-Kai; Li, Chen


    To investigate the application and effect of minimally invasive percutaneous anterior pelvic pubic ramus screw fixation in Tile B fractures. A retrospective review was conducted on 56 patients with posterior pelvic ring injury combined with fractures of anterior pubic and ischiadic ramus treated between May 2010 and August 2015, including 31 males and 25 females with an average age of 36.8 years old ranging from 35 to 65 years old. Based on the Tile classification, there were 13 cases of Tile B1 type, 28 cases of Tile B2 type and 15 cases of Tile B3 type. Among them, 26 patients were treated with sacroiliac screws combined with external fixation (external fixator group) and the other 30 patients underwent sacroiliac screw fixation combined with anterior screw fixation (pubic ramus screw group). Postoperative complications, postoperative ambulation time, fracture healing, blood loss, Majeed pelvic function score and visual analogue scale(VAS) were compared between two groups. Fifty-four patients were followed up from 3 to 24 months with a mean of 12 months. There were no significant difference in the peri-operative bleeding and operation time between two groups( P >0.05). The postoperative activity time and fracture healing time of pubic ramus screw group were shorter than those of the external fixator group, the differences were statistically significant( P safty treatment method to the Tile B pelvic fracture. It has advantages of early ambulation, relief of the pain and few complications.

  3. Geometry and its applications

    CERN Document Server

    Meyer, Walter J


    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  4. Research and application of absorbable screw in orthopedics: a clinical review comparing PDLLA screw with metal screw in patients with simple medial malleolus fracture

    Directory of Open Access Journals (Sweden)

    TANG Jin


    Full Text Available 【Abstract】Objective: To observe the therapeutic effect of absorbable screw in medial malleolus fracture and discuss its clinical application in orthopedics. Methods: A total of 129 patients with simple medial malleolus fracture were studied. Among them, 64 patients were treated with poly-D, L-lactic acid (PDLLA absorbable screws, while the others were treated with metal screws. All the patients were followed up for 12-20 months (averaged 18.4 months and the therapeutic effect was evaluated ac-cording to the American Orthopaedic Foot and Ankle Soci-ety clinical rating systems. Results: In absorbable screw group, we obtained excel-lent and good results in 62 cases (96.88%; in steel screw group, 61 cases (93.85% achieved excellent and good results. There was no significant difference between the two groups. Conclusion: In the treatment of malleolus fracture, absorbable screw can achieve the same result compared with metal screw fixation. Absorbable screw is preferred due to its advantages of safety, cleanliness and avoiding the removal procedure associated with metallic implants. Key words: Ankle; Bone screws; Fractures, bone

  5. Affine and Projective Geometry

    CERN Document Server

    Bennett, M K


    An important new perspective on AFFINE AND PROJECTIVE GEOMETRY. This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory

  6. Introduction to projective geometry

    CERN Document Server

    Wylie, C R


    This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include w

  7. Geometry essentials for dummies

    CERN Document Server

    Ryan, Mark


    Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

  8. Holding the Tension. (United States)

    Feudtner, Chris


    My colleagues and I had been asked by a member of a clinical team to help sort through the ethics of stopping a life-sustaining intervention for a very ill child. We had already talked with the parents, the physicians, and the folks from nursing, social work, and chaplaincy. Terms like "suffering," "cruel," "compassion," and "moral distress" had been uttered, as had terms like "inappropriate," "unethical," "neglectful," and "risk-management." The group had now stuffed all of these polarizing thoughts and feelings into this cramped room with only one door. And everyone was looking at me. What skill, competency, or inner capacity must one possess to hold and manage such tension? © 2016 The Hastings Center.

  9. Reefing Line Tension in CPAS Main Parachute Clusters (United States)

    Ray, Eric S.


    Reefing lines are an essential feature to manage inflation loads. During each Engineering Development Unit (EDU) test of the Capsule Parachute Assembly System (CPAS), a chase aircraft is staged to be level with the cluster of Main ringsail parachutes during the initial inflation and reefed stages. This allows for capturing high-quality still photographs of the reefed skirt, suspension line, and canopy geometry. The over-inflation angles are synchronized with measured loads data in order to compute the tension force in the reefing line. The traditional reefing tension equation assumes radial symmetry, but cluster effects cause the reefed skirt of each parachute to elongate to a more elliptical shape. This effect was considered in evaluating multiple parachutes to estimate the semi-major and semi-minor axes. Three flight tests are assessed, including one with a skipped first stage, which had peak reefing line tension over three times higher than the nominal parachute disreef sequence.

  10. Combined Numerical and Analytical Analysis of an Oil-free Twin Screw Compressor (United States)

    Kennedy, Stuart; Wilson, Maria; Rane, Sham


    The application of three-dimensional computational fluid dynamics in twin-screw compressors provides an outstanding opportunity for developers to gain an understanding of the complex internal flow phenomena occurring within the machine. Equipped with this knowledge, design parameters, such as clearances and port geometry, can be optimised, to enhance performance. However, as with all modelling, be it numerical or analytical, a high degree of certainty in the accuracy of the results is necessary. This paper presents the results of a study of oil-free twin screw compressor in which the results of two modelling techniques are compared. The modelling techniques used are an analytical non-dimensional thermodynamic chamber model and a numerical computational fluid dynamic model. The paper presents an overview of an oil-free twin screw compressor machine, before describing important operating characteristics and the modelling techniques used. To validate, both models are compared against historical test data, this validation indicated the chamber model is more accurate. Following this, the focus will be on the comparison of key performance indicators, including, volume flow rate, volumetric efficiency, indicated power, and discharge temperature at varying duty points. The paper concludes that the difference between both models decreases as the compressor operating speed increases, although the level of variance is dependent on pressure ratio.

  11. Screw as a Bladder Foreign Body

    Directory of Open Access Journals (Sweden)

    Seyed Reza Hosseini


    Full Text Available Foreign bodies in the bladder are among the strangest differential diagnoses in the lower urinary tract symptoms (LUTS and may be missed in initial medical evaluations. We present a 63-year-old man who was visited in the emergency department because of obstructive and irritative lower urinary tract symptoms. Two months earlier, he had a pelvic fracture due to motor vehicle accident and underwent an open reduction and internal fixation of the pubic rami and right acetabulum by an anterior ilioinguinal approach. After initial evaluation, an abdominopelvic X-ray revealed a 3 cm screw in the suprapubic area. He underwent urethrocystoscopy and a 3 cm screw was extracted by forceps.

  12. Calculating Characteristics of the Screws with Constant And Variable Step

    Directory of Open Access Journals (Sweden)

    B. N. Zotov


    Full Text Available This work is devoted to creating a technique for calculating power characteristics of the screws with constant and variable step for the centrifugal pumps. The technique feature is that the reverse currents, which are observed in screws working at low flow, are numerically taken into account. The paper presents a diagram of the stream in the screw with flow to the network Q=0, and the static pressure of the screw in this mode is computed according to reverse current parameters. Maximum flow of screw is determined from the known formulas. When calculating the power characteristics and computing the overall efficiency of the screw, for the first time a volumetric efficiency of the screw is introduced. It is defined as a ratio between the flow into the network and the sum of the reverse current flows and a flow into the network. This approach allowed us to determine the efficiency of the screw over the entire range of flows.A comparison of experimental characteristics of the constant step screw with those of calculated by the proposed technique shows their good agreement.The technique is also used in calculating characteristics of the variable step screws. The variable step screw is considered as a screw consisting of two screws with a smooth transition of the blades from the inlet to the outlet. Screws in which the step at the inlet is less than that of at the outlet as well as screws with the step at the inlet being more than that of at the outlet were investigated. It is shown that a pressure of the screw with zero step and the value of the reverse currents depend only on the parameters of the input section of the screw, and the maximum flow, if the step at the inlet is more than the step at the outlet, is determined by the parameters of the output part of the screw. Otherwise, the maximum flow is determined a little bit differently.The paper compares experimental characteristics with characteristics calculated by the technique for variable step

  13. Surface tension of aqueous humor. (United States)

    Ross, Andrew; Blake, Robert C; Ayyala, Ramesh S


    To measure and compare the surface tension of aqueous humor in patients with and without glaucoma. The surface tension of aqueous humor was measured using a commercially available instrument and software that were validated by using a known fluid (deionized water and methanol). Analysis of aqueous and vitreous samples obtained from 20 rabbit eyes showed that the system could be used successfully for small amounts of ocular fluid. The effect of glaucoma drugs on the surface tension of aqueous humor was then studied in a rabbit model. Comparison of aqueous humor from 66 patients with glaucoma and 53 patients with cataracts but no glaucoma was carried out. The surface tension of rabbit aqueous humor was 65.9 ± 1.2; vitreous, 60.6 ± 2.6; and balanced salt solution, 70.7 ± 0.9. Timolol and latanoprost did not alter the surface tension of the aqueous humor in the rabbit model. The average surface tension of human aqueous humor was 63.33 ± 4.0 (glaucomatous eyes) and 66.19 ± 2.64 (nonglaucomatous eyes with cataracts) (P=0.0001). A technique of measuring the surface tension from small quantities of aqueous humor is validated. Surface tension of the aqueous humor in glaucoma patients was less than that of cataract patients.

  14. Accurate and Simple Screw Insertion Procedure With Patient-Specific Screw Guide Templates for Posterior C1-C2 Fixation. (United States)

    Sugawara, Taku; Higashiyama, Naoki; Kaneyama, Shuichi; Sumi, Masatoshi


    Prospective clinical trial of the screw insertion method for posterior C1-C2 fixation utilizing the patient-specific screw guide template technique. To evaluate the efficacy of this method for insertion of C1 lateral mass screws (LMS), C2 pedicle screws (PS), and C2 laminar screws (LS). Posterior C1LMS and C2PS fixation, also known as the Goel-Harms method, can achieve immediate rigid fixation and high fusion rate, but the screw insertion carries the risk of injury to neuronal and vascular structures. Dissection of venous plexus and C2 nerve root to confirm the insertion point of the C1LMS may also cause problems. We have developed an intraoperative screw guiding method using patient-specific laminar templates. Preoperative bone images of computed tomography (CT) were analyzed using three-dimensional (3D)/multiplanar imaging software to plan the trajectories of the screws. Plastic templates with screw guiding structures were created for each lamina using 3D design and printing technology. Three types of templates were made for precise multistep guidance, and all templates were specially designed to fit and lock on the lamina during the procedure. Surgery was performed using this patient-specific screw guide template system, and placement of the screws was postoperatively evaluated using CT. Twelve patients with C1-C2 instability were treated with a total of 48 screws (24 C1LMS, 20 C2PS, 4 C2LS). Intraoperatively, each template was found to exactly fit and lock on the lamina and screw insertion was completed successfully without dissection of the venous plexus and C2 nerve root. Postoperative CT showed no cortical violation by the screws, and mean deviation of the screws from the planned trajectories was 0.70 ± 0.42 mm. The multistep, patient-specific screw guide template system is useful for intraoperative screw navigation in posterior C1-C2 fixation. This simple and economical method can improve the accuracy of screw insertion, and reduce operation time and

  15. 2D and 3D assessment of sustentaculum tali screw fixation with or without Screw Targeting Clamp. (United States)

    De Boer, A Siebe; Van Lieshout, Esther M M; Vellekoop, Leonie; Knops, Simon P; Kleinrensink, Gert-Jan; Verhofstad, Michael H J


    Precise placement of sustentaculum tali screw(s) is essential for restoring anatomy and biomechanical stability of the calcaneus. This can be challenging due to the small target area and presence of neurovascular structures on the medial side. The aim was to evaluate the precision of positioning of the subchondral posterior facet screw and processus anterior calcanei screw with or without a Screw Targeting Clamp. The secondary aim was to evaluate the added value of peroperative 3D imaging over 2D radiographs alone. Twenty Anubifix™ embalmed, human anatomic lower limb specimens were used. A subchondral posterior facet screw and a processus anterior calcanei screw were placed using an extended lateral approach. A senior orthopedic trauma surgeon experienced in calcaneal fracture surgery and a senior resident with limited experience in calcaneal surgery performed screw fixation in five specimens with and in five specimens without the clamp. 2D lateral and axial radiographs and a 3D recording were obtained postoperatively. Anatomical dissection was performed postoperatively as a diagnostic golden standard in order to obtain the factual screw positions. Blinded assessment of quality of fixation was performed by two surgeons. In 2D, eight screws were considered malpositioned when placed with the targeting device versus nine placed freehand. In 3D recordings, two additional screws were malpositioned in each group as compared to the golden standard. As opposed to the senior surgeon, the senior resident seemed to get the best results using the Screw Targeting Clamp (number of malpositioned screws using freehand was eight, and using the targeting clamp five). In nine out of 20 specimens 3D images provided additional information concerning target area and intra-articular placement. Based on the 3D assessment, five additional screws would have required repositioning. Except for one, all screw positions were rated equally after dissection when compared with 3D examinations

  16. Analogue Kerr-like geometries in a MHD inflow

    CERN Document Server

    Noda, Sousuke; Takahashi, Masaaki


    We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.

  17. Energy saving screw compressor technology; Energiebesparende schroefcompressortechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, A. [RefComp, Lonigo (Italy); Neus, M. [Delta Technics Engineering, Breda (Netherlands)


    Smart solutions to reduce the energy consumption are continuously part of investigation in the refrigeration technology. This article subscribed the technology on which way energy can be saved at the operation of screw compressors which are used in air conditioners and refrigerating machinery. The combination of frequency control and Vi-control (intrinsic volumetric ratio) such as researched in the laboratory of RefComp is for the user attractive because the energy efficiency during part load operation is much better. Smart uses of thermodynamics, electric technology and electronic control are the basics of these applications. According to the manufacturer's information it is possible with these new generation screw compressors to save approx. 26% energy in comparison with the standard screw compressor. [Dutch] In dit artikel wordt de technologie omschreven waarmee veel energie bespaard kan worden bij schroefcompressoren die worden gebruikt in airconditioningsystemen en koel- en vriesinstallaties. De combinatie van frequentieregeling en Vi- regeling (Vi is de intrinsieke volumetrische verhouding) zoals onderzocht in het laboratorium van RefComp biedt de gebruiker veel voordelen doordat de energie-efficintie van de compressor tijdens deellast enorm wordt verbeterd. Slim gebruik van thermodynamika, elektrotechniek en elektronica vormen de basis van deze toepassing. Volgens de fabrikant kan met deze nieuwe generatie schroefcompressoren circa 26 procent op het energiegebruik tijdens deellast worden bespaard in vergelijking met de standaard serie schroefcompressoren.


    Directory of Open Access Journals (Sweden)

    Dimitar Kirov


    Full Text Available Aim of the study: To establish the influence of various factors upon the loosening of abutment screw. Material and Methods: The current study has analyzed the factors leading to loosening of the abutment screws implant-supported restorations. 116 patients have been examined with 234 setting implants for a period of 2 to 9 years. Factors related to the planning of implant prostheses such as area of implantation, available bone volume have been registered, as well as those related to the functional loading of dental implants. The impact of their effect has been calculated. Results: Abutment screw loosening has been registered in 6.8% of the monitored cases. Regarding the type of connection between the implant and abutment a higher prevalence has been reported in connection with an internal octagon - 4.7% compared to the conical connection - 2.1%. It was found that the type of prosthesis, bruxism, cantilevers, non-balanced occlusion, crestal bone resorption and time of this complication setting in are factors of statistically significant influence. Conclusion: It has been concluded that the optimal choice and number of implant positions, the design of prosthesis, achieving optimal occlusion as well as reporting cases of bruxism, leading to functional overload of dental implants are of particular importance in order to avoid bio-mechanical long-term complications.

  19. Mathematical modeling and design parameters of crushing machines with variable-pitch helix of the screw

    Directory of Open Access Journals (Sweden)

    Pelenko V. V.


    Full Text Available From the point of view of the effectiveness of the top cutting unit, the helix angle in the end portion of the screw is the most important and characteristic parameter, as it determines the pressure of the meat material in the zone of interaction of a knife and grate. The importance of solving the problem of mathematical modeling of geometry is due to the need to address the problem of minimizing the reverse flow of the food material when injecting into the cutting zone, as the specified effect of "locking" significantly reduces the performance of the transfer process, increases energy consumption of the equipment and entails the deterioration of the quality of the raw materials output. The problem of determining the length of the helix variable pitch for screw chopper food materials has been formulated and solved by methods of differential geometry. The task of correct description of the law of changing the angle of helix inclination along its length has been defined in this case as a key to provide the required dependence of this angle tangent on the angle of the radius-vector of the circle. It has been taken into account that the reduction in the pitch of the screw in the direction of the product delivery should occur at a decreasing rate. The parametric equation of the helix has been written in the form of three functional dependencies of the corresponding cylindrical coordinates. Based on the wide range analysis and significant number of models of tops from different manufacturers the boundaries of possible changes in the angles of inclination of the helical line of the first and last turns of the screw have been identified. The auger screw length is determined mathematically in the form of an analytical relationship and both as a function of the variable angle of its rise, and as a function of the rotation angle of the radius-vector of the circle generatrix, which makes it possible to expand the design possibilities of this node. Along

  20. In vitro evaluation of force-expansion characteristics in a newly designed orthodontic expansion screw compared to conventional screws

    Directory of Open Access Journals (Sweden)

    Oshagh Morteza


    Full Text Available Objective : Expansion screws like Hyrax, Haas and other types, produce heavy interrupted forces which are unfavorable for dental movement and could be harmful to the tooth and periodontium. The other disadvantage of these screws is the need for patient cooperation for their regular activation. The purpose of this study was to design a screw and compare its force- expansion curve with other types. Materials and Methods : A new screw was designed and fabricated in the same dimension, with conventional types, with the ability of 8 mm expansion (Free wire length: 12 mm, initial compression: 4.5 mm, spring wire diameter: 0.4 mm, spring diameter: 3 mm, number of the coils: n0 ine, material: s0 tainless steel. In this in vitro study, the new screw was placed in an acrylic orthodontic appliance, and after mounting on a stone cast, the force-expansion curve was evaluated by a compression test machine and compared to other screws. Results : Force-expansion curve of designed screw had a flatter inclination compared to other screws. Generally it produced a light continuous force (two to 3.5 pounds for every 4 mm of expansion. Conclusion : In comparison with heavy and interrupted forces of other screws, the newly designed screw created light and continuous forces.

  1. Intrapelvic Migration of the Lag Screw in Intramedullary Nailing

    Directory of Open Access Journals (Sweden)

    Tomoya Takasago


    Full Text Available Internal fixation with intramedullary devices has gained popularity for the treatment of intertrochanteric femoral fractures, which are common injuries in the elderly. The most common complications are lag screw cut out from the femoral head and femoral fracture at the distal tip of the nail. We report here a rare complication of postoperative lag screw migration into the pelvis with no trauma. The patient was subsequently treated with lag screw removal and revision surgery with total hip arthroplasty. This case demonstrated that optimal fracture reduction and positioning of the lag screw are the most important surgical steps for decreasing the risk of medial migration of the lag screw. Furthermore, to prevent complications, careful attention should be paid to subsequent steps such as precise insertion of the set screw.

  2. The Geometry Conference

    CERN Document Server

    Bárány, Imre; Vilcu, Costin


    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

  3. Facet violation with the placement of percutaneous pedicle screws. (United States)

    Patel, Rakesh D; Graziano, Gregory P; Vanderhave, Kelly L; Patel, Alpesh A; Gerling, Michael C


    Independent review and classification of therapeutic procedures performed on cadavers by surgeons blinded to purpose of study. The objective of this study is to determine the rate of facet violation with the placement of percutaneous pedicle screws. Improvements in percutaneous instrumentation and fluoroscopic imaging have led to a resurgence of percutaneous pedicle screw insertion in lumbar spine surgery in an attempt to minimize many of the complications associated with open techniques of pedicle screw placement. Rates of pedicle breech and neurologic injury resulting from percutaneous insertion are reportedly similar to those of open techniques. Postoperative pain because of impingement and instability is believed to result from violation of the facet capsule or facet joint. To the authors' knowledge, however, the rate of facet injury associated with the placement of percutaneous pedicle screws is unreported in the literature. Percutaneous pedicle screw placement was performed on 4 cadaveric specimens by 4 certified orthopedic surgeons who had clinical experience in the procedure and who were blinded to the study's purpose. The surgeons were instructed to place pedicle screws from L1-S1 using their preferred clinical techniques and a 5.5-mm screw system with which they were all familiar. All surgeons utilized 1 OEC C-arm for fluoroscopic imaging. After insertion, 2 independent spine surgeons each reviewed and classified the placement of all facet screws. A total of 48 screws were inserted and classified. The placement of 28 screws (58%) resulted in violation of facet articulation, with 8 of these screws being intra-articular. Interobserver reliability of the classification system was 100%. Percutaneous pedicle screw placement may result in a high rate of facet violation. Facet injury can be reliability classified and therefore, perhaps, easily prevented.

  4. Methods of Geometry

    CERN Document Server

    Smith, James T


    A practical, accessible introduction to advanced geometry Exceptionally well-written and filled with historical and bibliographic notes, Methods of Geometry presents a practical and proof-oriented approach. The author develops a wide range of subject areas at an intermediate level and explains how theories that underlie many fields of advanced mathematics ultimately lead to applications in science and engineering. Foundations, basic Euclidean geometry, and transformations are discussed in detail and applied to study advanced plane geometry, polyhedra, isometries, similarities, and symmetry. An

  5. Revolutions of Geometry

    CERN Document Server

    O'Leary, Michael


    Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

  6. Euclidean geometry and transformations

    CERN Document Server

    Dodge, Clayton W


    This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.

  7. Fundamental concepts of geometry

    CERN Document Server

    Meserve, Bruce E


    Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

  8. Photoelastic Analysis of the Vertebral Fixation System Using Different Screws

    Directory of Open Access Journals (Sweden)

    A. C. Shimano


    Full Text Available The purpose of this study was to compare using photoelasticity, the internal stresses produced by two types of pedicular screws (Synthes™ with three different diameters, when submitted to different pullout strengths. The fringe orders were evaluated around the screws using the Tardy compensation method. In all the models analyzed, the shear stress was calculated. Results showed that, independently of the applied load, the screw of smaller outer diameter had larger values of shear stress. According to the analysis realized, we observed that the place of highest stress was in the last thread, close to the head of the screws.

  9. Studies on positive conveying in helically channeled single screw extruders


    L. Pan; M. Y. Jia; Jin, Z. M.; Wang, K. J.; Xue, P


    A solids conveying theory called double-flight driving theory was proposed for helically channeled single screw extruders. In the extruder, screw channel rotates against static barrel channel, which behaves as cooperative embedded twin-screws for the positive conveying. They turn as two parallel arc plates, between which an arc-plate solid-plug was assumed. By analyzing the forces on the solid-plug in the barrel channel and screw channel, the boundary conditions when the solid-plug is waived ...

  10. Tai Chi pedicle screw placement for severe scoliosis. (United States)

    Chang, Kao-Wha; Wang, Yu-Fei; Zhang, Guo-Zhi; Cheng, Ching-Wei; Chen, Hung-Yi; Leng, Xiangyang; Chen, Yin-Yu


    Retrospective. To evaluate the clinical safety and accuracy of the Tai Chi ((Equation is included in full-text article.)) technique for placing pedicle screws, without intraoperative radiographic imaging, in severe scoliotic spines. The current techniques for pedicle screw placement have a number of drawbacks in cases of severe scoliosis, including difficulty or impossibility to use, delayed operative time, requiring the presence of trained personnel for the duration of the surgery, high cost issues, increased radiation exposure, and technical challenges. No previous report has described the application of the Tai Chi pedicle screw placement technique for severe scoliosis. Between 2006 and 2008, the cases of 39 consecutive patients with severe scoliosis (Cobb angle >100 degrees) who underwent posterior correction and stabilization (from T1 to L5) using 992 transpedicular screws were examined. The mean patient age was 25.7 (range, 11 to 63) years at the time of surgery. Pedicle screws were inserted by the Tai Chi technique using anatomic landmarks and preoperative radiographs as a guide. Tai Chi drilling fully utilizes the natural anatomic and physical characteristics of pedicles and unconstrained circular force. By nature, a drill bit driven by unconstrained circular force would migrate within the pedicle along a path of least resistance, advancing along the central cancellous bone tunnel spontaneously. Accurate drilling was achieved by following the nature and sticking to the hand sensation when the drill bit broke through the cancellous bone. The total time for inserting all pedicle screws in each case was recorded. Postoperative computed tomography scans were performed to evaluate the position of the inserted pedicle screws. The screw position was classified as "in" or "out." The distance of perforation was measured. The average Cobb angle was 127 degrees (range, 100 to 153 degrees). The number of screws inserted at each level were as follows: T1 (n=10), T2 (n

  11. Biomechanical efficacy of monoaxial or polyaxial pedicle screw and additional screw insertion at the level of fracture, in lumbar burst fracture: An experimental study

    Directory of Open Access Journals (Sweden)

    Hongwei Wang


    Conclusions: The addition of intermediate screws at the level of a burst fracture significantly increased the stability of short-segment pedicle screw fixation in both the MPS and PPS groups. However, in short-segment fixation group, monoaxial pedicle screw exhibited more stability in flexion and extension than the polyaxial pedicle screw.

  12. Geometry Professionalized for Teachers. (United States)

    Christofferson, Halbert Carl

    Written in 1933, this book grew out of the author's concern that college matehmatics sequences of the day, although appropriate in algebra preparation, did not adequately prepare teachers of geometry. This book describes a course intended to remedy this by providing for both a comprehensive study of geometry as an axiomatically defined structure…

  13. Foundations of algebraic geometry

    CERN Document Server

    Weil, A


    This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

  14. Geometry + Technology = Proof (United States)

    Lyublinskaya, Irina; Funsch, Dan


    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  15. Designs and finite geometries

    CERN Document Server


    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  16. Supersymmetric Sigma Model Geometry

    Directory of Open Access Journals (Sweden)

    Ulf Lindström


    Full Text Available This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyperkähler reduction; projective superspace; the generalized Legendre construction; generalized Kähler geometry and constructions of hyperkähler metrics on Hermitian symmetric spaces.

  17. Going beyond the standard line tension: Size-dependent contact angles of water nanodroplets (United States)

    Kanduč, Matej


    The dependence of the contact angle on the size of a nanoscopic droplet residing on a flat substrate is traditionally ascribed solely to line tension. Other contributions, stemming from the droplet geometry dependence of the surface tension and line tension, are typically ignored. Here, we perform molecular dynamics simulations of water droplets of cylindrical morphology on surfaces of a wide range of polarities. In the cylindrical geometry, where the line tension is not operative directly, we find significant contact angle dependence on the droplet size. The effect is most pronounced on hydrophilic surfaces, with the contact angle increase of up to 1 0 ° with a decreasing droplet size. On hydrophobic surfaces, the trend is reversed and considerably weaker. Our analysis suggests that these effects can be attributed to the Tolman correction due to the curved water-vapor interface and to a generalized line tension that possesses a contact angle dependence. The latter is operative also in the cylindrical geometry and yields a comparable contribution to the contact angle as the line tension itself in case of spherical droplets.

  18. Wet granulation in a twin-screw extruder: implications of screw design. (United States)

    Thompson, M R; Sun, J


    Wet granulation in twin-screw extrusion machinery is an attractive technology for the continuous processing of pharmaceuticals. The performance of this machinery is integrally tied to its screw design yet little fundamental knowledge exists in this emerging field for granulation to intelligently create, troubleshoot, and scale-up such processes. This study endeavored to systematically examine the influence of different commercially available screw elements on the flow behavior and granulation mechanics of lactose monohydrate saturated at low concentration (5-12%, w/w) with an aqueous polyvinyl-pyrrolidone binder. The results of the work showed that current screw elements could be successfully incorporated into designs for wet granulation, to tailor the particle size as well as particle shape of an agglomerate product. Conveying elements for cohesive granular flows were shown to perform similar to their use in polymer processing, as effective transport units with low specific mechanical energy input. The conveying zones provided little significant change to the particle size or shape, though the degree of channel fill in these sections had a significant influence on the more energy-intensive mixing elements studied. The standard mixing elements for this machine, kneading blocks and comb mixers, were found to be effective for generating coarser particles, though their mechanisms of granulation differed significantly. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  19. Magnesium alloys as a biomaterial for degradable craniofacial screws. (United States)

    Henderson, Sarah E; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L; Chou, Da-Tren; Kumta, Prashant N; Almarza, Alejandro J


    Recently, magnesium (Mg) alloys have received significant attention as potential biomaterials for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available pure Mg and alloy AZ31 in vivo in a rabbit mandible. First, Mg and AZ31 screws were compared to stainless steel screws in an in vitro pull-out test and determined to have a similar holding strength (∼40N). A finite-element model of the screw was created using the pull-out test data, and this model can be used for future Mg alloy screw design. Then, Mg and AZ31 screws were implanted for 4, 8 and 12weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12weeks. Microcomputed tomography was used to assess bone remodeling and Mg/AZ31 degradation, both visually and qualitatively through volume fraction measurements for all time points. Histological analysis was also completed for the Mg and AZ31 at 12weeks. The results showed that craniofacial bone remodeling occurred around both Mg and AZ31 screws. Pure Mg had a different degradation profile than AZ31; however, bone growth occurred around both screw types. The degradation rate of both Mg and AZ31 screws in the bone marrow space and the muscle were faster than in the cortical bone space at 12weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg alloys for craniofacial applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. A Lorentzian quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Grotz, Andreas


    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  1. Are pedicular screws and lateral hook screws more resistant against pullout than conventional spinal hooks and screws in terminal vertebral segment fixation? (United States)

    Karakaşlı, Ahmet; Sekik, Eyad; Karaarslan, Ahmet; Kızmazoğlu, Ceren; Havıtçıoğlu, Hasan


    This study aims to biomechanically evaluate and compare four well-known types of terminal spinal constructs to a novel construct composed of a transpedicular screw with a lateral hook screw in terms of axial pullout strength in terminal vertebral segment fixation. Forty fresh-frozen lamb spines were divided into five groups with eight spines each. To stabilize the transverse process, a pedicular screw alone was used in group 1, a sublaminar hook alone was used in group 2, a sublaminar hook and a pedicular screw were used in group 3, claw hook alone was used in group 4, and a pedicular screw with a lateral hook screw was used in group 5. Biomechanical tests were performed using an axial compression testing machine and two noncontact camera systems. The mean pullout strength value was 927 N for group 1, 626 N for group 2, 988 N for group 3, 972 N for group 4, and 1194 N for group 5. Pullout strength values were statistically significantly higher in groups 3 and 4 compared to groups 1 and 2. There was no statistically significant difference between groups 3 and 4. Pullout strength value of group 5 was statistically significantly higher than the other groups. Pedicular screw with a lateral hook screw had the highest fixation value. Lateral hook screw may assist to prevent pullout in patients with pullout risk and hyperkyphosis and after hyperkyphosis surgery. Further prospective clinical studies are needed to show the benefit of such a construct in reducing the risk of distal instrumentation pullout.

  2. Managing tension headaches at home (United States)

    ... this page: // Managing tension headaches at home To use the sharing ... have glasses, use them. Learn and practice stress management. Some people find relaxation exercises or meditation helpful. ...

  3. Tension pneumocephalus: Mount Fuji sign

    Directory of Open Access Journals (Sweden)

    Pulastya Sanyal


    Full Text Available A 13-year-old male was operated for a space occupying lesion in the brain. A noncontrast computed tomography scan done in the late postoperative period showed massive subdural air collection causing compression of bilateral frontal lobes with widening of interhemispheric fissure and the frontal lobes acquiring a peak like configuration - causing tension pneumocephalus-"Mount Fuji sign." Tension pneumocephalus occurs when air enters the extradural or intradural spaces in sufficient volume to exert a mass or pressure effect on the brain, leading to brain herniation. Tension pneumocephalus is a surgical emergency, which needs immediate intervention in the form of decompression of the cranial cavity by a burr hole or needle aspiration. The Mount Fuji sign differentiates tension pneumocephalus from pneumocephalus.

  4. Tension pile study : final report. (United States)


    This report contains the results of a short term study of a pile in tension loads. The piles tested were driven on Louisiana Department of Highway's property in response to preceding research work entitled "Stability of Slender Prestressed Concrete P...

  5. Cadaveric study for ideal dorsal pedicle screw entry point

    Directory of Open Access Journals (Sweden)

    Sandeep Sonone


    Conclusion: We conclude that the ideal pedicle entry point described here should be considered by surgeons during thoracic pedicle screw instrumentation. The notch at the base of the superior articular process will always remain constant and therefore an important anatomical landmark in guiding the screw toward the entry of the pedicle.

  6. Determination of the of rate cross slip of screw dislocations

    DEFF Research Database (Denmark)

    Vegge, Tejs; Rasmussen, Torben; Leffers, Torben


    The rate for cross slip of screw dislocations during annihilation of screw dipoles in copper is determined by molecular dynamics simulations. The temperature dependence of the rate is seen to obey an Arrhenius behavior in the investigated temperature range: 225-375 K. The activation energy...

  7. Technical Note: Comparative Effects of Screw Press for Honey ...

    African Journals Online (AJOL)

    Honey extraction is the removal of honey from the honey bearing combs. Different local methods of honey extraction, their strengths and weaknesses were discussed. A screw press was fabricated to facilitate honey extraction. The fabricated screw honey extractor is good alternative to the existing methods of extraction.

  8. Electromagnetic Lead Screw for Potential Wave Energy Application

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin


    This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...

  9. Bone impregnated hip screw in femoral neck fracture Clinicoradiological results

    Directory of Open Access Journals (Sweden)

    P K Sundar Raj


    Full Text Available Background: Femoral neck fractures are treated either by internal fixation or arthroplasty. Usually, cannulated cancellous screws are used for osteosynthesis of fracture neck of femur. The bone impregnated hip screw (BIHS is an alternative implant, where osteosyntehsis is required in femoral neck fracture. Materials and Methods: The BIHS is a hollow screw with thread diameter 8.3 mm, shank diameter 6.5 mm and wall thickness 2.2 mm and holes in the shaft of the screw with diameter 2 mm, placed in a staggered fashion. Biomechanical and animal experimental studies were done. Clinical study was done in two phases: Phase 1 in a group of volunteers, only with BIHS was used in a pilot study and phase 2 comparative study was done in a group with AO cannulated screws and the other group treated with BIHS. Results: In the phase 1 study, out of 15 patients, only one patient had delayed union. In phase 2, there were 78 patients, 44 patients in BIHS showed early union, compared to the rest 34 cases of AO cannulated screws Out of 44 patients with BIHS, 41 patients had an excellent outcome, 2 had nonunions and one implant breakage was noted. Conclusions: Bone impregnated hip screw has shown to provide early solid union since it incorporates the biomechanical principles and also increases the osteogenic potential and hence, found superior to conventional cannulated cancellous screw.

  10. Performance of Screw Compressor for Small-Capacity Helium Refrigerators (United States)

    Urashin, Masayuki; Matsubara, Katsumi; Izunaga, Yasushi

    A helium compressor is one of the important components comprising a cryogenic refrigerator. The purpous of this investigation is to develop a new small-capacity helium screw compressor. The performance of a single-stage compressor at high compression ratio and the cooling performance of the compressor are investigated. A semi-hermetic screw compressor with new profile screw rotors, with which high performance can be obtained, is utilized in this investigation. Lubricating oil is applied to cool the compressor motor and the compressed gas. As a result, an overall isentropic efficiency of 80% is obtained when helium is compressed to a compression ratio of 19.8 with a single-stage screw compressor. At the same time, the temperature of a compressor motor and discharge gas can be maintained at low levels. Therefore, it is found that a single-stage screw compressor can compress helium to high compression ratio.

  11. A four lumen screwing device for multiparametric brain monitoring. (United States)

    Feuerstein, T H; Langemann, H; Gratzl, O; Mendelowitsch, A


    We describe multiparametric monitoring in severe head trauma using a new screwing device. Our aim was to create a screw which would make the implantation of the probes and thus multiparametric monitoring easier. The new screw allows us to implant 3 probes (microdialysis, Paratrend and an intracranial pressure device) through one burr hole. The screw has four channels, the fourth being for ventricular drainage. We monitored 13 patients with severe head trauma (GCS = 3-8) for up to 7 days. Brain tissue pO2, pCO2, pH, and temperature were measured on-line with the Paratrend 7 machine. The microdialytic parameters glucose, lactate, pyruvate and glutamate were determined semi on-line with a CMA 600 enzymatic analyser. There were no complications in any of the patients that could be ascribed to the screw.

  12. The Analysis of Soil Resistance During Screw Displacement Pile Installation

    Directory of Open Access Journals (Sweden)

    Krasinski Adam


    Full Text Available The application of screw displacement piles (SDP is still increasing due to their high efficiency and many advantages. However, one technological problem is a serious disadvantage of those piles. It relates to the generation of very high soil resistance during screw auger penetration, especially when piles are installed in non-cohesive soils. In many situations this problem causes difficulties in creating piles of designed length and diameter. It is necessary to find a proper method for prediction of soil resistance during screw pile installation. The analysis of screw resistances based on model and field tests is presented in the paper. The investigations were carried out as part of research project, financed by the Polish Ministry of Science and Higher Education. As a result of tests and analyses the empirical method for prediction of rotation resistance (torque during screw auger penetration in non-cohesive subsoil based on CPT is proposed.

  13. Intermaxillary Fixation Screw Morbidity in Treatment of Mandibular Fractures

    DEFF Research Database (Denmark)

    Florescu, Vlad-Andrei; Kofod, Thomas; Pinholt, E. M.


    Purpose The aim of the present retrospective study was to investigate the morbidity of screws used for intermaxillary fixation (IMF) in the treatment of mandibular fractures. A review of the published data was also performed for a comparison of outcomes. Our hypothesis was that the use of screws...... for IMF of mandibular fractures would result in minimal morbidity. Materials and Methods Patients treated for mandibular fractures from 2007 to 2013, using screws for IMF, using the international diagnosis code for mandibular fracture, DS026, were anonymously selected (Department of Oral and Maxillofacial...... retrospective study have shown that the use of screws is a valid choice for IMF in mandibular fracture treatment with minimal morbidity. The 793 screws used for IMF resulted in a negligible amount of central and peripheral tooth root trauma. © 2016 American Association of Oral and Maxillofacial Surgeons...

  14. Non-Euclidean geometry

    CERN Document Server

    Kulczycki, Stefan


    This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff

  15. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano


    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  16. Lateral Movement of Screw Dislocations During Homoepitaxial Growth and Devices Yielded Therefrom Free of the Detrimental Effects of Screw Dislocations (United States)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)


    The present invention is related to a method that enables and improves wide bandgap homoepitaxial layers to be grown on axis single crystal substrates, particularly SiC. The lateral positions of the screw dislocations in epitaxial layers are predetermined instead of random, which allows devices to be reproducibly patterned to avoid performance degrading crystal defects normally created by screw dislocations.

  17. Geometry without topology as a new conception of geometry

    Directory of Open Access Journals (Sweden)

    Yuri A. Rylov


    geometry. In T-geometry, any space region is isometrically embeddable in the space, whereas in Riemannian geometry only convex region is isometrically embeddable. T-geometric conception appears to be more consistent logically, than the Riemannian one.

  18. Complex algebraic geometry

    CERN Document Server

    Kollár, János


    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  19. Invitation to geometry

    CERN Document Server

    Melzak, Z A


    Intended for students of many different backgrounds with only a modest knowledge of mathematics, this text features self-contained chapters that can be adapted to several types of geometry courses. 1983 edition.

  20. Lectures on Symplectic Geometry

    CERN Document Server

    Silva, Ana Cannas


    The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

  1. Introduction to tropical geometry

    CERN Document Server

    Maclagan, Diane


    Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...

  2. Geometry of differential equations

    CERN Document Server

    Khovanskiĭ, A; Vassiliev, V


    This volume contains articles written by V. I. Arnold's colleagues on the occasion of his 60th birthday. The articles are mostly devoted to various aspects of geometry of differential equations and relations to global analysis and Hamiltonian mechanics.

  3. Geometry-controlled kinetics. (United States)

    Bénichou, O; Chevalier, C; Klafter, J; Meyer, B; Voituriez, R


    It has long been appreciated that the transport properties of molecules can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target-the first-passage time (FPT). Determining the FPT distribution in realistic confined geometries has until now, however, seemed intractable. Here, we calculate this FPT distribution analytically and show that transport processes as varied as regular diffusion, anomalous diffusion, and diffusion in disordered media and fractals, fall into the same universality classes. Beyond the theoretical aspect, this result changes our views on standard reaction kinetics and we introduce the concept of 'geometry-controlled kinetics'. More precisely, we argue that geometry-and in particular the initial distance between reactants in 'compact' systems-can become a key parameter. These findings could help explain the crucial role that the spatial organization of genes has in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.

  4. The geometry of geodesics

    CERN Document Server

    Busemann, Herbert


    A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

  5. Geometry and Combinatorics

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby


    The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...

  6. Elementary differential geometry

    CERN Document Server

    Pressley, Andrew


    Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecture...

  7. Biomechanical Testing of Unstable Slipped Capital Femoral Epiphysis Screw Fixation: Worth the Risk of a Second Screw? (United States)

    Schmitz, Matthew R; Farnsworth, Christine L; Doan, Joshua D; Glaser, Diana A; Scannell, Brian P; Edmonds, Eric W


    In a prior biomechanical study, 2-screw fixation of anatomically reduced slipped capital femoral epiphysis (SCFE) demonstrated marginally greater stability than single-screw fixation. However, the authors judged the benefits of a second screw to be minimal compared with the additional complication risk. A similar evaluation of fixation stability in unstable moderately displaced SCFE is performed. SCFE model: Transverse periosteal incision and epiphyseal separation from the metaphysis by leveraging in 25-month-old porcine femurs. Four groups were evaluated: pinned (3.5 mm cortex screws; Synthes, Monument, CO) with no displacement (1 screw=group N1; 2 screws=group N2) or with moderate posterior-inferior displacement of 50% of the epiphyseal diameter (1 screw=group D1; 2 screws=group D2). Biomechanical testing: Cyclical shear forces (40 to 200 N, 1 Hz) were applied along the physeal plane. Maximum load increased by 100 N every 500 cycles until failure (epiphyseal translation greater than one third the epiphyseal diameter). Force cycles (the sum of the maximum cycle loads) and number of cycles to failure were reported. A sample from each D1 and D2 had fixation problems (D1, D2: n=4; N1, N2: n=5). One D1 failed through the femoral neck; all others failed through the epiphysis. The data showed nonsignificant trends of greater force cycles for nondisplaced over displaced (P=0.13) and for 2 screws over 1 (P=0.19). Number of cycles to failure showed similar trends, with no significant differences between nondisplaced and displaced (P=0.10) and screw number (P=0.13). Force cycles were significantly greater in the N2 group than in the D1 group. A trend toward higher force cycles to failure in nondisplaced and 2-screw groups was observed. Higher force cycles correspond to greater physeal stability and thus decreased risk for subsequent displacement. Within displacement groups, adding a second screw did not significantly increase stability. Reduction of displaced SCFE also did

  8. d-geometries revisited

    CERN Document Server

    Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio


    We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.

  9. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R


    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system


    Directory of Open Access Journals (Sweden)

    P Habib-Allah -Zadeh


    Full Text Available "nPedicle screws provide rigid fixation for instabilities in the lumbar and lumbosacral spine. Anatomical consideration and potential risk of neurologic complications are the reasons to hesitate using pedicle screws in the thoracic spine. Twenty moulages similar to human vertebrae were instrumented with Cotrel-Dubousset (CD system pedicle screw by intratransverse process, extrapedicular and intrapedicular methods and pullout strength was measured. There was statistically significant difference between three techniques. By increasing the length of screw in any method, pullout strength increased. Average pullout strength in extrapedicular technique was less than two other techniques in dynamic state. The strongest technique for screw placement was intratransverse process technique. It seems that intratransverse process technique is safe for posterior fixation of spine.

  11. SOC and Fractal Geometry (United States)

    McAteer, R. T. J.


    When Mandelbrot, the father of modern fractal geometry, made this seemingly obvious statement he was trying to show that we should move out of our comfortable Euclidean space and adopt a fractal approach to geometry. The concepts and mathematical tools of fractal geometry provides insight into natural physical systems that Euclidean tools cannot do. The benet from applying fractal geometry to studies of Self-Organized Criticality (SOC) are even greater. SOC and fractal geometry share concepts of dynamic n-body interactions, apparent non-predictability, self-similarity, and an approach to global statistics in space and time that make these two areas into naturally paired research techniques. Further, the iterative generation techniques used in both SOC models and in fractals mean they share common features and common problems. This chapter explores the strong historical connections between fractal geometry and SOC from both a mathematical and conceptual understanding, explores modern day interactions between these two topics, and discusses how this is likely to evolve into an even stronger link in the near future.

  12. The biomechanics of pedicle screw augmentation with cement. (United States)

    Elder, Benjamin D; Lo, Sheng-Fu L; Holmes, Christina; Goodwin, Courtney R; Kosztowski, Thomas A; Lina, Ioan A; Locke, John E; Witham, Timothy F


    A persistent challenge in spine surgery is improving screw fixation in patients with poor bone quality. Augmenting pedicle screw fixation with cement appears to be a promising approach. The purpose of this study was to survey the literature and assess the previous biomechanical studies on pedicle screw augmentation with cement to provide in-depth discussions of the biomechanical benefits of multiple parameters in screw augmentation. This is a systematic literature review. A search of Medline was performed, combining search terms of pedicle screw, augmentation, vertebroplasty, kyphoplasty, polymethylmethacrylate, calcium phosphate, or calcium sulfate. The retrieved articles and their references were reviewed, and articles dealing with biomechanical testing were included in this article. Polymethylmethacrylate is an effective material for enhancing pedicle screw fixation in both osteoporosis and revision spine surgery models. Several other calcium ceramics also appear promising, although further work is needed in material development. Although fenestrated screw delivery appears to have some benefits, it results in similar screw fixation to prefilling the cement with a solid screw. Some differences in screw biomechanics were noted with varying cement volume and curing time, and some benefits from a kyphoplasty approach over a vertebroplasty approach have been noted. Additionally, in cadaveric models, cemented-augmented screws were able to be removed, albeit at higher extraction torques, without catastrophic damage to the vertebral body. However, there is a risk of cement extravasation leading to potentially neurological or cardiovascular complications with cement use. A major limitation of these reviewed studies is that biomechanical tests were generally performed at screw implantation or after a limited cyclic loading cycle; thus, the results may not be entirely clinically applicable. This is particularly true in the case of the bioactive calcium ceramics, as these

  13. Historical Tensions in Engineering Education

    DEFF Research Database (Denmark)

    Jamison, Andrew; Heymann, Matthias


    Ever since institutions for educating engineers first began to be ­established in Europe, there have been a number of fundamental tensions as to how that ­educating should best be conducted, what it should consist of, and who should do the educating. These tensions are based on different styles...... or approaches to ­engineering education that have developed historically in different parts of Europe and which have led to what we characterize as “theory-driven,” “practice-driven,” and “technology-driven” approaches. This chapter explores some of the historical roots of these tensions in medieval Europe...... and briefly traces their developmental trajectories through the subsequent formation of institutions of engineering ­education. It has been written as part of PROCEED (Program of Research on Opportunities and Challenges in Engineering Education in Denmark)....

  14. Application of a pull on a disk method to measure surface tension of liquids. (United States)

    Carvalho, Thiago C; Horng, Michelle; McConville, Jason T


    The intrinsic property of liquids is a vital indicator of formulation performance and stability. Therefore, investigation of the interfacial phenomenon of surface tension is a routine procedure in the development of products in a wide variety of areas including foods, pharmaceuticals, cosmetics, and painting technologies. We hypothesize that studies related to the maximum pull on a rod can be extrapolated to disk geometry and applied to measure surface tension using a texture analyzer. A glass disk probe was attached to the arm of a texture analyzer and pulled from the liquid surface. The maximum force of detachment was used to calculate surface tension extrapolating from the theory of maximum pull on a rod. The surface tension of water, ethanol, and a hydroalcoholic solution was measured and compared with literature values to validate this hypothesis. The calculated values of surface tension for the liquids studied were within 5% of the reported values. Probe diameter appears to have an important role on surface tension accuracy compared with literature values. Slight discrepancies can be attributed to temperature control and leveling of liquid surface, although still in accordance with the reported values of surface tension measured using different methods. This study presents a simple, precise, and quick method to determine the surface tension of liquids from the maximum pull on a disk. Further studies are warranted to determine the optimum glass disk probe diameter for better accuracy.

  15. Designing a tensioning mechanism for a belt-driven integrated starter-generator system

    Energy Technology Data Exchange (ETDEWEB)

    Olatunde, A.O.; Zu, J.W. [Toronto Univ., ON (Canada)


    A belt-driven integrated starter generator (B-ISG) system was presented. Equations of motion (EOM) were used to model the system's passive twin-arm tensioner. EOMs were derived by determining moment equilibrium equations for the system's rigid bodies, as well as equations for the relationship between belt span tensions and rigid body displacements. A parametric study was conducted to evaluate the effect of the twin tensioner's parameters on the static tension of each belt span. Genetic algorithms and sequential quadratic programming (SQP) searches were conducted to determine values for the design variables needed to reduce static tension in taut and slack spans. A conventional alternator pulley design was used to model system geometry, inertia, stiffness and damping. The study showed that the twin tensioner reduced the magnitudes of the static tension for the belt spans of the ISG system. The slackest and tautest belt spans decreased and increased together during operational phases. It was concluded that additional pre-tension is required in order to compensate for slack spans in the ISG-driving phase of operation. 3 figs.

  16. Positioning of pedicle screws in adolescent idiopathic scoliosis using electromyography

    Directory of Open Access Journals (Sweden)

    Bruno Moreira Gavassi


    Full Text Available OBJECTIVE: To analyze the occurrence of poor positioning of pedicle screws inserted with the aid of intraoperative electromyographic stimulation in the treatment of Adolescent Idiopathic Scoliosis (AIS.METHODS: This is a prospective observational study including all patients undergoing surgical treatment for AIS, between March and December 2013 at a single institution. All procedures were monitored by electromyography of the inserted pedicle screws. The position of the screws was evaluated by assessment of postoperative CT and classified according to the specific AIS classification system.RESULTS: Sixteen patients were included in the study, totalizing 281 instrumented pedicles (17.5 per patient. No patient had any neurological deficit or complaint after surgery. In the axial plane, 195 screws were found in ideal position (69.4% while in the sagittal plane, 226 screws were found in ideal position (80.4%. Considering both the axial and the sagittal planes, it was observed that 59.1% (166/281 of the screws did not violate any cortical wall.CONCLUSION: The use of pedicle screws proved to be a safe technique without causing neurological damage in AIS surgeries, even with the occurrence of poor positioning of some implants.

  17. The effect of screw tunnels on the biomechanical stability of vertebral body after pedicle screws removal: a finite element analysis. (United States)

    Liu, Jia-Ming; Zhang, Yu; Zhou, Yang; Chen, Xuan-Yin; Huang, Shan-Hu; Hua, Zi-Kai; Liu, Zhi-Li


    Posterior reduction and pedicle screw fixation is a widely used procedure for thoracic and lumbar vertebrae fractures. Usually, the pedicle screws would be removed after the fracture healing and screw tunnels would be left. The aim of this study is to evaluate the effect of screw tunnels on the biomechanical stability of the lumbar vertebral body after pedicle screws removal by finite element analysis (FEA). First, the CT values of the screw tunnels wall in the fractured vertebral bodies were measured in patients whose pedicle screws were removed, and they were then compared with the values of vertebral cortical bone. Second, an adult patient was included and the CT images of the lumbar spine were harvested. Three dimensional finite element models of the L1 vertebra with unilateral or bilateral screw tunnels were created based on the CT images. Different compressive loads were vertically acted on the models. The maximum loads which the models sustained and the distribution of the force in the different parts of the models were recorded and compared with each other. The CT values of the tunnels wall and vertebral cortical bone were 387.126±62.342 and 399.204±53.612, which were not statistically different (P=0.149). The models of three dimensional tetrahedral mesh finite element of normal lumbar 1 vertebra were established with good geometric similarity and realistic appearance. After given the compressive loads, the cortical bone was the first one to reach its ultimate stress. The maximum loads which the bilateral screw tunnels model, unilateral screw tunnel model, and normal vertebral model can sustain were 3.97 Mpa, 3.83 Mpa, and 3.78 Mpa, respectively. For the diameter of the screw tunnels, the model with a diameter of 6.5 mm could sustain the largest load. In addition, the stress distributing on the outside of the cortical bone gradually decreased as the thickness of the tunnel wall increased. Based on the FEA, pedicle screw tunnels would not decrease the

  18. Screw Compressor Characteristics for Helium Refrigeration Systems (United States)

    Ganni, V.; Knudsen, P.; Creel, J.; Arenius, D.; Casagrande, F.; Howell, M.


    The oil injected screw compressors have practically replaced all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, minimal vibration, reliability and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium systems, typically two-thirds of the lost input power is due to the compression system. Therefore it is important to understand the isothermal and volumetric efficiencies of these machines to help properly design these compression systems to match the refrigeration process. This presentation summarizes separate tests that have been conducted on Sullair compressors at the Superconducting Super-Collider Laboratory (SSCL) in 1993, Howden compressors at Jefferson Lab (JLab) in 2006 and Howden compressors at the Spallation Neutron Source (SNS) in 2006. This work is part of an ongoing study at JLab to understand the theoretical basis for these efficiencies and their loss mechanisms, as well as to implement practical solutions.

  19. Screw pyrolysis technology for sewage sludge treatment. (United States)

    Tomasi Morgano, Marco; Leibold, Hans; Richter, Frank; Stapf, Dieter; Seifert, Helmut


    Sewage sludge quantities have grown continuously since the introduction of the European Directive (UWWTD 91/271/EEC) relating to the treatment of urban wastewater. In the present, most of the sewage sludge is combusted in single fuels incineration plants or is co-fired in waste incineration or coal power plants. The combustion of sewage sludge is a proven technology. Other treatments, such as fluidized bed gasification, were successfully adopted to produce suitable syngas for power production. Besides, the number of large wastewater treatment plants is relatively small compared to the local rural ones. Moreover, alternative technologies are arising with the main target of nutrients recovery, with a special focus on phosphorus. The aforementioned issues, i.e. the small scale (below 1MW) and the nutrients recovery, suggest that pyrolysis in screw reactors may become an attractive alternative technology for sewage sludge conversion, recovery and recycling. In this work, about 100kg of dried sewage sludge from a plant in Germany were processed at the newly developed STYX Reactor, at KIT. The reactor combines the advantages of screw reactors with the high temperature filtration, in order to produce particle and ash free vapors and condensates, respectively. Experiments were carried out at temperatures between 350°C and 500°C. The yield of the char decreased from 66.7wt.% to 53.0wt.%. The same trend was obtained for the energy yield, while the maximum pyrolysis oil yield of 13.4wt.% was obtained at 500°C. Besides mercury, the metals and the other minerals were completely retained in the char. Nitrogen and sulfur migrated from the solid to the condensate and to the gas, respectively. Based on the energy balance, a new concept for the decentral production of char as well as heat and power in an externally fired micro gas turbine showed a cogeneration efficiency up to about 40%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Predicting rolling screw mechanisms service life

    Directory of Open Access Journals (Sweden)

    D. S. Blinov


    Full Text Available Ball screw mechanisms (BSM and planetary roller screw mechanisms (PRSM belong to promising energy-saving mechanisms converting rotary motion into linear motion. To calculate and design these mechanisms the static and dynamic load capacities are used. In case a standard size of the mechanism to be designed is available in manufacturer’s catalog, the specified load capacities can be taken from the catalog, and if not, then the static load for the mechanism being designed can be calculated. To determine the dynamic load capacity, long-term and costly experimental studies are to be conducted. Therefore, the crucial task is to forecast the BSM and PRSM dynamic load capacity and, further, the service life of these mechanisms. As follows from the analysis of information provided in manufacturers’ catalogs, there were established correlative relationships of static and dynamic load capacities for BSM and PRSM with the parameters determining their standard sizes. Using these relationships and methods of power regression enable us to obtain empirical dependences linking the factor equal to the ratio of static load capacity to dynamic load capacity with parameters defining standard sizes of the mechanisms. To predict BSM and PRSM service lives the said ratio is calculated using the empirical dependence, static load capacity of the mechanism being designed is determined by means of calculation using known procedures, and then dynamic load capacity is determined as the quotient of static load capacity division by the said factor. Then, having determined the equivalent load acting on the mechanism being designed the service life value is predicted based on known procedures. The developed procedure for predicting dynamic load capacity and service life can be used for calculation of newly developed BSM and PRSM designs when determining reasonable parameters of these mechanisms and their parts. The article cites an example of forecasting PRSM service life

  1. Sources of hyperbolic geometry

    CERN Document Server

    Stillwell, John


    This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

  2. Design of platform for removing screws from LCD display shields (United States)

    Tu, Zimei; Qin, Qin; Dou, Jianfang; Zhu, Dongdong


    Removing the screws on the sides of a shield is a necessary process in disassembling a computer LCD display. To solve this issue, a platform has been designed for removing the screws on display shields. This platform uses virtual instrument technology with LabVIEW as the development environment to design the mechanical structure with the technologies of motion control, human-computer interaction and target recognition. This platform removes the screws from the sides of the shield of an LCD display mechanically thus to guarantee follow-up separation and recycle.

  3. Modelling of porous biomass pyrolysis in screw reactor (United States)

    Levin, A. A.; Kozlov, A. N.


    This paper is concerned with the development of a model of wood pyrolysis in a screw reactor as the first stage of the multistage gasification process. To prevent clinkering of particles and thermal inhomogeneities, screw-type transportation is used to transport fuel. In order to describe kinetics of pyrolysis and transport of volatiles within the wood particles and their transition to the gas phase we carried out the studies using a complex of synchronous thermal analysis. A detailed numerical modeling of pyrolyzer was performed with the Comsol Multiphysics software which makes it possible to optimize the design and operating parameters of the pyrolysis process in a screw reactor.

  4. A power recirculating test rig for ball screw endurance tests

    Directory of Open Access Journals (Sweden)

    Giberti Hermes


    Full Text Available A conceptual design of an innovative test rig for endurance tests of ball screws is presented in this paper. The test rig layout is based on the power recirculating principle and it also allows to overtake the main critical issues of the ball screw endurance tests. Among these there are the high power required to make the test, the lengthy duration of the same and the high loads between the screw and the frame that holds it. The article describes the test rig designed scheme, the kinematic expedients to be adopted in order to obtain the required performance and functionality and the sizing procedure to choose the actuation system.

  5. Noninvasive method for retrieval of broken dental implant abutment screw

    Directory of Open Access Journals (Sweden)

    Jagadish Reddy Gooty


    Full Text Available Dental implants made of titanium for replacement of missing teeth are widely used because of ease of technical procedure and high success rate, but are not free of complications and may fail. Fracturing of the prosthetic screw continues to be a problem in restorative practice and great challenge to remove the fractured screw conservatively. This case report describes and demonstrates the technique of using an ultrasonic scaler in the removal of the fracture screw fragment as a noninvasive method without damaging the hex of implants.

  6. [Positions of Sustentacular Screw in Osteosynthesis of Calcaneal Fractures: Clinical and Radiographic Study]. (United States)

    Pazour, J; Křivohlávek, M; Lukáš, R


    PURPOSE OF THE STUDY The aim of the study was to analyse the options for sustentacular screw placement in osteosynthesis of intra-articular fractures of the heel bone and to assess the effect of various screw positions on failure to maintain the reduction in the postoperative period. In addition, problems related to screw-end protrusion over the medial cortical bone or to screw penetration into the talocalcaneal joint were assessed. MATERIAL AND METHODS The group comprised 23 patients with a total of 25 intra-articular fractures of the heel bone treated by surgery. The procedure involved insertion of a sustentacular screw under fluoroscopic guidance. Post-operatively, screw position in the sustentacular fragment was evaluated on CT scans. During follow-up, attention was focused on the effect of screw placement on maintenance of fracture reduction, and clinical symptoms potentially associated with screw malposition were recorded. RESULTS All sustentacular screws were fixed sustentacular fragments. Seven screws (28%) were inserted in the talar shelf, seven (28%) were placed under and nine (36%) over the sustentaculum tali. Two screws penetrated into the talocalcaneal joint (8%). The end of a screw projecting by 2 mm over the medial wall of the calcaneus was found in 11 cases (44%). Two patients with screws penetrating into the talocalcaneal joint had problems. On the other hand, no clinical effect of a screw extending over the medial wall of the calcaneus was recorded. No significant association of screw position with late //delayed failure of fracture reduction was detected. DISCUSSION Although the ideal trajectory for a sustentacular screw have been defined using a model of the calcaneus, it is not easy to achieve optimal screw placement due to the complex anatomy of the calcaneus and limited possibilities of intra-operative control of screw insertion. Any sustentacular screw malposition is a potential risk factor, particularly if the screw has penetrated into the

  7. A Reduced Order Model of Force Displacement Curves for the Failure of Mechanical Bolts in Tension.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Keegan J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry causes issues when generating a mesh of the model. This report will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  8. Preliminary Design on Screw Press Model of Palm Oil Extraction Machine (United States)

    Firdaus, Muhammad; Salleh, S. M.; Nawi, I.; Ngali, Z.; Siswanto, W. A.; Yusup, E. M.


    The concept of the screw press is to compress the fruit bunch between the main screw and travelling cones to extract the palm oil. Visual inspection, model development and simulation of screw press by using Solidworks 2016 and calculation of design properties were performed to support the investigation. The project aims to analyse different design of screw press which improves in reducing maintenance cost and increasing lifespan. The currently existing of screw press can endure between 500 to 900 hours and requires frequent maintenance. Different configurations have been tried in determination of best design properties in screw press. The results specify that screw press with tapered inner shaft has more total lifespan (hours) compared existing screw press. The selection of the screw press with tapered inner shaft can reduce maintenance cost and increase lifespan of the screw press.

  9. Students Discovering Spherical Geometry Using Dynamic Geometry Software (United States)

    Guven, Bulent; Karatas, Ilhan


    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  10. Geometry of hypersurfaces

    CERN Document Server

    Cecil, Thomas E


    This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...

  11. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang


    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  12. Lectures on discrete geometry

    CERN Document Server


    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  13. Geometry and Cloaking Devices (United States)

    Ochiai, T.; Nacher, J. C.


    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  14. Measurement of Tip Apex Distance and Migration of Lag Screws and Novel Blade Screw Used for the Fixation of Intertrochanteric Fractures.

    Directory of Open Access Journals (Sweden)

    Jesse Chieh-Szu Yang

    Full Text Available Fixation with a dynamic hip screw (DHS is one of the most common methods for stabilizing intertrochanteric fractures, except for unstable and reverse oblique fracture types. However, failure is often observed in osteoporotic patients whereby the lag screw effectively 'cuts out' through the weak bone. Novel anti-migration blades have been developed to be used in combination with a lag screw ('Blade Screw' to improve the fixation strength in osteoporotic intertrochanteric fractures. An in-vitro biomechanical study and a retrospective clinical study were performed to evaluate lag screw migration when using the novel Blade Screw and a traditional threaded DHS. The biomechanical study showed both the Blade Screw and DHS displayed excessive migration (≥10 mm before reaching 20,000 loading cycles in mild osteoporotic bone, but overall migration of the Blade Screw was significantly less (p ≤ 0.03. Among the patients implanted with a Blade Screw in the clinical study, there was no significant variation in screw migration at 3-months follow-up (P = 0.12. However, the patient's implanted with a DHS did display significantly greater migration (P<0.001 than those implanted with the Blade Screw. In conclusion, the Blade Screw stabilizes the bone fragments during dynamic loading so as to provide significantly greater resistance to screw migration in patients with mild osteoporosis.

  15. Tension type headaches: a review

    African Journals Online (AJOL)

    Acetaminophen (paracetamol) 500-1 000 mg and aspirin 500-. 1 000 mg, have been demonstrated to be an effective first-line treatment for episodic tension-type headaches in most placebo- controlled trials. 23,24 Fast absorptive formulations of the latter are preferred for rapidity of action.25 It is worth noting that these.

  16. Abolishing the maximum tension principle

    Directory of Open Access Journals (Sweden)

    Mariusz P. Da̧browski


    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  17. Headache (chronic tension-type). (United States)

    Krishnan, Anita; Silver, Nicholas


    Chronic tension-type headache (CTTH) is a disorder that evolves from episodic tension-type headache, with daily or very frequent episodes of headache lasting minutes to days. It affects 4.1% of the general population in the USA, and is more prevalent in women (up to 65% of cases). We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments for chronic tension-type headache? What are the effects of non-drug treatments for chronic tension-type headache? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2007 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 50 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review, we present information relating to the effectiveness and safety of the following interventions: acupuncture; amitriptyline; analgesics; anticonvulsant drugs; benzodiazepines; botulinum toxin; chiropractic and osteopathic manipulations; cognitive behavioural therapy (CBT); Indian head massage; mirtazapine; relaxation and electromyographic biofeedback; selective serotonin reuptake inhibitor antidepressants (SSRIs); and tricyclic antidepressants (other than amitriptyline).



    Ismet Ibishi; Ahmet Latifi; Gzim Ibishi; Kadri Sejdiu; Melihate Shala-Galica; Bekim Latifi


    In this paper is done the explanation on tension fashion of the belt conveyor which is employed in Kosovo Energy Corporation – KEK, for coal transportation to provide electric power plant. The aim of the paper enables to recognize tension forces not to pass with deformation of belt so that this problem will damage the workingprocess. Work principle is based on initial tension and tension during working process. The fact is known that the tension starts from the carriage on the way to tension ...

  19. Geometry and symmetry

    CERN Document Server

    Yale, Paul B


    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  20. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, L P


    The use of the differential geometry of a Riemannian space in the mathematical formulation of physical theories led to important developments in the geometry of such spaces. The concept of parallelism of vectors, as introduced by Levi-Civita, gave rise to a theory of the affine properties of a Riemannian space. Covariant differentiation, as developed by Christoffel and Ricci, is a fundamental process in this theory. Various writers, notably Eddington, Einstein and Weyl, in their efforts to formulate a combined theory of gravitation and electromagnetism, proposed a simultaneous generalization o

  1. Geometry in everyday life


    Graumann, Günter; Blum, Werner


    My conception of "practice-oriented-mathematical-education", which must be seen as one point of view side-by-side with others, has the aim to qualify pupils to master life and is based on a method of working on problems which are true to life. Therefore I plead for geometry teaching, where the formation of sound geometric concepts and the relevance of applications of geometry in everyday life is important. After discussing this conception a schedule of activities of everyday life where geomet...

  2. Geometry of manifolds

    CERN Document Server

    Bishop, Richard L


    First published in 1964, this book served as a text on differential geometry to several generations of graduate students all over the world. The first half of the book (Chapters 1-6) presents basics of the theory of manifolds, vector bundles, differential forms, and Lie groups, with a special emphasis on the theory of linear and affine connections. The second half of the book (Chapters 7-11) is devoted to Riemannian geometry. Following the definition and main properties of Riemannian manifolds, the authors discuss the theory of geodesics, complete Riemannian manifolds, and curvature. Next, the

  3. A study of concentrated acid hydrolysis conversion of lignocellulosic materials to sugars using a co-rotating twin-screw reactor extruder and plug flow reactor (United States)

    Miller, William Scott

    conducted in the previous studies. From this experimentation it is believed that the current conversion yields achievable are limited by the twin-screw geometry used. Future screw designs that incorporate a tapered screw intermeshing depth will compensate for solids to liquids conversions as the extrudate travels the length of the screw. This will ensure that the extrudate receives the necessary shear forces to produce higher lignocellulosic solubilization.

  4. Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. (United States)

    Brasiliense, Leonardo B C; Lazaro, Bruno C R; Reyes, Phillip M; Newcomb, Anna G U S; Turner, Joseph L; Crandall, Dennis G; Crawford, Neil R


    Novel dual-threaded screws are configured with overlapping (doubled) threads only in the proximal shaft to improve proximal cortical fixation. Tests were run to determine whether dual-threaded pedicle screws improve pullout resistance and increase fatigue endurance compared with standard pedicle screws. In vitro strength and fatigue tests were performed in human cadaveric vertebrae and in polyurethane foam test blocks. Seventeen cadaveric lumbar vertebrae (14 pedicles) and 40 test sites in foam blocks were tested. Measures for comparison between standard and dual-threaded screws were bone mineral density (BMD), screw insertion torque, ultimate pullout force, peak load at cyclic failure, and pedicular side of first cyclic failure. For each vertebral sample, dual-threaded screws were inserted in one pedicle and single-threaded screws were inserted in the opposite pedicle while recording insertion torque. In seven vertebrae, axial pullout tests were performed. In 10 vertebrae, orthogonal loads were cycled at increasing peak values until toggle exceeded threshold for failure. Insertion torque and pullout force were also recorded for screws placed in foam blocks representing healthy or osteoporotic bone porosity. In bone, screw insertion torque was 183% greater with dual-threaded than with standard screws (pscrews pulled out at 93% of the force required to pull out dual-threaded screws (p=.42). Of 10 screws, five reached toggle failure first on the standard screw side, two screws failed first on the dual-threaded side, and three screws failed on both sides during the same round of cycling. In the high-porosity foam, screw insertion torque was 60% greater with the dual-threaded screw than with the standard screw (p=.005), but 14% less with the low-porosity foam (p=.07). Pullout force was 19% less with the dual-threaded screw than with the standard screw in the high-porosity foam (p=.115), but 6% greater with the dual-threaded screw in the low-porosity foam (p=.156

  5. Odontoid screw fixation for fresh and remote fractures

    National Research Council Canada - National Science Library

    Rao, Ganesh; Apfelbaum, Ronald I


    .... If a patient requires surgical treatment of an odontoid process fracture, the timing of treatment may affect fusion rates, particularly if direct anterior odontoid screw fixation is selected as the treatment method...

  6. Kinematic analysis of parallel manipulators by algebraic screw theory

    CERN Document Server

    Gallardo-Alvarado, Jaime


    This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...

  7. Centrifuging Step-Screw Conveyor for Regolith Project (United States)

    National Aeronautics and Space Administration — A variety of ISRU operations will utilize lunar regolith as feedstock. The proposed centrifuging step-screw conveyor concept will provide a well controlled robust,...

  8. Lumbar pedicle screw placement: Using only AP plane imaging

    Directory of Open Access Journals (Sweden)

    Anil Sethi


    Conclusion: Placement of pedicle screws under fluoroscopic guidance using AP plane imaging alone with tactile guidance is safe, fast, and reliable. However, a good understanding of the radiographic landmarks is a prerequisite.

  9. Core vs. Bulk Samples in Soil-Moisture Tension Analyses (United States)

    Walter M. Broadfoot


    The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...

  10. Biomechanical efficacy of monoaxial or polyaxial pedicle screw and additional screw insertion at the level of fracture, in lumbar burst fracture: An experimental study

    National Research Council Canada - National Science Library

    Wang, Hongwei; Li, Changqing; Liu, Tao; Zhao, Wei-Dong; Zhou, Yue


    Use of a pedicle screw at the level of fracture, also known as an intermediate screw, has been shown to improve clinical results in managing lumbar fracture, but there is a paucity of biomechanical...

  11. Implosions and hypertoric geometry

    DEFF Research Database (Denmark)

    Dancer, A.; Kirwan, F.; Swann, A.


    The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

  12. Foundations of Basic Geometry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Foundations of Basic Geometry. Jasbir S Chahal. General Article Volume 11 Issue 7 July 2006 pp 30-41. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords. Area ...

  13. Non-euclidean geometry

    CERN Document Server

    Coxeter, HSM


    This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.

  14. Diophantine geometry an introduction

    CERN Document Server

    Hindry, Marc


    This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

  15. Towards relativistic quantum geometry

    Directory of Open Access Journals (Sweden)

    Luis Santiago Ridao


    Full Text Available We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  16. Calculus and Geometry

    Indian Academy of Sciences (India)

    IAS Admin

    face area and perimeter of various shapes like sphere, cone, cylinder and circle. But an equally important geo- metric object `torus' { a shape like a scooter tube or a doughnut { is not discussed in school geometry. This is perhaps due to the non availability of this shape at the time when Archimedes (287 BC{212 BC) was ...

  17. Geometry Euclid and beyond

    CERN Document Server

    Hartshorne, Robin


    In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

  18. History of analytic geometry

    CERN Document Server

    Boyer, Carl B


    Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

  19. Geometry and physics (United States)

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel


    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  20. Geometry and physics

    NARCIS (Netherlands)

    Atiyah, M.; Dijkgraaf, R.; Hitchin, N.


    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology.

  1. Algebraic geometry in India

    Indian Academy of Sciences (India)

    revolutionised by the introduction of new con- cepts and techniques by Grothendieck and others; this progress has been instrumental in solving outstanding and famous problems not only in algebraic geometry but also in related fields like number theory. Mathematicians from India have made influ- ential and extensive ...

  2. Origami, Geometry and Art (United States)

    Wares, Arsalan; Elstak, Iwan


    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  3. Sliding vane geometry turbines (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R


    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  4. Proyeksi Geometri Fuzzy pada Ruang

    Directory of Open Access Journals (Sweden)

    Muhammad Izzat Ubaidillah


    Full Text Available Fuzzy geometry is an outgrowth of crisp geometry, which in crisp geometry elements are exist and not exist, but also while on fuzzy geometry elements are developed by thickness which is owned by each of these elements. Crisp projective geometries is the formation of a shadow of geometries element projected on the projectors element, with perpendicular properties which are represented by their respective elemental, the discussion focused on the results of the projection coordinates. While the fuzzy projective geometries have richer discussion, which includes about coordinates of projection results, the mutual relation of each element and the thickness of each element. This research was conducted to describe and analyzing procedure fuzzy projective geometries on the plane and explain the differences between crisp projective geometries and fuzzy projective geometries on plane.

  5. Determination of wall tension in cerebral artery aneurysms by numerical simulation

    DEFF Research Database (Denmark)

    Isaksen, J.G.; Bazilevs, Y.; Kvamsdal, T.


    BACKGROUND AND PURPOSE: Cerebral artery aneurysms rupture when wall tension exceeds the strength of the wall tissue. At present, risk-assessment of unruptured aneurysms does not include evaluation of the lesions shape, yet clinical experience suggests that this is of importance. We aimed to develop...... a computational model for simulation of fluid-structure interaction in cerebral aneurysms based on patient specific lesion geometry, with special emphasis on wall tension. METHODS: An advanced isogeometric fluid-structure analysis model incorporating flexible aneurysm wall based on patient specific computed...... tomography angiogram images was developed. Variables used in the simulation model were retrieved from a literature review. RESULTS: The simulation results exposed areas of high wall tension and wall displacement located where aneurysms usually rupture. CONCLUSIONS: We suggest that analyzing wall tension...

  6. [Surgical treatment of inferior pole comminuted fractures of patella with new type tension band]. (United States)

    Sun, B; Zhang, Z S; Zhou, F; Tian, Y; Ji, H Q; Guo, Y; Lv, Y; Yang, Z W


    To study the effectiveness of inferior pole fracture of patella treating by the new tension band. From Dec. 2011 to Dec. 2013, 21 patients with inferior pole fracture of patella were treated with the new tension band which consisted of cannulated screw, titanium cable and shims. There were 21 patients[10 males, 11 females, the average age was 54 years(21 to 79)],of whom,all were "fell on knees". The average operation time was 89 min (57-197 min),the follow-up visits were done from 7-31 months (average 18 months), the bone healing time was from 8-12 weeks (average 10.5 weeks). The post operation assessment was done by Bostman score, from 20-30 (average 27),10 excellent,and 11 good. No complication occurred. The new tension band is the effective treatment for inferior pole fracture of patella. The internal fixation is reliable, it is simple to operate, and patients can take exercises as early as possible. Therefore, the new tension band has a better clinical value.

  7. Recognition of Kinematic Joints of 3D Assembly Models Based on Reciprocal Screw Theory

    Directory of Open Access Journals (Sweden)

    Tao Xiong


    Full Text Available Reciprocal screw theory is used to recognize the kinematic joints of assemblies restricted by arbitrary combinations of geometry constraints. Kinematic analysis is common for reaching a satisfactory design. If a machine is large and the incidence of redesign frequent is high, then it becomes imperative to have fast analysis-redesign-reanalysis cycles. This work addresses this problem by providing recognition technology for converting a 3D assembly model into a kinematic joint model, which is represented by a graph of parts with kinematic joints among them. The three basic components of the geometric constraints are described in terms of wrench, and it is thus easy to model each common assembly constraint. At the same time, several different types of kinematic joints in practice are presented in terms of twist. For the reciprocal product of a twist and wrench, which is equal to zero, the geometry constraints can be converted into the corresponding kinematic joints as a result. To eliminate completely the redundant components of different geometry constraints that act upon the same part, the specific operation of a matrix space is applied. This ability is useful in supporting the kinematic design of properly constrained assemblies in CAD systems.

  8. Screw driver: an unusual cause of cervical spinal cord injury (United States)

    Rabiu, Taopheeq Bamidele; Aremu, Abayomi Adeniran; Amao, Olusegun Adetunji; Awoleke, Jacob Olumuyiwa


    Non-missile penetrating spinal injuries are rare. Screw driver injury, more especially to the cervical spine, represents an even rarer subset. To our knowledge, this is the first reported case from West Africa of cervical spinal cord injury from a screw driver. A middle-aged man was stabbed from the back with a screw driver. He presented with right-sided C4 Brown-Sequard syndrome with the impaling object in situ. Cervical spine x-rays showed the screw driver to have gone into the spine between the spinous processes of C4 and C5, traversing the spinal canal and lodged in the anterior part of the C4/5 intervertebral disc space. C4 and C5 laminectomies were performed and the screw driver removed under vision. The object was found to have traversed the right side of the cervical spinal cord. The dural tear was repaired. He had some neurologic improvement initially, but later declined. He died from severe pulmonary complications 2 weeks postinjury. Screw driver represents an unusual cause of non-missile penetrating cervical spinal injury. Its neurological effects and complications of the cord injury lead to significant morbidity and mortality. PMID:22679187

  9. Actin cortex architecture regulates cell surface tension. (United States)

    Chugh, Priyamvada; Clark, Andrew G; Smith, Matthew B; Cassani, Davide A D; Dierkes, Kai; Ragab, Anan; Roux, Philippe P; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K


    Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.

  10. Light Scattering by Surface Tension Waves. (United States)

    Weisbuch, G.; Garbay, F.


    This simple and inexpensive experiment is an illustration of the physical concepts of interaction between light and surface tension waves, and provides a new method of measuring surface tension. (Author/GA)


    Some 200 surface tension determinations were made on 107 single-salt melts using eight experimental techniques. From a consideration of the... surface tension range of applicability and temperature limitation for these techniques are briefly considered.

  12. A TOGgle for Tension at Kinetochores


    Cheerambathur, Dhanya K.; Prevo, Bram; Desai, Arshad


    Differential stability of kinetochore-microtubule attachments at low versus high tension is critical for accurate chromosome segregation. Miller et al. find that a TOG domain microtubule-binding protein imparts intrinsic tension selectivity to kinetochore-microtubule attachments.

  13. Pullout strength of misplaced pedicle screws in the thoracic and lumbar vertebrae - A cadaveric study

    Directory of Open Access Journals (Sweden)

    Shyam K Saraf


    Full Text Available Background: The objective of this cadaveric study was to analyze the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of lower thoracic and lumbar pedicle screws. We also investigated the effect of bone mineral density (BMD, diameter of pedicle screws, and the region of spine on the pullout strength of pedicle screws. Materials and Methods: Sixty fresh human cadaveric vertebrae (D10-L2 were harvested. Dual-energy X-ray absorptiometry (DEXA scan of vertebrae was done for BMD. Titanium pedicle screws of different diameters (5.2 and 6.2 mm were inserted in the thoracic and lumbar segments after dividing the specimens into three groups: a standard pedicle screw (no cortical perforation; b screw with medial cortical perforation; and c screw with lateral cortical perforation. Finally, pullout load of pedicle screws was recorded using INSTRON Universal Testing Machine. Results: Compared with standard placement, medially misplaced screws had 9.4% greater mean pullout strength and laterally misplaced screws had 47.3% lesser mean pullout strength. The pullout strength of the 6.2 mm pedicle screws was 33% greater than that of the 5.2 mm pedicle screws. The pullout load of pedicle screws in lumbar vertebra was 13.9% greater than that in the thoracic vertebra ( P = 0.105, but it was not statistically significant. There was no significant difference between pullout loads of vertebra with different BMD ( P = 0.901. Conclusion: The mean pullout strength was less with lateral misplaced pedicle screws while medial misplaced pedicle screw had more pullout strength. The pullout load of 6.2 mm screws was greater than that of 5.2 mm pedicle screws. No significant correlation was found between bone mineral densities and the pullout strength of vertebra. Similarly, the pullout load of screw placed in thoracic and lumbar vertebrae was not significantly different.

  14. Planning, guidance, and quality assurance of pelvic screw placement using deformable image registration (United States)

    Goerres, J.; Uneri, A.; Jacobson, M.; Ramsay, B.; De Silva, T.; Ketcha, M.; Han, R.; Manbachi, A.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.


    Percutaneous pelvic screw placement is challenging due to narrow bone corridors surrounded by vulnerable structures and difficult visual interpretation of complex anatomical shapes in 2D x-ray projection images. To address these challenges, a system for planning, guidance, and quality assurance (QA) is presented, providing functionality analogous to surgical navigation, but based on robust 3D–2D image registration techniques using fluoroscopy images already acquired in routine workflow. Two novel aspects of the system are investigated: automatic planning of pelvic screw trajectories and the ability to account for deformation of surgical devices (K-wire deflection). Atlas-based registration is used to calculate a patient-specific plan of screw trajectories in preoperative CT. 3D–2D registration aligns the patient to CT within the projective geometry of intraoperative fluoroscopy. Deformable known-component registration (dKC-Reg) localizes the surgical device, and the combination of plan and device location is used to provide guidance and QA. A leave-one-out analysis evaluated the accuracy of automatic planning, and a cadaver experiment compared the accuracy of dKC-Reg to rigid approaches (e.g. optical tracking). Surgical plans conformed within the bone cortex by 3–4 mm for the narrowest corridor (superior pubic ramus) and  >5 mm for the widest corridor (tear drop). The dKC-Reg algorithm localized the K-wire tip within 1.1 mm and 1.4° and was consistently more accurate than rigid-body tracking (errors up to 9 mm). The system was shown to automatically compute reliable screw trajectories and accurately localize deformed surgical devices (K-wires). Such capability could improve guidance and QA in orthopaedic surgery, where workflow is impeded by manual planning, conventional tool trackers add complexity and cost, rigid tool assumptions are often inaccurate, and qualitative interpretation of complex anatomy from 2D projections is prone to trial

  15. Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study

    Directory of Open Access Journals (Sweden)

    Herrera Antonio


    Full Text Available Abstract Background Primary stability of the graft is essential in anterior cruciate ligament surgery. An optimal method of fixation should be easy to insert and provide great resistance against pull-out forces. A controlled laboratory study was designed to test the primary stability of ACL tendinous grafts in the tibial tunnel. The correlation between resistance to traction forces and the cross-section and length of the screw was studied. Methods The tibial phase of ACL reconstruction was performed in forty porcine tibias using digital flexor tendons of the same animal. An 8 mm tunnel was drilled in each specimen and two looped tendons placed as graft. Specimens were divided in five groups according to the diameter and length of the screw used for fixation. Wedge interference screws were used. Longitudinal traction was applied to the graft with a Servohydraulic Fatigue System. Load and displacement were controlled and analyzed. Results The mean loads to failure for each group were 295,44 N (Group 1; 9 × 23 screw, 564,05 N (Group 2; 9 × 28, 614,95 N (Group 3; 9 × 35, 651,14 N (Group 4; 10 × 28 and 664,99 (Group 5; 10 × 35. No slippage of the graft was observed in groups 3, 4 and 5. There were significant differences in the load to failure among groups (ANOVA/P Conclusions Longer and wider interference screws provide better fixation in tibial ACL graft fixation. Short screws (23 mm do not achieve optimal fixation and should be implanted only with special requirements.

  16. Timing of PMMA cement application for pedicle screw augmentation affects screw anchorage. (United States)

    Schmoelz, Werner; Heinrichs, Christian Heinz; Schmidt, Sven; Piñera, Angel R; Tome-Bermejo, Felix; Duart, Javier M; Bauer, Marlies; Galovich, Luis Álvarez


    Cement augmentation is an established method to increase the pedicle screw (PS) anchorage in osteoporotic vertebral bodies. The ideal timing for augmentation when a reposition maneuver is necessary is controversial. While augmentation of the PS before reposition maneuver may increase the force applied it on the vertebrae, it bears the risk to impair PS anchorage, whereas augmenting the PS after the maneuver may restore this anchorage and prevent early screw loosening. The purpose of the present study was to evaluate the effect of cement application timing on PS anchorage in the osteoporotic vertebral body. Ten lumbar vertebrae (L1-L5) were used for testing. The left and right pedicles of each vertebra were instrumented with the same PS size and used for pairwise comparison of the two timing points for augmentation. For the reposition maneuver, the left PS was loaded axially under displacement control (2 × ±2 mm, 3 × ±6 mm, 3 × ±10 mm) to simulate a reposition maneuver. Subsequently, both PS were augmented with 2 ml PMMA cement. The same force as measured during the left PS maneuver was applied to the previously augmented right hand side PS [2 × F (±2 mm), 3 × F (±6 mm), 3 × F (±10 mm)]. Both PS were cyclically loaded with initial forces of +50 and -50 N, while the lower force was increased by 5 N every 100 cycles until total failure of the PS. The PS motion was measured with a 3D motion analysis system. After cyclic loading stress, X-rays were taken to identify the PS loosening mechanism. In comparison with PS augmented prior to the reposition maneuver, PS augmented after the reposition maneuver showed a significant higher number of load cycles until failure (5930 ± 1899 vs 3830 ± 1706, p = 0.015). The predominant loosening mechanism for PS augmented after the reposition maneuver was PS toggling with the attached cement cloud within the trabecular bone. While PS augmented prior to the reposition, maneuver showed a motion of

  17. Intraoperative Development of Tension Pneumocephalus in a ...

    African Journals Online (AJOL)

    Included is a literature review of studies discussing the role of N2O in the development of tension pneumocephalus. N2O is associated with tension pneumocephalus especially in the setting of preexisting pneumocephalus. Tension pneumocephalus can manifest as Cushing response and immediate decompression is ...

  18. The Plastic Tension Field Method

    DEFF Research Database (Denmark)

    Hansen, Thomas


    . The emphasis is attached to the presentation of a design method based on the diagonal tension field theory. Also, how to determine the load-carrying capacity of a given steel plate girder with transverse web stiffeners, is briefly presented. The load-carrying capacity may be predicted by applying both......This paper describes a calculation method for steel plate girders with transverse web stiffeners subjected to shear. It may be used for predicting the failure load or, as a design method, to determine the optimal amount of internal web stiffeners. The new method is called the plastic tension field...... method. The method is based on the theory of plasticity and is analogous to the so-called diagonal compression field method developed for reinforced concrete beams with transverse stirrups, which is adopted in the common European concrete code (Eurocode 2). Many other theories have been developed...

  19. Investigation of an 11mm diameter twin screw granulator: Screw element performance and in-line monitoring via image analysis. (United States)

    Sayin, Ridade; Martinez-Marcos, Laura; Osorio, Juan G; Cruise, Paul; Jones, Ian; Halbert, Gavin W; Lamprou, Dimitrios A; Litster, James D


    As twin screw granulation (TSG) provides one with many screw element options, characterization of each screw element is crucial in optimizing the screw configuration in order to obtain desired granule attributes. In this study, the performance of two different screw elements - distributive feed screws and kneading elements - was studied in an 11 mm TSG at different liquid-to-solid (L/S) ratios. The kneading element configuration was found to break large granules more efficiently, leading to narrower granule size distributions. While pharmaceutical industry shifts toward continuous manufacturing, inline monitoring and process control are gaining importance. Granules from an 11 mm TSG were analysed using the Eyecon™, a real-time high speed direct imaging system, which has been used to capture accurate particle size distribution and particle count. The size parameters and particle count were then assessed in terms of their ability to be a suitable control measure using the Shewhart control charts. d10 and particle count were found to be good indicators of the change in L/S ratio. However, d50 and d90 did not reflect the change, due to their inherent variability even when the process is at steady state. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Robust Tensioned Kevlar Suspension Design (United States)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.


    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  1. Helical Screw Expander Evaluation Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McKay, R.


    A functional 1-MW geothermal electric power plant that featured a helical screw expander was produced and then tested in Utah in 1978 to 1979 with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing operation on two-phase geothermal fluids. The Project also produced a computer-equipped data system, an instrumentation and control van, and a 1000-kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Additional testing was performed in Mexico in 1980 under a cooperative test program using the same test array, and machine efficiency was measured at 62% maximum with the rotors partially coated with scale, compared with approximately 54% maximum in Utah with uncoated rotors, confirming the importance of scale deposits within the machine on performance. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  2. Prediction of Deformity Correction by Pedicle Screw Instrumentation in Thoracolumbar Scoliosis Surgery (United States)

    Kiriyama, Yoshimori; Yamazaki, Nobutoshi; Nagura, Takeo; Matsumoto, Morio; Chiba, Kazuhiro; Toyama, Yoshiaki

    In segmental pedicle screw instrumentation, the relationship between the combinations of pedicle screw placements and the degree of deformity correction was investigated with a three-dimensional rigid body and spring model. The virtual thoracolumbar scoliosis (Cobb’s angle of 47 deg.) was corrected using six different combinations of pedicle-screw placements. As a result, better correction in the axial rotation was obtained with the pedicle screws placed at or close to the apical vertebra than with the screws placed close to the end vertebrae, while the correction in the frontal plane was better with the screws close to the end vertebrae than with those close to the apical vertebra. Additionally, two screws placed in the convex side above and below the apical vertebra provided better correction than two screws placed in the concave side. Effective deformity corrections of scoliosis were obtained with the proper combinations of pedicle screw placements.

  3. Development and Testing of X-Ray Imaging-Enhanced Poly-L-Lactide Bone Screws.

    Directory of Open Access Journals (Sweden)

    Wei-Jen Chang

    Full Text Available Nanosized iron oxide particles exhibit osteogenic and radiopaque properties. Thus, iron oxide (Fe3O4 nanoparticles were incorporated into a biodegradable polymer (poly-L-lactic acid, PLLA to fabricate a composite bone screw. This multifunctional, 3D printable bone screw was detectable on X-ray examination. In this study, mechanical tests including three-point bending and ultimate tensile strength were conducted to evaluate the optimal ratio of iron oxide nanoparticles in the PLLA composite. Both injection molding and 3D printing techniques were used to fabricate the PLLA bone screws with and without the iron oxide nanoparticles. The fabricated screws were implanted into the femoral condyles of New Zealand White rabbits. Bone blocks containing the PLLA screws were resected 2 and 4 weeks after surgery. Histologic examination of the surrounding bone and the radiopacity of the iron-oxide-containing PLLA screws were evaluated. Our results indicated that addition of iron oxide nanoparticles at 30% significantly decreased the ultimate tensile stress properties of the PLLA screws. The screws with 20% iron oxide exhibited strong radiopacity compared to the screws fabricated without the iron oxide nanoparticles. Four weeks after surgery, the average bone volume of the iron oxide PLLA composite screws was significantly greater than that of PLLA screws without iron oxide. These findings suggested that biodegradable and X-ray detectable PLLA bone screws can be produced by incorporation of 20% iron oxide nanoparticles. Furthermore, these screws had significantly greater osteogenic capability than the PLLA screws without iron oxide.

  4. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N


    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  5. Maximum load to failure and tensile displacement of an all-suture glenoid anchor compared with a screw-in glenoid anchor. (United States)

    Dwyer, Tim; Willett, Thomas L; Dold, Andrew P; Petrera, Massimo; Wasserstein, David; Whelan, Danny B; Theodoropoulos, John S


    The purpose of this study was to evaluate the biomechanical behavior of an all-suture glenoid anchor in comparison with a more conventional screw-in glenoid anchor, with regard to maximum load to failure and tensile displacement. All mechanical testing was performed using an Instron ElectroPuls E1000 mechanical machine, with a 10 N pre-load and displacement rate of 10 mm/min. Force-displacement curves were generated, with calculation of maximum load, maximum displacement, displacement at 50 N and stiffness. Pretesting of handset Y-Knots in bone analog models revealed low force displacement below 60 N of force. Subsequently, three groups of anchors were tested for pull out strength in bovine bone and cadaver glenoid bone: a bioabsorbable screw-in anchor (Bio Mini-Revo, ConMed Linvatec), a handset all-suture anchor (Y-Knot, ConMed Linvatec) and a 60 N pre-tensioned all-suture anchor (Y-Knot). A total of 8 anchors from each group was tested in proximal tibia of bovine bone and human glenoids (age range 50-90). In bovine bone, the Bio Mini-Revo displayed greater maximum load to failure (206 ± 77 N) than both the handset (140 ± 51 N; P = 0.01) and the pre-tensioned Y-Knot (135 ± 46 N; P = 0.001); no significant difference was seen between the three anchor groups in glenoid bone. Compared to the screw-in anchors, the handset all-suture anchor displayed inferior fixation, early displacement and greater laxity in the bovine bone and cadaveric bone (P suture anchor to 60 N eliminated this behavior in all bone models. Handset Y-Knots display low force anchor displacement, which is likely due to slippage in the pilot hole. Pre-tensioning the Y-Knot to 60 N eliminates this behavior. I.

  6. Microfluidic step-emulsification in axisymmetric geometry. (United States)

    Chakraborty, I; Ricouvier, J; Yazhgur, P; Tabeling, P; Leshansky, A M


    Biphasic step-emulsification (Z. Li et al., Lab Chip, 2015, 15, 1023) is a promising microfluidic technique for high-throughput production of μm and sub-μm highly monodisperse droplets. The step-emulsifier consists of a shallow (Hele-Shaw) microchannel operating with two co-flowing immiscible liquids and an abrupt expansion (i.e., step) to a deep and wide reservoir. Under certain conditions the confined stream of the disperse phase, engulfed by the co-flowing continuous phase, breaks into small highly monodisperse droplets at the step. Theoretical investigation of the corresponding hydrodynamics is complicated due to the complex geometry of the planar device, calling for numerical approaches. However, direct numerical simulations of the three dimensional surface-tension-dominated biphasic flows in confined geometries are computationally expensive. In the present paper we study a model problem of axisymmetric step-emulsification. This setup consists of a stable core-annular biphasic flow in a cylindrical capillary tube connected co-axially to a reservoir tube of a larger diameter through a sudden expansion mimicking the edge of the planar step-emulsifier. We demonstrate that the axisymmetric setup exhibits similar regimes of droplet generation to the planar device. A detailed parametric study of the underlying hydrodynamics is feasible via inexpensive (two dimensional) simulations owing to the axial symmetry. The phase diagram quantifying the different regimes of droplet generation in terms of governing dimensionless parameters is presented. We show that in qualitative agreement with experiments in planar devices, the size of the droplets generated in the step-emulsification regime is independent of the capillary number and almost insensitive to the viscosity ratio. These findings confirm that the step-emulsification regime is solely controlled by surface tension. The numerical predictions are in excellent agreement with in-house experiments with the axisymmetric

  7. Biomechanical comparison of two locking plate constructs under cyclic torsional loading in a fracture gap model. Two screws versus three screws per fragment. (United States)

    Bilmont, A; Palierne, S; Verset, M; Swider, P; Autefage, A


    The number of locking screws required per fragment during bridging osteosynthesis in the dog has not been determined. The purpose of this study was to assess the survival of two constructs, with either two or three screws per fragment, under cyclic torsion. Ten-hole 3.5 mm stainless steel locking compression plates (LCP) were fixed 1 mm away from bone surrogates with a fracture gap of 47 mm using two bicortical locking screws (10 constructs) or three bicortical locking screws (10 constructs) per fragment, placed at the extremities of each LCP. Constructs were tested in cyclic torsion (range: 0 to +0.218 rad) until failure. The 3-screws constructs (29.65 ± 1.89 N.m/rad) were stiffer than the 2-screws constructs (23.73 ± 0.87 N.m/rad), and therefore, were subjected to a greater torque during cycling (6.05 ± 1.33 N.m and 4.88 ± 1.14 N.m respectively). The 3-screws constructs sustained a significantly greater number of cycles (20,700 ± 5,735 cycles) than the 2-screws constructs (15,600 ± 5,272 cycles). In most constructs, failure was due to screw damage at the junction of the shaft and head. The remaining constructs failed because of screw head unlocking, sometimes due to incomplete seating of the screw head prior to testing. Omitting the third innermost locking screw during bridging osteosynthesis led to a reduction in fatigue life of 25% and construct stiffness by 20%. Fracture of the screws is believed to occur sequentially, starting with the innermost screw that initially shields the other screws.

  8. Curved geometry and Graphs

    CERN Document Server

    Caravelli, Francesco


    Quantum Graphity is an approach to quantum gravity based on a background independent formulation of condensed matter systems on graphs. We summarize recent results obtained on the notion of emergent geometry from the point of view of a particle hopping on the graph. We discuss the role of connectivity in emergent Lorentzian perturbations in a curved background and the Bose--Hubbard (BH) model defined on graphs with particular symmetries.

  9. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri


    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  10. Emergent geometry, emergent forces (United States)

    Selesnick, S. A.


    We give a brief account of some aspects of Finkelstein’s quantum relativity, namely an extension of it that derives elements of macroscopic geometry and the Lagrangians of the standard model including gravity from a presumed quantum version of spacetime. These emerge as collective effects in this quantal substrate. Our treatment, which is largely self-contained, differs mathematically from that originally given by Finkelstein. Dedicated to the memory of David Ritz Finkelstein

  11. Integral geometry and valuations

    CERN Document Server

    Solanes, Gil


    Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...

  12. Emergent complex network geometry. (United States)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra


    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  13. Equilibrium states and stability of pre-tensioned adhesive tapes

    Directory of Open Access Journals (Sweden)

    Carmine Putignano


    Full Text Available In the present paper we propose a generalization of the model developed in Afferrante, L.; Carbone, G.; Demelio, G.; Pugno, N. Tribol. Lett. 2013, 52, 439–447 to take into account the effect of the pre-tension in the tape. A detailed analysis of the peeling process shows the existence of two possible detachment regimes: one being stable and the other being unstable, depending on the initial configuration of the tape. In the stability region, as the peeling process advances, the peeling angle reaches a limiting value, which only depends on the geometry, on the elastic modulus of the tape and on the surface energy of adhesion. Vice versa, in the unstable region, depending on the initial conditions of the system, the tape can evolve towards a state of complete detachment or fail before reaching a state of equilibrium with complete adhesion. We find that the presence of pre-tension in the tape does not modify the stability behavior of the system, but significantly affects the pull-off force which can be sustained by the tape before complete detachment. Moreover, above a critical value of the pre-tension, which depends on the surface energy of adhesion, the tape will tend to spontaneously detach from the substrate. In this case, an external force is necessary to avoid spontaneous detachment and make the tape adhering to the substrate.

  14. Influence of a Number of Screw and Nut Thread Starts of Planetary Roller-Screw Mechanisms on Their Main Parameters

    Directory of Open Access Journals (Sweden)

    D. S. Blinov


    Full Text Available One of the most important requirements imposed to the modern mechanisms is economic feasibility. Therefore, considered as advanced are mechanical transducers of rotary motion to translational one, where rolling friction is mainly realized. They include planetary roller-screw mechanisms (PRSM.PRSM has a large variety of features. The design feature of PRSM is multiple starts of screw and nut thread. Rollers, as a rule, are made single-threaded. Number of screw thread starts which equals to a number of nut thread starts, has an effect on almost all performance characteristics of PRSM.This article covers comprehensively enough the influence of screw thread starts quantity on: kinematical parameters of PRSM, transfer function, mechanism radial dimensions, efficiency, power values, required characteristics of electric motor. As a result of investigations the graphs of dimensionless parameters vs. number of screw thread starts have been plotted, which are demonstrative and common.Being high enough the PRSM efficiency can vary within 20…25% and more. It depends on a variety of mechanism part parameters; primarily on geometrical ones, as well as on a number of screw thread starts. Previously the methods of PRSM design calculation consisted in determination of the main geometric parameters of mechanism parts, then in determination of mechanism efficiency. At that, it was not always possible to design the economically feasible PRSM structure.Introduction of a dimensionless value – a relation of PRSM part thread pitch to average screw thread diameter – contributed to successive plotting of the assemblage of curves for relation of efficiency to the indicated ratio and a number of screw thread starts. By taking this assemblage of curves as a basis, the method of economically feasible PRSM structures calculation and design was proposed.  The essence of the developed method lies in that selection or definition of a number of screw thread starts helps to

  15. Small membranes under negative surface tension. (United States)

    Avital, Yotam Y; Farago, Oded


    We use computer simulations and a simple free energy model to study the response of a bilayer membrane to the application of a negative (compressive) mechanical tension. Such a tension destabilizes the long wavelength undulation modes of giant vesicles, but it can be sustained when small membranes and vesicles are considered. Our negative tension simulation results reveal two regimes-(i) a weak negative tension regime characterized by stretching-dominated elasticity and (ii) a strong negative tension regime featuring bending-dominated elastic behavior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration experiment in giant unilamellar vesicles (GUVs) [E. Evans and W. Rawicz, Phys, Rev. Lett. 64, 2094 (1990)]. However, in GUVs the crossover between the two elasticity regimes occurs at a small positive surface tension, while in smaller membranes it takes place at a moderate negative tension. Another interesting observation concerning the response of a small membrane to negative surface tension is related to the relationship between the mechanical and fluctuation tensions, which are equal to each other for non-negative values. When the tension decreases to negative values, the fluctuation tension γ drops somewhat faster than the mechanical tension τ in the small negative tension regime, before it saturates (and becomes larger than τ) for large negative tensions. The bending modulus exhibits an "opposite" trend. It remains almost unchanged in the stretching-dominated elastic regime, and decreases in the bending-dominated regime. Both the amplitudes of the thermal height undulations and the projected area variations diverge at the onset of mechanical instability.

  16. Preoperative CT planning of screw length in arthroscopic Latarjet. (United States)

    Hardy, Alexandre; Gerometta, Antoine; Granger, Benjamin; Massein, Audrey; Casabianca, Laurent; Pascal-Moussellard, Hugues; Loriaut, Philippe


    The Latarjet procedure has shown its efficiency for the treatment of anterior shoulder dislocation. The success of this technique depends on the correct positioning and fusion of the bone block. The length of the screws that fix the bone block can be a problem. They can increase the risk of non-union if too short or be the cause of nerve lesion or soft tissue discomfort if too long. Suprascapular nerve injuries have been reported during shoulder stabilisation surgery up to 6 % of the case. Bone block non-union depending on the series is found around 20 % of the cases. The purpose of this study was to evaluate the efficiency of this CT preoperative planning to predict optimal screws length. The clinical importance of this study lies in the observation that it is the first study to evaluate the efficiency of CT planning to predict screw length. Inclusion criteria were patients with chronic anterior instability of the shoulder with an ISIS superior to 4. Exclusion criteria were patients with multidirectional instability or any previous surgery on this shoulder. Thirty patients were included prospectively, 11 of them went threw a CT planning, before their arthroscopic Latarjet. Optimal length of both screws was calculated, adding the size of the coracoid at 5 and 15 mm from the tip to the glenoid. Thirty-two-mm screws were used for patients without planning. On a post-operative CT scan with 3D reconstruction, the distance between the screw tip and the posterior cortex was measured. A one-sample Wilcoxon test was used to compare the distance from the tip of the screw to an acceptable positioning of ±2 mm from the posterior cortex. In the group without planning, screw 1 tended to differ from the acceptable positioning: mean 3.44 mm ± 3.13, med 2.9 mm, q1; q3 [0.6; 4.75] p = 0.1118, and screw 2 differed significantly from the acceptable position: mean 4.83 mm ± 4.11, med 3.7 mm, q1; q3 [1.7; 5.45] p = 0.0045. In the group with planning, position of

  17. The Study of Vibration Processes in Oil Flooded Screw Compressors

    Directory of Open Access Journals (Sweden)

    I. V. Filippov


    Full Text Available Vibration processes that accompany most of machines and mechanisms are of interest to the researcher, as a source of information about the technical condition and the nature of the business processes flow. Vibration-based diagnostics of oil flooded screw compressors allows us to estimate the deviation of their operation from the main mode in accordance with changing the settings of vibration processes.The oil flooded screw compressor transition from the main mode of operation to the abnormal one is accompanied by complex gas-dynamic phenomena i.e. the initial gaps and their decays. This leads to changes in the nature of vibration processes, prompting suggestions that there is a relationship to a change of vibration parameters and mode of compressor operation.Studies were conducted by combined method using an analytical calculation of the decay parameters of the initial discontinuity and an experimental one based on the measurement of acceleration on the body of the real oil flooded screw compressor. A virtually adequate reaction of the decay parameters of the initial gap and the peak values of vibration acceleration to the change of operation mode of oil flooded screw compressor has been received. The peak value of the vibration acceleration was selected by the method of Gating being time-coinciding with the beginning discharge phase of the oil flooded screw compressor, and therefore, with the decay time of the initial discontinuity.This indicates a large degree of hypothesis likelihood on an existing initial break in oil flooded screw compressor when operating in abnormal conditions. This work contains the study results of vibration processes and their relationship to the operating mode of the oil flooded screw compressor, which distinguish it from the other works studied vibration processes in reciprocating compressors. The vibration parameters control of operating oil flooded screw compressor allows us to create an automatic capacity control

  18. The effect of the screw pull-out rate on cortical screw purchase in unreamed and reamed synthetic long bones. (United States)

    Zdero, R; Shah, S; Mosli, M; Bougherara, H; Schemitsch, E H


    Orthopaedic fracture fixation constructs are typically mounted on to human long bones using cortical screws. Biomechanical studies are increasingly employing commercially available synthetic bones. The aim of this investigation was to examine the effect of the screw pull-out rate and canal reaming on the cortical bone screw purchase strength in synthetic bone. Cylinders made of synthetic material were used to simulate unreamed (foam-filled) and reamed (hollow) human long bone with an outer diameter of 35 mm and a cortex wall thickness of 4 mm. The unreamed and reamed cylinders each had 56 sites along their lengths into which orthopaedic cortical bone screws (major diameter, 3.5 mm) were inserted to engage both cortices. The 16 test groups (n = 7 screw sites per group) had screws extracted at rates of 1 mm/ min, 5 mm/min, 10 mm/min, 20 mm/min, 30 mm/min, 40 mm/min, 50 mm/min, and 60 mm/ min. The failure force and failure stress increased and were highly linearly correlated with pull-out rate for reamed (R2 = 0.60 and 0.60), but not for unreamed (R2 = 0.00 and 0.00) specimens. The failure displacement and failure energy were relatively unchanged with pull-out rate, yielding low coefficients for unreamed (R2 = 0.25 and 0.00) and reamed (R2 = 0.27 and 0.00) groups. Unreamed versus reamed specimens were statistically different for failure force (p = 0.000) and stress (p = 0.000), but not for failure displacement (p = 0.297) and energy (0.054 < p < 1.000). This is the first study to perform an extensive investigation of the screw pull-out rate in unreamed and reamed synthetic long bone.

  19. Palliative dual iliac screw fixation for lumbosacral metastasis. Technical note. (United States)

    Fujibayashi, Shunsuke; Neo, Masashi; Nakamura, Takashi


    Spinal fixation for destructive metastatic lesions at the lumbosacral junction is challenging because of the large and unique load-bearing characteristics present. In particular, caudal fixation is difficult in cases of sacral destruction because of insufficient S-1 pedicle screw anchorage. The authors describe their surgical technique for secure iliac screw placement and the clinical results obtained in five patients with metastatic spinal disease. All patients in this study underwent palliative operations with dual iliac screw fixation between April 1999 and October 2002, and the clinical and radiological findings were assessed. In all five patients, spinal metastases extended into the sacrum. The metastases were from renal cell carcinomas in two patients, lung cancer in two, and a paraganglioma in one patient. Postoperative follow-up periods ranged from 3 months to 6 years (mean 28.4 months). Preoperatively, four patients could not walk due to severe pain or neurological compromise. Postoperatively, all patients reported a reduction in pain and regained the ability to walk. Complications included one case of early wound infection. In the patients with long survival after the operation, there was one case of iliac screw loosening and one case of rod breakage. The dual iliac screw fixation technique provided sufficient immediate stability for destructive lumbosacral metastasis.

  20. Screw dislocations in GaN grown by different methods. (United States)

    Liliental-Weber, Z; Zakharov, D; Jasinski, J; O'Keefe, M A; Morkoc, H


    A study of screw dislocations in hydride-vapor-phase-epitaxy (HVPE) template and molecular-beam-epitaxy (MBE) overlayers was performed using transmission electron microscopy (TEM) in plan view and in cross section. It was observed that screw dislocations in the HVPE layers were decorated by small voids arranged along the screw axis. However, no voids were observed along screw dislocations in MBE overlayers. This was true both for MBE samples grown under Ga-lean and Ga-rich conditions. Dislocation core structures have been studied in these samples in the plan-view configuration. These experiments were supported by image simulation using the most recent models. A direct reconstruction of the phase and amplitude of the scattered electron wave from a focal series of high-resolution images was applied. It was shown that the core structures of screw dislocations in the studied materials were filled. The filed dislocation cores in an MBE samples were stoichiometric. However, in HVPE materials, single atomic columns show substantial differences in intensities and might indicate the possibility of higher Ga concentration in the core than in the matrix. A much lower intensity of the atomic column at the tip of the void was observed. This might suggest presence of lighter elements, such as oxygen, responsible for their formation.

  1. Geometry success in 20 mins

    CERN Document Server

    Editors, LearningExpress


    Whether you're new to geometry or just looking for a refresher, this completely revised and updated third edition of Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day is an invaluable resource for both students and adults.

  2. Freehand technique for C2 pedicle and pars screw placement: safe or not? (United States)

    Punyarat, Prachya; Riew, K Daniel; Klawson, Benjamin T; Peters, Colleen; Lertudomphonwanit, Thamrong; Buchowski, Jacob M


    During placement of C2 pedicle and pars screws, intraoperative fluoroscopy is used so that neurovascular complications can be avoided, and screws can be placed in the proper position. However, this method is time consuming and increases radiation exposure. Furthermore, it does not guarantee completely safe and accurate screw placement. To evaluate the safety of the C2 pedicle and pars screw placement without fluoroscopic or other guidance methods. Retrospective comparative study. One hundred and ninety-eight patients who underwent placement of C2 pedicle or pars screws without any intraoperative radiographic guidance were included. Medical records and postoperative CT scans were evaluated. Clinical data were reviewed for intraoperative and postoperative complications. Accuracy of screw placement was evaluated with post-op CT scans using a previously published cortical-breach grading system (described by location and percentage of screw diameter over cortical edge (0 = none; grade I = pars screws were inserted by two experienced surgeons. There were no cases of CSF leakage and no neurovascular complications during screw placement. Postoperative CT scans were available for 76 patients, which included 52 pedicle and 87 pars screws. For cases with C2 pedicle screws, there were 12 breaches (23%); these included 10 screws with a grade I breach (19%), 1 screw with a grade II breach (2%), and 1 screw with a grade IV breach (2%). Lateral breaches occurred in 7 screws (13%), inferior breaches in 3 (6%), and superior breaches in 2 (4%). For cases with C2 pars screws, there were 10 breaches (11%); these included 6 screws with a grade I breach (7%), 2 screws with a grade II breach (2%), and 2 screws with a grade IV breach (2%). Medial breaches were found in 4 (5%), lateral breaches in 2 (2%), inferior breaches in 2 (2%), and superior breaches in 2 (2%). 2 of the cases with superior breaches (1 for pedicle and 1 for pars) experienced occipital neuralgia months after surgery

  3. Graded geometry and Poisson reduction


    Cattaneo, A S; Zambon, M


    The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

  4. Teaching of Geometry in Bulgaria (United States)

    Bankov, Kiril


    Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…

  5. Geometry I essentials

    CERN Document Server

    REA, The Editors of


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric

  6. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith


    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  7. Geometry of conics

    CERN Document Server

    Akopyan, A V


    The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca

  8. From geometry to topology

    CERN Document Server

    Flegg, H Graham


    This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.

  9. Geometry of numbers

    CERN Document Server

    Gruber, Peter M


    This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definit

  10. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B


    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  11. Local analytic geometry

    CERN Document Server

    Abhyankar, Shreeram Shankar


    This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from

  12. Geometry and trigonometry

    CERN Document Server


    This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent

  13. New foundations for geometry


    Haran, Shai


    We shall describe a simple generalization of commutative rings. The category GR of such "rings", contains the ordinary commutative rings (fully faithfully), but also the "integers" and "residue field" at a real or complex place of a field ; the "field with one element" (the initial object of GR ); the "arithmetical surface" ( the sum in the category GR of the integers with them self: Z(x)Z ) . We shall show that this geometry "see" the real and complex places of a number field (there is an Os...

  14. Changes in knee kinematics reflect the articular geometry after arthroplasty. (United States)

    Bull, Anthony M J; Kessler, Oliver; Alam, Mahbub; Amis, Andrew A


    We hypothesized changes in rotations and translations after TKA with a fixed-bearing anterior cruciate ligament (ACL)-sacrificing but posterior cruciate ligament (PCL)-retaining design with equal-sized, circular femoral condyles would reflect the changes of articular geometry. Using 8 cadaveric knees, we compared the kinematics of normal knees and TKA in a standardized navigated position with defined loads. The quadriceps was tensed and moments and drawer forces applied during knee flexion-extension while recording the kinematics with the navigation system. TKA caused loss of the screw-home; the flexed tibia remained at the externally rotated position of normal full knee extension with considerably increased external rotation from 63 degrees to 11 degrees extension. The range of internal-external rotation was shifted externally from 30 degrees to 20 degrees extension. There was a small tibial posterior translation from 40 degrees to 90 degrees flexion. The varus-valgus alignment and laxity did not change after TKA. Thus, navigated TKA provided good coronal plane alignment but still lost some aspects of physiologic motion. The loss of tibial screw-home was related to the symmetric femoral condyles, but the posterior translation in flexion was opposite the expected change after TKA with the PCL intact and the ACL excised. Thus, the data confirmed our hypothesis for rotations but not for translations. It is not known whether the standard navigated position provides the best match to physiologic kinematics.

  15. Experimental determination of bone cortex holding power of orthopedic screw

    Directory of Open Access Journals (Sweden)

    Bolliger Neto Raul


    Full Text Available Cylindrical specimens of bone measuring 15 mm in diameter were obtained from the lateral cortical layer of 10 pairs of femurs and tibias. A central hole 3.2 mm in diameter was drilled in each specimen. The hole was tapped, and a 4.5 mm cortical bone screw was inserted from the outer surface. The montage was submitted to push-out testing up to a complete strip of the bone threads. The cortical thickness and rupture load were measured, and the shear stress was calculated. The results were grouped according to the bone segment from which the specimen was obtained. The results showed that bone cortex screw holding power is dependent on the bone site. Additionally, the diaphyseal cortical bone tissue is both quantitatively and qualitatively more resistant to screw extraction than the metaphyseal tissue.

  16. Odontoid screw fixation for fresh and remote fractures. (United States)

    Rao, Ganesh; Apfelbaum, Ronald I


    Fractures of the odontoid process are common, accounting for 10% to 20% of all cervical spine fractures. Odontoid process fractures are classified into three types depending on the location of the fracture line. Various treatment options are available for each of these fracture types and include application of a cervical orthosis, direct anterior screw fixation, and posterior cervical fusion. If a patient requires surgical treatment of an odontoid process fracture, the timing of treatment may affect fusion rates, particularly if direct anterior odontoid screw fixation is selected as the treatment method. For example, type II odontoid fractures treated within the first 6 months of injury with direct anterior odontoid screw fixation have an 88% fusion rate, whereas fractures treated after 18 months have only a 25% fusion rate. In this review, we discuss the etiology, biomechanics, diagnosis, and treatment (including factors affecting fusion such as timing and fracture orientation) options available for odontoid process fractures.

  17. New concept single screw compressors and their manufacture technology (United States)

    Feng, Q.; Liu, F.; Chang, L.; Feng, C.; Peng, C.; Xie, J.; van den Broek, M.


    Single screw compressors were generally acknowledged as one of the nearly perfect machines by compressor researchers and manufacturers. However the rapid wear of the star-wheel in a single screw compressor during operation is a key reason why it hasn’t previously joined the main current compressors’ market. After more than ten years of effective work, the authors of this paper have proposed a new concept single screw compressor whose mesh-couple profile is enveloped with multi-column. Also a new design method and manufacture equipment for this kind of compressor have been developed and are described in this paper. A lot of prototype tests and a long period of industrial operations under full loading conditions have shown that the mesh-couple profiles of the new concept single compressors have excellent anti-wearness.

  18. Bioabsorbable metal screws in traumatology: A promising innovation

    Directory of Open Access Journals (Sweden)

    Roland Biber


    Full Text Available MAGNEZIX® CS (Syntellix AG, Hanover, Germany is a bioabsorbable compression screw made of a magnesium alloy (MgYREZr. Currently there are only two clinical studies reporting on a limited number of elective patients who received this screw in a hallux valgus operation. We applied MAGNEZIX® CS for fixation of distal fibular fracture in a trauma patient who had sustained a bimalleolar fracture type AO 44-B2.3. Clinical course was uneventful, fracture healing occurred within three months. Follow-up X-rays showed a radiolucent area around the implant for some months, yet this radiolucent area had disappeared in the 17-months follow-up X-ray. Keywords: Magnesium, Bioabsorbable, Compression screw, Osteosynthesis, Ankle fracture

  19. Influence of bacterial colonization of the healing screws on peri-implant tissue

    Directory of Open Access Journals (Sweden)

    Simonetta D'Ercole


    Conclusion: The healing screws left in situ for a period of 90 days caused a peri-implant inflammation and the presence of periodontal pathogenic bacteria in the peri-implant sulcus, due to the plaque accumulation on screw surfaces.

  20. Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct. (United States)

    Hadjipavlou, A G; Nicodemus, C L; al-Hamdan, F A; Simmons, J W; Pope, M H


    Thirty single-pedicle and triangulated pedicle screws were subjected to pull-out tests until complete dislodgment was achieved. Peak load, displacement curves, angle of triangulation, and equivalent mineral density were recorded. Dual pedicle screw triangulation produced a 154.4% increase in peak pull-out strength compared with that of the single pedicle screw. Salvage triangulation (replacing failed screws with a triangulation construct) produced a 127.4% increase in peak strength over that of the single screw. Positive correlation was found between individual screw peak strength, bone mineral density, and displacement at peak load. Primary and salvage triangulation produced higher resistance to pull-out than a single pedicle screw, which reflects the potential, beneficial effect of using this technique. Triangulation, therefore, can be used as primary (prophylactic) technique to enhance pedicular screw pull-out during forceful vertebral manipulation.

  1. Flexible tension sensor based on poly(l-lactic acid) film with coaxial structure (United States)

    Yoshida, Mitsunobu; Onishi, Katsuki; Tanimoto, Kazuhiro; Nishikawa, Shigeo


    We have developed a tension sensor with a coaxial structure using a narrow slit ribbon made of a uniaxially stretched poly(l-lactic acid) (PLLA) film for application to a wearable device. The tension sensor is produced as follows. We used tinsel wire as the center conductor of the sensor. The tinsel wire consists of a yarn of synthetic fibers arranged at the center, with a spirally wound rolled copper foil ribbon on the side surface. Next, slit ribbons obtained from a uniaxially oriented film of PLLA are wound helically on the side surface of the center conductor in the direction of a left-handed screw, at an angle of 45° to the central axis. The rolled copper foil is used as an outer conductor and covers the yarn without a gap. The prototype of the fabricated tension sensor has good flexibility, since the sensor is in the form of a filament and consists of a highly flexible material. For the 1 mm tension sensor, it was found that for a tension of 1 N, a charge of 14 pC was output. It was also found that the sensor maintained its room-temperature sensitivity up to 60 °C. Compared with an existing coaxial line sensor using poly(vinylidene fluoride) (PVDF), the sensor using PLLA does not exhibit pyroelectricity, meaning that no undesirable voltage is generated when in contact with body heat, which is a significant advantage as wearable sensors. The result has demonstrated the potential application of the PLLA film to wearable devices for detecting heartbeat and respiration.

  2. Update on normal tension glaucoma

    Directory of Open Access Journals (Sweden)

    Jyotiranjan Mallick


    Full Text Available Normal tension glaucoma (NTG is labelled when typical glaucomatous disc changes, visual field defects and open anterior chamber angles are associated with intraocular pressure (IOP constantly below 21 mmHg. Chronic low vascular perfusion, Raynaud's phenomenon, migraine, nocturnal systemic hypotension and over-treated systemic hypertension are the main causes of normal tension glaucoma. Goldmann applanation tonometry, gonioscopy, slit lamp biomicroscopy, optical coherence tomography and visual field analysis are the main tools of investigation for the diagnosis of NTG. Management follows the same principles of treatment for other chronic glaucomas: To reduce IOP by a substantial amount, sufficient to prevent disabling visual loss. Treatment is generally aimed to lower IOP by 30% from pre-existing levels to 12-14 mmHg. Betaxolol, brimonidine, prostaglandin analogues, trabeculectomy (in refractory cases, systemic calcium channel blockers (such as nifedipine and 24-hour monitoring of blood pressure are considered in the management of NTG. The present review summarises risk factors, causes, pathogenesis, diagnosis and management of NTG.

  3. Posterior atlantoaxial transpedicle screw fixation for traumatic atlatoaxial instability

    Directory of Open Access Journals (Sweden)

    Zheng-lei WANG


    Full Text Available Objective To explore the clinical efficacy of posterior atlantoaxial pedicle screw fixation for traumatic atlantoaxial instability. Methods From September 2009 to March 2013, 17 patients with atlantoaxial instability received posterior atlantoaxial pedicle screw fixation. There were 12 males and 5 females, with a mean age of 42 years old (ranged from 19 to 63 years old. Transpedicle screw fixation was employed in 8 patients with atlantoaxial fracture and dislocation, in 2 with traumatic disruption of transverse atlantal ligament, and in 7 with odontoid fracture. The Japanese Orthopaedic Association (JOA score before operation was from 5 to 14, with a mean of 11.2. Preoperative CT, MRI and radiographs, as well as intraoperative screw placement and bone graft were administered in all the patients. Results In all the patients, complete reduction was achieved without injury to the vertebral artery, spinal cord or never root, and they started to be ambulatory on the first day after the operation. The patients were followed up for 6-36 months (mean 21 months, and clinical symptoms were seen to be improved significantly. Imaging reexamination 6 months after the surgery showed satisfactory healing of implanted bone and position of all the screws without loosening of the implant. The mean JOA scores was 15.5(11.0-17.0 twelve months after the operation. Conclusion Atlantoaxial pedicle screw fixation for traumatic atlantoaxial instability is safe and reliable with a favorable clinical result. DOI: 10.11855/j.issn.0577-7402.2015.09.14

  4. Torsional stability of interference screws derived from bovine bone - a biomechanical study

    Directory of Open Access Journals (Sweden)

    Schmitt Jan


    Full Text Available Abstract Background In the present biomechanical study, the torsional stability of different interference screws, made of bovine bone, was tested. Interference screws derived from bovine bone are a possible biological alternative to conventional metallic or bioabsorbable polymer interference screws. Methods In the first part of the study we compared the torsional stability of self-made 8 mm Interference screws (BC and a commercial 8 mm interference screw (Tutofix®. Furthermore, we compared the torsional strength of BC screws with different diameters. For screwing in, a hexagon head and an octagon head were tested. Maximum breaking torques in polymethyl methacrylate resin were recorded by means of an electronic torque screw driver. In the second part of the study the tibial part of a bone-patellar tendon-bone graft was fixed in porcine test specimens using an 8 mm BC screw and the maximum insertion torques were recorded. Each interference screw type was tested 5 times. Results There was no statistically significant difference between the different 8 mm interference screws (p = 0.121. Pairwise comparisons did not reveal statistically significant differences, either. It was demonstrated for the BC screws, that a larger screw diameter significantly leads to higher torsional stability (p = 9.779 × 10-5. Pairwise comparisons showed a significantly lower torsional stability for the 7 mm BC screw than for the 8 mm BC screw (p = 0.0079 and the 9 mm BC screw (p = 0.0079. Statistically significant differences between the 8 mm and the 9 mm BC screw could not be found (p = 0.15. During screwing into the tibial graft channel of the porcine specimens, insertion torques between 0.5 Nm and 3.2 Nm were recorded. In one case the hexagon head of a BC screw broke off during the last turn. Conclusions The BC screws show comparable torsional stability to Tutofix® interference screws. As expected the torsional strength of the screws increases significantly with the

  5. Comparison of fatigue strength of C2 pedicle screws, C2 pars screws, and a hybrid construct in C1-C2 fixation. (United States)

    Su, Brian W; Shimer, Adam L; Chinthakunta, Suresh; Salloum, Kanaan; Ames, Christopher P; Vaccaro, Alexander R; Bucklen, Brandon


    A biomechanical study comparing the fatigue strength of different types of C2 fixation in a C1-C2 construct. To determine the pullout strength of a C2 pedicle screw and C2 pars screw after cyclical testing and differentiate differences in stiffness pre- and post-cyclical loading of 3 different C1-C2 fixations. Some surgeons use a short C2 pars screw in a C1-C2 construct, because it is less technically demanding and/or when the vertebral artery is high riding. Difference in construct stiffness between use of bilateral C2 pedicle screws, bilateral C2 pars screws, or a hybrid construct is unknown. Biomechanical testing was performed on 15 specimens. A bicortical C1 lateral mass screw was used in combination with 1 of 3 methods of C2 fixation: (1) bilateral long C2 pedicle screws (LL), (2) bilateral 14-mm C2 pars screws (SS), and (3) unilateral long C2 pedicle screw with a contralateral 14-mm C2 pars screw (LS). Each construct was subject to 16,000 cycles to simulate the immediate postoperative period. Changes in motion in flexion-extension, lateral bending, and axial rotation were calculated. This was followed by pullout testing. The ability to limit range of motion significantly decreased after cyclical testing in flexion-extension, lateral bending, and axial rotation for all 3 groups. After loading, the LL and LS groups had less percentage of increase in motion in flexion-extension and lateral bending than the SS group. Overall, the average pullout strength of a pedicle screw was 92% stronger than a pars screw. C2 pedicle screws have twice the pullout strength of C2 pars screws after cyclical loading. In cases in which the anatomy limits placement of bilateral C2 pedicle screws, a construct using a unilateral C2 pedicle screw with a contralateral short pars screw is a viable option and compares favorably with a bilateral C2 pedicle screw construct. N/A.

  6. Virtual walls based on oil-repellent surfaces for low-surface-tension liquids. (United States)

    Almeida, Riberet; Kwon, Jae Wan


    Manipulating and controlling water-based aqueous solutions with the use of virtual walls is relatively simple compared to that of nonaqueous low-surface-tension liquids, which pose greater challenges to microfluidic devices. This letter reports a novel technique to form a virtual wall for various low-surface-tension liquids. A microfluidic channel with virtual walls has been made to guide low-surface-tension liquids by using a specially designed oil-repellent surface. Unlike generic superoleophobic surfaces, our oil-repellent surface exhibited strong repellency to the lateral flow of low-surface-tension liquids such as hexadecane and dodecane. A plasma-assisted surface micromachining process has been utilized to form the oil-repellent surface. The use of combined features of re-entrant geometries on the surface played an important role in promoting its repellence to the lateral flow of low-surface-tension liquids. We have successfully demonstrated how low-surface-tension liquids can be well confined by the virtual walls.

  7. Patient's perception on mini-screws used for molar distalization


    Blaya, Micéli Guimarães; Blaya, Diego Segatto; Guimarães, Magáli Beck; Hirakata, Luciana M.; Marquezan, Marcela


    PURPOSE: The objective of this study was to evaluate and compare the perceived pain intensity, side effects and discomfort related to the moment of placement, during mechanics and removal of a mini-screw for molar distalization in orthodontic treatment. METHODS: The sample consisted of 30 adult patients with a mean age of 30 years old, with class II malocclusion subdivision right or left. A mini-screw was installed in each patient, in the maxillary arch to provide a molar distalization. The p...

  8. Role of oxygen at screw dislocations in GaN. (United States)

    Arslan, I; Browning, N D


    Here we report the first direct atomic scale experimental observations of oxygen segregation to screw dislocations in GaN using correlated techniques in the scanning transmission electron microscope. The amount of oxygen present in each of the three distinct types of screw dislocation core is found to depend on the evolution and structure of the core, and thus gives rise to a varying concentration of localized states in the band gap. Contrary to previous theoretical predictions, the substitution of oxygen for nitrogen is observed to extend over many monolayers for the open core dislocation.

  9. Surface tension and dynamics of fingering patterns


    Magdaleno Escar, Francesc Xavier; Casademunt i Viader, Jaume


    We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (non-zero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences f...

  10. The Surface Tension of Pure Liquid Compounds, (United States)

    The surface tension tables presented herein are the result of a literature survey, evaluation, and compilation of data of some 2200 pure liquid... surface tension values to establish the regression curves and their equations. The constants of the equations (slope and intercept), together with the...standard deviations are given for each compound. The selection factors establishing criteria of quality of surface tension data are discussed. These

  11. Coupling of marine riser and tensioner system


    Olssøn, Tor Trainer


    A coupled model of a marine riser and a tensioner system is built. The riser is modeled using the multi-body dynamics program MSC Adams, and the tensioner system using the powerful controls and systems simulation tool, MSC Easy5. The hydrodynamic forces on the marine riser are calculated according to linear wave theory, and implemented in the model using a custom made subroutine. The riser is modeled using flexible beam elements according to Timoshenko beam theory. The tensioner system is...

  12. A simple technique for on-table confirmation of locking screw ...

    African Journals Online (AJOL)

    radiographs to confirm whether or not the locking screws were correctly placed. Objective: We present a simple, inexpensive, fool-proof technique that confirms the correct placement of the locking screws on table thus allowing for revision at the time of surgery in case the locking screw missed the locking hole in the nail.

  13. The best location for proximal locking screw for femur interlocking nailing: A biomechanical study

    Directory of Open Access Journals (Sweden)

    Ahmet A Karaarslan


    Conclusion: According to our findings, there is twice as much difference in locking screw bending resistance between these two application levels. To avoid proximal locking screw deformation, locking screws should be placed in the level of the lesser trochanter in nailing of 1/3 middle and distal femur fractures.

  14. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone. (United States)

    Neumann, Eduardo Aloisio Fleck; Villar, Cristina Cunha; França, Fabiana Mantovani Gomes


    Fractured abutment screws may be replaced; however, sometimes, the screw cannot be removed and the entire implant must be surgically removed and replaced. The aim of this study was to compare the fracture resistance of abutment retention screws made of titanium, polyetheretherketone (PEEK) and 30% carbon fiber-reinforced PEEK, using an external hexagonal implant/UCLA-type abutment interface assembly. UCLA-type abutments were fixed to implants using titanium screws (Group 1), polyetheretherketone (PEEK) screws (Group 2), and 30% carbon fiber-reinforced PEEK screws (Group 3). The assemblies were placed on a stainless steel holding apparatus to allow for loading at 45o off-axis, in a universal testing machine. A 200 N load (static load) was applied at the central point of the abutment extremity, at a crosshead speed of 5 mm/minute, until failure. Data was analyzed by ANOVA and Tukey's range test. The titanium screws had higher fracture resistance, compared with PEEK and 30% carbon fiber-reinforced PEEK screws (p carbon fiber-reinforced PEEK screws (p> 0.05). Finally, visual analysis of the fractions revealed that 100% of them occurred at the neck of the abutment screw, suggesting that this is the weakest point of this unit. PEEK abutment screws have lower fracture resistance, in comparison with titanium abutment screws.

  15. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise


    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  16. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob


    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust parame...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners.......The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...

  17. Screw angulation affects bone-screw stresses and bone graft load sharing in anterior cervical corpectomy fusion with a rigid screw-plate construct: a finite element model study. (United States)

    Hussain, Mozammil; Natarajan, Raghu N; Fayyazi, Amir H; Braaksma, Brian R; Andersson, Gunnar B J; An, Howard S


    Anterior corpectomy and reconstruction with bone graft and a rigid screw-plate construct is an established procedure for treatment of cervical neural compression. Despite its reliability in relieving symptoms, there is a high rate of construct failure, especially in multilevel cases. There has been no study evaluating the biomechanical effects of screw angulation on construct stability; this study investigates the C4-C7 construct stability and load-sharing properties among varying screw angulations in a rigid plate-screw construct. A finite element model of a two-level cervical corpectomy with static anterior cervical plate. A three-dimensional finite element (FE) model of an intact C3-T1 segment was developed and validated. From this intact model, a fusion model (two-level [C5, C6] anterior corpectomy) was developed and validated. After corpectomy, allograft interbody fusion with a rigid anterior screw-plate construct was created from C4 to C7. Five additional FE models were developed from the fusion model corresponding to five different combinations of screw angulations within the vertebral bodies (C4, C7): (0 degrees, 0 degrees), (5 degrees, 5 degrees), (10 degrees, 10 degrees), (15 degrees, 15 degrees), and (15 degrees, 0 degrees). The fifth fusion model was termed as a hybrid fusion model. The stability of a two-level corpectomy reconstruction is not dependent on the position of the screws. Despite the locked screw-plate interface, some degree of load sharing is transmitted to the graft. The load seen by the graft and the shear stress at the bone-screw junction is dependent on the angle of the screws with respect to the end plate. Higher stresses are seen at more divergent angles, particularly at the lower level of the construct. This study suggests that screw divergence from the end plates not only increases load transmission to the graft but also predisposes the screws to higher shear forces after corpectomy reconstruction. In particular, the inferior screw

  18. Construction and Biomechanical Properties of PolyAxial Self-Locking Anatomical Plate Based on the Geometry of Distal Tibia

    Directory of Open Access Journals (Sweden)

    Weiguo Liang


    Full Text Available In order to provide scientific and empirical evidence for the clinical application of the polyaxial self-locking anatomical plate, 80 human tibias from healthy adults were scanned by spiral CT and their three-dimensional images were reconstructed using the surface shaded display (SSD method. Firstly, based on the geometric data of distal tibia, a polyaxial self-locking anatomical plate for distal tibia was designed and constructed. Biomechanical tests were then performed by applying axial loading, 4-point bending, and axial torsion loading on the fracture fixation models of fresh cadaver tibias. Our results showed that variation in twisting angles of lateral tibia surface was found in various segments of the distal tibia. The polyaxial self-locking anatomical plate was constructed based on the geometry of the distal tibia. Compared to the conventional anatomical locking plate, the polyaxial self-locking anatomical plate of the distal tibia provides a better fit to the geometry of the distal tibia of the domestic population, and the insertion angle of locking screws can be regulated up to 30°. Collectively, this study assesses the geometry of the distal tibia and provides variable locking screw trajectory to improve screw-plate stability through the design of a polyaxial self-locking anatomical plate.

  19. Actin filaments as tension sensors. (United States)

    Galkin, Vitold E; Orlova, Albina; Egelman, Edward H


    The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fabrication of Open-Cell Al Foams and Evaluation of their Mechanical Response under Tension (United States)

    Michailidis, N.; Stergioudi, F.; Omar, H.; Tsipas, D. N.


    In the present paper a novel procedure for describing the solid geometry of open cell foams is introduced, facilitating the establishment of a corresponding FEM model for simulating the material behaviour in micro-tension. Open-cell Al-foams were fabricated using the polymer impregnating method. A serial sectioning image-based process is described to capture, reproduce and visualize the exact three-dimensional (3D) microstructure of the examined foam. The generated 3D geometry of the Al-foam, derived from the synthesis of digital cross sectional images of the foam, was appropriately adjusted to build a FE model simulating the deformation conditions of the Al-foam under micro-tension loads. The obtained results enabled the visualisation of the stress fields in the Al-foam, allowing for a full investigation of its mechanical behaviour.

  1. Influence of screw diameter and number on reduction loss after plating of distal radius fractures. (United States)

    Drobetz, Herwig; Schueller, Michael; Tschegg, Elmar Karl; Heal, Clare; Redl, Heinz; Muller, Reinhold


    The current options for plate-screw combinations in volar locking distal radius plates used for the treatment of distal radius fractures are either plates with a single distal screw row or plates with multiple distal screw rows. Additionally, the screws themselves may have either fixed angle locking or polyaxial locking mechanisms. To date, there is no evidence or consensus regarding the optimal plate-screw combination. The aim of this study was to assess the biomechanical behaviour of different plate-screw combinations with respect to total distal screw number, number of distal screw rows and screw projection surface area of the most distal row. Biomechanical study to assess six different plating configurations in five different volar locking plate models in a Sawbone distal radius fracture model. The specimens were loaded with 800 Newton loads for 2.000 cycles at 1 Hz. After cyclic loading, load-to-failure testing was performed.   With cyclical testing, there was a significant and positive correlation between rigidity and a greater projection area of the most distal screws. Dorsal tilting was significantly more pronounced in plate models with a lesser projection area of the most distal screws and a smaller number of distal screws. With load-to-failure testing, there was a significant increase in rigidity with increasing screw projection area of the most distal row and total number of distal screws. Additional distal screw rows in volar locking distal radius plates might not add substantially to resistance against loss of reduction in the post-operative period. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  2. A biomechanical evaluation of three revision screw strategies for failed lateral mass fixation. (United States)

    Hostin, Richard A; Wu, Chunhui; Perra, Joseph H; Polly, David W; Akesen, Burak; Wroblewski, Jill M


    This is a biomechanical study evaluating 3 revision strategies for failed cervical lateral mass screw fixation. Our primary objective was to compare, following a Magerl trajectory screw failure in the subaxial cervical spine, the pullout strength of (1) a revision screw in the same trajectory, (2) a Roy-Camille trajectory, and (3) pedicle screw fixation. We additionally analyzed the contributions of bone mineral density (BMD) and peak insertional torque to pullout strength. Biomechanical studies that have examined revision screw strategies for lateral mass fixation have found either unsatisfactory or highly variable performance. Fresh frozen cervical spinal segments were harvested and BMD testing performed. Bicortical (3.5-mm Vertex) lateral mass screws were placed in a Magerl trajectory in 57 fresh frozen human subaxial cervical vertebrae. All screws were then stripped and revision screws (4.0-mm Vertex) placed using either the same screw path or conversion to a Roy-Camille trajectory. In line pullout testing was performed on each of the revision screws (57 in Magerl revision group, 55 in Roy-Camille). Specimens that had not fractured during testing then had cervical pedicle screws (3.5-mm Vertex) placed and in-line pullout testing repeated (64 pedicles were instrumented) The pullout failure results of the Magerl revision, Roy-Camille revision, and pedicle screw revision groups were compared. No significant difference was noted in insertional torque (0.28-Nm Magerl, 0.35 Nm Roy-Camille, P > 0.05) or pullout (382-N Magerl, 351 N Roy-Camille, P > 0.05) between the Magerl and Roy-Camille revision groups. Pedicle screw revision had greater pullout strength (566 N) when compared with either the Magerl (382 N) or Roy-Camille (351 N) revision groups (P advantage over placement of an increased diameter salvage screw using the same trajectory. Pedicle screw fixation provides superior biomechanical fixation but was associated with a significant breech rate.

  3. The effect of surface tension on steadily translating bubbles in an unbounded Hele-Shaw cell. (United States)

    Green, Christopher C; Lustri, Christopher J; McCue, Scott W


    New numerical solutions to the so-called selection problem for one and two steadily translating bubbles in an unbounded Hele-Shaw cell are presented. Our approach relies on conformal mapping which, for the two-bubble problem, involves the Schottky-Klein prime function associated with an annulus. We show that a countably infinite number of solutions exist for each fixed value of dimensionless surface tension, with the bubble shapes becoming more exotic as the solution branch number increases. Our numerical results suggest that a single solution is selected in the limit that surface tension vanishes, with the scaling between the bubble velocity and surface tension being different to the well-studied problems for a bubble or a finger propagating in a channel geometry.

  4. Selection of the Taylor-Saffman bubble does not require surface tension. (United States)

    Vasconcelos, Giovani L; Mineev-Weinstein, Mark


    A new general class of exact solutions is presented for the time evolution of a bubble of arbitrary initial shape in a Hele-Shaw cell when surface tension effects are neglected. These solutions are obtained by conformal mapping the viscous flow domain to an annulus in an auxiliary complex plane. It is then demonstrated that the only stable fixed point (attractor) of the nonsingular bubble dynamics corresponds precisely to the selected pattern. This thus shows that, contrary to the established theory, bubble selection in a Hele-Shaw cell does not require surface tension. The solutions reported here significantly extend previous results for a simply connected geometry (finger) to a doubly connected one (bubble). We conjecture that the same selection rule without surface tension holds for Hele-Shaw flows of arbitrary connectivity.

  5. An introduction to incidence geometry

    CERN Document Server

    De Bruyn, Bart


    This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...

  6. Resorbable screws for fixation of autologous bone grafts

    NARCIS (Netherlands)

    Raghoebar, GM; Liem, RSB; Bos, RRM; van der Wal, JE; Vissink, A

    The aim of this study was to evaluate the suitability of resorbable screws made of poly (D,L-lactide) acid (PDLLA) for fixation of autologous bone grafts related to graft regeneration and osseointegration of dental implants. In eight edentulous patients suffering from insufficient retention of their

  7. Modeling The Effect Of Extruder Screw Speed On The Mechanical ...

    African Journals Online (AJOL)

    Mechanical properties of HDPE blown films produced at extruder screw speed between 15 and 40 rpm were measured experimentally. The results were modeled using LINEST function in Microsoft Excel. Two sets of multiple linear regression models were developed to predict impact failure weight and tenacity respectively.

  8. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)


    Aug 10, 2015 ... Key words: Bone plates, bone screws, finite element analysis, jaw fixation techniques, mandible, mandibular fractures. Date of Acceptance: 10-Aug- .... miniplates were based on physical specimens of W. Lorenz (Walter Lorenz .... placement via intraoral approach, the small size of the plate, and adaptability ...

  9. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)

    Biomechanical analysis of titanium fixation plates and screws in sagittal split ramus osteotomies. F Atik, MS Ataç1, A Özkan2, Y Kılınç1, M Arslan1. Department of Biomedical Engineering, Faculty of Engineering, Institute of Science, Düzce University,. 2Department of Biomedical Engineering, Faculty of Engineering, Düzce ...

  10. Sacroiliac screw fixation: A mini review of surgical technique

    Directory of Open Access Journals (Sweden)

    Hernando Raphael Alvis-Miranda


    Full Text Available The sacral percutaneous fixation has many advantages but can be associated with a significant exposure to X-ray radiation. Currently, sacroiliac screw fixation represents the only minimally invasive technique to stabilize the posterior pelvic ring. It is a technique that should be used by experienced surgeons. We present a practical review of important aspects of this technique.

  11. Residence time distribution in twin-screw extruders

    NARCIS (Netherlands)

    Jager, T.


    For the twin-screw extruders used in the food industry at short time high temperature processes the knowledge of their reactor properties is incomplete for mass- and heat flow. Therefore each process change such as: scale-up or product development requires a great number of measurements

  12. Atomistic simulations of jog migration on extended screw dislocations

    DEFF Research Database (Denmark)

    Vegge, T.; Leffers, T.; Pedersen, O.B.


    We have performed large-scale atomistic simulations of the migration of elementary jogs on dissociated screw dislocations in Cu. The local crystalline configurations, transition paths. effective masses. and migration barriers for the jogs are determined using an interatomic potential based...

  13. The harmonic oscillator in a space with a screw dislocation (United States)

    Amore, Paolo; Fernández, Francisco M.


    We obtain the eigenvalues of the harmonic oscillator in a space with a screw dislocation. By means of a suitable nonorthogonal basis set with variational parameters we obtain sufficiently accurate eigenvalues for an arbitrary range of values of the space-deformation parameter. The energies exhibit a rich structure of avoided crossings in terms of such model parameter.

  14. Design of new silencers for a screw compressor

    NARCIS (Netherlands)

    Lier, L.J. van; Korst, H.J.C.; Smeulers, J.P.M.


    Two screw compressors used for the recycling of waste gas showed high vibration in the discharge piping. To mitigate the vibration problems new silencers had to be designed. A great challenge was the large variation in operating conditions, especially the variation of the molecular weight of the

  15. Cellulose and the twofold screw axis: Modeling and experimental arguments (United States)

    Crystallography indicates that molecules in crystalline cellulose either have 2-fold screw-axis (21) symmetry or closely approximate it, leading to short distances between H4 and H1' across the glycosidic linkage. Therefore, modeling studies of cellobiose often show elevated energies for 21 structur...

  16. Use of locking plate and screws for triple pelvic osteotomy. (United States)

    Rose, Scott A; Bruecker, Ken A; Petersen, Steve W; Uddin, Nizam


    To evaluate the efficacy and complication rate associated with use of a purpose-specific locking triple pelvic osteotomy (LTPO) plate. Prospective study. Dogs (n = 9; 15 hips). Physical examination, plain film radiography, computed tomography (CT) of the pelvis, and coxofemoral arthroscopy were performed before unilateral triple pelvic osteotomy (TPO) or staged bilateral TPO. Radiographs were taken after each procedure and 3-5, 6-8, and ≥12 weeks postoperatively. Pelvic width was measured at 3 locations to evaluate pelvic canal narrowing. No screw loosening occurred. Complications occurred in only 1 hip (7%) where pullout of the locking plate-screw construct from the caudal iliac segment occurred because of a fracture of the cis-cortex; the dog made a full recovery after a salvage procedure. There was no significant reduction in the cranial pelvic width but a small reduction at the level of the acetabuli and ischiatic tuberosities was noted 3-5 weeks after the 2nd TPO. The LTPO plate was associated with a lower complication rate than previously reported for TPOs using Slocum canine pelvic osteotomy plates (CPOP) and warrants further investigation. Pullout of the caudal plate-screw construct is a complication specific to LTPO implants. Bicortical screw purchase is recommended to prevent fracture of the cis-cortex and implant pullout. © Copyright 2011 by The American College of Veterinary Surgeons.

  17. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    African Journals Online (AJOL)

    [5] However, the risk of causing a new fracture in the bone in using an osteotome for cutting the screw or plate can lead to a difficult situation especially in revision trauma surgery for non union or peri‑implant fracture. We herewith report a technique of removal of titanium plate in a case of peri‑implant fracture of the radius by.

  18. Effect of twin-screw extrusion parameters on mechanical hardness ...

    Indian Academy of Sciences (India)

    In the food industry, the following operations take place during raw-material processing by extrusion: gelation, extrusion cooking, molecular disintegration, sterilization, mixing, shaping and expansional drying. In the course of conveying the raw material through the extruder by screw-turning, mechanical energy is created ...

  19. Kinematics and Dynamic Evaluation of the Screw Conveyor of a ...

    African Journals Online (AJOL)

    This paper presents the volumetric performance of a horizontal enclosed screw conveyor with reference to the influence of vortex motion. Vortex motion is as a result of internal friction, friction between the granular material and surface of the helical blade, and the variable helix angle of the helical flight from the outer ...

  20. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to evaluate the mechanical behavior of different rigid fixation methods in mandibular angle fractures. Materials and Methods: Three different three-dimensional finite element models of the mandible were developed to simulate the biomechanical responses of titanium plates and screws.

  1. Thermodynamics of Asymptotically Conical Geometries. (United States)

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H


    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  2. Self-designing parametric geometries


    Sobester, Andras


    The thesis of this paper is that script-based geometry modelling offers the possibility of building `self-designing' intelligence into parametric airframe geometries. We show how sophisticated heuristics (such as optimizers and complex decision structures) can be readily integrated into the parametric geometry model itself using a script-driven modelling architecture. The result is an opportunity for optimization with the scope of conceptual design and the fidelity of preliminary design. Addi...

  3. Geometry aware Stationary Subspace Analysis (United States)


    JMLR: Workshop and Conference Proceedings 63:430–444, 2016 ACML 2016 Geometry -aware Stationary Subspace Analysis Inbal Horev geometry of the SPD matrix manifold and the invariance properties of its metrics. Most notably we show that these invariances alleviate the need to...Horev, F. Yger & M. Sugiyama. Geometry -aware SSA many theoretical and practical aspects have been addressed (see Sugiyama and Kawanabe (2012) for an in

  4. Pedicle screw versus hybrid posterior instrumentation for dystrophic neurofibromatosis scoliosis. (United States)

    Wang, Jr-Yi; Lai, Po-Liang; Chen, Wen-Jer; Niu, Chi-Chien; Tsai, Tsung-Ting; Chen, Lih-Huei


    Surgical management of severe rigid dystrophic neurofibromatosis (NF) scoliosis is technically demanding and produces varying results. In the current study, we reviewed 9 patients who were treated with combined anterior and posterior fusion using different types of instrumentation (i.e., pedicle screw, hybrid, and all-hook constructs) at our institute.Between September 2001 and July 2010 at our institute, 9 patients received anterior release/fusion and posterior fusion with different types of instrumentation, including a pedicle screw construct (n = 5), a hybrid construct (n = 3), and an all-hook construct (n = 1). We compared the pedicle screw group with the hybrid group to analyze differences in preoperative curve angle, immediate postoperative curve reduction, and latest follow-up curve angle.The mean follow-up period was 9.5 ± 2.9 years. The average age at surgery was 10.3 ± 3.9 years. The average preoperative scoliosis curve was 61.3 ± 13.8°, and the average preoperative kyphosis curve was 39.8 ± 19.7°. The average postoperative scoliosis and kyphosis curves were 29.7 ± 10.7° and 21.0 ± 13.5°, respectively. The most recent follow-up scoliosis and kyphosis curves were 43.4 ± 17.3° and 29.4 ± 18.9°, respectively. There was no significant difference in the correction angle (either coronal or sagittal), and there was no significant difference in the loss of sagittal correction between the pedicle screw construct group and the hybrid construct group. However, the patients who received pedicle screw constructs had significantly less loss of coronal correction (P instrumentation, one with an all-hook construct and the other with a hybrid construct, required surgical revision because of progression of deformity.It is difficult to intraoperatively correct dystrophic deformity and to maintain this correction after surgery. Combined anterior release/fusion and posterior fusion using either a pedicle screw

  5. Planetary Image Geometry Library (United States)

    Deen, Robert C.; Pariser, Oleg


    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  6. Use of computational fluid dynamics simulations for design of a pretreatment screw conveyor reactor. (United States)

    Berson, R Eric; Hanley, Thomas R


    Computational fluid dynamics simulations were employed to compare performance of various designs of a pretreatment screw conveyor reactor. The reactor consisted of a vertical screw used to create cross flow between the upward conveying solids and the downward flow of acid. Simulations were performed with the original screw design and a modified design in which the upper flights of the screw were removed. Results of the simulations show visually that the modified design provided favorable plug flow behavior within the reactor. Pressure drop across the length of the reactor without the upper screws in place was predicted by the simulations to be 5 vs 40 kPa for the original design.

  7. A technique for the management of screw access opening in cement-retained implant restorations

    Directory of Open Access Journals (Sweden)

    Hamid Kermanshah


    Full Text Available Introduction: Abutment screw loosening has been considered as a common complication of implant-supported dental prostheses. This problem is more important in cement-retained implant restorations due to their invisible position of the screw access opening. Case Report: This report describes a modified retrievability method for cement-retained implant restorations in the event of abutment screw loosening. The screw access opening was marked with ceramic stain and its porcelain surface was treated using hydrofluoric acid (HF, silane, and adhesive to bond to composite resin. Discussion: The present modified technique facilitates screw access opening and improves the bond between the porcelain and composite resin.

  8. Covering the screw-access holes of implant restorations in the esthetic zone: a clinical report.

    Directory of Open Access Journals (Sweden)

    Abolfazl Saboury


    Full Text Available Screw-retained implant restorations have an advantage of predictable retention as well as retrievability, and obviate the risk of excessive sub-gingival cement commonly associated with cement retained implant restorations. Screw-retained restorations generally have screw access holes, which can compromise esthetics and weaken the porcelain around the holes. The purpose of this study is to describe the use of a separate overcasting crown design to cover the screw access hole of implant screw-retained prosthesis for improved esthetics.

  9. Initiation to global Finslerian geometry

    CERN Document Server

    Akbar-Zadeh, Hassan


    After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p

  10. Tension Pneumothorax following an Accidental Kerosene Poisoning ...

    African Journals Online (AJOL)

    Tension pneumothorax is a rare complication following an accidental kerosene poisoning. In such situation, a bed-side needle thoracocentesis is performed because of its potential of becoming fatal; hence its clinical importance. A case of 15 month old boy with tension pneumothorax following accidental kerosene ...

  11. Surface Tension Measurements of Chemically Modified Oleochemical (United States)

    Surface tension is an important physical property of a substance, which plays a part in a variety of physical phenomenon relevant to many industrial processes. For example, the efficiency of the atomization of a fuel has been shown to be effected dramatically by surface tension and viscosity. Beca...

  12. Effect of Gravity on Surface Tension (United States)

    Weislogel, M. M.; Azzam, M. O. J.; Mann, J. A.


    Spectroscopic measurements of liquid-vapor interfaces are made in +/- 1-g environments to note the effect of gravity on surface tension. A slight increase is detected at -1-g0, but is arguably within the uncertainty of the measurement technique. An increased dependence of surface tension on the orientation and magnitude of the gravitational vector is anticipated as the critical point is approached.

  13. A TOGgle for Tension at Kinetochores. (United States)

    Cheerambathur, Dhanya K; Prevo, Bram; Desai, Arshad


    Differential stability of kinetochore-microtubule attachments at low versus high tension is critical for accurate chromosome segregation. Miller et al. find that a TOG domain microtubule-binding protein imparts intrinsic tension selectivity to kinetochore-microtubule attachments. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Intraoperative Development of Tension Pneumocephalus in a ...

    African Journals Online (AJOL)

    A review of studies discussing the role of N2O in tension pneumocephalus has also been included. The article heightens awareness among. CASE. REPORT. Intraoperative Development of Tension Pneumocephalus in a. Patient Undergoing Repair of a Cranial‑dural Defect Under. Nitrous Oxide Anesthesia. Mansher Singh ...

  15. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  16. Surface tension measurements with a smartphone (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse


    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept of surface tension through simple experiments.

  17. Análise fotoelástica de um modelo de vértebra humana com parafuso pedicular Photoelastic analisys of a human vertebra model with pedicular screw

    Directory of Open Access Journals (Sweden)

    Dayana Pousa Paiva de Siqueira


    Full Text Available INTRODUÇÃO: O sistema de fixação vertebral utilizando o parafuso pedicular é um dos métodos mais eficientes no tratamento de patologias da coluna vertebral. Quando o parafuso estiver submetido á força de arrancamento, este gera tensões ao seu redor, principalmente próximas do canal medular, situação esta que pode ser analisada pela técnica da fotoelasticidade. OBJETIVO: Foram analisadas as tensões internas geradas próximas ao canal medular de modelos fotoelásticos de vértebras utilizando diferentes medidas de parafusos do sistema de fixação vertebral submetidos à força de arrancamento. MÉTODO: Foi utilizado um modelo de vértebra lombar em material fotoelástico utilizando três medidas de parafusos pediculares (5, 6 e 7mm do tipo USS1. As tensões internas ao redor do parafuso foram avaliadas em 12 pontos pré-determinados utilizando um polariscópio de transmissão plana. RESULTADOS: As regiões de maiores concentrações de tensões foram observadas entre o canal medular e as curvas do processo transverso. Nas comparações das médias das tensões cisalhantes máximas entre os parafusos 5 e 7, e 6 e 7 foram observadas diferenças estatísticas significativas e entre 5 e 6 não. CONCLUSÃO: Foi observada que as tensões internas são mais elevadas em áreas irregulares próxima ao canal medular, mostrando ser uma região crítica.INTRODUCTION: The vertebrae fixation system using pedicular screws is one of the most efficient methods to treat vertebral spine pathologies. When the screw is submitted to pullout strength, it causes internal tension near the medullar canal and this situation can be analyzed by using the photoelasticity technique. OBJECTIVE: Were analyzed those internal tensions near the medullar canal of photoelastic vertebra models using different sizes of screws of the vertebral fixation system submitted to pullout strength. METHODS: A lumbar vertebral model made of photoelastic material with three different

  18. Direct anterior screw fixation for recent and remote odontoid fractures. (United States)

    Apfelbaum, R I; Lonser, R R; Veres, R; Casey, A


    The management of odontoid fractures remains controversial. Only direct anterior screw fixation provides immediate stabilization of the spine and may preserve normal C1-2 motion. To determine the indications, optimum timing, and results for direct anterior screw fixation of odontoid fractures, the authors reviewed the surgery-related outcome of patients who underwent this procedure at two institutions. One hundred forty-seven consecutive patients (98 males and 49 females) who underwent direct anterior screw fixation for recent ( or = 18 months postinjury [18 patients]) Type II (138 cases) or III (nine cases) odontoid fractures at the University of Utah (94 patients) and National Institute of Traumatology in Budapest, Hungary (53 patients) between 1986 and 1998 are included in this study (mean follow up 18.2 months). Data obtained from clinical examination, review of hospital charts, operative findings, and imaging studies were used to analyze the surgery-related results in these patients. In patients with recent fractures there was an overall bone fusion rate of 88%. The rate of anatomical bone fusion of recent fractures was significantly (p or = 0.05) of age, sex, number of screws placed (one or two), and the degree or the direction of odontoid displacement. In patients with remote fractures there was a significantly lower rate of bone fusion (25%). Overall, complications related to hardware failure occurred in 14 patients (10%) and those unrelated to hardware in three patients (2%). There was one death (1%) related to surgery. Direct anterior screw fixation is an effective and safe method for treating recent odontoid fractures ( or = 18 months postinjury) a significantly lower rate of fusion is found when using this technique, and these patients are believed to be poor candidates for this procedure.

  19. Color From Geometry

    CERN Document Server

    Guijosa, A


    This thesis explores some aspects of the recently uncovered connection between gauge theories and gravity, known as the AdS/CFT, or bulk-boundary, correspondence. This is a remarkable statement of equivalence between string or M-theory on certain backgrounds and field theories living on the boundaries of the corresponding spacetimes. Under the duality between four-dimensional N = 4 SU(N) superYang-Mills (SYM) and Type IIB string theory on AdS5 × S5, a baryon is mapped onto N fundamental strings terminating on a wrapped D5-brane. We examine the structure and energetics of this system from the vantage point of the fivebrane worldvolume action, making use of the Born-Infeld string approach. We construct supersymmetric fivebrane embeddings which correspond to gauge theory configurations with n external quarks, 0 ≤ n ≤ N. The extension of these solutions to the full asymptotically flat geometry of N D3-branes provides a detailed description of the creation of strings as the fivebrane is...

  20. Ostrich eggs geometry

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová


    Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.

  1. Null twisted geometries

    CERN Document Server

    Speziale, Simone


    We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is na...

  2. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra


    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  3. Initial tension loss in cerclage cables. (United States)

    Ménard, Jérémie; Émard, Maxime; Canet, Fanny; Brailovski, Vladimir; Petit, Yvan; Laflamme, George Y


    Cerclage cables, frequently used in the management of fractures and osteotomies, are associated with a high failure rate and significant loosening during surgery. This study compared the capacity to maintain tension of different types of orthopaedic cable systems. Multifilament Cobalt-Chrome (CoCr) cables with four different crimp/clamp devices (DePuy, Stryker, Zimmer and Smith&Nephew) and one non-metallic Nylon (Ny) cable from Kinamed were instrumented with a load cell to measure tension during insertion. Significant tension loss was observed with crimping for all cables (Ptensioner led to an additional unexpected tension loss (CoCr-DePuy: 18%, CoCr-Stryker: 29%, CoCr-Smith&Nephew: 33%, Ny: 46%, and CoCr-Zimmer: 52%). The simple CoCr (DePuy) cable system outperformed the more sophisticated locking devices due to its significantly better ability to prevent tension loss. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A rationale method for evaluating unscrewing torque values of prosthetic screws in dental implants (United States)

    SALIBA, Felipe Miguel; CARDOSO, Mayra; TORRES, Marcelo Ferreira; TEIXEIRA, Alexandre Carvalho; LOURENÇO, Eduardo José Veras; TELLES, Daniel de Moraes


    Objectives Previous studies that evaluated the torque needed for removing dental implant screws have not considered the manner of transfer of the occlusal loads in clinical settings. Instead, the torque used for removal was applied directly to the screw, and most of them omitted the possibility that the hexagon could limit the action of the occlusal load in the loosening of the screws. The present study proposes a method for evaluating the screw removal torque in an anti-rotational device independent way, creating an unscrewing load transfer to the entire assembly, not only to the screw. Material and methods Twenty hexagonal abutments without the hexagon in their bases were fixed with a screw to 20 dental implants. They were divided into two groups: Group 1 used titanium screws and Group 2 used titanium screws covered with a solid lubricant. A torque of 32 Ncm was applied to the screw and then a custom-made wrench was used for rotating the abutment counterclockwise, to loosen the screw. A digital torque meter recorded the torque required to loosen the abutment. Results There was a significant difference between the means of Group 1 (38.62±6.43 Ncm) and Group 2 (48.47±5.04 Ncm), with p=0.001. Conclusion This methodology was effective in comparing unscrewing torque values of the implant-abutment junction even with a limited sample size. It confirmed a previously shown significant difference between two types of screws. PMID:21437472

  5. A rationale method for evaluating unscrewing torque values of prosthetic screws in dental implants

    Directory of Open Access Journals (Sweden)

    Felipe Miguel Saliba


    Full Text Available OBJECTIVES: Previous studies that evaluated the torque needed for removing dental implant screws have not considered the manner of transfer of the occlusal loads in clinical settings. Instead, the torque used for removal was applied directly to the screw, and most of them omitted the possibility that the hexagon could limit the action of the occlusal load in the loosening of the screws. The present study proposes a method for evaluating the screw removal torque in an anti-rotational device independent way, creating an unscrewing load transfer to the entire assembly, not only to the screw. MATERIAL AND METHODS: Twenty hexagonal abutments without the hexagon in their bases were fixed with a screw to 20 dental implants. They were divided into two groups: Group 1 used titanium screws and Group 2 used titanium screws covered with a solid lubricant. A torque of 32 Ncm was applied to the screw and then a custom-made wrench was used for rotating the abutment counterclockwise, to loosen the screw. A digital torque meter recorded the torque required to loosen the abutment. RESULTS: There was a significant difference between the means of Group 1 (38.62±6.43 Ncm and Group 2 (48.47±5.04 Ncm, with p=0.001. CONCLUSION: This methodology was effective in comparing unscrewing torque values of the implant-abutment junction even with a limited sample size. It confirmed a previously shown significant difference between two types of screws.

  6. Evaluation of different screw fixation techniques and screw diameters in sagittal split ramus osteotomy: finite element analysis method. (United States)

    Sindel, A; Demiralp, S; Colok, G


    Sagittal split ramus osteotomy (SSRO) is used for correction of numerous congenital or acquired deformities in facial region. Several techniques have been developed and used to maintain fixation and stabilisation following SSRO application. In this study, the effects of the insertion formations of the bicortical different sized screws to the stresses generated by forces were studied. Three-dimensional finite elements analysis (FEA) and static linear analysis methods were used to investigate difference which would occur in terms of forces effecting onto the screws and transmitted to bone between different application areas. No significant difference was found between 1·5- and 2-mm screws used in SSRO fixation. Besides, it was found that 'inverted L' application was more successful compared to the others and that was followed by 'L' and 'linear' formations which showed close rates to each other. Few studies have investigated the effect of thickness and application areas of bicortical screws. This study was performed on both advanced and regressed jaws positions. © 2014 John Wiley & Sons Ltd.

  7. Positive geometries and canonical forms (United States)

    Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas


    Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of "positive geometries" and their associated "canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via "triangulation" on the one hand, and "push-forward" maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest "simplex-like" geometries and the richer "polytope-like" ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex

  8. Reduction in wire tension caused by wire clamping and wire tensioner removal: an experimental Ilizarov frame study. (United States)

    La Russa, Valentina; Skallerud, Bjørn; Klaksvik, Jomar; Foss, Olav A


    The stability of an external ring fixator mainly depends on wire tension. Wire fixators should maintain the tension during both wire clamping to the ring and removal of the tensioner device. In the present study the loss in wire tension related to fixator clamping and wire tensioner removal using three different wire fixator designs was studied. The fixators were based on two different cannulated bolts and a washer. Effects from two different pretension levels in combination with three different bolt torque levels upon loss in wire tension were described. Emitted wire vibration frequency was used to assess the corresponding wire tension. Wire tension was determined after each wire fixator tightening and after the removal of the wire tensioner. Increased bolt torque led to a small decrease in tension for both pretension levels. A considerable higher tension loss was measured when removing the wire tensioner. In all cases, the combination of a new cannulated bolt and a washer maintained the highest tension.

  9. Latarjet Fixation: A Cadaveric Biomechanical Study Evaluating Cortical and Cannulated Screw Fixation. (United States)

    Alvi, Hasham M; Monroe, Emily J; Muriuki, Muturi; Verma, Rajat N; Marra, Guido; Saltzman, Matthew D


    Attritional bone loss in patients with recurrent anterior instability has successfully been treated with a bone block procedure such as the Latarjet. It has not been previously demonstrated whether cortical or cancellous screws are superior when used for this procedure. To assess the strength of stainless steel cortical screws versus stainless steel cannulated cancellous screws in the Latarjet procedure. Controlled laboratory study. Ten fresh-frozen matched-pair shoulder specimens were randomized into 2 separate fixation groups: (1) 3.5-mm stainless steel cortical screws and (2) 4.0-mm stainless steel partially threaded cannulated cancellous screws. Shoulder specimens were dissected free of all soft tissue and a 25% glenoid defect was created. The coracoid process was osteomized, placed at the site of the glenoid defect, and fixed in place with 2 parallel screws. All 10 specimens failed by screw cutout. Nine of 10 specimens failed by progressive displacement with an increased number of cycles. One specimen in the 4.0-mm screw group failed by catastrophic failure on initiation of the testing protocol. The 3.5-mm screws had a mean of 274 cycles (SD, ±171 cycles; range, 10-443 cycles) to failure. The 4.0-mm screws had a mean of 135 cycles (SD, ±141 cycles; range, 0-284 cycles) to failure. There was no statistically significant difference between the 2 types of screws for cycles required to cause failure (P = .144). There was no statistically significant difference in energy or cycles to failure when comparing the stainless steel cortical screws versus partially threaded cannulated cancellous screws. Latarjet may be performed using cortical or cancellous screws without a clear advantage of either option.

  10. Interfragmentary compression profile of 4 headless bone screws: an analysis of the compression lost on reinsertion. (United States)

    Gardner, A W; Yew, Y T; Neo, P Y; Lau, C C; Tay, S C


    To evaluate the interfragmentary compression force generated by 4 different types of headless compression screws and to examine the effects of removal and reinsertion of the screw. We chose foot bones rather than scaphoids for the model because they were larger and would enable comparison of 2 screw designs in the same bone, thereby controlling for the effect of interspecimen variability. A transverse osteotomy was made in 10 fresh-frozen cadaveric navicular bones and 10 medial cuneiforms. A load cell was used to measure compression between the 2 fragments as a screw was inserted across the fracture. Each bone was tested twice, with an Acutrak Mini (Acumed, Hillsboro, OR; n = 10) and an SBi AutoFIX screw (SBi, Morrisville, PA; n = 10) or an Extremifix (Osteomed, Addison, TX; n = 10) and a Barouk screw (Depuy, Warsaw, IN; n = 10). Compression was recorded at initial insertion and on removal and reinsertion of the screw twice to the same position. Compression was also measured after one additional full turn further than the initial position. The mean interfragmentary compression generated by the Acutrak Mini screw was greater than that of the SBi AutoFIX screw (96 N vs 22 N). There was a trend toward a greater mean compression generated by the Extremifix screw compared to the Barouk screw (85 N vs 22 N). There was a significant loss of compression upon removal and reinsertion of the screws. An additional full turn of the screw was able to re-establish a large proportion of the original compression. The compression forces achieved by headless screw systems appeared to vary according to the screw design, depth of insertion, and the quality of the bone. Substantial compression was lost if the screw was removed and replaced. Some screw designs appeared to require a greater depth of insertion to achieve effective compression, and the number of additional turns required to re-establish compression might vary according to the thread design. Surgeons should be aware of the

  11. Placement of thoracic transvertebral pedicle screws using 3D image guidance. (United States)

    Nottmeier, Eric W; Pirris, Stephen M


    Transvertebral pedicle screws have successfully been used in the treatment of high-grade L5-S1 spondylolisthesis. An advantage of transvertebral pedicle screws is the purchase of multiple cortical layers across 2 vertebrae, thereby increasing the stability of the construct. At the lumbosacral junction, transvertebral pedicle screws have been shown to be biomechanically superior to pedicle screws placed in the standard fashion. The use of transvertebral pedicle screws at spinal levels other than L5-S1 has not been reported in the literature. The authors describe their technique of transvertebral pedicle screw placement in the thoracic spine using 3D image guidance. Twelve patients undergoing cervicothoracic or thoracolumbar fusion had 41 thoracic transvertebral pedicle screws placed across 26 spinal levels using this technique. Indications for placement of thoracic transvertebral pedicle screws in earlier cases included osteoporosis and pedicle screw salvage. However, in subsequent cases screws were placed in patients undergoing multilevel thoracolumbar fusion without osteoporosis, particularly near the top of the construct. Image guidance in this study was accomplished using the Medtronic StealthStation S7 image guidance system used in conjunction with the O-arm. All patients were slated to undergo postoperative CT scanning at approximately 4-6 months for fusion assessment, which also allowed for grading of the transvertebral pedicle screws. No thoracic transvertebral pedicle screw placed in this study had to be replaced or repositioned after intraoperative review of the cone beam CT scans. Review of the postoperative CT scans revealed all transvertebral screws to be across the superior disc space with the tips in the superior vertebral body. Six pedicle screws were placed using the in-out-in technique in patients with narrow pedicles, leaving 35 screws that underwent breach analysis. No pedicle breach was noted in 34 of 35 screws. A Grade 1 (image-guided placement

  12. Spatial geometry and special relativity

    DEFF Research Database (Denmark)

    Kneubil, Fabiana Botelho


    In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame-dependent and fr...

  13. Geometry of the quantum universe

    NARCIS (Netherlands)

    Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.


    A quantum universe with the global shape of a (Euclidean) de Sitter spacetime appears as dynamically generated background geometry in the causal dynamical triangulation (CDT) regularisation of quantum gravity. We investigate the micro- and macro-geometry of this universe, using geodesic shell

  14. GPS: Geometry, Probability, and Statistics (United States)

    Field, Mike


    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  15. Surrogate Modeling for Geometry Optimization

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie


    A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....

  16. Dynamical Modeling of Surface Tension (United States)

    Brackbill, Jeremiah U.; Kothe, Douglas B.


    In a recent review it is said that free-surface flows 'represent some of the difficult remaining challenges in computational fluid dynamics'. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF formulation might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin (1996). This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated. For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin (1996), are discussed.

  17. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich


    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  18. A Biomechanical Analysis of 2 Constructs for Metacarpal Spiral Fracture Fixation in a Cadaver Model: 2 Large Screws Versus 3 Small Screws. (United States)

    Eu-Jin Cheah, Andre; Behn, Anthony W; Comer, Garet; Yao, Jeffrey


    Surgeons confronted with a long spiral metacarpal fracture may choose to fix it solely with lagged screws. A biomechanical analysis of a metacarpal spiral fracture model was performed to determine whether 3 1.5-mm screws or 2 2.0-mm screws provided more stability during bending and torsional loading. Second and third metacarpals were harvested from 12 matched pairs of fresh-frozen cadaveric hands and spiral fractures were created. One specimen from each matched pair was fixed with 2 2.0-mm lagged screws whereas the other was fixed with 3 1.5-mm lagged screws. Nine pairs underwent combined cyclic cantilever bending and axial compressive loading followed by loading to failure. Nine additional pairs were subjected to cyclic external rotation while under a constant axial compressive load and were subsequently externally rotated to failure under a constant axial compressive load. Paired t tests were used to compare cyclic creep, stiffness, displacement, rotation, and peak load levels. Average failure torque for all specimens was 7.2 ± 1.7 Nm. In cyclic torsional testing, the group with 2 screws exhibited significantly less rotational creep than the one with 3 screws. A single specimen in the group with 2 screws failed before cyclic bending tests were completed. No other significant differences were found between test groups during torsional or bending tests. Both constructs were biomechanically similar except that the construct with 2 screws displayed significantly less loosening during torsional cyclic loading, although the difference was small and may not be clinically meaningful. Because we found no obvious biomechanical advantage to using 3 1.5-mm lagged screws to fix long spiral metacarpal fractures, the time efficiency and decreased implant costs of using 2-2.0 mm lagged screws may be preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. The Effect of Transpedicular Screw Design on Its Performance in Vertebral Bone Under Tensile Loads: A Parametric Study. (United States)

    Alkaly, Ron N; Bader, Dan L


    A biomechanical study using bovine thoracolumbar spines. To study investigated whether thread design parameters aimed at altering the state of stress at the screw-bone interface increase the screw's holding power. Internal spinal fixators utilizing transpedicular screw fixation are used to achieve early stabilization of the injured spine in a range of clinical conditions. Despite advances in the design of internal spinal fixation systems, implant loosening, and catastrophic failures at the screw-bone interface remains a serious complication in adult spine surgery. Although the performance of the screws in the vertebral bone critically depends on ability of screw thread design to provide and maintain adequate bone purchase, the effect of individual thread design parameters on screw performance and the failure process of the screw-bone interface, remains unclear. On the basis of the AO Schanz thread, this parametric study used 96 lumbar bovine vertebrae instrumented with 19 screw designs to investigate the effects of pitch, ratio of major to minor diameter, screw insertion depth, and major diameter, on screw performance under pure tensile loading. The effect of vertebral morphometry on screw performance and the extent of damage within the failed screw-bone interface were evaluated. The increase in screw insertion depth, screw pitch, and the ratio of major to minor diameter, significantly affected screw performance under tensile loads. Complex interactions existed between the major diameter and each of the design variables. Vertebral morphometry had little effect on screw performance while the damage within the failed bone-screw interface confined to the immediate region of the screw threads. Design variables, able to reduce shear stresses or modify the complex stress profile at the bone-screw interface, are more effective in preventing early failure of the interface.

  20. Tension and Robustness in Multitasking Cellular Networks (United States)

    Wong, Jeffrey V.; Li, Bochong; You, Lingchong


    Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of “tension” between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between “one-size-fits-all” solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks. PMID:22577355

  1. Gastrothorax or tension pneumothorax: A diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Singh Sarvesh


    Full Text Available Gastrothorax, a rare complication following thoracoabdominal aortic aneurysm repair, is reported. The clinical features of a gastrothorax and tension pneumothorax are similar and thus, a gastrothorax can masquerade as a tension pneumothorax. The diagnosis is made by a high level of clinical suspicion, chest X-ray shows a distended stomach with air fluid levels and a computerised tomography is useful in assessing the diaphragm and establishing the positions of the various intra-abdominal organs. Also, the risk of an intercostal drainage tube placement and the role of nasogastric tube in avoiding the development of a tension gastrothorax is highlighted.

  2. Surface tension profiles in vertical soap films (United States)

    Adami, N.; Caps, H.


    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  3. Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation

    Directory of Open Access Journals (Sweden)

    Katonis Pavlos G


    Full Text Available Abstract Background Lag screw cut-out failure following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. This study tested if resistance to cut-out failure can be improved by using a dual lag screw implant in place of a single lag screw implant. Migration behavior and cut-out resistance of a single and a dual lag screw implant were comparatively evaluated in surrogate specimens using an established laboratory model of hip screw cut-out failure. Methods Five dual lag screw implants (Endovis, Citieffe and five single lag screw implants (DHS, Synthes were tested in the Hip Implant Performance Simulator (HIPS of the Legacy Biomechanics Laboratory. This model simulated osteoporotic bone, an unstable fracture, and biaxial rocking motion representative of hip loading during normal gait. All constructs were loaded up to 20,000 cycles of 1.45 kN peak magnitude under biaxial rocking motion. The migration kinematics was continuously monitored with 6-degrees of freedom motion tracking system and the number of cycles to implant cut-out was recorded. Results The dual lag screw implant exhibited significantly less migration and sustained more loading cycles in comparison to the DHS single lag screw. All DHS constructs failed before 20,000 cycles, on average at 6,638 ± 2,837 cycles either by cut-out or permanent screw bending. At failure, DHS constructs exhibited 10.8 ± 2.3° varus collapse and 15.5 ± 9.5° rotation around the lag screw axis. Four out of five dual screws constructs sustained 20,000 loading cycles. One dual screw specimens sustained cut-out by medial migration of the distal screw after 10,054 cycles. At test end, varus collapse and neck rotation in dual screws implants advanced to 3.7 ± 1.7° and 1.6 ± 1.0°, respectively. Conclusion The single and double lag screw implants demonstrated a significantly different migration resistance in surrogate specimens under gait loading simulation with

  4. Efficacy and accuracy of a novel rapid prototyping drill template for cervical pedicle screw placement. (United States)

    Lu, Sheng; Xu, Yong Q; Chen, Guo P; Zhang, Yuan Z; Lu, Di; Chen, Yu B; Shi, Ji H; Xu, Xing M


    To develop and validate the efficacy and accuracy of a novel drill template for cervical pedicle instrumentation. A CT scan of the cervical vertebrae was performed, and a 3D model of the vertebrae was reconstructed using MIMICS 10.01 software. The 3D vertebral model was then exported in STL format, and opened in a workstation running UGS Imageware 12.0 software to determine the optimal pedicle screw size and orientation. A virtual navigational template was established according to the laminar anatomic trait, and physical navigational templates were manufactured using rapid prototyping. The navigational templates were used intraoperatively to assist in the placement of cervical pedicle screws. In all, 84 pedicle screws were placed, and the accuracy of screw placement was confirmed with postoperative X-rays and CT scans. Eighty-two screws were rated as Grade 0, 2 as Grade 1, and no screws as Grade 2 or 3. Hence, safer screw positioning was accomplished with the drill template technique. This study demonstrates a patient-specific template technique that is easy to use, can simplify the surgical act, and generates highly accurate cervical pedicle screw placement. The advantages of this technology over traditional techniques are that it enables planning of the screw trajectory to be completed prior to surgery, and that the screw can be sized to fit the patient's anatomy.

  5. Surgical technique: Simple technique for removing a locking recon plate with damaged screw heads. (United States)

    Gopinathan, Nirmal Raj; Dhillon, Mandeep Singh; Kumar, Rajesh


    The introduction of locking plates in the treatment of periarticular fractures was a major breakthrough in orthopaedic evolution. Removal of these implants is extremely difficult as a result of cold welding and stripping of screw heads. A 31-year-old man had a schwannoma of the left C5-C6 nerve roots and upper trunk of the brachial plexus. One year before presentation he had undergone excision of the lesion through an approach using a clavicular osteotomy. The osteotomy had been fixed with a titanium locking recon plate. While surgically removing the implant, only one screw could be removed. The remaining five screws could not be turned owing to cold welding; repeated attempts at removing the screws damaged the screw heads. A large bolt cutter was used to cut the plate between the holes, and the resulting rectangular sections with the screws then were unscrewed from the bone. Limited literature is available regarding techniques for locking screw removal. These include using a carbide drill bit or diamond-tipped burr, high-speed disc, or conical extraction screw. Not all centers have specialized instruments such as carbide drill bits to remove screw heads, but a large bolt cutter usually is available when screws cannot be unscrewed owing to cold welding. The technique of cutting is easily reproducible and does not require additional soft tissue stripping.

  6. Decompressive cervical laminectomy and lateral mass screw-rod arthrodesis. Surgical analysis and outcome

    Directory of Open Access Journals (Sweden)

    Obaidat Mouness H


    Full Text Available Abstract Background This study evaluates the outcome and complications of decompressive cervical Laminectomy and lateral mass screw fixation in 110 cases treated for variable cervical spine pathologies that included; degenerative disease, trauma, neoplasms, metabolic-inflammatory disorders and congenital anomalies. Methods A retrospective review of total 785 lateral mass screws were placed in patients ages 16-68 years (40 females and 70 males. All cases were performed with a polyaxial screw-rod construct and screws were placed by using Anderson-Sekhon trajectory. Most patients had 12-14-mm length and 3.5 mm diameter screws placed for subaxial and 28-30 for C1 lateral mass. Screw location was assessed by post operative plain x-ray and computed tomography can (CT, besides that; the facet joint, nerve root foramen and foramen transversarium violation were also appraised. Results No patients experienced neural or vascular injury as a result of screw position. Only one patient needed screw repositioning. Six patients experienced superficial wound infection. Fifteen patients had pain around the shoulder of C5 distribution that subsided over the time. No patients developed screw pullouts or symptomatic adjacent segment disease within the period of follow up. Conclusion decompressive cervical spine laminectomy and Lateral mass screw stabilization is a technique that can be used for a variety of cervical spine pathologies with safety and efficiency.

  7. Enhancement of Orthodontic Anchor Screw Stability Under Immediate Loading by Ultraviolet Photofunctionalization Technology. (United States)

    Takahashi, Maiko; Motoyoshi, Mitsuru; Inaba, Mizuki; Hagiwara, Yoshiyuki; Shimizu, Noriyoshi

    Ultraviolet (UV)-mediated photofunctionalization technology is intended to enhance the osseointegration capability of titanium implants. There are concerns about orthodontic anchor screws loosening under immediate loading protocols in adolescent orthodontic treatment. The purpose of this in vivo study was to evaluate the effects of photofunctionalization on the intrabony stability of orthodontic titanium anchor screws and bone-anchor screw contact under immediate loading in growing rats. Custom-made titanium anchor screws (1.4 mm in diameter and 4.0 mm in length) with or without photofunctionalization pretreatment were placed on the proximal epiphysis of the tibial bone in 6-week-old male Sprague-Dawley rats and were loaded immediately after placement. After 2 weeks of loading, the stability of the anchor screws was evaluated using a Periotest device, and the bone-anchor screw contact ratio (BSC) was assessed by a histomorphometric analysis using field-emission scanning electron microscopy. In the unloaded group, Periotest values (PTVs) were ~25 for UV-untreated screws and 13 for UVtreated screws (P anchor screws under immediate loading in growing rats by increasing bone-anchor screw contact.

  8. A novel approach to navigated implantation of S-2 alar iliac screws using inertial measurement units. (United States)

    Jost, Gregory F; Walti, Jonas; Mariani, Luigi; Cattin, Philippe


    The authors report on a novel method of intraoperative navigation with inertial measurement units (IMUs) for implantation of S-2 alar iliac (S2AI) screws in sacropelvic fixation of the human spine and its application in cadaveric specimens. Screw trajectories were planned on a multiplanar reconstruction of the preoperative CT scan. The pedicle finder and screwdriver were equipped with IMUs to guide the axial and sagittal tilt angles of the planned trajectory, and navigation software was developed. The entry points were chosen according to anatomical landmarks on the exposed spine. After referencing, the sagittal and axial orientation of the pedicle finder and screwdriver were wirelessly monitored on a computer screen and aligned with the preoperatively planned tilt angles to implant the S2AI screws. The technique was performed without any intraoperative imaging. Screw positions were analyzed on postoperative CT scans. Seventeen of 18 screws showed a good S2AI screw trajectory. Compared with the postoperatively measured tilt angles of the S2AI screws, the IMU readings on the screwdriver were within an axial plane deviation of 0° to 5° in 15 (83%) and 6° to 10° in 2 (11%) of the screws and within a sagittal plane deviation of 0° to 5° in 15 (83%) and 6° to 10° in 3 (17%) of the screws. IMU-based intraoperative navigation may facilitate accurate placement of S2AI screws.

  9. Cytotoxicity of a new antimicrobial coating for surgical screws: an in vivo study. (United States)

    Güzel, Yunus; Elmadag, Mehmet; Uzer, Gokcer; Yıldız, Fatih; Bilsel, Kerem; Tuncay, İbrahim


    The risk of surgery-related infection is a persistent problem in orthopaedics and infections involving implants are particularly difficult to treat. This study explored the responses of bone and soft tissue to antimicrobial-coated screws. We investigated whether such screws, which have never been used to fix bony tissues, would result in a cytotoxic effect. We hypothesised that the coated screws would not be toxic to the bone and that the likelihood of infection would be reduced since bacteria are not able to grow on these screws. Titanium screws were inserted into the left supracondylar femoral regions of 16 rabbits. The screws were either uncoated (control group, n = 8) or coated with a polyvinylpyrrolidone-polyurethane interpolymer with tertiary amine functional groups (experimental group, n = 8). At Week 6, histological samples were obtained and examined. The presence of necrosis, fibrosis and inflammation in the bony tissue and the tissue surrounding the screws was recorded. Live, cellular bone marrow was present in all the rabbits from the experimental group, but was replaced with connective tissue in four rabbits from the control group. Eight rabbits from the control group and two rabbits from the experimental group had necrosis in fatty bone marrow. Inflammation was observed in one rabbit from the experimental group and five rabbits from the control group. Titanium surgical screws coated with polyvinylpyrrolidone-polyurethane interpolymer were associated with less necrosis than standard uncoated screws. The coated screws were also not associated with any cytotoxic side effect.

  10. Biomechanical comparison of sagittal-parallel versus non-parallel pedicle screw placement. (United States)

    Farshad, Mazda; Farshad-Amacker, Nadja A; Bachmann, Elias; Snedeker, Jess G; Schmid, Samuel L


    While convergent placement of pedicle screws in the axial plane is known to be more advantageous biomechanically, surgeons intuitively aim toward a parallel placement of screws in the sagittal plane. It is however not clear whether parallel placement of screws in the sagittal plane is biomechanically superior to a non-parallel construct. The hypothesis of this study is that sagittal non-parallel pedicle screws do not have an inferior initial pull-out strength compared to parallel placed screws. The established lumbar calf spine model was used for determination of pull-out strength in parallel and non-parallel intersegmental pedicle screw constructs. Each of six lumbar calf spines (L1-L6) was divided into three levels: L1/L2, L3/L4 and L5/L6. Each segment was randomly instrumented with pedicle screws (6/45 mm) with either the standard technique of sagittal parallel or non-parallel screw placement, respectively, under fluoroscopic control. CT was used to verify the intrapedicular positioning of all screws. The maximum pull-out forces and type of failure were registered and compared between the groups. The pull-out forces were 5,394 N (range 4,221 N to 8,342 N) for the sagittal non-parallel screws and 5,263 N (range 3,589 N to 7,554 N) for the sagittal-parallel screws (p = 0.838). Interlevel comparisons also showed no statistically significant differences between the groups with no relevant difference in failure mode. Non-parallel pedicle screws in the sagittal plane have at least equal initial fixation strength compared to parallel pedicle screws in the setting of the here performed cadaveric calf spine experiments.

  11. Weber C ankle fractures: a retrospective audit of screw number, size, complications, and retrieval rates. (United States)

    Walker, Logan; Willis, Nigel


    Tibiofibular transfixation of Weber C injuries using a diastasis screw is the current method of fixation. However, controversy remains regarding the screw size and number, number of cortices engaged, and the interval to screw removal. The present study reviewed the current practice in the Wellington Region. A retrospective audit of patients with documented Weber C injuries in the Capital & Coast District Health Board from June 2012 to December 2013 was performed. The clinical medical records and radiographs were reviewed, and the patient demographics, surgeon details, screw number, size, cortices engaged, screw removal period, and documented complications were recorded. A total of 36 operations were documented, of which 27 (75%) cases also required fibula plating. Of the 36 cases, 25 (69.44%) used a single diastasis screw, 33 (91.67%) used 4.5-mm screws, and 18 (50%) engaged 3 cortices. Surgical practice did not vary with the experience level. Of the 36 patients, 29 (80.56%) underwent routine screw removal at a median of 20 (25th to 75th quartile range 16 to 22) weeks. Also, 9 (25%) cases of screw fracture occurred, with a median documented interval to fracture of 18 (25th to 75th quartile range 15 to 20) weeks. The surgical management of Weber C injuries is consistent with current practice. The routine removal of diastasis screws by 20 weeks postoperatively was not different from the documented interval of screw removal when screw fractures had occurred. The timing of screw removal needs to be weighed against the fracture risk, patient symptoms, and the risk of secondary procedure complications. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Deroma, R; Borzov, E; Nevelsky, A [Rambam Medical Center, Haifa (Israel)


    Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC) simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.

  13. Interfragmentary compression across a simulated scaphoid fracture--analysis of 3 screws. (United States)

    Beadel, Gordon P; Ferreira, Louis; Johnson, James A; King, Graham J W


    To measure the interfragmentary compression generated across a simulated fracture in cadaveric scaphoids by 3 different headless compression screws. A transverse osteotomy was made through the waist of each scaphoid and a load cell to measure compression was interposed between the fragments, which were then fixed internally retrograde with either an Acutrak Standard (n = 10), Acutrak Mini (n = 12), or Bold (n = 10) screw. The surgeon was blinded to the measured compression, which was recorded during screw insertion and for the following 5 minutes. As a measure of scaphoid bone quality the modulus of elasticity of the trabecular bone of each specimen was then calculated from uniaxial compression tests. The mean interfragmentary compression generated by the Acutrak Standard screw was significantly greater and more consistent than the Bold screw or the Acutrak Mini screw. The compression achieved by the Acutrak Standard screw was also more consistent than that obtained by either the Bold or the Acutrak Mini screws as reflected by the lower standard deviation. The mean modulus of elasticity of the scaphoid trabecular bone was similar for each screw group. The interfragmentary compression generated by the Acutrak Standard screw was significantly greater and more consistent than that generated by either the Bold or Acutrak Mini screws. The compression generated by the Acutrak Standard and Mini screws was significantly better sustained over time than that generated by the Bold screw; however, these differences were small and may not be clinically important. The optimal compression required to promote scaphoid fracture union remains unknown and clinical trials are needed to further evaluate the outcome from using these devices.

  14. Utility of evoked EMG monitoring to improve bone screw placements in the cervical spine. (United States)

    Holdefer, Robert N; Heffez, Daniel S; Cohen, Bernard A


    EMG threshold testing as a guide to accurate screw placement was examined during posterior cervical spine instrumentation. The accuracy of screw placements was compared with the surgeon blinded and unblinded to EMG thresholds. To determine the utility of EMG threshold testing in improving screw placements in the lateral mass and pedicles of the cervical/upper thoracic spine. EMG threshold testing in the lumbar spine is generally thought to improve the accuracy of pedicle screw placements. These results may not generalize to the cervical spine, where smaller pedicles, bicortical pilot holes, and the orientation of lateral mass screws away from midline may result in different alert thresholds. Triggered EMG thresholds were obtained from pilot holes in 244 lateral mass and 113 pedicles from 32 patients. Thresholds were compared with the accuracy of screw placements as determined from postoperative computed tomography scans. The percentage of inaccurate and potentially dangerous (IAPD) screws with the surgeon blinded and unblinded to EMG thresholds was determined. EMG threshold testing was more accurate in predicting IAPD screw trajectories in the pedicles (likelihood ratio 5.1) as compared with the lateral mass (likelihood ratio 2.9). In the pedicles, the number of IAPD screws decreased from 4.5% in the blinded controls to 0% in the unblinded group. In the lateral mass, there were no IAPD screw placements in the blinded control group, whereas 2% of the screws in the unblinded group were IAPD. EMG threshold testing in the cervical spine (C3, T1) is a moderately accurate diagnostic test and more predictive of potentially dangerous screw trajectories in the pedicles (C7, T1) as compared with the lateral mass (C3-C6). EMG threshold testing may decrease potentially dangerous screw placements in the pedicles, but may have less utility in the case of the lateral mass because of less reproducible placement of the stimulating probe.

  15. A Method to Prevent Occipitocervical Joint Violation Using Plain Radiography During Percutaneous Anterior Transarticular Screw Fixation. (United States)

    Jin, Hai-Ming; Xu, Dao-Liang; Xuan, Jun; Chen, Jiao-Xiang; Goswami, Amit; Chen, Xi-Bang; Wu, Ai-Min; Chi, Yong-Long; Wang, Xiang-Yang


    A prospective study of anterior transarticular screw (ATS) fixation patients. To develop a method to determine screw tip position through plain radiography after percutaneous ATS fixation to prevent occipitocervical joint (OCJ) violation. No studies using plain radiography to prevent OCJ violation during percutaneous ATS fixation have been performed. In total, 34 subjects (with 68 screws) who had undergone percutaneous ATS fixation were enrolled. To evaluate the screw tip location in relation to the C1 lateral mass (LM), the screw tip positions were graded 1, 2, or 3 on anteroposterior (AP) radiographs, and I, II, or III on lateral radiographs. OCJ violation was analyzed by postoperative computed tomography (CT). Screws with tips located lower (tip I) in the LM did not result in OCJ violation. Only one tip in the tip 3 position showed OCJ perforation, and this screw was also located in tip III. Screw perforation rates of tip 1-tip II, tip 1-tip III, and tip 2-tip III were the highest (100%), followed by tip 2-tip II (10.5%) and tip3-tip III (10%). This study provides insights into OCJ violation during percutaneous ATS fixation. According to AP radiography, a percutaneous ATS with the screw tip located in the lateral part of the LM resulted in a lower rate of OCJ perforation, whereas screws located in the medial LM resulted in the highest rate of perforation. Percutaneous ATS with the screw tip located in the neutral part of the LM should ensure that the screw tip is below the upper part of the LM, preventing OCJ violation. These findings may help surgeons assess screw positioning both during and after the operation. 3.

  16. Determination of Screw and Nail Withdrawal Resistance of Some Important Wood Species

    Directory of Open Access Journals (Sweden)

    Alper Aytekin


    Full Text Available In this study, screw and nail withdrawal resistance of fir (Abies nordmanniana, oak (Quercus robur L. black pine (Pinus nigra Arnold and Stone pine (Pinus pinea L. wood were determined and compared. The data represent the testing of withdrawal resistance of three types of screws as smart, serrated and conventional and common nails. The specimens were prepared according to TS 6094 standards. The dimensions of the specimens were 5x5x15cm and for all of the directions. Moreover, the specimens were conditioned at ambient room temperature and 65±2% relative humidity. The screws and nails were installed according to ASTM-D 1761 standards. Nail dimensions were 2.5mm diameter and 50 mm length, conventional screws were 4x50mm, serrated screws were 4x45mm and smart screws were 4x50mm. Results show that the maximum screw withdrawal resistance value was found in Stone pine for the serrated screw. There were no significant differences between Stone pine and oak regarding screw withdrawal resistance values. Conventional screw yielded the maximum screw withdrawal resistance value in oak, followed by Stone pine, black pine and fir. Oak wood showed the maximum screw withdrawal resistance value for the smart screw, followed by Stone pine, black pine, and fir. Oak wood showed higher nail withdrawal resistances than softwood species. It was also determined that oak shows the maximum nail withdrawal resistance in all types. The nail withdrawal resistances at the longitudinal direction are lower with respect to radial and tangential directions.

  17. Porous micropillar structures for retaining low surface tension liquids. (United States)

    Agonafer, Damena D; Lee, Hyoungsoon; Vasquez, Pablo A; Won, Yoonjin; Jung, Ki Wook; Lingamneni, Srilakshmi; Ma, Binjian; Shan, Li; Shuai, Shuai; Du, Zichen; Maitra, Tanmoy; Palko, James W; Goodson, Kenneth E


    The ability to manipulate fluid interfaces, e.g., to retain liquid behind or within porous structures, can be beneficial in multiple applications, including microfluidics, biochemical analysis, and the thermal management of electronic systems. While there are a variety of strategies for controlling the disposition of liquid water via capillarity, such as the use of chemically modified porous adhesive structures and capillary stop valves or surface geometric features, methods that work well for low surface tension liquids are far more difficult to implement. This study demonstrates the microfabrication of a silicon membrane that can retain exceptionally low surface tension fluorinated liquids against a significant pressure difference across the membrane via an array of porous micropillar structures. The membrane uses capillary forces along the triple phase contact line to maintain stable liquid menisci that yield positive working Laplace pressures. The micropillars have inner diameters and thicknesses of 1.5-3 μm and ∼1 μm, respectively, sustaining Laplace pressures up to 39 kPa for water and 9 kPa for Fluorinert™ (FC-40). A theoretical model for predicting the change in pressure as the liquid advances along the porous micropillar structure is derived based on a free energy analysis of the liquid meniscus with capped spherical geometry. The theoretical prediction was found to overestimate the burst pressure compared with the experimental measurements. To elucidate this deviation, transient numerical simulations based on the Volume of Fluid (VOF) were performed to explore the liquid pressure and evolution of meniscus shape under different flow rates (i.e., Capillary numbers). The results from VOF simulations reveal strong dynamic effects where the anisotropic expansion of liquid along the outer micropillar edge leads to an irregular meniscus shape before the liquid spills along the micropillar edge. These findings suggest that the analytical prediction

  18. Iliosacral screw fixation of the unstable pelvic ring injuries. (United States)

    Rysavý, M; Pavelka, T; Khayarin, M; Dzupa, V


    To report on the early results and possible complications of iliosacral screw fixation in the management of unstable pelvic ring injuries. One hundred and two unstable pelvic ring injuries were treated using iliosacral screw fixation for posterior pelvic ring disruptions. Closed manipulative reductions of the posterior lesion were attempted for all patients. Open reductions were used in the minority of patients with unsatisfactory closed reductions as assessed fluoroscopically at the time of surgery. Anterior fixations were by means of open reduction in 62 patients and by external fixation in 14 patients, and by screws in 7 patients. Twenty patients had no anterior fixation. Plain anteroposterior, inlet and outlet radiographs of the pelvis were obtained postoperatively at six weeks, three months, six months and one year. A pelvic computed tomography scan was performed postoperatively in those patients where residual displacement or screw misplacement was suspected. Complications were recorded. One patient died 31 days after the trauma due to pneumonia and one died 9 months after the surgery after a fall from a height in a second suicidal attempt. There were two posterior pelvic infections and one anterior pelvic infection. Screw misplacement occurred in seven cases. In six cases a misplaced screw produced transient L5 neuroapraxia. There was no fixation failure requiring revision surgery. There was one case of injury to the superior gluteal artery. Unstable pelvic ring disruptions are severe injuries, associated with a high rate of morbidity and mortality. Pelvic fractures can be treated by variety of methods. Treatment with traction and pelvic slings does not offer accurate reduction and confines the patient to prolong bed rest with all potential complications. Several authors documented lower morbidity and mortality rates and shorter hospital stay in patients treated by early operative stabilization of pelvic injuries. The timing of the surgery is still

  19. Accuracy of spinal navigation for Magerl-screws

    CERN Document Server

    Herz, T


    Study design: assessment of the accuracy of frameless stereotactic navigation at the second cervical vertebra. Objectives: to assess the influence of the protocol of preoperative CT-scan and the registration technique on the accuracy of navigation for implanting Magerl-screws. Summary of background data: the use of navigation systems for implanting Magerl-screws could help to decrease the risk of complications and to reduce the required skin incision. Two parameters conceivably affecting the accuracy are the protocol of the preoperative CT-scan and the registration technique. Methods: four cervical spine segments of human cadavers were scanned with two different protocols (3 mm slice thickness/2 mm table increment, 1 mm slice thickness/1 mm table increment). Registration was performed either based on anatomical landmarks or using a specially designed percutaneous registration device. For the accuracy-check, the pointer tip was exactly placed on markers. The distance between the pointer and the marker displaye...


    Directory of Open Access Journals (Sweden)

    Mircea Dimitrie CAZACU


    Full Text Available Due to the special performances obtained by means of the optimisation method applied to the axial runners of run-of-river hydraulic turbines and of wind turbines, as well as in the case of the screws for boat propulsion, perfected by the first of the authors [1] - [10], in this work one extend the application of this method at the case of an organic mud agitator screw for fermentation and biogas production. One presents the obtaining of the bio liquid circulation minimal velocity in the two possible cases [3]: extracting the fluid velocity from the peripheral force exerted by the runner, as well as from the mechanical power consumed for its driving. After the obtaining of the optimal relative peripheral angle one determines also the optimal incidence angles of the profile for other blade radii. This method permits in the same time to find the optimal profile, using the multitude of the profile characteristics, experimentally studied.

  1. Numerical Simulation and Performance Analysis of Twin Screw Air Compressors

    Directory of Open Access Journals (Sweden)

    W. S. Lee


    Full Text Available A theoretical model is proposed in this paper in order to study the performance of oil-less and oil-injected twin screw air compressors. Based on this model, a computer simulation program is developed and the effects of different design parameters including rotor profile, geometric clearance, oil-injected angle, oil temperature, oil flow rate, built-in volume ratio and other operation conditions on the performance of twin screw air compressors are investigated. The simulation program gives us output variables such as specific power, compression ratio, compression efficiency, volumetric efficiency, and discharge temperature. Some of the above results are then compared with experimentally measured data and good agreement is found between the simulation results and the measured data.

  2. Range of motion, sacral screw and rod strain in long posterior spinal constructs: a biomechanical comparison between S2 alar iliac screws with traditional fixation strategies. (United States)

    Sutterlin, Chester E; Field, Antony; Ferrara, Lisa A; Freeman, Andrew L; Phan, Kevin


    S1 screw failure and L5/S1 non-union are issues with long fusions to S1. Improved construct stiffness and S1 screw offloading can help avoid this. S2AI screws have shown to provide similar stiffness to iliac screws when added to L3-S1 constructs. We sought to examine and compare the biomechanical effects on an L2-S1 pedicle screw construct of adding S2AI screws, AxiaLIF, L5-S1 interbody support via transforaminal lumbar interbody fusion (TLIF), and to examine the effect of the addition of cross connectors to each of these constructs. Two S1 screws and one rod with strain gauges (at L5/S1) were used in L2-S1 screw-rod constructs in 7 L1-pelvis specimens (two with low BMD). ROM, S1 screw and rod strain were assessed using a pure-moment flexibility testing protocol. Specimens were tested intact, and then in five instrumentation states consisting of: (I) Pedicle screws (PS) L2-S1; (II) PS + S2AI screws; (III) PS + TLIF L5/S1; (IV) PS + AxiaLIF L5/S1; (V) PS + S2AI + AxiaLIF L5/S1. The five instrumentation conditions were also tested with crosslinks at L2/3 and S1/2. Tests were conducted in flexion-extension, lateral bending and axial torsion with no compressive preload. S2A1 produces reduced S1 screw strain for flexion-extension, lateral bending and axial torsion, as well as reduced rod strain in lateral bending and axial torsion in comparison to AxiaLIF and interbody instrumentation, at the expense of increased rod flexion-extension strain. Cross-connectors may have a role in further reduction of S1 screw and rod strain. From a biomechanical standpoint, the use of the S2AI technique is at least equivalent to traditional iliac screws, but offers lower prominence and ease of assembly compared to conventional sacroiliac stabilization.

  3. Quantum Geometry in the Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig


    Standard particle theory is based on quantized matter embedded in a classical geometry. Here, a complementary model is proposed, based on classical matter -- massive bodies, without quantum properties -- embedded in a quantum geometry. It does not describe elementary particles, but may be a better, fully consistent quantum description for position states in laboratory-scale systems. Gravitational theory suggests that the geometrical quantum system has an information density of about one qubit per Planck length squared. If so, the model here predicts that the quantum uncertainty of geometry creates a new form of noise in the position of massive bodies, detectable by interferometers.

  4. A first course in geometry

    CERN Document Server

    Walsh, Edward T


    This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl

  5. Differential geometry curves, surfaces, manifolds

    CERN Document Server

    Kühnel, Wolfgang


    This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and-as a new feature-a good number of so

  6. Differential geometry and symmetric spaces

    CERN Document Server

    Helgason, Sigurdur


    Sigurdur Helgason's Differential Geometry and Symmetric Spaces was quickly recognized as a remarkable and important book. For many years, it was the standard text both for Riemannian geometry and for the analysis and geometry of symmetric spaces. Several generations of mathematicians relied on it for its clarity and careful attention to detail. Although much has happened in the field since the publication of this book, as demonstrated by Helgason's own three-volume expansion of the original work, this single volume is still an excellent overview of the subjects. For instance, even though there

  7. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray


    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  8. An improved combinatorial geometry model for arbitrary geometry in DSMC (United States)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.


    This paper focuses on a new direct simulation Monte Carlo (DSMC) code based on combinatorial geometry (CG) for simulation of any rarefied gas flow. The developed code, called DgSMC-A, has been supplied with an improved CG modeling able to significantly optimize the particle-tracking process, resulting in a highly reduced runtime compared to the conventional codes. The improved algorithm inserts a grid over the geometry and saves those grid elements containing some part of the geometry border. Since only a small part of a grid is engaged with the geometry border, significant time can be saved using the proposed algorithm. Embedding the modified algorithm in the DgSMC-A resulted in a fast, robust and self-governing code needless to any mesh generator. The code completely handles complex geometries created with first-and second-order surfaces. In addition, we developed a new surface area calculator in the CG methodology for complex geometries based on the Monte Carlo method with acceptable accuracy. Several well-known test cases are examined to indicate the code ability to deal with a wide range of realistic problems. Results are also found to be in good agreement with references and experimental data.

  9. Odontoid screw fixation for fresh and remote fractures


    Rao Ganesh; Apfelbaum Ronald


    Fractures of the odontoid process are common, accounting for 10% to 20% of all cervical spine fractures. Odontoid process fractures are classified into three types depending on the location of the fracture line. Various treatment options are available for each of these fracture types and include application of a cervical orthosis, direct anterior screw fixation, and posterior cervical fusion. If a patient requires surgical treatment of an odontoid process fracture, the timing of...

  10. Performance evaluation of Magnus screw press (Model MS-100) for ...

    African Journals Online (AJOL)

    Analysis of variance (ANOVA) technique was used to analyze the results. In its best operating settings, the MS-100 screw press has a throughput capacity of 91.7 kg-products/h at an average feed rate of 101.7 kg-kernels/h, press cake oil content of 13.6% (w/w); percentage actual oil yield of 33.6% (w/w); percentage cake ...

  11. The Dynamic Surface Tension of Water. (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel


    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  12. The Dynamic Surface Tension of Water (United States)


    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160

  13. Modelling Tension Stiffening in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter


    Part I of the present thesis deals with crack formation in reinforced concrete and the phenomenon of tension stiffening in concrete tension rods reinforced with deformed bars.Two physical models are presented for uniaxial tension, and they are modified for application on beams subjected to pure...... predicted by the models are compared with experimental data from tests on tension rods as well as flexural beams.In the light of the simple assumptions made and the random nature of cracking, the accordance between the models and the test data is quite good.Part II of the present thesis deals...... of the simple assumptions, quite good accordance is found.Part III of the thesis deals with the deformations of a beam symmetrically loaded by two concentrated forces. In the shear-flexure beam model it is assumed that the load is carried by means of a stringer system and a diagonal stress field in the shear...

  14. Transcutaneous oxygen tension in imminent foot gangrene

    DEFF Research Database (Denmark)

    Tønnesen, K H


    Transcutaneous oxygen tension at 44 degree C and maximal isotope clearance (90m Tc-pretechnetate + histramine) just proximal to the 1st toe and systolic toe blood pressure (strain gauge) were studied on a tilt table in patients with various degrees of obstructive arteriosclerotic disease. In legs...... with moderate obstruction, the oxygen tension reached zero at a toe systolic blood pressure of 5--10 mmHg (tilt toe up) and reached arterial oxygen tension at about 50 to 70 mmHg (tilt toe down). In legs withsevere arterial obstruction and ischaemic rest pain, oxygen tension rose from zero not before systolic...... toe blood pressure reached 20--50 mmHg. Significant isotope clearance was seen at pressures below the limits just mentioned for both types of patients. This phenomenon here seen of a perfusion without oxygen supply is explained by a gas leak (rendered significant because of the slow flow rate) from...

  15. Modelling of the Heating Process in a Thermal Screw (United States)

    Zhang, Xuan; Veje, Christian T.; Lassen, Benny; Willatzen, Morten


    The procedure of separating efficiently dry-stuff (proteins), fat, and water is an important process in the handling of waste products from industrial and commercial meat manufactures. One of the sub-processes in a separation facility is a thermal screw where the raw material (after proper mincing) is heated in order to melt fat, coagulate protein, and free water. This process is very energy consuming and the efficiency of the product is highly dependent on accurate temperature control of the process. A key quality parameter is the time that the product is maintained at temperatures within a certain threshold. A detailed mathematical model for the heating process in the thermal screw is developed and analysed. The model is formulated as a set of partial differential equations including the latent heat for the melting process of the fat and the boiling of water, respectively. The product is modelled by three components; water, fat and dry-stuff (bones and proteins). The melting of the fat component is captured as a plateau in the product temperature. The model effectively captures the product outlet temperature and the energy consumed. Depending on raw material composition, "soft" or "dry", the model outlines the heat injection and screw speeds necessary to obtain optimal output quality.

  16. Minimally invasive cervical spine foraminotomy and lateral mass screw placement. (United States)

    Mikhael, Mark M; Celestre, Paul C; Wolf, Christopher F; Mroz, Tom E; Wang, Jeffrey C


    This technique article describes accomplishing multilevel posterior cervical decompression and lateral mass screw placement through a tubular retraction system. Multilevel foraminotomy and instrumented fusion using lateral mass screw fixation can be achieved through a minimally invasive technique using specialized retractors and intraoperative fluoroscopic imaging. Minimally invasive surgical techniques have been adapted to the cervical spine with good results. These techniques have the theoretical advantages of reducing morbidity, blood loss, perioperative pain, and length of hospital stay associated with conventional open posterior spinal exposure. Minimally invasive access to the posterior cervical spine was performed with exposure through a paramedian muscle-splitting approach. With the assistance of a specialized tubular retraction system with a deep soft tissue expansion mechanism, multilevel posterior cervical decompression and fusion can be accomplished. Minimized access to perform multilevel posterior cervical foraminotomy and fusion can be safely accomplished with tubular retraction systems. Complications associated with these techniques can include inadequate decompression, improper instrumentation placement, or neurologic injury due to poor access and visualization. Multilevel foraminotomy and instrumented fusion using lateral mass screw fixation can be safely achieved using these techniques. Complications associated with these strategies are typically due to inadequate visualization, incomplete decompression, or poor placement of instrumentation. As with all minimally invasive spine techniques, the surgeon must ensure that goals of the surgery, both technical and clinical outcomes, are comparable to those of a conventional open procedure.

  17. Upgrading of the extruder screw design for secondary polymers processing

    Directory of Open Access Journals (Sweden)

    Володимир Валентинович Кухар


    Full Text Available Some methods of polymeric materials waste recycling have been analyzed in this paper and the prospects of the theory development as well as extrusion technology and co-extruding processes have been shown. The purpose of this work was an analytical research of the backpressure in different sectors of the extruder when the pressed bulk moves through it and improvement of the working conditions of the device to fit the technology of plastics waste processing. The recommendations as to the calculation of the required design parameters of the screw, as the main structural element of the extruder, have been developed as a result of research, which makes it possible to achieve better processing of the pressed bulk under specified temperature and rate conditions due to the levelling of the backpressure and pumping effect in all sections of the device. The proposed upgrading provides productivity levelling in all sections of the extruder, which excludes intermittent work, breaks and thickness unevenness of the manufactured products. Through the analytical consideration of the extrusion process theory in various sectors of the extruder, which are characterized by different temperature conditions and the pumping effect, the equation for calculating of the auger screw inclination angle for each sector of the extruder has been obtained which makes it possible to improve the machine design. The example of the calculation of the screw design parameters for physical and chemical characteristics of low-pressure polyethylene under the conditions of its processing has been furnished

  18. Posterior Fixation with C1 Lateral Mass Screws and C2 Pars Screws for Type II Odontoid Fracture in the Elderly: Long-Term Follow-Up. (United States)

    Dobran, Mauro; Nasi, Davide; Esposito, Domenico Paolo; Iacoangeli, Maurizio


    We sought to evaluate the long-term C1-C2 fusion rates, fracture healing, and functional outcomes in geriatric patients with type II odontoid fracture treated with posterior fixation with polyaxial C1 lateral mass screws and C2 pars screws. Twenty-one consecutive patients between 2005 and 2011 with Anderson and D'Alonzo type II odontoid fracture underwent a posterior atlantoaxial fixation with polyaxial C1 lateral mass screws and C2 pars screws. A long-term clinical and radiologic follow-up was achieved in all patients with a mean follow-up period of 53.28 ± 15.41 months (range 38-91 months). All 21 patients had bilateral C1 lateral mass screws and bilateral C2 pars screws. Correct positioning of the C1 lateral mass screws and C2 pars screws was observed in all 42 placements by postoperative computed tomography scans. No vascular or neurologic complication was noted. At the last follow-up, 20 patients (95.24%) had a solid fusion (defined as Lenke fusion grade A or B) while 1 patient (4.76%) had a partial fusion (Lenke fusion grade C). Overall, no hardware failures occurred in any patient. Odontoid fracture healing was achieved in 18 patients out of 21 (85.71%). The mean postoperative Neck Disability Index score was 12.73%, and neck motion was within normal physiologic limits at 12 months. This study adds to the evidence that posterior atlantoaxial fixation with polyaxial C1 lateral mass screws and C2 pars screws is a safe and effective surgical option in the treatment of odontoid fractures including long-term stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Tension Hydrothorax Related to Disseminated Endometriosis

    Directory of Open Access Journals (Sweden)

    AnnaKate Deal, MD


    Full Text Available We present the case of a 34-year-old woman presenting to the emergency department (ED with dyspnea, cough, and fever. She was found to have a tension hydrothorax and was treated with ultrasound-guided thoracentesis in the ED. Subsequent inpatient evaluation showed the patient had disseminated endometriosis. Tension hydrothorax has not been previously described in the literature as a complication of this disease.

  20. Leadership matters: Tensions in evaluating leadership development


    Jarvis, C.; Gulati, A.; McCririck, V.; Simpson, P.


    The Problem and Solution: This paper explores some of the tensions that required careful management in the design and delivery of a leadership development program. This discussion draws particularly upon a formal evaluation of two cohorts, each comprising approximately 20 senior managers working in adult social care. Complexity theory, notably Complex Responsive Processes of Relating, is used to make visible, explore and articulate the need to hold in tension apparently contradictory forces a...

  1. The accuracy of fine wire tensioners: a comparison of five tensioners used in hybrid and ring external fixation. (United States)

    Roberts, Craig S; Antoci, Valentin; Antoci, Valentin; Voor, Michael J


    To compare the accuracy of 5 commonly available fine wire tensioners used in hybrid and ring external fixation. A laboratory investigation. The testing of 5 commonly available tensioners was performed with a servohydraulic test frame (MTS Bionix 858, Minneapolis, MN). The real wire tension data of each tensioner provided by the MTS were compared with corresponding nominal values. The percent error for each tensioner was calculated. Clinical ease of usage of the wire tensioners was also evaluated. The EBI tensioner was the most accurate (-0.17% to 0.09% error). The Smith and Nephew tensioner had a -13.97% to -8.61% error, the How medica tensioner a -12.48% to -10.86% error, and the Synthes tensioner a -0.2% to 24.28% error. The DePuyACE tensioner was the least accurate, with errors ranging from -36.76% to -30.92%. The Howmedica tensioner was the easiest to use, followed by the Smith and Nephew tensioner, the DePuyACE tensioner, the Synthes tensioner, and the EBI tensioner. Most commonly available tensioners tend to undertension. Future efforts should focus on the development of wire tensioners that combine accuracy and ease of usage.

  2. Oxygen tension level and human viral infections

    Energy Technology Data Exchange (ETDEWEB)

    Morinet, Frédéric, E-mail: [Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris (France); Université Denis Diderot, Sorbonne Paris Cité Paris, Paris (France); Casetti, Luana [Institut Cochin INSERM U1016, Paris (France); François, Jean-Hugues; Capron, Claude [Institut Cochin INSERM U1016, Paris (France); Laboratoire d' Hématologie, Hôpital Ambroise Paré, Boulogne (France); Université de Versailles Saint-Quentin en Yvelynes, Versailles (France); Pillet, Sylvie [Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Saint-Etienne, Saint-Etienne (France); Université de Lyon et Université de Saint-Etienne, Jean Monnet, GIMAP EA3064, F-42023 Saint-Etienne, Lyon (France)


    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  3. Hyperbolic Metamaterials with Complex Geometry

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei


    We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...

  4. Advances in discrete differential geometry

    CERN Document Server


    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  5. An introduction to differential geometry

    CERN Document Server

    Willmore, T J


    This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

  6. Evaluation of the accuracy of a veterinary dynamometric wire tensioner. (United States)

    Gauthier, C M; McGilvray, K; Myrick, S; Duerr, F; Palmer, R


    The purpose of this study was to determine the accuracy of a commonly used veterinary wire tensioner. Wire tension was measured using a load cell after each of five tensioners were used to tension each of six wires to the 66, 84, and 118 mm ring settings in an adjustable custom testing fixture. Each tensioner then experienced simulated aging and testing was repeated. Percentage error was calculated for each ring size, before and after tensioner aging. Measured tension values were compared to manufacturer reported tension values for each ring size using a one-sample two-way t-test; p tension values were significantly lower for 66 mm and 84 mm rings and significantly higher for 118 mm rings, before and after simulated aging. Mean wire tension values did not significantly differ between individual wire tensioners. The tensioners tested achieved significantly different wire tension values than those reported by the manufacturer. This discrepancy could lead to under-tensioning and allowing excessive movement at a fracture site or over-tensioning, leading to wire breakage. We recommend tensioning wires at least to the recommended line on the device for 66 mm and 84 mm rings and at most to the recommended line for 118 mm rings. Further studies are needed to evaluate other veterinary wire tensioners and to develop a calibration method for these devices in practice.

  7. Higgs mass in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Devastato, A.; Martinetti, P. [Dipartimento di Fisica, Universita di Napoli Federico II, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Via Cintia, 80126 Napoli (Italy); Lizzi, F. [Dipartimento di Fisica, Universita di Napoli Federico II, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Via Cintia, 80126 Napoli (Italy); Departament de Estructura i Constituents de la Materia, Universitat de Barcelona, Marti y Franques, Barcelona, Catalonia (Spain)


    In the noncommutative geometry approach to the standard model, an extra scalar field σ - initially suggested by particle physicist to stabilize the electroweak vacuum - makes the computation of the Higgs mass compatible with the 126 GeV experimental value. We give a brief account on how to generate this field from the Majorana mass of the neutrino, following the principles of noncommutative geometry. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Comparison of energy-efficiency and size of portable oil-free screw and scroll compressors (United States)

    Dmitriev, Olly; MacDonald Arbon, Ian, Prof.


    This paper presents test data and evaluates if conical screw compressors can become a preferred alternative to scroll compressors in small oil-free duties from 0.04 to 15kW. The conical screw compressor is a new modification of the conventional screw compressor. A 2kW water-injected conical compressor demonstrated a 34% better energy efficiency than a scroll compressor of similar capacity. At 8 bar(g) load, the conical machine used 13% more energy and produced 42% more flow. Size of the conical screw package is 46% of the scroll package. The miniature conical screw package, at 40W rated power, achieved a pressure of 8 bar(g) in water-injected operation. It can be concluded that the conical screw compressor would be an attractive alternative in micro and small oil-free applications.

  9. [Progress on atlanto-axial pedicle screw fixation through posterior approach]. (United States)

    Li, Guo-Qing; Ma, Wei-Hu; Liu, Guan-Yi


    The present of atlanto-axial pedicle screw fixation through posterior approach provide a new remedy for treating instability of pillow and cervical. A lot of researches have reported feasibility of atlanto-axial pedicle screw fixation, the results showed that it had advantages of easily exposure, less blood loss, shorter operative time, especially in treating as remedy fixation for atlanto-axial joint screw, atlas lateral mass screws and pedicle screw caused by injuries of tumor,inflammation and trauma. If not done properly, it can cause serious complications, such as iatrogenic fracture,injuries of vertebral artery and cervical spinal cord. Therefore,the safty and effectiveness of atlanto-axial pedicle screw fixation may be focus of research.

  10. The efficacy of pedicle screw instrument in treatment of irreducible atlantoaxial dislocation. (United States)

    Zhai, Ming-Yu; Wang, Chun-Ping; Liu, Feng; Liu, Yu-Qiang; Zhang, Peng


    To explore the effect of pedicle screw instrument in treatment of irreducible atlantoaxial dislocation. From June 2003 to February 2009, 14 cases of atlas dislocation with upper cervical cord compression were enrolled and anterior transoral soft tissue release combined with posterior reduction and pedicle screw fixation were performed. CT, MRI and radiograph were used preoperatively, and screw placement and bone graft were administered in all cases intraoperatively. Cervical collars were used for 3 months. Screws were successfully placed in atlas in all cases. The average follow-up period was 18 months. Bone fusion was observed in all cases without the following complications: neurologic symptoms, internal fixation failure and redislocation. Neurological recovery was observed in all 14 cases. Pedicle screw instrument has the following advantages in atlas and axis injury treatment: direct screw placement, short-segment fusion, intraoperative reduction and high fusion rate, which should be a better surgical method for the treatment of atlantoaxial dislocation.

  11. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning. (United States)

    Yang, H; Lozano, J G; Pennycook, T J; Jones, L; Hirsch, P B; Nellist, P D


    Screw dislocations play an important role in materials' mechanical, electrical and optical properties. However, imaging the atomic displacements in screw dislocations remains challenging. Although advanced electron microscopy techniques have allowed atomic-scale characterization of edge dislocations from the conventional end-on view, for screw dislocations, the atoms are predominantly displaced parallel to the dislocation line, and therefore the screw displacements are parallel to the electron beam and become invisible when viewed end-on. Here we show that screw displacements can be imaged directly with the dislocation lying in a plane transverse to the electron beam by optical sectioning using annular dark field imaging in a scanning transmission electron microscope. Applying this technique to a mixed [a+c] dislocation in GaN allows direct imaging of a screw dissociation with a 1.65-nm dissociation distance, thereby demonstrating a new method for characterizing dislocation core structures.

  12. The Common Geometry Module (CGM).

    Energy Technology Data Exchange (ETDEWEB)

    Tautges, Timothy James


    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also includes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.

  13. CT-based bone density assessment for iliosacral screw trajectories

    Directory of Open Access Journals (Sweden)

    Andreas Schicho


    Full Text Available Introduction: Sacroiliac screw placement is one standard treatment option for stabilization of posterior pelvic ring injuries encountering high intra- and inter-individual variations of bone stock quality as well as a vast variety and prevalence of sacral dysmorphism. An individual, easy-to-use preoperative bone stock quality estimation would be of high value for the surgeon. Materials and Methods: We analyzed 36 standard computed tomography datasets with the uninjured pelvic ring. Using a two-plane cross-referencing technique, we assessed the Hounsfield unit (HU mean values as well as standard deviation and minimum/maximum values within selected region of interests (ROIs at five key areas: os ilium left and right, massa lateralis of os sacrum left and right, and central vertebral body on levels S1 and S2. Results: Results showed no difference in mean HU at any ROI when comparing male and female data. For all ROIs set on S1 and S2, there was an age-related decline of HU with a calculated slope significantly different from zero. There was no statistical difference of slopes when comparing S1- and S2-level with respect to any distinct ROI. Comparison of levels S1 and S2 revealed differences at the vertebral body and at the right os ilium. The right and left massa lateralis of os sacrum had lower bone density than the center of the vertebral body, the right, or left os ilium on S1; right and left massa lateralis density did not differ significantly. On level S2, results were comparable with no difference of massa lateralis density. Conclusion: With our easy-to-use preoperative assessment of bone density of five key areas of sacroiliac screw anchoring we were able to find the lowest bone density in both the left and right massa lateralis on levels S1 and S2 with high inter- and intra-individual variations. Significantly lower bone density was found in the center of the vertebral bodies S2 in comparison to S1, which both are crucial for iliosacral

  14. Comparison between posterior lumbar fusion with pedicle screws and posterior lumbar interbody fusion with pedicle screws in adult spondylolisthesis. (United States)

    Dantas, Fernando Luiz Rolemberg; Prandini, Mirto Nelso; Ferreira, Mauro A T


    The purpose of this study was to compare patients with lumbar spondylolisthesis submitted to two different surgical approaches, and evaluate the results and outcomes in both groups. In a two-year period, 60 adult patients with lumbar spondylolisthesis, both isthmic and degenerative, were submitted to surgery at the Biocor Institute, Brazil. All patients were operated on by the same surgeon (FLRD) in a single institution, and the results were analyzed prospectively. Group I comprised the first 30 consecutive patients that were submitted to a posterior lumbar spinal fusion with pedicle screws (PLF). Group II comprised the last 30 consecutive patients submitted to a posterior lumbar interbody fusion procedure (PLIF) with pedicle screws. All patients underwent foraminotomy for nerve root decompression. Clinical evaluation was carried out using the Prolo Economic and Functional Scale and the Rolland-Morris and the Oswestry questionnaire. Mean age was 52.4 for Group I (PLF), and 47.6 for Group II (PLIF). The mean follow-up was 3.2 years. Both surgical procedures were effective. The PLIF with pedicle screws group presented better clinical outcomes. Group I presented more complications when compared with Group II. Group II presented better results as indicated in the Prolo Economic and Functional Scale.

  15. Growth modulation with a medial malleolar screw for ankle valgus deformity


    Rupprecht, Martin; Spiro, Alexander S.; Breyer, Sandra; Vettorazzi, Eik; Ridderbusch, Karsten; Stücker, Ralf


    Background and purpose Growth modulation with a medial malleolar screw is used to correct ankle valgus deformity in children with a wide spectrum of underlying etiologies. It is unclear whether the etiology of the deformity affects the angular correction rate with this procedure. Patients and methods 79 children (20 girls) with ankle valgus deformity had growth modulation by a medial malleolar screw (125 ankles). To be included, patients had to have undergone screw removal at the time of skel...

  16. Removal of Hardware After Syndesmotic Screw Fixation: A Systematic Literature Review. (United States)

    Walley, Kempland C; Hofmann, Kurt J; Velasco, Brian T; Kwon, John Y


    While trans-syndesmotic fixation with metal screws is considered the gold standard in treating syndesmotic injuries, controversy exists regarding the need and timing of postoperative screw removal. Formal recommendations have not been well established in the literature and clinical practice is highly variable in this regard. The purpose of this systematic review is to critically examine the most recent literature regarding syndesmotic screw removal in order to provide surgeons an evidence-based approach to management of these injuries. The Cochrane Library and PubMed Medline databases were explored using search terms for syndesmosis and screw removal between October 1, 2010 and June 1, 2016. A total of 9 studies (1 randomized controlled trial and 8 retrospective cohort studies) were found that described the outcomes of either retained or removed syndesmotic screws. Overall, there was no difference in functional, clinical or radiographic outcomes in patients who had their syndesmotic screw removed. There was a higher likelihood of recurrent syndesmotic diastasis when screws were removed between 6 and 8 weeks. There was a higher rate of postoperative infections when syndesmotic screws were removed without administering preoperative antibiotics. Removal of syndesmotic screws is advisable mainly in cases of patient complaints related to the other implanted perimalleolar hardware or malreduction of the syndesmosis after at least 8 weeks postoperatively. Broken or loose screws should not be removed routinely unless causing symptoms. Antibiotic prophylaxis is recommended on removal. Radiographs should be routinely obtained immediately prior to removal and formal discussions should be had with patients prior to surgery to discuss management options if a broken screw is unexpectedly encountered intraoperatively. Radiographs and/or computed tomography imaging should be obtained after syndesmotic screw removal when indicated for known syndesmotic malreduction. Level IV

  17. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. (United States)

    Burval, Daniel J; McLain, Robert F; Milks, Ryan; Inceoglu, Serkan


    Pedicle screw pullout testing in osteoporotic and control human cadaveric vertebrae, comparing augmented and control vertebrae. To compare the pullout strengths of pedicle screws fixed in osteoporotic vertebrae using polymethyl methacrylate delivered by 2 augmentation techniques, a standard transpedicular approach and kyphoplasty type approach. Pedicle screw instrumentation of the osteoporotic spine carries an increased risk of screw loosening, pullout, and fixation failure. Osteoporosis is often cited as a contraindication for pedicle screw fixation. Augmentation of the vertebral pedicle and body using polymethyl methacrylate may improve fixation strength and construct survival in the osteoporotic vertebrae. While the utility of polymethyl methacrylate has been demonstrated for salvage of screws that have been pulled out, the effect of the cement technique on pullout strength in osteoporotic vertebrae has not been previously studied. Thirteen osteoporotic and 9 healthy human lumbar vertebrae were tested. All specimens were instrumented with pedicle screws using a uniform technique. Osteoporotic pedicles were augmented with polymethyl methacrylate using either a kyphoplasty type technique or a transpedicular augmentation technique. Screws were tested in a paired testing array, randomly assigning the augmentation techniques to opposite sides of each vertebra. Pullout to failure was performed either primarily or after a 5000-cycle tangential fatigue conditioning exposure. After testing, following screw removal, specimens were cut in the axial plane through the center of the vertebral body to inspect the cement distribution. Pedicle screws placed in osteoporotic vertebrae had higher pullout loads when augmented with the kyphoplasty technique compared to transpedicular augmentation (1414 +/- 338 versus 756 +/- 300 N, respectively; P cycling. Pedicle screw augmentation with polymethyl methacrylate improves the initial fixation strength and fatigue strength of

  18. Revisions for screw malposition and clinical outcomes after robot-guided lumbar fusion for spondylolisthesis. (United States)

    Schröder, Marc L; Staartjes, Victor E


    OBJECTIVE The accuracy of robot-guided pedicle screw placement has been proven to be high, but little is known about the impact of such guidance on clinical outcomes such as the rate of revision surgeries for screw malposition. In addition, there are very few data about the impact of robot-guided fusion on patient-reported outcomes (PROs). Thus, the clinical benefit for the patient is unclear. In this study, the authors analyzed revision rates for screw malposition and changes in PROs following minimally invasive robot-guided pedicle screw fixation. METHODS A retrospective cohort study of patients who had undergone minimally invasive posterior lumbar interbody fusion (MI-PLIF) or minimally invasive transforaminal lumbar interbody fusion was performed. Patients were followed up clinically at 6 weeks, 12 months, and 24 months after treatment and by mailed questionnaire in March 2016 as a final follow-up. Visual analog scale (VAS) scores for back and leg pain severity, Oswestry Disability Index (ODI), screw revisions, and socio-demographic factors were analyzed. A literature review was performed, comparing the incidence of intraoperative screw revisions and revision surgery for screw malposition in robot-guided, navigated, and freehand fusion procedures. RESULTS Seventy-two patients fit the study inclusion criteria and had a mean follow up of 32 ± 17 months. No screws had to be revised intraoperatively, and no revision surgery for screw malposition was needed. In the literature review, the authors found a higher rate of intraoperative screw revisions in the navigated pool than in the robot-guided pool (p robot-guided procedures (p robotic guidance to reduce the rate of revision surgery for screw malposition as compared with other techniques of pedicle screw insertion described in peer-reviewed publications. Larger comparative studies are required to assess differences in PROs following a minimally invasive approach in spinal fusion surgeries compared with other

  19. Finite Geometries: a tool for better understanding of Euclidean Geometry

    Directory of Open Access Journals (Sweden)

    Antonio Maturo


    Full Text Available An effective tool to really understand Euclidean geometry is the study of alternative models and their applications. In fact, they allow you to understand the real extent of various axioms that, when viewed from the Euclidean geometry, seem obvious or even unnecessary. The work begins with a review of Hilbert's axiomatic, starting from more general point of view adopted by Albrecht Beutelspacher and Ute Rosenbaum in their book on the fundamentals of general projective geometry (1998, defined by a system of incidence axioms.   Le Geometrie Finite: uno strumento per una migliore comprensione della Geometria Euclidea Uno strumento efficace per comprendere realmente la geometria euclidea è lo studio di modelli alternativi e delle loro applicazioni. Infatti essi permettono di capire la reale portata di vari assiomi che visti dall’interno della geometria euclidea sembrerebbero scontati o addirittura inutili. Il lavoro parte da una rivisitazione dell’assiomatica di Hilbert a partire dal punto di vista più generale adottato da Albrecht Beutelspacher e Ute Rosenbaum nel loro libro del 1998 sui fondamenti della geometria proiettiva generale, definita attraverso un sistema di assiomi di incidenza.  Parole Chiave: Critica dei fondamenti; Geometrie finite; Assiomi di Hilbert; Applicazioni.

  20. Reevaluation of the diametral compression test for tablets using the flattened disc geometry. (United States)

    Mazel, V; Guerard, S; Croquelois, B; Kopp, J B; Girardot, J; Diarra, H; Busignies, V; Tchoreloff, P


    Mechanical strength is an important critical quality attribute for tablets. It is classically measured, in the pharmaceutical field, using the diametral compression test. Nevertheless, due to small contact area between the tablet and the platens, some authors suggested that during the test, the failure could occur in tension away from the center which would invalidate the test and the calculation of the tensile strength. In this study, the flattened disc geometry was used as an alternative to avoid contact problems. The diametral compression on both flattened and standard geometries was first studied using finite element method (FEM) simulation. It was found that, for the flattened geometry, both maximum tensile strain and stress were located at the center of the tablet, which was not the case for the standard geometry. Experimental observations using digital image correlation (DIC) confirmed the numerical results. The experimental tensile strength obtained using both geometries were compared and it was found that the standard geometry always gave lower tensile strength than the flattened geometry. Finally, high-speed video capture of the test made it possible to detect that for the standard geometry the crack initiation was always away from the center of the tablet. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Arthroscopic Bony Bankart Repair Using Double-Threaded Headless Screw: A Case Report

    Directory of Open Access Journals (Sweden)

    Takeshi Kokubu


    Full Text Available We present a case of arthroscopic fixation for bony Bankart lesion using a double-threaded cannulated screw. A 39-year-old man sustained a left shoulder injury from a motorcycle accident. Radiographs showed bony Bankart lesion and CT revealed 40% defect of glenoid articular surface. Arthroscopic fixation was performed using double-threaded cannulated screw after the bony fragment was reduced by suturing the labrum at the edge with a suture anchor. Arthroscopic bony Bankart repair using double-threaded cannulated screw fixation is effective because compression force could be applied between bony fragments and the screw head is not exposed in the glenohumeral joint.

  2. An Unexpected Complication after Headless Compression Screw Fixation of an Osteochondral Fracture of Patella

    Directory of Open Access Journals (Sweden)

    Suavi Aydoğmuş


    Full Text Available This study evaluated complications associated with implant depth in headless compression screw treatment of an osteochondral fracture associated with a traumatic patellar dislocation in a 21-year-old woman. Computed tomography and X-rays showed one lateral fracture fragment measuring 25 × 16 mm. Osteosynthesis was performed with two headless compression screws. Five months later, the screws were removed because of patella-femoral implant friction. We recommend that the screw heads be embedded to a depth of at least 3 mm below the cartilage surface. Further clinical studies need to examine the variation in cartilage thickness in the fracture fragment.

  3. In vitro evaluation of flexural strength of different brands of expansion screws

    Directory of Open Access Journals (Sweden)

    Kádna Fernanda Mendes de Oliveira


    Full Text Available OBJECTIVE: The objective of this study was to compare the flexural strength of the stems of three maxillary expanders screws of Morelli, Forestadent and Dentaurum brands. METHODS: The sample consisted of nine expander screws (totalizing of 36 stems, three from each brand, all stainless steel and 12 mm of expansion capacity. The stems of the expander screws were cut with cutting pliers close to the weld region with screw body, then fixed in a universal testing machine Instron 4411 for tests of bending resistance of three points. The ultimate strength in kgF exerted by the machine to bend the stem of the 5 mm screw was recorded and the flexural strength was calculated using a mathematical formula. During the flexural strength test it was verified the modulus of elasticity of the stems by means of Bluehill 2 software. The flexural strength data were subjected to ANOVA with one criterion and Tukey's test, with significance level of 5%. RESULTS: Forestadent screw brand showed the greatest bending strength, significantly higher than Dentaurum. Morelli showed the lowest resistance. CONCLUSION: The flexural strength of the screws varied according to the brand. Forestadent screw showed the greatest resistance and Morelli the lowest. All the three screws were found adequate for use in procedures for rapid maxillary expansion.

  4. Measurements of Temperature of CNC Machine Tool Ball Screw Utilising IR Method

    Directory of Open Access Journals (Sweden)

    Zapłata J.


    Full Text Available In numerous papers it is proposed to use IR measurements of feed axis ball screw temperature distribution in order to compensate CNC machine tool thermal errors. The paper aims to validate reliability of the IR measurements in application to the feed axes ball screws. The identification of key factors influencing the accuracy of the IR measurements of ball screw temperature distribution has been conducted. A test-bench utilizing a ball screw assembly with built-in temperature sensors was introduced and the experimental data are presented along with conclusions.

  5. Screw engine used as an expander in ORC for low-potential heat utilization (United States)

    Richter, Lukáš


    This paper deals with a screw motor that is used as an expander in an ORC (Organic Rankin Cycle) system, whose organic working substance allows the transformation of low-potential heat (waste heat, solar and geothermal energy) into electrical energy. The article describes the specific properties of an organic substance and a screw motor that must be considered when designing and assembling a complete power unit. Screw machines are not commonly used as expansion devices, so it is necessary to perform an analysis that makes it possible to adapt the screw machine to the expansion process in terms of profiling and design.

  6. Accuracy of C2 pedicle screw placement using the anatomic freehand technique. (United States)

    Bydon, Mohamad; Mathios, Dimitrios; Macki, Mohamed; De la Garza-Ramos, Rafael; Aygun, Nafi; Sciubba, Daniel M; Witham, Timothy F; Gokaslan, Ziya L; Bydon, Ali; Wolinksy, Jean-Paul


    The objective of this study is to evaluate the incidence and prognostic factors of breach rates following the placement of C2 pedicle screws using the anatomic, freehand technique. We retrospectively reviewed the medical records of all patients who underwent C2 transpedicular instrumentation over six years at a single institution. All intraoperative, image-guided techniques were excluded. Breaches were ascertained from immediate postoperative CT images. All images were analyzed by three independent reviewers. The screw length was correlated with (1) the breach rate and (2) the breach severity. Severity of the breached screws reflects the screw circumference (0-360°) perforating the pedicle wall (Grade 1-Grade 4). Of the 341 C2 pedicle screws inserted in 181 patients, the average screw length was 22.93±3.7mm. The average distance from the foramen transversarium to the screw insertion point was 13.17±2.63mm. The distance from the medial rim of the pedicle to the dura of spinal cord was 3.53±1.57mm. Of the 341 screws, the overall breach rate was 17.3% (n=59). Of the 59 breaches, 89.83% of screws (n=53) breaching the spinal canal was statistically significantly higher than the 10.17% of screws (n=6) breaching the foramen transversarium (pGrade 1, 16 (27.1%) Grade 2, 6 (10.2%) Grade 3, and 10 (16.9%) Grade 4. None of the C2 breaches resulted in neurological sequela. No association was found between breach rate and gender, race or age. While the average screw length was 22.93±3.7mm [12-34mm], screw length did not predict a cortical violation (p=0.4) or severity of the breach (p=0.42) in a multiple regression model. In this cohort study on the anatomic freehand placement of C2 pedicle screws, the breach rate was 17.3%. Lateral breaches were more common than medial breaches. Screw length was not statistically correlated with cortical violation or severity of breach. Therefore, screw length is not a prognostic factor for C2 pedicle screw misplacement. Copyright © 2014

  7. Oblique in situ screw fixation of stable slipped capital femoral epiphysis. (United States)

    Gourineni, Prasad


    Percutaneous in situ single screw fixation is the preferred treatment for stable slipped capital femoral epiphysis. The recommended screw placement is in the center of the epiphysis and perpendicular to the physis. We reviewed the results of in situ fixation with the screw placed oblique to the physis. Thirty-six stable slips were treated with a modified technique. The screw was started as close to the mid lateral cortex of the proximal femur as possible while maintaining the screw anterior to the posterior cortex of the femoral neck and ending at the apex of the epiphysis ignoring the resultant angle to the physis. Thirty-five of these hips were followed till physeal closure. Thirty-five of the 36 hips showed physeal closure at an average of 5 months. There were no screw-related complications or symptoms. The oblique screw path allowed for an extra screw thread to be placed in the epiphysis and also allowed adequate femoral neck osteoplasty. Oblique placement of the screw for in situ fixation in stable slipped capital femoral epiphysis did not cause any deleterious effects and offered several potential advantages. IV - Case series.

  8. The effect of vesicle shape, line tension, and lateral tension on membrane-binding proteins (United States)

    Hutchison, Jaime B.

    Model membranes allow for the exploration of complex biological phenomena with simple, controllable components. In this thesis we employ model membranes to determine the effect of vesicle properties such as line tension, lateral tension, and shape on membrane-binding proteins. We find that line tension at the boundary between domains in a phase separated vesicle can accumulate model membrane-binding proteins (green fluorescent protein with a histidine tag), and that those proteins can, in turn, alter vesicle shape. These results suggest that domains in biological membranes may enhance the local concentration of membrane-bound proteins and thus alter protein function. We also explore how membrane mechanical and chemical properties alter the function of the N-BAR domain of amphiphysin, a membrane-binding protein implicated in endocytosis. We find that negatively charged lipids are necessary for N-BAR binding to membranes at detectable levels, and that, at least for some lipid species, binding may be cooperative. Measurements of N-BAR binding as a function of vesicle tension reveal that modest membrane tension of around 2 mN/m, corresponding to a strain of around 1%, strongly increases N-BAR binding. We attribute this increase in binding with tension to the insertion of N-BAR's N-terminal amphipathic helix into the membrane which increases the membrane area. We propose that N-BAR, which was previously described as being able to sense membrane curvature, may be sensing strain instead. Measurements of membrane deformation by N-BAR as a function of membrane tension reveal that tension can hinder membrane deformation. Thus, tension may favor N-BAR binding yet suppress membrane deformation/tubulation, which requires work against tension. These results suggest that membrane tension, a parameter that is often not controlled in model membranes but is tightly controlled in biological cells, may be important in regulating protein binding and assembly and, hence, protein

  9. Oxygen tension affects lubricin expression in chondrocytes. (United States)

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji


    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology.

  10. A novel approach to pipeline tensioner modeling

    Energy Technology Data Exchange (ETDEWEB)

    O' Grady, Robert; Ilie, Daniel; Lane, Michael [MCS Software Division, Galway (Ireland)


    As subsea pipeline developments continue to move into deep and ultra-deep water locations, there is an increasing need for the accurate prediction of expected pipeline fatigue life. A significant factor that must be considered as part of this process is the fatigue damage sustained by the pipeline during installation. The magnitude of this installation-related damage is governed by a number of different agents, one of which is the dynamic behavior of the tensioner systems during pipe-laying operations. There are a variety of traditional finite element methods for representing dynamic tensioner behavior. These existing methods, while basic in nature, have been proven to provide adequate forecasts in terms of the dynamic variation in typical installation parameters such as top tension and sagbend/overbend strain. However due to the simplicity of these current approaches, some of them tend to over-estimate the frequency of tensioner pay out/in under dynamic loading. This excessive level of pay out/in motion results in the prediction of additional stress cycles at certain roller beds, which in turn leads to the prediction of unrealistic fatigue damage to the pipeline. This unwarranted fatigue damage then equates to an over-conservative value for the accumulated damage experienced by a pipeline weld during installation, and so leads to a reduction in the estimated fatigue life for the pipeline. This paper describes a novel approach to tensioner modeling which allows for greater control over the velocity of dynamic tensioner pay out/in and so provides a more accurate estimation of fatigue damage experienced by the pipeline during installation. The paper reports on a case study, as outlined in the proceeding section, in which a comparison is made between results from this new tensioner model and from a more conventional approach. The comparison considers typical installation parameters as well as an in-depth look at the predicted fatigue damage for the two methods

  11. Emergency percutaneous needle decompression for tension pneumoperitoneum

    Directory of Open Access Journals (Sweden)

    Körner Markus


    Full Text Available Abstract Background Tension pneumoperitoneum as a complication of iatrogenic bowel perforation during endoscopy is a dramatic condition in which intraperitoneal air under pressure causes hemodynamic and ventilatory compromise. Like tension pneumothorax, urgent intervention is required. Immediate surgical decompression though is not always possible due to the limitations of the preclinical management and sometimes to capacity constraints of medical staff and equipment in the clinic. Methods This is a retrospective analysis of cases of pneumoperitoneum and tension pneumoperitoneum due to iatrogenic bowel perforation. All patients admitted to our surgical department between January 2005 and October 2010 were included. Tension pneumoperitoneum was diagnosed in those patients presenting signs of hemodynamic and ventilatory compromise in addition to abdominal distension. Results Between January 2005 and October 2010 eleven patients with iatrogenic bowel perforation were admitted to our surgical department. The mean time between perforation and admission was 36 ± 14 hrs (range 30 min - 130 hrs, between ER admission and begin of the operation 3 hrs and 15 min ± 47 min (range 60 min - 9 hrs. Three out of eleven patients had clinical signs of tension pneumoperitoneum. In those patients emergency percutaneous needle decompression was performed with a 16G venous catheter. This improved significantly the patients' condition (stabilization of vital signs, reducing jugular vein congestion, bridging the time to the start of the operation. Conclusions Hemodynamical and respiratory compromise in addition to abdominal distension shortly after endoscopy are strongly suggestive of tension pneumoperitoneum due to iatrogenic bowel perforation. This is a rare but life threatening condition and it can be managed in a preclinical and clinical setting with emergency percutaneous needle decompression like tension pneumothorax. Emergency percutaneous decompression is no

  12. Analysis of sacro-iliac joint screw fixation: does quality of reduction and screw orientation influence joint stability? A biomechanical study. (United States)

    Camino Willhuber, Gaston; Zderic, Ivan; Gras, Florian; Wahl, Dieter; Sancineto, Carlos; Barla, Jorge; Windolf, Markus; Richards, Robert Geoff; Gueorguiev, Boyko


    Treatment of posterior pelvic ring injuries is frequently associated with pain or/and high mortality rates. Percutaneous sacro-iliac (SI) screw fixation has proved to be one of the methods of choice, providing minimal operative time, blood loss and wound-related morbidity. However, fixation failures due to secondary fracture dislocation or screw backing out have been reported. There is a little knowledge regarding the impact of varying screw orientation and quality of reduction on the fixation strength. The purpose of the present study was biomechanical investigation of joint stability after SI screw fixation and its dependence on quality of reduction and screw orientation. Thirty-two artificial hemi-pelvices were assigned to four study groups and simulated SI dislocations were fixed with two SI screws in oblique or transverse screw orientation and anatomical or non-anatomical reduction in group A (oblique/anatomical), B (transverse/anatomical), C (oblique/non-anatomical) and D (transverse/non-anatomical). Mechanical testing was performed under progressively increasing cyclic axial loading until fixation failure. SI joint movements were captured via optical motion tracking. Fixation performance was statistically evaluated at a level of significance p = 0.05. The highest cycles to failure were observed in group A (14038 ± 1057), followed by B (13909 ± 1217), D (6936 ± 1654) and C (6706 ± 1295). Groups A and B revealed significantly longer endurance than C and D (p ≤ 0.01). Different screw orientations in the presented model do not influence substantially SI joint stability. However, anatomical reduction is not only mandatory to restore a malalignment, but also to increase the SI screw fixation strength and prevent fixation failures.

  13. TBK1 duplication is found in normal tension and not in high tension ...

    Indian Academy of Sciences (India)

    Supplementary data: TBK1 duplication is found in normal tension and not in high tension glaucoma patients of Indian origin. Lalit Kaurani, Mansi Vishal, Jharna Ray, Abhijit Sen, Kunal Ray and Arijit Mukhopadhyay. J. Genet. 95, 459–461. Table 1. Intraocular pressure of NTG and HTG patients. Total. Mean IOP. Mean IOP ...

  14. Constant-amplitude tests on plain concrete in uniaxial tension and tension-compression

    NARCIS (Netherlands)

    Cornelissen, H.A.W.


    This research report is the continuation of Stevin Laboratory Report No. 5-81-7 "Fatigue of plain concrete in uniaxial tension and in alternating tension-compression" [1], in which test set-up, loading equipment and preliminary results have been described. The present report deals with the total set

  15. Percutaneous tension band wiring for patellar fractures. (United States)

    Rathi, Akhilesh; Swamy, M K S; Prasantha, I; Consul, Ashu; Bansal, Abhishek; Bahl, Vibhu


    To evaluate outcome of percutaneous tension band wiring for transverse fractures of the patella. 16 men and 7 women aged 27 to 65 (mean, 40) years underwent percutaneous tension band wiring for transverse fractures of the patella with a displacement of >3 mm. Pain, operating time, mobility, functional score, and complications were evaluated. 20 patients underwent successful percutaneous tension band wiring. The remaining 3 patients in whom closed reduction failed underwent open reduction and tension band wiring. The mean operating time was 46 (range, 28-62) minutes. The mean follow-up period was 20 (range, 15-30) months. At the latest follow-up, all patients had regained full extension. The objective score was excellent in 20 patients and good in 3, whereas the subjective score was excellent in 17, good in 5, and fair in one. All patients had radiological union at week 8. One patient had patellofemoral arthritis (secondary to a postoperative articular step). Two patients developed superficial infections, which resolved after antibiotic therapy. Mean thigh muscle wasting was 0.7 (range, 0.4-1) cm. Three patients encountered hardware problems (impingement/irritation of the skin over the knee) necessitating implant removal. Percutaneous tension band wiring is a viable option for transverse fractures of the patella.

  16. Quantum geometry and gravitational entropy

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan


    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  17. Euclidean geometry and its subgeometries

    CERN Document Server

    Specht, Edward John; Calkins, Keith G; Rhoads, Donald H


    In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...

  18. Guide to Computational Geometry Processing

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François

    be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...

  19. Variable geometry Darrieus wind machine (United States)

    Pytlinski, J. T.; Serrano, D.


    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  20. Titanium mesh as a low-profile alternative for tension-band augmentation in patella fracture fixation: A biomechanical study. (United States)

    Dickens, Aaron J; Salas, Christina; Rise, LeRoy; Murray-Krezan, Cristina; Taha, Mahmoud Reda; DeCoster, Thomas A; Gehlert, Rick J


    We performed a simple biomechanical study to compare the fixation strength of titanium mesh with traditional tension-band augmentation, which is a standard treatment for transverse patella fractures. We hypothesised that titanium mesh augmentation is not inferior in fixation strength to the standard treatment. Twenty-four synthetic patellae were tested. Twelve were fixed with stainless steel wire and parallel cannulated screws. Twelve were fixed with parallel cannulated screws, augmented with anterior titanium mesh and four screws. A custom test fixture was developed to simulate a knee flexed to 90°. A uniaxial force was applied to the simulated extensor mechanism at this angle. A non-inferiority study design was used to evaluate ultimate force required for failure of each construct as a measure of fixation strength. Stiffness of the bone/implant construct, fracture gap immediately prior to failure, and modes of failure are also reported. The mean difference in force at failure was -23.0 N (95% CI: -123.6 to 77.6N) between mesh and wire constructs, well within the pre-defined non-inferiority margin of -260 N. Mean stiffness of the mesh and wire constructs were 19.42 N/mm (95% CI: 18.57-20.27 N/mm) and 19.49 N/mm (95% CI: 18.64-20.35 N/mm), respectively. Mean gap distance for the mesh constructs immediately prior to failure was 2.11 mm (95% CI: 1.35-2.88 mm) and 3.87 mm (95% CI: 2.60-5.13 mm) for wire constructs. Titanium mesh augmentation is not inferior to tension-band wire augmentation when comparing ultimate force required for failure in this simplified biomechanical model. Results also indicate that stiffness of the two constructs is similar but that the mesh maintains a smaller fracture gap prior to failure. The results of this study indicate that the use of titanium mesh plating augmentation as a low-profile alternative to tension-band wiring for fixation of transverse patella fractures warrants further investigation. Copyright © 2015 Elsevier Ltd. All

  1. Facet Joint Violation During Percutaneous Pedicle Screw Placement: A Comparison of Two Techniques. (United States)

    Tannous, Oliver; Jazini, Ehsan; Weir, Tristan B; Banagan, Kelley E; Koh, Eugene Y; Greg Anderson, D; Gelb, Daniel E; Ludwig, Steven C


    A comparative study of facet joint violation (FJV) using two percutaneous surgical techniques. To compare the rate of iatrogenic FJV and medial pedicle wall breach between two methods of percutaneous pedicle screw instrumentation in the thoracic and lumbar spine. Variable iatrogenic damage to the facet joints has been reported to occur with percutaneous pedicle screw techniques, compared with the open approach, which has been associated with adjacent segment disease. Technical variations of percutaneous pedicle screw placement may pose different risks to the facet joint. Attending spine surgeons percutaneously placed pedicle screws in seven human cadaveric spines from T2 to L5. At each level, screws were instrumented on one side using the 9 or 3 o'clock reference point of the pedicle on the posteroanterior view with a lateral-to-medial trajectory (LMT) and on the contralateral side using the center of the pedicle with an owl's eye trajectory (OET). Postoperative screw placement was assessed with computed tomography and then open cadaveric dissection. Outcome measures included FJV and medial pedicle wall breach. Overall, 17 of 105 screws placed with an LMT versus 49 of 105 screws placed with an OET violated or abutted the facet joint (P L1), and lumbar (L2-L5) levels (P = 0.003, 0.035, and 0.018, respectively). Medial pedicle wall breach occurred with 11 LMT screws and seven OET screws (P = 0.077), and no breach was considered critical. A significantly higher FJV rate was observed using the OET versus the LMT in the thoracic, thoracolumbar, and lumbar spine. No statistically significant differences in medial pedicle wall breach occurred between the techniques. Thus, the LMT of minimally invasive pedicle screw fixation may reduce iatrogenic damage to the facet joints. 3.

  2. Biomechanical Comparison of Perpendicular Versus Oblique In Situ Screw Fixation of Slipped Capital Femoral Epiphysis. (United States)

    Merz, Michael K; Amirouche, Farid; Solitro, Giovanni F; Silverstein, Jeffrey A; Surma, Tyler; Gourineni, Prasad V


    Percutaneous in situ single screw fixation is the preferred treatment for stable and unstable slipped capital femoral epiphysis (SCFE). The recommended screw placement is in the center of the epiphysis and perpendicular to the physis, which necessitates an anterior starting point for most SCFEs. A recent clinical study has shown good clinical results with a laterally based screw for SCFE, which is oblique to the physis. We sought to biomechanically compare these 2 techniques for load to failure and hypothesized that the laterally based oblique screw is equivalent or superior to an anteriorly based perpendicular screw. Twenty-two paired immature porcine femurs were used to compare the techniques. A SCFE model was created in all femurs using a previously published technique by performing a 30-degree posterior closing wedge osteotomy through the proximal physis. In the control group, a screw was placed perpendicular to the slip with an anterior starting point. In the experimental group, the screw was started as close to the mid-lateral cortex of the proximal femur as possible while maintaining the screw anterior to the posterior cortex of the femoral neck and ending at the apex of the epiphysis ignoring the resultant angle to the physis for the experimental group. The specimens were then potted and loaded in a physiologically relevant posteroinferior direction (30 degrees posterior from vertical) to determine load to failure (N) and stiffness (N/mm). No statistical difference was found between the 2 groups in maximum load to failure or stiffness (P>0.05). A laterally based screw oblique to the physis for in situ fixation in mild SCFE is not significantly different than an anteriorly based screw perpendicular to the physis in load to failure and stiffness in our study model. In light of no difference in load to failure of these 2 constructs, surgeons may be more comfortable with the traditional lateral entry point while still aiming for screw placement in the center of

  3. Active tension network model suggests an exotic mechanical state realized in epithelial tissues (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streichan, Sebastian J.; Shraiman, Boris I.


    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behaviour remains an open problem. Here we formulate and analyse the active tension network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodelling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal--`isogonal'--deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.

  4. Active Tension Network model reveals an exotic mechanical state realized in epithelial tissues (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streicha, Sebastian; Shraiman, Boris

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that mechanical balance of cells is dominated by cortical tension and introduces tension dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties: i) ATN behaves as a fluid at short times, but at long times it supports external tension, like a solid; ii) its mechanical equilibrium state has extensive degeneracy associated with a discrete conformal - ''isogonal'' - deformation of cells. ATN model predicts a constraint on equilibrium cell geometry, which we demonstrate to hold in certain epithelial tissues. We further show that isogonal modes are observed in a fruit fly embryo, accounting for the striking variability of apical area of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, understanding which helps understand biological phenomena.

  5. Computational analysis of the curvature distribution and power losses of metal strip in tension levellers (United States)

    Steinwender, L.; Kainz, A.; Krimpelstätter, K.; Zeman, K.


    Tension levelling is employed in strip processing lines to minimise residual stresses resp. to improve the strip flatness by inducing small elasto-plastic deformations. To improve the design of such machines, precise calculation models are essential to reliably predict tension losses due to plastic dissipation, power requirements of the driven bridle rolls (located upstream and downstream), reaction forces on levelling rolls as well as strains and stresses in the strip. FEM (Finite Element Method) simulations of the tension levelling process (based on Updated Lagrangian concepts) yield high computational costs due to the necessity of very fine meshes as well as due to the severely non-linear characteristics of contact, material and geometry. In an evaluation process of hierarchical models (models with different modeling levels), the reliability of both 3D and 2D modelling concepts (based on continuum and structural elements) was proved by extensive analyses as well as consistency checks against measurement data from an industrial tension leveller. To exploit the potential of computational cost savings, a customised modelling approach based on the principle of virtual work has been elaborated, which yields a drastic reduction of degrees of freedom compared to simulations by utilising commercial FEM-packages.

  6. Evaluation of the stiffness characteristics of rapid palatal expander screws

    Directory of Open Access Journals (Sweden)

    Luca Lombardo


    Full Text Available Abstract Background The aim of this study is to evaluate the mechanical properties of the screws used for rapid expansion of the upper jaw. Methods Ten types of expansion screw were assessed, seven with four arms: Lancer Philosophy 1, Dentaurum Hyrax Click Medium, Forestadent Anatomic Expander type “S”, Forestadent Anatomic Expander type “S” for narrow palates, Forestadent Memory, Leone A 2620-10 with telescopic guide, and Leone A 0630-10 with orthogonal arms; and three with two arms: Dentaurum Variety S.P., Target Baby REP Veltri, and Leone A 362113. A test expander with the mean dimensions taken from measurements on a sample of 100 expanders was constructed for each screw. The test expanders were connected to the supports of an Instron 4467 (Instron Corp., USA mechanical testing machine equipped with a 500 N load cell, and the compression force exerted after each activation was measured. The mean forces expressed by the two- and four-arm expanders were then compared. Results After five activations, the forces expressed by the two-arm devices were double than those expressed by the four-arm devices on average (224 ± 59.9 N vs. 103 ± 32.9 N, and such values remained high after subsequent activations. Conclusions The expanders tested demonstrated stiffness characteristics compatible with opening of the palatine sutures in pre-adolescent patients. The stiffness of such devices can be further increased during the construction phase.

  7. Open reduction and internal fixation: Screw injury - Retrospective study

    Directory of Open Access Journals (Sweden)

    Preetha Balaji


    Full Text Available Background/Aims: Open reduction and internal fixation (ORIF is a standard surgical procedure in jaw trauma and in orthognathic surgery. Insertion of screws is a significant risk for accidental tooth root injury with varying outcomes. Contrary evidences are found in literature due to a variety of study designs. This study was undertaken to address the lacunae and possibly estimate the difference in occurrence of tooth damage during or after ORIF between trauma and planned osteotomies. Materials and Methods: In this retrospective study, the data of ORIF in either trauma or orthognathic surgery fulfilling inclusion and exclusion criteria were collected and analyzed. Results: There were 1632 patients fulfilling the inclusion and exclusion criteria and formed the study group, of which 663 were in orthognathic surgery, of whom 210 had bimaxillary orthognathic surgery. In the trauma group, 358 patients had fractures involving both jaws whereas 272 had maxilla alone and 339 had mandibular fractures alone. On comparing the outcome, of the 9073 screws studied, 93.40% were not involved in any contact with the teeth, 6.3% were in category of potential hits (near apices or the root surfaces, and only 0.28% had evidence of root damage with the screws. It is observed that molar and premolar had a significant difference in terms of the type of surgery (P ≤ 0.05 whereas canine (P = 0.75 and incisor (P = 0.67 showed no statistical difference. Conclusion: ORIF when used as mentioned is a safe way for the management of fractures. The incidence of root injury is not uncommon but can be avoided with careful planning and execution.

  8. Fatigue in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben


    Traditinally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In order to test the predictive validity of the result from the small tension specimens, fatigue experiments...... mechanism and a mechanism connected to damage introduce in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...

  9. Fatigue In Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Uhre; Hoffmeyer, Preben


    Traditionally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In arder to test the predictive validity of the result from the small tension specimens, fatigue experiments...... mechanism and a mechanism connected to damage introduced in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...

  10. Carbon speciation and surface tension of fog (United States)

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.


    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  11. Tensions between Teams and Their Leaders

    Directory of Open Access Journals (Sweden)

    J. David Johnson


    Full Text Available The intersection of teamwork and leadership results in tensions, dilemmas, and paradoxes for both individuals and for institutions such as simultaneously empowering individuals at the same time it frustrates them when our naive, cultural understanding of leadership centralizes power and values leaders who can impose their will and vision on others. Perhaps the fundamental paradox of teamwork and leadership is that the more leadership is focused on an individual the less likely a team’s potential will be realized. Six specific domains where tensions arise are: at team boundaries; culture; who is in charge, rationality/cognition; diversity; and collaborations. Three approaches - clarifying different levels of analysis, temporal factors, and overarching concepts - to resolving tensions are discussed. New conceptions of leadership and the importance of the larger cultural frame within which they are embedded are needed for the management of technology and innovation.

  12. Surface tension-driven convection phenomena (United States)

    Mann, J. A., Jr.


    The techniques for measuring surface tension-driven flow are reported. In addition to the fairly standard crossed beam LDV method, methods using ripplon scattering which do not require seeding of the fluid were developed. These methods can be used to determine thermophysical properties of the surface, such as surface tension, viscosity, and local temperature. This technique was utilized to observe the change in surface tension associated with the nematic to isotropic phase transition of para-azoxydianisole at 134 C. The ripplon scattering methods become difficult for surface velocities below 1 mm/sec because of the overlapping spectra. Careful analysis procedures could extend this to smaller flows, but the more conventional LDV techniques with seeded flows are the method of choice for slow flows.


    Directory of Open Access Journals (Sweden)

    Irkham Ulil Albab


    Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews

  14. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)


    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  15. Stochastic geometry and its applications

    CERN Document Server

    Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph


    An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a

  16. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B


    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  17. Introduction to topology and geometry

    CERN Document Server

    Stahl, Saul


    An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele

  18. Combinatorial geometry in the plane

    CERN Document Server

    Hadwiger, Hugo; Klee, Victor


    Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa

  19. Lectures on Algebraic Geometry I

    CERN Document Server

    Harder, Gunter


    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  20. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, T.F.; Taleyarkhan, R.P., E-mail:


    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs – via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C{sub 7}H{sub 16}) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu–Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.