WorldWideScience

Sample records for tension insulator flaming

  1. Artificial intelligence tools to support the analysis of the high tension insulator flaming; Herramientas de inteligencia artificial de apoyo al analisis de flameos en aisladores de alta tension

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Ortiz, Guillermo; Mejia Lavalle, Manuel; Montoya Tena, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    Four artificial intelligence tools developed at the Instituto de Investigaciones Electricas (IIE) to support the analysis of high tension insulator flaming are described. The first tool builds up a decision tree departing from historical data, the other 3 tools operate departing from the decision tree previously created to generate production rules, function as an expert system and make tests with many already known cases. These tools could predict the impending occurrence of flaming with enough time allowance for the insulators to be cleaned, since the traditional practice is the periodical cleaning of the insulators and this is not always adequate since the cleaning teams are limited, and the action of the environment is not always constant and for that reason insulators that do not need it are cleaned and vice-versa [Espanol] Se describen 4 herramientas de inteligencia artificial desarrolladas en el Instituto de Investigaciones Electricas (IIE) para apoyar al analisis de flameos en aisladores de alta tension. La primera herramienta construye el arbol de decision a partir de datos historicos; las otras 3 herramientas operan a partir del arbol de decision previamente creado para generar reglas de produccion, funcionar a la manera de un sistema experto y hacer pruebas con muchos casos conocidos. Estas herramientas podrian predecir la ocurrencia inminente del flameo con tiempo suficiente para que los aisladores se limpien, ya que la forma tradicional es limpiar periodicamente los aisladores y esto a veces no es adecuado debido a que las cuadrillas de limpieza son limitadas, ademas de que la accion del medio ambiente no es constante y es por eso que a veces se limpian aisladores que no lo necesitan o viceversa

  2. Thermal Insulation System for Large Flame Buckets

    Science.gov (United States)

    Callens, E. Eugene, Jr.; Gamblin, Tonya Pleshette

    1996-01-01

    The objective of this study is to investigate the use of thermal protection coatings, single tiles, and layered insulation systems to protect the walls of the flame buckets used in the testing of the Space Shuttle Main Engine, while reducing the cost and maintenance of the system. The physical behavior is modeled by a plane wall boundary value problem with a convective frontface condition and a backface condition designed to provide higher heat rates through the material.

  3. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation

    OpenAIRE

    Fan, Bitao; Chen, Shujun; Yao, Qiufang; Sun, Qingfeng; Jin, Chunde

    2017-01-01

    Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation propertie...

  4. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation.

    Science.gov (United States)

    Fan, Bitao; Chen, Shujun; Yao, Qiufang; Sun, Qingfeng; Jin, Chunde

    2017-03-17

    Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials.

  5. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation

    Science.gov (United States)

    Fan, Bitao; Chen, Shujun; Yao, Qiufang; Sun, Qingfeng; Jin, Chunde

    2017-01-01

    Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials. PMID:28772670

  6. Effect of Flow Direction on the Extinction Limit for Flame Spread over Wire Insulation in Microgravity

    DEFF Research Database (Denmark)

    Nagachi, Masashi; Mitsui, Fumiya; Citerne, Jean-Marie

    Experiments to determine the Limiting Oxygen Concentration (LOC) of a flame spread over electric wire insulation were carried out in microgravity provided by parabolic flights. The difference between the LOC in opposed and concurrent flows was evidenced. Polyethylene insulated Copper (Cu) wires a...

  7. Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation

    Directory of Open Access Journals (Sweden)

    Bitao Fan

    2017-03-01

    Full Text Available Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials.

  8. Flame spread over wire insulation under microgravity; Bisho juryokuba ni okeru dosen hifukuzaijo no kaen moehirogari

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, O.; Kikuchi, M.; Ito, K. [Hokkaido University, Sapporo (Japan); Sato, S. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Sakuraya, T. [Japan Space Utilization Promotion Center, Tokyo (Japan)

    1999-04-25

    An experimental study of flame spread phenomena over ETFE (Ethylene-Tetrafluoroethylene) insulated wire was performed under microgravity to obtain fundamental data on fire safety in space. The effects of the parameters thought dominant for wire combustion in fires-the ambient oxygen concentration, wire initial temperature, T{sub I}, and wire diameter, d{sub w}, - were investigated in the microgravity experiments. A series of comparative experiments were also conducted at normal gravity. Flame shape under microgravity changed depending on the state of the molten fuel accumulation. Experimental results showed that there existed a possibility of higher flame spread rates under microgravity than at normal gravity, in spite of lower flame temperature in microgravity. Wire initial temperature, T{sub i}, had a very large influence both on flame spread rates and extinction limit of the wire under microgravity. The degree of flame spread rate decreased with increase in d{sub w} and, correspondingly, the increase with decrease in d{sub w} under microgravity was higher than at normal gravity. (author)

  9. Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields

    KAUST Repository

    Lim, Seung Jae

    2014-12-30

    An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

  10. Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and Flame Retardancy.

    Science.gov (United States)

    Zhang, Qiangqiang; Hao, Menglong; Xu, Xiang; Xiong, Guoping; Li, Hui; Fisher, Timothy S

    2017-04-26

    In this article, flyweight three-dimensional (3D) graphene scaffolds (GSs) have been demonstrated with a microinterface barrier-derived thermal insulation and flame retardancy characteristics. Such 3D GSs were fabricated by a modified hydrothermal method and a unidirectional freeze-casting process with hierarchical porous microstructures. Because of high porosity (99.9%), significant phonon scattering, and strong π-π interaction at the interface barriers of multilayer graphene cellular walls, the GSs demonstrate a sequence of multifunctional properties simultaneously, such as lightweight density, thermal insulating characteristics, and outstanding mechanical robustness. At 100 °C, oxidized GSs exhibit a thermal conductivity of 0.0126 ± 0.0010 W/(m K) in vacuum. The thermal conductivity of oxidized GSs remains relatively unaffected despite large-scale deformation-induced densification of the microstructures, as compared to the behavior of reduced GSs (rGSs) whose thermal conductivity increases dramatically under compression. The contrasting behavior of oxidized GSs and rGSs appears to derive from large differences in the intersheet contact resistance and varying intrinsic thermal conductivity between reduced and oxidized graphene sheets. The oxidized GSs also exhibit excellent flame retardant behavior and mechanical robustness, with only 2% strength decay after flame treatment. In a broader context, this work demonstrates a useful strategy to design porous nanomaterials with a tunable heat conduction behavior through interface engineering at the nanoscale.

  11. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  12. Effect of the Ignition Method on the Extinction Limit for a Flame Spreading over Electric Wire Insulation

    DEFF Research Database (Denmark)

    Mitsui, Fumiya; Nagachi, Masashi; Citerne, Jean-Marie

    Flame spread experiments with wire insulation were conducted in microgravity (parabolic flights) and in normal gravity to understand the effect of the ignition condition on the Limiting Oxygen Concentration (LOC) for an opposed air flow condition of 100 mm/s (typical flow velocity on ISS). Both t...

  13. On the modelling of semi-insulating GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, W.; Duderstadt, F.

    2004-07-01

    Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)

  14. Thermal and electrical properties of thermal-grease-insulated REBCO superconducting coils with respect to winding tension

    Science.gov (United States)

    Song, Jung-Bin; Choi, Yoon Hyuck; Yang, Dong Gyu; Kim, Young-Gyun; Kim, Seong-Gyeom; Choi, Yeon Suk; Lee, Haigun

    2017-09-01

    This study investigates the thermal and electrical characteristics of a silicon-based grease insulation (GI) GdBCO coil with respect to the winding tension through charge, sudden discharge, and over-current tests. Charge and sudden discharge test results demonstrate that the charging/discharging delay time increases as the winding tension increases; this is because the characteristic resistance of the coil decreases due to the reduced contact resistance. The over-current test results confirm that the thermal/electrical stabilities of the GI coil are considerably enhanced with an increased winding tension resulting from improved thermal contact and the decrease in the electrical contact resistance between the turn-to-turn layers of the coil. Thus, as the winding tension increases, the charging/discharging rates decrease whereas the thermal/electrical stabilities improve. Overall, selecting the appropriate winding tension for a GI coil is critical for achieving thermal/electrical stabilities, as well as ameliorating the charging/discharging delay phenomenon generally observed in a no-insulation coil.

  15. The insulation condition diagnosis of high tension generator stators; Diagnostico del estado de aislamiento de estatores de generadores de alta tension

    Energy Technology Data Exchange (ETDEWEB)

    Robles Pimentel, Edgar Guillermo; Rosales Sedano, Inocente [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    The high tension electrical generators are very high cost equipment, therefore they need to be very reliable. The generators preventive maintenance based in diagnosis techniques of the insulation condition might mean substantial savings for the user. In this article the most common techniques employed all over the world are presented, the greatest part of them already implemented in Mexico by the authors. The techniques and the equipment employed are analyzed and are exemplified with the results obtained in some field experiences. [Espanol] Los generadores electricos de alta tension son equipos de muy alto costo, por lo que necesitan ser muy confiables. El mantenimiento preventivo de los generadores basado en tecnicas de diagnostico del estado del aislamiento puede significar ahorros sustanciales al usuario. En este articulo se presentan las tecnicas mas comunes empleadas en el mundo, la mayor parte de ellas ya implantadas en Mexico por los autores. Se analizan las tecnicas y el equipo empleado, y se ejemplifica con resultados obtenidos de algunas de las experiencias en el campo.

  16. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae

    2015-04-01

    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  17. Development of polystyrene-geopolymer composite for thermal insulating material and its properties with special regards to flame resistance

    Science.gov (United States)

    Mucsi, G.; Szabó, R.; Nagy, S.; Bohács, K.; Gombkötő, I.; Debreczeni, Á.

    2017-10-01

    As a first part of the research, systematic experimental series were conducted in order to develop an appropriate fly ash-based geopolymer binder focusing on the workability of the paste. In these series, the NaOH molar ratio and water glass/NaOH ratio were investigated and the fineness of the fly ash was optimized presented in a recent paper. Based on these results the effect of metakaolin on the mechanical properties was studied. After developing the appropriate binder, experimental series were carried out using ground polystyrene as light aggregate in various concentration (from 30 V/V% up to 98 V/V%) and geopolymer as a binder in order to develop a heat insulating material. Compressive and flexural strength, specimen density, flammability, freeze-thaw resistance were determined in order to characterize the composite product. As a result of the experimental investigation, it was found that the flexural strength of the composite was found to be ~400 kPa which is as high as the original polystyrene heat insulating panel. Additionally, the flammability was much better than the original pure PS product, the sample was not ignited even at higher PS content (90%). Furthermore, the freeze-thaw resistance of the composite improved compared with the neat geopolymer.

  18. Voltage pre-regulator without insulation with high efficiency; Pre-regulador de tension sin aislamiento con alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Ramos, Octaviano

    2003-04-15

    with regards to the research on power supplies, because normally two parameters are in opposition: when the efficiency improves ({eta}) the power factor is neglected (PF), also, when the PF is corrected the {eta} is neglected, nevertheless it is possible to improve these two parameters at the same time taking advantage of the concept of passing part of the input energy directly to the output. The new pre-regulator can be combined with traditional regulators with insulation as the converter DC/DC fly back, or be combined with high efficiency regulators such as the so called two entrances reducer. The regulator is necessary to obtain a regulated power supply with a high power factor and good efficiency. The thesis document is organized in four chapters. In the first chapter the proposals of diverse authors are examined, and finalizes with the exposition of the proposed topology for this research work. In the chapter two, entitled operation theory, analysis and design of the proposed solution, shows the design equations and waveform of the proposed converter that help to understand their operation. In the chapter three, entitled Control Strategy, the use of a non-linear control is justified due to the characteristics of the topology and the reason for the utilization of sliding modes (SMC), it is established the analysis and design of the control stage of the proposed converter by sliding modes. In addition, the form in which this control was physically implemented is presented. The chapter four, entitled Results Analysis, is divided into two parts: simulations and experimental results. Additionally a comparative analysis between the proposed topology and the Cuk converter is presented, which is the one that is used in the topology as main converter, this comparison was performed because in literature there are not similar schemes to the one proposed. Finally the conclusions of the research work are presented in which the most important points are considered. In wide

  19. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed

  20. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  1. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  2. Surface Tension

    Science.gov (United States)

    Theissen, David B.; Man, Kin F.

    1996-01-01

    The effect of surface tension is observed inmany everyday situations. For example, a slowly leaking faucet drips because the force surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free.

  3. Tension Headache

    Science.gov (United States)

    ... your head Tenderness on your scalp, neck and shoulder muscles Tension headaches are divided into two main categories — ... that monitor and give you feedback on body functions such as muscle tension, heart rate and blood pressure. You then ...

  4. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  5. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  6. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  7. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  8. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  9. Properties of Refractory Concrete in Tension and Compression

    Science.gov (United States)

    Sampson, Jeffrey

    2009-01-01

    Refractory concrete on the LC-39A Flame Deflector has been damaged during multiple Space Shuttle launches (e.g. STS-124, STS-126, STS-119, and STS-125, STS-127). These events have prompted a better understanding of the system via an analytical model of the Flame Deflector assembly to include the Fondu Fyre refractory concrete. This model requires test data inputs of the refractory concrete's mechanical properties, which include stress versus strain curves in tension and compression, modulus of elasticity, and Poisson's ratio. Sections of Fondu Fyre refractory concrete removed from the LC-39A Flame Deflector were provided for this testing.

  10. Engineering an Undergarment for Flash/Flame Protection

    Science.gov (United States)

    2011-11-01

    ENGINEERING AN UNDERGARMENT FOR FLASH/FLAME PROTECTION Frazier Hull, Jett Gambill, Andrew Hansche, Gian Agni, John Evangelista Celia Powell...insulating clothing. For example, a pilot or tanker can afford the weight of a water cooled vest; a dismounted Soldier, however, may be in a vehicle for

  11. THE INSULATION PROBLEMS ON PORCELAIN INSULATORS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2005-02-01

    Full Text Available Porcelain insulators used on electrical institutions are important materials to provide system reliability and material insulation. Specification of raw materials of insulators and environmental factors affect insulator strength and operation. In this study, environmental factors and materials used on porcelain insulator manufacturing are examined and also their influence on system reliability and insulation are investigated.

  12. THE INSULATION PROBLEMS ON PORCELAIN INSULATORS

    OpenAIRE

    Engin ÇETİN; N. Lerzan ÖZER; ÇETİN, Meriç

    2005-01-01

    Porcelain insulators used on electrical institutions are important materials to provide system reliability and material insulation. Specification of raw materials of insulators and environmental factors affect insulator strength and operation. In this study, environmental factors and materials used on porcelain insulator manufacturing are examined and also their influence on system reliability and insulation are investigated.

  13. Cool Flame Quenching

    Science.gov (United States)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  14. Automotive Insulation

    Science.gov (United States)

    1997-01-01

    Under a Space Act Agreement between Boeing North America and BSR Products, Space Shuttle Thermal Protection System (TPS) materials are now used to insulate race cars. BSR has created special TPS blanket insulation kits for use on autos that take part in NASCAR events, and other race cars through its nationwide catalog distribution system. Temperatures inside a race car's cockpit can soar to a sweltering 140 to 160 degrees, with the extreme heat coming through the engine firewall, transmission tunnel, and floor. It is common for NASCAR drivers to endure blisters and burns due to the excessive heat. Tests on a car insulated with the TPS material showed a temperature drop of some 50 degrees in the driver's cockpit. BSR-TPS Products, Inc. now manufactures insulation kits for distribution to race car teams around the world.

  15. Development of test systems for characterizing emissions from spray polyurethane foam insulation (SPFI)

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...

  16. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  17. Are Kondo insulators simply insulators?

    Energy Technology Data Exchange (ETDEWEB)

    Aeppli, G.; DiTusa, J.F. [AT& T Bell Laboratories, Murray Hill, NJ (United States); Fisk, Z. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Since the discovery of the anomalous normal state properties of the high-T{sub c} oxides, there has been a lively debate concerning the applicability of conventional Fermi liquid theory to strongly interacting metals. A question arising naturally in this context is whether strongly interacting insulators exhibit properties at odds with ordinary band theory. Of course, Mott insulators, which in the absence of strong Coulomb interactions would be metals, represent the most dramatic breakdown of band theory. However, among strongly interacting insulators which one believes are band insulators, there have until recently been no indications that many-body effects yield observable consequences beyond those which band parameter renormalization might account for. The large number of recent theoretical papers on this renormalization for f-band materials, as well as the long struggle to achieve quantitative understanding of the band gap in as basic a semiconductor as Si, attest to the importance and difficulty of calculating renormalized band parameters for insulators. Also, the experience with Si clearly shows that the renormalization can depend on the quantity being measured. In a recent review, the authors placed the newly discovered Ce-based Kondo insulators, as well as older anomalous semiconductors such as SmB{sub 6} and FeSi, in the context of renormalized band theory. The conclusion was that in large measure, this theory represents an adequate starting point for understanding strongly correlated insulators. The goal here is not to repeat what was said before, but to focus on those aspects of charge and spin fluctuations which the band picture cannot obviously accomodate.

  18. Slab edge insulating form system and methods

    Science.gov (United States)

    Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  19. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  20. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    Science.gov (United States)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  1. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    Science.gov (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  2. Translucent Insulation

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1998-01-01

    Two new types of translucent materials are presented. One is translucent fiber insulation and the other type is a new type of hony-comb made of Celulose-acetat. Data for the materials and calculations of energy savings when using the materials in building envelopes are presented....

  3. Kondo insulators

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, Z.; Sarrao, J.L. [National High Magnetic Field Lab., Tallahassee, FL (United States); Thompson, J.D. [Los Alamos National Lab., NM (United States)

    1994-10-01

    The Kondo insulating materials present a particularly simple limiting case of the strongly correlated electron lattice problem: one occupied f-state interacting with a single half-filled conduction band. Experiment shows that the solution to this problem has some remarkably simple aspects. Optical conductivity data display the strong coupling nature of this physics.

  4. Microphysics of Astrophysical Flames

    Science.gov (United States)

    Dursi, L. J.; Zingale, M.; Caceres, A.; Calder, A. C.; Timmes, F. X.; Truran, J. W.; Rosner, R.; Lamb, D. Q.; Brown, E.; Ricker, P.; Fryxell, B.; Olson, K.; Riley, K.; Siegel, A.; Vladimirova, N.

    2003-03-01

    Type Ia supernovae are thought to begin with a deflagration phase, where burning occurs as a subsonic flame which accelerates and possibly undergoes a transition to a supersonic detonation. Both the acceleration and possible transition will depend on the microphysics of astrophysical flames, and their interaction with a turbulent flow in degenerate material. Here we present recent progress in studying the interactions of astrophysical flames and curvature and strain at the FLASH center; in particular, we discuss quantitative measurements of the effects of strain on burning rate of these flames, and implications for instability growth and quenching. This work was supported by the DOE ASCI/Alliances program at the University of Chicago under grant No. B341495 and the Scientific through Advanced Computing (SciDAC) program of the DOE, grant number DE-FC02-01ER41176 to the Supernova Science Center/UCSC.

  5. Skin tension related to tension reduction sutures.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon; Kim, Kyung Yong; Han, Seung Ho; Hwang, Se Jin

    2015-01-01

    The aim of this study was to compare the skin tension of several fascial/subcutaneous tensile reduction sutures. Six upper limbs and 8 lower limbs of 4 fresh cadavers were used. At the deltoid area (10 cm below the palpable acromion) and lateral thigh (midpoint from the palpable greater trochanter to the lateral border of the patella), and within a 3 × 6-cm fusiform area of skin, subcutaneous tissue defects were created. At the midpoint of the defect, a no. 5 silk suture was passed through the dermis at a 5-mm margin of the defect, and the defect was approximated. The initial tension to approximate the margins was measured using a tensiometer.The tension needed to approximate skin without any tension reduction suture (S) was 6.5 ± 4.6 N (Newton). The tensions needed to approximate superficial fascia (SF) and deep fascia (DF) were 7.8 ± 3.4 N and 10.3 ± 5.1 N, respectively. The tension needed to approximate the skin after approximating the SF was 4.1 ± 3.4 N. The tension needed to approximate the skin after approximating the DF was 4.9 ± 4.0 N. The tension reduction effect of approximating the SF was 38.8 ± 16.4% (2.4 ± 1.5 N, P = 0.000 [ANOVA, Scheffé]). The tension reduction effect of approximating the DF was 25.2% ± 21.9% (1.5 ± 1.4 N, P = 0.001 [ANOVA, Scheffé]). The reason for this is thought to be that the SF is located closely to the skin unlike the DF. The results of this study might be a basis for tension reduction sutures.

  6. Demonstration of Surface Tension.

    Science.gov (United States)

    Rosenthal, Andrew J.

    2001-01-01

    Surface tension is a fundamental obstacle in the spontaneous formation of bubbles, droplets, and crystal nuclei in liquids. Describes a simple overhead projector demonstration that illustrates the power of surface tension that can prevent so many industrial processes. (ASK)

  7. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  8. Super flame-retardant lightweight rime-like carbon-phenolic nanofoam

    OpenAIRE

    Cheng, Haiming; Hong, Changqing; Zhang, Xinghong; Xue, Huafei; Meng, Songhe; Han, Jiecai

    2016-01-01

    The desire for lightweight nanoporous materials with high-performance thermal insulation and efficient anti-ablation resistance for energy conservation and thermal protection/insulation has greatly motivated research and development recently. The main challenge to synthesize such lightweight materials is how to balance the relationship of low thermal conductivity and flame retardancy. Herein, we propose a new concept of lightweight ?rime-like? structured carbon-phenolic nanocomposites to solv...

  9. "Magic Eraser" Flame Tests

    Science.gov (United States)

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-01-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  10. Permanent tensions in organization.

    Science.gov (United States)

    Jansson, Noora

    2015-01-01

    The purpose of this paper is to investigate the relationship between permanent tensions and organizational change. This study used paradox theory and a case study. The case organization is a public university hospital in Finland involving several stakeholders. The analysis suggests that the relationship between permanent tensions and organizational change is a paradox that is part of organizational reality. As an organization learns to live with its permanent tensions, the renewal paradox settles into equilibrium. When tensions are provoked, the paradox is disturbed until it finds a new balance. This flexible nature of the paradox is the force that keeps the different stakeholders simultaneously empowered to maintain their unique missions and cohesive in order to benefit from the larger synergy. This research suggests that identification and evaluation of each permanent tension within an organization is important when executing organizational change. The fact that certain tensions are permanent and cannot be solved may have an influence on how planned change initiatives are executed. The results show that permanent tensions may be harnessed for the benefit of an organizational change. This research demonstrates originality by offering an alternative view of tensions, a view which emphasizes not only their permanent and plural nature but their importance for enabling the organization to change at its own, non-disruptive pace. The research also proposes a new concept, the "renewal paradox", to enhance understanding of the relationship between permanent tensions and organizational change.

  11. Multiple density layered insulator

    Science.gov (United States)

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  12. Tensions in Distributed Leadership

    Science.gov (United States)

    Ho, Jeanne; Ng, David

    2017-01-01

    Purpose: This article proposes the utility of using activity theory as an analytical lens to examine the theoretical construct of distributed leadership, specifically to illuminate tensions encountered by leaders and how they resolved these tensions. Research Method: The study adopted the naturalistic inquiry approach of a case study of an…

  13. Flame Retardant Epoxy Resins

    Science.gov (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  14. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  15. Insulation systems of the building construtions

    Directory of Open Access Journals (Sweden)

    Rumiantcev Boris

    2016-01-01

    Full Text Available Constructions of the exterior insulation and decoration combines materials of different functionality and constructive solutions allows to these materials to demonstrate their efficiency to the great extent. Fire safety of buildings is mandatory requirement for building systems. Some insulating material may belong to the group of combustible, but their use in structures so as to minimize the risk of fire. On the other hand, there are special designs, in which non-flammable insulation acts as a flame retardant barrier. In the article carried systematization of construction systems used in the flat and pitched roof during the insulation and wall covering and facades. Taking into account the experience of leading firms were considered the application features of using exterior finish systems: construction solutions, requirements for materials and recommendations about the installation these systems.The article deals with the construction ventilated roofing system of two types: flat roof and pitched roof seam. In the first case, the ventilation system is created using milled insulation boards in the second - by a ventilated gap. In both cases the natural convection of air in the air cavities. Ensuring operational stability insulation is laid on the stages of production of heat-insulating materials. It is important: firstly responsible execution of all process operations associated with providing regulatory properties of materials and secondly, the performance of additional operations associated with the produc-tion of materials, working in a specific design. An example of a material whose properties can modify for a particular application, are milled mineral wool (with air channels for systems of ventilated flat roof.

  16. Electric Fields for Flame Extinguishment

    Science.gov (United States)

    1993-03-01

    ethylene-air and methane-air flames, the application of a DC field of 0.5 kV/cm increased the burning velocity by close to a factor of two. Salamandra and...flame surface area and thus the velocity, but Jaggers and von Engel also saw physical perturbations in flame fronts with no electric field. Salamandra ...Conductivity in Propane-Air Flames by Using Rydberg State Stark Spectroscopy," Proc. Combustion Inst., Fall (1990). 12. Salamandra , G.D., and Mairov, N.I

  17. Insulated Foamy Viral Vectors

    Science.gov (United States)

    Browning, Diana L.; Collins, Casey P.; Hocum, Jonah D.; Leap, David J.; Rae, Dustin T.; Trobridge, Grant D.

    2016-01-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34+ cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244

  18. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  19. Tension-filled Governance?

    DEFF Research Database (Denmark)

    Celik, Tim Holst

    on the statesituated tension-filled functional relationship between legitimation and accumulation, the study both historically and theoretically reworks this approach and reapplies it for the post-1970s/1990s governance period. It asks whether and to what extent governance has served as a distinctive post- 1970s/1990s...... state-facilitated way of bridging/altering the tension-filled relationship between legitimation and fiscal accumulation in Western European liberal-capitalist democratic polities....

  20. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  1. Piloted Ignition to Flaming in Smoldering Fire-Retarded Polyurethane Foam

    Science.gov (United States)

    Putzeys, O.; Fernandez-Pello, A. C.; Urban, D. L.

    2007-01-01

    Experimental results are presented on the piloted transition from smoldering to flaming in the fire-retarded polyurethane foam Pyrell . The samples are small rectangular blocks with a square cross section, vertically placed in the wall of a vertical wind tunnel. Three of the vertical sample sides are insulated and the fourth side is exposed to an upward oxidizer flow of variable oxygen concentration and to a variable radiant heat flux. The gases emitted from the smoldering reaction pass upwards through a pilot, which consists of a coiled resistance heating wire. In order to compensate for the solid-phase and gas-phase effects of the fire retardants on the piloted transition from smoldering to flaming in Pyrell, it was necessary to assist the process by increasing the power supplied to the smolder igniter and the pilot (compared to that used for non-fire retarded foam). The experiments indicate that the piloted transition from smoldering to flaming occurs when the gaseous mixture at the pilot passes the lean flammability limit. It was found that increasing the oxygen concentration or the external heat flux increases the likelihood of a piloted transition from smoldering to flaming, and generally decreases the time delay to transition. The piloted transition to flaming is observed in oxygen concentrations of 23% and above in both low-density and high-density Pyrell. Comparisons with previous experiments show that the piloted transition from smoldering to flaming is possible under a wider range of external conditions (i.e. lower oxygen concentration) than the spontaneous transition from smoldering to flaming. The results show that the fire retardants in Pyrell are very effective in preventing the piloted transition to flaming in normal air, but Pyrell is susceptible to smoldering and the piloted transition to flaming in oxygen-enriched environments. Therefore, precautions should be taken in the design of applications of Pyrell in oxygen-enriched environments to reduce

  2. Flame Resistant Foam

    Science.gov (United States)

    1984-01-01

    Solimide manufactured by Imi-Tech Corporation, is a lightweight fire resistant material produced under a manufacturing process that allows it to be uniformly foamed. Can be produced in a variety of densities and structural configurations and remains resilient under exposure to temperatures ranging from minus 300 to plus 500 degrees Fahrenheit. Is resistant to open flame and generates virtually no smoke or toxic by-products. Used in aircraft for its superior damping characteristics, lighter weight and fire barrier properties, it's also applicable to ships and surface transportation systems such as transit cars, trains, buses and automobiles.

  3. Synthesis and characterization of innovative insulation materials

    Directory of Open Access Journals (Sweden)

    Skaropoulou Aggeliki

    2018-01-01

    Full Text Available Insulation elements are distinguished in inorganic fibrous and organic foamed materials. Foamed insulation materials are of great acceptance and use, but their major disadvantage is their flammability. In case of fire, they tend to transmit the flame producing toxic gases. In this paper, the synthesis and characterization of innovative inorganic insulation materials with properties competitive to commercial is presented. Their synthesis involves the mixing of inorganic raw material and water with reinforcing agent or/and foaming agent leading to the formation of a gel. Depending on raw materials nature, the insulation material is produced by freeze drying or ambient drying techniques of the gel. The raw material used are chemically benign and abundantly available materials, or industrial by-products and the final products are non-toxic and, in some cases, non-flammable. Their density and thermal conductivity was measured and found 0.02-0.06 g/cm3 and 0.03-0.04 W/mK, respectively.

  4. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  5. Turbulent Flame Speed and Self Similarity of Expanding Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung

    2011-11-01

    In this study we present experimental turbulent flame speed data measured in constant-pressure expanding turbulent flames, propagating in nearly homogenous isotropic turbulence, in a dual-chamber, fan-stirred vessel. The cold flow is characterized by high speed particle image velocimetry while the flame propagation rate is obtained by tracking high speed Schlieren images of unity Lewis number methane-air flames over wide ranges of pressure and turbulence intensity. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from expanding flames and those from Bunsen geometries can be scaled by a single parameter: the turbulent Reynolds number utilizing recent theoretical results obtained by spectral closure of the G equation, after correcting for gas expansion effects.

  6. Membrane tension and membrane fusion

    OpenAIRE

    Kozlov, Michael M.; Chernomordik, Leonid V.

    2015-01-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually la...

  7. Surface Tension of Spacetime

    Science.gov (United States)

    Perko, Howard

    2017-01-01

    Concepts from physical chemistry and more specifically surface tension are introduced to spacetime. Lagrangian equations of motion for membranes of curved spacetime manifold are derived. The equations of motion in spatial directions are dispersion equations and can be rearranged to Schrodinger's equation where Plank's constant is related to membrane elastic modulus. The equation of motion in the time-direction has two immediately recognizable solutions: electromagnetic waves and corpuscles. The corpuscular membrane solution can assume different genus depending on quantized amounts of surface energy. A metric tensor that relates empty flat spacetime to energetic curved spacetime is found that satisfies general relativity. Application of the surface tension to quantum electrodynamics and implications for quantum chromodynamics are discussed. Although much work remains, it is suggested that spacetime surface tension may provide a classical explanation that combines general relativity with field theories in quantum mechanics and atomic particle physics.

  8. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  9. Flame spraying of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Varacalle, D.J. Jr.; Zeek, D.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Couch, K.W.; Benson, D.M. [Protech Laboratory Corp., Cincinnati, OH (United States); Kirk, S.M. [3M Co., St. Paul, MN (United States)

    1997-08-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs.

  10. Electrical Aspects of Impinging Flames

    Science.gov (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  11. Tension-type headache

    DEFF Research Database (Denmark)

    Bendtsen, Lars; Jensen, Rigmor

    2009-01-01

    The substantial societal and individual burdens associated with tension-type headache (TTH) constitute a previously overlooked major public health issue. TTH is prevalent, affecting up to 78% of the general population, and 3% suffer from chronic TTH. Pericranial myofascial nociception probably...

  12. Social and environmental tensions

    DEFF Research Database (Denmark)

    Saito, Moeko; Rutt, Rebecca Leigh; Chhetri, Bir Bahadur Khanal

    2014-01-01

    to forests. Our case highlights the risk that the mere application of affirmative measures may give rise to difficult social and environmental tensions. Thus, this paper calls for such measures to effectively incorporate local perspectives in their designs and to be reflective, by allowing for regular...

  13. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T

    2004-01-01

    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta...

  14. Rein tension during canter

    NARCIS (Netherlands)

    Egenvall, Agneta; Eisersiö, Marie; Rhodin, Marie; van Weeren, P.R.|info:eu-repo/dai/nl/074628550; Roepstorff, Lars

    2015-01-01

    Riders generally use reins as a means for communication with the horse. At present, the signalling pattern is poorly understood. The aim of this study was to illustrate and analyse the rein tension patterns in a number of rider/horse combinations across a variety of exercises in the canter gait. Our

  15. Dynamic Characterization of Candle Flame

    Directory of Open Access Journals (Sweden)

    Suvojit Ghosh

    2010-09-01

    Full Text Available The present work focuses on studying the flickering of a candle placed in a hollow cylindrical glass tube. Variations in flame area and intensity have been studied as the oscillating parameters of the flame with a camera and a Photomultiplier tube (PMT, and results have been found to be indicative of the presence of some well defined peaks in the amplitude spectrum of the flame intensity. Tests have been carried out with a range of candle diameters for the same glass tube giving similar results. Fluctuations in fractal dimension of the flame structure have also been studied in the course of the work. The time series data generated by processing camera images and also the PMT voltage output has been studied for existence of periodicity in the signal recorded. The correlation dimension has been determined for a number of experiments to characterize the dynamics of the signal.

  16. Highly porous flame-retardant and sustainable biofoams based on wheat gluten and in situ polymerized silica

    DEFF Research Database (Denmark)

    Wu, Qiong; Andersson, Richard L.; Holgate, Tim

    2014-01-01

    This article presents a novel type of flame-retardant biohybrid foam with good insulation properties based on wheat gluten and silica, the latter polymerized in situ from hydrolysed tetraethyl orthosilicate (TEOS). This led to the formation of intimately mixed wheat gluten and silica phases, where...

  17. Surface tension of spherical drops from surface of tension

    Energy Technology Data Exchange (ETDEWEB)

    Homman, A.-A.; Bourasseau, E. [CEA/DAM DIF, F-91297 Arpajon Cedex (France); Stoltz, G. [Université Paris-Est, CERMICS (ENPC), INRIA, F-77455 Marne-la-Vallée (France); Malfreyt, P. [Institut de Chimie de Clermont-Ferrand, Université Blaise Pascal, UMR CNRS 6296, ICCF, BP 10448, F-63000 Clermont-Ferrand (France); Strafella, L.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr [Institut de Physique de Rennes, Université de Rennes 1 UMR 6251 CNRS, 263 avenue Général Leclerc, 35042 Rennes (France)

    2014-01-21

    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  18. Polyimide/Glass Composite High-Temperature Insulation

    Science.gov (United States)

    Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon

    2009-01-01

    Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.

  19. Surface Tension and Capillary Rise

    Science.gov (United States)

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  20. Plasmonics in Topological Insulators

    Directory of Open Access Journals (Sweden)

    Yi-Ping Lai

    2014-04-01

    Full Text Available With strong spin-orbit coupling, topological insulators have an insulating bulk state, characterized by a band gap, and a conducting surface state, characterized by a Dirac cone. Plasmons in topological insulators show high frequency-tunability in the mid-infrared and terahertz spectral regions with transverse spin oscillations, also called “spin-plasmons”. This paper presents a discussion and review of the developments in this field from the fundamental theory of plasmons in bulk, thin-film, and surface-magnetized topological insulators to the techniques of plasmon excitation and future applications.

  1. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated....... The simple hydrocarbon flames are dominated by a series of hydrocarbonic ions and, to a minor extent, protonated oxo-compounds. The introduction of sulfur to the flames leads to significant changes in the ion composition, as sulfur-containing species become dominant. The ability of the technique to study...

  2. Gas insulated transmission line with insulators having field controlling recesses

    Science.gov (United States)

    Cookson, Alan H.; Pederson, Bjorn O.

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  3. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  4. Cable tensioned membrane solar collector module with variable tension control

    Science.gov (United States)

    Murphy, Lawrence M.

    1985-01-01

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  5. Sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  6. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  7. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  8. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  9. Physical and Chemical Processes in Turbulent Flames

    Science.gov (United States)

    2015-06-23

    used a constant-pressure, fan -stirred combustion chamber to investigate the propagation of a spherically expanding flame (Fig. 1.1). Chambers based...radius, closer to the fans . However during flame expansion, the mean radial flow adjacent to the flame is radially outward in nature shown by the...AFRL-OSR-VA-TR-2015-0136 Physical and Chemical Processes in Turbulent Flames Chung Law TRUSTEES OF PRINCETON UNIVERSITY Final Report 06/23/2015

  10. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.

    1981-01-01

    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  11. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.

    2009-01-01

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change

  12. Environmental Considerations for Flame Resistant Textiles

    Science.gov (United States)

    Virtually all common textiles will ignite and burn. There are mandatory and voluntary cigarette and open-flame ignition regulations to address unreasonable fire risks associated with textile products that require them to be treated with and/or contain flame retardant chemicals to make them flame res...

  13. 30 CFR 14.20 - Flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  14. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  15. Insulation fact sheet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

  16. The VLT FLAMES Tarantula Survey

    NARCIS (Netherlands)

    Evans, C.; Taylor, W.; Sana, H.; Hénault-Brunet, V.; Bagnoli, T.; Bastian, N.; Bestenlehner, J.; Bonanos, A.; Bressert, E.; Brott, I.; Campbell, M.; Cantiello, M.; Carraro, G.; Clark, S.; Costa, E.; Crowther, P.; de Koter, A.; de Mink, S.; Doran, E.; Dufton, P.; Dunstall, P.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I.; Izzard, R.; Köhler, K.; Langer, N.; Lennon, D.; Maíz Apellániz, J.; Markova, N.; Najarro, P.; Puls, J.; Ramirez, O.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Smartt, S.; Stroud, V.; van Loon, J.; Vink, J.S.; Walborn, N.

    2011-01-01

    We introduce the VLT FLAMES Tarantula Survey, an ESO Large Programme from which we have obtained optical spectroscopy of over 800 massive stars in the spectacular 30 Doradus region of the Large Magellanic Cloud. A key feature is the use of multi-epoch observations to provide strong constraints on

  17. Cars Spectroscopy of Propellant Flames

    Science.gov (United States)

    1983-11-01

    Propellant Flames," Fast Reactions in Energetic Systems, D. Capellos and R. F. Walker, ed., Reidel, Boston, MA, 1981, pp 473-434. 2. L. E. Harris and M. E...Beardell Y. Carignon J. Fendell K, Aron E. Petro DRStfC-LCE-(D), R. Walker P. Marinkas C. Capellos S. Buluou F. Gilbert Dover, tU 07801 Afmtnistrator

  18. Theory of Colored Flame Production

    Science.gov (United States)

    1964-03-20

    cal/mole, UnO electron volt per molecule is equivalent to 23.US3 kilocalories per gram mole. At ++ ~2000Oý, it is estimatted that molecules with a...because halides stimulate alkali metal compound folaltion, the halogens must be classed as negativo enhancement agents in flames containing alkali

  19. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  20. Consideration in GIS insulation coordination

    Energy Technology Data Exchange (ETDEWEB)

    Bargigia, A.

    1990-01-01

    Analysis of electrical system failures reveals that many are caused by insulation breakdowns due to overvoltages. The problem of insulation co-ordination is then one of the most important aspects in the design of an electrical system. Insulation co-ordination of gas-insulated sub-stations (GIS) has recently received much attention especially due to a large diffusion of this insulation technique. In this review of GIS insulation co-ordination, attention is given to the impact on the insulation co-ordination strategy of the metal-clad disconnector performance during capacity current switching operations.

  1. Insulator for laser housing

    Science.gov (United States)

    Duncan, David B.

    1992-01-01

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

  2. Holding the Tension.

    Science.gov (United States)

    Feudtner, Chris

    2016-05-01

    My colleagues and I had been asked by a member of a clinical team to help sort through the ethics of stopping a life-sustaining intervention for a very ill child. We had already talked with the parents, the physicians, and the folks from nursing, social work, and chaplaincy. Terms like "suffering," "cruel," "compassion," and "moral distress" had been uttered, as had terms like "inappropriate," "unethical," "neglectful," and "risk-management." The group had now stuffed all of these polarizing thoughts and feelings into this cramped room with only one door. And everyone was looking at me. What skill, competency, or inner capacity must one possess to hold and manage such tension? © 2016 The Hastings Center.

  3. Radiation cross-linking of small electrical wire insulator fabricated from NR/LDPE blends

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)], E-mail: chyagrit@chula.ac.th; Punnachaiya, Suvit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)

    2007-12-15

    A low voltage, radiation-crosslinked wire insulator has been fabricated from blends of natural rubber block (STR-5L) and LDPE with phthalic anhydride (PA) as a compatibilizer. Physical properties of the NR/LDPE blend ratios of 50/50 and 60/40 with 0.5, 1.0, and 1.5 wt% PA were evaluated. The gel content increased as the radiation dose increased. Tensile at break exhibited a maximum value of 12 MPa at 120 kGy for 1.0 and 1.5 wt% PA of both blend ratios. A higher PA content yielded a higher modulus for the same blend ratio. Blends of 60/40 ratio with 1.0 wt% PA and 0.8 wt% antimony oxide flame retardant gave the highest limiting oxygen index (LOI) of >30% at above 150 kGy. Other electrical properties of the wire insulator were investigated. It was found that an insulator fabricated from a PA content of 1.0 wt% in the NR/LDPE blend ratio of 50/50, after gamma ray cross-linked at a dose of 180 kGy in low vacuum (1 mm Hg), met the Thai Industrial Standard 11-2531 for low voltage wire below 1.0 kV. To comply with the standard for vertical flame test, a more suitable flame retardant was needed for the insulator.

  4. Perioperative thermal insulation.

    Science.gov (United States)

    Bräuer, Anselm; Perl, Thorsten; English, Michael J M; Quintel, Michael

    2007-01-01

    Perioperative hypothermia remains a common problem during anesthesia and surgery. Unfortunately, the implementation of new minimally invasive surgical procedures has not lead to a reduction of this problem. Heat losses from the skin can be reduced by thermal insulation to avoid perioperative hypothermia. However, only a small amount of information is available regarding the physical properties of insulating materials used in the Operating Room (OR). Therefore, several materials using validated manikins were tested. Heat loss from the surface of the manikin can be described as:"Q = h . DeltaT . A" where Q = heat flux, h = heat exchange coefficient, DeltaT = temperature gradient between the environment and surface, and A = covered area. Heat flux per unit area and surface temperature were measured with calibrated heat flux transducers. Environmental temperature was measured using a thermoanemometer. The temperature gradient between the surface and environment (DeltaT) was varied and "h" was determined by linear regression analysis as the slope of "DeltaT" versus heat flux per unit area. The reciprocal of the heat exchange coefficient defines the insulation. The insulation values of the materials varied between 0.01 Clo (plastic bag) to 2.79 Clo (2 layers of a hospital duvet). Given the range of insulating materials available for outdoor activities, significant improvement in insulation of patients in the OR is both possible and desirable.

  5. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  6. Surface tension of aqueous humor.

    Science.gov (United States)

    Ross, Andrew; Blake, Robert C; Ayyala, Ramesh S

    2010-09-01

    To measure and compare the surface tension of aqueous humor in patients with and without glaucoma. The surface tension of aqueous humor was measured using a commercially available instrument and software that were validated by using a known fluid (deionized water and methanol). Analysis of aqueous and vitreous samples obtained from 20 rabbit eyes showed that the system could be used successfully for small amounts of ocular fluid. The effect of glaucoma drugs on the surface tension of aqueous humor was then studied in a rabbit model. Comparison of aqueous humor from 66 patients with glaucoma and 53 patients with cataracts but no glaucoma was carried out. The surface tension of rabbit aqueous humor was 65.9 ± 1.2; vitreous, 60.6 ± 2.6; and balanced salt solution, 70.7 ± 0.9. Timolol and latanoprost did not alter the surface tension of the aqueous humor in the rabbit model. The average surface tension of human aqueous humor was 63.33 ± 4.0 (glaucomatous eyes) and 66.19 ± 2.64 (nonglaucomatous eyes with cataracts) (P=0.0001). A technique of measuring the surface tension from small quantities of aqueous humor is validated. Surface tension of the aqueous humor in glaucoma patients was less than that of cataract patients.

  7. Mechanism of Candle Flame Oscillation: Detection of Descending Flow above the Candle Flame

    Science.gov (United States)

    Nagamine, Yuko; Otaka, Koki; Zuiki, Hiroyuki; Miike, Hidetoshi; Osa, Atsushi

    2017-07-01

    When several candles are bundled together, the size of the combined candle flame oscillates. We carried out observational experiments to understand the mechanism of this oscillation. These were optical imaging, shadow graph imaging, temperature imaging around the oscillating candle flame, and image analysis to obtain the quantitative velocity distribution of the air flow above the candle flame. The experiments detected the descending air flow to the candle flame from the upper area, and showed that the descending air flow is involved with the candle flame oscillation. According to the results, we propose a new mechanism of the candle flame oscillation using the analogy of the cumulonimbus cloud in meteorology.

  8. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    Science.gov (United States)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  9. Economical noise- and heat insulation

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    All noise protection and heat insulations measures are interlinked. While noise abatement and insulation is primarily a task of health protection, the economically optimised heat insulation is rather a problem for financial mathematics. Parameters, influencing the heat insulation are subject to changes which will affect the profitability of heat insulation measures in turn. Several options for reducing the noise level are described and some standard values for material cost are supplied. Depending on the kind of noise different abatement methods are suitable which require materials with specific properties. Measures for heat insulation are described which to a great extent are identical will noise abatement measures.

  10. ASRM Case Insulation development

    Science.gov (United States)

    Tam, W. F. S.; Bell, M.

    1993-06-01

    The ASRM Case Insulation Program used design of experiments to develop a high performance case insulation. The program traded-off more than thirty properties in areas of ablation performance, material properties, processibility, bonding/aging. Kevlar pulp was found to be the most significant factor. The low-molecular weight ethylene propylene diene monomer, EPDM was the second most significant factor. The curative was the third most significant factor. The tackifier was the fourth most significant factor. The stripwinding process for applying the insulation onto the case inner surfaces was also studied. The parameters selected for experiment were extruder speed, upper roller temperature and extruder nozzle temperature. The extrudability results showed that non-Kevlar filled formulations displayed optimum edges but poor thickness continuity. High Kevlar filled formulations displayed optimum thickness continuity but poor strip edge ratings.

  11. Heat and mass transfer in flames

    Science.gov (United States)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  12. Transitional Gas Jet Diffusion Flames in Microgravity

    Science.gov (United States)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  13. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate......Membranes consisting of one or more metal oxides can be synthesized by flame pyrolysis. The general principle behind flame pyrolysis is the decomposition and oxidation of evaporated organo-metallic precursors in a flame, thereby forming metal oxide monomers. Because of the extreme supersaturation...... created in the flame, the monomers will nucleate homogeneously and agglomerate to form aggregates of large ensembles of monomers. The aggregates will then sinter together to form single particles. If the flame temperature and the residence time are sufficiently high, the formed oxide particles...

  14. Insulation materials. Cellulose fiber and Expanded polystyrene Insulations

    OpenAIRE

    Viladot Bel, Cèlia

    2017-01-01

    The main role of thermal insulation materials in a building envelope are to prevent heat loss and provide thermal comfort for a building's interior. The factor that characterizes an insulation material's effectiveness is its thermal conductivity λ (measured in W/mK). The lower a material's thermal conductivity, the more effective it is as an insulator. Traditional insulation materials include glass fibre, stone wool, expanded polystyrene, and polyurethane foam. While these materials are effic...

  15. Insulation materials. Cellulose fiber and expanded polystyrene insulations

    OpenAIRE

    Viladot Bel, Cèlia

    2017-01-01

    The main role of thermal insulation materials in a building envelope are to prevent heat loss and provide thermal comfort for a building's interior. The factor that characterizes an insulation material's effectiveness is its thermal conductivity λ (measured in W/mK). The lower a material's thermal conductivity, the more effective it is as an insulator. Traditional insulation materials include glass fibre, stone wool, expanded polystyrene, and polyurethane foam. While these materials are effic...

  16. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames-Body Stabilized Flames

    Science.gov (United States)

    2015-11-30

    improved Linear Eddy Model approach is applied to predict the flame properties inside the Volvo rig and it is shown to over-predict the flame...work, the improved Linear Eddy Model approach is applied to predict the flame properties inside the Volvo rig and it is shown to over-predict the flame...39 4.1 Volvo Rig Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Simulation Description

  17. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  18. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties...

  19. Condensation in insulated homes

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, R A

    1978-05-28

    A research proposal on condensation in insulated homes is presented. Information is provided on: justification for condensation control; previous work and present outlook (good vapor barrier, condensation and retrofit insulation, vapor barrier decreases condensation, brick-veneer walls, condensation in stress-skin panels, air-conditioned buildings, retrofitting for conservation, study on mobile homes, high indoor relative humidity, report on various homes); and procedure (after funding has been secured). Measures are briefly described on opening walls, testing measures, and retrofitting procedures. An extensive bibliography and additional informative citations are included. (MCW)

  20. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  1. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, Natsuko, E-mail: kajiwara.natsuko@nies.go.jp [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Noma, Yukio; Takigami, Hidetaka [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2011-09-15

    Highlights: {yields} We examined the flame retardants in electronics, curtains, wallpaper and insulator. {yields} Use of alternative brominated and organophosphate flame retardants was suggested. {yields} All the products investigated also contained PBDEs, TBBPA and polybromophenols. {yields} Incorporation of recycled materials containing hazardous substance was suggested. - Abstract: The concentrations of traditional brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) in new consumer products, including electronic equipment, curtains, wallpaper, and building materials, on the Japanese market in 2008 were investigated. Although some components of the electronic equipment contained bromine at concentrations on the order of percent by weight, as indicated by X-ray fluorescence analysis, the bromine content could not be fully accounted for by the BFRs analyzed in this study, which included polybrominated diphenylethers, decabromodiphenyl ethane, tetrabromobisphenol A, polybromophenols, and hexabromocyclododecanes. These results suggest the use of alternative BFRs such as newly developed formulations derived from tribromophenol, tetrabromobisphenol A, or both. Among the 11 OPFRs analyzed, triphenylphosphate was present at the highest concentrations in all the products investigated, which suggests the use of condensed-type OPFRs as alternative flame retardants, because they contain triphenylphosphate as an impurity. Tripropylphosphate was not detected in any samples; and trimethylphosphate, tributyl tris(2-butoxyethyl)phosphate, and tris(1,3-dichloro-2-propyl)phosphate were detected in only some components and at low concentrations. Note that all the consumer products evaluated in this study also contained traditional BFRs in amounts that were inadequate to impart flame retardancy, which implies the incorporation of recycled plastic materials containing BFRs that are of global concern.

  2. Flame Retardation Modification of Paper-Based PVC Wallcoverings

    National Research Council Canada - National Science Library

    Lin, Hui; Yang, Haiyang; Xiao, He; Cao, Shilin; Huang, Liulian; Chen, Lihui; Li, Jian

    2016-01-01

    The flame-retarded paper-based polyvinyl chloride (PVC) wallcoverings were successfully prepared, using plant fiber paper as base material and adding inorganic flame retardants and flame-retarded plasticizer as additives...

  3. Managing tension headaches at home

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000421.htm Managing tension headaches at home To use the sharing ... have glasses, use them. Learn and practice stress management. Some people find relaxation exercises or meditation helpful. ...

  4. Tension pneumocephalus: Mount Fuji sign

    Directory of Open Access Journals (Sweden)

    Pulastya Sanyal

    2015-01-01

    Full Text Available A 13-year-old male was operated for a space occupying lesion in the brain. A noncontrast computed tomography scan done in the late postoperative period showed massive subdural air collection causing compression of bilateral frontal lobes with widening of interhemispheric fissure and the frontal lobes acquiring a peak like configuration - causing tension pneumocephalus-"Mount Fuji sign." Tension pneumocephalus occurs when air enters the extradural or intradural spaces in sufficient volume to exert a mass or pressure effect on the brain, leading to brain herniation. Tension pneumocephalus is a surgical emergency, which needs immediate intervention in the form of decompression of the cranial cavity by a burr hole or needle aspiration. The Mount Fuji sign differentiates tension pneumocephalus from pneumocephalus.

  5. Tension pile study : final report.

    Science.gov (United States)

    1970-07-01

    This report contains the results of a short term study of a pile in tension loads. The piles tested were driven on Louisiana Department of Highway's property in response to preceding research work entitled "Stability of Slender Prestressed Concrete P...

  6. Handbook of Thermal Insulation Applications.

    Science.gov (United States)

    1983-01-01

    Transfer in Low-Density Insulation." Journal of Thermal Insulation. Technomic Publishing Co., Inc. Vol. 1, pp. 37-61. July 1979. Rockwool Industries...Inc. "Blowing Wool" Technical Rulletins #6, #8, #9, and #10. Englewood, CO. Aug. 1981. Rockwool Industries, Inc. "Facts About Home Insulation." No...78120. Denver, CO. 1981. Rockwool Industries, Inc. "Multi-layer Foil." Technical Bulletin #5. Englewood, CO. Aug. 1981. Roofing, Siding and Insulation

  7. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  8. Model flames in the Boussinesq limit: The effects of feedback

    Science.gov (United States)

    Vladimirova, N.; Rosner, R.

    2003-06-01

    We have studied the fully nonlinear behavior of premixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. The key results include the establishment of criteria for when such flames propagate as simple planar flames, elucidation of scaling laws for the effective flame speed, and a study of the stability properties of these flames. The simplicity of some of our scaling results suggests that analytical work may further advance our understandings of buoyant flames.

  9. THERMAL INSULATION SYSTEMS

    Science.gov (United States)

    Augustynowicz, Stanislaw D. (Inventor); Fesmire, James E. (Inventor)

    2005-01-01

    Thermal insulation systems and with methods of their production. The thermal insulation systems incorporate at least one reflection layer and at least one spacer layer in an alternating pattern. Each spacer layer includes a fill layer and a carrier layer. The fill layer may be separate from the carrier layer, or it may be a part of the carrier layer, i.e., mechanically injected into the carrier layer or chemically formed in the carrier layer. Fill layers contain a powder having a high surface area and low bulk density. Movement of powder within a fill layer is restricted by electrostatic effects with the reflection layer combined with the presence of a carrier layer, or by containing the powder in the carrier layer. The powder in the spacer layer may be compressed from its bulk density. The thermal insulation systems may further contain an outer casing. Thermal insulation systems may further include strips and seams to form a matrix of sections. Such sections serve to limit loss of powder from a fill layer to a single section and reduce heat losses along the reflection layer.

  10. The Polar Insulation Investigation

    Science.gov (United States)

    Urban-Rich, Juanita

    2006-01-01

    In this article, the author developed an activity called "The Polar Insulation Investigation." This activity builds on students' natural interest in "things polar" and introduces them to animal adaptations in a unique way. The aim of the exploration is to determine the role of animal coverings (e.g., blubber, fur, and feathers) and to see which is…

  11. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2005-01-01

    This paper describes the application results of a previous and current EU-project on super insulating glazing based on monolithic silica aerogel. Prototypes measuring approx. 55´55 cm2 have been made with 15 mm evacuated aerogel between two layers of low-iron glass. Anti-reflective treatment...

  12. Exploring Homeowners’ Insulation Activity

    NARCIS (Netherlands)

    Friege, J; Holtz, G; Chappin, E.J.L.

    2016-01-01

    Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany’s climate protection targets. Previous research suggests that, since homeowners’ decision-making processes are inadequately understood as yet, today’s incentives aiming at increasing

  13. Photonic topological insulators.

    Science.gov (United States)

    Khanikaev, Alexander B; Mousavi, S Hossein; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H; Shvets, Gennady

    2013-03-01

    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

  14. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence...

  15. Peg supported thermal insulation panel

    Science.gov (United States)

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  16. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  17. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    Science.gov (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  18. Evaluation of transformer insulating oil quality using NIR, fluorescence, and NMR spectroscopic data fusion.

    Science.gov (United States)

    Godinho, Mariana S; Blanco, Marcos R; Gambarra Neto, Francisco F; Lião, Luciano M; Sena, Marcelo M; Tauler, Romà; de Oliveira, Anselmo E

    2014-11-01

    Power transformers are essential components in electrical energy distribution. One of their most important parts is the insulation system, consisting of Kraft paper immersed in insulating oil. Interfacial tension and color are major parameters used for assessing oil quality and the system׳s degradation. This work proposes the use of near infrared (NIR), molecular fluorescence, and (1)H nuclear magnetic resonance (NMR) spectroscopy methods combined with chemometric multivariate calibration methods (Partial Least Squares - PLS) to predict interfacial tension and color in insulating mineral oil samples. Interfacial tension and color were also determined using tensiometry and colorimetry as standard reference methods, respectively. The best PLS model was obtained when NIR, fluorescence, and NMR data were combined (data fusion), demonstrating synergy among them. An optimal PLS model was calculated using the selected group of variables according to their importance on PLS projections (VIP). The root mean square errors of prediction (RMSEP) values of 2.9 mN m(-1) and 0.3 were estimated for interfacial tension and color, respectively. Mean relative standard deviations of 1.5% for interfacial tension and 6% for color were registered, meeting quality control requirements set by electrical energy companies. The methods proposed in this work are rapid and simple, showing great advantages over traditional approaches, which are slow and environmentally unfriendly due to chemical waste generation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  20. Simulations of flame generated particles

    KAUST Repository

    Patterson, Robert

    2016-01-05

    The nonlinear structure of the equations describing the evolution of a population of coagulating particles in a flame make the use of stochastic particle methods attractive for numerical purposes. I will present an analysis of the stochastic fluctuations inherent in these numerical methods leading to an efficient sampling technique for steady-state problems. I will also give some examples where stochastic particle methods have been used to explore the effect of uncertain parameters in soot formation models. In conclusion I will try to indicate some of the issues in optimising these methods for the study of uncertain model parameters.

  1. Industrial thermal insulation: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, R.G.; Tennery, V.J.; McElroy, D.L.; Godfrey, T.G.; Kolb, J.O.

    1976-03-01

    A large variety of thermal insulation materials is manufactured for application in various temperature ranges and environments. Additional and improved thermal insulation for steam systems is a key area with immediate energy conservation potential in several of the larger energy-consuming industries. Industrial thermal insulation technology was assessed by obtaining input from a variety of sources including insulation manufacturers, system designers, installers, users, consultants, measurement laboratories, open literature, and in-house knowledge. The assessment identified a number of factors relevant to insulation materials and usage that could contribute significantly to improved energy conservation.

  2. Biodegradation of brominated and organophosphorus flame retardants

    NARCIS (Netherlands)

    Waaijers, S.L.; Parsons, J.R.

    2016-01-01

    Brominated flame retardants account for about 21% of the total production of flame retardants and many of these have been identified as persistent, bioaccumulative and toxic. Nevertheless, debromination of these chemicals under anaerobic conditions is well established, although this can increase

  3. Flame retardant cotton based highloft nonwovens

    Science.gov (United States)

    Flame retardancy has been a serious bottleneck to develop cotton blended very high specific volume bulky High loft fabrics. Alternately, newer approach to produce flame retardant cotton blended High loft fabrics must be employed that retain soft feel characteristics desirable of furnishings. Hence, ...

  4. Flame retardant cotton barrier nonwovens for mattresses

    Science.gov (United States)

    According to regulation CPSC 16 CFR 1633, every new residential mattress sold in the United States since July 2007 must resist ignition by open flame. An environmentally benign “green”, inexpensive way to meet this regulation is to use a low-cost flame retardant (FR) barrier fabric. In this study, a...

  5. Chemical processes in the HNF flame

    NARCIS (Netherlands)

    Ermolin, N.E.; Zarko, V.E.; Keizers, H.L.J.

    2006-01-01

    Results of modeling the HNF flame structure are presented. From an analysis of literature data on the thermal decomposition and combustion of HNF, it is concluded that the dissociative vaporization of HNF proceeds via the route HNFliq → (N2H4)g + (HC(NO 2)3)g. The flame structure is modeled using a

  6. Simplified Calculation of Maximum Wire Tension in case of Short Circuit

    Directory of Open Access Journals (Sweden)

    I. I. Sergey

    2007-01-01

    Full Text Available Modified method for a simplified calculation of a maximum wire tension in case of a short circuit. This method makes it possible to take into account a real trajectory of their movement and elements of a switch-gear. An accuracy evaluation of the simplified calculation has been done with the help of a calculative experiment using a BusEf computer software. A correction factor has been obtained to take into account an influence of insulator strings on a tension value.

  7. Quenching processes in flame-vortex interactions

    Science.gov (United States)

    Zingale, M.; Niemeyer, J. C.; Timmes, F. X.; Dursi, L. J.; Calder, A. C.; Fryxell, B.; Lamb, D. Q.; MacNeice, P.; Olson, K.; Ricker, P. M.; Rosner, R.; Truran, J. W.; Tufo, H. M.

    2001-10-01

    We show direct numerical simulations of flame-vortex interactions in order to understand quenching of thermonuclear flames. The key question is-can a thermonuclear flame be quenched? If not, the deflagration-detonation transition mechanisms that demand a finely tuned preconditioned region in the interior of a white dwarf are unlikely to work. In these simulations, we pass a steady-state laminar flame through a vortex pair. The vortex pair represents the most severe strain the flame front will encounter inside the white dwarf. We perform a parameter study, varying the speed and size of the vortex pair, in order to understand the quenching process. No quenching is observed in any of the calculations performed to date. .

  8. Multipoint ignition by flame dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Rychter, T.J.

    1989-03-01

    In conventional piston engines exothermic chemical reactions occur in flames that are tightly localized in space. This is a cause of many problems encountered in engine combustion, such as knock and cycle-to-cycle variability. An alternative to the classical combustion process based on the propagation of the flame can be the initiation of exothermic reactions by a set of ignition centers causing multipoint initiation of combustion. This can be achieved by spreading the chemically active hot gases through the combustion chamber. In practice this has been done by combustion-product recirculation or by the use of jets. Numerous investigations have been reported on the combustion system in which a jet of chemically active hot gases is dynamically introduced into the main combustion chamber causing multipoint ignition of a premixed charge. The jet has been generated either by burning a rich mixture in a large prechamber, in a small torch cell, or by the discharge of a relatively large amount of electrical energy in a small cavity to produce a jet of plasma. A way to reduce significantly the energy to generate the plasma jet has been proposed and has proved to be especially advantageous fur burning mixtures near their flammability limits.

  9. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  10. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  11. Thermal Insulation Test Apparatuses

    Science.gov (United States)

    Berman, Brion

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Thermal Insulation Test Apparatuses. Designed by the Cryogenics Test Laboratory at the John F. Kennedy Space Center (KSC) in Florida, these patented technologies (U.S. Patent Numbers: Cryostat 1 - 6,742,926, Cryostat 2 - 6,487,866, and Cryostat 4 - 6,824,306) allow manufacturers to fabricate and test cryogenic insulation at their production and/or laboratory facilities. These new inventions allow for the thermal performance characterization of cylindrical and flat specimens (e.g., bulk-fill, flat-panel, multilayer, or continuously rolled) over the full range of pressures, from high vacuum to no vacuum, and over the full range of temperatures from 77K to 300K. In today's world, efficient, low-maintenance, low-temperature refrigeration is taking a more significant role, from the food industry, transportation, energy, and medical applications to the Space Shuttle. Most countries (including the United States) have laws requiring commercially available insulation materials to be tested and rated by an accepted methodology. The new Cryostat methods go beyond the formal capabilities of the ASTM methods to provide testing for real systems, including full-temperature differences plus full-range vacuum conditions.

  12. Historical Tensions in Engineering Education

    DEFF Research Database (Denmark)

    Jamison, Andrew; Heymann, Matthias

    2012-01-01

    Ever since institutions for educating engineers first began to be ­established in Europe, there have been a number of fundamental tensions as to how that ­educating should best be conducted, what it should consist of, and who should do the educating. These tensions are based on different styles...... or approaches to ­engineering education that have developed historically in different parts of Europe and which have led to what we characterize as “theory-driven,” “practice-driven,” and “technology-driven” approaches. This chapter explores some of the historical roots of these tensions in medieval Europe...... and briefly traces their developmental trajectories through the subsequent formation of institutions of engineering ­education. It has been written as part of PROCEED (Program of Research on Opportunities and Challenges in Engineering Education in Denmark)....

  13. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    Science.gov (United States)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  14. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  15. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  16. Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test

    Science.gov (United States)

    Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan

    2017-04-01

    Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test.

  17. Gyrotropic elastic response of skyrmion crystals to current-induced tensions

    Science.gov (United States)

    Ochoa, Hector; Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the dynamics of skyrmion crystals in electrically insulating chiral magnets subjected to current-induced spin torques by adjacent metallic layers. We develop an elasticity theory that accounts for the gyrotropic force engendered by the nontrivial topology of the spin texture, tensions at the boundaries due to the exchange of linear and spin angular momentum with the metallic reservoirs, and dissipation in the bulk of the film. A steady translation of the skyrmion crystal is triggered by the current-induced tensions and subsequently sustained by dissipative forces, generating an electromotive force on itinerant spins in the metals. This phenomenon should be revealed as a negative drag in an open two-terminal geometry, or equivalently, as a positive magnetoresistance when the terminals are connected in parallel. We propose nonlocal transport measurements with these salient features as a tool to characterize the phase diagram of insulating chiral magnets.

  18. Insulator - Insulator Contact Charging as a Function of Pressure

    Science.gov (United States)

    Hogue, Michael D.; Mucciolo, E. R.; Calle, C. I.

    2006-01-01

    Metal - metal and metal - insulator contact or triboelectric charging are well known phenomena with good theoretical understanding of the charge exchange mechanism. However, insulator - insulator charging is not as well understood. Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. A two-phase equilibrium model based on an ideal gas of singly charged ions in equilibrium with a submonolayer adsorbed film was developed to describe the pressure dependence of the surface charge on an insulator. The resulting charge density equation is an electrostatic version of the Langmuir isotherm.

  19. Thermonuclear Quenching in Flame-Vortex Interactions

    Science.gov (United States)

    Zingale, M.; Niemeyer, J. C.; Timmes, F. X.; Dursi, L. J.; Calder, A. C.; Fryxell, B.; Olson, K.; Ricker, P.; Rosner, R.; Truran, J. W.; Tufo, H.; MacNeice, P.

    2000-12-01

    A Type Ia supernova begins as a flame, deep in the interior of a white dwarf. At some point, the burning may undergo a deflagration-detonation transition (DDT). Some mechanisms for this transition require a preconditioned region in the star. As the flame propagates down the temperature gradient, the speed increases, and the transition to a detonation may occur (see Khokhlov et al. 1997; Niemeyer & Woosley 1997). For this to happen, the region must be free of any temperature fluctuations -- any burning must be quenched. We show direct numerical simulations of flame-vortex interactions in order to understand quenching of thermonuclear flames. The key question is -- can a thermonuclear flame be quenched? If not, the DDT mechanisms that demand the finely tuned preconditioned region are unlikely to work. In these simulations, we pass a steady-state laminar flame through a vortex pair. The vortex pair represents the most severe strain the flame front will encounter inside the white dwarf. We perform a parameter study, varying the speed and size of the vortex pair, in order to understand the quenching process. These simulations were carried out with the FLASH Code. This work is supported by the Department of Energy under Grant No. B341495 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. These calculations were performed on the Nirvana Cluster at Los Alamos National Laboratory

  20. Flame Color as a Lean Blowout Predictor

    Directory of Open Access Journals (Sweden)

    Rajendra R. Chaudhari

    2013-03-01

    Full Text Available The study characterizes the behavior of a premixed swirl stabilized dump plane combustor flame near its lean blow-out (LBO limit in terms of CH* chemiluminiscence intensity and observable flame color variations for a wide range of equivalence ratio, flow rates and degree of premixing (characterized by premixing length, Lfuel. LPG and pure methane are used as fuel. We propose a novel LBO prediction strategy based solely on the flame color. It is observed that as the flame approaches LBO, its color changes from reddish to blue. This observation is found to be valid for different levels of fuel-air premixing achieved by changing the available mixing length of the air and the fuel upstream of the dump plane although the flame dynamics were significantly different. Based on this observation, the ratio of the intensities of red and blue components of the flame as captured by a color CCD camera was used as a metric for detecting the proximity of the flame to LBO. Tests were carried out for a wide range of air flow rates and using LPG and CH4 as fuel. For all the operating conditions and both fuels tested, this ratio was found to monotonically decrease as LBO was approached. Moreover, the value of this ratio was within a small range close to LBO for all the cases investigated. This makes the ratio suitable as a metric for LBO detection at all levels of premixing.

  1. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib

    2014-12-01

    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  2. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  3. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  4. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... (Computational Fluid Dynamics) where the fundamental equation for flow, heat- and mass transfer are solved numerically in computational domains similar to the real systems.A model describing the particle dynamics in the flame is coupled with the flow-field information in order to compute effluent particle...

  5. Flaming alcoholic drinks: flirting with danger.

    Science.gov (United States)

    Tan, Alethea; Frew, Quentin; Yousif, Ali; Ueckermann, Nicola; Dziewulksi, Peter

    2014-01-01

    Alcohol-related burn injuries carry significant mortality and morbidity rates. Flaming alcoholic beverages served in trendy bars and clubs are becoming increasingly popular. The dangers associated with an ignited alcoholic drink are often underestimated by party goers whose risk assessment ability is already impaired by heavy alcohol consumption. The authors present two cases demonstrating the varied severity of burn injuries associated with flaming alcoholic drinks, and their clinical management. Consumption of flaming alcoholic drinks poses potential risks for burn injuries. Further support is required to enable national and local agencies to implement effective interventions in drinking environments.

  6. Flame tolerant secondary fuel nozzle

    Science.gov (United States)

    Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier

    2015-02-24

    A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.

  7. Tension type headaches: a review

    African Journals Online (AJOL)

    Acetaminophen (paracetamol) 500-1 000 mg and aspirin 500-. 1 000 mg, have been demonstrated to be an effective first-line treatment for episodic tension-type headaches in most placebo- controlled trials. 23,24 Fast absorptive formulations of the latter are preferred for rapidity of action.25 It is worth noting that these.

  8. Abolishing the maximum tension principle

    Directory of Open Access Journals (Sweden)

    Mariusz P. Da̧browski

    2015-09-01

    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  9. Headache (chronic tension-type).

    Science.gov (United States)

    Krishnan, Anita; Silver, Nicholas

    2009-07-22

    Chronic tension-type headache (CTTH) is a disorder that evolves from episodic tension-type headache, with daily or very frequent episodes of headache lasting minutes to days. It affects 4.1% of the general population in the USA, and is more prevalent in women (up to 65% of cases). We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments for chronic tension-type headache? What are the effects of non-drug treatments for chronic tension-type headache? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2007 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 50 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review, we present information relating to the effectiveness and safety of the following interventions: acupuncture; amitriptyline; analgesics; anticonvulsant drugs; benzodiazepines; botulinum toxin; chiropractic and osteopathic manipulations; cognitive behavioural therapy (CBT); Indian head massage; mirtazapine; relaxation and electromyographic biofeedback; selective serotonin reuptake inhibitor antidepressants (SSRIs); and tricyclic antidepressants (other than amitriptyline).

  10. Manifold Insulation for Solar Collectors

    Science.gov (United States)

    1982-01-01

    Results of computer analysis of effects of various manifold insulation detailed in 23-page report show that if fluid is distributed to and gathered from array of solar collectors by external rather than internal manifold, effectiveness of manifold insulation has major influence on efficiency. Report describes required input data and presents equations that govern computer model. Provides graphs comparing collector efficiencies for representative manifold sizes and insulations.

  11. High voltage variable diameter insulator

    Science.gov (United States)

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  12. Smoldering combustion hazards of thermal-insulation materials

    Energy Technology Data Exchange (ETDEWEB)

    Ohlemiller, J.

    1981-08-01

    The smoldering combustion hazards of cellulosic loose fill insulation materials fall into three categories: smolder initiation, smolder propagation, and transition from smoldering into flaming. Previous findings on the initiation problem are summarized briefly. They serve as the basis for recommendations on an improved smolder ignition test method which is designed to give ignition temperatures comparable to those in practice. The proposed test method requires checking against full-scale mock-up results before it can be considered for implementation. Smolder propagation, driven by buoyant convection, through a thick (18 cm) layer of cellulosic insulation has been extensively examined. A heavy (25% add-on) loading of boric acid (a widely used smolder retardant) cuts the propagation rate in half (from approx. 0.3 to 0.15 cm/min) but does not come close to stopping this process. Analysis of experimental profiles for temperature, oxygen level, and remaining organic fraction strongly indicates that the smolder wave is oxygen-supply controlled and that it involves both first and second stages of oxidative heat release from the insulation material. The balance of involvement of the two stages varies with depth in the layer. It appears that efforts to develop improved means of suppressing smolder propagation must be directed at the entire oxidation process. However, since boric acid is fairly effective at slowing the second stage of oxidation, most new efforts should be aimed at the first stage of oxidation (which also is responsible for smolder initiation).

  13. CALCULATION OF TENSION FORCE OF BELT CONVEYOR

    OpenAIRE

    Ismet Ibishi; Ahmet Latifi; Gzim Ibishi; Kadri Sejdiu; Melihate Shala-Galica; Bekim Latifi

    2012-01-01

    In this paper is done the explanation on tension fashion of the belt conveyor which is employed in Kosovo Energy Corporation – KEK, for coal transportation to provide electric power plant. The aim of the paper enables to recognize tension forces not to pass with deformation of belt so that this problem will damage the workingprocess. Work principle is based on initial tension and tension during working process. The fact is known that the tension starts from the carriage on the way to tension ...

  14. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  15. Model Flames in the Boussinesq Limit: The Effects of Feedback

    OpenAIRE

    Vladimirova, N.; Rosner, R.

    2002-01-01

    We have studied the fully nonlinear behavior of pre-mixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. Key results include the establishment of criterion for when such flames propagate as simple planar flames; elucidation of scaling laws for the effective flame speed; and a study of the stability properties of these flames. The simplicity of some of our scalings results suggests that analytical work may further advance our understandings of buoyant f...

  16. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  17. Low Permeability Polyimide Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  18. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    OpenAIRE

    Smajo Sulejmanovic; Suad Kunosic; Ema Hankic

    2014-01-01

    This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to r...

  19. Triple flame structure and dynamics at the stabilization point of a lifted jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Najm, H.N.; Milne, R.B. [Sandia National Labs., Livermore, CA (United States); Devine, K.D.; Kempka, S.N. [Sandia National Labs., Albuquerque, NM (United States)

    1998-03-01

    A coupled Lagrangian-Eulerian low-Mach-number numerical scheme is developed, using the vortex method for the momentum equations, and a finite difference approach with adaptive mesh refinement for the scalar conservation equations. The scheme is used to study the structure and dynamics of a forced lifted buoyant planar jet flame. Outer buoyant structures, driven by baroclinic vorticity generation, are observed. The flame base is found to stabilize in a region where flow velocities are sufficiently small to allow its existence. A triple flame is observed at the flame base, a result of premixing of fuel and oxidizer upstream of the ignition point. The structure and dynamics of the triple flame, and its modulation by jet vortex structures, are studied. The spatial extent of the triple flame is small, such that it fits wholly within the rounded flame base temperature field. The dilatation rate field outlines the edge of the hot fluid at the flame base. Neither the temperature field nor the dilatation rate field seem appropriate for experimental measurement of the triple flame in this flow.

  20. Insulators: estructura y funciones

    OpenAIRE

    Fresán Salvo, Ujué

    2016-01-01

    [spa] Los insulators son complejos de DNA y proteínas, cuya función no solo consiste en impedir la comunicación enhancer-promotor y/o bloquear la expansión del silenciamiento de la heterocromatina como clásicamente se habían descrito. Median interacciones intra e intercromosomales, cuyo objetivo fmal es la organización del genoma en diferentes dominios, regulando por consiguiente las funciones del DNA. Uno de los objetivos de esta tesis fue la búsqueda de nuevas funciones de proteínas insulat...

  1. Core vs. Bulk Samples in Soil-Moisture Tension Analyses

    Science.gov (United States)

    Walter M. Broadfoot

    1954-01-01

    The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...

  2. Brominated Flame Retardants and Perfluorinated Chemicals

    Science.gov (United States)

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a large class of chemicals known as organohalogens. It is believed that both BFRs and PFCs saved lives by reducing flammability of materials commonly used and bactericidal (biocidal) properties. Thes...

  3. Nanocellular foam with solid flame retardant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.; Costeux, Stephane

    2017-11-21

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.

  4. Influence of spreading structure in an aqueous solution-hydrocarbon system on extinguishing of the flame of oil products

    Directory of Open Access Journals (Sweden)

    Korolchenko Dmitriy

    2016-01-01

    Full Text Available On the basis of experimental studies it was revealed that adding of electrolyte - ammonium chloride - into solution of film-forming foaming agent leads to decrease of interfacial tension on a border with heptane, and increase of surface tension on a border with air. It is experimentally shown that dependence between specific consumption and flow rate of foaming agent passes through the minimum point that allowed defining influence of electrolyte on a value of minimum specific consumption and optimum flow rate of foam during extinguishing of a hydrocarbon flame. The structure of spreading in a foaming agent solution – hydrocarbon system defines the value of fire extin-guishing efficiency of foam decreasing together with lowering of spreading coefficient and interfacial tension.

  5. The influence of insulation materials on corrosion under insulation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.; Evans, O. [Aspen Aerogels Inc., Northborough, MA (United States)

    2010-07-01

    This paper discussed the ways in which insulation materials influence corrosion under insulation (CUI) behaviour. Laboratory and field tests of 7 industrial insulation materials and 1 composite system were conducted to identify metrics for improving insulation system designs and determine insulation degradation mechanisms. The tested materials included calcium silicate; expanded perlite; cellular glass; mineral wool; and 2 types of aerogel blanket material. Twelve-week accelerated corrosion tests were conducted to gauge the level of corrosion that occurred beneath the materials on uncoated carbon steel pipe. Drying rate curves for porous materials were also established. A series of aqueous extraction studies was conducted to characterize the durability of various inhibitors on the pipe samples. Results of the study showed that the use of corrosion inhibitors and ensuring the thermal stability of hydrophobing agents will help to prevent CUI. 16 refs., 7 tabs., 17 figs.

  6. Characterization of flame radiosity in shrubland fires

    Science.gov (United States)

    Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro

    2011-01-01

    The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...

  7. Physical and Chemical Processing in Flames

    Science.gov (United States)

    2013-08-12

    SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT...have experimentally acquired such chemistry-affected data as the ignition criteria and laminar flame speeds of fuel-air mixtures, which are...Chaos, A. Kazakov, Z. Zhao, F. L. Dryer , Int. J. Chem. Kinetics 39, 399–414 (2007) M. Lawes, M. P. Ormsby, C. G.W. Sheppard, R. Woolley, Combust. Flame

  8. Actin cortex architecture regulates cell surface tension.

    Science.gov (United States)

    Chugh, Priyamvada; Clark, Andrew G; Smith, Matthew B; Cassani, Davide A D; Dierkes, Kai; Ragab, Anan; Roux, Philippe P; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K

    2017-06-01

    Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.

  9. Light Scattering by Surface Tension Waves.

    Science.gov (United States)

    Weisbuch, G.; Garbay, F.

    1979-01-01

    This simple and inexpensive experiment is an illustration of the physical concepts of interaction between light and surface tension waves, and provides a new method of measuring surface tension. (Author/GA)

  10. SURFACE TENSION TECHNIQUES FOR MOLTEN SALTS

    Science.gov (United States)

    Some 200 surface tension determinations were made on 107 single-salt melts using eight experimental techniques. From a consideration of the... surface tension range of applicability and temperature limitation for these techniques are briefly considered.

  11. A TOGgle for Tension at Kinetochores

    OpenAIRE

    Cheerambathur, Dhanya K.; Prevo, Bram; Desai, Arshad

    2016-01-01

    Differential stability of kinetochore-microtubule attachments at low versus high tension is critical for accurate chromosome segregation. Miller et al. find that a TOG domain microtubule-binding protein imparts intrinsic tension selectivity to kinetochore-microtubule attachments.

  12. High temperature properties of ceramic fibers and insulations for thermal protection of atmospheric entry and hypersonic cruise vehicles

    Science.gov (United States)

    Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.

    1988-01-01

    Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.

  13. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  14. Sensing flame structure by process tomography.

    Science.gov (United States)

    Liu, Jing; Liu, Shi; Zhou, Wanting; Qi, Xin; Lei, Jing; Mu, Huaiping

    2016-06-28

    Non-intrusive visualization of the structure of flames can offer us many advantages in studying the reaction mechanisms of combustion and observing special distributions of the parameters required for the development of equipment such as jet engines and gas turbines. Process tomography is a relatively new technique for such a task, but is useful owing to its fast speed and capability of detecting signals related to ionizations caused by chemical reactions and thermal effects. Electric capacitance tomography (ECT) is one of the process tomographic techniques. ECT usually comprises a sensor array of electrodes that detect permittivity variations in the measuring zone, a data-logging device and a computer that controls data acquisition and carries out image reconstruction. There have been studies on ECT imaging of flames; however, ECT has not been exploited sufficiently to reveal the inner structure of the flames. In this study, a sensor with planar electrodes is created, and the associated three-dimensional sensitivity map is generated by the finite-element method to detect flame structure. A series of experiments are carried out covering a range of feed rates of fuel and air. Data are collected by the ECT sensor and hardware. The results of the ECT reconstruction show good agreement with actual features, and the structure of the flame is found. This opens up a new route for the study of flames. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  15. Wall Insulation; BTS Technology Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  16. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  17. Exploring Insulation with Ice Hands

    Science.gov (United States)

    Taylor, Neil; Taylor, Subhashni; Littledyke, Michael

    2017-01-01

    Students often hold misconceptions about insulation, largely because they put on clothes to keep themselves warm--at least in winter in the cooler regions of Australia. The following activity is designed to identify students' misconceptions about insulation and provide an engaging, evidence-based activity to help address these misconceptions using…

  18. Plastic Materials for Insulating Applications.

    Science.gov (United States)

    Wang, S. F.; Grossman, S. J.

    1987-01-01

    Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)

  19. Intraoperative Development of Tension Pneumocephalus in a ...

    African Journals Online (AJOL)

    Included is a literature review of studies discussing the role of N2O in the development of tension pneumocephalus. N2O is associated with tension pneumocephalus especially in the setting of preexisting pneumocephalus. Tension pneumocephalus can manifest as Cushing response and immediate decompression is ...

  20. The Plastic Tension Field Method

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    . The emphasis is attached to the presentation of a design method based on the diagonal tension field theory. Also, how to determine the load-carrying capacity of a given steel plate girder with transverse web stiffeners, is briefly presented. The load-carrying capacity may be predicted by applying both......This paper describes a calculation method for steel plate girders with transverse web stiffeners subjected to shear. It may be used for predicting the failure load or, as a design method, to determine the optimal amount of internal web stiffeners. The new method is called the plastic tension field...... method. The method is based on the theory of plasticity and is analogous to the so-called diagonal compression field method developed for reinforced concrete beams with transverse stirrups, which is adopted in the common European concrete code (Eurocode 2). Many other theories have been developed...

  1. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  2. Super flame-retardant lightweight rime-like carbon-phenolic nanofoam

    Science.gov (United States)

    Cheng, Haiming; Hong, Changqing; Zhang, Xinghong; Xue, Huafei; Meng, Songhe; Han, Jiecai

    2016-09-01

    The desire for lightweight nanoporous materials with high-performance thermal insulation and efficient anti-ablation resistance for energy conservation and thermal protection/insulation has greatly motivated research and development recently. The main challenge to synthesize such lightweight materials is how to balance the relationship of low thermal conductivity and flame retardancy. Herein, we propose a new concept of lightweight “rime-like” structured carbon-phenolic nanocomposites to solve this problem, where the 3D chopped network-structured carbon fiber (NCF) monoliths are incorporated with nanoporous phenolic aerogel to retain structural and functional integrity. The nanometer-scaled porous phenolic (NP) was synthesized through polymerization-induced phase separation and ambient pressure drying using phenolic resin (PR) solution as reaction source, ethylene glycol (EG) as solvent and hexamethylenetetramine (HMTA) as catalyst. We demonstrate that the as-prepared NCF-NP nanocomposite exhibits with a low density of 0.25-0.35 g/cm3, low thermal conductivity of 0.125 Wm-1K-1 and outstanding flame retardancy exceeding 2000 °C under arc-jet wind tunnel simulation environment. Our results show that the synthesis strategy is a promising approach for producing nanocomposites with excellent high-temperature heat blocking property.

  3. Hybrid Multifoil Aerogel Thermal Insulation

    Science.gov (United States)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  4. Robust Tensioned Kevlar Suspension Design

    Science.gov (United States)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.

    2012-01-01

    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  5. The properties of neutron shielding and flame retardant of EVA polymer after modified by EB accelerator

    Science.gov (United States)

    Wang, Guo-hui; He, Man-li; Jiang, Dan-feng; He, Fan; Chang, Shu-quan; Dai, Yao-dong

    2017-11-01

    According to the requirements for neutron shielding and flame retardant properties of some nuclear devices, a new kind of polymer composite materials based on ethylene and vinyl acetate (EVA) polymer have been studied. EVA is the copolymer of ethylene and vinyl acetate, It can be used as materials for applications due to its flexibility, good processability, and low cost. Insulating EVA can be used for cable sheath, automotive sound damping and many other appication. Boron nitride (BN), zinc borate (ZB), magnesium hydroxide (MH) and EVA consisted the compounds with the properties of neutron shielding and flame retardant. With increasing of the contents of BN and ZB, the neutron shielding performance of materials increased up to 33.08%. With the increasing contents of MH and ZB as flame retardant, oxygen index of material have been improved. The elongation at break and tensile strength of material decreased with the increasing of filler powders. Sheet E was chosen and modified by electron beam accelerator in different doses. After modification by electron beam irradiation the sheets showed varying degrees of transformation in the OI, neutron shielding rate and mechanical properties.

  6. Autoignition and flame stabilisation processes in turbulent non-premixed hot coflow flames

    NARCIS (Netherlands)

    Oldenhof, E.

    2012-01-01

    This dissertation examines stabilisation processes in turbulent non-premixed jet flames, created by injecting gaseous fuel into a co-flowing stream of hot, low-oxygen combustion products. Being able to predict whether and how a flame achieves stable and reliable combustion is a matter of great

  7. A, a Brominated Flame Retardant

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshita

    2013-01-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a brominated flame retardant, has been found to exacerbate pneumonia in respiratory syncytial virus- (RSV- infected mice. We examined the effect of Brazilian propolis (AF-08 on the exacerbation of RSV infection by TBBPA exposure in mice. Mice were fed a powdered diet mixed with 1% TBBPA alone, 0.02% AF-08 alone, or 1% TBBPA and 0.02% AF-08 for four weeks and then intranasally infected with RSV. TBBPA exposure increased the pulmonary virus titer and level of IFN-γ, a representative marker of pneumonia due to RSV infection, in the lungs of infected mice without toxicity. AF-08 was significantly effective in reducing the virus titers and IFN-γ level increased by TBBPA exposure. Also, AF-08 significantly reduced proinflammatory cytokine (TNF-α and IL-6 levels in the lungs of RSV-infected mice with TBBPA exposure, but Th2 cytokine (IL-4 and IL-10 levels were not evidently increased. Neither TBBPA exposure nor AF-08 treatment affected the anti-RSV antibody production in RSV-infected mice. In flow cytometry analysis, AF-08 seemed to be effective in reducing the ratio of pulmonary CD8a+ cells in RSV-infected mice with TBBPA exposure. TBBPA and AF-08 did not exhibit anti-RSV activity in vitro. Thus, AF-08 probably ameliorated pneumonia exacerbated by TBBPA exposure in RSV-infected mice by limiting excess cellular immune responses.

  8. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  9. Metallization of electronic insulators

    Science.gov (United States)

    Gottesfeld, Shimshon; Uribe, Francisco A.

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  10. SEALED INSULATOR BUSHING

    Science.gov (United States)

    Carmichael, H.

    1952-11-11

    The manufacture of electrode insulators that are mechanically strong, shock-proof, vacuum tight, and are capable of withstanding gas pressures of many atmospheres under intense neutron bombardment, such as may be needed in an ionization chamber, is described. The ansulator comprises a bolt within a quartz tube, surrounded by a bushing held in place by two quartz rings, and tightened to a pressure of 1,000 pounds per square inch by a nut and washer. Quartz is the superior material to meet these conditions, however, to withstand this pressure the quartz must be fire polished, lapped to form smooth and parallel surfaces, and again fire polished to form an extremely smooth and fracture resistant mating surface.

  11. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom

    2017-01-05

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  12. Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating.

    Science.gov (United States)

    Chen, Hong-Bing; Shen, Peng; Chen, Ming-Jun; Zhao, Hai-Bo; Schiraldi, David A

    2016-11-30

    Highly efficient flame retardant polyurethane foams with alginate/clay aerogel coatings were fabricated using a freeze-drying method. The microstructure and the interaction of the samples were characterized with scanning electron and optical microscopy (SEM) and (OM). The results show that PU foam has a porous structure with pore sizes of several hundred microns, and that of aerogel ranges from 10 to 30 μm. The PU foam matrix and the aerogel coatings have strong interactions, due to the infusion of aerogel into the porous structure of the foam and the tension generated during the freeze-drying process. Both the PU foam and the aerogel exhibit good thermal stabilities, with onset decomposition temperatures above 240 °C. Combustion parameters, including LOI, TTI, HRR, TSR, FIGRA, CO, and CO2, all indicate significantly reduced fire risk. Total heat release of all but one of the samples was maintained, indicating that the flame retardant mechanism is to decrease flame spread rate by forming a heat, oxygen, and smoke barrier, rather than by reducing fuel content. This facile and inexpensive post-treatment of PU foam could expand its fire safe applications.

  13. Homeowners' demand for home insulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The survey was conducted to provide guidance based on the views and experience of a national sample of homeowners about the insulation of their homes. The telephone survey was conducted with 1,012 homeowners between January 12 and 22, 1978 in the East, Midwest, South, and West regions of the U.S. From the survey data were compiled on plans for installing home insulation with emphasis on attic insulation; how many homes now have various types of insulation; recent experiences in obtaining attic insulation--its cost, material used, when installed, whether installed by the homeowner or a contractor; the kinds of insulation thought to be needed--attic insulation, wall insulation, storm doors and windows; whether homeowners planning attic insulation feel that they have the necessary information to do the work themselves or if they feel they know enough to make the necessary arrangements with a contractor; the effect of higher fuel costs on likelihood of installing attic insulation; shortages of insulating materials; what sources of information are relied on when planning attic insulation; attitudes toward having utility companies install insulation to be paid for by means of utility bills; how much trust homeowners have in the advice of government, utility companies, insulation manufacturers, insulation installers, and retail stores about how much insulation is needed; the likely effect of a tax credit on plans to insulate the attic; and the concern about energy shortages.

  14. Small membranes under negative surface tension.

    Science.gov (United States)

    Avital, Yotam Y; Farago, Oded

    2015-03-28

    We use computer simulations and a simple free energy model to study the response of a bilayer membrane to the application of a negative (compressive) mechanical tension. Such a tension destabilizes the long wavelength undulation modes of giant vesicles, but it can be sustained when small membranes and vesicles are considered. Our negative tension simulation results reveal two regimes-(i) a weak negative tension regime characterized by stretching-dominated elasticity and (ii) a strong negative tension regime featuring bending-dominated elastic behavior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration experiment in giant unilamellar vesicles (GUVs) [E. Evans and W. Rawicz, Phys, Rev. Lett. 64, 2094 (1990)]. However, in GUVs the crossover between the two elasticity regimes occurs at a small positive surface tension, while in smaller membranes it takes place at a moderate negative tension. Another interesting observation concerning the response of a small membrane to negative surface tension is related to the relationship between the mechanical and fluctuation tensions, which are equal to each other for non-negative values. When the tension decreases to negative values, the fluctuation tension γ drops somewhat faster than the mechanical tension τ in the small negative tension regime, before it saturates (and becomes larger than τ) for large negative tensions. The bending modulus exhibits an "opposite" trend. It remains almost unchanged in the stretching-dominated elastic regime, and decreases in the bending-dominated regime. Both the amplitudes of the thermal height undulations and the projected area variations diverge at the onset of mechanical instability.

  15. Cars temperature measurements in sooting, laminar diffusion flames

    Science.gov (United States)

    Boedeker, L. R.; Dobbs, G. M.

    1984-07-01

    Temperature distributions have been measured in axisymmetric ethylene-air diffusion flames using high spatial resolution coherent anti-Stokes Raman spectroscopy. As ethylene flow increased and the flame approached a smoke-point condition, the temperatures attained in the upper part of the flame were reduced by about 300K below the maximum radial temperatures low in the flame. Addition of diluent N2 to ethylene caused a reduction in temperature low in the flame but increased temperature higher in the flame. Maximum temperatures attained in all ethylene flames were between 0.84 and 0.89 of respective adiabatic flame temperatures (AFT). The upper temperature of the near-smoke-point flame was only 0.76 of AFT. Results are compared with the generalized flame front model of Mitchell. MIE scattering measurements are also discussed. Brief studies with propane and a nonsooting, CO flame are reported; maximum axial and radial temperatures were between 0.84 and 0.87 of AFT. Results indicate the importance of thermal loss from soot radiation, radial transport processes and fuel pyrolysis. Nonluminous radiation and finite reaction rates are other possible factors. The upper luminous part of the highly sooting ethylene flame is likely above the primary flame front and is a soot burnout zone.

  16. Launch Pad Flame Trench Refractory Materials

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  17. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure

    Science.gov (United States)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    1998-01-01

    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and

  18. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy.

    Science.gov (United States)

    Guo, Limin; Chen, Zhilin; Lyu, Shaoyi; Fu, Feng; Wang, Siqun

    2018-01-01

    Cellulose nanofibril (CNF) aerogel is highly flammable and its mechanical strength is very soft, which is unfavourable due to safety concerns and impractical when used as the thermal insulation material. In this work, we used N-methylol dimethylphosphonopropionamide (MDPA) and 1,2,3,4-butanetetracarboxylic acid (BTCA) as co-additives and then prepared lightweight flame resistant CNF sponge-like aerogels via an eco-friendly freeze-drying and post cross-linking method. The CNF/BTCA/MDPA aerogel exhibited a better flame retardant performance, outstanding self-extinguishing behaviour and significantly increased char residue (by as much as 268%) compared with the neat CNF aerogel. Meanwhile, the resilience of the aerogel samples improved significantly as the flexibility decreased slightly. Furthermore, the aerogel samples still exhibited excellent thermal insulating properties with thermal conductivity as low as 0.03258W/(m k). The combination of these characteristics makes the CNF-based aerogel a promising insulation candidate for thermal protective equipment (e.g., fire-protection clothing or advanced spacesuit elements) in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. BROMINATION OF 4-VINYLCYCLOHEXANE AND APPLYING THE RESULTING PRODUCT TO IMPROVE THE FLAME RETARDANT PROPERTIES OF WOOD

    Directory of Open Access Journals (Sweden)

    N. S. Nikulina

    2014-01-01

    Full Text Available Currently, the demand for timber is increasing. Wood and products on its basis are considered to be the most popular in the construction industry, furniture industry, as building materials and other However, along with the positive features of this material there are also negative factors, which include low resistance to biological degradation, high temperature, resistance. Wood and materials based on it are the most flammable, and fire safety is characterized by the velocity of propagation of fire on the wooden structure. He is able to destroy it in a matter of minutes. So the wooden house elements must be protected from fire. It was therefore necessary for the fire protection of wood. It is in the handling of wood with flame retardants. Basic fire fighting methods is the impregnation of wood antipyrene composition, painting fire paint and constructive ways - insulation of timber, non-combustible compositions which can resist the fire. In the work of brominated 4-vinylcyclohexane formed as a by-product in the petrochemical industry, in chloroform synthesized compound with bromine 62-64 % and the possibility of using this product to get antiferromag composition. It is established that the application for the protective treatment of wood synthesized flame retardant has shown that this product can be used for the protective treatment of natural wood to make it flame retardant properties. Use as antiperiodic compositions bromodomain based products 4-vinylcyclohexane allows to obtain images of wood first group of flame retardant efficiency.

  20. Chaotic radiation/turbulence interactions in flames

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.

    1998-11-01

    In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.

  1. Characteristics of diffusion flames with accelerated motion

    Directory of Open Access Journals (Sweden)

    Lou Bo

    2016-01-01

    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  2. Needle-Bonded Electromagnetic Shielding Thermally Insulating Nonwoven Composite Boards: Property Evaluations

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2016-10-01

    Full Text Available Complicated environmental problems inevitably arise when technology advances. One major environmental problem is the presence of electromagnetic radiation. Long-term exposure to electromagnetic radiation can damage people’s health in many ways. Therefore, this study proposes producing composite boards with electromagnetic shielding effectiveness and thermal insulation by utilizing the structures and properties of materials. Different combinations of flame-retardant polyester fiber (FR fiber, recycled far-infrared polyester fiber (FI fiber, and 4D low-melting-point fibers (LM fiber were made into flame-retardant and thermally insulating matrices. The matrices and carbon fiber (CF woven fabric in a sandwich-structure were needle-punched in order to be tightly compact, and then circularly heat dried in order to have a heat set and reinforced structure. The test results indicate that Polyester (PET/CF composite boards are mechanically strong and have thermal insulation and electromagnetic shielding effectiveness at a frequency between 0.6 MHz and 3 GHz.

  3. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun

    2017-07-03

    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  4. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  5. Effects of the Burner Diameter on the Flame Structure and Extinction Limit of Counterflow Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Chang Bo Oh

    2010-09-01

    Full Text Available Experiments and numerical simulations were conducted to investigate the effects of the burner diameter on the flame structure and extinction limit of counterflow non-premixed methane flames in normal gravity and microgravity. Experiments were performed for counterflow flames with a large inner diameter (d of 50 mm in normal gravity to compare the extinction limits with those obtained by previous studies where a small burner (d < 25 mm was used. Two-dimensional (2D simulations were performed to clarify the flame structure and extinction limits of counterflow non-premixed flame with a three-step global reaction mechanism. One-dimensional (1D simulations were also performed with the same three-step global reaction mechanism to provide reference data for the 2D simulation and experiment. For microgravity, the effect of the burner diameter on the flame location at the centerline was negligible at both high (ag = 50 s−1 and low (ag = 10 s−1 strain rates. However, a small burner flame (d = 15 mm in microgravity showed large differences in the maximum flame temperature and the flame size in radial direction compared to a large burner flame (d = 50 mm at low strain rate. In addition, for normal gravity, a small burner flame (d = 23.4 mm showed differences in the flame thickness, flame location, local strain rate, and maximum heat release rate compared to a large burner flame (d = 50 mm at low strain rate. Counterflow non-premixed flames with low and high strain rates that were established in a large burner were approximated by 1D simulation for normal gravity and microgravity. However, a counterflow non-premixed flame with a low strain rate in a small burner could not be approximated by 1D simulation for normal gravity due to buoyancy effects. The 2D simulations of the extinction limits correlated well with experiments for small and large burner flames. For microgravity, the extinction limit of a small burner flame (d = 15 mm was much lower than that

  6. Wet Spinning of Flame-Retardant Cellulosic Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica Nanoparticles.

    Science.gov (United States)

    Nechyporchuk, Oleksandr; Bordes, Romain; Köhnke, Tobias

    2017-11-08

    The inherent flammability of cellulosic fibers limits their use in some advanced applications. This work demonstrates for the first time the production of flame-retardant macroscopic fibers from wood-derived cellulose nanofibrils (CNF) and silica nanoparticles (SNP). The fibers are made by extrusion of aqueous suspensions of anionic CNF into a coagulation bath of cationic SNP at an acidic pH. As a result, the fibers with a CNF core and a SNP thin shell are produced through interfacial complexation. Silica-modified nanocellulose fibers with a diameter of ca. 15 μm, a titer of ca. 3 dtex and a tenacity of ca. 13 cN tex-1 are shown. The flame retardancy of the fibers is demonstrated, which is attributed to the capacity of SNP to promote char forming and heat insulation on the fiber surface.

  7. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber

    Science.gov (United States)

    Chai, Hao; Tang, Xiaobin; Ni, Minxuan; Chen, Feida; Zhang, Yun; Chen, Da; Qiu, Yunlong

    2015-09-01

    Flexible flame-retardant composites were prepared using high-functional methyl vinyl silicone rubber matrix with B4C, hollow beads, and zinc borate (ZB) as filler materials. As filler content increased, the tensile strength, elongation, and tear strength of the composites initially increased and then decreased. The shore hardness of the composites increased with increasing filler content with a maximum value of 30 HA. The heat insulation properties of the composites with hollow beads were higher than that of the ordinary composites with the same filler mass fraction. When ZB content exceeded 12 wt%, the limit of oxygen index of the composites was higher than 27.1%. With Am-Be neutron as the test radiation source, the transmission of neutron for a 2 cm sample was only 47.8%. Powder surface modification improved the mechanical properties, thermal conductivity, flame retardancy, and neutron shielding performance of the composites, but did not affect shore hardness.

  8. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Hao [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Tang, Xiaobin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering (China); Ni, Minxuan; Chen, Feida; Zhang, Yun [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Chen, Da [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering (China); Qiu, Yunlong [ZhongXing Energy Equipment Co., LTD, Haimen Nantong (China)

    2015-09-15

    Flexible flame-retardant composites were prepared using high-functional methyl vinyl silicone rubber matrix with B{sub 4}C, hollow beads, and zinc borate (ZB) as filler materials. As filler content increased, the tensile strength, elongation, and tear strength of the composites initially increased and then decreased. The shore hardness of the composites increased with increasing filler content with a maximum value of 30 HA. The heat insulation properties of the composites with hollow beads were higher than that of the ordinary composites with the same filler mass fraction. When ZB content exceeded 12 wt%, the limit of oxygen index of the composites was higher than 27.1%. With Am–Be neutron as the test radiation source, the transmission of neutron for a 2 cm sample was only 47.8%. Powder surface modification improved the mechanical properties, thermal conductivity, flame retardancy, and neutron shielding performance of the composites, but did not affect shore hardness.

  9. Measure Guideline: Basement Insulation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  10. Evaluation of thermal insulation materials

    Science.gov (United States)

    Wilbers, O. J.; Conti, J. C.; Mcgee, J. V.; Mcpherson, J. I.

    1973-01-01

    Data was obtained on silicone-bonded fiberglass, isocyanurate foam, and two dozen other insulators. Materials were selected to withstand heat sterilization, outer space, and the Martian atmosphere. Significant environmental parameters were vibration, landing shock, and launch venting.

  11. The Transition to Turbulence of Rayleigh-Taylor Unstable Flames

    Science.gov (United States)

    Hicks, Elizabeth P.; Rosner, R.

    2011-01-01

    Part of the uncertainty surrounding the explosion mechanism of Type 1A supernovae is the extent to which the turbulence created by the flame front can speed the flame up. A premixed flame moving against a sufficiently strong gravitational field becomes deformed and creates vorticity. If gravity is strong enough, this vorticity is shed and deposited behind the flame front. We have completed some two-dimensional direct numerical simulations of this shedding process for various values of the gravitational force. If gravity is weak enough, the flame front remains flat and no vorticity is created. If gravity is slightly stronger, the flame front becomes cusped and creates vorticity; long vortices attach to the flame front and extend behind it. For even larger values of gravity, the far end of these vortices becomes unstable and sheds more vortices. For simulations with increased gravity, the position of the shedding instability moves closer to the flame front. Next, the vortex shedding disturbs the flame front, causing the flame to pulsate. These pulsations lose their left/right symmetry and the period of oscillation doubles. For even higher values of gravity, an additional frequency is introduced into the system as the Rayleigh-Taylor instability begins to dominate over burning. Eventually, the pulsations of the flame become quite complex and the interaction between the flame front and the vortices can't be simply described. We have measured the subsequent wrinkling of the flame front by computing its fractal dimension and the energy spectra behind the flame front. Measurements of the fractal dimension suggest that it saturates, implying that any additional speed up of the flame must be due to large-scale stretching or disruption of the flame front. Our simulations were performed at NERSC which is supported by the Department of Energy.

  12. Effectiveness of Flame Retardants in TufFoam.

    Energy Technology Data Exchange (ETDEWEB)

    Abelow, Alexis Elizabeth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nissen, April [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Massey, Lee Taylor [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-12-01

    An investigation of polyurethane foam filled with known flame retardant fillers including hydroxides, melamine, phosphate-containing compounds, and melamine phosphates was carried out to produce a low-cost material with high flame retardant efficiency. The impact of flame retardant fillers on the physical properties such a s composite foam density, glass transition temperature, storage modulus, and thermal expansion of composite foams was investigated with the goal of synthesizing a robust rigid foam with excellent flame retardant properties.

  13. On stability of premixed flames in stagnation - Point flow

    Science.gov (United States)

    Sivashinsky, G. I.; Law, C. K.; Joulin, G.

    1982-01-01

    A quantitative description of flame stabilization in stagnation-point flow is proposed. Asymptotic and stability analyses are made for a flame model where the density of the gas is assumed to be constant and the reaction zone is assumed to be narrow and concentrated over the flame front. It is shown that, if blowing is sufficiently strong, the corrugations disappear and a plane flame results. The phenomena cannot be fully described by means of classical linear stability analysis.

  14. Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames

    Science.gov (United States)

    2016-05-15

    in a dramatic reduction in the fibrous na- ture of the surface, as expected, due to evaporation pro - Figure 3. An instant in time of PAN and PN...attached flame to inner lip of the GH2 exit. No local flame extinction was observed regardless of the acoustic forcing amplitude. It has been...experi- mentally observed when the strain rates associated with acoustic forcing is high enough [22], local extinction of the flame and the flame holding

  15. Front roughening of flames in discrete media

    Science.gov (United States)

    Lam, Fredric; Mi, XiaoCheng; Higgins, Andrew J.

    2017-07-01

    The morphology of flame fronts propagating in reactive systems composed of randomly positioned, pointlike sources is studied. The solution of the temperature field and the initiation of new sources is implemented using the superposition of the Green's function for the diffusion equation, eliminating the need to use finite-difference approximations. The heat released from triggered sources diffuses outward from each source, activating new sources and enabling a mechanism of flame propagation. Systems of 40 000 sources in a 200 ×200 two-dimensional domain were tracked using computer simulations, and statistical ensembles of 120 realizations of each system were averaged to determine the statistical properties of the flame fronts. The reactive system of sources is parameterized by two nondimensional values: the heat release time (normalized by interparticle diffusion time) and the ignition temperature (normalized by adiabatic flame temperature). These two parameters were systematically varied for different simulations to investigate their influence on front propagation. For sufficiently fast heat release and low ignition temperature, the front roughness [defined as the root mean square deviation of the ignition temperature contour from the average flame position] grew following a power-law dependence that was in excellent agreement with the Kardar-Parisi-Zhang (KPZ) universality class (β =1 /3 ). As the reaction time was increased, lower values of the roughening exponent were observed, and at a sufficiently great value of reaction time, reversion to a steady, constant-width thermal flame was observed that matched the solution from classical combustion theory. Deviation away from KPZ scaling was also observed as the ignition temperature was increased. The features of this system that permit it to exhibit both KPZ and non-KPZ scaling are discussed.

  16. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  17. Variable pressure thermal insulating jacket

    Science.gov (United States)

    Nelson, Paul A.; Malecha, Richard F.; Chilenskas, Albert A.

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  18. Advanced silicon on insulator technology

    Science.gov (United States)

    Godbey, D.; Hughes, H.; Kub, F.

    1991-01-01

    Undoped, thin-layer silicon-on-insulator was fabricated using wafer bonding and selective etching techniques employing a molecular beam epitaxy (MBE) grown Si0.7Ge0.3 layer as an etch stop. Defect free, undoped 200-350 nm silicon layers over silicon dioxide are routinely fabricated using this procedure. A new selective silicon-germanium etch was developed that significantly improves the ease of fabrication of the bond and etch back silicon insulator (BESOI) material.

  19. Electrostatic electrochemistry at insulators.

    Science.gov (United States)

    Liu, Chongyang; Bard, Allen J

    2008-06-01

    The identity of charges generated by contact electrification on dielectrics has remained unknown for centuries and the precise determination of the charge density is also a long-standing challenge. Here, electrostatic charges on Teflon (polytetrafluoroethylene) produced by rubbing with Lucite (polymethylmethacrylate) were directly identified as electrons rather than ions by electrochemical (redox) experiments with charged Teflon used as a single electrode in solution causing various chemical reactions: pH increases; hydrogen formation; metal deposition; Fe(CN)(6)(3-) reduction; and chemiluminescence in the system of Teflon(-)/Ru(bpy)(3)(2+)/S(2)O(8)(2-) (analogous to electrogenerated chemiluminescence). Moreover, copper deposition could be amplified by depositing Pd first in a predetermined pattern, followed by electroless deposition to produce Cu lines. This process could be potentially important for microelectronic and other applications because Teflon has desirable properties including a low dielectric constant and good thermal stability. Charge density was determined using Faraday's law and the significance of electron transfer processes on charged polymers and potentially other insulators have been demonstrated.

  20. Update on normal tension glaucoma

    Directory of Open Access Journals (Sweden)

    Jyotiranjan Mallick

    2016-01-01

    Full Text Available Normal tension glaucoma (NTG is labelled when typical glaucomatous disc changes, visual field defects and open anterior chamber angles are associated with intraocular pressure (IOP constantly below 21 mmHg. Chronic low vascular perfusion, Raynaud's phenomenon, migraine, nocturnal systemic hypotension and over-treated systemic hypertension are the main causes of normal tension glaucoma. Goldmann applanation tonometry, gonioscopy, slit lamp biomicroscopy, optical coherence tomography and visual field analysis are the main tools of investigation for the diagnosis of NTG. Management follows the same principles of treatment for other chronic glaucomas: To reduce IOP by a substantial amount, sufficient to prevent disabling visual loss. Treatment is generally aimed to lower IOP by 30% from pre-existing levels to 12-14 mmHg. Betaxolol, brimonidine, prostaglandin analogues, trabeculectomy (in refractory cases, systemic calcium channel blockers (such as nifedipine and 24-hour monitoring of blood pressure are considered in the management of NTG. The present review summarises risk factors, causes, pathogenesis, diagnosis and management of NTG.

  1. Substituting environmentally relevant flame retardants: assessment fundamentals. Vol. 3: toxicological and ecotoxicological substance profiles of selected flame retardants; Erarbeitung von Bewertungsgrundlagen zur Substitution umweltrelevanter Flammschutzmittel. Bd. 3: Toxikologisch-oekotoxikologische Stoffprofile ausgewaehlter Flammschutzmittel

    Energy Technology Data Exchange (ETDEWEB)

    Leisewitz, A.; Kruse, H.; Paulsen, O.; Schau, C.; Wieben, M.; Boehde, U.

    2001-04-01

    The study examines the status, trends and alternatives (substitution and reduction potentials) in the use of flame retardants in selected product sectors: construction; electronics and electrical engineering; rail vehicles; textiles/upholstery. In addition, the study characterises thirteen flame retardants in terms of material flows, applications and toxicology/ecotoxicology. Vol. I: Summary overview of flame retardant applications in Germany in 1999/2000; characterisation of 13 flame retardants in terms of substance properties and application-specific characteristics, range of applications and quantities; derivation of assessment fundamentals for flame retardants, focussing on toxicology/ecotoxicology, suitability for closed-loop substance management, and potential for substitution and reduction; summary assessment of 13 flame retardants; summary overview of flame retardant applications. Vol. II: Analysis of flame retardant applications (state of the art, trends, alternatives) in: unsaturated polyester (UP) resins (rail vehicles); polyurethane (PU) insulating foams and one component foams (OCF) (construction sector); plastics for generic uses in electronic and electrical equipment, in casings for electronic and electrical equipment and in printed circuit boards (electronics/electrical engineering); and in upholstery and mattresses (textile applications). Vol. III: Toxicological/ecotoxicological profiles of substances: Decabromodiphenyl oxide; Tetrabromobisphenol A; Bis[pentabromophenyl]ethane; Hexabromocyclodo-decane, Tris[chloropropyl]phosphate, Resorcinol-bis-diphenylphosphate; N-Hydroxymethyl-3-dimethylphosphonopropionamide, Red phosphorus, Ammonium polyphosphate, Melamin cyanurate, Aluminiumtrihydroxide, Sodium borate decahydrate, Antimony trioxide. (orig.) [German] Untersucht werden Stand, Trends und Alternativen (Substitutions- und Minderungspotentiale) beim Einsatz von Flammschutzmitteln (FSM) in ausgewaehlten Produkten aus: Baubereich, Elektrotechnik

  2. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  3. Computatonal and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, M.D.; Long, M.B. [Yale Univ., New Haven, CT (United States)

    1993-12-01

    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  4. Brominated flame retardants: occurrence, dietary intake and risk assessment

    NARCIS (Netherlands)

    Winter-Sorkina R de; Bakker MI; Wolterink G; Zeijlmaker MJ; SIR

    2006-01-01

    Brominated flame retardants have entered the human food chain. For the time being the occurrence of these chemicals in Dutch food does not pose a human health risk. However, this might easily change at increasing contents of flame retardants in Dutch food. The monitoring of brominated flame

  5. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis

    NARCIS (Netherlands)

    van der Veen, I.; de Boer, J.

    2012-01-01

    Since the ban on some brominated flame retardants (BFRs), phosphorus flame retardants (PFRs), which were responsible for 20% of the flame retardant (FR) consumption in 2006 in Europe, are often proposed as alternatives for BFRs. PFRs can be divided in three main groups, inorganic, organic and

  6. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved cables; flame resistance. 75.600-1 Section 75.600-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant. ...

  7. FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE

    Science.gov (United States)

    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

    1962-06-26

    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  8. Spintronics and spincaloritronics in topological insulators

    OpenAIRE

    Yokoyama, Takehito; Murakami, Shuichi

    2013-01-01

    We study spintronics and spincaloritronics in topological insulators. We show spintronics effects in 2D topological insulator junctions and 3D topological insulators coupled to ferromagnets. We also investigate spin polarization on the surface of a topological insulator induced by a circularly polarized light and refraction at the junction between two topological insulators. As for spincaloritronics effects, we show transverse magnetic heat transport and thermoelectric transport in topologica...

  9. Optimum Scheme for Insulation System in HV Generator Based on Electromagnetic Analysis

    Directory of Open Access Journals (Sweden)

    A. Gholami

    2011-06-01

    Full Text Available Electrical insulations are one of the basic parts of electrical machinery in any sizes and characteristics. Focusing on insulating, studies on the operation of industrial-electrical machinery came to the fact that the most important part of a machine is the Stator. This fact reveals the requirement for inspection of the electrical machine insulation along with the electromagnetic tensions. Therefore with respect to insulation system improvement of stator, the HV generator can be optimized. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electromagnetic performance is Finite Element Method (FEM which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical stresses in order to increase the power of generator in the same volume of core. These processes of optimization have been done according the proposed algorithm. In this algorithm the technical constraints have been considered. This paper describes the process used to perform classical design and improvement analysis of stator slot’s insulation with respect to objective function and constraints.

  10. Surface tension and dynamics of fingering patterns

    OpenAIRE

    Magdaleno Escar, Francesc Xavier; Casademunt i Viader, Jaume

    1998-01-01

    We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (non-zero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences f...

  11. The Surface Tension of Pure Liquid Compounds,

    Science.gov (United States)

    The surface tension tables presented herein are the result of a literature survey, evaluation, and compilation of data of some 2200 pure liquid... surface tension values to establish the regression curves and their equations. The constants of the equations (slope and intercept), together with the...standard deviations are given for each compound. The selection factors establishing criteria of quality of surface tension data are discussed. These

  12. Coupling of marine riser and tensioner system

    OpenAIRE

    Olssøn, Tor Trainer

    2011-01-01

    A coupled model of a marine riser and a tensioner system is built. The riser is modeled using the multi-body dynamics program MSC Adams, and the tensioner system using the powerful controls and systems simulation tool, MSC Easy5. The hydrodynamic forces on the marine riser are calculated according to linear wave theory, and implemented in the model using a custom made subroutine. The riser is modeled using flexible beam elements according to Timoshenko beam theory. The tensioner system is...

  13. Pressure Dependence of Insulator-Insulator Contact Charging

    Science.gov (United States)

    Hogue, Michael D.

    2005-01-01

    The mechanism of insulator-insulator triboelectric (contact) charging is being studied by the Electrostatics and Surface Physics Laboratory at KSC. The hypothesis that surface ion exchange is the primary mechanism is being tested experimentally. A two-phase model based on a small partial pressure of singly charged ions in an ambient ideal gas in equilibrium with a submonolayer adsorbed film will provide predictions about charging as a function Of ion mass, pressure, temperature, and surface adsorption energy. Interactions between ions will be considered in terms of coulombic and screened potential energies. This work is yielding better understanding of the triboelectrification of insulators, which is an important problem in. space exploration technology. The work is also relevant to important industrial processes such as xerography and the application of paints and coatings. Determining a better understanding of the fundamental mechanism of insulator-insulator triboelectrification will hopefully lead to better means of eliminating or at least mitigating its hazards and enhancing its useful applications.

  14. Radiative Structures of Lycopodium-Air Flames in Low Gravity

    Science.gov (United States)

    Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.

    1989-01-01

    Initially uniform clouds of fuel particulates in air sustain processes which may lead to particle cloud nonuniformities. In low gravity, flame-induced Kundt's Tube phenomena are observed to form regular patterns of nonuniform particle concentrations. Irregular patterns of particle concentrations also are observed to result from selected nonuniform mixing processes. Low gravity flame propagation for each of these classes of particle cloud flames has been found to depend importantly on the flame-generated infrared radiative fields. The spatial structures of these radiative fields are described. Application is made for the observed clases of lycopodium-air flames.

  15. Actin filaments as tension sensors.

    Science.gov (United States)

    Galkin, Vitold E; Orlova, Albina; Egelman, Edward H

    2012-02-07

    The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Ionic Mechanisms of Carbon Formation in Flames.

    Science.gov (United States)

    1983-01-01

    is that of Street and Thonas 1 1. These au- the burner temperature and burner and chimney thors used an apparatus in which a flow of heated dimensions...slitlctuies would overlap; It is classital mythology [hat prcmixed and dif. the molecules with greatest deviation from the fusion flames have different

  17. Radical recombinations in acetylene-air flames

    NARCIS (Netherlands)

    Zeegers, P.J.Th.; Alkemade, C.T.J.

    In this paper an analysis is given of the behaviour of excess radical concentrations, H, OH and O as a function of height above the reaction zone in premixed acetylene-air flames at 2–200° to 2400°K and 1 atmosphere pressure. The intensity was measured of the Li resonance line which is related to

  18. Numerical study of one swirling flame

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen; Yin, Chungen

    This paper presents numerical study of one of Sydney swirl flames. Good agreements gained between numerical results and the experimental data. Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods show different flow patterns in isothermal and reacting case. The influence...

  19. Flame speeds and curvature of premixed, spherically expanding flames advecting in a turbulent channel flow

    Science.gov (United States)

    Fries, Dan; Ochs, Bradley; Ranjan, Devesh; Menon, Suresh

    2016-11-01

    A new facility has been developed at the Georgia Institute of Technology to study sub- and supersonic combustion, which is based on classical flame bomb studies but incorporates a mean flow, allowing for a wider variety of turbulent conditions and the inclusion of effects like compressibility, while supporting shear-free spherical flames. Homogeneous, isotropic turbulence is generated via an active vane grid. Methane-air flame kernels advecting with the mean flow are generated using Laser Induced Breakdown ignition. The facility is accessing the thin reaction zone regime with uRMS' /SL0 = 6 . 9 - 22 , L11 /δF = 44 - 68 and Reλ = 190 - 550 . The flame kernels are probed with OH-Planar Laser Induced Fluorescence (PLIF). To validate the facility, results at Ū = 30 m/s are compared to existing data using a scaling derived from a spectral closure of the G-equation. This indicates the reacting flow remains Galilean invariant under the given conditions. The differences between global and local turbulent consumption speeds derived from OH-PLIF results are discussed with a focus on modeling efforts. The curvature of flame wrinkles is evaluated to examine the impact of different turbulent scales on flame development. This work was supported by the Air Force Office of Scientific Research under basic research Grant FA9550-15-1-0512 (Project monitor: Dr. Chiping Li).

  20. Flame exposure time on Langmuir probe degradation, ion density, and thermionic emission for flame temperature.

    Science.gov (United States)

    Doyle, S J; Salvador, P R; Xu, K G

    2017-11-01

    The paper examines the effect of exposure time of Langmuir probes in an atmospheric premixed methane-air flame. The effects of probe size and material composition on current measurements were investigated, with molybdenum and tungsten probe tips ranging in diameter from 0.0508 to 0.1651 mm. Repeated prolonged exposures to the flame, with five runs of 60 s, resulted in gradual probe degradations (-6% to -62% area loss) which affected the measurements. Due to long flame exposures, two ion saturation currents were observed, resulting in significantly different ion densities ranging from 1.16 × 1016 to 2.71 × 1019 m-3. The difference between the saturation currents is caused by thermionic emissions from the probe tip. As thermionic emission is temperature dependent, the flame temperature could thus be estimated from the change in current. The flame temperatures calculated from the difference in saturation currents (1734-1887 K) were compared to those from a conventional thermocouple (1580-1908 K). Temperature measurements obtained from tungsten probes placed in rich flames yielded the highest percent error (9.66%-18.70%) due to smaller emission current densities at lower temperatures. The molybdenum probe yielded an accurate temperature value with only 1.29% error. Molybdenum also demonstrated very low probe degradation in comparison to the tungsten probe tips (area reductions of 6% vs. 58%, respectively). The results also show that very little exposure time (probe tip.

  1. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    Science.gov (United States)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  2. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.

    2016-01-27

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  3. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  4. Effects of Swirl on Strongly-Pulsed Turbulent Diffusion Flames

    Science.gov (United States)

    Liao, Y.-H.; Hermanson, J. C.

    2009-11-01

    The dynamics of large-scale structures in strongly-pulsed, swirling, turbulent jet diffusion flames were examined experimentally. The combustor used a combination of axial and tangentially-injected air to produce a range of swirl numbers. Gaseous ethylene fuel was injected through a 2 mm diameter nozzle on the combustor centerline with a jet-on Reynolds number of 5000. The flames were fully-modulated, with the fuel flow completely shut off between pulses. High-speed imaging of the flame luminosity was employed to examine the flame dimensions and the celerity of the large-scale flame structures. The flames were found to be approximately 15-20% shorter when swirl was imposed, depending on the injection time. The more compact flames in swirl appear to be due to the presence of recirculation inside the flames. For longer injection times, the celerity of the flame structures generally decreases as the swirl intensity increases. This is evidently due to the reversed velocity in the recirculation zone. For shorter injection times, the flame celerity has an increasing trend with increased swirl intensity due to flames being closer to the fuel nozzle at burnout.

  5. Kerosene wick lamp flame deformation in gradient magnetic fields

    Science.gov (United States)

    Saeedi, A.; Moghiman, M.

    2014-03-01

    The behavior of a kerosene wick lamp flame in the presence of non-uniform DC magnetic fields has been investigated and the results of this experimental study are presented. It has long been recognized that magnetic fields can influence the behavior of diffusion flames as a result of the paramagnetic and diamagnetic properties of the constituent gases. Using an electromagnet consisting of two coils and cores to generate a horizontal magnetic field, a non-uniform upward increasing and decreasing magnetic field was applied to a kerosene wick lamp flame. The experimental results show that the influence of DC gradient magnetic field on diffusion flame structure deformation depends on the flame position in the increasing or decreasing magnetic field, the flame situation relative to the maximum of the absolute value of the gradient and the quantity of the gradient magnetic field. It was also observed that both flame front area and flame height decrease in the positive and negative gradient field below the maximum of the absolute value of the gradient. Also, increasing the absolute of the gradient of the square magnetic induction in the positive and negative gradient field above the maximum of the absolute value of the gradient cause to elongate the flame and increase in the flame front area and then the flame height and front area decrease.

  6. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    Science.gov (United States)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  7. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  8. Multipurpose Thermal Insulation Test Apparatus

    Science.gov (United States)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  9. Analysis of Flame Retardancy in Polymer Blends by Synchrotron X-ray K-edge Tomography and Interferometric Phase Contrast Movies.

    Science.gov (United States)

    Olatinwo, Mutairu B; Ham, Kyungmin; McCarney, Jonathan; Marathe, Shashidhara; Ge, Jinghua; Knapp, Gerry; Butler, Leslie G

    2016-03-10

    Underwriters Laboratories 94 test bars have been imaged with X-ray K-edge tomography between 12 and 32 keV to assess the bromine and antimony concentration gradient across char layers of partially burnt samples. Phase contrast tomography on partially burnt samples showed gas bubbles and dark-field scattering ascribed to residual blend inhomogeneity. In addition, single-shot grating interferometry was used to record X-ray movies of test samples during heating (IR and flame) intended to mimic the UL 94 plastics flammability test. The UL 94 test bars were formulated with varying concentrations of a brominated flame retardant, Saytex 8010, and a synergist, Sb2O3, blended into high-impact polystyrene (HIPS). Depending on the sample composition, samples will pass or fail the UL 94 plastics flammability test. Tomography and interferometry imaging show differences that correlate with UL 94 performance. Key features such as char layer, gas bubble formation, microcracks, and dissolution of the flame retardant in the char layer regions are used in understanding the efficiency of the flame retardant and synergist. The samples that pass the UL 94 test have a thick, highly visible char layer as well as an interior rich in gas bubbles. Growth of gas bubbles from flame-retardant thermal decomposition is noted in the X-ray phase contrast movies. Also noteworthy is an absence of bubbles near the burning surface of the polymer; dark-field images after burning suggest a microcrack structure between interior bubbles and the surface. The accepted mechanism for flame retardant activity includes free radical quenching in the flame by bromine and antimony species. The imaging supports this as well as provides a fast inspection of other parameters, such as viscosity and surface tension.

  10. Tension Pneumothorax following an Accidental Kerosene Poisoning ...

    African Journals Online (AJOL)

    Tension pneumothorax is a rare complication following an accidental kerosene poisoning. In such situation, a bed-side needle thoracocentesis is performed because of its potential of becoming fatal; hence its clinical importance. A case of 15 month old boy with tension pneumothorax following accidental kerosene ...

  11. Surface Tension Measurements of Chemically Modified Oleochemical

    Science.gov (United States)

    Surface tension is an important physical property of a substance, which plays a part in a variety of physical phenomenon relevant to many industrial processes. For example, the efficiency of the atomization of a fuel has been shown to be effected dramatically by surface tension and viscosity. Beca...

  12. Effect of Gravity on Surface Tension

    Science.gov (United States)

    Weislogel, M. M.; Azzam, M. O. J.; Mann, J. A.

    1998-01-01

    Spectroscopic measurements of liquid-vapor interfaces are made in +/- 1-g environments to note the effect of gravity on surface tension. A slight increase is detected at -1-g0, but is arguably within the uncertainty of the measurement technique. An increased dependence of surface tension on the orientation and magnitude of the gravitational vector is anticipated as the critical point is approached.

  13. A TOGgle for Tension at Kinetochores.

    Science.gov (United States)

    Cheerambathur, Dhanya K; Prevo, Bram; Desai, Arshad

    2016-06-02

    Differential stability of kinetochore-microtubule attachments at low versus high tension is critical for accurate chromosome segregation. Miller et al. find that a TOG domain microtubule-binding protein imparts intrinsic tension selectivity to kinetochore-microtubule attachments. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Intraoperative Development of Tension Pneumocephalus in a ...

    African Journals Online (AJOL)

    A review of studies discussing the role of N2O in tension pneumocephalus has also been included. The article heightens awareness among. CASE. REPORT. Intraoperative Development of Tension Pneumocephalus in a. Patient Undergoing Repair of a Cranial‑dural Defect Under. Nitrous Oxide Anesthesia. Mansher Singh ...

  15. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  16. Surface tension measurements with a smartphone

    Science.gov (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-11-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept of surface tension through simple experiments.

  17. Initial tension loss in cerclage cables.

    Science.gov (United States)

    Ménard, Jérémie; Émard, Maxime; Canet, Fanny; Brailovski, Vladimir; Petit, Yvan; Laflamme, George Y

    2013-10-01

    Cerclage cables, frequently used in the management of fractures and osteotomies, are associated with a high failure rate and significant loosening during surgery. This study compared the capacity to maintain tension of different types of orthopaedic cable systems. Multifilament Cobalt-Chrome (CoCr) cables with four different crimp/clamp devices (DePuy, Stryker, Zimmer and Smith&Nephew) and one non-metallic Nylon (Ny) cable from Kinamed were instrumented with a load cell to measure tension during insertion. Significant tension loss was observed with crimping for all cables (Ptensioner led to an additional unexpected tension loss (CoCr-DePuy: 18%, CoCr-Stryker: 29%, CoCr-Smith&Nephew: 33%, Ny: 46%, and CoCr-Zimmer: 52%). The simple CoCr (DePuy) cable system outperformed the more sophisticated locking devices due to its significantly better ability to prevent tension loss. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Tension permeameter for deep borehole characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sisson, J.B.; Honeycutt, T.K. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-12-31

    The permeability of geologic materials is an important variable for estimating the rate of transport of contaminants from waste sites. To date, permeability has been estimated in the laboratory from measurements made on small cores, under hydrologic conditions far removed from those of the field. Available field instruments cannot estimate permeabilities at depth under ambient conditions. The authors have constructed a borehole tension permeameter that is capable of operating at near field conditions and at depths of more than 30 m. The tension permeameter consists of a syringe pump, lightweight packer, semipermeable membrane, and pressure transducer, all controlled by a programmable logic controller. Water is metered at a fixed rate through the membrane while monitoring tension. The permeability is estimated from the steady pumping rate for the membrane geometry used at the measured water tension. The permeameter was used to estimate the permeability of Pancheri sandy loam at tensions of 0 to 150 cm.

  19. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B; Alù, Andrea

    2016-01-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters. PMID:27312175

  20. Thermal shock resistance ceramic insulator

    Science.gov (United States)

    Morgan, Chester S.; Johnson, William R.

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  1. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  2. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  3. Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal.

    Science.gov (United States)

    Kwon, Min-Suk; Shin, Jin-Soo; Shin, Sang-Yung; Lee, Wan-Gyu

    2012-09-24

    We investigate experimentally metal-insulator-silicon-insulator-metal (MISIM) waveguides that are fabricated by using fully standard CMOS technology. They are hybrid plasmonic waveguides, and they have a feature that their insulator is replaceable with functional material. We explain a fabrication process for them and discuss fabrication results based on 8-inch silicon-on-insulator wafers. We measured the propagation characteristics of the MISIM waveguides that were actually fabricated to be connected to Si photonic waveguides through symmetric and asymmetric couplers. When incident light from an optical source has transverse electric (TE) polarization and its wavelength is 1318 or 1554 nm, their propagation losses are between 0.2 and 0.3 dB/μm. Excess losses due to the symmetric couplers are around 0.5 dB, which are smaller than those due to the asymmetric couplers. Additional measurement results indicate that the MISIM waveguide supports a TE-polarized hybrid plasmonic mode. Finally, we explain a process of removing the insulator without affecting the remaining MISIM structure to fabricate ~30-nm-wide nanochannels which may be filled with functional material.

  4. Topological insulators fundamentals and perspectives

    CERN Document Server

    Ortmann, Frank; Valenzuela, Sergio O

    2015-01-01

    There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic

  5. Better and cheaper extra insulation

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    1998-01-01

    of buildings. The thermal performance of the systems is compared to an ideal situation, showing that there is still a potential of further savings by improving the design of the insulation systems.To improve the thermal performance of the systems a number of product developments are proposed.......In the current energy plan, focus in placed on further savings of heat in buildings. If the target of the energy plan should be achieved, there is a need for saving heat both in new and existing buildings.The article investigate and compare the properties of several systems for external insulation...

  6. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  7. Reduction in wire tension caused by wire clamping and wire tensioner removal: an experimental Ilizarov frame study.

    Science.gov (United States)

    La Russa, Valentina; Skallerud, Bjørn; Klaksvik, Jomar; Foss, Olav A

    2011-03-01

    The stability of an external ring fixator mainly depends on wire tension. Wire fixators should maintain the tension during both wire clamping to the ring and removal of the tensioner device. In the present study the loss in wire tension related to fixator clamping and wire tensioner removal using three different wire fixator designs was studied. The fixators were based on two different cannulated bolts and a washer. Effects from two different pretension levels in combination with three different bolt torque levels upon loss in wire tension were described. Emitted wire vibration frequency was used to assess the corresponding wire tension. Wire tension was determined after each wire fixator tightening and after the removal of the wire tensioner. Increased bolt torque led to a small decrease in tension for both pretension levels. A considerable higher tension loss was measured when removing the wire tensioner. In all cases, the combination of a new cannulated bolt and a washer maintained the highest tension.

  8. Partial Model of Insulator/Insulator Contact Charging

    Science.gov (United States)

    Hogue, Michael; Calle, C. I.; Buhler, C. R.; Mucciolo, E. R.

    2005-01-01

    Two papers present a two-phase equilibrium model that partly explains insulator/ insulator contact charging. In this model, a vapor of ions within a gas is in equilibrium with a submonolayer of ions of the same species that have been adsorbed on the surface of an insulator. The surface is modeled as having localized states, each with a certain energy of adsorption for an ion. In an earlier version of the model described in the first paper, the ions do not interact with each other. Using the grand canonical ensemble, the chemical potentials of both vapor and absorbed phases are derived and equated to determine the vapor pressure. If a charge is assigned to the vapor particles (in particular, if single ionization is assumed), then the surface charge density associated with adsorbed ions can be calculated as a function of pressure. In a later version of the model presented in the second paper, the submodel of the vapor phase is extended to include electrostatic interactions between vapor ions and adsorbed ones as well as the screening effect, at a given distance from the surface, of ions closer to the surface. Theoretical values of this model closely match preliminary experimental data on the discharge of insulators as a function of pressure.

  9. Detailed Multidimensional Simulations of the Structure and Dynamics of Flames

    Science.gov (United States)

    Patnaik, G.; Kailasanath, K.

    1999-01-01

    Numerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.

  10. Aluminized fiberglass insulation conforms to curved surfaces

    Science.gov (United States)

    1966-01-01

    Layers of fiber glass with outer reflective films of vacuum-deposited aluminum or other reflective metal, provide thermal insulation which conforms to curved surfaces. This insulation has good potential for cryogenic systems.

  11. Dynamical Modeling of Surface Tension

    Science.gov (United States)

    Brackbill, Jeremiah U.; Kothe, Douglas B.

    1996-01-01

    In a recent review it is said that free-surface flows 'represent some of the difficult remaining challenges in computational fluid dynamics'. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF formulation might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin (1996). This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated. For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin (1996), are discussed.

  12. Simulation on Temperature and Ampacity of Mining Flame-proof High Voltage Cable Connector

    Directory of Open Access Journals (Sweden)

    Li Haiying

    2017-01-01

    Full Text Available To investigate the accident causes of mining flame-proof high voltage (F-HV cable connector, the temperature and ampacity of LBG1-200/6 high voltage cable connector are analyzed. At first, the material properties and structure of connector are introduced from the aspects of electrical, insulation and thermal. Then the electromagnetic field and thermal field coupling model of cable connector are established by the finite element method. Finally, in the numerical examples, temperature distribution and ampacity change caused by power harmonics, dielectric loss and slight structure change are quantitatively plotted and analyzed. The paper provides great insight into the security operation of F-HV cable connector.

  13. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  14. Effect of Wind Velocity on Flame Spread in Microgravity

    Science.gov (United States)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  15. Flame Retardation Modification of Paper-Based PVC Wallcoverings

    Directory of Open Access Journals (Sweden)

    Lin Hui

    2016-01-01

    Full Text Available The flame-retarded paper-based polyvinyl chloride (PVC wallcoverings were successfully prepared, using plant fiber paper as base material and adding inorganic flame retardants and flame-retarded plasticizer as additives. Flame retardancy, thermostability, smoke suppression and mechanical properties were tested regarding to the prepared wallcoverings. The results showed that 2ZnO·3B2O3·3.5H2O could improve flame retardancy and thermostability of paper-based PVC wallcoverings; plasticizer tricresyl phosphate increased flame retardancy of the prepared materials auxiliarily. Also, flame-retarded paper-based PVC wallcoverings with higher flame retardancy, smoke suppression and mechanical property was prepared using plant fiber paper with fix quantity of 90 g/m3 as base material, using 2ZnO·3B2O3·3.5H2O as inorganic flame retardant, and using tricresyl phosphate as plasticizer. For the flame-retarded paper-based PVC wallcoverings in this study, the limit oxygen index (LOI reaches 32.3, maximal smoke density is 16.91 %, and the horizontal and longitudinal wet tensile strength reaches 1.38 kN·m−1 and 1.51 kN·m−1 respectively. Meanwhile, its flame retardancy meets the requirements about flame retardancy for material Class B1 listed in Chinese National Standards GB 8624-2012, Classification for burning behavior of building materials and products. This research creates an effective path to prepare paper-based PVC wallcoverings with high flame retardancy.

  16. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  17. Simplified topological invariants for interacting insulators

    OpenAIRE

    Zhong Wang; Shou-Cheng Zhang

    2012-01-01

    We propose general topological order parameters for interacting insulators in terms of the Green’s function at zero frequency. They provide a unified description of various interacting topological insulators including the quantum anomalous Hall insulators and the time-reversal-invariant insulators in four, three, and two dimensions. Since only the Green’s function at zero frequency is used, these topological order parameters can be evaluated efficiently by most numerical and analytical algori...

  18. Actinide Topological Insulator Materials with Strong Interaction

    OpenAIRE

    Zhang, X.; Zhang, H.; Wang, J.; Felser, C.; Zhang, S.-C.

    2011-01-01

    Topological band insulators have recently been discovered in spin-orbit coupled two and three dimensional systems. In this work, we theoretically predict a class of topological Mott insulators where interaction effects play a dominant role. In actinide elements, simple rocksalt compounds formed by Pu and Am lie on the boundary of metal to insulator transition. We show that interaction drives a quantum phase transition to a topological Mott insulator phase with a single Dirac cone on the surface.

  19. Tension and Robustness in Multitasking Cellular Networks

    Science.gov (United States)

    Wong, Jeffrey V.; Li, Bochong; You, Lingchong

    2012-01-01

    Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of “tension” between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between “one-size-fits-all” solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks. PMID:22577355

  20. Flame Retardant Polyamide Fibres: The Challenge of Minimising Flame Retardant Additive Contents with Added Nanoclays

    Directory of Open Access Journals (Sweden)

    Richard Horrocks

    2016-08-01

    Full Text Available This work shows that halogen-free, flame retarded polyamide 6 (PA6, fabrics may be produced in which component fibres still have acceptable tensile properties and low levels (preferably ≤10 wt % of additives by incorporating a nanoclay along with two types of flame retardant formulations. The latter include (i aluminium diethyl phosphinate (AlPi at 10 wt %, known to work principally in the vapour phase and (ii ammonium sulphamate (AS/dipentaerythritol (DP system present at 2.5 and 1 wt % respectively, believed to be condense phase active. The nanoclay chosen is an organically modified montmorillonite clay, Cloisite 25A. The effect of each additive system is analysed in terms of its ability to maximise both filament tensile properties relative to 100% PA6 and flame retardant behaviour of knitted fabrics in a vertical orientation. None of the AlPi-containing formulations achieved self-extinguishability, although the presence of nanoclay promoted lower burning and melt dripping rates. The AS/DP-containing formulations with total flame retardant levels of 5.5 wt % or less showed far superior properties and with nanoclay, showed fabric extinction times ≤ 39 s and reduced melt dripping. The tensile and flammability results, supported by thermogravimetric analysis, have been interpreted in terms of the mechanism of action of each flame retardant/nanoclay type.

  1. Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames

    KAUST Repository

    Guiberti, Thibault F.

    2016-11-08

    This paper presents a comprehensive study of the effects of pilot parameters on flame stability in a turbulent jet flame. The Sydney inhomogeneous piloted burner is employed as the experimental platform with two main fuels, namely, compressed natural gas and liquefied petroleum gas. Various concentrations of five gases are used in the pilot stream, hydrogen, acetylene, oxygen, nitrogen, and argon, to enable a sufficient range in exploring the following parameters: pilot heat release, temperature, burnt gas velocity, equivalence ratio, and H/C ratio. The experimental results are mainly presented in the form of blow-off limits and supported by simple calculations, which simulate various conditions of the pilot–mixture interface. It is found that increasing the pilot adiabatic flame temperature benefits the flame stability and has an even greater influence than the heat release, which is also known to enhance the blow-off limits. Conversely, increasing the pilot burnt gas velocity reduces the blow-off velocity, except for the limiting case when the jet is fully non-premixed. The H/C ratio has negligible effects, while resorting to lean pilots significantly increases the stability of globally rich partially premixed and premixed jets. Such findings are consistent with trends obtained from laminar flame calculations for rich fuel/air mixtures issuing against hot combustion products to simulate the pilot stream.

  2. MAS Bulletin. Microtherm Thermal Insulation

    Science.gov (United States)

    1989-03-03

    nonstandard diameters and special wall thicknesses can be produced to order. The principal constituents of Microtherm MPS are microporous silicas ...by a cladding system. Most purpose-made 0 0: pire insulation coatings of resin, bitumen , etc., can be applied to Microtherm MPS, but for full

  3. Thermal Response Of Composite Insulation

    Science.gov (United States)

    Stewart, David A.; Leiser, Daniel B.; Smith, Marnell; Kolodziej, Paul

    1988-01-01

    Engineering model gives useful predictions. Pair of reports presents theoretical and experimental analyses of thermal responses of multiple-component, lightweight, porous, ceramic insulators. Particular materials examined destined for use in Space Shuttle thermal protection system, test methods and heat-transfer theory useful to chemical, metallurgical, and ceramic engineers needing to calculate transient thermal responses of refractory composites.

  4. Effects Of Radiation On Insulators

    Science.gov (United States)

    Bouquet, Frank L.

    1988-01-01

    Report presents data on responses of electrically insulating thermosetting and thermoplastic polymers to radiation. Lowest-threshold-dose (LTD) levels and 25-percent-change levels presented for such properties as tensile strength and electrical resistivity. Data on radiation-induced outgassing also given.

  5. Heat transfer, insulation calculations simplified

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1985-08-19

    Determination of heat transfer coefficients for air, water, and steam flowing in tubes and calculation of heat loss through multilayered insulated surfaces have been simplified by two computer programs. The programs, written in BASIC, have been developed for the IBM and equivalent personal computers.

  6. Thermal Insulation from Hardwood Residues

    Science.gov (United States)

    Sable, I.; Grinfelds, U.; Vikele, L.; Rozenberga, L.; Zeps, M.; Luguza, S.

    2015-11-01

    Adequate heat is one of the prerequisites for human wellbeing; therefore, building insulation is required in places where the outside temperature is not suitable for living. The climate change, with its rising temperatures and longer dry periods, promotes enlargement of the regions with conditions more convenient for hardwood species than for softwood species. Birch (Betula pendula) is the most common hardwood species in Latvia. The aim of this work was to obtain birch fibres from wood residues of plywood production and to form low-density thermal insulation boards. Board formation and production was done in the presence of water; natural binder, fire retardant and fungicide were added in different concentrations. Board properties such as density, transportability or resistance to particulate loss, thermal conductivity and reaction to fire were investigated. This study included thermal insulation boards with the density of 102-120 kg/m3; a strong correlation between density and the binder amount was found. Transportability also improved with the addition of a binder, and 0.1-0.5% of the binder was the most appropriate amount for this purpose. The measured thermal conductivity was in the range of 0.040-0.043 W/(m·K). Fire resistance increased with adding the fire retardant. We concluded that birch fibres are applicable for thermal insulation board production, and it is possible to diversify board properties, changing the amount of different additives.

  7. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  8. On vacuum-insulated thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Benjamin [Georg-Simon-Ohm Univ. of Applied Sciences, Nuernberg (Germany); Technische Univ. Muenchen (Germany). Inst. of Resource and Energy Technology; Hofbeck, Klaus [Georg-Simon-Ohm Univ. of Applied Sciences, Nuernberg (Germany)

    2011-07-01

    Nowadays, the insulation for thermal energy storage (TES) is not as good as it should be. One reason for this is the higher investment cost for better insulation. Nevertheless, most of the recent studies show that the thermal losses of long-term storage have been underestimated. Therefore, recent research studies have focused on vacuum-insulated thermal storage. There are two common concepts with regard to the use of vacuum insulation for thermal storage. On the one hand, the Center for Applied Energy Research (ZAE) in Munich uses an evacuated double vessel filled with pearlite. On the other hand, the Ohm University uses vacuum insulation panels (VIP). Both the insulation concepts are based on the Knudsen effect. Thus, the thermal conductivity is lowered by a factor of 6-10, when compared with the conventional insulation materials, such as EPS, XPS, or mineral wool. Both the concepts are adoptions of the existing insulation applications. The filled double vessel tank is already being used for cryogenic storage for liquid gases. Furthermore, VIPs are being used to insulate passive houses. However, the use of vacuum insulation for thermal energy storage causes different problems due to higher temperatures and moisture. Nevertheless, vacuum insulations are a promising solution for small thermal long-tenn storage. This study presents the first state-of-the-art review on vacuum-insulated thermal tanks.

  9. Computational and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, Mitchell [Yale Univ., New Haven, CT (United States)

    2015-05-29

    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  10. The advanced flame quality indicator system

    Energy Technology Data Exchange (ETDEWEB)

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A. [Insight Technologies, Inc., Bohemia, NY (United States)

    1997-09-01

    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  11. Analytical study in the mechanism of flame movement in horizontal tubes. II. Flame acceleration in smooth open tubes

    CERN Document Server

    Kazakov, Kirill A

    2013-01-01

    The problem of spontaneous acceleration of premixed flames propagating in open horizontal tubes with smooth walls is revisited. It is proved that in long tubes, this process can be considered quasi-steady, and an equation for the flame front position is derived using the on-shell description. Numerical solutions of this equation are found which show that as in the case of uniform flame movement, there are two essentially different regimes of flame propagation. In the type I regime, the flame speed and its acceleration are comparatively low, whereas the type II regime is characterized by significant flame acceleration that rapidly increases as the flame travels along the tube. A detailed comparison of the obtained results with the experimental data on flame acceleration in methane-air mixtures is given. In particular, it is confirmed that flames propagating in near-stoichiometric mixtures and mixtures near the limits of inflammability belong to the types II and I, respectively, whereas flames in transient mixt...

  12. Similarity and Scaling of Turbulent Flame Speeds for Expanding Premixed Flames of C4-C8 n -alkanes

    Science.gov (United States)

    Wu, Fujia; Saha, Abhishek; Chaudhuri, Swetaprovo; Yang, Sheng; Law, Chung K.

    2013-11-01

    We experimentally investigated the propagation speed of constant-pressure expanding flames in near isotropic turbulence using a dual-chamber, fan-stirred vessel. The motivation is to test whether the fuel similarity concept among C4-C8 n-alkanes on laminar flames also holds for turbulent flames. Previously it was found that the laminar flame speed and Markstein length are almost identical for C4-C8 n-alkanes. If this fuel similarity concept can also be shown for turbulent flames, it will suggest a canonical flame structure for large hydrocarbon fuels, i . e . , large fuels always decompose to small C0-C4 fuel fragments before being oxidized, and would significantly simplify the description of the flames. Preliminary results show that in the flamelet and thin-reaction zone, turbulent flame speeds of C4-C8 n-alkanes are indeed largely similar at various conditions, thereby suggesting the fuel similarity for turbulent flames. In addition, it is found that the normalized turbulent flame speed also approximately scales with the square root of an appropriately-defined Reynolds number recently found for C0-C4 fuels. This work was supported by the AFOSR under the technical monitoring of Dr. Chiping Li.

  13. Gastrothorax or tension pneumothorax: A diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Singh Sarvesh

    2011-01-01

    Full Text Available Gastrothorax, a rare complication following thoracoabdominal aortic aneurysm repair, is reported. The clinical features of a gastrothorax and tension pneumothorax are similar and thus, a gastrothorax can masquerade as a tension pneumothorax. The diagnosis is made by a high level of clinical suspicion, chest X-ray shows a distended stomach with air fluid levels and a computerised tomography is useful in assessing the diaphragm and establishing the positions of the various intra-abdominal organs. Also, the risk of an intercostal drainage tube placement and the role of nasogastric tube in avoiding the development of a tension gastrothorax is highlighted.

  14. Surface tension profiles in vertical soap films

    Science.gov (United States)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  15. Prefabricated Refractory Panels for Use in KSC's Flame Deflectors: A Feasibility Study

    Science.gov (United States)

    Calle, Luz Maria; Trejo, David

    2010-01-01

    refractory panels on the deflector. Panels could be fabricated and processed off-site in a controlled environment to maximize performance. These panels could then be transported to KSC and installed on the flame deflector. The findings of this report indicate that conventionally reinforced, prefabricated refractory panels can likely be designed, fabricated, and placed on the deflector. Post-tensioning of the panels will reduce the amount of "open' joints, which can be susceptible to accelerated erosion and abrasion. The panels, produced with newer, better performing refractory materials, should exhibit lower deterioration, providing a more economical system. A method for placing the panels has been provided. The findings of this research indicate that post-tensioned, prefabricated refractory panels can be placed on the flame deflectors and should exhibit improved performance when compared with the current method of gunning the refractories on the deflector. Further evaluation will be needed to confirm these findings. Specific focus should be placed on the performance of the joints transverse to the exhaust flow, erosion/abrasion rates of "closed" joints, uplift forces at joints transverse to the exhaust flow, development of composite action between the steel base and the refractory panels, and refractory material resistance to the launch and Florida coast environment.

  16. Flames in fractal grid generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)

    2013-12-15

    Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)

  17. Smoldering, Transition and Flaming in Microgravity

    Science.gov (United States)

    Fernandez-Pello, A. C.; Bar-Ilan, A.; Lo, T. L.; Walther, D. C.; Urban, D. L.

    2001-01-01

    A research project is underway to study smolder and the transition to flaming in microgravity. The Microgravity Smoldering Combustion (MSC) flight project is an ongoing research project to provide a better understanding of the controlling mechanisms of smoldering combustion. The Smoldering Transition and Flaming (STAF) project is a recently established research program that will utilize the Fluids and Combustion Facility (FCF) of the ISS to examine the transition from smolder to flaming in microgravity. In forced flow smolder experiments ambient pressure in the MSC chamber rises, thus motivating the need to understand the effects of pressure on smoldering combustion. Further, the STAF experiment has constraints on experimental scale and testing at elevated pressure may be a mechanism to reduce the sample size by enhancing the smolder reaction. In the work we are reporting here, a series of ground-based tests determine the effects of pressure on smoldering combustion. These tests are compared with data obtained from experiments conducted aboard the Space Shuttle in flights STS-69 and STS-77. Measurements of one-dimensional smolder propagation velocity are made by thermocouple probing and a non-intrusive Ultrasound Imaging System (UIS)]. Thermocouples are also used to obtain reaction temperatures and the UIS is used to determine permeabilities of the fuel in real-time.

  18. Flyweight, Superelastic, Electrically Conductive, and Flame-Retardant 3D Multi-Nanolayer Graphene/Ceramic Metamaterial.

    Science.gov (United States)

    Zhang, Qiangqiang; Lin, Dong; Deng, Biwei; Xu, Xiang; Nian, Qiong; Jin, Shengyu; Leedy, Kevin D; Li, Hui; Cheng, Gary J

    2017-07-01

    A ceramic/graphene metamaterial (GCM) with microstructure-derived superelasticity and structural robustness is achieved by designing hierarchical honeycomb microstructures, which are composited with two brittle constituents (graphene and ceramic) assembled in multi-nanolayer cellular walls. Attributed to the designed microstructure, well-interconnected scaffolds, chemically bonded interface, and coupled strengthening effect between the graphene framework and the nanolayers of the Al2 O3 ceramic (NAC), the GCM demonstrates a sequence of multifunctional properties simultaneously that have not been reported for ceramics and ceramics-matrix-composite structures, such as flyweight density, 80% reversible compressibility, high fatigue resistance, high electrical conductivity, and excellent thermal-insulation/flame-retardant performance simultaneously. The 3D well-ordered graphene aerogel templates are strongly coupled with the NAC by the chemically bonded interface, exhibiting mutual strengthening, compatible deformability, and a linearly dependent relationship between the density and Young's modulus. Considerable size effects of the ceramic nanolayers on the mechanical properties are revealed in these ceramic-based metamaterials. The designed hierarchical honeycomb graphene with a fourth dimensional control of the ceramic nanolayers on new ways to scalable fabrication of advanced multifunctional ceramic composites with controllable design suggest a great potential in applications of flexible conductors, shock/vibration absorbers, thermal shock barriers, thermal insulation/flame-retardant skins, and porous microwave-absorbing coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 30 CFR 75.516-1 - Installed insulators.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installed insulators. 75.516-1 Section 75.516-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... insulators. Well-insulated insulators is interpreted to mean well-installed insulators. Insulated J-hooks may...

  20. Flame Propagation Through Swirling Eddys, A Recursive Pattern

    CERN Document Server

    Ashurst, W T

    1993-01-01

    Abstract: Computed flame motion through and between swirling eddys exhibits a maximum advancement rate which is related to the time duration of flame motion between eddys. This eddy spatial structure effect upon the apparent turbulent flame speed appears to be similar to the square-root dependence observed in wrinkled flamelet data. The rate-limiting behavior at one eddy length-scale can be removed by inclusion of smaller eddys which reside between the larger eddys. This large-eddy, small-eddy concept yields a recursion relation and repeated functional iteration can be done to approximate a desired flame speed relation. As an example, an iteration to produce $S_T Currently, the iteration process is a post-diction of flame speed, but if a universality can be developed, then a predictive theory of turbulent flame propagation might be achieved.

  1. New developments in the theory of flame propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sivashinsky, G.I. [City College of the City Univ. of New York, NY (United States)

    1996-12-31

    Two topics in combustion fluid mechanics are discussed. The first is a theory of the outward propagating spherical flame in the regime of well-developed hydrodynamic instability. In a qualitative agreement with experimental observations it is shown that the flame assumes a fractal-like wrinkled structure resulting in the overall burning rate acceleration. In contrast to hydrodynamically unstable flames, the expanding flame subject exclusively to the effect of diffusive instability does not indicate any disposition toward acceleration. The second topic concerns the dynamics of diffusively unstable flames subjected to radiative heat losses. At high enough heat losses the flame breaks up into separate self-propagating cap-like flamelets while a significant portion of the fuel remains unconsumed.

  2. Stability of a laminar flame front propagating within a tube

    Energy Technology Data Exchange (ETDEWEB)

    Salamandra, G.D.; Maiorov, N.I.

    1983-01-01

    The present study examines the deformation of a flame propagating in a semi-closed horizontal tube under the action of perturbations artificially created on the flame surface by brief action of a transverse electrical field on the combustion zone. The fuel mixture used was a dry methane-air mixture containing 10% CH4, which produced a flame front with relatively low convexity. Flame front propagation was recorded by high-speed photographic methods. Interpretation of the photographs reveals that the magnitude of the perturbations increases by an exponential law; fine scale perturbations on the flame surface are suppressed by coarse scale perturbations, while the stable curved form of the flame front in the tube is ensured by the stabilizing action of the tube walls.

  3. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a thin......, and conceivably all hydrocarbons are quantitatively converted into methane at temperatures below 600 C, that is, before the proper combustion has started. The splitting of the C-C bonds is preceded by hydrogenation of double and triple bonds and aromatic rings. The reactions, no doubt, are caused by hydrogen...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  4. Degradation of Polymeric Brominated Flame Retardants: Development of an Analytical Approach Using PolyFR and UV Irradiation.

    Science.gov (United States)

    Koch, Christoph; Dundua, Alexander; Aragon-Gomez, Jackelyn; Nachev, Milen; Stephan, Susanne; Willach, Sarah; Ulbricht, Mathias; Schmitz, Oliver J; Schmidt, Torsten C; Sures, Bernd

    2016-12-06

    Many well-established methods for studying the degradation of brominated flame retardants are not useful when working with polymeric and water insoluble species. An example for this specific class of flame retardants is PolyFR (polymeric flame retardant; CAS No 1195978-93-8), which is used as a substituent for hexabromocyclododecane. Although it has been on the market for two years now, almost no information is available about its long time behavior in the environment. Within this study, we focus on how to determine a possible degradation of both pure PolyFR as well as PolyFR in the final insulation product, expanded polystyrene foam. Therefore, we chose UV radiation followed by analyses of the total bromine content at different time points via ICP-MS and identified possible degradation products such as 2,4,6-tribromophenol through LC-MS. These results were then linked with measurements of the adsorbable organically bound bromine and total organic carbon in order to estimate their concentrations. With respect to the obtained (1)H NMR, GPC, and contact angle results, the possibility for further degradation was discussed, as UV irradiation can influence the decomposition of molecules in combination with other environmental factors like biodegradation.

  5. Effect of Intense Sound Waves on a Stationary Gas Flame

    Science.gov (United States)

    Hahnemann, H; Ehret, L

    1950-01-01

    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  6. A Counterflow Diffusion Flame Study Of Branched Octane Isomers

    Science.gov (United States)

    2012-09-26

    public release; distribution is unlimited. A counterflow diffusion flame study of branched octane isomers The views, opinions and/or findings contained...MC 0934 La Jolla, CA 92093 -0934 ABSTRACT A counterflow diffusion flame study of branched octane isomers Report Title Conventional petroleum, Fischer...counterflow diffusion flame study of branched octane isomers Approved for public release; distribution is unlimited. 61657.7-EG REPORT DOCUMENTATION PAGE

  7. Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame

    Science.gov (United States)

    Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN

    2018-02-01

    The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.

  8. FIELD TEST OF THE FLAME QUALITY INDICATOR

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Andrew M; Butcher, Thomas; Troost, Henry

    2003-02-04

    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion

  9. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-04-06

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  10. The Dynamic Surface Tension of Water

    Science.gov (United States)

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160

  11. Modelling Tension Stiffening in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1997-01-01

    Part I of the present thesis deals with crack formation in reinforced concrete and the phenomenon of tension stiffening in concrete tension rods reinforced with deformed bars.Two physical models are presented for uniaxial tension, and they are modified for application on beams subjected to pure...... predicted by the models are compared with experimental data from tests on tension rods as well as flexural beams.In the light of the simple assumptions made and the random nature of cracking, the accordance between the models and the test data is quite good.Part II of the present thesis deals...... of the simple assumptions, quite good accordance is found.Part III of the thesis deals with the deformations of a beam symmetrically loaded by two concentrated forces. In the shear-flexure beam model it is assumed that the load is carried by means of a stringer system and a diagonal stress field in the shear...

  12. Transcutaneous oxygen tension in imminent foot gangrene

    DEFF Research Database (Denmark)

    Tønnesen, K H

    1978-01-01

    Transcutaneous oxygen tension at 44 degree C and maximal isotope clearance (90m Tc-pretechnetate + histramine) just proximal to the 1st toe and systolic toe blood pressure (strain gauge) were studied on a tilt table in patients with various degrees of obstructive arteriosclerotic disease. In legs...... with moderate obstruction, the oxygen tension reached zero at a toe systolic blood pressure of 5--10 mmHg (tilt toe up) and reached arterial oxygen tension at about 50 to 70 mmHg (tilt toe down). In legs withsevere arterial obstruction and ischaemic rest pain, oxygen tension rose from zero not before systolic...... toe blood pressure reached 20--50 mmHg. Significant isotope clearance was seen at pressures below the limits just mentioned for both types of patients. This phenomenon here seen of a perfusion without oxygen supply is explained by a gas leak (rendered significant because of the slow flow rate) from...

  13. Chromatin insulators: regulatory mechanisms and epigenetic inheritance

    Science.gov (United States)

    Bushey, Ashley M.; Dorman, Elizabeth R.; Corces, Victor G.

    2008-01-01

    Enhancer-blocking insulators are DNA elements that disrupt the communication between a regulatory sequence, such as an enhancer or a silencer, and a promoter. Insulators participate in both transcriptional regulation and global nuclear organization, two features of chromatin that are thought to be maintained from one generation to the next through epigenetic mechanisms. Furthermore, there are many regulatory mechanisms in place that enhance or hinder insulator activity. These modes of regulation could be used to establish cell-type specific insulator activity that is epigenetically inherited along a cell and/or organismal lineage. This review will discuss the evidence for epigenetic inheritance and regulation of insulator function. PMID:18851828

  14. From a normal insulator to a topological insulator in plumbene

    Science.gov (United States)

    Yu, Xiang-Long; Huang, Li; Wu, Jiansheng

    2017-03-01

    Plumbene, similar to silicene, has a buckled honeycomb structure with a large band gap (˜400 meV). All previous studies have shown that it is a normal insulator. Here, we perform first-principles calculations and employ a sixteen-band tight-binding model with nearest-neighbor and next-nearest-neighbor hopping terms to investigate electronic structures and topological properties of the plumbene monolayer. We find that it can become a topological insulator with a large bulk gap (˜200 meV) through electron doping, and the nontrivial state is very robust with respect to external strain. Plumbene can be an ideal candidate for realizing the quantum spin Hall effect at room temperature. By investigating effects of external electric and magnetic fields on electronic structures and transport properties of plumbene, we present two rich phase diagrams with and without electron doping and propose a theoretical design for a four-state spin-valley filter.

  15. Combustion characteristics of subsonic hydrogen jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S. [Kumamoto Univ., Kumamoto City (Japan)

    2008-07-01

    This study investigated the split flame and re-ignition phenomenon of subsonic jet diffusion flames. The aim of the study was to characterize the underlying combustion characteristics of hydrogen micro-jet diffusion flames. The effects of nozzle diameter and rim thickness on flame re-ignition characteristics were examined. Hydrogen gas was used as a fuel during the experiments, and the flame was visualized suing the Schlieren technique in order to determine temperature and concentration measurements. The experimental apparatus consisted of a fuel nozzle, a fuel supply system, a stagnation pressure measuring device, a high-speed camera, and an image-processing system. The study showed that re-ignition phenomenon occurred in certain region of the nozzle, a small flamelet was located in the vicinity of the nozzle rim after the blowout of the main flame occurred. Further increases in mass flow rates then caused the flamelet to become extinguished. The study demonstrated that intermittence of the flame re-ignition depended on fuel mass flow rates. Rim thickness did not influence mass flow rates at the onset or at the end of the re-ignition phenomenon. It was concluded that rim thickness had a significant influence on the flamelet formed near the nozzle rim. Increases in height differences of the rim extended flame blowouts and alleviated flame lift-off behaviour. 10 refs., 9 figs.

  16. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas Jerker

    2014-01-01

    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite...... properties. The in-flame particle radiation was measured with a Fourier transform infrared (FTIR) spectrometer connected to a water-cooled probe via fiber optics. In the cross-section of the flame investigated, the particles were found to be the dominating source of radiation. Apart from giving information...

  17. Electrical perturbation of cellular premixed propane/air flames

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, C.L.; Harris, H.H. (Univ. of Missouri, St. Louis, MO (United States). Dept. of Chemistry)

    1994-06-01

    The phenomenon originally called polyhedral flame structure was first reported 100 years ago. Subsequent investigations showed that polyhedral structure was only one example of a more general phenomenon known now as cellular flame structure, and the range of combustion mixtures that produce them has been broadened to include lean mixtures of H[sub 2]/air, lean H[sub 2]/Br[sub 2], and rich mixtures of hydrocarbons from ethylene to octane with air. Of particular interest to the authors is the role of charged species in flames, and especially in flames that exhibit cellular structure. The electrical aspects of combustion has a long and distinguished history and this subject has been the subject of a classic monograph by Lawton and Weinberg. Electrical perturbation has been reported to affect the temperature of flames, to stabilize them at high flow rates and, in the absence of gravity, to change the speed of flame propagation, and to affect the amount of soot produced. The authors report here that premixed propane/air flames exhibiting cellular structure are quite susceptible to perturbation by electric fields. Since only charged species in the flame would be affected by the potential, and a small current would not modify transport properties of neutral species appreciably, this observation suggests that studies of this type may be useful in helping to further elucidate the role of charged species in flames.

  18. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  19. Tension Hydrothorax Related to Disseminated Endometriosis

    Directory of Open Access Journals (Sweden)

    AnnaKate Deal, MD

    2016-01-01

    Full Text Available We present the case of a 34-year-old woman presenting to the emergency department (ED with dyspnea, cough, and fever. She was found to have a tension hydrothorax and was treated with ultrasound-guided thoracentesis in the ED. Subsequent inpatient evaluation showed the patient had disseminated endometriosis. Tension hydrothorax has not been previously described in the literature as a complication of this disease.

  20. Leadership matters: Tensions in evaluating leadership development

    OpenAIRE

    Jarvis, C.; Gulati, A.; McCririck, V.; Simpson, P.

    2013-01-01

    The Problem and Solution: This paper explores some of the tensions that required careful management in the design and delivery of a leadership development program. This discussion draws particularly upon a formal evaluation of two cohorts, each comprising approximately 20 senior managers working in adult social care. Complexity theory, notably Complex Responsive Processes of Relating, is used to make visible, explore and articulate the need to hold in tension apparently contradictory forces a...

  1. The accuracy of fine wire tensioners: a comparison of five tensioners used in hybrid and ring external fixation.

    Science.gov (United States)

    Roberts, Craig S; Antoci, Valentin; Antoci, Valentin; Voor, Michael J

    2004-03-01

    To compare the accuracy of 5 commonly available fine wire tensioners used in hybrid and ring external fixation. A laboratory investigation. The testing of 5 commonly available tensioners was performed with a servohydraulic test frame (MTS Bionix 858, Minneapolis, MN). The real wire tension data of each tensioner provided by the MTS were compared with corresponding nominal values. The percent error for each tensioner was calculated. Clinical ease of usage of the wire tensioners was also evaluated. The EBI tensioner was the most accurate (-0.17% to 0.09% error). The Smith and Nephew tensioner had a -13.97% to -8.61% error, the How medica tensioner a -12.48% to -10.86% error, and the Synthes tensioner a -0.2% to 24.28% error. The DePuyACE tensioner was the least accurate, with errors ranging from -36.76% to -30.92%. The Howmedica tensioner was the easiest to use, followed by the Smith and Nephew tensioner, the DePuyACE tensioner, the Synthes tensioner, and the EBI tensioner. Most commonly available tensioners tend to undertension. Future efforts should focus on the development of wire tensioners that combine accuracy and ease of usage.

  2. Oxygen tension level and human viral infections

    Energy Technology Data Exchange (ETDEWEB)

    Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr [Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris (France); Université Denis Diderot, Sorbonne Paris Cité Paris, Paris (France); Casetti, Luana [Institut Cochin INSERM U1016, Paris (France); François, Jean-Hugues; Capron, Claude [Institut Cochin INSERM U1016, Paris (France); Laboratoire d' Hématologie, Hôpital Ambroise Paré, Boulogne (France); Université de Versailles Saint-Quentin en Yvelynes, Versailles (France); Pillet, Sylvie [Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Saint-Etienne, Saint-Etienne (France); Université de Lyon et Université de Saint-Etienne, Jean Monnet, GIMAP EA3064, F-42023 Saint-Etienne, Lyon (France)

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  3. Chromatin insulators: lessons from the fly

    Science.gov (United States)

    Gurudatta, B. V.

    2009-01-01

    Chromatin insulators are DNA–protein complexes with broad functions in nuclear biology. Drosophila has at least five different types of insulators; recent results suggest that these different insulators share some components that may allow them to function through common mechanisms. Data from genome-wide localization studies of insulator proteins indicate a possible functional specialization, with different insulators playing distinct roles in nuclear biology. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. Current results suggest that insulators set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation and development. PMID:19752045

  4. Evaluation of the accuracy of a veterinary dynamometric wire tensioner.

    Science.gov (United States)

    Gauthier, C M; McGilvray, K; Myrick, S; Duerr, F; Palmer, R

    2015-01-01

    The purpose of this study was to determine the accuracy of a commonly used veterinary wire tensioner. Wire tension was measured using a load cell after each of five tensioners were used to tension each of six wires to the 66, 84, and 118 mm ring settings in an adjustable custom testing fixture. Each tensioner then experienced simulated aging and testing was repeated. Percentage error was calculated for each ring size, before and after tensioner aging. Measured tension values were compared to manufacturer reported tension values for each ring size using a one-sample two-way t-test; p tension values were significantly lower for 66 mm and 84 mm rings and significantly higher for 118 mm rings, before and after simulated aging. Mean wire tension values did not significantly differ between individual wire tensioners. The tensioners tested achieved significantly different wire tension values than those reported by the manufacturer. This discrepancy could lead to under-tensioning and allowing excessive movement at a fracture site or over-tensioning, leading to wire breakage. We recommend tensioning wires at least to the recommended line on the device for 66 mm and 84 mm rings and at most to the recommended line for 118 mm rings. Further studies are needed to evaluate other veterinary wire tensioners and to develop a calibration method for these devices in practice.

  5. Electrical resistivity of assembled transparent inorganic oxide nanoparticle thin layers: influence of silica, insulating impurities, and surfactant layer thickness.

    Science.gov (United States)

    Bubenhofer, Stephanie B; Schumacher, Christoph M; Koehler, Fabian M; Luechinger, Norman A; Sotiriou, Georgios A; Grass, Robert N; Stark, Wendelin J

    2012-05-01

    The electrical properties of transparent, conductive layers prepared from nanoparticle dispersions of doped oxides are highly sensitive to impurities. Production of cost-effective thin conducting films for consumer electronics often employs wet processing such as spin and/or dip coating of surfactant-stabilized nanoparticle dispersions. This inherently results in entrainment of organic and inorganic impurities into the conducting layer leading to largely varying electrical conductivity. Therefore, this study provides a systematic investigation on the effect of insulating surfactants, small organic molecules and silica in terms of pressure dependent electrical resistivity as a result of different core/shell structures (layer thickness). Application of high temperature flame synthesis gives access to antimony-doped tin oxide (ATO) nanoparticles with high purity. This well-defined starting material was then subjected to representative film preparation processes using organic additives. In addition ATO nanoparticles were prepared with a homogeneous inorganic silica layer (silica layer thickness from 0.7 to 2 nm). Testing both organic and inorganic shell materials for the electronic transport through the nanoparticle composite allowed a systematic study on the influence of surface adsorbates (e.g., organic, insulating materials on the conducting nanoparticle's surface) in comparison to well-known insulators such as silica. Insulating impurities or shells revealed a dominant influence of a tunneling effect on the overall layer resistance. Mechanical relaxation phenomena were found for 2 nm insulating shells for both large polymer surfactants and (inorganic) SiO(2) shells.

  6. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    Science.gov (United States)

    Li, Mingda; Song, Qichen; Zhao, Weiwei; Garlow, Joseph A.; Liu, Te-Huan; Wu, Lijun; Zhu, Yimei; Moodera, Jagadeesh S.; Chan, Moses H. W.; Chen, Gang; Chang, Cui-Zu

    2017-11-01

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. Here we report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (B i0.2S b0.8)2 T e3 /magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screening is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.

  7. Insulation assembly for electric machine

    Science.gov (United States)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  8. Carbon nanotubes as excitonic insulators.

    Science.gov (United States)

    Varsano, Daniele; Sorella, Sandro; Sangalli, Davide; Barborini, Matteo; Corni, Stefano; Molinari, Elisa; Rontani, Massimo

    2017-11-13

    Fifty years ago Walter Kohn speculated that a zero-gap semiconductor might be unstable against the spontaneous generation of excitons-electron-hole pairs bound together by Coulomb attraction. The reconstructed ground state would then open a gap breaking the symmetry of the underlying lattice, a genuine consequence of electronic correlations. Here we show that this excitonic insulator is realized in zero-gap carbon nanotubes by performing first-principles calculations through many-body perturbation theory as well as quantum Monte Carlo. The excitonic order modulates the charge between the two carbon sublattices opening an experimentally observable gap, which scales as the inverse of the tube radius and weakly depends on the axial magnetic field. Our findings call into question the Luttinger liquid paradigm for nanotubes and provide tests to experimentally discriminate between excitonic and Mott insulators.

  9. Solid Rocket Motor Insulation Testing

    Science.gov (United States)

    2005-07-13

    ablation test, analysis): $2K • Rapid testing of 5-6 samples per day (or more) •Nozzle materials can also be tested Propellant Test Insulation...Igniter Backing Nozzle Distribution A: Public Release. Distribution Unlimited 4 Distribution A: Public Release. Distribution unlimited Nanofilled EPDM as...Improved Ablative Potential Pathway to Increase Performance M i c r o f i b e r s SOTA EPDM Rubber NANO EPDM Rubber ... . .. .burn carbon char

  10. Flexible pile thermal barrier insulator

    Science.gov (United States)

    Anderson, G. E.; Fell, D. M.; Tesinsky, J. S. (Inventor)

    1978-01-01

    A flexible pile thermal barrier insulator included a plurality of upstanding pile yarns. A generally planar backing section supported the upstanding pile yarns. The backing section included a plurality of filler yarns forming a mesh in a first direction. A plurality of warp yarns were looped around said filler yarns and pile yarns in the backing section and formed a mesh in a second direction. A binder prevented separation of the yarns in the backing section.

  11. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  12. Improved Aerogel Vacuum Thermal Insulation

    Science.gov (United States)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  13. In-Flame Characterization of a 30 MWth Bio-Dust Flame

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik

    This work presents a comprehensive flame characterization campaign on an operating full-scale Danish power plant. Amagerværket Unit 1 (AMV1, 350 MWth, 12 identical burners on 3 burner levels) is 100 % fuelled with wood dust burned in suspension and stabilized by swirling flows in a triple concent...

  14. The effect of vesicle shape, line tension, and lateral tension on membrane-binding proteins

    Science.gov (United States)

    Hutchison, Jaime B.

    Model membranes allow for the exploration of complex biological phenomena with simple, controllable components. In this thesis we employ model membranes to determine the effect of vesicle properties such as line tension, lateral tension, and shape on membrane-binding proteins. We find that line tension at the boundary between domains in a phase separated vesicle can accumulate model membrane-binding proteins (green fluorescent protein with a histidine tag), and that those proteins can, in turn, alter vesicle shape. These results suggest that domains in biological membranes may enhance the local concentration of membrane-bound proteins and thus alter protein function. We also explore how membrane mechanical and chemical properties alter the function of the N-BAR domain of amphiphysin, a membrane-binding protein implicated in endocytosis. We find that negatively charged lipids are necessary for N-BAR binding to membranes at detectable levels, and that, at least for some lipid species, binding may be cooperative. Measurements of N-BAR binding as a function of vesicle tension reveal that modest membrane tension of around 2 mN/m, corresponding to a strain of around 1%, strongly increases N-BAR binding. We attribute this increase in binding with tension to the insertion of N-BAR's N-terminal amphipathic helix into the membrane which increases the membrane area. We propose that N-BAR, which was previously described as being able to sense membrane curvature, may be sensing strain instead. Measurements of membrane deformation by N-BAR as a function of membrane tension reveal that tension can hinder membrane deformation. Thus, tension may favor N-BAR binding yet suppress membrane deformation/tubulation, which requires work against tension. These results suggest that membrane tension, a parameter that is often not controlled in model membranes but is tightly controlled in biological cells, may be important in regulating protein binding and assembly and, hence, protein

  15. Oxygen tension affects lubricin expression in chondrocytes.

    Science.gov (United States)

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji

    2014-10-01

    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology.

  16. A novel approach to pipeline tensioner modeling

    Energy Technology Data Exchange (ETDEWEB)

    O' Grady, Robert; Ilie, Daniel; Lane, Michael [MCS Software Division, Galway (Ireland)

    2009-07-01

    As subsea pipeline developments continue to move into deep and ultra-deep water locations, there is an increasing need for the accurate prediction of expected pipeline fatigue life. A significant factor that must be considered as part of this process is the fatigue damage sustained by the pipeline during installation. The magnitude of this installation-related damage is governed by a number of different agents, one of which is the dynamic behavior of the tensioner systems during pipe-laying operations. There are a variety of traditional finite element methods for representing dynamic tensioner behavior. These existing methods, while basic in nature, have been proven to provide adequate forecasts in terms of the dynamic variation in typical installation parameters such as top tension and sagbend/overbend strain. However due to the simplicity of these current approaches, some of them tend to over-estimate the frequency of tensioner pay out/in under dynamic loading. This excessive level of pay out/in motion results in the prediction of additional stress cycles at certain roller beds, which in turn leads to the prediction of unrealistic fatigue damage to the pipeline. This unwarranted fatigue damage then equates to an over-conservative value for the accumulated damage experienced by a pipeline weld during installation, and so leads to a reduction in the estimated fatigue life for the pipeline. This paper describes a novel approach to tensioner modeling which allows for greater control over the velocity of dynamic tensioner pay out/in and so provides a more accurate estimation of fatigue damage experienced by the pipeline during installation. The paper reports on a case study, as outlined in the proceeding section, in which a comparison is made between results from this new tensioner model and from a more conventional approach. The comparison considers typical installation parameters as well as an in-depth look at the predicted fatigue damage for the two methods

  17. Emergency percutaneous needle decompression for tension pneumoperitoneum

    Directory of Open Access Journals (Sweden)

    Körner Markus

    2011-05-01

    Full Text Available Abstract Background Tension pneumoperitoneum as a complication of iatrogenic bowel perforation during endoscopy is a dramatic condition in which intraperitoneal air under pressure causes hemodynamic and ventilatory compromise. Like tension pneumothorax, urgent intervention is required. Immediate surgical decompression though is not always possible due to the limitations of the preclinical management and sometimes to capacity constraints of medical staff and equipment in the clinic. Methods This is a retrospective analysis of cases of pneumoperitoneum and tension pneumoperitoneum due to iatrogenic bowel perforation. All patients admitted to our surgical department between January 2005 and October 2010 were included. Tension pneumoperitoneum was diagnosed in those patients presenting signs of hemodynamic and ventilatory compromise in addition to abdominal distension. Results Between January 2005 and October 2010 eleven patients with iatrogenic bowel perforation were admitted to our surgical department. The mean time between perforation and admission was 36 ± 14 hrs (range 30 min - 130 hrs, between ER admission and begin of the operation 3 hrs and 15 min ± 47 min (range 60 min - 9 hrs. Three out of eleven patients had clinical signs of tension pneumoperitoneum. In those patients emergency percutaneous needle decompression was performed with a 16G venous catheter. This improved significantly the patients' condition (stabilization of vital signs, reducing jugular vein congestion, bridging the time to the start of the operation. Conclusions Hemodynamical and respiratory compromise in addition to abdominal distension shortly after endoscopy are strongly suggestive of tension pneumoperitoneum due to iatrogenic bowel perforation. This is a rare but life threatening condition and it can be managed in a preclinical and clinical setting with emergency percutaneous needle decompression like tension pneumothorax. Emergency percutaneous decompression is no

  18. Thermally-induced transformation of hexabromocyclo dodecanes and isobutoxypenta bromocyclododecanes in flame-proofed polystyrene materials.

    Science.gov (United States)

    Heeb, Norbert V; Graf, Heidi; Schweizer, W Bernd; Lienemann, P

    2010-08-01

    Polystyrenes (PS) are produced in quantities exceeding 10 Mt y(-1). They are used for insulation and packaging materials, often in flame-proofed forms with hexabromocyclododecanes (HBCDs) added as flame retardants. Polystyrenes are also constituents of plastic debris found in the aquatic environment. HBCDs are now considered as persistent, bioaccumulative, and toxic compounds. Lately, we reported that isobutoxypenta bromocyclododecanes (iBPBCDs), a formerly unknown class of polybrominated compounds, are also present in flame-proofed polystyrenes. It is therefore likely that iBPBCDs are released along with HBCDs from these materials. Herein, we report on changes of the HBCD- and iBPBCD-patterns when exposing expanded (EPS) and extruded (XPS) polystyrenes at temperatures of 140-160 degrees C. Substantial transformation reactions were observed in EPS, which was rich in gamma-HBCDs and delta-, eta-, and theta-iBPBCDs at the beginning, but changed to materials rich in alpha-HBCDs and alpha-, beta-, epsilon-, and xi-iBPBCDs. Patterns of untreated XPS already resembled those of the thermally treated EPS. Upon thermal exposure, some further enrichment of alpha-HBCDs and alpha-, beta-, epsilon-, and xi-iBPBCDs was also noticed for the XPS samples, indicating similar transformation mechanisms. Comparable apparent first-order transformation rate constants (k(trans)) of -0.003, -0.008, and -0.020 min(-1) and -0.004, -0.009, and -0.019 min(-1) are found for gamma-HBCD- and delta-iBPBCD-conversion at 140, 150, and 160 degrees C, respectively. We conclude that a thermal treatment of flame-proofed polystyrenes alters their HBCD- and iBPBCD-patterns. Thus depending on the proportions of EPS and XPS materials reaching the environment, more of the lipophilic (late-eluting) or of the more polar (early-eluting) HBCD- and iBPBCD-stereoisomers will be released. Several properties such as partitioning coefficients, degradation rates, and bioaccumulation factors are stereoisomer

  19. Methodology for characterization of corrosive agents of thermal insulating foams; Desenvolvimento de metodologia para caracterizacao de agentes corrosivos de espumas de isolamento termico

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Flavio V. Vasques de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Fundacao Coordenacao de Projetos, Pesquisas e Estudos Tecnologicos - COPPETEC; Mattos, Oscar R.; Mota, Rafael O. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais; Margarit-Mattos, Isabel C.P. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Processos Organicos; Quintela, Joaquim P. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Vieira, Magda M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Warming up oil and derivatives is a required procedure to make their transportation more efficient due to the increase in fluidity. Therefore, the use of thermally insulated pipeline becomes essential. The commonly practice has been the use of pipelines covered with an optional anticorrosive coating, followed by a polyurethane foam layer, as thermal insulator, and a polyethylene top coating for mechanical protection. During the life time of the pipeline, local ruptures of the polyethylene coating frequently occur, allowing the water permeation throughout the thermal insulator. This water may cause foam leaching that would release corrosive agents on the external wall pipe. The objective of the present work was to investigate the effects of the blowing agents, the addition of flame retardant to the foam as well as operating temperatures on the generation of corrosive solutions on the external wall of thermally insulated pipes. In this sense, polyurethane foams expanded with HCFC-141b, CFC-11 and CO{sub 2}, with and without flame retardant, were evaluated at the temperatures of 80 and 120 deg C. (author)

  20. Toxicity of new generation flame retardants to Daphnia magna

    NARCIS (Netherlands)

    Waaijers, S.L.; Hartmann, J; Soeter, A.M.; Helmus, R.; Kools, S.A.E.; de Voogt, P.; Admiraal, W.; Parsons, J.R.; Kraak, M.H.S.

    2013-01-01

    There is a tendency to substitute frequently used, but relatively hazardous brominated flame retardants (BFRs) with halogen-free flame retardants (HFFRs). Consequently, information on the persistence, bioaccumulation and toxicity (PBT) of these HFFRs is urgently needed, but large data gaps and

  1. Iso-Surface Analysis of a Trubulent Diffusion Flame

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.

    2006-01-01

    We analyze the evolution of a diffusion flame in a turbulent mixing layer. The location of the flame-center is defined by the "stoichiometric" interface. Geometrical properties such as its surface-area, wrinkling and curvature are characterized using an accurate numerical level-set quadrature

  2. Diamond growth in premixed propylene-oxygen flames

    OpenAIRE

    Shin, Ho Seon; Goodwin, David G.

    1995-01-01

    Diamond film growth in low-pressure premixed propylene/oxygen flames is demonstrated. Well-faceted films are grown at a pressure of 180 Torr and a fuel/oxygen ratio of 0.47. Using propylene as the fuel may greatly improve the economics of flame synthesis of diamond, since propylene is an order of magnitude cheaper than acetylene.

  3. Environmental fate & effects of new generation flame retardants

    NARCIS (Netherlands)

    Waaijers, S.L.

    2014-01-01

    There is a pressing need for substituting several halogenated flame retardants, given the human and environmental health concerns of many of these compounds. Halogen Free Flame Retardants (HFFRs) have been suggested as alternatives and are already being marketed, although their potential impact on

  4. Histopathology of the organs of Broiler Chickens exposed to flames ...

    African Journals Online (AJOL)

    Histopathology of the organs of broiler chickens exposed to the flame and fumes of refined petroleum product kerosene at varying distances over a period of 16hrs daily for 56 days in a poultry house were evaluated. Kerosene burning was simulated in a designed burner. Kerosene flame in a designed burner was placed 4, ...

  5. combination of flame atomic absorption spectrometry with ligandless

    African Journals Online (AJOL)

    Preferred Customer

    separation and flame atomic absorption spectrometry determination of trace amount of lead(II) ion. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction .... in ethanol was added to it. The final solution was aspirated directly into the flame of AAS. The extraction scheme of Pb(II) ion is shown in.

  6. Structure and extinction of laminar ethanol/air spray flames

    Energy Technology Data Exchange (ETDEWEB)

    Gutheil, E. [Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)

    2001-07-01

    The paper presents the structure and extinction of both mono- and bidisperse ethanol/air spray flames in the counterflow configuration. A similarity transformation for monodisperse spray flames is extended to polydisperse spray flames, and the resulting one-dimensional formulation accesses the use of detailed chemical reaction mechanisms as well as detailed transport. For the ethanol/air system, 38 species and 337 elementary reactions are used. At high strain, the droplets cross the gas stagnation plane, reverse and return towards their injector. For this situation, the width of the chemical reaction zone of bidisperse and monodisperse sprays with the Sauter mean radius is almost the same. However, the droplet oscillation causes the spray flame of the bidisperse spray to strongly increase the total spray flame thickness. For the injection velocity of the spray studied here, the droplets returning to their injector hit the boundary of the computational domain as strain is increased whereas the monodisperse spray flame extinguishs at a considerably higher value of gas strain rate. Thus, the extinction behavior of the bidisperse spray flame is not represented by the monodisperse spray flame with the Sauter mean radius. The model is also suitable to predict pollutant formation. (orig.)

  7. Comparative Analysis of Flame Characteristics of Castor Oil and ...

    African Journals Online (AJOL)

    The flame characteristics of castor oil based foam and that of polyether foam impregnated with inorganic flame retardants (FR) were investigated. The polyether foams were impregnated with measured concentration of Antimony trioxide and Sodium bromide, Ammonium dihydrogen orthophosphate, Diammonium hydrogen ...

  8. Comparative Analysis of Flame Characteristics of Castor Oil and ...

    African Journals Online (AJOL)

    ABSTRACT: The flame characteristics of castor oil based foam and that of polyether foam impregnated with inorganic flame retardants (FR) were investigated. The polyether foams were impregnated with measured concentration of Antimony trioxide and Sodium bromide, Ammonium dihydrogen orthophosphate ...

  9. Flame retardant antibacterial cotton high-loft nonwoven fabrics

    Science.gov (United States)

    Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...

  10. 30 CFR 75.600 - Trailing cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; flame resistance. 75.600 Section 75.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Trailing cables used in coal mines shall meet the requirements established by...

  11. Aspects of Cool-Flame Supported Droplet Combustion in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.

    2015-01-01

    Droplet combustion experiments performed on board the International Space Station have shown that normal-alkane fuels with negative temperature coefficient (NTC) chemistry can support quasi-steady, low-temperature combustion without any visible flame. Here we review the results for n-decane, n-heptane, and n-octane droplets burning in carbon dioxidehelium diluted environments at different pressures and initial droplet sizes. Experimental results for cool-flame burning rates, flame standoff ratios, and extinction diameters are compared against simplified theoretical models of the phenomenon. A simplified quasi-steady model based on the partial-burning regime of Lin predicts the burning rate, and flame standoff ratio reasonably well for all three normal alkanes. The second-stage cool-flame burning and extinction following the first-stage hot-flame combustion, however, shows a small dependence on the initial droplet size, thus deviating from the quasi-steady results. An asymptotic model that estimates the oxygen depletion by the hot flame and its influence on cool-flame burning rates is shown to correct the quasi-steady results and provide a better comparison with the measured burning-rate results.This work was supported by the NASA Space Life and Physical Sciences Research and Applications Program and the International Space Station Program.

  12. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    Science.gov (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  13. Reconstructing the Cryptanalytic Attack behind the Flame Malware

    NARCIS (Netherlands)

    M.J. Fillinger (Max)

    2013-01-01

    textabstractFlame was an advanced malware, used for espionage, which infected computers running a Microsoft Windows operating system. Once a computer in a local network was infected, Flame could spread to the other computers in the network via Windows Update, disguised as a security patch from

  14. TBK1 duplication is found in normal tension and not in high tension ...

    Indian Academy of Sciences (India)

    Supplementary data: TBK1 duplication is found in normal tension and not in high tension glaucoma patients of Indian origin. Lalit Kaurani, Mansi Vishal, Jharna Ray, Abhijit Sen, Kunal Ray and Arijit Mukhopadhyay. J. Genet. 95, 459–461. Table 1. Intraocular pressure of NTG and HTG patients. Total. Mean IOP. Mean IOP ...

  15. Constant-amplitude tests on plain concrete in uniaxial tension and tension-compression

    NARCIS (Netherlands)

    Cornelissen, H.A.W.

    1984-01-01

    This research report is the continuation of Stevin Laboratory Report No. 5-81-7 "Fatigue of plain concrete in uniaxial tension and in alternating tension-compression" [1], in which test set-up, loading equipment and preliminary results have been described. The present report deals with the total set

  16. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  17. Percutaneous tension band wiring for patellar fractures.

    Science.gov (United States)

    Rathi, Akhilesh; Swamy, M K S; Prasantha, I; Consul, Ashu; Bansal, Abhishek; Bahl, Vibhu

    2012-08-01

    To evaluate outcome of percutaneous tension band wiring for transverse fractures of the patella. 16 men and 7 women aged 27 to 65 (mean, 40) years underwent percutaneous tension band wiring for transverse fractures of the patella with a displacement of >3 mm. Pain, operating time, mobility, functional score, and complications were evaluated. 20 patients underwent successful percutaneous tension band wiring. The remaining 3 patients in whom closed reduction failed underwent open reduction and tension band wiring. The mean operating time was 46 (range, 28-62) minutes. The mean follow-up period was 20 (range, 15-30) months. At the latest follow-up, all patients had regained full extension. The objective score was excellent in 20 patients and good in 3, whereas the subjective score was excellent in 17, good in 5, and fair in one. All patients had radiological union at week 8. One patient had patellofemoral arthritis (secondary to a postoperative articular step). Two patients developed superficial infections, which resolved after antibiotic therapy. Mean thigh muscle wasting was 0.7 (range, 0.4-1) cm. Three patients encountered hardware problems (impingement/irritation of the skin over the knee) necessitating implant removal. Percutaneous tension band wiring is a viable option for transverse fractures of the patella.

  18. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    Science.gov (United States)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  19. Stability of a laminar flame front propagating within a tube

    Energy Technology Data Exchange (ETDEWEB)

    Salamandra, G.D.; Maiorov, N.I.

    1983-01-01

    This study examines the deformation of a flame propagating in a semi-closed horizontal tube under the action of perturbations artifically created on the flame surface by brief action of a transverse electrical field on the combustion zone. The experiments were performed in a tube with square section 36 x 36 mm, with electrodes on the upper and lower walls for application of an electric field to the combustion zone. A high negative voltage was applied to the upper electrode for a regulated time interval, with the lower electrode grounded. Concludes that development of artificially created perturbations on the surface of a flame propagating in a semiclosed horizontal tube has been observed; the magnitude of the perturbations increases by an exponential law; fine scale perturbations on the flame surface are suppressed by coarse scale perturbations; and the stable curved form of the flame front in the tube is ensured by the stabilizing action of the tube walls.

  20. The dynamics of cellular two-dimensional flames

    Science.gov (United States)

    Almarcha, Christophe; Quinard, Joel; Denet, Bruno; Al-Sarraf, Elias; Laugier, Jean-Marie; Villermaux, Emmanuel

    2014-11-01

    Premixed flames propagating in an initially quiescent medium undergo hydrodynamic instabilities that corrugate their shape, leading to non stationary cells. The shape of a flame is a critical issue as it rules its speed or the presence of incomplete reaction zones. We report here on experiments of premixed propane-air and methane-air flames freely propagating in a vertically oriented Hele-Shaw cell. In such configuration, the quasi two dimensional flames are easy to study by image analysis thanks to a high speed camera. The dynamics is favorably compared to numerical simulations of Michelson-Sivashinsky equation. The cell size distribution is analyzed and seems to be self similar whatever the gas mixture composition, provided that the dynamics is sufficiently rich, ie the flame is sufficiently unstable. We propose an explanation for this distribution.

  1. Unconventional Fermi surface in an insulating state

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, B. S. [Cambridge Univ., Cambridge (United Kingdom); Hsu, Y. -T. [Cambridge Univ., Cambridge (United Kingdom); Zeng, B. [National High Magnetic Field Lab., Tallahassee, FL (United States); Hatnean, M. Ciomaga [Univ. of Warwick, Coventry (United Kingdom); Zhu, Z. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartstein, M. [Cambridge Univ., Cambridge (United Kingdom); Kiourlappou, M. [Cambridge Univ., Cambridge (United Kingdom); Srivastava, A. [Cambridge Univ., Cambridge (United Kingdom); Johannes, M. D. [Center for Computational Materials Science, Washington, DC (United States); Murphy, T. P. [National High Magnetic Field Lab., Tallahassee, FL (United States); Park, J. -H. [National High Magnetic Field Lab., Tallahassee, FL (United States); Balicas, L. [National High Magnetic Field Lab., Tallahassee, FL (United States); Lonzarich, G. G. [Cambridge Univ., Cambridge (United Kingdom); Balakrishnan, G. [Univ. of Warwick, Coventry (United Kingdom); Sebastian, Suchitra E. [Cambridge Univ., Cambridge (United Kingdom)

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  2. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  3. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  4. Unsteady numerical simulations of the stability and dynamics of flames

    Science.gov (United States)

    Kailasanath, K.; Patnaik, G.; Oran, E. S.

    1995-01-01

    In this report we describe the research performed at the Naval Research Laboratory in support of the NASA Microgravity Science and Applications Program over the past three years (from Feb. 1992) with emphasis on the work performed since the last microgravity combustion workshop. The primary objective of our research is to develop an understanding of the differences in the structure, stability, dynamics and extinction of flames in earth gravity and in microgravity environments. Numerical simulations, in which the various physical and chemical processes can be independently controlled, can significantly advance our understanding of these differences. Therefore, our approach is to use detailed time-dependent, multi-dimensional, multispecies numerical models to perform carefully designed computational experiments. The basic issues we have addressed, a general description of the numerical approach, and a summary of the results are described in this report. More detailed discussions are available in the papers published which are referenced herein. Some of the basic issues we have addressed recently are (1) the relative importance of wall losses and gravity on the extinguishment of downward-propagating flames; (2) the role of hydrodynamic instabilities in the formation of cellular flames; (3) effects of gravity on burner-stabilized flames, and (4) effects of radiative losses and chemical-kinetics on flames near flammability limits. We have also expanded our efforts to include hydrocarbon flames in addition to hydrogen flames and to perform simulations in support of other on-going efforts in the microgravity combustion sciences program. Modeling hydrocarbon flames typically involves a larger number of species and a much larger number of reactions when compared to hydrogen. In addition, more complex radiation models may also be needed. In order to efficiently compute such complex flames recent developments in parallel computing have been utilized to develop a state

  5. Development of fiber reactive, non-halogenated flame retardant on cotton fabrics and the enhanced flame retardancy by covalent bonding

    Science.gov (United States)

    The US law requires flame resistant properties on apparel or house hold items to prevent or minimize the fire damage. The objective of this research was to develop a non-halogenated flame retardant for application onto cotton fabrics. These treated fabrics can then be used in clothes or beddings to ...

  6. Fatigue in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    Traditinally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In order to test the predictive validity of the result from the small tension specimens, fatigue experiments...... mechanism and a mechanism connected to damage introduce in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...

  7. Fatigue In Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Uhre; Hoffmeyer, Preben

    2004-01-01

    Traditionally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In arder to test the predictive validity of the result from the small tension specimens, fatigue experiments...... mechanism and a mechanism connected to damage introduced in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...

  8. Carbon speciation and surface tension of fog

    Science.gov (United States)

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.

    1990-01-01

    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  9. Tensions between Teams and Their Leaders

    Directory of Open Access Journals (Sweden)

    J. David Johnson

    2016-10-01

    Full Text Available The intersection of teamwork and leadership results in tensions, dilemmas, and paradoxes for both individuals and for institutions such as simultaneously empowering individuals at the same time it frustrates them when our naive, cultural understanding of leadership centralizes power and values leaders who can impose their will and vision on others. Perhaps the fundamental paradox of teamwork and leadership is that the more leadership is focused on an individual the less likely a team’s potential will be realized. Six specific domains where tensions arise are: at team boundaries; culture; who is in charge, rationality/cognition; diversity; and collaborations. Three approaches - clarifying different levels of analysis, temporal factors, and overarching concepts - to resolving tensions are discussed. New conceptions of leadership and the importance of the larger cultural frame within which they are embedded are needed for the management of technology and innovation.

  10. Surface tension-driven convection phenomena

    Science.gov (United States)

    Mann, J. A., Jr.

    1980-01-01

    The techniques for measuring surface tension-driven flow are reported. In addition to the fairly standard crossed beam LDV method, methods using ripplon scattering which do not require seeding of the fluid were developed. These methods can be used to determine thermophysical properties of the surface, such as surface tension, viscosity, and local temperature. This technique was utilized to observe the change in surface tension associated with the nematic to isotropic phase transition of para-azoxydianisole at 134 C. The ripplon scattering methods become difficult for surface velocities below 1 mm/sec because of the overlapping spectra. Careful analysis procedures could extend this to smaller flows, but the more conventional LDV techniques with seeded flows are the method of choice for slow flows.

  11. Building ceramics with improved thermal insulation parameters

    OpenAIRE

    Rzepa Karol; Wons Wojciech; Reben Manuela

    2016-01-01

    One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used...

  12. Probabilistic Approach to InsulationCoordination

    OpenAIRE

    Bilock, Alexander

    2016-01-01

    The present work was performed at HVDC ABB as an initial study on how to adopt probabilistic concepts into the VCSHVDC insulation coordination. Due to large voltage levels in HVDC applications the corresponding insulation need to be properly addressed to ensure a safe, economical and reliable operation. Traditionally, only the maximum overvoltage is considered, where no adoption to the shape of the overvoltage distribution is regarded. Use of probabilistic concepts in the insulation coordinat...

  13. Optimasi Ketebalan Insulator Pada Jaringan Pipa Geothermal

    OpenAIRE

    Isnani, Isnani

    2005-01-01

    Geothermal is one of cheap and huge energy resaources in Indonesia. Geothermal power supply generated by thermal steam, where is transmitted through geothermal pape line was usually built near a geothermal source. To minimize heat losses pipe surface is patched by insulator. Furthermore to decide insulator thickness for optimum result, the mathematical model is applied. The insulator optimum thicknes (5,733575488) is obtained the cost needed is $1488,373278

  14. Substituting environmentally relevant flame retardants: assessment fundamentals. Vol. 1: results and summary overview; Erarbeitung von Bewertungsgrundlagen zur Substitution umweltrelevanter Flammschutzmittel. Bd. 1: Ergebnisse und zusammenfassende Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Leisewitz, A.; Kruse, H.; Schramm, E.

    2001-04-01

    The study examines the status, trends and alternatives (substitution and reduction potentials) in the use of flame retardants in selected product sectors: construction; electronics and electrical engineering; rail vehicles; textiles/upholstery. In addition, the study characterises thirteen flame retardants in terms of material flows, applications and toxicology/ecotoxicology. Vol. I: Summary overview of flame retardant applications in Germany in 1999/2000; characterisation of 13 flame retardants in terms of substance properties and application-specific characteristics, range of applications and quantities; derivation of assessment fundamentals for flame retardants, focussing on toxicology/ecotoxicology, suitability for closed-loop substance management, and potential for substitution and reduction; summary assessment of 13 flame retardants; summary overview of flame retardant applications. Vol. II: Analysis of flame retardant applications (state of the art, trends, alternatives) in: unsaturated polyester (UP) resins (rail vehicles); polyurethane (PU) insulating foams and one component foams (OCF) (construction sector); plastics for generic uses in electronic and electrical equipment, in casings for electronic and electrical equipment and in printed circuit boards (electronics/electrical engineering); and in upholstery and mattresses (textile applications). Vol. III: Toxicological/ecotoxicological profiles of substances: Decabromodiphenyl oxide; Tetrabromobisphenol A; Bis[pentabromophenyl]ethane; Hexabromocyclodo-decane, Tris[chloropropyl]phosphate, Resorcinol-bis-diphenylphosphate; N-Hydroxymethyl-3-dimethylphosphonopropionamide, Red phosphorus, Ammonium polyphosphate, Melamin cyanurate, Aluminiumtrihydroxide, Sodium borate decahydrate, Antimony trioxide. (orig.) [German] Untersucht werden Stand, Trends und Alternativen (Substitutions- und Minderungspotentiale) beim Einsatz von Flammschutzmitteln (FSM) in ausgewaehlten Produkten aus: Baubereich, Elektrotechnik

  15. Natural ageing of EPDM composite insulators

    Energy Technology Data Exchange (ETDEWEB)

    Vlastos, A.E.; Sherif, E. (Chalmers Univ. of Technology, High Voltage Engineering, S-412 96 Gothenburg (SW))

    1990-01-01

    Long-rod composite insulators, with weather sheds (sheds) made of ethylene propylene rubbers (EPDM), were exposed for many years to HVAC and HVDC under realistic conditions and natural pollution. The change of their properties with time and their aging was studied. The results show that the insulator shed material undergoes a slow degradation process and loses successively its water repelling properties which initially make the EPDM composite insulators superior to inorganic glass and porcelain insulator. The outdoor degradation of the shed material depends on the electric stress, in the environmental factors (such as pollution, rain, salt-laden fog, and UV-radiation from sun) and on the materials and fillers used in the construction of the composite insulators. A thorough macro- and microscopic study of the EPDM composite insulator sheds illustrates the differences of the surface state of EPDM insulators of different makes in which different basic material compositions and fillers are used. The poor performance of aged EPDM composite insulators compared to inorganic insulators depends on the design and on environmental factors.

  16. Insulator Degradation by High Current Discharges

    Science.gov (United States)

    Engel, Thomas Gregory

    1990-08-01

    The degenerative action produced by 300 kA, repetitive arc discharges on the surface of various insulator materials is investigated as a function of insulator and electrode material and the ambient atmosphere used. The insulator damage produced by the 20 mus wide oscillating pulse is characterized by a shot-to-shot decrease in surface breakdown voltage of the insulator and a loss of insulator mass. The insulators under investigation include a broad group of ceramic, polymeric, and elastomeric materials which have been tested with graphite, molybdenum, copper, and copper-tungsten electrodes. Typically, the ambient gas used in the tests was atmospheric air although some tests were conducted in pure nitrogen, pure oxygen, and admixtures thereof. Models have also been developed which predict holdoff voltage degradation, mass erosion, and holdoff voltage conditioning for the insulator. The conditioning of an insulator is characterized by an increase in its surface holdoff voltage in the initial stages of the test. In these models, insulator performance is predicted by its HDR (i.e., holdoff voltage degradation resistance), MVC (mass vaporization coefficient), and HVC (holdoff voltage conditioning) figures of merit which are calculated using the pertinent thermophysical properties of the material. The relationship between the figures of merit is also discussed.

  17. Aerogel Insulation to Support Cryogenic Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking a high performance thermal insulation material for cryogenic applications in space launch development. Many of the components in cryogenic...

  18. Electrostatic Separation Of Layers In Thermal Insulation

    Science.gov (United States)

    Bhandari, Pradeep

    1995-01-01

    Layers in multilayer insulation charged to keep them separated by electrostatic repulsion, eliminating need for spacer nets. Removal of spacer nets reduces conduction of heat between layers. Insulation in question type used to slow leakage of heat into Dewar flasks containing liquid helium. Proposal originally applied to insulation in cryogenic cooling subsystems of infrared-detector systems in outer space, also appears applicable to small panels of insulation for terrestrial cryogenic equipment, provided layers contained in evacuated spaces and weight of each layer small fraction of electrostatic force upon it.

  19. Insulators and promoters: closer than we think

    Science.gov (United States)

    Raab, Jesse R.; Kamakaka, Rohinton T.

    2012-01-01

    Insulators prevent promiscuous gene regulation by restricting the action of enhancers and silencers. Recent studies have revealed a number of similarities between insulators and promoters, including binding of specific transcription factors, chromatin-modification signatures and localization to specific subnuclear positions. We propose that enhancer-blockers and silencing barrier-insulators might have evolved as specialized derivatives of promoters and that the two types of element use related mechanisms to mediate their distinct functions. These insights can help to reconcile different models of insulator action. PMID:20442713

  20. Thermal Insulation Strips Conserve Energy

    Science.gov (United States)

    2009-01-01

    Launching the space shuttle involves an interesting paradox: While the temperatures inside the shuttle s main engines climb higher than 6,000 F hot enough to boil iron for fuel, the engines use liquid hydrogen, the second coldest liquid on Earth after liquid helium. Maintained below 20 K (-423 F), the liquid hydrogen is contained in the shuttle s rust-colored external tank. The external tank also contains liquid oxygen (kept below a somewhat less chilly 90 K or -297 F) that combines with the hydrogen to create an explosive mixture that along with the shuttle s two, powdered aluminum-fueled solid rocket boosters allows the shuttle to escape Earth s gravity. The cryogenic temperatures of the main engines liquid fuel can cause ice, frost, or liquefied air to build up on the external tank and other parts of the numerous launch fueling systems, posing a possible debris risk when the ice breaks off during launch and causing difficulties in the transfer and control of these cryogenic liquid propellants. Keeping the fuel at the necessary ultra-cold temperatures while minimizing ice buildup and other safety hazards, as well as reducing the operational maintenance costs, has required NASA to explore innovative ways for providing superior thermal insulation systems. To address the challenge, the Agency turned to an insulating technology so effective that, even though it is mostly air, a thin sheet can prevent a blowtorch from igniting a match. Aerogels were invented in 1931 and demonstrate properties that make them the most extraordinary insulating materials known; a 1-inch-thick piece of aerogel provides the same insulation as layering 15 panes of glass with air pockets in between. Derived from silica, aluminum oxide, or carbon gels using a supercritical drying process - resulting in a composition of almost 99-percent air - aerogels are the world s lightest solid (among 15 other titles they hold in the Guinness World Records), can float indefinitely on water if treated to be

  1. A continuum method for modeling surface tension

    Science.gov (United States)

    Brackbill, J. U.; Kothe, D. B.; Zemach, C.

    1992-01-01

    In the novel method presented for modeling the effects of surface tension on fluid motion, the interfaces between fluids with different, color-represented properties are finite-thickness transition regions across which the color varies continuously. A force density proportional to the surface curvature of constant color is defined at each point in the transition region; this force-density is normalized in such a way that the conventional description of surface tension on an interface is recovered when the ratio of local transition-reion thickness to local curvature radius approaches zero. The properties of the method are illustrated by computational results for 2D flows.

  2. Processing of insulators and semiconductors

    Science.gov (United States)

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  3. Characterization of Microporous Insulation, Microsil

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-15

    Microsil microporous insulation has been characterized by Lawrence Livermore National Laboratory for possible use in structural and thermal applications in the DPP-1 design. Qualitative test results have provided mechanical behavioral characteristics for DPP-1 design studies and focused on the material behavioral response to being crushed, cyclically loaded, and subjected to vibration for a confined material with an interference fit or a radial gap. Quantitative test results have provided data to support the DPP-1 FEA model analysis and verification and were used to determine mechanical property values for the material under a compression load. The test results are documented within this report.

  4. Orbital disc insulator for SF.sub.6 gas-insulated bus

    Science.gov (United States)

    Bacvarov, Dosio C.; Gomarac, Nicholas G.

    1977-01-01

    An insulator for supporting a high voltage conductor within a gas-filled grounded housing consists of radially spaced insulation rings fitted to the exterior of the bus and the interior of the grounded housing respectively, and the spaced rings are connected by trefoil type rings which are integrally formed with the spaced insulation rings.

  5. Interface ordering and phase competition in a model Mott-insulator--band-insulator heterostructure

    OpenAIRE

    Okamoto, Satoshi; Andrew J. Millis

    2005-01-01

    The phase diagram of model Mott-insulator--band-insulator heterostructures is studied using the semiclassical approximation to the dynamical-mean-field method as a function of thickness, coupling constant, and charge confinement. An interface-stabilized ferromagnetic phase is found, allow the study of its competition and possible coexistence with the antiferromagnetic order characteristic of the bulk Mott insulator.

  6. Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs

    Science.gov (United States)

    2012-04-01

    profiles for the opposed jet burner using Unicorn and Chemkin Pro, ethylene/air flame, Wang-Colket mechanism. .............................33 Figure...35 Figure 31. Flame simulations using UNICORN (Katta et al...two-dimensional (2-D) flame simulation computer code UNICORN (Katta et al., 2006) with those obtained using the one- dimensional (1-D) flame

  7. GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, E. P. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Rosner, R., E-mail: eph2001@columbia.edu [Computation Institute, University of Chicago, 5735 S. Ellis Ave., Chicago, IL 60637 (United States)

    2013-07-10

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  8. Gravitationally Unstable Flames: Rayleigh-Taylor Stretching versus Turbulent Wrinkling

    Science.gov (United States)

    Hicks, E. P.; Rosner, R.

    2013-07-01

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  9. Microphysical Effects on the Instabilities of Astrophysical Flames

    Science.gov (United States)

    Dursi, L. J.; Rosner, R.; Zingale, M.; Calder, A. C.; Fryxell, B.; Timmes, F. X.; Vladimirova, N.; Caceres, A.; Lamb, D. Q.; Olson, K.; Ricker, P. M.; Riley, K.; Siegel, A.; Truran, J. W.

    2003-12-01

    Large-scale simulations of supernovae of Type Ia, which are essential for the ultimate understanding of the supernovae mechanism, need flame physics input at three stages: Ignition and early flame propagation, Large scale burning in a turbulent medium, and a transition to detonation, should one occur. One aspect of our investigation of flame physics has been to examine the behavior of well-known flame instabilities such as Landau-Darrieus in the context of astrophysical flames and degenerate matter. These instabilities can distort and wrinkle the flame surface, increasing the amount of burning and thus the rate of energy input. We have examined both the effects of magnetic fields, and flame curvature and strain in degenerate material, on the growth rate of these instabilities. LJD was supported by the Department of Energy Computational Science Graduate Fellowship Program of the Office of Scientific Computing and Office of Defense Programs in the Department of Energy under contract DE-FG02-97ER25308.

  10. Testing Premixed Turbulent Combustion Models by Studying Flame Dynamics

    Directory of Open Access Journals (Sweden)

    Andrei N. Lipatnikov

    2009-03-01

    Full Text Available First, the following universal feature of premixed turbulent flame dynamics is highlighted: During an early stage of flame development, the burning velocity grows much faster than the mean flame brush thickness, because the two processes are controlled by the small-scale and large-scale turbulent eddies, respectively. Second, this feature of developing flames is exploited in order to test a number of different models of premixed turbulent combustion by theoretically and numerically studying an interaction of an initially laminar, planar, one-dimensional flame with a statistically stationary, planar, one-dimensional, and spatially uniform turbulent flow not affected by combustion. To test as many models as possible in a simple and unified manner, various combustion models are divided into three generalized groups: (i algebraic models, which invoke an algebraic expression for the mean rate of product creation, (ii gradient models, which involve a gradient-type source term in a balance equation for the mean combustion progress variable, and (iii two-equation models, which deal not only with a balance equation for the mean combustion progress variable but also with either a balance equation for the flame surface density or a balance equation for the mean scalar dissipation rate. Analytical and numerical results reported in the paper indicate that solely the gradient models are able to yield substantially different growth rates of the turbulent burning velocity and the mean flame brush thickness.

  11. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  12. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  13. The Interaction of High-Speed Turbulence with Flames: Global Properties and Internal Flame Structure

    Science.gov (United States)

    2009-09-28

    hypothesized that the turbulent cascade is able to penetrate the 1 _______________ Manuscript approved August 14, 2009. internal structure of the...reactors. These are the regimes in which substantial flame broadening by turbulent transport has been hypothesized . We also assume that turbulence is...this method [21], which requires six Riemann solves per cell instead of the twelve in the original method of [24]. This integration scheme uses PPM

  14. Theory of Flame-Acoustic Interaction for Flame Propagation in Spherical Chamber

    Science.gov (United States)

    2011-03-01

    laminar flame speeds of combustible mixtures. In astrophysics, an expanding nuclear flamefront can be the precursor of a supernova event [1]. A... means that an increase in the overall pressure inside the chamber due to combustion is small. Consequently we neglect pressure variations, and assume...exhibits a lower power dependence as compared to Eq. (14). However, this does not necessarily mean 7th US Combustion Meeting – Paper # L19 Topic: Laminar

  15. Flame Structure of Vitiated Fuel-Rich Inverse Diffusion Flames in a Cross-Flow (Postprint)

    Science.gov (United States)

    2011-12-01

    Pulse separation was set to 2 µs to ensure rotational and vibrational relaxation of the OH between pulses. The intensifier gate width on each...propane and acetylene inverse diffusion flames to understand the structure and stability of these flows. Reasonable agreement was noted between the...temperature were avoided. A Spectra Physics Pro 290 and Quanta Ray 250 Nd:YAG laser were used to pump a Sirah Cobra Stretch and Continuum ND6000 Dye

  16. Managing Tensions And Forging Creative Synergies Between ...

    African Journals Online (AJOL)

    Managing Tensions And Forging Creative Synergies Between Indigenous And Modern Settlement Planning Concepts And Practices: Lessons For The Design And Planning For ... The article also explores the planning principles, design concepts, standards and norms used in the planning and building of indigenous

  17. Surface Tension Measurements with a Smartphone

    Science.gov (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-01-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept…

  18. On Surface Tension for Compact Stars

    Indian Academy of Sciences (India)

    In an earlier analysis it was demonstrated that general relativity gives higher values of surface tension in strange stars with quark matter than neutron stars. We generate the modified Tolman–Oppenheimer–Volkoff equation to incorporate anisotropic matter and use this to show that pressure anisotropy provides for a wide ...

  19. Exact analytical density profiles and surface tension

    Indian Academy of Sciences (India)

    to nonideality, which distinguish electrolyte from nonelectrolyte solutions. An example is provided by the excess surface tension for an air–water interface, which is determined by the excess particle density, and which was first calculated by Onsager and Samaras. Because of the discrepancy between the dielectric constants ...

  20. Measuring the surface tension of soap bubbles

    Science.gov (United States)

    Sorensen, Carl D.

    1992-01-01

    The objectives are for students to gain an understanding of surface tension, to see that pressure inside a small bubble is larger than that inside a large bubble. These concepts can be used to explain the behavior of liquid foams as well as precipitate coarsening and grain growth. Equipment, supplies, and procedures are explained.

  1. Tension band fixation of medial malleolus fractures.

    Science.gov (United States)

    Ostrum, R F; Litsky, A S

    1992-01-01

    A prospective study on tension band fixation of medial malleolus fractures was performed on 30 consecutive patients with 31 fractures from October 1987 until December 1990. All patients had at least a displaced medial malleolus fracture unreduced by closed methods. The fractures were classified into small, medium and large using a modified Lauge-Hansen classification. There were no nonunions or movements of wires postoperatively and only two patients had subjective complaints with reference to the wires that required hardware removal. There was one 2-mm malreduction and one patient with a wound slough and subsequent osteomyelitis. One fragment had 2 mm of displacement after fixation but went on to union. A biomechanical study was undertaken to compare fixation of the medial malleolus with K wires alone, K wires plus a tension band, and two cancellous screws. The tension band fixation provided the greatest resistance to pronation forces: for times stiffer than the two screws and 62% of the intact specimen. Tension band fixation of the medial malleolus is a biomechanically strong and clinically acceptable method of treatment for displaced medial malleolus fractures. This method of fixation may be especially useful for small fragments and in osteoporotic bone.

  2. Mechanotransduction: vinculin provides stability when tension rises

    NARCIS (Netherlands)

    Spanjaard, E.; de Rooij, J.

    2013-01-01

    By beautiful imaging and state-of-the-art experiments, vinculin is established to be a central switch in mechanotransduction at integrin-based focal adhesions. Cycles of tension-regulated vinculin switching control focal adhesion dynamics and signaling to enable polarized cell migration and

  3. Intraoperative Development of Tension Pneumocephalus in a ...

    African Journals Online (AJOL)

    result in intracranial hypertension. This condition, termed. “tension pneumocephalus,” is a neurosurgical emergency and if left untreated may cause rapid neurological deterioration, herniation, and death.[4-6]. Nitrous oxide (N2O), often administered as a component of general anesthesia, has also been implicated in.

  4. Multiple Intelligences: Its Tensions and Possibilities

    Science.gov (United States)

    Eisner, Elliot W.

    2004-01-01

    This article explores the tensions between Howard Gardner's theory of multiple intelligences and current educational policies emphasizing standardized and predictable outcomes. The article situates Gardner's theory within the historical interests among psychometricians in identifying those core processes that constitute human intelligence.…

  5. Focal adhesions, stress fibers and mechanical tension

    Energy Technology Data Exchange (ETDEWEB)

    Burridge, Keith, E-mail: Keith_Burridge@med.unc.edu [Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, 12-016 Lineberger, CB#7295, University of North Carolina, Chapel Hill, NC (United States); Guilluy, Christophe, E-mail: christophe.guilluy@univ-nantes.fr [Inserm UMR-S1087, CNRS UMR-C6291, L' institut du Thorax, and Université de Nantes, Nantes (France)

    2016-04-10

    Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function. - Highlights: • The different types of stress fiber and focal adhesion are described. • We discuss the controversy about tension and assembly of these structures. • We describe the different models used to investigate assembly of these structures. • The influence of substratum rigidity is discussed. • Stress fiber connections to the nucleus are reviewed.

  6. Forensic testing of post tensioned concrete girders.

    Science.gov (United States)

    2014-07-01

    Recently, two separate Interstate 15 highway bridges over the 400 South roadway in Orem, Utah were demolished : after 50 years of service. A total of four post-tensioned girders were salvaged from both the north-bound and : south-bound bridge. A seri...

  7. Tension in Chemistry and Its Contents

    Science.gov (United States)

    Hoffmann, Roald

    2015-01-01

    This article makes a case for a positive role of tension in the creative process in chemistry. I begin with an argument that there is an inherent tension in what makes molecules interesting—their positioning along various polar axes. One of these, the age-old differentiation between useful (to society and for personal profit) commercialization and pure understanding of molecules and their reactions is characteristic. The question of whether there are any bad molecules then leads me to ethical concerns in chemistry, and a particular working out of these in interactions of chemists in the Middle East. An analysis is made of the special tensions involved in publishing, especially in citation ethics; chemists publish a lot, so this is situation ethics worked out on a daily basis. I then find in the literature of psychology good evidence for the positive value of moderate stress in stimulating creativity. It is obvious that too much tension leads to distress, and there are some institutional aspects of chemistry that do not come out well here. But all in all, the dynamic middle is alive, and it leads to good new science. PMID:26155730

  8. Surface tension of aqueous electrolyte solutions. Thermodynamics

    NARCIS (Netherlands)

    Drzymala, J.; Lyklema, J.

    2012-01-01

    A thermodynamic theory is developed for obtaining the enthalpic and entropic contributions to the surface excess Gibbs energy of electrolyte solutions from the dependence of the surface tension on concentration and temperature. For elaboration, accurate activity coefficients in solution as functions

  9. Normal tension glaucoma and Alzheimer disease

    DEFF Research Database (Denmark)

    Bach-Holm, Daniella; Kessing, Svend Vedel; Mogensen, Ulla

    2012-01-01

    PURPOSE: To investigate whether normal tension glaucoma (NTG) is associated with increased risk of developing dementia/Alzheimer disease (AD). METHODS: A total of 69 patients with NTG were identified in the case note files in the Glaucoma Clinic, University Hospital of Copenhagen (Rigshospitalet...

  10. Tension Tests On Bored Piles In Sand

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Clausen, Johan; Damkilde, Lars

    2006-01-01

    The lengths of the bored piles varied from 2 m to 6 m and all were of a diameter of 140 mm. The piles were tested to failure in tension and the load-displacement relations were recorded. The investigation has shown pronounced differences between the load bearing capacities obtained by different...

  11. Exploratory experimental investigations on post-tensioned structural glass beams

    DEFF Research Database (Denmark)

    Louter, C.; Nielsen, Jens Henrik; Belis, J.

    2013-01-01

    This paper discusses two projects on post-tensioned glass beams, performed at EPFL and DTU, respectively. In these projects small scale glass beams (length of 1.5m and 1m) are post-tensioned by means of steel threaded rods tensioned at the beam ends. The purpose of post-tensioning glass beams...... is to enhance the initial failure stress of the glass and to obtain ductile (post-breakage) performance. From four-point bending tests on the post-tensioned glass beam specimens it is observed that these goals are reached. From the test results it is concluded that post-tensioning glass beams is a feasible...

  12. Low-cost exterior insulation process and structure

    Science.gov (United States)

    Vohra, A.

    1999-03-02

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  13. A 0-D flame wrinkling equation to describe the turbulent flame surface evolution in SI engines

    Science.gov (United States)

    Richard, Stéphane; Veynante, Denis

    2015-03-01

    The current development of reciprocating engines relies increasingly on system simulation for both design activities and conception of algorithms for engine control. These numerical simulation tools require high computational efficiencies, as calculations have to be performed in times close to real-time. Then, they are today mainly based on simple empirical laws to describe the combustion processes in the cylinders. However, with the rapid evolution of emission regulations and fuel formulation, more and more physics is expected in combustion models. A solution consists in reducing 3-D combustion models to build 0-dimensional models that are both CPU-efficient and based on physical quantities. This approach has been used in a previous work to reduce the 3-D ECFM (Extended Coherent Flame Model), leading to the so-called CFM1D. A key feature of the latter is to be based on a 0-D equation for the flame wrinkling derived from the 3-D equation for the flame surface density. The objective of this paper is to present in details the theoretical derivation of the wrinkling equation and the underlying modeling assumptions as well. Academic validations are performed against experimental data for several turbulence intensities and fuels. Finally, the proposed model is applied to engine simulations for a wide range of operating conditions. Comparisons are successfully conducted between in-cylinder measurements and the model predictions, highlighting the interest of reducing 3-D CFD models for calculations performed in the context of system simulation.

  14. The Insulation Properties of Oil-Impregnated Insulation Paper Reinforced with Nano-TiO2

    OpenAIRE

    Ruijin Liao; Cheng Lv; Lijun Yang; Yiyi Zhang; Weiqiang Wu; Chao Tang

    2013-01-01

    Oil-impregnated insulation paper has been widely used in transformers because of its low cost and desirable physical and electrical properties. However, research to improve the insulation properties of oil-impregnated insulation paper is rarely found. In this paper, nano-TiO2 was used to stick to the surface of cellulose which was used to make insulation paper. After oil-impregnated insulation paper reinforced by nano-TiO2 was prepared, the tensile strength, breakdown strength, and dielectric...

  15. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  16. Simulation of flame-vortex interaction using detailed and reduced

    Energy Technology Data Exchange (ETDEWEB)

    Hilka, M. [Gaz de France (GDF), 75 - Paris (France); Veynante, D. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Baum, M. [CERFACS (France); Poinsot, T.J. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France). Institut de Mecanique des Fluides de Toulouse

    1996-12-31

    The interaction between a pair of counter-rotating vortices and a lean premixed CH{sub 4}/O{sub 2}/N{sub 2} flame ({Phi} = + 0.55) has been studied by direct numerical simulations using detailed and reduced chemical reaction schemes. Results from the complex chemistry simulation are discussed with respect to earlier experiments and differences in the simulations using detailed and reduces chemistry are investigated. Transient evolutions of the flame surface and the total heat release rate are compared and modifications in the evolution of the local flame structure are displayed. (authors) 22 refs.

  17. Novel Flame-Based Synthesis of Nanowires for Multifunctional Application

    Science.gov (United States)

    2015-05-13

    controlled morphologies by stagnation swirl flames, Journal of Aerosol Science, (02 2012): 71. doi: 10.1016/j.jaerosci.2011.10.001 Nasir K. Memon...Films with Controlled Morphology by a Stagnation Swirl Flame,” Journal of Aerosol Science 44:71-82 (2012). 5. Zhang, Y., Xiong, G., Li, S., Dong, Z...field. The effect of temperature on the solid-particle Raman spectra is investigated by seeding nanoparticles into a co-flow jet diffusion flame, where

  18. Thermography of flame during diesel fuel combustion with steam gasification

    Science.gov (United States)

    Anufriev, I. S.; Arsentyev, S. S.; Agafontsev, M. V.; Kopyev, E. P.; Loboda, E. L.; Shadrin, E. Yu; Sharypov, O. V.

    2017-11-01

    The paper represents a study concerning the combustion of liquid hydrocarbon fuel in a perspective burner device with the controlled forced supply of overheated steam into the combustion zone, using diesel fuel. The thermal imaging measurements are conducted for the outer flame of the burner device in the wide range of regime parameters (flow rate and temperature of steam). A thermal imaging camera (FLIR, JADE J530SB) is used in the experiments. The effective emissivity coefficient of flame is obtained versus the flow rate of steam supplied. The steam parameters are found to influence on the temperature in the outer flame of the burner device.

  19. Flame holding downstream from a co-flow injector

    Science.gov (United States)

    Nicoli, Colette; Haldenwang, Pierre; Denet, Bruno

    2006-07-01

    We present numerical results on the flame attachment in the downstream vicinity of the co-flow injector lip that separates the reactive fluids at injection. Two stability diagrams show the domains where the flame is anchored, blown off, or extinguished, in terms of separating plate thickness and injection velocities of both fluids. Different anchoring modes—stagnation point counter-flow holding or edge flame anchorage—are described, depending particularly on the plate rim thickness. To cite this article: C. Nicoli et al., C. R. Mecanique 334 (2006).

  20. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto

    size is mainly dependent on its loading [3,7]. In this study, the role of the supporting metal oxide on the noble metal particle size was systematically investigated for the flame spray pyrolysis process. The materials were produced at fixed process conditions such as resident time of the particles...... in the flame, energy input, maximum temperature and cooling rate. Having the same surface area of the support and metal loading, the materials exhibited different noble metal particle sizes. A fundamental understanding of the mechanisms of metal particle formation in the flame and the effect of the metal oxide...

  1. Aspects of the mechanism of the flame ionization detector

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    The development of flame ionization detection (FID) took place on an empirical basis without a clear understanding of the mechanism. The study of flames by MS showed that the all-important ion was the formylium ion CHO+. The pre-combustion degradation was thought to be a pyrolytic degradation...... and hydrogenation at the high temperatures obtained close to the combustion zone. Using a capillary probe inside the flame it was recently shown that a degradation of all hydrocarbons to methane takes place at low temperatures by the reaction of hydrogen atoms which are generated in the burning hydrogen...

  2. Insulation materials for advanced water storages

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    2005-01-01

    sections different insulation materials are described with respect to material characteristics and some comments on the easiness of application for tank insulation. The material properties listed in this paper are typical values, which gives an idea of the possibilities but in case of a specific design...

  3. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  4. Guidelines for insulation coordination in live working

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The Guide contains the main aspects to be taken into consideration in the assessment of insulation coordination during live working on overhead transmission lines; the basis rules and influence factors for the determination of the minimum distances to be maintained between parts at different potential, including the worker himself, are given as well as for the evaluation of the risk of insulation failure. (authors)

  5. Improved insulator layer for MIS devices

    Science.gov (United States)

    Miller, W. E.

    1980-01-01

    Insulating layer of supersonic conductor such as LaF sub 3 has been shown able to impart improved electrical properties to photoconductive detectors and promises to improve other metal/insulator/semiconductor (MIS) devices, e.g., MOSFET and integrated circuits.

  6. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems...

  7. Insulator (Heat and Frost). Occupational Analyses Series.

    Science.gov (United States)

    McRory, Aline; Ally, Mohamed

    This analysis covers tasks performed by an insulator, an occupational title some provinces and territories of Canada have also identified as heat and frost insulator. A guide to analysis discusses development, structure, and validation method; scope of the occupation; trends; and safety. To facilitate understanding the nature of the occupation,…

  8. Synergistic Effect of Nanosilica Aerogel with Phosphorus Flame Retardants on Improving Flame Retardancy and Leaching Resistance of Wood

    Directory of Open Access Journals (Sweden)

    Xiaodan Zhu

    2014-01-01

    Full Text Available Nanosilica (Nano-SiO2 sol fabricated by a sol-gel process was introduced into wood modification with phosphorus flame retardants to improve the flame retardancy and leaching resistance of wood. The obtained materials were characterized by scanning electron microscopy and energy dispersive spectrometer (SEM-EDS, thermogravimetric analysis (TGA, cone calorimetric (CONE, and infrared spectroscopy (FT-IR. The residual rate of flame retardants before and after leaching was determinated by a leaching resistance. The results showed that the phosphorus flame retardants and SiO2 sol could reside in the poplar wood and are widely distributed in the vessels, pits, wood timber, and the spaces between wood cells of poplar substrate. TGA and CONE results indicated that the introduction of nano-SiO2 aerogel with phosphorus flame retardants had a significantly synergistic effect on improving the flame retardancy and inhibiting the release of smoke and toxic gases. In addition, the leaching resistance test, combined with infrared analysis and EDS analysis, confirmed that the phosphorus flame retardants were able to be fixed by SiO2 aerogel in the wood.

  9. Topological Insulators Dirac Equation in Condensed Matters

    CERN Document Server

    Shen, Shun-Qing

    2012-01-01

    Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...

  10. Corrosion control under thermal insulation and fireproofing

    Energy Technology Data Exchange (ETDEWEB)

    Delahunt, J.F.

    1982-02-01

    Corrosion occurring on carbon steel which is protected by thermal insulation (mineral wool, fiberglass, foam glass, calcium silicate, phenolics, and polyurethanes) or by fireproofing material (concrete or gunite) is discussed. Examples are given and illustrated of corrosion in refineries, petrochemical plants, and pipelines which have been thermally insulated or fireproofed. Four corrosion mechanisms have been identified and are discussed. The promoting action of chlorides as well as the pH effect or corrosion are described and it is concluded that the corrosion under thermal insulation follows two patterns. Further, organic cellular foams (polyurethanes and phenolics) are shown to accelerate corrosive action. Stress corrosion cracking of stainless steel under thermal insulation is described and the effect of improper design/application is stressed. Specific measures to control corrosion are discussed for concrete fireproofing and thermal insulation. (MJJ)

  11. Thermophysical investigations of nanotechnological insulation materials

    Science.gov (United States)

    Lakatos, Ákos

    2017-07-01

    Nowadays, to sufficiently reduce the heat loss through the wall structures with the so-called traditional insulations (polystyrene and fibrous slabs), huge thicknesses (20 - 25 cm) must be applied. In some cases there is no place for their applications e.g.: historical or heritage builfings, since the use of nano-insulation materials (aerogel, vacuum ceramic paints) takes place. They are said to be much more efficient insulations than the above mentioned ones, since they should be used in thinner forms. In this article the thermal insulating capability of solid brick wall covered with a silica-aerogel slab with 1.3 cm, moreover with a vacuum ceramic hollow contained paint with 2 mm thick are investigated. As well as a literature review about the thermal conductivity of nano-technological insulation materials will be given. Comparison of the atomic and thermal diffusion will be also presented.

  12. ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

    2009-06-11

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  13. Electrically Tunable Magnetism in Magnetic Topological Insulators.

    Science.gov (United States)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-17

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  14. Electrically Tunable Magnetism in Magnetic Topological Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-14

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  15. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  16. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2017-07-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  17. Necessary Tension in Marine Risers Tension des colonnes montantes en mer

    Directory of Open Access Journals (Sweden)

    Lubinski A.

    2006-11-01

    Full Text Available The tension governing transverse static and dynamic deflections in a riser is not the actual tension but the so-called « effective tension » The concept of effective tension and effective compression is thoroughly explained, and means for calculating effective forces are given. Numerical examples are worked out for risers whose length is between 152 m (520 ft and 920 m (3020 ft. The reciprocal of maximum bending moment of the vicinity of the hall joint is plotted versus the effective tension of the ball joint. Bending moments used were obtained through use of static and dynamic computer programs applied ta a variety of conditions of wave loading, use or non-use of buoyant moterial sleeves, etc. The most important parameters affecting riser performance are the effective La tension régissant les déflections transversales statiques et dynamiques d'une colonne montante n'est pas la tension réelle mais ce qu'on appelle « la tension effective ». Le concept de tension ou de compression effective est expliqué en détail et la façon de calculer les forces effectives est indiquée dans cet article. Des exemples numériques sont développés pour des colonnes montantes de longueur comprise entre 152 m (520 ft et 920 m (3 020 ft. On a tracé la courbe de l'inverse du moment fléchissant en fonction de la tension effective à l'articulation. Les moments fléchissants utilisés ont été calculés par ordinateur en utilisant des programmes dynamiques et statiques pour des conditions variées d'action des vagues, la colonne montante étant ou non munie de manchettes de flottabilité, etc. Les deux paramètres les plus importants qui affectent le bon comportement d'une colonne montante sont la tension effective et la charge latérale.

  18. Symmetry in the insulator - quantum Hall - insulator transitions observed in a Ge/SiGe quantum well

    OpenAIRE

    Hilke, M.; Shahar, D.; Song, Sh.; Tsui, DC; Xie, YH; Monroe, D.

    1997-01-01

    We examine the magnetic field driven insulator-quantum Hall-insulator transitions of the two dimensional hole gas in a Ge/SiGe quantum well. We observe direct transitions between low and high magnetic field insulators and the $\

  19. A comparison of cation sampling in forest soils by tension and tension-free lysimeters

    Science.gov (United States)

    James H. Miller

    1981-01-01

    Field tests conducted in two soils with ceramic cup, ceramic plate, and tension-free lysimeters showed no concentration differences in collected cations (Ca, Mg, K, Na) between cups and plates, except for the hydrogen ion. Mean pH was 0.6 lower in cup collected samples for a sandy loam profile. Tension-free lysimeters of the design tested had persistent contamination...

  20. Use of Insulating Concrete Forms in Residential Housing Construction

    National Research Council Canada - National Science Library

    Lewis, Dan

    2000-01-01

    .... Many of ICF material properties provide advantages over wood frame construction, notably in better insulation R-values, fire resistance, sound reduction, air infiltration, consistency of insulation...

  1. EVALUATION OF THE EFFICIENCY OF THE DEVICE FOR LIMITING TENSION OF THE WIRE IN A SHORT CIRCUIT

    Directory of Open Access Journals (Sweden)

    I. I. Sergey

    2017-01-01

    Full Text Available The intensity of the electrodynamic action of currents of a short circuit on the flexible conductors of overhead lines depends on the magnitude of currents of short-circuit. The commis sioning of new capacities is inevitably accompanied by an increase in short circuit currents in the nodes of the grid, so the need to limit peaks of tension arising in a short-circuit can acquire a special relevance at a certain stage of development of the power system. At short circuit currents over 40 kA the mechanical force and displacement of the wires can have a decisive influence on the structural performance of flexible bus as of single wires as well as of split phases. In this regard there is a need for the development and use of new structural elements enhancing electrodynamic stability of flexible busbars of outdoor switchgear. One such element is a tension damper. The damper is installed between the portal and the insulator string and limits the transmission of undesirable forces on the portals in a short circuit. The numerical method of calculation of dynamics of flexible wires of switchgear and overhead lines in a short-circuit taking into account influence of a tension damper has been developed. This method was used for modification of the computer program of calculation of electrodynamic stability. With the aid of the computer program it was demonstrated that the installation of the tension damper makes it possible to cut off peaks of the tension of wire in a short circuit at the initial stage of movement of the conductors. However, in spans of a great length after the actuation of the damper the occurrence of new bursts of tension is possible due to the sudden stop of the wire. 

  2. Static tensioning promotes hamstring tendons force relaxation more reliably than cycling tensioning.

    Science.gov (United States)

    Piedade, Sérgio Rocha; Dal Fabbro, Inácio Maria; Mischan, Martha Maria; Piedade, Cezar; Maffulli, Nicola

    2017-08-01

    Graft elongation might be a major reason for increased anterior laxity after anterior cruciate ligament (ACL) reconstruction. This study analyzed the force relaxation values and their stabilization when single strands of the gracilis and semitendinosus tendons underwent cyclic and static tensioning at 2.5% strain level, and compared the efficiency of static and cyclic tensioning in promoting force relaxation. Eighteen gracilis tendons and 18 semitendinosus tendons from nine male cadavers (mean age: 22.44years) were subjected to 10 in vitro cyclic loads at 2.5% strain level, or to a static load at 2.5% strain level. During cyclic loading, the reduction in force values tended to stabilize after the sixth cyclic load, while, in the case of static loading, this stabilization occurred by the second minute. Comparing static and cyclic loading, the gracilis tendon had similar mechanical responses in both conditions, while the semitendinosus tendon showed greater force relaxation in static compared with cyclic loading. Considering that the semitendinosus tendon is the main component of the hamstring graft, its biomechanical response to loading should guide the tensioning protocol. Therefore, static tensioning seems more effective for promoting force relaxation of the semitendinosus tendon than cyclic tensioning. The gracilis tendon showed a similar mechanical response to either tensioning protocols. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Substituting environmentally relevant flame retardants: assessment fundamentals. Vol. 2: flame-retardant finishings of selected products - applications-focused analysis: state of the art, trends, alternatives; Erarbeitung von Bewertungsgrundlagen zur Substitution umweltrelevanter Flammschutzmittel. Bd. 2: Flammhemmende Ausruestung ausgewaehlter Produkte - anwendungsbezogene Betrachtung: Stand der Technik, Trend, Alternativen

    Energy Technology Data Exchange (ETDEWEB)

    Leisewitz, A.; Schwarz, W.

    2001-04-01

    The study examines the status, trends and alternatives (substitution and reduction potentials) in the use of flame retardants in selected product sectors: construction; electronics and electrical engineering; rail vehicles; textiles/upholstery. In addition, the study characterises thirteen flame retardants in terms of material flows, applications and toxicology/ecotoxicology. Vol. I: Summary overview of flame retardant applications in Germany in 1999/2000; characterisation of 13 flame retardants in terms of substance properties and application-specific characteristics, range of applications and quantities; derivation of assessment fundamentals for flame retardants, focussing on toxicology/ecotoxicology, suitability for closed-loop substance management, and potential for substitution and reduction; summary assessment of 13 flame retardants; summary overview of flame retardant applications. Vol. II: Analysis of flame retardant applications (state of the art, trends, alternatives) in: unsaturated polyester (UP) resins (rail vehicles); polyurethane (PU) insulating foams and one component foams (OCF) (construction sector); plastics for generic uses in electronic and electrical equipment, in casings for electronic and electrical equipment and in printed circuit boards (electronics/electrical engineering); and in upholstery and mattresses (textile applications). Vol. III: Toxicological/ecotoxicological profiles of substances: Decabromodiphenyl oxide; Tetrabromobisphenol A; Bis[pentabromophenyl]ethane; Hexabromocyclodo-decane, Tris[chloropropyl]phosphate, Resorcinol-bis-diphenylphosphate; N-Hydroxymethyl-3-dimethylphosphonopropionamide, Red phosphorus, Ammonium polyphosphate, Melamin cyanurate, Aluminiumtrihydroxide, Sodium borate decahydrate, Antimony trioxide. (orig.) [German] Untersucht werden Stand, Trends und Alternativen (Substitutions- und Minderungspotentiale) beim Einsatz von Flammschutzmitteln (FSM) in ausgewaehlten Produkten aus: Baubereich, Elektrotechnik

  4. Topological Insulators in Amorphous Systems

    Science.gov (United States)

    Agarwala, Adhip; Shenoy, Vijay B.

    2017-06-01

    Much of the current understanding of topological insulators, which informs the experimental search for topological materials and systems, is based on crystalline band theory, where local electronic degrees of freedom at different crystal sites hybridize with each other in ways that produce nontrivial topology. Here we provide a novel theoretical demonstration of realizing topological phases in amorphous systems, as exemplified by a set of sites randomly located in space. We show this by constructing hopping models on such random lattices whose gapped ground states are shown to possess nontrivial topological nature (characterized by Bott indices) that manifests as quantized conductances in systems with a boundary. Our study adds a new dimension, beyond crystalline solids, to the search for topological systems by pointing to the promising possibilities in amorphous solids and other engineered random systems.

  5. Quantum capacitance in topological insulators.

    Science.gov (United States)

    Xiu, Faxian; Meyer, Nicholas; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Yong; Yu, Xinxin; Fedorov, Alexei V; Zou, Jin; Wang, Kang L

    2012-01-01

    Topological insulators show unique properties resulting from massless, Dirac-like surface states that are protected by time-reversal symmetry. Theory predicts that the surface states exhibit a quantum spin Hall effect with counter-propagating electrons carrying opposite spins in the absence of an external magnetic field. However, to date, the revelation of these states through conventional transport measurements remains a significant challenge owing to the predominance of bulk carriers. Here, we report on an experimental observation of Shubnikov-de Haas oscillations in quantum capacitance measurements, which originate from topological helical states. Unlike the traditional transport approach, the quantum capacitance measurements are remarkably alleviated from bulk interference at high excitation frequencies, thus enabling a distinction between the surface and bulk. We also demonstrate easy access to the surface states at relatively high temperatures up to 60 K. Our approach may eventually facilitate an exciting exploration of exotic topological properties at room temperature.

  6. Search for New Topological Insulators

    Science.gov (United States)

    Lin, Hsin; Wray, L. A.; Xu, S.-Y.; Hasan, M. Z.; Das, T.; Wang, Y. J.; Markiewicz, R. S.; Bansil, Arun

    2011-03-01

    Topological insulators (TIs) host a novel quantum phase of electrons which is characterized by topologically protected surface states originating from the effects of spin-orbit and time-reversal symmetries. While several families of TIs have already been found, the intense world-wide search for new classes of TIs continues unabated. This interest is driven by the need for materials with greater structural flexibility and tunability to enable viable applications in spintronics and quantum computing. We have used first-principles band theory computations in combination with angle-resolved photoemission experiments to successfully predict many new classes of topologically interesting materials, including Bi2Se3 series, the ternary half-Heusler compounds, thallium-based chalcogenides, and the Li2AgSb and Ge n Bi 2m Te 3m+n families. [1-5] Work supported by the Office of Basic Energy Sciences, US DOE.

  7. Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers

    Science.gov (United States)

    Chen, Li; Wang, Yu-Zhong

    2010-01-01

    Aryl polyphosphonates (ArPPN) have been demonstrated to function in wide applications as flame retardants for different polymer materials, including thermosets, polycarbonate, polyesters and polyamides, particularly due to their satisfactory thermal stability compared to aliphatic flame retardants, and to their desirable flow behavior observed during the processing of polymeric materials. This paper provides a brief overview of the main developments in ArPPN and their derivatives for flame-retarding polymeric materials, primarily based on the authors’ research work and the literature published over the last two decades. The synthetic chemistry of these compounds is discussed along with their thermal stabilities and flame-retardant properties. The possible mechanisms of ArPPN and their derivatives containing hetero elements, which exhibit a synergistic effect with phosphorus, are also discussed. PMID:28883350

  8. Augmenting the Structures in a Swirling Flame via Diffusive Injection

    Directory of Open Access Journals (Sweden)

    Jonathan Lewis

    2014-01-01

    Full Text Available Small scale experimentation using particle image velocimetry investigated the effect of the diffusive injection of methane, air, and carbon dioxide on the coherent structures in a swirling flame. The interaction between the high momentum flow region (HMFR and central recirculation zone (CRZ of the flame is a potential cause of combustion induced vortex breakdown (CIVB and occurs when the HMFR squeezes the CRZ, resulting in upstream propagation. The diffusive introduction of methane or carbon dioxide through a central injector increased the size and velocity of the CRZ relative to the HMFR whilst maintaining flame stability, reducing the likelihood of CIVB occurring. The diffusive injection of air had an opposing effect, reducing the size and velocity of the CRZ prior to eradicating it completely. This would also prevent combustion induced vortex breakdown CIVB occurring as a CRZ is fundamental to the process; however, without recirculation it would create an inherently unstable flame.

  9. Shear layer flame stabilization sensitivities in a swirling flow

    National Research Council Canada - National Science Library

    Foley, Christopher; Chterev, Ianko; Noble, Bobby; Seitzman, Jerry; Lieuwen, Tim

    A variety of different flame configurations and heat release distributions exist in high swirl, annular flows, due to the existence of inner and outer shear layers as well a vortex breakdown bubble...

  10. Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers

    Directory of Open Access Journals (Sweden)

    Li Chen

    2010-10-01

    Full Text Available Aryl polyphosphonates (ArPPN have been demonstrated to function in wide applications as flame retardants for different polymer materials, including thermosets, polycarbonate, polyesters and polyamides, particularly due to their satisfactory thermal stability compared to aliphatic flame retardants, and to their desirable flow behavior observed during the processing of polymeric materials. This paper provides a brief overview of the main developments in ArPPN and their derivatives for flame-retarding polymeric materials, primarily based on the authors’ research work and the literature published over the last two decades. The synthetic chemistry of these compounds is discussed along with their thermal stabilities and flame-retardant properties. The possible mechanisms of ArPPN and their derivatives containing hetero elements, which exhibit a synergistic effect with phosphorus, are also discussed.

  11. Persistence, bioaccumulation and toxicity of halogen-free flame retardants.

    NARCIS (Netherlands)

    Waaijers, S.L.; Kong, D; Hendriks, H.S.; de Wit, C.A.; Cousins, I.T.; Westerink, R.H.S.; Leonards, P.E.G.; Kraak, M.H.S.; Admiraal, W.; de Voogt, P.; Parsons, J.R.

    2013-01-01

    Polymers are synthetic organic materials that have a high carbon and hydrogen content, which renders them readily combustible. When used in buildings, electrical appliances, furniture, textiles, transportation, mining, and in many other applications, polymers have to fulfill flame retardancy

  12. Probing flame chemistry with MBMS, theory, and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, P.R. [Univ. of Massachusetts, Amherst (United States)

    1993-12-01

    The objective is to establish kinetics of combustion and molecular-weight growth in C{sub 3} hydrocarbon flames as part of an ongoing study of flame chemistry. Specific reactions being studied are (1) the growth reactions of C{sub 3}H{sub 5} and C{sub 3}H{sub 3} with themselves and with unsaturated hydrocarbons and (2) the oxidation reactions of O and OH with C{sub 3}`s. This approach combines molecular-beam mass spectrometry (MBMS) experiments on low-pressure flat flames; theoretical predictions of rate constants by thermochemical kinetics, Bimolecular Quantum-RRK, RRKM, and master-equation theory; and whole-flame modeling using full mechanisms of elementary reactions.

  13. Stabilization and Suppression of a Diffusion Flame Behind a Step

    National Research Council Canada - National Science Library

    Takahashi, Fumiaki

    1999-01-01

    Using a flow visualization technique, stabilization and suppression of a nonpremixed methane flame behind a backward-facing step in a wind tunnel have been studied by impulsively injecting a gaseous...

  14. Topological Insulator Nanowires and Nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  15. Surface and interfacial tension measurement, theory, and applications

    CERN Document Server

    Hartland, Stanley

    2004-01-01

    This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such a

  16. Assessment and reduction of diaphragmatic tension during hiatal hernia repair.

    Science.gov (United States)

    Bradley, Daniel Davila; Louie, Brian E; Farivar, Alexander S; Wilshire, Candice L; Baik, Peter U; Aye, Ralph W

    2015-04-01

    During hiatal hernia repair there are two vectors of tension: axial and radial. An optimal repair minimizes the tension along these vectors. Radial tension is not easily recognized. There are no simple maneuvers like measuring length that facilitate assessment of radial tension. The aims of this project were to: (1) establish a simple intraoperative method to evaluate baseline tension of the diaphragmatic hiatal muscle closure; and, (2) assess if tension is reduced by relaxing maneuvers and if so, to what degree. Diaphragmatic characteristics and tension were assessed during hiatal hernia repair with a tension gage. We compared tension measured after hiatal dissection and after relaxing maneuvers were performed. Sixty-four patients (29 M:35F) underwent laparoscopic hiatal hernia repair. Baseline hiatal width was 2.84 cm and tension 13.6 dag. There was a positive correlation between hiatal width and tension (r = 0.55) but the strength of association was low (r (2) = 0.31). Four different hiatal shapes (slit, teardrop, "D", and oval) were identified and appear to influence tension and the need for relaxing incision. Tension was reduced by 35.8 % after a left pleurotomy (12 patients); by 46.2 % after a right crural relaxing incision (15 patients); and by 56.1 % if both maneuvers were performed (6 patients). Tension on the diaphragmatic hiatus can be measured with a novel device. There was a limited correlation with width of the hiatal opening. Relaxing maneuvers such as a left pleurotomy or a right crural relaxing incision reduced tension. Longer term follow-up will determine whether outcomes are improved by quantifying and reducing radial tension.

  17. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2006-01-01

    A special Bending-Under-Tension (BUT) transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all...... in drawing of stainless steel showing the influence of varying process conditions and the performance of different lubricants....

  18. Animating Flames: Recovering Fire-Gazing as a Moving-Image Technology

    Directory of Open Access Journals (Sweden)

    Anne Sullivan

    2017-12-01

    Full Text Available In nineteenth-century England, the industrialization of heat and light rendered fire-gazing increasingly obsolete. Fire-gazing is a form of flame-based reverie that typically involves a solitary viewer who perceives animated, moving images dissolving into and out of view in a wood or coal fire. When fire-gazing, the viewer may perceive arbitrary pictures, fantastic landscapes, or more familiar forms, such as the faces of friends and family. This article recovers fire-gazing as an early and more intimate animation technology by examining remediations of fire-gazing in print. After reviewing why an analysis of fire-gazing requires a joint literary and media history approach, I build from Michael Faraday’s mid-nineteenth-century theorization of flame as a moving image to argue that fire-gazing must be included in the history of animation technologies. I then demonstrate the uneasy connections that form between automatism, mechanical reproduction, and creativity in Leigh Hunt’s description of fire-gazing in his 1811 essay ‘A Day by the Fire’. The tension between conscious and unconscious modes of production culminates in a discussion of fireside scenes of (reanimation in Charles Dickens’s 'Our Mutual Friend' (1864–65, including those featuring one of his more famous fire-gazers, Lizzie Hexam. The article concludes with a brief discussion of the 1908 silent film 'Fireside Reminiscences' as an example of the continued remediations of fire-gazing beyond the nineteenth century.

  19. Tensions generated in a lateral fabellotibial suture model. Comparison of methods of application of tension, fixation of tension and suture material.

    Science.gov (United States)

    Burton, A F; Horstman, C; Mason, D R

    2015-01-01

    To compare suture tension on a simulated lateral fabellotibial suture model using various methods of application of tension, fixation, and suture materials. Veterinarians constructed simulated lateral fabellotibial suture constructs on a tying stand with a force sensor. Participants used combinations of 45 kg test monofilament nylon, metric 7 braided polyethylene, crimps, crimper, or knots, with their choice of instruments to secure the constructs. The tension in completed constructs was measured and comparisons were made between nylon and polyethylene, the use of crimps compared to knots, and the use of a mechanical distractor compared to hand tightening techniques. A value of p tensions generated ranged from 1.4-171.0N. The median tension of nylon sutures (43.9N ± 44.7N) was significantly greater than polyethylene sutures (9.5 N ± 19.6N). The median tension of constructs secured with crimps (62.8N ± 42.4N) was significantly greater than constructs secured with knots (11.8 N ± 14.8N). The mechanical distractor generated significantly higher median tension (78N ± 50.4N), compared to methods without the device (18.6 N ± 25.1N). There was a large variability in the tension generated in simulated lateral fabellotibial constructs. Veterinarians who used nylon, crimps, and the mechanical tensioner generated constructs with greater tensions.

  20. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  1. Flame interactions and burning characteristics of two live leaf samples

    Science.gov (United States)

    Brent M. Pickett; Carl Isackson; Rebecca Wunder; Thomas H. Fletcher; Bret W. Butler; David R. Weise

    2009-01-01

    Combustion experiments were performed over a flat-flame burner that provided the heat source for multiple leaf samples. Interactions of the combustion behavior between two leaf samples were studied. Two leaves were placed in the path of the flat-flame burner, with the top leaf 2.5 cm above the bottom leaf. Local gas and particle temperatures, as well as local oxygen...

  2. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    Science.gov (United States)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

  3. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray

    2011-01-04

    In this paper, we investigate flame-vortex interaction in a lean premixed, laboratory scale, backward-facing step combustor. Two series of tests were conducted, using propane/hydrogen mixtures and carbon monoxide/hydrogen mixtures as fuels, respectively. Pressure measurements and high speed particle imaging velocimetry (PIV) were employed to generate pressure response curves as well as the images of the velocity field and the flame brush. We demonstrate that the step combustor exhibits several operating modes depending on the inlet conditions and fuel composition, characterized by the amplitude and frequency of pressure oscillations along with distinct dynamic flame shapes. We propose a model in which the combustor\\'s selection of the acoustic mode is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a relationship between these quantities at the operating conditions corresponding to each mode transition. Based on this relationship, we show that numerically-calculated density-weighted strained flame speed can be used to collapse the combustion dynamics data over the full range of conditions (inlet temperature, fuel composition, and equivalence ratio). Finally, we validate our strain flame based model by measuring the strain rate using the flame image and the velocity field from the PIV measurement. Our results show that the measured strain rates lie in the same range as the critical values at the transitions among distinct modes as those predicted by our model.

  4. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control

    Science.gov (United States)

    2016-07-30

    et al. [9], will be considered due to considerations on fuel -mixing within the experimental setup. The turbulent intensity theory postulates that...consisted of a delrin plastic case surrounding a 10 7 AWG solid core copper wire charging up to 12 needle electrodes on the same loop, though only...the leading edge of the flame, it was possible to reattach a lifted jet flame, while maintaining a constant fuel flow rate. b) With a negatively

  5. Flame stabilization in an electrical field at lowered pressures

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, N.A.; Ksenofontov, S.I.; Tyameykin, V.Ya.

    1975-01-01

    Results are presented of an experimental investigation of the effect of a longitudinal electric field on flame stabilization at low pressures. It is shown that in the absence of the effect of an ion wind at low pressures and the presence of an increase in the relative potential gradient, the collapse rates of a flame in an electrical field do not increase, which indicates that the electrical field has little influence on the kinetics of the chemical reactions.

  6. Transition of carbon nanostructures in heptane diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Chieh [National Cheng Kung University, Department of Mechanical Engineering (China); Hou, Shuhn-Shyurng [Kun Shan University, Department of Mechanical Engineering (China); Lin, Ta-Hui, E-mail: thlin@mail.ncku.edu.tw [National Cheng Kung University, Department of Mechanical Engineering (China)

    2017-02-15

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20–30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1–2.5 mm below the flame front were in the range of 20–25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  7. Quantification of extinction mechanism in counterflow premixed flames

    KAUST Repository

    Choi, Sangkyu

    2014-09-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H2, CH4, CH4+H2, CO+H2, and rich C3H8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H2, CH4, CH4+H2, CO+H2, and lean C3H8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H2 mixing to CO is found to be quite significant as compared to CH4+H2 cases, which can alter the flame behavior of CO flames to that of H2.

  8. Study on laser diagnostics applied to combustion and flame

    CERN Document Server

    Hu Zhi Yun; Guan Xiao Wei; Zhang Zheng Rong; Huang Mei Sheng; Liu Jian Sheng; Yuan Xiao; Ye Xi Sheng

    2002-01-01

    The laser combustion diagnostic system was developed. With tunable lasers, the temperatures and species in methane-air flame were given by laser-induced fluorescence, Raman scattering and CARS. The spectral-fit precision was less than 10% for single shot measurement. The fluorescence images of OH were obtained in the alcohol and methane-air flames. The structures of the temperature fields were analyzed

  9. Flame image monitoring and analysis in combustion management

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D. [CEZ, a.s. Elektrarna Detmarovice, Detmarovice (Czech Republic); Huttunen, A.J.; Nihtinen, J.J. [Imatran Voima Oy, IVO Technology Centre, Vantaa (Finland)

    1997-12-31

    When NO{sub x} emissions are reduced with new low-NO{sub x} burners and infurnace modifications in old pulverised fuel boilers, many changes in the firing conditions may occur. Depending on coal quality and the original furnace design, low-NO{sub x} burners, overtire air, low-excess-air firing and other primary modifications in various combinations may cause flame instability, increased slagging, increased minimum load and other difficulties in controlling the burning process. To find and solve these problems quicker, a new type of burner management system for pulverised fuel and oil-fired boilers was developed by Imatran Voima Oy. The DIMAC combustion management system monitors and analyses individually each burner or burner level. There are special software for wall and corner fired boilers. The DIMAC system is comprised of two functional subsystems: flame monitoring and flame analysis. The DIMAC enables the power plant operators to minimise NO{sub x} emissions and optimise the burning efficiency with varying coal qualities and boiler loads at the same time so that slagging, unburnt carbon in fly ash and flame stability stay in acceptable limits. It also guarantees that burners operate in good safety conditions in each burner level. The DIMAC system monitors perpendicularly each individual burner and evaluates flame parameters. Real-time flame monitoring and analysis allows the operator to directly see the effect of changing fuel distribution on flame pattern and flame stability. Based on data from the DIMAC references the system can improve boiler efficiency by 0.2 - 0.5 per cent unit as a result of more efficient control of the burning process. At the same time, the NO{sub x} formation can be reduced by 10 - 20 % 2 refs.

  10. An Experimental Insight into the Smoldering-Flaming Transition Phenomenon

    OpenAIRE

    Poorva Shrivastava; Chakshu Baweja; Herambraj Nalawade; A. Vinoth Kumar; Vikram Ramanan; Vinayak Malhotra

    2017-01-01

    Transitional phenomena of smoldering combustion over thin solid fuels are investigated. An experimental setup was upraised and implications of both smoldering and flaming external heat sources are estimated. Incense sticks were used as potential fuel and external smoldering heat source along with a fixed candle flame. The role of key controlling parameters, namely, separation distance and number of external heat sources in horizontal and vertical direction, was extensively examined. The surfa...

  11. Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments

    Science.gov (United States)

    Hung, Ching-Cheh; Cantrell, Gidget

    1994-01-01

    Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.

  12. Tensions of Teaching Media Literacy in Teacher Education

    Science.gov (United States)

    Ngomba-Westbrook, Nalova Elaine

    2013-01-01

    This study investigates the tensions a teacher educator faces in facilitating a media literacy teacher education course at the university level. Teaching tensions are conceptualized as a three-tier framework. At the first level, tensions may arise in the selection and application of pedagogies associated with critical and new/21st century…

  13. Investigating the tension load of rubber composites by impact ...

    Indian Academy of Sciences (India)

    An increase in the allowable stress when the belt is tensioned was examined during the test, to determine the effect of impact on the tension load. The obtained values of tension load are assessed using basic mathematical and statistical methods. Using the Design of Experiments method, factors that significantly affect the ...

  14. The Insulation Properties of Oil-Impregnated Insulation Paper Reinforced with Nano-TiO2

    Directory of Open Access Journals (Sweden)

    Ruijin Liao

    2013-01-01

    Full Text Available Oil-impregnated insulation paper has been widely used in transformers because of its low cost and desirable physical and electrical properties. However, research to improve the insulation properties of oil-impregnated insulation paper is rarely found. In this paper, nano-TiO2 was used to stick to the surface of cellulose which was used to make insulation paper. After oil-impregnated insulation paper reinforced by nano-TiO2 was prepared, the tensile strength, breakdown strength, and dielectric properties of the oil-impregnated insulation paper were investigated to determine whether the modified paper had a better insulation performance. The results show that there were no major changes in tensile strength, and the value of the breakdown strength was greatly improved from 51.13 kV/mm to 61.78 kV/mm. Also, the values of the relative dielectric constant, the dielectric loss, and conductivity declined. The discussion reveals that nano-TiO2 plays a major role in the phenomenon. Because of the existence of nano-TiO2, the contact interface of cellulose and oil was changed, and a large number of shallow traps were produced. These shallow traps changed the insulation properties of oil-impregnated insulation paper. The results show that the proposed solution offers a new method to improve the properties of oil-impregnated insulation paper.

  15. Detection of 34 plasticizers and 25 flame retardants in indoor air from houses in Sapporo, Japan.

    Science.gov (United States)

    Takeuchi, Shinji; Kojima, Hiroyuki; Saito, Ikue; Jin, Kazuo; Kobayashi, Satoshi; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2014-09-01

    Various plasticizers and flame retardants are contained in building materials and furniture produced for indoor environments. However, some of these material inclusions have been reported to cause endocrine-disrupting and mucosa-irritating effects. Because of the local climate, buildings in Sapporo are better insulated against cold weather than those in many other areas in Japan. In this study, we measured 59 compounds, including plasticizers (phthalates, adipates, and others) and flame retardants (organo-phosphates and brominated compounds), from indoor air samples from six houses in Sapporo. These compounds were measured separately in the gas phase and the particle phase using a two-stage cartridge equipped with a quartz fiber filter (1 μm mesh) and C18 solid-phase extraction disk for sampling and analyzed by GC/MS and LC/MS/MS (for the detection of brominated flame retardants). Among the 59 compounds measured in this study, 34 compounds were detected from the indoor air of the six houses. The highest concentration among the 34 compounds found in a newly built house was 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TXIB) at 20.8 μg/m(3). Di(2-ethyl-1-hexyl)terephthalate (DEHT), which has been used in recent years as an alternative to di(2-ethyl-1-hexyl)phthalate (DEHP), was found in all six houses, although at low concentrations ranging from 0.005 to 0.027 μg/m(3). To our knowledge, this is the first report of DEHT in indoor air in Japan. Among the compounds detected in this study, those with lower molecular weights tended to be captured in the C18 solid-phase extraction disk rather than in the quartz fiber filter. These results suggest that compounds with higher volatility exist preferentially in the gas phase, whereas compounds with lower volatility exist preferentially in the particulate phase in indoor air. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Surface Tension and Fingering of Miscible Interfaces

    Science.gov (United States)

    Abib, Mohammed; Liu, Jian-Bang; Ronney, Paul D.

    1999-01-01

    Experiments on miscible, buoyantly unstable reaction-diffusion fronts and non-reacting displacement fronts in Hele-Shaw cells show a fingering-type instability whose wavelengths (lambda*) are consistent with an interfacial tension (sigma) at the front caused by the change in chemical composition, even though the solutions are miscible in all proportions. In conjunction with the Saffman-Taylor model, the relation sigma = K/tau, where tau is the interface thickness and K approximately equal 4 +/- 2 x 10(exp -6) dyne, enables prediction of our measured values of lambda* as well as results from prior experiments on miscible interfaces. These results indicate that even for miscible fluids, surface tension is generally a more significant factor than diffusion in interfacial stability and flow characteristics.

  17. Cognitive function in tension-type headache.

    Science.gov (United States)

    Waldie, Karen E; Welch, David

    2007-12-01

    The association between tension-type headache and cognitive ability was assessed among 971 members of a longitudinal birth cohort study. Primary headache status was determined at age 32 years according to 2004 International Headache Society criteria, frequent childhood headaches were identified from parent report from ages 7 to 13 years, and data relating to cognitive and academic performance from ages 3 to 32 years were analyzed. Adult study members with tension-type headache did not score worse on any of the cognitive measures relative to headache-free controls or headache-free tinnitus sufferers. Instead, a consistent relation was found between childhood headache (regardless of headache diagnosis in adulthood) and lower scores on most cognitive measures from age 3 years through adolescence (verbal and performance IQ, receptive language, and reading scores). The data indicate that cognitive performance deficits in childhood headache sufferers can probably be attributed to factors stemming from utero or early childhood.

  18. Thermal Analysis of Bending Under Tension Test

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Martins, Paulo A.F.; Bay, Niels

    2014-01-01

    sometimes can cause lubricant film breakdown and galling. In order to replicate the production conditions in bending under tension testing it is thus important to control the tool/workpiece interface temperature. This can be done by pre-heating the tool, but it is essential that the interface temperature......The tribological conditions in deep drawing can be simulated in the Bending Under Tension test to evaluate the performance of new lubricants, tool materials, etc. Deep drawing production with automatic handling runs normally at high rate. This implies considerable heating of the tools, which...... during testing is similar to the one in the production tool. A universal sheet tribo-tester has been developed, which can run multiple tests automatically from coil. This allows emulating the temperature increase as in production. The present work performs finite element analysis of the evolution...

  19. Separation anxiety: Stress, tension and cytokinesis

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Krithika [Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Iglesias, Pablo A., E-mail: pi@jhu.edu [Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Robinson, Douglas N., E-mail: dnr@jhmi.edu [Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States)

    2012-07-15

    Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis. -- Highlights: Black-Right-Pointing-Pointer Cytokinesis progresses through three distinct mechanical phases. Black-Right-Pointing-Pointer Cortical tension initially resists deformation of mother cell. Black-Right-Pointing-Pointer Late in cytokinesis, cortical tension provides stress, enabling furrow ingression. Black-Right-Pointing-Pointer A mechanosensory feedback control system regulates cytokinesis.

  20. Flame resistant cellulosic substrate using banana pseudostem sap

    Directory of Open Access Journals (Sweden)

    Basak S.

    2015-03-01

    Full Text Available Flame retardancy was imparted in cellulosic cotton textile using banana pseudostem sap (BPS, an eco-friendly natural product. The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of both the control and the treated fabrics were analysed in terms of limiting oxygen index (LOI, horizontal and vertical flammability. Fabrics treated with the non-diluted BPS were found to have good flame retardant property with LOI of 30 compared to the control fabric with LOI of 18, i.e., an increase of 1.6 times. In the vertical flammability test, the BPS treated fabric showed flame for a few seconds and then, got extinguished. In the horizontal flammability test, the treated fabric showed no flame, but was burning only with an afterglow with a propagation rate of 7.5 mm/min, which was almost 10 times lower than that noted with the control fabric. The thermal degradation and the pyrolysis of the fabric samples were studied using a thermogravimetric analysis (TGA, and the chemical composition by FTIR, SEM and EDX, besides the pure BPS being characterized by EDX and mass spectroscopy. The fabric after the treatment was found to produce stable natural khaki colour, and there was no significant degradation in mechanical strengths. Based on the results, the mechanism of imparting flame retardancy to cellulosic textile and the formation of natural colour on it using the proposed BPS treatment have been postulated.