WorldWideScience

Sample records for tensile stress generation

  1. Tensile stress generation by optical breakdown in tissue: Experimental investigations and numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany); Scammon, R.J.; Godwin, R.P. [Los Alamos National Lab., NM (United States)

    1999-03-01

    Biological tissue is more susceptible to damage from tensile stress than to compressive stress. Tensile stress may arise through the thermoelastic response of laser-irradiated media. Optical breakdown, however, has to date been exclusively associated with compressive stress. The authors show that this is appropriate for water, but not for tissues for which the elastic-plastic material response needs to be considered. The acoustic transients following optical breakdown in water and cornea were measured with a fast hydrophone and the cavitation bubble dynamics, which is closely linked to the stress wave generation, was documented by flash photography. Breakdown in water produced a monopolar acoustic signal and a bubble oscillation in which the expansion and collapse phases were symmetric. Breakdown in cornea produced a bipolar acoustic signal coupled with a pronounced shortening of the bubble expansion phase and a considerable prolongation of its collapse phase. The tensile stress wave is related to the abrupt end of the bubble expansion. Numerical simulations using the MESA-2D code were performed assuming elastic-plastic material behavior in a wide range of values for the shear modulus and yield strength. The calculations revealed that consideration of the elastic-plastic material response is essential to reproduce the experimentally observed bipolar stress waves. The tensile stress evolves during the outward propagation of the acoustic transient and reaches an amplitude of 30--40% of the compressive pulse.

  2. Tensile-stressed microelectromechanical apparatus and micromirrors formed therefrom

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM

    2006-05-16

    A microelectromechanical (MEM) apparatus is disclosed which includes one or more tensile-stressed actuators that are coupled through flexures to a stage on a substrate. The tensile-stressed actuators, which can be formed from tensile-stressed tungsten or silicon nitride, initially raise the stage above the substrate without any applied electrical voltage, and can then be used to control the height or tilt angle of the stage. An electrostatic actuator can also be used in combination with each tensile-stressed actuator. The MEM apparatus has applications for forming piston micromirrors or tiltable micromirrors and independently addressable arrays of such devices.

  3. Tensile-stressed microelectromechanical apparatus and tiltable micromirrors formed therefrom

    Science.gov (United States)

    Fleming, James G.

    2007-01-09

    A microelectromechanical (MEM) apparatus is disclosed which includes a pair of tensile-stressed actuators suspending a platform above a substrate to tilt the platform relative to the substrate. A tensile stress built into the actuators initially tilts the platform when a sacrificial material used in fabrication of the MEM apparatus is removed. Further tilting of the platform can occur with a change in the ambient temperature about the MEM apparatus, or by applying a voltage to one or both of the tensile-stressed actuators. The MEM apparatus can be used to form a tiltable micromirror or an array of such devices, and also has applications for thermal management within satellites.

  4. Tensile-stressed microelectromechanical apparatus and microelectromechanical relay formed therefrom

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM

    2008-03-04

    A microelectromechanical (MEM) apparatus is disclosed which includes a shuttle suspended above a substrate by two or more sets of tensile-stressed beams which are operatively connected to the shuttle and which can comprise tungsten or a silicon nitride/polysilicon composite structure. Initially, the tensile stress in each set of beams is balanced. However, the tensile stress can be unbalanced by heating one or more of the sets of beams; and this can be used to move the shuttle over a distance of up to several tens of microns. The MEM apparatus can be used to form a MEM relay having relatively high contact and opening forces, and with or without a latching capability.

  5. The Creep Properties of Fine Sandstone under Uniaxial Tensile Stress

    Directory of Open Access Journals (Sweden)

    Jiang Haifei

    2015-09-01

    Full Text Available A graduated uniaxial direct tensile creep test for fine sandstone is conducted by adopting a custom-designed direct tensile test device for rock. The experiment shows that the tensile creep of fine sandstone has similar creep curve patterns to those of compression creep, while the ratios of the creep strain to the total strain obtained in the tensile tests are substantially higher than those obtained for similar compression tests, which indicates that the creep ability of rock in the tensile process is higher than that in the uniaxial compression process. Based on the elastic modulus in the approximately linear portion of the obtained isochronous stress-strain curves of the tensile creep, the time dependence of the elasticity modulus for the Kelvin model is evaluated, and a revised generalized Kelvin model is obtained by substitution into the generalized Kelvin model. A new viscousplastic model is proposed to describe the accelerated creep properties, and this model is combined in series with the revised generalized Kelvin model to form a new nonlinear viscoelastic-plastic creep model that can describe the properties of attenuation creep, steady creep, and accelerated creep. Comparison of the test and theoretical curves demonstrates that they are nearly identical, which verifies the performance of the model.

  6. Blanking Method with Aid of Scrap to Reduce Tensile Residual Stress on Sheared Edge

    Science.gov (United States)

    Yasutomi, T.; Yonemura, S.; Yoshida, T.; Mizumura, M.; Hiwatashi, S.

    2017-09-01

    A simple shearing method to reduce tensile residual stress on a sheared edge is highly desired in the automotive industry because this type of stress deteriorates the fatigue property of automotive parts. In this study, the effect of a coining method with a shearing scrap material on a sheared edge was investigated. The scrap part of a sheared plate has a fracture surface shape similar to that of the product part since these parts are generated by separation of a single plate with crack propagation. Therefore, it is possible to impose plastic strain over the entire fracture surface by using the scrap part as a coining tool. Effectiveness of this method was investigated for high-tensile-strength steel. Using this method, the tensile residual stress on the sheared surface was significantly reduced and work hardening was slightly increased. The effects of shearing clearance and coining stroke were also investigated. Tensile residual stress decreased as the coining stroke increased; however, it saturated at a certain stroke. The stroke at which tensile residual stress saturated was relatively small at a large clearance. In particular, the amount of plastic deformation on fracture surface increased when coining stroke became large. These tendencies could be explained by the conditions of contact, which were investigated using finite element analysis.

  7. Path-integral simulation of graphene monolayers under tensile stress.

    Science.gov (United States)

    Herrero, Carlos P; Ramírez, Rafael

    2017-11-27

    Finite-temperature properties of graphene monolayers under tensile stress have been studied by path-integral molecular dynamics (PIMD) simulations. This method allows one to consider the quantization of vibrational modes in these crystalline membranes and to analyze the influence of anharmonic effects on the membrane properties. Quantum nuclear effects turn out to be appreciable on the structural and thermodynamic properties of graphene at low temperature, and they can even be noticeable at room temperature. Such quantum effects become more relevant as the applied stress is increased, mainly for properties related to out-of-plane atomic vibrations. The relevance of quantum dynamics in the out-of-plane motion depends on the system size, and is enhanced by tensile stress. For applied tensile stresses, we analyze the contribution of the elastic energy to the internal energy of graphene. Results of PIMD simulations are compared with calculations based on a harmonic approximation for the vibrational modes of the graphene lattice. This approximation describes rather well the structural properties of graphene, provided that the frequencies of ZA (flexural) acoustic modes in the transverse direction include a pressure-dependent correction.

  8. Tensile stress-strain behavior of boron/aluminum laminates

    Science.gov (United States)

    Sova, J. A.; Poe, C. C., Jr.

    1978-01-01

    The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.

  9. Impact of shipbuilding steel plates with an initial tensile stress

    Science.gov (United States)

    Grolleau, V.; Mahéo, L.; Rio, G.

    2003-09-01

    The present investigation is concerned with the impact of thin steel plates used in shipbuilding. The problem is studied numerically with the commercial code LS-DYNA and experimentally with an apparatus propelling a 200g projectile up to 30m/s with a crossbow. The clamped sample of sheet metal is rectangular (250mm wide; 20mm width and 4mm thick), in common shipbuilding material with a 360MPa elastic limit. Impact takes place at the center of the sample. Moreover, an initial tensile stress can be applied to the plate, up to 300MPa. The aim of this study is first to illustrate the influences of the boundary conditions and the initial tensile stress value on the deflection of the central point of the plate. The second part is concerned with wave propagation. The objective is to explain analytically the dispersive form of the measured strains at different locations and to establish the relationship between the flexural waves and the observed losses of contact.

  10. Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers

    Directory of Open Access Journals (Sweden)

    Schümann Kerstin

    2016-09-01

    Full Text Available Thermoplastic polymers exhibit non-isochoric behaviour during tensile and compression testing as well as particular deformations like local necking (tension or buckling (compression. A method for the determination of Cauchy stresses from tensile and compression tests is presented, that considers the actual deformations of the test specimens. The exact geometry of the specimens in the respective present configuration is determined in photographs, which are taken continuously throughout the test. The engineering stresses at several time points are converted into Cauchy stresses using newly developed formulas in consideration of the actual specimen geometry. For validation finite element analyses of the tensile and compression tests are performed using the identified stress-strain curves. The numerical results show good agreement with the experiments for the tested polymers. Thus a method for conversion of engineering to Cauchy stresses in tensile and compression tests could be established considering the non-isochoric deformation in plasticity. With this method “true” stress-strain curves as input for finite element material models can be identified for arbitrary materials.

  11. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    Energy Technology Data Exchange (ETDEWEB)

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  12. Mitigation of Tensile Weld Stresses in Alloy 22 Using Laser Peening

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H L; Evans, K J; Hackel, L A; Rankin, J E; Yamamoto, R M; Demma, A G; Dewald, A T; Lee, M J; Hill, M R

    2002-11-27

    The goal of the Yucca Mountain Project (YMP) is safe permanent disposal of high-level nuclear waste. One of the many technical challenges to this plan is the design of the Engineered Barrier System (EBS) including the waste package that will contain the radioactive waste. One potential failure mode of the waste package is stress corrosion cracking (SCC), which occurs when three criteria simultaneously exist. These criteria are a potentially corrosive environment, a material susceptible to SCC, and the presence of tensile residual stresses at the surface of the material. While many design decisions have been made to attempt to minimize the occurrence of the first two conditions, it is necessary to control the third condition, the presence of tensile residual stresses. These stresses occur as a result of a variety of manufacturing techniques, including welding. While most of the residual stresses due to the welding of the waste package can be mitigated through solution heat-treating, the final closure weld, which occurs after the radioactive waste has been placed in the waste package, must be treated to eliminate the presence of tensile residual stress near the surface. Laser peening is a commercially proven technology that has been shown to create compressive residual stress in both unstressed materials, as well as materials containing tensile surface residual stresses generated by welding. Lawrence Livermore National Laboratory (LLNL) has developed the laser peening process and the associated hardware for use by the YMP. Upon completion of the testing and engineering phases, LLNL will transfer the laser peening technology to U.S. industry and assist DOE in developing vendors to supply production units to be installed at the YMP facilities. The overall testing effort is divided into-two phases. Phase I of this project consisted of a study into the effectiveness of laser peening in generating compressive stress in small Alloy 22 base metal coupons and converting

  13. A silicon microwire under a three-dimensional anisotropic tensile stress

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaoyu [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Poilvert, Nicolas [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Liu, Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Xiong, Yihuang [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Cheng, Hiu Yan [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Badding, John V. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Dabo, Ismaila [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Gopalan, Venkatraman [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

    2017-02-27

    Three-dimensional tensile stress, or triaxial tensile stress, is difficult to achieve in a material. We present the investigation of an unusual three-dimensional anisotropic tensile stress field and its influence on the electronic properties of a single crystal silicon microwire. The microwire was created by laser heating an amorphous silicon wire deposited in a 1.7 μm silica glass capillary by high pressure chemical vapor deposition. Tensile strain arises due to the thermal expansion mismatch between silicon and silica. Synchrotron X-ray micro-beam Laue diffraction (μ-Laue) microscopy reveals that the three principal strain components are +0.47% (corresponding to a tensile stress of +0.7 GPa) along the fiber axis and nearly isotropic +0.02% (corresponding to a tensile stress of +0.3 GPa) in the cross-sectional plane. This effect was accompanied with a reduction of 30 meV in the band gap energy of silicon, as predicted by the density-functional theory calculations and in close agreement with energy-dependent photoconductivity measurements. While silicon has been explored under many stress states, this study explores a stress state where all three principal stress components are tensile. Given the technological importance of silicon, the influence of such an unusual stress state on its electronic properties is of fundamental interest.

  14. Circumferential Notched Tensile Testing for Correlation of the Stress Intensity Factor ( K I ) and Stress Corrosion Crack Growth Rate

    Science.gov (United States)

    Rihan, R.; Singh Raman, R. K.; Ibrahim, R. N.

    2008-07-01

    A novel fracture mechanics technique has been employed for the determination of crack growth rate and threshold stress intensity factor ( K ISCC) for stress corrosion cracking (SCC) using small circumferential notch tensile (CNT) specimens. The technique was applied successfully for testing SCC susceptibility of AISI 1020 mild steel in 12.5 M NaOH at 150 °C. The crack growth rate of mild steel in 12.5 M NaOH solution at 150 °C has been determined at different stress intensity factors ( K I ), and the K ISCC has been determined to be 29 MPa·m1/2. The surfaces of fractured specimens have been examined by scanning electron microscopy (SEM) in order to establish intergranular propagation of stress corrosion cracks. The CNT testing is a simple, relatively fast, and cost-advantageous approach for generating crack growth rate and K ISCC data.

  15. Modifications of system for elevated temperature tensile testing and stress-strain measurement of metal matrix composites

    Science.gov (United States)

    Diaz, J. O.

    1985-01-01

    Composites consisting of tungsten alloy wires in superalloy matrices are being studied because they offer the potential for increased strength compared to current materials used at temperatures up to at least 1093 C (2000F). Previous research at the NASA Lewis Research Center and at other laboratories in the U.S., Europe, and Japan has demonstrated laboratory feasibility for fiber reinforced superalloys (FRS). The data for the mechanical and physical properties used to evaluate candidate materials is limited and a need exists for a more detailed and complete data base. The focus of this work is to develop a test procedure to provide a more complete FRS data base to quantitatively evaluate the composite's potential for component applications. This paper will describe and discuss the equipment and procedures under development to obtain elevated temperature tensile stress-strain, strength and modulus data for the first generation of tungsten fiber reinforced superalloy composite (TFRS) materials. Tensile stress-strain tests are conducted using a constant crosshead speed tensile testing machine and a modified load-strain measuring apparatus. Elevated temperature tensile tests are performed using a resistance wound commercial furnace capable of heating test specimens up to 1093 C (2000 F). Tensile stress-strain data are obtained for hollow tubular stainless steel specimens serving as a prototype for future composite specimens.

  16. Discrete fracture in quasi-brittle materials under compressive and tensile stress states

    CSIR Research Space (South Africa)

    Klerck, PA

    2004-01-01

    Full Text Available A method for modelling discrete fracture in geomaterials under tensile and compressive stress fields has been developed based on a Mohr-Coulomb failure surface in compression and three independent anisotropic rotating crack models in tension...

  17. Coulomb stress change during and after tensile fracture opening in a geothermal reservoir

    NARCIS (Netherlands)

    Urpi, L.; Blöcher, G.; Zimmermann, G.; Wees, J.D. van; Fokker, P.

    2013-01-01

    Stress shadowing and the ratio of shear to normal stress in the rock surrounding a newly created tensile fracture are investigated. Shearing on plane of weakness near the stimulated volume can be inhibited or promoted by change in poro- and thermo-elastic stress, while pore pressure increase tends

  18. Shutdown-induced tensile stress in monolithic miniplates as a possible cause of plate pillowing at very high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Pavel G [Idaho National Laboratory; Ozaltun, Hakan [Idaho National Laboratory; Robinson, Adam Brady [Idaho National Laboratory; Rabin, Barry H [Idaho National Laboratory

    2014-04-01

    Post-irradiation examination of Reduced Enrichment for Research and Test Reactors (RERTR)-12 miniplates showed that in-reactor pillowing occurred in at least 4 plates, rendering performance of these plates unacceptable. To address in-reactor failures, efforts are underway to define the mechanisms responsible for in-reactor pillowing, and to suggest improvements to the fuel plate design and operational conditions. To achieve these objectives, the mechanical response of monolithic fuel to fission and thermally-induced stresses was modeled using a commercial finite element analysis code. Calculations of stresses and deformations in monolithic miniplates during irradiation and after the shutdown revealed that the tensile stress generated in the fuel increased from 2 MPa to 100 MPa at shutdown. The increase in tensile stress at shutdown possibly explains in-reactor pillowing of several RERTR-12 miniplates irradiated to the peak local burnup of up to 1.11x1022 fissions/cm3 . This paper presents the modeling approach and calculation results, and compares results with post-irradiation examinations and mechanical testing of irradiated fuel. The implications for the safe use of the monolithic fuel in research reactors are discussed, including the influence of fuel burnup and power on the magnitude of the shutdown-induced tensile stress.

  19. Dynamic fracture of tantalum under extreme tensile stress.

    Science.gov (United States)

    Albertazzi, Bruno; Ozaki, Norimasa; Zhakhovsky, Vasily; Faenov, Anatoly; Habara, Hideaki; Harmand, Marion; Hartley, Nicholas; Ilnitsky, Denis; Inogamov, Nail; Inubushi, Yuichi; Ishikawa, Tetsuya; Katayama, Tetsuo; Koyama, Takahisa; Koenig, Michel; Krygier, Andrew; Matsuoka, Takeshi; Matsuyama, Satoshi; McBride, Emma; Migdal, Kirill Petrovich; Morard, Guillaume; Ohashi, Haruhiko; Okuchi, Takuo; Pikuz, Tatiana; Purevjav, Narangoo; Sakata, Osami; Sano, Yasuhisa; Sato, Tomoko; Sekine, Toshimori; Seto, Yusuke; Takahashi, Kenjiro; Tanaka, Kazuo; Tange, Yoshinori; Togashi, Tadashi; Tono, Kensuke; Umeda, Yuhei; Vinci, Tommaso; Yabashi, Makina; Yabuuchi, Toshinori; Yamauchi, Kazuto; Yumoto, Hirokatsu; Kodama, Ryosuke

    2017-06-01

    The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of [Formula: see text] ~2 × 108 to 3.5 × 108 s-1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.

  20. Relating Residual Stress and Substructural Evolution During Tensile Deformation of an Aluminum-Manganese Alloy

    Science.gov (United States)

    Lodh, Arijit; Tak, Tawqeer Nasir; Prakash, Aditya; Guruprasad, P. J.; Hutchinson, Christopher; Samajdar, Indradev

    2017-11-01

    Interrupted tensile tests were coupled with ex situ measurements of residual stress and microtexture. The residual stress quantification involved measurements of six independent Laue spots and conversion of the interplanar spacings to the residual stress tensor. A clear orientation-dependent residual stress evolution emerged from the experiments and the numerical simulations. For the orientations undergoing negligible changes in ρ GND (density of geometrically necessary dislocation), the residual stress developments appeared to be governed by the elastic stiffness of the grain clusters. For the others, the evolution of the residual stress and ρ GND exhibited a clear orientation-dependent scaling.

  1. Experimental and numerical determination of critical stress intensity factor of aluminum curved thin sheets under tensile stress

    Energy Technology Data Exchange (ETDEWEB)

    Heidarvand, Majid; Soltani, Naser; Hajializadeh, Farshid [University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-05-15

    We determined the fracture toughness of aluminum curved thin sheets using tensile stress tests and finite element method. We applied Linear elastic fracture mechanics (LEFM) and Feddersen procedure to evaluate stress intensity factor of the samples with central wire-cut cracks and fatigue cracks with different lengths to investigate the notch radius effect. Special fixture design was utilized to establish uniform stress distribution at the crack zone. Less than 9 % difference was found between the wire-cut and the fatigue cracked samples. Since generating central fatigue crack with different lengths required so much effort, wire-cut cracked samples were used to determine critical stress intensity factor. Finite element analysis was also performed on one-quarter of the specimen using both the singular Borsum elements and the regular isoparametric elements to further investigate fracture toughness of the samples. It was observed that the singular elements presented better results than the isoparametric ones. A slight difference was also found between the results obtained from finite element method using singular elements and the experimental results.

  2. Determination of full range stress-strain behavior of pipeline steels using tensile characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hertele, Stijn [FWO Flanders Aspirant, Laboratory Soete, Ghent University (Belgium)], email: Stijn.Hertele@UGent.be; Waele, Wim De; Denys, Rudi [Laboratory Soete, Ghent University (Belgium)

    2010-07-01

    In the natural gas sector, the common practice for determining the post-yield behavior of pipelines is to use the Ramberg-Osgood equation, however it is inaccurate for pipelines with a high yield to tensile (Y/T) ratio and the authors have developed a UGent stress strain model to address this issue. This paper aims at providing a methodology for determining the parameter values required for the UGent model. The methodology was tested on 8 stress strain curves for a wide range of steel grades and Y/T ratios. Results showed that the UGent model can accurately predict stress strain curves from Young's modulus, tensile strength, the 0.2% proof stress and the uniform elongation, all common tensile test characteristics, as well as the 1% proof stress using the methodology proposed herein. This study showed that the post-yield behavior of pipelines with a high Y/T ratio can be determined by using common tensile tests and the UGent model.

  3. Strength criterion for rocks under compressive-tensile stresses and its application

    Directory of Open Access Journals (Sweden)

    Mingqing You

    2015-08-01

    Full Text Available Estimating in-situ stress with hydraulic borehole fracturing involves tensile strength of rock. Several strength criteria with three parameters result in tensile strengths with great differences, although they may describe the relation between strength of rock and confining pressure with low misfits. The exponential criterion provides acceptable magnitudes of tensile strengths for granites and over-estimates that for other rocks, but the criterion with tension cut-off is applicable to all rocks. The breakdown pressure will be lower than the shut-in pressure during hydraulic borehole fracturing, when the maximum horizontal principal stress is 2 times larger than the minor one; and it is not the peak value in the first cycle, but the point where the slope of pressure-time curve begins to decline.

  4. Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue.

    Science.gov (United States)

    Gemmiti, Christopher V; Guldberg, Robert E

    2009-11-01

    Cartilage tissue-engineering strategies aim to produce a functional extracellular matrix similar to that of the native tissue. However, none of the myriad approaches taken have successfully generated a construct possessing the structure, composition, and mechanical properties of healthy articular cartilage. One possible approach to modulating the matrix composition and mechanical properties of engineered tissues is through the use of bioreactor-driven mechanical stimulation. In this study, we hypothesized that exposing scaffold-free cartilaginous tissue constructs to 7 days of continuous shear stress at 0.001 or 0.1 Pa would increase collagen deposition and tensile mechanical properties compared to that of static controls. Histologically, type II collagen staining was evident in all construct groups, while a surface layer of type I collagen increased in thickness with increasing shear stress magnitude. The areal fraction of type I collagen was higher in the 0.1-Pa group (25.2 +/- 2.2%) than either the 0.001-Pa (13.6 +/- 3.8%) or the static (7.9 +/- 1.5%) group. Type II collagen content, as assessed by ELISA, was also higher in the 0.1-Pa group (7.5 +/- 2.1%) compared to the 0.001-Pa (3.0 +/- 2.25%) or static groups (3.7 +/- 3.2%). Temporal gene expression analysis showed a flow-induced increase in type I and type II collagen expression within 24 h of exposure. Interestingly, while the 0.1-Pa group showed higher collagen content, this group retained less sulfated glycosaminoglycans in the matrix over time in bioreactor culture. Increases in both tensile Young's modulus and ultimate strength were observed with increasing shear stress, yielding constructs possessing a modulus of nearly 5 MPa and strength of 1.3 MPa. This study demonstrates that shear stress is a potent modulator of both the amount and type of synthesized extracellular matrix constituents in engineered cartilaginous tissue with corresponding effects on mechanical function. Copyright 2009 Wiley

  5. Effect of Zirconia Thickness on the Tensile Stress of Zirconia Based All-Ceramic Restorations

    Directory of Open Access Journals (Sweden)

    Masood Shiezadeh

    2015-09-01

    Full Text Available Introduction: The purpose of the presented study was to evaluate the effect of zirconia thickness on the tensile stress of zirconia based all-ceramic restorations. Methods: Twenty zirconia disks with 10mm diameter were prepared in two groups using CAD/CAM system. The thickness of zirconia was 0.5mm in first group and 0.3mm in second group. After sintering, 0.4mm glass ceramic porcelain was applied to each disk. Then, sintering and glazing of porcelain carried out. Instron testing machine with 1mm/min crosshead speed used to evaluate the failure load of the samples. Biaxial Flexural strength standard formula employed to calculate tensile stress of specimens. Statistical analysis performed using SPSS software. Results: Although data analysis showed more maximum tensile stress in 1st group, no significant differences were found between two groups. Conclusion: Zirconia with 0.5mm and 0.3mm thicknesses cause similar tensile stress in all-ceramic restorations and thickness of these laminates could be reduced to 0.7mm.

  6. Tensile radial stress in the spinal cord related to arachnoiditis or tethering: a numerical model.

    Science.gov (United States)

    Bertram, C D; Bilston, L E; Stoodley, M A

    2008-07-01

    Spinal arachnoiditis comprises fibrous scarring of the subarachnoid space, following spinal trauma or inflammation, and is often associated with syringomyelia. We hypothesised that cord-to-dura attachments could cause transient tensile cord radial stress, as pressure waves propagate. This was tested in a fluid-structure interaction model, simulating three types of cord tethering, with 'arachnoiditis' confined to a short mid-section of the cord. The annular system was excited abdominally with a short transient, and the resulting Young and Lamb waves and reflections were analysed. Radial mid-section tethering was less significant than axial tethering, which gave rise to tensile radial stress locally when the cord was not fixed cranially. Simulated as inextensible string connections to the dura, arachnoiditis caused both localised tensile radial stress and localised low pressure in the cord as the transient passed. The extent of these effects was sensitive to the relative stiffness of the dura and cord. Tensile radial stress may create a syrinx in previously normal cord tissue, and transiently lowered pressure may draw in interstitial fluid, causing the syrinx to enlarge if fluid exit is inhibited. The suggested mechanism could also explain the juxtaposition of syrinxes to regions of arachnoiditis.

  7. High quality factor resonance at room temperature with nanostrings under high tensile stress

    Science.gov (United States)

    Verbridge, Scott S.; Parpia, Jeevak M.; Reichenbach, Robert B.; Bellan, Leon M.; Craighead, H. G.

    2006-06-01

    Quality factors as high as 207 000 are demonstrated at room temperature for radio-frequency silicon nitride string resonators with cross sectional dimensions on the scale of 100 nm, made with a nonlithographic technique. A product of quality factor and surface to volume ratio greater than 6000 nm-1 is presented, the highest yet reported. Doubly clamped nanostring resonators are fabricated in high tensile-stress silicon nitride using a nonlithographic electrospinning process. We fabricate devices with an electron beam process, and demonstrate frequency and quality factor results identical to those obtained with the nonlithographic technique. We also compare high tensile-stress doubly clamped beams with doubly clamped and cantilever resonators made of a lower stress material, as well as cantilever beams made of the high stress material. In all cases, the doubly clamped high stress beams have the highest quality factors. We therefore attribute the high quality factors to high tensile stress. Potential dominant loss mechanisms are discussed, including surface and clamping losses, and thermoelastic dissipation. Some practical advantages offered by these nanostrings for mass sensing are discussed.

  8. Experimental scale model study of cracking in brick masonry under tensile and shear stress

    Directory of Open Access Journals (Sweden)

    Gálvez Ruiz, J. C.

    2008-09-01

    Full Text Available This article discusses the results of research conducted on the failure behaviour of brick masonry under tensile and shear stress. The study was designed to develop test models and generate experimental results able to provide greater insight into tensile and shear stresses cracking in brick masonry. The results of a campaign conducted with two types of specimens are discussed: 1 double-edge notched specimens under non-symmetrical compression stress, and 2 three point bending specimens under nonsymmetrical loading. Tests were run on specimens of similar size (similarity rate 2 and different bed joint orientation to determine how bed joint orientation affects crack propagation. The tests were conducted on scale models (1/4 of a single wythe, stretcher bond brickwork masonry wall one half foot thick.Este artículo presenta los resultados de la investigación realizada sobre el comportamiento en rotura de la fábrica de ladrillo bajo solicitaciones de tracción y cortante. La investigación está encaminada a proporcionar modelos de ensayo y resultados experimentales que permitan conocer mejor los procesos de agrietamiento de la fábrica de ladrillo bajo tensiones normales de tracción y tangenciales. Se presentan los resultados de una campaña experimental desarrollada con dos tipos de probeta: 1 la probeta compacta con doble entalla solicitada a compresión asimétrica, y 2 la probeta de flexión con entalla solicitada bajo carga asimétrica aplicada en tres puntos. Se han ensayado probetas de dos tamaños semejantes (razón de semejanza 2 y varias orientaciones de los tendeles, con el fin de ver cómo afecta la orientación de los tendeles en la propagación de las grietas. Los ensayos se han realizado con probetas a escala 1/4 de un muro de fábrica de ladrillo de una hoja a soga de medio pie de espesor.

  9. Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber

    Science.gov (United States)

    Zhenkun, Lei; Quan, Wang; Yilan, Kang; Wei, Qiu; Xuemin, Pan

    2010-11-01

    The single fiber/microdroplet tensile test is applied for evaluating the interfacial mechanics between a fiber and a resin substrate. It is used to investigate the influence of a polymer coating on a Kevlar-29 fiber surface, specifically the stress transfer between the fiber and epoxy resin in a microdroplet. Unlike usual tests, this new test ensures a symmetrical axial stress on the embedded fiber and reduces the stress singularity that appears at the embedded fiber entry. Using a homemade loading device, symmetrical tensile tests are performed on a Kevlar-29 fiber with or without polyvinylchloride (PVC) coating, the surface of which is in contact with two epoxy resin microdroplets during curing. Raman spectra on the embedded fiber are recorded by micro-Raman Spectroscopy under different strain levels. Then they are transformed to the distributions of fiber axis stress based on the relationship between stress and Raman shift. The Raman results reveal that the fiber axial stresses increase with the applied loads, and the antisymmetric interfacial shear stresses, obtained by a straightforward balance of shear-to-axial forces argument, lead to the appearance of shear stress concentrations at a distance to the embedded fiber entry. The load is transferred from the outer fiber to the embedded fiber in the epoxy microdroplet. As is observed by scanning electronic microscopy (SEM), the existence of a flexible polymer coating on the fiber surface reduces the stress transfer efficiency.

  10. Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel

    Science.gov (United States)

    Qiu, Fasheng; Ren, Wenwei; Tian, Gui Yun; Gao, Bin

    2017-06-01

    Stress measurement that provides early indication of stress status has become increasingly demanding in the field of Non-destructive testing and evaluation (NDT&E). Bridging the correlation between micro magnetic properties and the applied tensile stress is the first conceptual step to come up with a new method of non-destructive testing. This study investigates the characterization of applied tensile stress with in-situ magnetic domain imaging and their dynamic behaviors by using magneto-optical Kerr effect (MOKE) microscopy assisted with magneto-optical indicator film (MOIF). Threshold magnetic field (TMF) feature to reflect 180 ° domain wall (DW) characteristics behaviors in different grains is proposed for stress detection. It is verified that TMF is a threshold feature with better sensitivity and brings linear correlation for stress characterization in comparison to classical coercive field, remanent magnetization, hysteresis loss and permeability parameters. The results indicate that 180 ° DWs dynamic in the inner grain is highly correlated with stress. The DW dynamics of turn over (TO) tests for different grains is studied to illustrate the repeatability of TMF. Experimental tests of high permeability grain oriented (HGO) electrical steels under stress loading have been conducted to verify this study.

  11. Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing

    Science.gov (United States)

    Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.

    2018-01-01

    Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x-t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.

  12. Corrosion of metals exposed to 25% magnesium chloride solution and tensile stress: Field and laboratory studies

    Directory of Open Access Journals (Sweden)

    Xianming Shi

    2017-12-01

    Full Text Available The use of chemicals for snow and ice control operations is a common practice for improving the safety and mobility of roadways in cold climate, but brings significant concerns over their risks including the corrosive effects on transportation infrastructure and motor vehicles. The vast majority of existing studies and methods to test the deicer corrosivity have been restricted to laboratory environments and unstressed metals, which may not reliably simulate actual service conditions. As such, we report a case study in which stainless steel SS 304 (unstressed and externally tensile stressed, aluminum (Al 1100 and low carbon steel (C1010 coupons were exposed to 25% MgCl2 under field conditions for six weeks. A new corrosion test-bed was developed in Montana to accelerate the field exposure to this deicer. To further investigate the observed effect of tensile stress on the corrosion of stainless steel, SS 304 (unstressed and externally stressed coupons were exposed to 25% MgCl2 solution under the laboratory conditions. The C 1010 exhibited the highest percentage of rust area and suffered the most weight loss as a result of field exposure and MgCl2 sprays. In terms of ultimate tensile strength, the Al 1100 coupons saw the greatest reduction and the unstressed and externally stressed SS 304 coupons saw the least. The ability of MgCl2 to penetrate deep into the matrix of aluminum alloy poses great risk to such structural material. Tensile stressed SS 304 suffered more corrosion than unstressed SS 304 in both the field and laboratory conditions. Results from this case study may shed new light on the deicer corrosion issue and help develop improved field testing methods to evaluate the deicer corrosivity to metals in service.

  13. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  14. Direct Shear Tests of Sandstone Under Constant Normal Tensile Stress Condition Using a Simple Auxiliary Device

    Science.gov (United States)

    Cen, Duofeng; Huang, Da

    2017-06-01

    Tension-shear failure is a typical failure mode in the rock masses in unloading zones induced by excavation or river incision, etc., such as in excavation-disturbed zone of deep underground caverns and superficial rocks of high steep slopes. However, almost all the current shear failure criteria for rock are usually derived on the basis of compression-shear failure. This paper proposes a simple device for use with a servo-controlled compression-shear testing machine to conduct the tension-shear tests of cuboid rock specimens, to test the direct shear behavior of sandstone under different constant normal tensile stress conditions ( σ = -1, -1.5, -2, -2.5 and -3 MPa) as well as the uniaxial tension behavior. Generally, the fracture surface roughness decreases and the proportion of comminution areas in fracture surface increases as the change of stress state from tension to tension-shear and to compression-shear. Stepped fracture is a primary fracture pattern in the tension-shear tests. The shear stiffness, shear deformation and normal deformation (except the normal deformation for σ = -1 MPa) decrease during shearing, while the total normal deformation containing the pre-shearing portion increases as the normal tensile stress level (| σ|) goes up. Shear strength is more sensitive to the normal tensile stress than to the normal compressive stress, and the power function failure criterion (or Mohr envelope form of Hoek-Brown criterion) is examined to be the optimal criterion for the tested sandstone in the full region of tested normal stress in this study.

  15. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel

    2014-07-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.

  16. Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    Directory of Open Access Journals (Sweden)

    Levan Japaridze

    2015-10-01

    Full Text Available In this study, the interaction between cylindrical specimen made of homogeneous, isotropic, and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses. The frictional contact stresses between the specimen and platens are neglected. The analytical solution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen. The contact width, corresponding loading angle (2θ0, and elliptical stresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili's method. In this method, the displacements and stresses are represented in terms of two analytical functions of a complex variable. In the main approaches, the nonlinear interaction between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account. Numerical examples are solved using MATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter. Derived equations also allow calculating the modulus of elasticity, total deformation modulus and creep parameters of the specimen material based on the experimental data of radial contraction of the specimen.

  17. Interpersonal predictors of stress generation.

    Science.gov (United States)

    Eberhart, Nicole K; Hammen, Constance L

    2009-05-01

    Hammen (1991) provided evidence for a stress generation process in which individuals with a history of depression contributed to the occurrence of stressors, especially interpersonal and conflict events. However, few studies have examined the factors contributing to stress generation. This study examines aspects of individuals' interpersonal style, operationalized as attachment, dependency, and reassurance seeking, as predictors of conflict stress generation within romantic relationships. These effects were examined both prospectively over a 4-week period and cross-sectionally using a 14-day daily diary in a sample of female college students. Overall, there was significant evidence that interpersonal style contributes to the occurrence of interpersonal stressors. Specifically, anxious attachment and reassurance seeking prospectively predicted romantic conflict stress over a 4-week period, and a variety of interpersonal behaviors were associated with romantic conflict stressors on a daily basis. These results are interpreted in relation to previous literature, and limitations and directions for future research are discussed.

  18. WAXS studies of heat - mechanically modified amorphous PET fibers. Role of the tensile stress

    Science.gov (United States)

    Velev, V.; Popov, A.; Kyurkchiev, P.; Veleva, L.; Pencheva, M.

    2014-12-01

    The present work is devoted to the investigation of the structure developments in as- spun amorphous poly (ethylene terephthalate) (PET) filaments occurred as a result of heat mechanically modification. The degree of crystallinity of the untreated samples was 1,7 %. The thermal deformation experiments were carried out under isothermal conditions. PET yarn was annealed during 10 min at constant temperature of 80°C after which the sample is subjected to a well-defined constant tensile stress for 120 s at the same temperature. The mechanical load is gravitationally in the range from 0 MPa to 30 MPa and with increment step of 3 MPa. Using of wide angle X-ray scattering (WAXS) were investigated the structural rearrangements in the studied samples caused by the fibers treatments. Dependences between the strain force values and the running in the specimen's structure development are established. And in particular, it was found that a small increase of the tensile stress from 3 MPa to 6 MPa leads to a massive increase in the fibers degree of crystallinity with more than 33%.

  19. Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures.

    Science.gov (United States)

    Zhai, Tianrui; Lin, Yuanhai; Liu, Hongmei; Feng, Shengfei; Zhang, Xinping

    2013-10-21

    One- and two-dimensional plasmonic nanostructures can be fabricated using nanoscale tensile stress. A polymer layer, coated with a thin metal film, is exposed to an interference pattern produced by ultraviolet laser beams. Crosslinking is induced between the polymeric molecules located within the bright fringes. This process not only increases the refractive index but also reduces the polymer layer thickness. Corrugations occur on the continuous thin metal film due to the nanoscale stress in the polymer layer. Thus, a periodic nanostructure of area 3 × 3 mm and depth 50 nm is created both in the polymer and metal films with excellent homogeneity and reproducibility. This method enables direct writing of a large-area plasmonic nanostructure at low cost which can be used in the design of optoelectronic devices and sensors.

  20. Influence of disinfectant solutions on the tensile bond strength of a fourth generation dentin bonding agent

    Directory of Open Access Journals (Sweden)

    BOCANGEL Jorge Saldivar

    2000-01-01

    Full Text Available The purpose of the present study was to evaluate the influence of different disinfectant solutions on the tensile bond strength of a fourth generation dentin bonding agent. Forty non carious human molars were selected. Teeth were embedded in acrylic resin and ground until the exposure of a flat superficial dentin surface. Teeth were randomly divided in 4 groups and treated as follows: Group 1 - 2.5% NaOCl for 40 seconds; Group 2 - 2% chlorhexidine for 40 seconds; Group 3 - 1.23% acidulated fluoride for 4 minutes; and Group 4 - control (without disinfectant solution. Following treatments, Scotchbond Multipurpose Plus® (3M was used according to the manufacturer's instructions. After that, the test specimens were built with composite resin (Z100®-3M, using a standard Teflon matrix. The specimens were stored in distilled water for 24 hours at a temperature of 37ºC. The tensile strength test was performed using a Mini Instrom testing machine. The mean values obtained for each group, in MPa, were: Group 1 - 7.37 (± 2.51; Group 2 - 11.25 (± 4.65; Group 3 - 9.80 (± 3.11; and Group 4 - 10.96 (± 3.37. The results were submitted to statistical analysis using the ANOVA test, and no statistical significant differences among the groups were found. It can be concluded that the different disinfectant substances used in this research do not adversely affect dentin adhesion.

  1. New Method for Mitigating the Tensile Residual Stresses induced on the Inside Wall of Butt Welded Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Kim, Kang Soo; Kim, Ki Baik; Kim, Kwang Mo; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    Because dissimilar metal welding between ferritic steel and austenitic stainless steel needs not post weld heat treatment (PWHT), the effect of residual stresses induce during the welding should be investigated to assess the reliability of the weld process. It is known that the A82/182 weld metals, which are used for filler metals of the butt welding between the ferritic steel pipe and the stainless steel pipe, are susceptible to PWSCC (Primary Water Stress Corrosion Cracking) in PWR plant. The tensile residual stresses on the inside wall of the pipe, which are induced during the production welding, tend to be the dominant driving force for the PWSCC initiation and crack growth. In order to prevent the PWSCC the tensile residual stresses should be mitigated or removed. Two methods, weld overlay and mechanical stress improvement process (MSIP) have been considered proper tools to reduce the tensile residual stresses and to mitigate the PWSCC susceptibility of the dissimilar metal welded nozzles and pipes. In this research, new method for mitigating the tensile residual stresses induced on the inside wall of pipe during the production welding between the ferritic steel pipe and the stainless steel pipe was suggested. This new method may be able to apply to the SA508 /A182/SS316 nozzles of the pressure vessels in PWR to prevent PWSCC susceptibility as another substitute method.

  2. Tensile Creep and Stress-rupture Behavior of Polymer Derived Sic Fibers

    Science.gov (United States)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1994-01-01

    Tensile creep and stress-rupture studies were conducted on polymer derived Nicalon, Hi-Nicalon, and SiC/BN-coated Nicalon SiC fibers. Test conditions were temperatures from 1200 to 1400 C, stresses from 100 to 1600 MPa, stress application times up to 200 hours, and air, argon, and vacuum test environments. For all fibers, creep occurred predominantly in the primary stage. Hi-Nicalon had much higher 0.2 and 1 percent creep strengths than as-produced as well as-coated Nicalon fibers. The stress-rupture strength of Hi-Nicalon up to 100 hours was also higher than that of the coated and as-produced Nicalon fibers. SiC/BN coating on Nicalon increased only the short-term low-temperature rupture strength. Limited testing in argon and vacuum suggests that for all fiber types, creep and rupture resistances are reduced in comparison to the results in air. Possible mechanisms for the observed behavior are discussed.

  3. Tensile creep and stress-rupture behavior of polymer derived SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H.M.; Goldsby, J.C.; DiCarlo, J.A. [NASA Lewis Research Center, Cleveland, OH (United States)

    1994-12-31

    Tensile creep and stress-rupture studies were conducted on polymer derived Nicalon, Hi-Nicalon, and SiC/BN-coated Nicalon SiC fibers. Test conditions were temperatures from 1200 to 1400{degrees}C, stresses from 100 to 1600 MPa, stress application times up to 200 hours, and air, argon, and vacuum test environments. For all fibers, creep occurred predominantly in the primary stage. Hi-Nicalon had much higher 0.2 and 1% creep strengths than as-produced as well as coated Nicalon fibers. The stress-rupture strength of Hi-Nicalon up to 100 hours was also higher than that of the coated and as-produced Nicalon fibers. SiC/BN coating on Nicalon increased only the short-term low-temperature rupture strength. Limited testing in argon and vacuum suggests that for all fiber types, creep and rupture resistances are reduced in comparison to the results in air. Possible mechanisms for the observed behavior are discussed.

  4. Influence of Tensile Stresses on α+β – Titanium Alloy VT22 Corrosion Resistance in Marine Environment

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2015-01-01

    Full Text Available Tensile stresses and hydrogen render strong influence on the titanic alloys propensity for delayed fracture. The protective film serves аs a barrier for penetration in hydrogen alloy. Therefore to study the stress effect on its structure and protective properties is of significant interest.The aim of this work is to research the tensile stress influence on the passivation, indexes of corrosion, protective film structure and reveal reasons for promoting hydrogenation and emerging propensity for delayed fracture of titanium alloy VТ22 in the marine air atmosphere.The fulfillеd research has shown that:- there is а tendency to reduce the passivation abilities of the alloy VТ22 in synthetic marine water (3 % solution of NaCl with increasing tensile stresses up to 1170 МPа, namely to reduce the potential of free corrosion and the rate of its сhange, thus the alloy remains absolutely (rather resistant;- the protective film consists of a titanium hydroxide layer under which there is the titanium oxide layer adjoining to the alloy, basically providing the corrosion protection.- the factors providing hydrogenation of titanium alloys and formation in their surface zone fragile hydrides, causing the appearing propensity for delayed fracture, alongside with tensile stresses are:- substances promoting chemisorbtion of hydrogen available in the alloy and on its surface;- the cathodic polarization caused by the coupling;- the presence of the structural defects promoting the formation of pitting and local аcidifying of the environment surrounding the alloy.

  5. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress.

    Science.gov (United States)

    O'Leary, Siobhan A; Doyle, Barry J; McGloughlin, Tim M

    2013-07-26

    Measuring the physical dimensions of soft tissue is difficult due to its deformable nature. Such measurements are used to evaluate the tissue's mechanical properties. Imprecise measurements of the tissue's thickness can alter the assessment of tensile stress which may have significant clinical relevance when used as a diagnostic tool. The performance of routinely used measurement methods including a (i) vernier calipers, (ii) micrometer, (iii) thickness gauge, (iv) glass slide technique coupled with (i) and (ii) and a (v) laser displacement sensor were assessed by comparing them to a photogrammetric technique which was considered to be the measurement standard. All measurements were performed on two tissue types: porcine aorta and human intraluminal thrombus from an abdominal aortic aneurysm (AAA) and results were compared against predetermined criteria whose limits represented a 10% change in experimentally derived tensile stress. The inter-rater and retest reliability of the vernier calipers, micrometer and thickness gauge were also investigated. The thickness gauge was shown to be the most reliable and could accurately measure the thickness of aortic tissue. The conditions of the criteria were not met by any instrument used to measure the thickness of the AAA intraluminal thrombus, however, the micrometer, which proved highly reliable, was considered the most suitable (effects on tensile stress: +14.7%). For both tissues the glass slide and laser techniques significantly over estimated the thickness measurement altering the tensile stress by up to -29.6%. This study highlights the effects of inaccurate measurements on the assessment of tensile stress and recommends a thickness gauge be used to measure structured tissue (aorta) and a micrometer for unstructured tissue (AAA intraluminal thrombus). Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. An Examination of Radiation Induced Tensile Failure of Stressed and Unstressed Polymer Films Flown on MISSE-6

    Science.gov (United States)

    Miller, Sharon K.; Sechkar, Edward A.

    2012-01-01

    Thin film polymers are used in many spacecraft applications for thermal control (multilayer insulation and sunshields), as lightweight structural members (solar array blankets, inflatable/deployable structures) and have been proposed for propulsion (solar sails). Polymers in these applications are often under a tensile load and are directly exposed to the space environment, therefore it is important to understand the effect of stress in combination with the environment on the durability of these polymer films. The purpose of the Polymer Film Tensile Experiment, flown as part of Materials International Space Station Experiment 6 (MISSE 6), was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. This paper describes the results of post flight tensile testing of these samples.

  7. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Science.gov (United States)

    Hossain, Mohammad Shojib

    Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), composites containing ceramic, glass and metal fillers, and even metals which depict the diversified materials and possibility of new material options using FDM technology. The understanding of the behavior and mechanical properties of the finished FDM-fabricated parts is of utmost importance in the advancement of this technology. The processing parameters, e.g., build orientation, raster width (RW), contour width (CW), raster angle (RA), and raster to raster air gap (RRAG) are important factors in determining the mechanical properties of FDM fabricated parts. The work presented here focused on the mechanical properties improvement by modifying those build parameters. The main concentration is on how modifying those parameters can improve ultimate tensile stress (UTS), Young's modulus, and tensile strain of the final product. In this research, PC parts were fabricated using three build methods: 1) default method, 2) Insight revision method, and 3) visual feedback method. By modifying build parameters, the highest average UTS obtained for PC was 63.96 MPa which was 7% higher than that of 59.73 MPa obtained using the default build parameters. The parameter modification

  8. In vitro Comparative Evaluation of Tensile Bond Strength of 6th, 7th and 8th Generation Dentin Bonding Agents

    OpenAIRE

    Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut

    2015-01-01

    Background: Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6th, 7th and 8th generation bonding agents by in vitro method. Materials and Methods: Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6th generation bonding agent-Adper SE plus 3M ESPE, Group II: 7th generation bonding agent-G-Bond GC Corp Japan a...

  9. Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses

    Science.gov (United States)

    Dove, Patricia M.

    1995-11-01

    A new kinetic model links physical and chemical controls on the subcritical fracture kinetics of quartz from the assumption that molecular level reactions governing fracture and dissolution proceed by similar pathways. The model formulation combines fracture theory with a mechanistically based description of chemical, thermal, and tensile stress effects on reactivity in aqueous environments. Water, as a vapor or liquid, promotes rupture of Si-O bonds by end-member processes: (1) reaction of a protonated surface with molecular water and (2) reaction of hydroxyl ions at an ionized surface. In humid environments, reaction frequency is determined by water accessibility to the crack tip. In wetted environments, the relative contributions of these mechanisms are determined by bulk solution composition which affects surface ionization and sol vent-surf ace interactions. The macroscopic fracture rate law is given in meters per second by the fractional sum of these end-member reaction mechanisms per a first-order equation. Agreement of this empirical rate expression with reported measurements of quartz fracture rates suggests the model is robust. It gives a good fit to fracture rates over 6 orders of magnitude and explains increasing rates with increasing solution pH, the dependence of rate upon crystallographic direction, and thermal dependence of rate over 20° to 80°C. Findings in this study suggest that (1) fracture models based upon changes in surface free energy with solution composition are macroscopic descriptions of solvent-surface interactions and parallel the mechanistic model presented here; (2) faster fracture rates observed in basic solutions are not facilitated by decreases in the activation barrier but are due to a transition in the solvent-surface reaction to give a higher reaction frequency and (3) power law expressions applied to fracture rate versus stress intensity measurements may not have direct mechanistic significance since log-linear relations

  10. The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature

    DEFF Research Database (Denmark)

    Hansen, Niels

    1977-01-01

    Tensile-stress-strain data over a strain range from 0.2 to 30% were obtained at room temperature for 99.999 and 99.5% aluminium as a function of grain size. The yield stress-grain size relationship can be expressed by a Petch-Hall relation with approximately the same slope for the two materials....... The flow stress-grain size relationship can adequately be expressed by a modified Petch-Hall relation; for 99.999% aluminium material the slope increases with strain through a maximum around 15–20%, whereas for 99.5% aluminium the slope decreases with the strain to zero at strains about 10%. The flow...... stress-grain size relationship was analyzed in terms of matrix strengthening and grain boundary strengthening according to the dislocation concept of Ashby. At intermediate strains this approach gives a good description of the effect of strain, grain size and purity on the flow stress....

  11. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study

    Science.gov (United States)

    Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-01-01

    Background Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. Objective The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Materials and Methods Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. Results One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Conclusion Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva. PMID:26393214

  12. Residual stress, micro-hardness and tensile properties of ANSI 304 stainless steel thick sheet by fiber laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Lu, J.Z., E-mail: blueesky2005@163.com [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Luo, K.Y., E-mail: luokaiyu2012@gmail.com [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Feng, A.X. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); College of Mechanical Engineering, Wenzhou University, Wenzhou 325035 (China); Dai, F.Z.; Zhong, J.S.; Luo, M. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); School of Mechanical Engineering, Southeast University, Nanjing 211189 (China)

    2013-01-20

    A fiber laser was chosen to weld the ANSI 304 stainless steel (ANSI 304 SS) sheets with a thickness of 5 mm. The effects of laser power, defocusing distance and welding speed on the weld appearances were investigated by the orthogonal test and the analyses on the appearances and properties of laser welds. Residual stress, micro-hardness and tensile properties of ANSI 304 SS welds were measured, and the cross section and surface morphologies were characterized by optical microscope (OM) compared with the two conventional laser (CO{sub 2}, Nd:YAG) welding methods. Results showed that ANSI 304 SS welds with good quality can be obtained if the appropriate fiber laser welding parameters were chosen. Tensile residual stresses of the fiber laser weld with the appropriate welding parameters were the lowest and micro-hardness and tensile properties were the highest among the three laser welding methods. In addition, the crystal solidification process induced by the fiber laser welding was schematically illustrated and systematically revealed.

  13. Estimation of a stress field in the earth`s crust using drilling-induced tensile fractures observed at well WD-1 in the Kakkonda geothermal field; Kakkonda WD-1 sei de kansokusareta drilling induced tensile fracture ni yoru chikaku oryokuba no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, T. [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Hayashi, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science; Kato, O.; Doi, N.; Miyazaki, S. [Japan Metals and Chemicals Co. Ltd., Tokyo (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-05-27

    This paper describes estimation of a stress field in the earth`s crust in the Kakkonda geothermal field. Formation micro imager (FMI) logging known as a crack detecting logging was performed in the well WD-1. This FMI logging has made observation possible on cracks along well axis thought to indicate size and direction of the crust stress, and drilling-induced tensile fractures (DTF). It was verified that these DTFs are generated initially in an azimuth determined by in-situ stress (an angle up to the DTF as measured counterclockwise with due north as a starting point, expressed in {theta}) in the well`s circumferential direction. It was also confirmed that a large number of cracks incline at a certain angle to the well axis (an angle made by the well axis and the DTF, expressed in {gamma}). The DTF is a crack initially generated on well walls as a result of such tensile stresses as mud pressure and thermal stress acting on the well walls during well excavation, caused by the in-situ stress field. Measurement was made on the {theta} and {gamma} from the FMI logging result, and estimation was given on a three-dimensional stress field. Elucidating the three-dimensional crust stress field in a geothermal reservoir is important in making clear the formation mechanism thereof and the growth of water-permeable cracks. This method can be regarded as an effective method. 9 refs., 8 figs., 1 tab.

  14. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds

    Energy Technology Data Exchange (ETDEWEB)

    Commin, Loreleie, E-mail: lorelei.commin@kit.edu [LMPF, Arts et Metiers ParisTech, rue St Dominique, 51000 Chalons en Champagne (France); Dumont, Myriam [Aix-Marseille Universite, CNRS, IM2NP (UMR 6242), Faculte St-Jerome, Case 261, Av. Escadrille Normandie-Niemen, 13 397 Marseille Cedex 20 (France); Rotinat, Rene; Pierron, Fabrice [LMPF, Arts et Metiers ParisTech, rue St Dominique, 51000 Chalons en Champagne (France); Masse, Jean-Eric; Barrallier, Laurent [MecaSurf, Arts et Metiers ParisTech, 2 cours des Arts et Metiers, 13100 Aix en Provence (France)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Study of AZ31 FSW mechanical behaviour. Black-Right-Pointing-Pointer Early yielding occurs in the TMAZ, the nugget and base metal zones undergo almost no plastic strains. Black-Right-Pointing-Pointer Texture gradient in the TMAZ localises the deformations in this area. Black-Right-Pointing-Pointer Residual stresses have a major influence in FSW mechanical behaviour. - Abstract: Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. Electron back scattered diffraction was used to determine the texture evolution, residual stresses were analysed using X ray diffraction and tensile tests coupled with speckle interferometry were performed. The residual stresses induced during friction stir welding present a major influence on the final mechanical properties.

  15. Autonomous Robotics: A fresh Era of Implant Dentistry… is a reality!Tensile stress distribution in maxillary central incisors restored with cast-made and prefabricated dental posts.

    Directory of Open Access Journals (Sweden)

    Ahmed A. Madfa

    2017-09-01

    Full Text Available Aim: To analyze and compare the tensile stress distribution in endodontically treated teeth restored with cast-made (Ni-Cr and gold and prefabricated (titanium and glass fibre dental posts. Methodology: Four three-dimensional finite element (FE models of a maxillary central incisor restored with Ni-Cr cast-made (Model Ni-Cr, gold cast-made (Model GO, prefabricated titanium (Model TI and prefabricated glass fibre (Model FP posts were constructed. An oblique loading of 100N was applied to each three-dimensional model. Tensile stress distribution within the root dentine and at the post and surrounding structure interfaces were analysed. Results: In all the FE models studied, a higher magnitude of tensile stresses was observed on the palatal aspect of the cervical dentin as compared to the labial aspect and progressively decreases from the outer to the inner part of the root. The gold cast-made and glass fibre post models showed significantly less tensile stress concentration in the post-core component than the other experimental models. The maximum tensile stress was seen on the palatal aspect of the Ni-Cr compared to other posts. The higher magnitude interfacial tensile stress concentration was observed in a pulpless tooth restored with a Ni-Cr cast-made post, followed by titanium and gold cast-made posts, respectively. However, the minimum interfacial tensile stress was noticed in a pulpless tooth restored with a glass fibre post. Conclusion: Glass fibre posts tend to transfer tensile stress more homogenously within the tooth and at interfaces than the other types of investigated posts.

  16. Direct assessment of tensile stress-crack opening behavior of Strain Hardening Cementitious Composites (SHCC)

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The process of designing Strain Hardening Cementitious Composites (SHCC) is driven by the need to achieve certain performance parameters in tension. These are typically the pseudo-strain hardening behavior and the ability to develop multiple cracks. The assessment of the tensile load-deformation ...

  17. Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis.

    Science.gov (United States)

    Ye, Xuan; Zhao, Liang; Liang, Jiecun; Li, Xide; Chen, Guo-Qiang

    2017-04-05

    Multicellular fibres formed by Bacillus subtilis (B. subtilis) are attracting interest because of their potential application as degradable biomaterials. However, mechanical properties of individual fibres remain unknown because of their small dimensions. Herein, a new approach is developed to investigate the tensile properties of individual fibres with an average diameter of 0.7 μm and a length range of 25.7-254.3 μm. Variations in the tensile strengths of fibres are found to be the result of variable interactions among pairs of microbial cells known as septa. Using Weibull weakest-link model to study this mechanical variability, we predict the length effect of the sample. Moreover, the mechanical properties of fibres are found to depend highly on relative humidity (RH), with a brittle-ductile transition occurring around RH = 45%. The elastic modulus is 5.8 GPa in the brittle state, while decreases to 62.2 MPa in the ductile state. The properties of fibres are investigated by using a spring model (RH  45%) for the time-dependent response. Loading-unloading experiments and numerical calculations demonstrate that necking instability comes from structural changes (septa) and viscoelasticity dominates the deformation of fibres at high RH.

  18. Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis

    Science.gov (United States)

    Ye, Xuan; Zhao, Liang; Liang, Jiecun; Li, Xide; Chen, Guo-Qiang

    2017-04-01

    Multicellular fibres formed by Bacillus subtilis (B. subtilis) are attracting interest because of their potential application as degradable biomaterials. However, mechanical properties of individual fibres remain unknown because of their small dimensions. Herein, a new approach is developed to investigate the tensile properties of individual fibres with an average diameter of 0.7 μm and a length range of 25.7-254.3 μm. Variations in the tensile strengths of fibres are found to be the result of variable interactions among pairs of microbial cells known as septa. Using Weibull weakest-link model to study this mechanical variability, we predict the length effect of the sample. Moreover, the mechanical properties of fibres are found to depend highly on relative humidity (RH), with a brittle-ductile transition occurring around RH = 45%. The elastic modulus is 5.8 GPa in the brittle state, while decreases to 62.2 MPa in the ductile state. The properties of fibres are investigated by using a spring model (RH  45%) for the time-dependent response. Loading-unloading experiments and numerical calculations demonstrate that necking instability comes from structural changes (septa) and viscoelasticity dominates the deformation of fibres at high RH.

  19. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  20. Three-dimensional elastic stress and displacement analysis of tensile fracture specimens containing cracks

    Science.gov (United States)

    Gyekenyesi, J. P.; Mendelson, A.; Kring, J.

    1973-01-01

    A seminumerical method is presented for three-dimensional elastic analysis of finite geometry solids with traction-free cracks. Stress and displacement distributions are calculated for two rectangular bars which are loaded by a uniform surface stress distribution. The first bar contains a through-thickness central crack while the second bar has double-edge cracks. Stress intensity factors K sub I for both configurations are presented.

  1. Reynolds stress and shear flow generation

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.

    2001-01-01

    to the treatment of the pseudo-Reynolds stress, we present analytical and numerical results which demonstrate that the Reynolds stress in a plasma, indeed, generates a poloidal shear flow. The numerical simulations are performed both in a drift wave turbulence regime and a resistive interchange turbulence regime......The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding...... of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method...

  2. Tensile testing

    CERN Document Server

    2004-01-01

    A complete guide to the uniaxial tensile test, the cornerstone test for determining the mechanical properties of materials: Learn ways to predict material behavior through tensile testing. Learn how to test metals, alloys, composites, ceramics, and plastics to determine strength, ductility and elastic/plastic deformation. A must for laboratory managers, technicians, materials and design engineers, and students involved with uniaxial tensile testing. Tensile Testing , Second Edition begins with an introduction and overview of the test, with clear explanations of how materials properties are determined from test results. Subsequent sections illustrate how knowledge gained through tensile tests, such as tension properties to predict the behavior (including strength, ductility, elastic or plastic deformation, tensile and yield strengths) have resulted in improvements in materals applications. The Second Edition is completely revised and updated. It includes expanded coverage throughout the volume on a variety of ...

  3. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.

    Directory of Open Access Journals (Sweden)

    Jianwei Li

    Full Text Available Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235 specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.

  4. The Effect of Applied Tensile Stress on Localized Corrosion in Sensitized AA5083

    Science.gov (United States)

    2015-09-01

    Littoral Combat Ships (LCS, using AA5083-H116). One area of research is on the welding processes used for aluminum alloys, including friction stir... welding (FSW) and gas metal arc welding (GMAW) [6]. Though these welding techniques can improve the manufacturing and repair products for aluminum alloys...corrosion issues. Welding causes microstructural changes to the base metal and creates residual longitudinal and transverse stresses, both of which

  5. Neutron diffraction measurements for the determination of residual stresses in MMC tensile and fatigue specimens

    DEFF Research Database (Denmark)

    Fiori, F.; Girardin, E.; Giuliani, A.

    2000-01-01

    The experiments here described have been carried out in the framework of a more general research, aiming to develop a set of complementary models to predict the in-service performances of particle reinforced MMC automotive and aeronautical components. As MMCs are highly heterogeneous materials......, residual stresses are present in both the matrix and the particles microstructure, prior to any macroscopic loading. They vary with the temperature and with the type and level of loading imposed to the material, having a strong influence on the mechanical behaviour of MMCs. Neutron diffraction measurements...

  6. Stress in hard metal films

    NARCIS (Netherlands)

    Janssen, G.C.A.M.; Kamminga, J.D.

    2004-01-01

    In the absence of thermal stress, tensile stress in hard metal films is caused by grain boundary shrinkage and compressive stress is caused by ion peening. It is shown that the two contributions are additive. Moreover tensile stress generated at the grain boundaries does not relax by ion

  7. Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bobbili, Ravindranadh, E-mail: ravindranadh@dmrl.drdo.in; Madhu, Vemuri

    2016-06-14

    In this study, Split hopkinson tension bar (SHTB) has been employed to investigate the dynamic tensile flow behavior of Ti-10-2-3 alloy at high strain rates and elevated temperatures. The combined effect of stress triaxiality, strain rate and temperature and on the tensile behavior of the alloy was evaluated. Johnson-Cook (J-C) constitutive and fracture models were developed based on high strain rate tensile data. A modified Johnson–Cook model was established and proved to have high accuracy. A comparative assessment has been done to confirm the accuracy of modified J–C model based on finite element method (FEM). The improved model provides better description on the influence of equivalent plastic strain rate and temperature on the plastic flow. The simulation results proved to be in good agreement with the experimental data. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  8. Adult neurogenesis transiently generates oxidative stress.

    Directory of Open Access Journals (Sweden)

    Noah M Walton

    Full Text Available An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer's disease, schizophrenia and Parkinson's disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG. These regions contain populations of quiescent neural stem cells (NSCs that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis.

  9. Experiments and FE modeling of stress-strain state in ReBCO tape under tensile, torsional and transverse load

    Science.gov (United States)

    Ilin, K.; Yagotintsev, K. A.; Zhou, C.; Gao, P.; Kosse, J.; Otten, S. J.; Wessel, W. A. J.; Haugan, T. J.; van der Laan, D. C.; Nijhuis, A.

    2015-05-01

    For high current superconductors in high magnet fields with currents in the order of 50 kA, single ReBCO coated conductors must be assembled in a cable. The geometry of such a cable is mostly such that combined torsion, axial and transverse loading states are anticipated in the tapes and tape joints. The resulting strain distribution, caused by different thermal contraction and electromagnetic forces, will affect the critical current of the tapes. Tape performance when subjected to torsion, tensile and transverse loading is the key to understanding limitations for the composite cable performance. The individual tape material components can be deformed, not only elastically but also plastically under these loads. A set of experimental setups, as well as a convenient and accurate method of stress-strain state modeling based on the finite element method have been developed. Systematic measurements on single ReBCO tapes are carried out combining axial tension and torsion as well as transverse loading. Then the behavior of a single tape subjected to the various applied loads is simulated in the model. This paper presents the results of experimental tests and detailed FE modeling of the 3D stress-strain state in a single ReBCO tape under different loads, taking into account the temperature dependence and the elastic-plastic properties of the tape materials, starting from the initial tape processing conditions during its manufacture up to magnet operating conditions. Furthermore a comparison of the simulations with experiments is presented with special attention for the critical force, the threshold where the tape performance becomes irreversibly degraded. We verified the influence of tape surface profile non-uniformity and copper stabilizer thickness on the critical force. The FE models appear to describe the tape experiments adequately and can thus be used as a solid basis for optimization of various cabling concepts.

  10. Effect of ferrite transformation on the tensile and stress corrosion properties of type 316 L stainless steel weld metal thermally aged at 873 K

    Science.gov (United States)

    Shaikh, H.; Khatak, H. S.; Seshadri, S. K.; Gnanamoorthy, J. B.; Rodriguez, P.

    1995-07-01

    This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.

  11. Effect of applied tensile stress on the transformation behavior of medium carbon low alloy steels. Chutanso tei gokinko no hentai kyodo ni oyobosu hippari oryoku fuka no koka

    Energy Technology Data Exchange (ETDEWEB)

    Kanetsuki, Y.; Katsumata, M.; Kaida, O.; Kaiso, M. (Kobe Steel, Ltd., Tokyo (Japan))

    1991-06-01

    Techniques of controlled rolling and cooling are actively being used as the manufacturing process of high strength and high tenacity steel plates. The reason behind this is that the ferrite-pearlite texture can be made very finely. However, with regard to low alloy carbon steel bars with enhanced hardenability, its texture becomes hard bainite texture in the cooling process after rolling, hence its workability is not good. In this research, in lieu of controlled rolling, the possibility of the process that the tensile stress, whose effect of facilitating transformation is known, is applied before the transformation and its texture is controlled to the ferrite-pearlite texture at the cooling rate of air cooling. In other words, with regard to medium carbon low alloy steels, its transformation behavior was studied by a tensile test in which additional stress was controlled during its continuous cooling. The results are as follows: It was found that by adding stress, the ferrite transformation was expedited. This was because the nuclei formation of ferrite, which was enhanced by inner stress, was facilitated. Furthermore, when the above transformation took place at the same time of deformation, an uniform elongation about 60% was obtained. 13 refs., 13 figs., 1 tab.

  12. Effects of tensile and compressive in-plane stress fields on adhesion in laser induced delamination experiments

    NARCIS (Netherlands)

    Fedorov, A.; Vellinga, W. P.; De Hosson, J. Th. M.

    2008-01-01

    In this work, the adhesion of a polymer coating on steel substrate subjected to uniaxial tensile plastic deformations was studied with the laser induced delamination technique. A decrease in the practical work of adhesion has been measured as the deformation of the substrate progressed. Moreover, it

  13. Tensile strain and magnetic particle force application do not induce MAP3K8 and IL-1B differential gene expression in a similar manner to fluid shear stress in human mesenchymal stem cells.

    Science.gov (United States)

    Glossop, John R; Cartmell, Sarah H

    2010-10-01

    Mechanical forces, important in a variety of cellular processes, including proliferation, differentiation and gene expression, are also key in the development, remodelling and maintenance of load-bearing tissues such as cartilage and bone. Thus, there is great interest in using in vitro mechanical conditioning of mesenchymal stem cells (MSCs), multipotent adult stem cells, for tissue engineering of these tissues. In a previous gene expression study, we reported a potentially important role for mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and interleukin-1β (IL-1B) in MAPK signalling in MSCs exposed to fluid shear stress. In this follow-up study, we examined the expression of these genes in MSCs exposed to other types of mechanical force: uniaxial tensile strain (3% cell elongation) and forces generated through the exposure of magnetic particle-labelled MSCs to an oscillating magnetic field (maximum field strength 90 mT). Exposure to both types of mechanical force for 1 h did not significantly alter the gene expression of MAP3K8 or IL-1B over the 24 h period subsequent to force exposure. These data demonstrate that uniaxial tensile strain and magnetic particle-based forces do not induce MAP3K8-related MAPK signalling in the same manner as does fluid flow-induced shear stress. This illustrates divergence in the process of mechanotransduction in mechanically stimulated MSCs. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Microarray analysis of expression of cell death-associated genes in rat spinal cord cells exposed to cyclic tensile stresses in vitro

    Directory of Open Access Journals (Sweden)

    Roberts Sally

    2010-07-01

    Full Text Available Abstract Background The application of mechanical insults to the spinal cord results in profound cellular and molecular changes, including the induction of neuronal cell death and altered gene expression profiles. Previous studies have described alterations in gene expression following spinal cord injury, but the specificity of this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile stresses on cultured spinal cord cells from E15 Sprague-Dawley rats, using the FX3000® Flexercell Strain Unit. We examined cell morphology and viability over a 72 hour time course. Microarray analysis of gene expression was performed using the Affymetrix GeneChip System®, where categorization of identified genes was performed using the Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG systems. Changes in expression of 12 genes were validated with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR. Results The application of cyclic tensile stress reduced the viability of cultured spinal cord cells significantly in a dose- and time-dependent manner. Increasing either the strain or the strain rate independently was associated with significant decreases in spinal cord cell survival. There was no clear evidence of additive effects of strain level with strain rate. GO analysis identified 44 candidate genes which were significantly related to "apoptosis" and 17 genes related to "response to stimulus". KEGG analysis identified changes in the expression levels of 12 genes of the mitogen-activated protein kinase (MAPK signaling pathway, which were confirmed to be upregulated by RT-PCR analysis. Conclusions We have demonstrated that spinal cord cells undergo cell death in response to cyclic tensile stresses, which were dose- and time-dependent. In addition, we have identified the up regulation of various genes, in particular of the MAPK pathway, which

  15. Time-frequency analysis of acoustic emission signals generated by the Glass Fibre Reinforced Polymer Composites during the tensile test

    Science.gov (United States)

    Świt, G.; Adamczak, A.; Krampikowska, A.

    2017-10-01

    Fibre reinforced polymer composites are currently dominating in the composite materials market. The lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load significantly limits the broad possibilities of application of these materials. Occurring and accumulation of defects in material during the exploitation of the construction lead to the changes of its technical condition. The necessity to control the condition of the composite is therefore justified. For this purpose, non-destructive method of acoustic emission can be applied. This article presents an example of application of acoustic emission method based on time analysis and time-frequency analysis for the evaluation of the progress of the destructive processes and the level of degradation of glass fibre reinforced composite tapes that were subject to tensile testing.

  16. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    Science.gov (United States)

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  17. Improvement of Magnetic Properties of Fe-Mn-Si Based Ferromagnetic Shape Memory Ribbons with Heat-treatment under Tensile Stress(The 20th MAGDA Conference in Pacific Asia (MAGDA2011))

    OpenAIRE

    Takashi, TODAKA; Masato, ENOKIZONO; Oita University

    2012-01-01

    This paper presents measured magnetic and shape memory properties of Fe-Mn-Cr-Si-Sm-B ferromagnetic shape memory ribbons depending on tensile stress and temperature. The samples were produced with the melt spinning method in air and the magnetic properties were measured with an open solenoid type measurement system under controlling their temperature and tensile load. The alloys are multi-functional materials, which have both the ferromagnetic property and shape memory property. The magnetic ...

  18. Inertial effects on the stress generation of active fluids

    Science.gov (United States)

    Takatori, S. C.; Brady, J. F.

    2017-09-01

    Suspensions of self-propelled bodies generate a unique mechanical stress owing to their motility that impacts their large-scale collective behavior. For microswimmers suspended in a fluid with negligible particle inertia, we have shown that the virial swim stress is a useful quantity to understand the rheology and nonequilibrium behaviors of active soft matter systems. For larger self-propelled organisms such as fish, it is unclear how particle inertia impacts their stress generation and collective movement. Here we analyze the effects of finite particle inertia on the mechanical pressure (or stress) generated by a suspension of self-propelled bodies. We find that swimmers of all scales generate a unique swim stress and Reynolds stress that impact their collective motion. We discover that particle inertia plays a similar role as confinement in overdamped active Brownian systems, where the reduced run length of the swimmers decreases the swim stress and affects the phase behavior. Although the swim and Reynolds stresses vary individually with the magnitude of particle inertia, the sum of the two contributions is independent of particle inertia. This points to an important concept when computing stresses in computer simulations of nonequilibrium systems: The Reynolds and the virial stresses must both be calculated to obtain the overall stress generated by a system.

  19. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  20. Osmotic pressure induced tensile forces in tendon collagen

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  1. Effects of Nitrogen and Tensile Direction on Stress Corrosion Cracking Susceptibility of Ni-Free FeCrMnC-Based Duplex Stainless Steels.

    Science.gov (United States)

    Ha, Heon-Young; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Sangshik

    2017-03-15

    Stress corrosion cracking (SCC) behavior of Ni-free duplex stainless steels containing N and C (Fe balance -19Cr-8Mn-0.25C-(0.03, 0.21)N, in wt %) was investigated by using a slow strain rate test (SSRT) in air and aqueous NaCl solution with different tensile directions, including parallel (longitudinal) and perpendicular (transverse) to the rolling direction. It was found that alloying N was effective in increasing the resistance to SCC, while it was higher along the longitudinal direction than the transverse direction. The SCC susceptibility of the two alloys was assessed based on the electrochemical resistance to pitting corrosion, the corrosion morphology, and the fractographic analysis.

  2. Effects of Nitrogen and Tensile Direction on Stress Corrosion Cracking Susceptibility of Ni-Free FeCrMnC-Based Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Heon-Young Ha

    2017-03-01

    Full Text Available Stress corrosion cracking (SCC behavior of Ni-free duplex stainless steels containing N and C (Febalance-19Cr-8Mn-0.25C-(0.03, 0.21N, in wt % was investigated by using a slow strain rate test (SSRT in air and aqueous NaCl solution with different tensile directions, including parallel (longitudinal and perpendicular (transverse to the rolling direction. It was found that alloying N was effective in increasing the resistance to SCC, while it was higher along the longitudinal direction than the transverse direction. The SCC susceptibility of the two alloys was assessed based on the electrochemical resistance to pitting corrosion, the corrosion morphology, and the fractographic analysis.

  3. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8......-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased...

  4. Elongation Transducer For Tensile Tests

    Science.gov (United States)

    Roberts, Paul W.; Stokes, Thomas R.

    1994-01-01

    Extensometer transducer measures elongation of tensile-test specimen with negligible distortion of test results. Used in stress-versus-strain tests of small specimens of composite materials. Clamping stress distributed more evenly. Specimen clamped gently between jaw and facing surface of housing. Friction force of load points on conical tips onto specimen depends on compression of spring, adjusted by turning cover on housing. Limp, light nylon-insulated electrical leads impose minimal extraneous loads on measuring elements.

  5. Influence of treatment by vibration in residual stress generated in the laser welding of HSLA and IF steels; Influencia do tratamento de vibracao nas tensoes residuais geradas na soldagem a laser de acos ARBL e IF

    Energy Technology Data Exchange (ETDEWEB)

    Chuvas, T.C.; Fonseca, M.P. Cindra, E-mail: chuvas@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Castello, D.A. [Universidade Federal do Rio de Janeiro (DEM/UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    The stress relieving treatment by vibration is a new technology under development, which has many advantages over thermal methods. In this work was analyzed the surface residual stress generated in the laser welding of biphasic HSLA and IF steels, both used in the automotive industry. Residual stresses were measured by X-ray diffraction, by the sen{sup 2} {Psi} method. Residual stresses generated in the welding of the samples were tensile at all points measured. After welding, the samples were submitted to the mechanical vibration treatment. Some samples presented a significant reduction in the stress values. The welded joints were also characterized by optical microscopy. (author)

  6. Stress distribution and lattice distortions in Nb3Sn multifilament wires under uniaxial tensile loading at 4.2 K

    CERN Document Server

    Scheuerlein, C; Buta, F; Seeber, B; Senatore, C; Flükiger, R; Siegrist, T; Besara, T; Kadar, J; Bordini, B; Ballarino, A; Bottura, L

    2014-01-01

    The lattice parameter changes in three types of Nb3Sn superconducting wires during uniaxial stress-strain measurements at 4.2 K have been measured by high-energy synchrotron x-ray diffraction. The nearly-stress-free Nb3Sn lattice parameter has been determined using extracted filaments, and the elastic strain in the axial and transverse wire directions in the different wire phases has been calculated. The mechanical properties of the PIT and RRP wire are mainly determined by the properties of Nb3Sn and unreacted Nb. This is in contrast to the bronze route wire, where the matrix can carry substantial loads. In straight wires the axial Nb3Sn pre-strain is strongest in the bronze route wire, its value being smaller in the PIT and RRP wires. A strong reduction of the non-Cu elastic modulus of about 30\\% is observed during cool-down from ambient temperature to 4.2 K. The Nb3Sn Poisson ratio at 4.2 K measured in the untwisted bronze route wire is 0.35. The present study also shows that the process route has a strong...

  7. Does the stress generation hypothesis apply to eating disorders?: an examination of stress generation in eating, depressive, and anxiety symptoms.

    Science.gov (United States)

    Bodell, Lindsay P; Hames, Jennifer L; Holm-Denoma, Jill M; Smith, April R; Gordon, Kathryn H; Joiner, Thomas E

    2012-12-15

    The stress generation hypothesis posits that individuals actively contribute to stress in their lives. Although stress generation has been studied frequently in the context of depression, few studies have examined whether this stress generation process is unique to depression or whether it occurs in other disorders. Although evidence suggests that stress contributes to the development of eating disorders, it is unclear whether eating disorders contribute to subsequent stress. A prospective design was used to examine the influence of eating disorder symptoms on negative life stressors. Two hundred and ninety female undergraduates completed questionnaires at two time points that examined eating disorder, depressive and anxiety symptoms and the presence of negative life events. Regression analyses found that while eating disorder symptoms (i.e. bulimic symptoms and drive for thinness) were independent, significant predictors of negative life events, they did not predict negative life events above and beyond symptoms of depression. Limitations include the use of self-report measures and a college-based sample, which may limit generalizability of the results. Findings suggest that if stress generation is present in individuals with symptoms of eating disorders, it is likely attributable to symptoms of depression. Thus, it may be important for clinicians to target depressive symptoms in order to reduce the frequency of negative life stressors among individuals with eating disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Light polarization characteristics of m-plane AlxGa1-xN films suffering from in-plane anisotropic tensile stresses

    Science.gov (United States)

    Hazu, K.; Hoshi, T.; Kagaya, M.; Onuma, T.; Chichibu, S. F.

    2010-02-01

    Polarization characteristics of the near-band-edge optical transitions in m-plane AlxGa1-xN epilayers suffering from anisotropic stresses were quantified. The epilayers were grown by both ammonia-source molecular beam epitaxy and metalorganic vapor phase epitaxy methods on an m-plane freestanding GaN substrate. The light polarization direction altered from E ⊥c to E ∥c at the AlN molar fraction, x, between 0.25 and 0.32, where E is the electric field component of the light and ⊥ and ∥ represent perpendicular and parallel, respectively. To give a quantitative explanation for the result, energies and oscillator strengths of the exciton transitions involving three separate valence bands were calculated as functions of strains using the Bir-Pikus Hamiltonian. The calculation predicted that the lowest energy transition (E1) is polarized to the m-axis normal to the surface (X3) for 0tensile strained AlxGa1-xN. The polarization direction of observable surface emission was predicted to alter from c-axis normal (X1) to c-axis parallel (X2) for the middle energy transition (E2) and X2 to X1 for the highest energy transition (E3) between x =0.25 and 0.32. The experimental results were consistently reproduced by the calculation.

  9. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  10. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    Directory of Open Access Journals (Sweden)

    Linfeng Sun

    2016-02-01

    Full Text Available Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain.

  11. On the Electromagnetic Stresses Impact on the Synchronous Generator Costs

    Directory of Open Access Journals (Sweden)

    Elisabeta Spunei

    2012-09-01

    Full Text Available In line with the nowadays requirements, the synchronous generators must fulfill the technical specifications and their costs should be as low as possible. For this, the electromagnetic stresses, which significantly influence the synchronous generator costs, must have optimal values. The use of optimal designs helps achieve this objective. In this work we show how the current layer A and the air gap magnetic displacement Bδ influence the generator’s costs.

  12. Tensile Properties and Microstructures of a 2024-T351 Aluminum Alloy Subjected to Cryogenic Treatment

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2016-11-01

    Full Text Available The aim of this study was to investigate the effects of the cryogenic treatment (CT using liquid nitrogen on tensile properties and microstructures of the 2024-T351 aluminum alloy. Tensile tests were carried out, and tensile fractures were observed using a scanning electron microscope (SEM. The microstructure evolution of 2024-T351 subjected to CT was also studied using both an optic microscope (OM and a SEM. The components of the second phase were tested with an energy dispersive spectrometer (EDS. The results showed that both the ultimate strength and the yield strength of the 2024-T351 aluminum alloy could be improved through CT without the sacrifice of elongation. In addition, tensile fractures showed that the plasticity of 2024-T351 aluminum might also be improved, as the dimples in the fracture of the CTed specimens were markedly more uniform compared with the untreated specimen. The phenomenon of grains refinement (GR was found through microstructure observation. It was also found that the second phases were distributed more uniformly after CT. A conceivable mechanism concerning the shrinking effect and crystal grain movement was raised to explain the experimental phenomena. The effects of CT on residual stress in the 2024-T351 aluminum alloy are discussed herein. Measurements showed that tensile residual stress in 2024-T351 was removed, and slight compressive residual stress was generated after CT. This may also contribute to the improvement of the tensile properties of the alloy.

  13. Trans-generational effects of prenatal stress in quail.

    Science.gov (United States)

    Guibert, Floriane; Lumineau, Sophie; Kotrschal, Kurt; Möstl, Erich; Richard-Yris, Marie-Annick; Houdelier, Cécilia

    2013-02-22

    The prenatal environment is a source of phenotypic variability influencing the animal's characteristics. Prenatal stress affects not only the development of offspring, but also that of the following generation. Such effects have been best documented in mammals but can also be observed in birds, suggesting common processes across phylogenetic orders. We found previously that Japanese quail females stressed during laying produced offspring with higher fearfulness, probably related to modulation of testosterone levels in their eggs. Here, we evaluated long-term effects of prenatal stress by analysing reproductive traits of these F(1) offspring and, then, the development of their subsequent (F(2)) offspring. The sexual behaviour of F(1) prenatally stressed (F1PS) males was impaired. F1PS females' eggs contained less yolk and more albumen, and higher yolk testosterone and progesterone levels than did F(1) prenatal control females. The fearfulness of F(2) prenatally stressed quail was greater than that of F(2) prenatal control quail. These F(2) behavioural differences paralleled those evidenced by their parents, suggesting trans-generational transmission of prenatal stress effects, probably mediated by egg compositions of F1PS females.

  14. Strategies for Reducing or Preventing the Generation of Oxidative Stress

    Science.gov (United States)

    Poljsak, B.

    2011-01-01

    The reduction of oxidative stress could be achieved in three levels: by lowering exposure to environmental pollutants with oxidizing properties, by increasing levels of endogenous and exogenous antioxidants, or by lowering the generation of oxidative stress by stabilizing mitochondrial energy production and efficiency. Endogenous oxidative stress could be influenced in two ways: by prevention of ROS formation or by quenching of ROS with antioxidants. However, the results of epidemiological studies where people were treated with synthetic antioxidants are inconclusive and contradictory. Recent evidence suggests that antioxidant supplements (although highly recommended by the pharmaceutical industry and taken by many individuals) do not offer sufficient protection against oxidative stress, oxidative damage or increase the lifespan. The key to the future success of decreasing oxidative-stress-induced damage should thus be the suppression of oxidative damage without disrupting the wellintegrated antioxidant defense network. Approach to neutralize free radicals with antioxidants should be changed into prevention of free radical formation. Thus, this paper addresses oxidative stress and strategies to reduce it with the focus on nutritional and psychosocial interventions of oxidative stress prevention, that is, methods to stabilize mitochondria structure and energy efficiency, or approaches which would increase endogenous antioxidative protection and repair systems. PMID:22191011

  15. Strategies for Reducing or Preventing the Generation of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    B. Poljsak

    2011-01-01

    Full Text Available The reduction of oxidative stress could be achieved in three levels: by lowering exposure to environmental pollutants with oxidizing properties, by increasing levels of endogenous and exogenous antioxidants, or by lowering the generation of oxidative stress by stabilizing mitochondrial energy production and efficiency. Endogenous oxidative stress could be influenced in two ways: by prevention of ROS formation or by quenching of ROS with antioxidants. However, the results of epidemiological studies where people were treated with synthetic antioxidants are inconclusive and contradictory. Recent evidence suggests that antioxidant supplements (although highly recommended by the pharmaceutical industry and taken by many individuals do not offer sufficient protection against oxidative stress, oxidative damage or increase the lifespan. The key to the future success of decreasing oxidative-stress-induced damage should thus be the suppression of oxidative damage without disrupting the wellintegrated antioxidant defense network. Approach to neutralize free radicals with antioxidants should be changed into prevention of free radical formation. Thus, this paper addresses oxidative stress and strategies to reduce it with the focus on nutritional and psychosocial interventions of oxidative stress prevention, that is, methods to stabilize mitochondria structure and energy efficiency, or approaches which would increase endogenous antioxidative protection and repair systems.

  16. Development of reduced-variable master curves for estimating tensile stresses of encapsulated solar cells caused by module deflection or thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Cuddihy, E.F.

    1981-10-01

    Complex computer programs are being used by Spectrolab, Inc., to achieve encapsulation engineering optimization of photovoltaic modules. Optimization involves structural adequacy, electrical isolation (safety), maximum optical transmission, and minimum module temperature, at the lowest life-cycle energy cost. A goal of this activity is the generation, where possible, of encapsulation engineering generalities, principles, and design aids (tables or graphs) that would permit a ready, desktop capability of an engineering evaluation of encapsulation options involving materials or designs. The first efforts to generate reduced-variable mater curves for thermal expansion and deflection stress to serve as structural-analysis design aids are reported.

  17. Photoelastic analysis of stress generated by Connecticut Intrusion Arch (CIA)

    Science.gov (United States)

    Schwertner, Alessandro; de Almeida, Renato Rodrigues; Gonini, Alcides; de Almeida, Marcio Rodrigues

    2017-01-01

    ABSTRACT Objective: The present in vitro study evaluated, by means of the photoelastic technique, the effects generated by the Connecticut Intrusion Arch (CIA), with a 90o bend on the distal surface of molar tubes and using the 4 x 2 appliance on the anterior and posterior regions of the upper dental arch. Methods: Five models were manufactured, in which two different clinical situations were correlated: 1) use of intrusion arch not cinched back and transpalatal bar for anchorage (Group 1); 2) use of intrusion arch cinched back and transpalatal bar for anchorage (Group 2). Stress generated in the apical and middle regions of tooth roots of maxillary anterior teeth and maxillary first molars was evaluated. Results: Taking a reference value of 1.0 MPa = 100%, qualitative descriptive analysis was performed, which showed uniformity between stress values in the apical region of anterior teeth of both groups (G1 and G2). In the posterior region, for models with the arch cinched back (G2), stress remained within 100%. As for G1 models (with the arch not cinched back), variations in the mesial surface of first molars were observed, with an increase of 20% in the generated stress. The apical region did not undergo any changes, while in the distal region of molars there was a decrease of 20% in stress. Conclusion: Laboratory results revealed differences in stress between Groups 1 and 2 in the molar region, thereby indicating that there was a tendency towards mesial root tipping of first molars when the distal end of the CIA was not cinched back. PMID:28444014

  18. An Experimental Study of Dynamic Tensile Failure of Rocks Subjected to Hydrostatic Confinement

    Science.gov (United States)

    Wu, Bangbiao; Yao, Wei; Xia, Kaiwen

    2016-10-01

    It is critical to understand the dynamic tensile failure of confined rocks in many rock engineering applications, such as underground blasting in mining projects. To simulate the in situ stress state of underground rocks, a modified split Hopkinson pressure bar system is utilized to load Brazilian disc (BD) samples hydrostatically, and then exert dynamic load to the sample by impacting the striker on the incident bar. The pulse shaper technique is used to generate a slowly rising stress wave to facilitate the dynamic force balance in the tests. Five groups of Laurentian granite BD samples (with static BD tensile strength of 12.8 MPa) under the hydrostatic confinement of 0, 5, 10, 15, and 20 MPa were tested with different loading rates. The result shows that the dynamic tensile strength increases with the hydrostatic confining pressure. It is also observed that under the same hydrostatic pressure, the dynamic tensile strength increases with the loading rate, revealing the so-called rate dependency for engineering materials. Furthermore, the increment of the tensile strength decreases with the hydrostatic confinement, which resembles the static tensile behavior of rock under confining pressure, as reported in the literature. The recovered samples are examined using X-ray micro-computed tomography method and the observed crack pattern is consistent with the experimental result.

  19. Microcantilever actuation generated by redox-induced surface stress

    Science.gov (United States)

    Tabard-Cossa, Vincent

    Electrochemically-induced changes in surface stress at the solid-liquid interface are measured using a differential cantilever-based sensor. The simultaneous, in situ measurements of the current (charge) and interfacial stress changes are performed by employing an AFM cantilever as both the working electrode (in a conventional three-probe electrochemical cell configuration) and as the mechanical transducer (bending of the cantilever). The custom-built instrument achieves a surface stress sensitivity of 1x10-4 N/m and a dynamic range of 5x105. Combining electrochemistry with cantilever-based sensing provides the extra surface characterization capability essential for the interpretation of the origin of the surface stress. The objective of the present study is to gain a better understanding of the mechanisms responsible for the nanomechanical motion of cantilever sensors during adsorption and absorption processes. The study of these simple model systems will lead to a general understanding of the cantilever-based sensor's response and provide insights into the physical origin of the measured surface stress. The surface stress generated by the electrochemically-controlled absorption of ions into a thin polypyrrole film is investigated. A compressive change in surface stress of about -2 N/m is measured when the polymer is electrochemically switched between its oxidized and neutral (swollen) state. The volume change of the polymer phase with respect to the gold-coated cantilever is shown to be responsible for the mechanical motion observed. The potential-induced surface stress and surface energy change on an Au(111)-textured cantilever, in a 0.1 M HClO4 electrolyte, are simultaneously measured. These measurements revealed that for solid electrodes these two thermodynamic parameters are significantly different. In the double layer region, a surface stress change of -0.55 +/-0.06 N/m is measured during ClO4- adsorption whereas the surface energy variation is smaller by

  20. Characterization of residual stresses generated during inhomogeneous plastic deformation

    DEFF Research Database (Denmark)

    Lorentzen, T.; Faurholdt, T.; Clausen, B.

    1998-01-01

    Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different (hkl) reflections. Intergranular...... compare well and verify the capability of the numerical technique as well as the possibilities of experimental validation using neutron diffraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation of more complicated plastic deformation processes...

  1. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    Directory of Open Access Journals (Sweden)

    Andrea W.U. Busch

    2015-04-01

    Full Text Available Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  2. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    Comparison of the two different fiberglass tabs used during tensile testing...10,000 B.C. and became a means for transporting water and food storage. Eventually, ceramics were used to create thermal and electrical insulators [3...The high strength, electrical insulation properties and the ability to handle relatively high temperature compared to many metallic materials have

  3. Stress Sensitivity and Stress Generation in Social Anxiety Disorder: A Temporal Process Approach

    Science.gov (United States)

    Farmer, Antonina S.; Kashdan, Todd B.

    2015-01-01

    Dominant theoretical models of social anxiety disorder (SAD) suggest that people who suffer from function-impairing social fears are likely to react more strongly to social stressors. Researchers have examined the reactivity of people with SAD to stressful laboratory tasks, but there is little knowledge about how stress affects their daily lives. We asked 79 adults from the community, 40 diagnosed with SAD and 39 matched healthy controls, to self-monitor their social interactions, social events, and emotional experiences over two weeks using electronic diaries. These data allowed us to examine associations of social events and emotional well-being both within-day and from one day to the next. Using hierarchical linear modeling, we found all participants to report increases in negative affect and decreases in positive affect and self-esteem on days when they experienced more stressful social events. However, people with SAD displayed greater stress sensitivity, particularly in negative emotion reactions to stressful social events, compared to healthy controls. Groups also differed in how previous days’ events influenced sensitivity to current days’ events. Moreover, we found evidence of stress generation in that the SAD group reported more frequent interpersonal stress, though temporal analyses did not suggest greater likelihood of social stress on days following intense negative emotions. Our findings support the role of heightened social stress sensitivity in SAD, highlighting rigidity in reactions and occurrence of stressful experiences from one day to the next. These findings also shed light on theoretical models of emotions and self-esteem in SAD and present important clinical implications. PMID:25688437

  4. Stress sensitivity and stress generation in social anxiety disorder: a temporal process approach.

    Science.gov (United States)

    Farmer, Antonina S; Kashdan, Todd B

    2015-02-01

    Dominant theoretical models of social anxiety disorder (SAD) suggest that people who suffer from function-impairing social fears are likely to react more strongly to social stressors. Researchers have examined the reactivity of people with SAD to stressful laboratory tasks, but there is little knowledge about how stress affects their daily lives. We asked 79 adults from the community, 40 diagnosed with SAD and 39 matched healthy controls, to self-monitor their social interactions, social events, and emotional experiences over 2 weeks using electronic diaries. These data allowed us to examine associations of social events and emotional well-being both within-day and from one day to the next. Using hierarchical linear modeling, we found all participants to report increases in negative affect and decreases in positive affect and self-esteem on days when they experienced more stressful social events. However, people with SAD displayed greater stress sensitivity, particularly in negative emotion reactions to stressful social events, compared to healthy controls. Groups also differed in how previous days' events influenced sensitivity to current days' events. Moreover, we found evidence of stress generation in that the SAD group reported more frequent interpersonal stress, though temporal analyses did not suggest greater likelihood of social stress on days following intense negative emotions. Our findings support the role of heightened social stress sensitivity in SAD, highlighting rigidity in reactions and occurrence of stressful experiences from one day to the next. These findings also shed light on theoretical models of emotions and self-esteem in SAD and present important clinical implications. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  5. Numerical analysis of stress fields generated by quenching process

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account mechanical phenomena generated by thermalphenomena and phase transformations. In the model of mechanical phenomena, apart from thermal, plastic and structural strain, alsotransformations plasticity was taken into account. The stress and strain fields are obtained using the solution of the Finite Elements Method of the equilibrium equation in rate form. The thermophysical constants occurring in constitutive relation depend on temperature and phase composite. For determination of plastic strain the Huber-Misses condition with isotropic strengthening was applied whereas fordetermination of transformation plasticity a modified Leblond model was used. In order to evaluate the quality and usefulness of thepresented models a numerical analysis of stresses and strains associated hardening process of a fang lathe of cone shaped made of tool steel was carried out.

  6. Aggression and impulsivity as predictors of stress generation in bipolar spectrum disorders

    National Research Council Canada - National Science Library

    Molz, Ashleigh R; Black, Chelsea L; Shapero, Benjamin G; Bender, Rachel E; Alloy, Lauren B; Abramson, Lyn Y

    .... Although research has shown that individuals with BSD generate stress, it is unclear whether personality traits characteristic of BSD, such as aggression and impulsivity, are related to this stress generation...

  7. Tensile Strength of Water Exposed to Pressure Pulses

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2012-01-01

    at an extended water-solid interface by imposing a tensile stress pulse which easily causes cavitation. Next, a compressive pulse of duration ~1 ms and a peak intensity of a few bar is imposed prior to the tensile stress pulse. A dramatic increase of the tensile strength is observed immediately after...... the compressive pulse, but the effect is shortlived. We presume that diffusion of non-condensable gas from the cavitation nuclei into the liquid at compression, and back again later, is responsible for the changes of tensile strength....

  8. Acculturation-Related Stress and Mental Health Outcomes among Three Generations of Hispanic Adolescents

    Science.gov (United States)

    Cervantes, Richard C.; Padilla, Amado M.; Napper, Lucy E.; Goldbach, Jeremy T.

    2013-01-01

    Stress associated with acculturation and minority status among Hispanic youth is understudied. Using survey data from the Hispanic Stress Inventory-Adolescent Version (HSI-A), we examined psychosocial stress across eight domains including family economic stress and acculturation-gap stress in a national sample of three generations (first, second,…

  9. Parent Support and Stress among First-Generation and Continuing-Generation Female Students during the Transition to College

    Science.gov (United States)

    Sy, Susan R.; Fong, Kristen; Carter, Rebecca; Boehme, Julia; Alpert, Amy

    2012-01-01

    This study compares first-generation and continuing-generation female college students in terms of: (a) level of parents' emotional and informational support; (b) level of students' stress; and (c) the relationship between both types of parent support and students' stress during the transition to college. We collected survey data from an…

  10. Normal personality traits, rumination and stress generation among early adolescent girls

    Science.gov (United States)

    Stroud, Catherine B.; Sosoo, Effua E.; Wilson, Sylia

    2017-01-01

    This study examined associations between personality and stress generation. Expanding upon prior work, we examined (a) the role of Positive Emotionality (PE), Negative Emotionality (NE), and Constraint (CON), and their lower-order facets, as predictors of acute and chronic interpersonal stress generation; (b) whether personality moderated effects of rumination on stress generation; and (c) whether personality increased exposure to independent (uncontrollable) stress. These questions were examined in a one-year study of 126 adolescent girls (M age = 12.39 years) using contextual stress interviews. NE predicted increases in acute and chronic interpersonal stress generation, but not independent stress. NE, CON and affiliative PE each moderated the effect of rumination on chronic interpersonal stress generation. These effects were driven by particular lower-order traits. PMID:28845067

  11. Normal personality traits, rumination and stress generation among early adolescent girls.

    Science.gov (United States)

    Stroud, Catherine B; Sosoo, Effua E; Wilson, Sylia

    2015-08-01

    This study examined associations between personality and stress generation. Expanding upon prior work, we examined (a) the role of Positive Emotionality (PE), Negative Emotionality (NE), and Constraint (CON), and their lower-order facets, as predictors of acute and chronic interpersonal stress generation; (b) whether personality moderated effects of rumination on stress generation; and (c) whether personality increased exposure to independent (uncontrollable) stress. These questions were examined in a one-year study of 126 adolescent girls (M age = 12.39 years) using contextual stress interviews. NE predicted increases in acute and chronic interpersonal stress generation, but not independent stress. NE, CON and affiliative PE each moderated the effect of rumination on chronic interpersonal stress generation. These effects were driven by particular lower-order traits.

  12. Incremental sheet forming analyzed by tensile tests

    NARCIS (Netherlands)

    Emmens, W.C.; van den Boogaard, Antonius H.; Shirvani, B

    2009-01-01

    To study material behaviour under conditions encountered in ISF operations tensile tests have been carried out on material taken from the walls of pyramidal products. The shape of the stress-strain curves depend on orientation. Tests in the direction of punch movement show an overshoot indicating a

  13. Properties of aluminum alloys tensile, creep, and fatigue data at high and low temperatures

    CERN Document Server

    1999-01-01

    This book compiles more than 300 tables listing typical average properties of a wide range of aluminum alloys. The individual test results were compiled, plotted in various ways, and analyzed. The average values from the tensile and creep tests were then normalized to the published typical room-temperature tensile properties of the respective alloys for easy comparison. This extensive project was done by Alcoa Laboratories over a period of several years. The types of data presented include: Typical Mechanical Properties of Wrought and Cast Aluminum Alloys at Various Temperatures, including tensile properties at subzero temperatures, at temperature after various holding times at the test temperature, and at room temperature after exposure at various temperatures for various holding times; creep rupture strengths for various times at various temperatures; stresses required to generate various amounts of creep in various lengths of time; rotating-beam fatigue strengths; modulus of elasticity as a function of t...

  14. Multi-scale investigation of tensile creep of ultra-high performance concrete for bridge applications

    Science.gov (United States)

    Garas Yanni, Victor Youssef

    Ultra-high performance concrete (UHPC) is relatively a new generation of concretes optimized at the nano and micro-scales to provide superior mechanical and durability properties compared to conventional and high performance concretes. Improvements in UHPC are achieved through: limiting the water-to-cementitious materials ratio (i.e., w/cm ≤ 0.20), optimizing particle packing, eliminating coarse aggregate, using specialized materials, and implementing high temperature and high pressure curing regimes. In addition, and randomly dispersed and short fibers are typically added to enhance the material's tensile and flexural strength, ductility, and toughness. There is a specific interest in using UHPC for precast prestressed bridge girders because it has the potential to reduce maintenance costs associated with steel and conventional concrete girders, replace functionally obsolete or structurally deficient steel girders without increasing the weight or the depth of the girder, and increase bridge durability to between 75 and 100 years. UHPC girder construction differs from that of conventional reinforced concrete in that UHPC may not need transverse reinforcement due to the high tensile and shear strengths of the material. Before bridge designers specify such girders without using shear reinforcement, the long-term tensile performance of the material must be characterized. This multi-scale study provided new data and understanding of the long-term tensile performance of UHPC by assessing the effect of thermal treatment, fiber content, and stress level on the tensile creep in a large-scale study, and by characterizing the fiber-cementitious matrix interface at different curing regimes through nanoindentation and scanning electron microscopy (SEM) in a nano/micro-scale study. Tensile creep of UHPC was more sensitive to investigated parameters than tensile strength. Thermal treatment decreased tensile creep by about 60% after 1 year. Results suggested the possibility of

  15. Obesity and Age-Related Changes in Markers of Oxidative Stress and Inflammation Across Four Generations

    NARCIS (Netherlands)

    Hulsegge, Gerben; Herber-Gast, Gerrie-Cor M; Spijkerman, Annemieke M W; Susan, H; Picavet, J; van der Schouw, Yvonne T; Bakker, Stephan J L; Gansevoort, Ron T; Dollé, Martijn E T; Smit, Henriette A; Monique Verschuren, W M

    ObjectiveThe prevalence of obesity increases with age and is higher in each younger generation (unfavorable generation shift). This may influence patterns of oxidative stress and inflammation. Age-related changes and generation shifts in markers of oxidative stress and inflammation were

  16. Obesity and Age-Related Changes in Markers of Oxidative Stress and Inflammation Across Four Generations

    NARCIS (Netherlands)

    Hulsegge, Gerben; Herber-Gast, Gerrie-Cor M; Spijkerman, Annemieke M W; Picavet, H. Susan J; van der Schouw, Yvonne T|info:eu-repo/dai/nl/073449253; Bakker, Stephan J L; Gansevoort, Ron T; Dollé, Martijn E T; Smit, Henriette A|info:eu-repo/dai/nl/067730043; Monique Verschuren, W M|info:eu-repo/dai/nl/071858849

    OBJECTIVE: The prevalence of obesity increases with age and is higher in each younger generation (unfavorable generation shift). This may influence patterns of oxidative stress and inflammation. Age-related changes and generation shifts in markers of oxidative stress and inflammation were

  17. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Camin, Bettina; Schmidt, Søren

    2012-01-01

    the position, orientation and full stress tensor of each illuminated grain to be determined and, hence, enables the study of evolving stress fields in coarse grained materials with a spatial resolution equal to the grain size. Grain resolved information like this is vital for understanding what happens when...... element simulation. It was found that a full three-dimensional simulation was required to account for the measured transition from the overall plane stress case away from the notch to the essentially plane strain case observed near the notch tip. The measured and simulated stress contours were shown...

  18. Generation of Spectra and Stress Histories for Fatigue and Damage Tolerance Analysis of Fuselage Repairs

    Science.gov (United States)

    1991-10-01

    AD-A250 390liI] II1 il il l ii I DOT-VNTSC-FAA-91-16 Generation of Spectra and Stress Histories FAA Technical Center for Fatigue and Damage Tolerance...Government Accession No. 3. Recipient’s Catalog No. 4. Title and Subtitle 5. Report Date Generation of Spectra and Stress Histories for October 1991 Fatigue ...PUBLIC THROUGH Stress Histories, Stress Analysis THE NATIONAL TECHNICAL INFORMATION SERVICE, Damage Tolerance, Fatigue SPRINGFIELD, VA 22161 19

  19. Stress across generations: A qualitative study of stress, coping, and caregiving among Mexican immigrant mothers.

    Science.gov (United States)

    Non, Amy L; León-Pérez, Gabriela; Glass, Holly; Kelly, Emma; Garrison, Nanibaa' A

    2017-07-03

    Hispanic immigrants represent the largest and fastest growing ethnic minority within the US, justifying increased attention to identify factors that influence declining immigrant health across generations. This study investigates the range of psychosocial stress exposures and coping mechanisms of Mexican immigrant mothers, and implications for the health of their US-born children. We conducted 10 focus groups with 1st generation Mexican-born immigrant mothers (n = 32 women) in Nashville, TN, in the summer of 2014. Focus groups elicited challenges and benefits of life as an immigrant mother. Data were analyzed using a modified grounded theory approach. We identified four themes that indicate how maternal stressors could impact children's health: (1) work-family tradeoff, (2) limited freedom/mobility, (3) reduction of social networks, and (4) transmission of anxiety and fears to children. Women in our study also engage in a range of coping mechanisms, including the creation of new social networks, seeking support in religion, and seeking help from community resources. These results highlight the importance of developing new questionnaires to elicit stress exposures for Mexican immigrant mothers. Findings also suggest the value of intervention strategies and social policies that would ultimately improve maternal and child health in this marginalized population.

  20. THE GENERATION OF THERMOELASTIC STRESS WAVES BY IMPULSIVE ELECTROMAGNETIC RADIATION.

    Science.gov (United States)

    ELECTROMAGNETIC RADIATION , ABSORPTION), (*STRESSES, ELECTROMAGNETIC RADIATION ), SURFACE PROPERTIES, INTERACTIONS, HEAT TRANSFER, ELASTIC PROPERTIES, ELECTROMAGNETIC PULSES, LASERS, MATHEMATICAL ANALYSIS, BOUNDARY VALUE PROBLEMS, SOLIDS

  1. A Test of a Cognitive Diathesis-Stress Generation Pathway in Early Adolescent Depression

    Science.gov (United States)

    Kercher, Amy; Rapee, Ronald M.

    2009-01-01

    This study evaluates a pathway for depressive risk that integrates cognitive diathesis-stress and stress-generation theories, following Hankin and Abramson's (2001, "Journal of Clinical Child and Adolescent Psychology, 31"(4), 491-504) elaborated cognitive-diathesis transactional stress model. In this model, young adolescents with initial…

  2. The synchronous Generators Rated Speed’s Influence on electromagnetic Stresses and on Costs

    OpenAIRE

    Elisabeta Spunei; Laurenţiu Pădeanu; Florina Piroi; Ion Piroi; Gheorghe Liuba

    2013-01-01

    During the design of synchronous generators is very important to establish the values of their electromagnetic stresses. The specific literature recommends that these stress values are to be chosen from the curves obtained during experimental design, where the independent values are the polar pitch and the number of pole pairs. The authors of this work propose a method of finding the dependency between the electromagnetic stress and the synchronous generator rated speed t...

  3. All-Atom Molecular-Level Computational Analyses of Polyurea/Fused-Silica Interfacial Decohesion Caused by Impinging Tensile Stress-Waves

    Science.gov (United States)

    2014-01-01

    Interfacial decohesion, Reactive forcefields Paper type Research paper International Journal of Structural Integrity Vol. 5 No. 4, 2014 pp. 339-367 © Emerald ...interaction was conducted to provide additional insight into the outcome of the stress-wave/interface interactions. 4. Results and discussion The main emphasis

  4. Generation of Controlled Analog Emissions from Embedded Devices using Software Stress Methods

    Science.gov (United States)

    2017-03-01

    Generation of Controlled Analog Emissions from Embedded Devices using Software Stress Methods Oren Sternberg, Jonathan H. Nelson, Israel Perez...as dynamic memory allocation, hard disk writing and computations. Each stressing operation creates a pulse in an amplitude shift keying scheme...software stress testing and diagnostic and security applications including StressLinux (Linux) [17], KALI (Linux) [18] and a multitude of tools in

  5. Determining tensile properties of sweetgum veneer flakes

    Science.gov (United States)

    E.W. Price

    1976-01-01

    Rotary-cut 8weetgum veneer flakes measuring 3 inchee along the grain, 3/8 inch wide, and 0.015 inch thick, were stressed in tension parallel to the grain at gage lengths from 0.00 to 1.25 inchee for unpressed control and at 0.75 inch gage length for flakes pressed in a flakeboard mat. The control flakes had an average tensile strength of 9,400 psi for the smaller age...

  6. Assessement of tensile strength of graphites by the Iosipescu coupon test

    Directory of Open Access Journals (Sweden)

    Luis Guilherme Borzani Manhani

    2007-09-01

    Full Text Available Polycrystalline graphites are widely used in the metallurgical, nuclear and aerospace industries. Graphites are particulated composites manufactured with a mixture of coke with pitch, and changes in relative proportions of these materials cause modifications in their mechanical properties. Uniaxial tension tests must be avoided for mechanical characterization in this kind of brittle material, due to difficulties in making the relatively long specimens and premature damages caused during testing set-up. On other types of tests, e.g. bending tests, the specimens are submitted to combined stress states (normal and transverse shear stresses. The Iosipescu shear test, is performed in a beam with two 90° opposite notches machined at the mid-length of the specimens, by applying two forces couples, so that a pure and uniform shear stress state is generated at the cross section between the two notches. When a material is isotropic and brittle, a failure at 45° in relation to the beam long axis can take place, i.e., the tensile normal stress acts parallel to the lateral surface of the notches, controls the failure and the result of the shear test is numerically equivalent to the tensile strength. This work has evaluated a graphite of the type used in rocket nozzles by the Iosipescu test and the resulted stress, ~11 MPa, was found to be equal to the tensile strength. Thus, the tensile strength can be evaluated just by a single and simple experiment, thus avoiding complicated machining of specimen and testing set-up.

  7. Cumulative Effect of Pressing and Drying on Stress Generation within a Green Ceramic Compact

    Directory of Open Access Journals (Sweden)

    E. Vidal-Sallé

    2014-01-01

    Full Text Available The internal stress field induced by uniaxial pressing and subsequent convective drying of a green ceramic powder was simulated by the finite element method. A density dependent elastoplastic constitutive law was used for the mechanical modeling of the compaction. A diffusive water transfer equation and a purely elastic behavior with imposed hydrostrain involving shrinkage were applied for the modeling of the drying process. The key material properties (hydrodiffusivity, hydrocontraction coefficient, Young’s modulus, Poisson’s ratio, and yield surface parameters had been experimentally measured and introduced as functions of material density and water content. If residual stresses due to the compaction operation were taken into account, the maximum value of the tensile stress at the top external edge of the wheel and at the beginning of the drying process was two times higher than for a stress free green ceramic compact. Beyond the residual stress onset, the compaction operation induced density heterogeneities which had important consequences on the mechanical behavior of the compact.

  8. Contact Stress Generation on the UHMWPE Tibial Insert

    Directory of Open Access Journals (Sweden)

    S. Petrović Savić

    2014-12-01

    Full Text Available Total knee replacement (TKR is considered, during last years, as a very successful surgical technique for removing knee joint deformities and eliminating pain caused by cartilage damage. In literature, as primary causes for knee joint endoprothesis damage are cited complex movements which cause occurrences of complex stress conditions, sagital radius conformity, sliding, types of materials etc. Aim of this study is analysis of contact stresses that occur on tibial implant for 15°, 45° and 60° knee flexion and 50 kg, 75 kg, 100 kg and 125 kg weight. Knee joint prosthesis model and finite elements method (FEM analysis are done in software Catia V5. For this analysis we used ultra-high molecular weight polyethylene (UHMWPE for tibial implant material and AISI 316, AISI 317, AISI 321, 17-4PH, CoCrMo, Ti6Al4V and SAE A-286 for femoral component materials. Results show that area of maximal contact stress is identified in medial and lateral part of tibial implant. Von Mises stress values vary regarding of flexion degree and weight, but values are approximate for types of chosen materials. Contact stress location corresponds to damage that occur on tibial implant during exploitation.

  9. The Synchronous Generators Rated Speed’s Influence on Electromagnetic Stresses and on Costs

    Directory of Open Access Journals (Sweden)

    Elisabeta Spunei

    2013-09-01

    Full Text Available During the design of synchronous generators is very important to establish the values of their electromagnetic stresses. The specific literature recommends that these stress values are to be chosen from the curves obtained during experimental design, where the independent values are the polar pitch and the number of pole pairs. The authors of this work propose a method of finding the dependency between the electromagnetic stress and the synchronous generator rated speed to rapidly estimate the stresses in a given interval of rated speed values.

  10. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  11. Two Prospective Studies of Changes in Stress Generation across Depressive Episodes in Adolescents and Emerging Adults

    Science.gov (United States)

    Morris, Matthew C.; Kouros, Chrystyna D.; Hellman, Natalie; Rao, Uma; Garber, Judy

    2014-01-01

    The stress generation hypothesis was tested in two different longitudinal studies examining relations between weekly depression symptom ratings and stress levels in adolescents and emerging adults at varied risk for depression. Participants in Study 1 included 240 adolescents who differed with regard to their mother’s history of depressive disorders. Youth were assessed annually across 6 years (Grades 6 through 12). Consistent with the depression autonomy model, higher numbers of prior major depressive episodes (MDEs) were associated with weaker stress generation effects, such that higher levels of depressive symptoms predicted increases in levels of dependent stressors for adolescents with ≤ 2 prior MDEs, but depressive symptoms were not significantly related to dependent stress levels for youth with ≥ 3 prior MDEs. In Study 2, participants were 32 remitted-depressed and 36 never-depressed young adults who completed a psychosocial stress task to determine cortisol reactivity and were re-assessed for depression and stress approximately eight months later. Stress generation effects were moderated by cortisol responses to a laboratory psychosocial stressor, such that individuals with higher cortisol responses exhibited a pattern consistent with the depression autonomy model, whereas individuals with lower cortisol responses showed a pattern more consistent with the depression sensitization model. Finally, comparing across the two samples, stress generation effects were weaker for older participants and for those with more prior MDEs. The complex, multi-factorial relation between stress and depression is discussed. PMID:25422968

  12. Restraint feeds stress: The relationship between eating disorder symptoms, stress generation, and the interpersonal theory of suicide.

    Science.gov (United States)

    Dodd, Dorian; Smith, April; Bodell, Lindsay

    2014-12-01

    Integrating research on stress generation and the interpersonal theory of suicide we examined whether eating disorder symptoms are related to stress generation and whether negative life events (stressors) contribute to feelings of burdensomeness and low belongingness. At two time points (approximately 1month apart), participants (n=186; 75% female) completed questionnaires measuring eating disorder symptoms, negative life events, burdensomeness, and belongingness. Regression analyses indicated that while controlling for depression, anxiety, and baseline frequency of negative events, dietary restraint significantly predicted negative events at follow-up. Dietary restraint indirectly influenced higher levels of perceived burdensomeness and low belongingness through its influence on negative events. Thus, dietary restraint may contribute to stress generation, and in turn exacerbate feelings of burdensomeness and low belongingness, two important constructs of the interpersonal theory of suicide. Greater understanding of these factors could lead to more effective and targeted suicide interventions for individuals who restrict food intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Increased pupil dilation to angry faces predicts interpersonal stress generation in offspring of depressed mothers.

    Science.gov (United States)

    Feurer, Cope; Burkhouse, Katie L; Siegle, Greg; Gibb, Brandon E

    2017-08-01

    Interpersonal stress generation is one mechanism hypothesized to increase risk for the intergenerational transmission of depression. Although there is some evidence of stress generation in offspring of depressed mothers, specific predictors of stress generation in these youth remain unknown. The goal of this study was to examine a peripheral measure of cognitive-affective reactivity (i.e. pupil dilation) to emotional interpersonal stimuli as a predictor of stress generation in offspring of depressed mothers. The study included 129 mothers and their offspring (ages 8-15) recruited from the community who participated at two time points separated by 6 months. Youth's average pupil dilation to emotional faces (angry, happy, sad) as well as maternal lifetime history of major depressive disorder were assessed at baseline. In addition, both time points included assessments of youth's levels of self-generated (dependent) and independent episodic life stress in the preceding 6 months. Youth's pupil dilation to angry, but not sad or happy, faces predicted prospective increases in dependent interpersonal stress across the follow-up. This effect was only observed in offspring of depressed mothers and was not seen in offspring of never-depressed mothers. This study highlights a potential risk factor (heightened reactivity to facial displays of anger) that may identify which offspring of depressed mothers are at greatest risk for interpersonal stress generation. © 2017 Association for Child and Adolescent Mental Health.

  14. Occupational stressors, stress perception levels, and coping styles of medical surgical RNs: a generational perspective.

    Science.gov (United States)

    Wakim, Nada

    2014-12-01

    The purpose of this study was to compare the occupational stressors, the perceived stress levels, and coping styles of 3 generations of medical-surgical (MS) nurses. The literature supports that the nurse's role is stressful based on a variety of factors including physical labor, human suffering, work hours, staffing, and interpersonal relationships. Data indicate that there are generational differences in the response to stress. The 3 predominant nursing generations coexisting in the nursing workforce add to the complexity of the recognition and coping skills to address stress. A correlational design was used. A convenience sample of MS nurses participated in this study by completing 4 questionnaires. Occupational stressors were found to be significant predictors for perceived stress among all generations of nurses in this sample. Also, the higher the level of stress perception among nurses, the higher the use of coping behaviors. Generation Y reported a higher level of perceived stress and higher use of escape avoidance coping behaviors, while baby boomers reported higher use of self-controlling coping behaviors. By identifying the needs of each of the generational cohorts, nurse leaders, nurse educators, and policy makers can better assist the nursing workforce to remain at the bedside, improve patient outcomes, and maintain a positive work environment.

  15. Vulnerability-specific stress generation: Childhood emotional abuse and the mediating role of depressogenic interpersonal processes.

    Science.gov (United States)

    Hernandez, Evelyn M; Trout, Zoë M; Liu, Richard T

    2016-12-01

    Stress generation in depression (i.e. the tendency for depression-prone individuals to experience more life stress that is in part influenced by the individual) has been well established. However, more research is necessary to clarify the role of specific types of life stress in this effect. The current study extends the stress generation hypothesis by examining whether the type of stress involved is contingent upon the nature of the individual's particular vulnerability. Childhood emotional abuse and interpersonal vulnerability factors were predicted to be associated with prospective interpersonal dependent but not non-interpersonal or independent stress. These interpersonal factors were examined as mediators of the association between childhood emotional abuse and interpersonal stress generation. Data were collected from 185 undergraduate participants at two time-points, four months apart. At baseline, participants completed assessments of depressive symptoms, childhood abuse history, interpersonal risk factors (rejection sensitivity, excessive reassurance-seeking, and negative feedback-seeking), and a diagnostic interview for depression. At the follow-up assessment, participants completed a life stress interview. Childhood emotional abuse prospectively predicted greater interpersonal dependent stress, but not non-interpersonal dependent or independent stress. Only rejection sensitivity mediated this relationship. Consistent with the stress generation hypothesis, neither childhood emotional abuse nor the three interpersonal risk factors predicted independent stress. These findings suggest that targeting interpersonal vulnerabilities in clinical settings, particularly rejection sensitivity, among individuals with a history of childhood emotional abuse, may help to reduce the occurrence of interpersonal dependent stress, thus possibly decreasing risk for depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Stress pattern generated by different post and core material combinations: A photoelastic study

    Directory of Open Access Journals (Sweden)

    Shaista Afroz

    2013-01-01

    Full Text Available Objective: To analyze the effect of different combinations of post and core materials on stress distribution in dentin of an endodontically treated tooth. Materials and Methods: This was an experimental stress analysis study. Models were made in photoelastic material, i.e., epoxy resin. Different combinations of post and core materials used were: Glass fiber post with composite core, stainless steel post with composite core, and cast metal post and core. Stresses generated were frozen, models were sliced and viewed under circular polariscope, and photographs were taken. Stress was calculated by counting the number of fringes. Results: For the combination of glass fiber post with composite core, the shear stresses calculated were 1.196, 1.196, and 2.898 MPa in the apical, mid-root, and cervical region, respectively. For the combination of stainless steel post with composite core, the apical, mid-root and cervical stresses were 1.534, 0.511, and 2.557 MPa, respectively. For cast metal post and core, the apical, mid-root, and cervical stresses were 0.852, 0.511, and 1.534 MPa, respectively. Conclusion: The cervical region of the teeth is subjected to the highest stresses irrespective of the material used. The stainless steel post with the composite core generated the highest stress concentration in different regions. A glass fiber post generated a uniform stress distribution. A cast metal post and core combination generated lesser stress than the other combinations. The vast difference in the elastic modulus of the restorative materials can lead to nonuniform stress distribution and concentration of stresses in different areas which can have deleterious effect on the survival of already compromised teeth and restoration. Such combinations should be avoided and the material which has an elastic modulus close to that of dentin should be preferred.

  17. Stress Generators for employees of surgical nursing center

    Directory of Open Access Journals (Sweden)

    João Paulo Belini Jacques

    2015-03-01

    Full Text Available The aim of this study was to identify factors that contribute to stress among workers in a surgical center. Descriptive qualitative research, performed in a surgery center of a university hospital in the state of Paraná. Data were collected between the months of August and September 2013, through semi-structured interviews with 15 members of the nursing team. Applied if the thematic content analysis resulting in three categories: work overload; lack of planning, human resources, materials and equipment and confinement. It is concluded that nursing professionals have experienced work related stress factors of objective nature such as work overload, lack of activity planning, human resources and materials and equipment and living in a closed environment.

  18. Dynamic-tensile-extrusion response of polytetrafluoroethylene (EPFE) and polychlorotrifluoroethylene (PCTFE)

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Carl P [Los Alamos National Laboratory; Brown, Eric N [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory

    2010-01-01

    Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments have been utilized to probe the dynamic tensile responses of polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). These fluoropolymers exhibit more irregular deformation and stochastic-based damage and failure mechanisms than the stable plastic elongation and shear instabilities observed in metals. The technique elucidates a number of tensile mechanisms that are consistent with quasi-static, SHPB, and Taylor Impact results. Similar to the observed ductile-to-brittle transition for Taylor Impact loading, PCTFE failure occurs at a peak velocity greater than for PTFE. However, for the Dyn-Ten-Ext PCTFE exhibits even greater resistance to failure due to the tensile stress-state. While PTFE generates a large number of small fragments when extruded through the die, PCTFE draws out a smaller number of larger particles that dynam ically evolve during the extrusion process through a com bination of local necking mechanisms and bulk relaxation. Under Dyn-Ten-Ext loading, the propensity of PTFE to fail along normal planes is observed without indication of any localization, while the PCTFE clearly forms necks during the initial extrusion process that continue to evolve.

  19. Stress Generation in Adolescent Depression: The Moderating Role of Child Abuse and Neglect

    Science.gov (United States)

    Harkness, Kate L.; Lumley, Margaret N.; Truss, Alanna E.

    2008-01-01

    The present study examined the role of childhood abuse and neglect and depression recurrence in moderating the generation of stressful life events in adolescent depression. Maltreatment history and stressful life events were assessed using two rigorous contextual interviews and rating systems. In a sample of 59 community depressed adolescents we…

  20. Destructive Examinations on Divider Plates from Decommissioned Steam Generators Affected by Superficial Stress Corrosion Cracks

    Science.gov (United States)

    Miloudi, Salem; Firmin, Erwan; Deforge, Damien; Vaillant, François; Lemaire, Emmanuel

    Stress Corrosion Cracking of nickel alloys has been a major concern for all the Nuclear Power Plants over the last forty years. Since 2002, some cases of Stress Corrosion Cracking (SCC) have been reported on Steam Generator (SG) Divider Plates. However, evidence of propagation following the first detection has never been observed (based on nearly one hundred in-service inspections).

  1. Childhood abuse and stress generation: The mediational effect of depressogenic cognitive styles

    OpenAIRE

    Liu, Richard T.; Choi, Jimmy Y.; Boland, Elaine M.; Mastin, Becky M.; Alloy, Lauren B.

    2012-01-01

    According to the stress generation hypothesis (Hammen, 1991), depressed and depression-prone individuals experience higher rates of negative life events influenced by their own behaviors and characteristics (i.e., dependent events), which in part may account for the often recurrent nature of depression. Relatively little is known about the interrelation between stress generation predictors, and distal risk factors for this phenomenon. This study examined whether childhood emotional, sexual, a...

  2. Concrete under Impact Loading, Tensile Strength and Bond

    NARCIS (Netherlands)

    Reinhardt, H.W.

    1982-01-01

    Uniaxial impact tensile tests on plain concrete were carried out with the aid of Split Hopkinson Bar equipment with stress rates of up to 60000 N/mm2. s. Various concrete mixes were investigated under. dry and wet conditions. All the concretes showed an increase in strength with increasing stress

  3. Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Léonie Suter

    Full Text Available Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha. Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana.

  4. Stress generation and filament turnover during actin ring constriction.

    Directory of Open Access Journals (Sweden)

    Alexander Zumdieck

    Full Text Available We present a physical analysis of the dynamics and mechanics of contractile actin rings. In particular, we analyze the dynamics of ring contraction during cytokinesis in the Caenorhabditis elegans embryo. We present a general analysis of force balances and material exchange and estimate the relevant parameter values. We show that on a microscopic level contractile stresses can result from both the action of motor proteins, which cross-link filaments, and from the polymerization and depolymerization of filaments in the presence of end-tracking cross-linkers.

  5. Thinking Across Generations: Unique Contributions of Maternal Early Life and Prenatal Stress to Infant Physiology.

    Science.gov (United States)

    Gray, Sarah A O; Jones, Christopher W; Theall, Katherine P; Glackin, Erin; Drury, Stacy S

    2017-11-01

    Respiratory sinus arrhythmia (RSA) is a parasympathetic-mediated biomarker of self-regulation linked to lifespan mental and physical health outcomes. Intergenerational impacts of mothers' exposure to prenatal stress have been demonstrated, but evidence for biological embedding of maternal preconception stress, including adverse childhood experiences (ACEs), on infant RSA is lacking. We examine the independent effects of maternal ACEs and prenatal stress on infant RSA, seeking to broaden the understanding of the earliest origins of mental and physical health risk. Mothers reported on ACEs and prenatal stress. RSA was recorded in a sample of 167 4-month-old infants (49% female and 51% male) during a dyadic stressor, the Still Face Paradigm. Independent contributions of maternal ACEs and prenatal stress to infant RSA were observed. High maternal ACEs were associated with lower RSA, whereas prenatal stress was associated with failure to recover following the stressor. Sex but not race differences were observed. Prenatal stress was associated with higher RSA among boys but lower RSA among girls. Infants' RSA is affected by mothers' life course experiences of stress, with ACEs predicting a lower set point and prenatal stress dampening recovery from stress. For prenatal stress but not ACEs, patterns vary across sex. Findings underscore that stress-reducing interventions for pregnant women or those considering pregnancy may lead to decreased physical and mental health risk across generations. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Aggression and impulsivity as predictors of stress generation in bipolar spectrum disorders.

    Science.gov (United States)

    Molz, Ashleigh R; Black, Chelsea L; Shapero, Benjamin G; Bender, Rachel E; Alloy, Lauren B; Abramson, Lyn Y

    2013-04-05

    Some evidence suggests that individuals with bipolar spectrum disorders (BSD) generate stressful life events, contributing to a more severe course of disorder. A recent update to the Behavioral Approach System (BAS) dysregulation theory of BSD highlights the need to investigate anger as approach motivation. Although research has shown that individuals with BSD generate stress, it is unclear whether personality traits characteristic of BSD, such as aggression and impulsivity, are related to this stress generation. The current longitudinal study employed multilevel modeling to examine stress generation in a sample of 104 individuals with BSD and 96 healthy controls. We examined rates of BAS-deactivating, BAS-activating, and Anger-evoking life events over a period of up to 4.5 years as a function of levels of aggression and impulsivity. Individuals with BSD reported significantly higher numbers of dependent Anger-evoking events and BAS-deactivating events, but not dependent BAS-activating events, than controls. Trait levels of hostility and impulsivity predicted all types of events, although bipolar diagnosis remained a significant predictor of BAS-deactivating and Anger-evoking events. The life events measures were not designed to assess Anger-evoking events; further research should replicate these findings and develop more finely tuned assessments of stressful anger events. In addition, the sample was not a clinical sample. This study adds to the literature on stress generation in BSD; trait level personality differences predict stress generation, beyond bipolar diagnosis. This also further establishes the importance of including anger-evoking events in the BAS model of BSDs and stress generation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effects of internal stress on photocatalytic properties of TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Miyamura, A. [Graduate School of Science and Engineering, Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa, 229-8558 (Japan)], E-mail: amica@chem.aoyama.ac.jp; Kaneda, K.; Sato, Y. [Graduate School of Science and Engineering, Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa, 229-8558 (Japan); Shigesato, Y. [Graduate School of Science and Engineering, Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa, 229-8558 (Japan)], E-mail: yuzo@chem.aoyama.ac.jp

    2008-05-30

    Effects of internal stress on photocatalytic properties have been investigated on titanium dioxide films deposited by reactive magnetron sputtering. Atomic peening effects by bombardments of high-energy particles in sputtering processes should generate not only compressive stress, but also oxygen defects in the films. Therefore, the films with higher compressive stress performed almost no photocatalytic activity. Furthermore, compressive or tensile stress was applied on the films deposited on curved micro sheet glasses by flattening the substrates after the deposition by external force. It was found that the photodecomposition activity of the films applied the slight compressive stress improved clearly, whereas the one of the films applied the tensile stress degraded.

  8. The influence of tensile forces on the deflection of circular diaphragms in pressure sensors

    NARCIS (Netherlands)

    Voorthuyzen, J.A.; Bergveld, Piet

    1984-01-01

    It is known that the deflection of a diaphragm is determined by two mechanisms, bending moments or bending stress and tensile forces or membrane stress. Usually the influence of tensile forces is not taken into account when calculating the mechanical properties of thin diaphragms. Hence the

  9. In-plane anisotropy in tensile deformation and its influence on the ...

    Indian Academy of Sciences (India)

    This is because when the magnitudes of the yield stresses, obtained from yield locus are more than 5 times higher as compared to the yield and ultimate tensile strength values and the nature and degree of in-plane anisotropy under tensile loading matches with that of only the compressive yield stresses of yield locus.

  10. Experimental and Numerical Analysis of the Effects of Curing Time on Tensile Mechanical Properties of Thin Spray-on Liners

    Science.gov (United States)

    Guner, D.; Ozturk, H.

    2016-08-01

    The effects of curing time on tensile elastic material properties of thin spray-on liners (TSLs) were investigated in this study. Two different TSL products supplied by two manufacturers were tested comparatively. The "dogbone" tensile test samples that were prepared in laboratory conditions with different curing times (1, 7, 14, 21, and 28 days) were tested based on ASTM standards. It was concluded that longer curing times improves the tensile strength and the Young's Modulus of the TSLs but decreases their elongation at break. Moreover, as an additional conclusion of the testing procedure, it was observed that during the tensile tests, the common malpractice of measuring sample displacement from the grips of the loading machine with a linear variable displacement transducer versus the sample's gauge length had a major impact on modulus and deformation determination of TSLs. To our knowledge, true stress-strain curves were generated for the first time in TSL literature within this study. Numerical analyses of the laboratory tests were also conducted using Particle Flow Code in 2 Dimensions (PFC2D) in an attempt to guide TSL researchers throughout the rigorous PFC simulation process to model support behaviour of TSLs. A scaling coefficient between macro- and micro-properties of PFC was calculated which will help future TSL PFC modellers mimic their TSL behaviours for various tensile loading support scenarios.

  11. Sediment-generated noise and bed stress in a tidal channel

    Science.gov (United States)

    Bassett, Christopher; Thomson, Jim; Polagye, Brian

    2013-04-01

    Tidally driven currents and bed stresses can result in noise generated by moving sediments. At a site in Admiralty Inlet, Puget Sound, Washington State (USA), peak bed stresses exceed 20 Pa. Significant increases in noise levels are attributed to mobilized sediments at frequencies from 4-30 kHz with more modest increases noted from 1-4 kHz. Sediment-generated noise during strong currents masks background noise from other sources, including vessel traffic. Inversions of the acoustic spectra for equivalent grain sizes are consistent with qualitative data of the seabed composition. Bed stress calculations using log layer, Reynolds stress, and inertial dissipation techniques generally agree well and are used to estimate the shear stresses at which noise levels increase for different grain sizes. Regressions of the acoustic intensity versus near-bed hydrodynamic power demonstrate that noise levels are highly predictable above a critical threshold despite the scatter introduced by the localized nature of mobilization events.

  12. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2017-05-01

    Full Text Available Stress corrosion cracking (SCC of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC, hydrogen assisted fracture (HAF or hydrogen embrittlement (HE. A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample’s posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress.

  13. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking.

    Science.gov (United States)

    Toribio, Jesús; Aguado, Leticia; Lorenzo, Miguel; Kharin, Viktor

    2017-05-02

    Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample's posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress.

  14. Stress and plastic deformation of MEA in fuel cells. Stresses generated during cell assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bograchev, Daniil [Frumkin Institute of Physical Chemistry and Elecrtrochemistry RAN, Leninski prospekt 31, Moscow 117071 (Russian Federation); Gueguen, Mikael; Grandidier, Jean-Claude [Laboratoire de Physique et Mecanique des Materiaux, LMPM UMR CNRS 6617, ENSMA, Teleport 2, 1 av. Clement Ader, BP 40109 86962 Futuroscope Cedex (France); Martemianov, Serguei [Laboratoire d' Etudes Thermiques, LET UMR CNRS 6608, ESIP-University of Poitiers, 40 av. du Recteur Pineau, 86022 Poitiers (France)

    2008-05-15

    A linear elastic-plastic 2D model of fuel cell with hardening is developed for analysis of mechanical stresses in MEA arising in cell assembly procedure. The model includes the main components of real fuel cell (membrane, gas diffusion layers, graphite plates, and seal joints) and clamping elements (steel plates, bolts, nuts). The stress and plastic deformation in MEA are simulated with ABAQUS code taking into account the realistic clamping conditions. The stress distributions are obtained on the local and the global scales. The first one corresponds to the single tooth/channel structure. The global scale deals with features of the entire cell (the seal joint and the bolts). Experimental measurements of the residual membrane deformations have been provided at different bolts torques. The experimental data are in a good agreement with numerical predictions concerning the beginning of the plastic deformation. (author)

  15. Energy absorption behavior of polyurea coatings under laser-induced dynamic tensile and mixed-mode loading

    Science.gov (United States)

    Jajam, Kailash; Lee, Jaejun; Sottos, Nancy

    2015-06-01

    Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.

  16. Vulnerability-specific stress generation: an examination of depressogenic cognitive vulnerability across multiple domains.

    Science.gov (United States)

    Liu, Richard T; Alloy, Lauren B; Mastin, Becky M; Choi, James Y; Boland, Elaine M; Jenkins, Abigail

    2014-01-01

    Although there is supporting evidence for the stress generation hypothesis (i.e., the tendency for depression-prone individuals to experience more negative dependent events influenced by their behaviors and characteristics), additional research is required to advance current understanding of the specific types of dependent events relevant to this effect. The present study elaborated on the stress generation hypothesis, in which the content of negative dependent events experienced by individuals is contingent upon, and matches, the nature of their particular vulnerabilities. This extension was tested within the context of Cole's competency-based model of depression. Participants (n=185) were assessed at two time-points separated by a four-month interval. Self-perceived competence in academic, social, and appearance domains at the initial time-point were examined in relation to negative life events prospectively occurring over the four-month follow-up period, assessed using the "contextual threat" method. Partial support was obtained for vulnerability-specific stress generation. Stress-generation specificity was found for self-perceived competence in appearance and academic domains, but not for self-perceived social competence. The current findings are consistent with the possibility of a more complex relation between self-perceived social competence and domain-congruent stress generation. Individuals may be more likely to experience negative dependent events in domains matching their specific vulnerabilities.

  17. Delamination analysis of tapered laminated composites under tensile loading

    Science.gov (United States)

    Armanios, Erian A.; Parnas, Levend

    1991-01-01

    A study was conducted to analyze tapered composite laminates under tensile loading. A tapered construction made of S2/SP250 glass/epoxy laminate was used to achieve a thickness reduction using three consecutive dropped plies over a distance of 60 ply thicknesses. The principle of minimum complementary potential energy was used to determine interlaminar stresses. The interlaminar peel stress distribution shows a higher tensile intensity at the taper/thin portion juncture. The total strain energy release rate is determined using a simplified membrane model. Results are compared with a finite element simulation.

  18. Employing pre-stress to generate finite cloaks for antiplane elastic waves

    OpenAIRE

    Parnell, William J.; Norris, Andrew N.; Shearer, Tom

    2012-01-01

    It is shown that nonlinear elastic pre-stress of neo-Hookean hyperelastic materials can be used as a mechanism to generate finite cloaks and thus render objects near-invisible to incoming antiplane elastic waves. This approach appears to negate the requirement for special cloaking metamaterials with inhomogeneous and anisotropic material properties in this case. These properties are induced naturally by virtue of the pre-stress. This appears to provide a mechanism for broadband cloaking since...

  19. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  20. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts

    Science.gov (United States)

    Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart

    2018-02-01

    Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.

  1. Experimental study on quasi-static tensile mechanical properties of TC11 titanium alloy at room temperature

    OpenAIRE

    Qiulin NIU; Ming CHEN; Ming, Weiwei

    2017-01-01

    According to the tensile properties of typical aerospace material TC11 titanium alloy, the stress-strain relationship is studied using the quasi-static tensile test at different strain rates, and the tensile fracture morphology is analyzed with SEM. The experimental results show that TC11 titanium alloy has certain strain rate sensitivity, and both tensile strength and yield strength are affected by strain rate. During quasi-static tension test, TC11 titanium alloy specimen has the phenomenon...

  2. Induced martensitic transformation during tensile test in nanostructured bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Rivas, L. [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); University of Kaiserslautern, Materials Testing, Gottlieb - Daimler - Str., 67663 Kaiserslautern (Germany); Garcia-Mateo, C., E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Kuntz, Matthias [Robert Bosch GmbH, Materials and Processing Dept, P.O. Box 300240, Stuttgart (Germany); Sourmail, Thomas [Asco Industries CREAS (Research Centre) Metallurgy, BP 70045, Hagondange Cedex 57301 (France); Caballero, F.G. [Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2016-04-26

    Retained austenite in nanostructured bainite is able to undergo mechanically induced martensitic transformation. However, the link between transformation and deformation mechanisms involved makes difficult the understanding of the process. In this work, a model has been developed to assess the effect of the external stress itself on the martensite phase transformation. In addition, after a detailed initial microstructural characterization, the martensite fraction evolution during tensile deformation has been obtained by means of X-ray diffraction analyses after interrupted tensile tests in several nanostructured bainitic steels. Experimental results have been compared to the outputs of the model, as a reference. They suggests that stress partitioning between phases upon tensile deformation is promoted by isothermal transformation at lower temperatures.

  3. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.; Karlson, M. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Colin, J. J.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Magnfält, D.; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2016-04-14

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.

  4. Thermodynamic method for generating random stress distributions on an earthquake fault

    Science.gov (United States)

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  5. Susceptibility to stress induced visceral hypersensitivity in maternally separated rats is transferred across generations

    NARCIS (Netherlands)

    van den Wijngaard, R. M.; Stanisor, O. I.; van Diest, S. A.; Welting, O.; Wouters, M. M.; Cailotto, C.; de Jonge, W. J.; Boeckxstaens, G. E.

    2013-01-01

    In irritable bowel syndrome (IBS), familial clustering and transfer across generations may largely depend on environmental factors but this is difficult to establish in the human setting. Therefore, we aimed to set up a relevant animal model. We investigated whether susceptibility to stress induced

  6. The medial tibial stress syndrome score: Item generation for a new ...

    African Journals Online (AJOL)

    The medial tibial stress syndrome score: Item generation for a new patient reported outcome measure. ... This research consisted of a pilot study and two Delphi rounds. The Delphi approach entails the consultation of experts about a topic for which no evidence is available during which consensus is sought on this topic.

  7. Interpersonal Stress Generation as a Mechanism Linking Rumination to Internalizing Symptoms in Early Adolescents

    Science.gov (United States)

    McLaughlin, Katie A.; Nolen-Hoeksema, Susan

    2012-01-01

    Rumination is a risk factor for depressive and anxiety symptoms in adolescents. Previous investigations of the mechanisms linking rumination to internalizing problems have focused primarily on cognitive factors. We investigated whether interpersonal stress generation plays a role in the longitudinal relationship between rumination and…

  8. Cognitive vulnerabilities amplify the effect of early pubertal timing on interpersonal stress generation during adolescence.

    Science.gov (United States)

    Hamilton, Jessica L; Stange, Jonathan P; Kleiman, Evan M; Hamlat, Elissa J; Abramson, Lyn Y; Alloy, Lauren B

    2014-05-01

    Early pubertal timing has been found to confer risk for the occurrence of interpersonal stressful events during adolescence. However, pre-existing vulnerabilities may exacerbate the effects of early pubertal timing on the occurrence of stressors. Thus, the current study prospectively examined whether cognitive vulnerabilities amplified the effects of early pubertal timing on interpersonal stress generation. In a diverse sample of 310 adolescents (M age = 12.83 years, 55 % female; 53 % African American), early pubertal timing predicted higher levels of interpersonal dependent events among adolescents with more negative cognitive style and rumination, but not among adolescents with lower levels of these cognitive vulnerabilities. These findings suggest that cognitive vulnerabilities may heighten the risk of generating interpersonal stress for adolescents who undergo early pubertal maturation, which may subsequently place adolescents at greater risk for the development of psychopathology.

  9. Influence of early stress on social abilities and serotonergic functions across generations in mice.

    Directory of Open Access Journals (Sweden)

    Tamara B Franklin

    Full Text Available Exposure to adverse environments during early development is a known risk factor for several psychiatric conditions including antisocial behavior and personality disorders. Here, we induced social anxiety and altered social recognition memory in adult mice using unpredictable maternal separation and maternal stress during early postnatal life. We show that these social defects are not only pronounced in the animals directly subjected to stress, but are also transmitted to their offspring across two generations. The defects are associated with impaired serotonergic signaling, in particular, reduced 5HT1A receptor expression in the dorsal raphe nucleus, and increased serotonin level in a dorsal raphe projection area. These findings underscore the susceptibility of social behaviors and serotonergic pathways to early stress, and the persistence of their perturbation across generations.

  10. influence of relative humidity on tensile and compressive creep of ...

    African Journals Online (AJOL)

    HOD

    While creep is as a result of sustained stress, shrinkage is due to hygrometric conditions [1]. According to Neville et al [2], a typical concrete element creeps up to twice its initial strain after a year of loading. Concrete creep can occur in tension and also in compression. The properties of tensile and compressive creep are ...

  11. Tensile failure of two-dimensional quasi-brittle foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; Onck, P. R.

    2012-01-01

    Stress redistribution caused by damage onset and the subsequent local softening plays an important role in determining the ultimate tensile strength of a cellular structure. The formation of damage process zones with struts dissipating a finite amount of fracture energy will require the macroscopic

  12. Generation of Random Wind Speed Profiles for Evaluation of Stress in WT Power Converters

    DEFF Research Database (Denmark)

    Pigazo, Alberto; Qin, Zian; Liserre, Marco

    2013-01-01

    Wind turbines are subjected to wind speed variations that cause a power profile that will stress the overall system. This stress is tranfered to the power converter, resulting in temperature variations of the power devices and, hence, causing the reduction of the lifetime. The lifetime expectation...... changes depending on the real wind speed once the wind turbine is operating. Usually, the real wind speed profiles are employed to evaluate this stress but they do not consider all possible operation conditions and require intensive computations. To solve these issues, this paper proposes the generation...... of random wind speed profiles, based on the measured ones, in order to evaluate the thermal stress of the power devices based on a simplified statistical approach....

  13. Stress Generation, Avoidance Coping, and Depressive Symptoms: A 10-Year Model

    Science.gov (United States)

    Holahan, Charles J.; Moos, Rudolf H.; Holahan, Carole K.; Brennan, Penny L.; Schutte, Kathleen K.

    2011-01-01

    This study examined (a) the role of avoidance coping in prospectively generating both chronic and acute life stressors and (b) the stress-generating role of avoidance coping as a prospective link to future depressive symptoms. Participants were 1,211 late-middle-aged individuals (500 women and 711 men) assessed 3 times over a 10-year period. As predicted, baseline avoidance coping was prospectively associated with both more chronic and more acute life stressors 4 years later. Furthermore, as predicted, these intervening life stressors linked baseline avoidance coping and depressive symptoms 10 years later, controlling for the influence of initial depressive symptoms. These findings broaden knowledge about the stress-generation process and elucidate a key mechanism through which avoidance coping is linked to depressive symptoms. PMID:16173853

  14. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H

    2012-01-01

    There is growing concern that gastrointestinal exposure to particles is associated with increased risk of toxicity to internal organs and carcinogenicity. The mechanism of action is related to particle-induced oxidative stress and oxidation of DNA. Observations from animal models indicate...... that gastrointestinal exposure to single-walled carbon nanotubes (SWCNT), fullerenes C60, carbon black, titanium dioxide and diesel exhaust particles generates oxidized DNA base lesions in organs such as the bone marrow, liver and lung. Oral exposure to nanosized carbon black has also been associated with increased...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...

  15. Stiff and tough: a comparative study on the tensile properties of shark skin.

    Science.gov (United States)

    Creager, Shelby B; Porter, Marianne E

    2017-10-31

    In sharks, the skin is a biological composite with mineralized denticles embedded within a collagenous matrix. Swimming performance is enhanced by the dermal denticles on the skin, which have drag reducing properties produced by regional morphological variations and changes in density along the body. We used mechanical testing to quantify the effect of embedded mineralized denticles on the quasi-static tensile properties of shark skin to failure in four coastal species. We investigated regional differences in denticle density and skin properties by dissecting skin from the underlying fascia and muscle at 10 anatomical landmarks. Hourglass-shaped skin samples were extracted in the cranial to caudal orientation. Denticle density was quantified and varied significantly among both regions and species. We observed the greatest denticle densities in the cranial region of the body for the bonnethead, scalloped hammerhead, and bull sharks. Skin samples were then tested in tension until failure, stress strain curves were generated, and mechanical properties calculated. We found significant species and region effects for all three tensile mechanical properties. We report the greatest ultimate tensile strength, stiffness, and toughness near the cranial and lateral regions of the body for all 4 of the coastal species. We also report that denticle density increases with skin stiffness but decreases with toughness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Effect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites

    Science.gov (United States)

    Ridzuan, M. J. M.; Majid, M. S. Abdul; Afendi, M.; Firdaus, A. Z. Ahmad; Azduwin, K.

    2017-11-01

    The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.

  17. Cracking pressure control of parylene checkvalve using slanted tensile tethers

    OpenAIRE

    Lin, Jeffrey Chun-Hui; Yu, Feiqiao; Tai, Yu-Chong

    2010-01-01

    MEMS check valves with fixed cracking pressures are important in micro-fluidic applications where the pressure, flow directions and flow rates all need to be carefully controlled. This work presents a new surface-micromachined parylene check valve that uses residual thermal stress in the parylene to control its cracking pressure. The new check valve uses slanted tethers to allow the parylene tensile stress to apply a net downward force on the valving seat against the orifice. The angle of the...

  18. Employing pre-stress to generate finite cloaks for antiplane elastic waves

    Science.gov (United States)

    Parnell, William J.; Norris, Andrew N.; Shearer, Tom

    2012-04-01

    It is shown that nonlinear elastic pre-stress of neo-Hookean hyperelastic materials can be used as a mechanism to generate finite cloaks and thus render objects near-invisible to incoming antiplane elastic waves. This approach appears to negate the requirement for special cloaking metamaterials with inhomogeneous and anisotropic material properties in this case. These properties are induced naturally by virtue of the pre-stress. This appears to provide a mechanism for broadband cloaking since dispersive effects due to metamaterial microstructure will not arise.

  19. Employing pre-stress to generate finite cloaks for antiplane elastic waves

    CERN Document Server

    Parnell, William J; Shearer, Tom

    2012-01-01

    It is shown that nonlinear elastic pre-stress of neo-Hookean hyperelastic materials can be used as a mechanism to generate finite cloaks and thus render objects near-invisible to incoming antiplane elastic waves. This approach appears to negate the requirement for special cloaking metamaterials with inhomogeneous and anisotropic material properties in this case. These properties are induced naturally by virtue of the pre-stress. This appears to provide a mechanism for broadband cloaking since dispersive effects due to metamaterial microstructure will not arise.

  20. Stress generation in a developmental context: the role of youth depressive symptoms, maternal depression, the parent-child relationship, and family stress.

    Science.gov (United States)

    Chan, Priscilla T; Doan, Stacey N; Tompson, Martha C

    2014-02-01

    The present study examined stress generation in a developmental and family context among 171 mothers and their preadolescent children, ages 8-12 years, at baseline (Time 1) and 1-year follow-up (Time 2). In the current study, we examined the bidirectional relationship between children's depressive symptoms and dependent family stress. Results suggest that children's baseline level of depressive symptoms predicted the generation of dependent family stress 1 year later. However, baseline dependent family stress did not predict an increase in children's depressive symptoms 1 year later. In addition, we examined whether a larger context of both child chronic strain (indicated by academic, behavioral, and peer stress) and family factors, including socioeconomic status and parent-child relationship quality, would influence the stress generation process. Although both chronic strain and socioeconomic status were not associated with dependent family stress at Time 2, poorer parent-child relationship quality significantly predicted greater dependent family stress at Time 2. Child chronic strain, but neither socioeconomic status nor parent-child relationship quality, predicted children's depression symptoms at Time 2. Finally, gender, maternal depression history, and current maternal depressive symptoms did not moderate the relationship between level of dependent family stress and depressive symptoms. Overall, findings provide partial support for a developmental stress generation model operating in the preadolescent period.

  1. A Miniaturized In Situ Tensile Platform under Microscope

    Directory of Open Access Journals (Sweden)

    Xiaoli Hu

    2012-09-01

    Full Text Available Aiming at the mechanical testing of three-dimensional specimens with feature size of centimeter level, a miniaturized tensile platform, which presents compatibility with scanning electron microscope (SEM and metallographic microscope, was designed and built. The platform could accurately evaluate the parameters such as elastic modulus, elongation and yield limit, etc. The calibration experiments of load sensor and displacement sensor showed the two kinds of sensors had high linearity. Testing of transmission error and modal parameters showed that the platform presented good following behaviors and separation of resonance region. Comparison tests based on stress-strain curve were carried out between the self-made platform and the commercial tensile instrument (Instron to verify the feasibility of the platform. Furthermore, the in situ tensile experiment under metallographic microscope was carried out on a kind of manganese steel.

  2. Climate change and the vulnerability of electricity generation to water stress in the European Union

    Science.gov (United States)

    Behrens, Paul; van Vliet, Michelle T. H.; Nanninga, Tijmen; Walsh, Brid; Rodrigues, João F. D.

    2017-08-01

    Thermoelectric generation requires large amounts of water for cooling. Recent warm periods have led to curtailments in generation, highlighting concerns about security of supply. Here we assess EU-wide climate impacts for 1,326 individual thermoelectric plants and 818 water basins in 2020 and 2030. We show that, despite policy goals and a decrease in electricity-related water withdrawal, the number of regions experiencing some reduction in power availability due to water stress rises from 47 basins to 54 basins between 2014 and 2030, with further plants planned for construction in stressed basins. We examine the reasons for these pressures by including water demand for other uses. The majority of vulnerable basins lie in the Mediterranean region, with further basins in France, Germany and Poland. We investigate four adaptations, finding that increased future seawater cooling eases some pressures. This highlights the need for an integrated, basin-level approach in energy and water policy.

  3. Negative cognitive style and looming cognitive style synergistically predict stress generation.

    Science.gov (United States)

    Kleiman, Evan M; Riskind, John H

    2014-05-01

    There is a growing body of evidence that suggests that cognitive vulnerabilities to depression or anxiety may lead individuals to generate negative interpersonal life events. However, there has been no study to date that examines the effects of co-occurring vulnerabilities to depression and anxiety. In a sample of 304 participants, we examined the potential interaction of co-occurring negative cognitive style, a vulnerability to depression and looming cognitive style, vulnerability to anxiety. Results indicate that co-occurring cognitive vulnerabilities synergistically predict higher levels of negative interpersonal life events six weeks later, even when controlling for initial levels of stressful life events and symptoms of depression and anxiety. Thus, co-occurring vulnerabilities may have stronger stress generating effects than would be expected from the additive effects of each vulnerability considered separately. This finding highlights the importance of examining cognitive vulnerabilities as interactive effects rather than as individual vulnerabilities.

  4. The Uniaxial Tensile Response of Porous and Microcracked Ceramic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit [ORNL; Shyam, Amit [ORNL; Watkins, Thomas R [ORNL; Lara-Curzio, Edgar [ORNL; Lara-Curzio, Edgar [ORNL; Stafford, Randall [Cummins, Inc; Hemker, Kevin J [Johns Hopkins University

    2014-01-01

    The uniaxial tensile stress-strain behavior of three porous ceramic materials was determined at ambient conditions. Test specimens in the form of thin beams were obtained from the walls of diesel particulate filter honeycombs and tested using a microtesting system. A digital image correlation technique was used to obtain full-field 2D in-plane surface displacement maps during tensile loading, and in turn, the 2D strains obtained from displacement fields were used to determine the Secant modulus, Young s modulus and initial Poisson s ratio of the three porous ceramic materials. Successive unloading-reloading experiments were performed at different levels of stress to decouple the linear elastic, anelastic and inelastic response in these materials. It was found that the stress-strain response of these materials was non-linear and that the degree of nonlinearity is related to the initial microcrack density and evolution of damage in the material.

  5. Investigation of anistropic behavior of Montney Shale under indirect tensile strength test

    Energy Technology Data Exchange (ETDEWEB)

    Keneti, S.A.R.; Wong, R.C.K. [Calgary Univ., Calgary, AB (Canada)

    2010-07-01

    The Montney Shale Formation is located near the British Columbia and Alberta borders and is one of the largest economically feasible resource plays in North America. Hydraulic fracturing is used to enhance the gas production. Initiation and propagation of hydraulically induced fracture is controlled by in-situ stresses magnitude and orientation and the reservoir tensile strength. The tensile strength becomes one of the most important parameters in governing hydraulic fracturing of the reservoir if the in-situ stresses composing one vertical and two horizontal stresses are comparable or lie within a narrow range. Different point and line load tests were used in this study to determine the tensile strength of Montney shale cores in two perpendicular directions. The paper discussed image analysis of Montney shale cores and tensile strength tests, including Brazilian tests for measuring tensile strength in the horizontal direction and point load tests for measuring tensile strength in the vertical direction. The effect of anisotropic tensile strength on hydraulic fracturing of Montney shale was also presented. It was concluded from the test results that the Montney shale exhibits a high anisotropy in tensile strength. 11 refs., 3 tabs., 11 figs.

  6. Performance enhancement of nylon/kevlar fiber composites through viscoelastically generated pre-stress

    OpenAIRE

    Fazal, A.; Fancey, K.S.

    2014-01-01

    Kevlar-29 fibers have high strength and stiffness but nylon 6,6 fibers have greater ductility. Thus by commingling these fibers prior to molding in a resin, the resulting hybrid composite may be mechanically superior to the corresponding single fiber-type composites. The contribution made by viscoelastically generated pre-stress, via the commingled nylon fibers, should add further performance enhancement. This paper reports on an initial study into the Charpy impact toughness and flexural sti...

  7. EXPERIMENTAL INVESTIGATION ON TENSILE STRENGTH OF JACQUARD KNITTED FABRICS

    Directory of Open Access Journals (Sweden)

    BRAD Raluca

    2015-05-01

    Full Text Available An objective approach to select the best fabric for technical and home textiles consists in mechanical properties evaluation. The goal of this study is to analyze the behavior of knitted fabrics undergoing stretch stress. In this respect, three types of 2 colors Rib structure (backstripes jacquard, twillback jacquard and double-layered 3x3 rib fabric have been presented and tested for tensile strength and elongation on three directions. First, the elasticity and the behavior of knitted Rib fabrics were described The fabrics were knitted using 100% PAN yarns with Nm 1/15x2 on a E5 CMS 330 Stoll V-bed knitting machine, and have been tested using INSTROM 5587 Tensile Testing Machine in respect of standards conditions. After a relaxation period, 15 specimens were prepared, being disposed at 0°, 45 and 90 angles to the wale direction on the flat knitted panel. The tensile strength and the elongation values were recorded and mean values were computed. After strength and tensile elongation testing for 3 types of rib based knitted fabrics, one can see that the double layer knit presents the best mechanical behavior, followed by birds-eyebacking 2 colors Jacquard and then back striped Jacquard. For tensile stress in bias direction, the twillbacking Jacquard has a good breakage resistance value due to the higher number of rib sinker loops in structure that are positioned on the same direction with the tensile force. The twillbacking Jacquard structure could be considered as an alternative for the base material for decorative and home textile products.

  8. Childhood abuse and stress generation: the mediational effect of depressogenic cognitive styles.

    Science.gov (United States)

    Liu, Richard T; Choi, Jimmy Y; Boland, Elaine M; Mastin, Becky M; Alloy, Lauren B

    2013-04-30

    According to the stress generation hypothesis (Hammen, 1991), depressed and depression-prone individuals experience higher rates of negative life events influenced by their own behaviors and characteristics (i.e., dependent events), which in part may account for the often recurrent nature of depression. Relatively little is known about the interrelation between stress generation predictors, and distal risk factors for this phenomenon. This study examined whether childhood emotional, sexual, and physical abuse, each uniquely predicted negative dependent events in individuals with a history of depression. The role of negative inferential styles as a potential mediator was also assessed. A sample of 66 adults with a history of depression completed self-report measures of childhood abuse history and negative inferential styles at baseline. The "contextual threat" method was used to assess the occurrence of negative life events over a 4-month prospective follow-up period. Childhood emotional abuse, but not sexual or physical abuse, prospectively predicted greater stress generation. Negative inferential styles mediated this relation. These findings suggest that targeting negative cognitive styles in clinical settings, especially in patients with a history of childhood emotional abuse, may be important for reducing the occurrence of negative life events, thereby possibly decreasing risk for depression recurrence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Photoelastic analysis of stress generated by a silorane-based restoration system

    Directory of Open Access Journals (Sweden)

    Murilo Baena Lopes

    2011-08-01

    Full Text Available Silorane-based composite, an epoxy material, was marketed as promising less polymerization contraction than conventional restorative materials. The aim of this study was to evaluate, by means of photoelasticity, the polymerization stress generated by a silorane-based composite. Thirty photoelastic rings with orifices measuring 5 mm (d × 3 mm (h were prepared and divided into 6 groups (n = 5 according to the material tested. The inside walls of the rings were sandblasted with aluminum oxide, after which the restorative materials were inserted into the orifices and photoactivated according to the manufacturer's instructions. The specimens were analyzed and the visual representation of the stress was measured considering the isochromatic ring of first order. The data were converted to MPa and subjected to ANOVA and Tukey's test (α= 0.05. The adhesive Filtek P-90 (G5 showed high contraction stress (p 0.05. The composite Filtek P-90 showed similar contraction stress compared to the conventional composite and, additionally, its adhesive showed higher stress than did the etch-and-rinse 2-step adhesive.

  10. NUMERICAL SIMULATION OF RESIDUAL STRESSES GENERATED IN THE WIRE DRAWING PROCESS FOR DIFFERENT PROCESS PARAMETERS

    Directory of Open Access Journals (Sweden)

    Juliana Zottis

    2014-03-01

    Full Text Available The drawing process of steel bars is usually used to check better dimensional accuracy and mechanical properties to the material. In the other hand, the major concern found in manufacturing axes through this process is the appearance of distortion of shape. Such distortions are directly linked to the accumulation of residual stresses generated during the processes. As a result, this paper aims to study the influence of process parameters such as shape of puller, speed and lubrication used in wire drawing analyzing the accumulation of residual stress after the process. The stress analysis was performed by FEM being used two simulation software: Simufact.formingGP and DeformTM. Through these analyzes, it was found that the shape of how the bar is pulled causes a reduction of up to 100 MPa in residual stresses in the center of the bar, which represents an important factor in the study of the possible causes of the distortion. As well as factors speed and homogeneity of lubrication significantly altered the profile of residual stresses in the bar.

  11. The Influence of Non-Uniform High Heat Flux on Thermal Stress of Thermoelectric Power Generator

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2015-11-01

    Full Text Available A thermoelectric generator (TEG device which uses solar energy as heat source would achieve higher efficiency if there is a higher temperature difference between the hot-cold ends. However, higher temperature or higher heat flux being imposed upon the hot end will cause strong thermal stress, which will have a negative influence on the life cycle of the thermoelectric module. Meanwhile, in order to get high heat flux, a Fresnel lens is required to concentrate solar energy, which will cause non-uniformity of heat flux on the hot end of the TEG and further influence the thermal stress of the device. This phenomenon is very common in solar TEG devices but seldom research work has been reported. In this paper, numerical analysis on the heat transfer and thermal stress performance of a TEG module has been performed considering the variation on the power of the heat flux being imposed upon the hot-end; the influence of non-uniform high heat flux on thermal stress has also been analyzed. It is found that non-uniformity of high heat flux being imposed upon the hot end has a significant effect on the thermal stress of TEG and life expectation of the device. Taking the uniformity of 100% as standard, when the heating uniformity is 70%, 50%, 30%, and 10%, respectively, the maximum thermal stress of TEG module increased by 3%, 6%, 12%, and 22% respectively. If we increase the heat flux on the hot end, the influence of non-uniformity on the thermal stress will be more remarkable.

  12. Effect of high-pressure cooling on the residual stress in Ti-alloys during machining

    OpenAIRE

    Vosough, Manouchehr

    2005-01-01

    Titanium alloys are widely used in aerospace industry but also in other industry sectors. Details for compressors used for generation and petrochemical plants and medical devices can be mentioned as a few examples. Plastic deformation during forming of the metals introduces residual stresses. Fatigue, creep and corrosion are typical failure mechanisms that are stopped or accelerated in the presence of tensile residual stress. Metal cutting as a manufacturing method generates residual stresses...

  13. Perceived Stress, Mindfulness and Sense of Coherence: A Comparison between First Generation and Non-First Generation Clinical Psychology Doctoral Trainees

    Science.gov (United States)

    Hover, Paige Amber

    2014-01-01

    This study compared first generation and non-first generation doctoral students' levels of perceived stress, sense of coherence, and mindfulness. These variables were assessed both separately for each trainee group and in hypothesized relationships with each other. In addition, moderator analyses were conducted to assess whether key relationships…

  14. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles.

    Science.gov (United States)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela; Jantzen, Kim; Roursgaard, Martin; Klingberg, Henrik; Jensen, Ditte Marie; Christophersen, Daniel Vest; Hemmingsen, Jette Gjerke; Cao, Yi; Loft, Steffen

    2014-01-01

    Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity in cultured cells exposed to similar PM. Inflammation is most pronounced in cultured cells and animal models, whereas an elevated level of oxidatively damaged DNA is more pronounced than inflammation in humans. There is non-congruent data showing corresponding variability in effect related to PM sampled at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential of PM sampled at different locations or times. Small air pollution particles did not appear more hazardous than larger particles, which is consistent with the notion that constituents such as metals and organic compounds also are important determinants for PM-generated oxidative stress and inflammation. In addition, the results indicate that PM-mediated ROS production is involved in the generation of inflammation and activated inflammatory cells can increase their ROS production. The observations indicate that air pollution particles generate oxidatively damaged DNA by promoting a milieu of oxidative stress and inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Oxidative stress and NO generation in the rat pancreatitis induced by pancreatic duct ligation.

    Science.gov (United States)

    Buchwalow, Igor; Schnekenburger, Jürgen; Atiakshin, Dmitri; Samoilova, Vera; Wolf, Eduard; Boecker, Werner; Tiemann, Katharina

    2017-04-01

    The interaction between nitric oxide (NO) and superoxides is critical in the development of an acute pancreatitis. Previously, we reported that the expression of superoxides and of the NO-generating enzyme (NO synthase, NOS) was up-regulated in the human pancreatitis, especially within the exocrine compartment indicating an exceptional susceptibility of the exocrine parenchyma to oxidative stress. The aim of the present study was to compare the regulation of NO signalling pathways in the human pancreatitis and in an animal model of an acute pancreatitis induced by pancreatic duct ligation (PDL) in rats. In the PDL-induced rat pancreatitis, we revealed a similar pattern of oxidative stress and NOS up-regulation in acinar and in ductal compartments, like in the human pancreatitis. This demonstrates that the PDL-induced rat pancreatitis is a proper model for further studies of acute pancreatitis development in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Machine-Thermal Coupling Stresses Analysis of the Fin-Type Structural Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Yue, Hao; Chen, Dongbo; Qin, Delei; Chen, Zijian

    2017-05-01

    The design structure and heat-transfer mechanism of a thermoelectric generator (TEG) determine its body temperature state. Thermal stress and thermal deformation generated by the temperature variation directly affect the stress state of thermoelectric modules (TEMs). Therefore, the rated temperature and pressing force of TEMs are important parameters in TEG design. Here, the relationships between structural of a fin-type TEG (FTEG) and these parameters are studied by modeling and "machine-thermal" coupling simulation. An indirect calculation method is adopted in the coupling simulation. First, numerical heat transfer calculations of a three-dimensional FTEG model are conducted according to an orthogonal simulation table. The influences of structural parameters for heat transfer in the channel and outer fin temperature distribution are analyzed. The optimal structural parameters are obtained and used to simulate temperature field of the outer fins. Second, taking the thermal calculation results as the initial condition, the thermal-solid coupling calculation is adopted. The thermal stresses of outer fin, mechanical force of spring-angle pressing mechanism, and clamping force on a TEM are analyzed. The simulation results show that the heat transfer area of the inner fin and the physical parameters of the metal materials are the keys to determining the FTEG temperature field. The pressing mechanism's mechanical force can be reduced by reducing the outer fin angle. In addition, a corrugated cooling water pipe, which has cooling and spring functionality, is conducive to establishing an adaptable clamping force to avoid the TEMs being crushed by the thermal stresses in the body.

  17. Tensile behaviour of aluminium 7017 alloy at various temperatures and strain rates

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2016-04-01

    Full Text Available The objective of the present study is to carry out high strain rate tensile tests on 7017 aluminium alloy under different strain rates ranging from 0.01, 500, 1000 and 1500 s−1 and at temperatures of 25, 100, 200 and 300 °C. Quasi-Static tensile stress–strain curves were generated using INSTRON 8500 machine. Johnson-Cook (J-C constitutive model was developed for 7017 aluminium alloy based on high strain rate tensile data generated from split Hopkinson tension bar (SHTB at various temperatures. This study evidently showed an improvement in dynamic strength as the strain rate increases. The predictions of J-C model are observed to be in consistence with the experimental data for all strain rates and temperatures. The fracture surfaces of specimens tested were studied under SEM. The change in fracture mode has been observed at different strain rates. The shear mode of fracture is dominant at lower strain rates (0.01 and 500 s−1; whereas cup- and cone-like surface representing dimple structure is found at the higher strain rates (1000 and 1500 s−1. The numbers of dimples at high strain rates are more than the quasi-static and intermediate strain rates. It is also observed that the flow stress decreases with increase in temperature. The 7017 aluminium alloy demonstrates thermal softening at higher temperatures. So when the temperature is more than 200 °C at these strain rates, thermal softening is predominant mode of deformation mechanism. It is found that when the temperature increases to 200 °C, the number of dimples rises and the dimple size of 7017 aluminium alloy is larger than at lower temperatures.

  18. Impact Tensile Testing of Stainless Steels at Various Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  19. Heat stress attenuates new cell generation in the hypothalamus: a role for miR-138.

    Science.gov (United States)

    Kisliouk, T; Cramer, T; Meiri, N

    2014-09-26

    The anterior hypothalamus (Ant Hyp) of the brain serves as the main regulator of numerous homeostatic functions, among them body temperature. Fine-tuning of the thermal-response set point during the critical postnatal sensory-developmental period involves neuronal network remodeling which might also be accompanied by alterations in hypothalamic cell populations. Here we demonstrate that heat stress during the critical period of thermal-control establishment interferes with generation of new cells in the chick hypothalamus. Whereas conditioning of the 3-day-old chicks under high ambient temperatures for 24h diminished the number of newborn cells in anterior hypothalamic structures 1 week after the treatment, mild heat stress did not influence the amount of new cells. Phenotypic analysis of these newborn cells indicated a predominant decrease in non-neuronal cell precursors, i.e. cells that do not express doublecortin (DCX). Furthermore, heat challenge of 10-day-old previously high-temperature-conditioned chicks abolished hypothalamic neurogenesis and significantly decreased the number of cells of non-neural origin. As a potential regulatory mechanism for the underlying generation of new cells in the hypothalamus, we investigated the role of the microRNA (miRNA) miR-138, previously reported by us to promote hypothalamic cell migration in vitro and whose levels are reduced during heat stress. Intracranial injection into the third ventricle of miR-138 led to an increase in the number of newborn cells in the Ant Hyp, an effect which might be partially mediated by inhibition of its direct target reelin. These data demonstrate the role of ambient temperature on the generation of new cells in the hypothalamus during the critical period of thermal-control establishment and highlight the long-term effect of severe heat stress on hypothalamic cell population. Moreover, miRNAs, miR-138 in particular, can regulate new cell generation in the hypothalamus. Copyright © 2014 IBRO

  20. Elastic-plastic analysis of the SS-3 tensile specimen

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States)

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  1. Seismological Studies for Tensile Faults

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Ou

    2008-01-01

    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  2. Factors associated with involvement in nonmetropolitan LGBTQ organizations: Proximity? Generativity? Minority stress? Social location?

    Science.gov (United States)

    Paceley, Megan S; Oswald, Ramona Faith; Hardesty, Jennifer L

    2014-01-01

    Little is known about involvement in LGBTQ organizations. Factors associated with involvement in nonmetropolitan LGBTQ organizations were examined using logistic regression and survey data from 426 LGBTQ individuals residing in a nonmetropolitan region. Involvement was examined in five types of organizations (professional, social/recreational, religious, political, and community center/charity). The same model testing proximity, generativity, minority stress, and social location hypotheses was repeated for each organization type. Results demonstrate that the generativity hypothesis is most strongly supported. Indeed, emotional attachment to the LGBTQ community significantly increased the odds of involvement in every type of organization. However, the factors associated with involvement otherwise differed by organization type. Implications for organizational leaders are discussed.

  3. Residual stress analysis of laser cladding repair for nuclear steam generator damaged tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Won Jin; Lee, Sang Cheol; Lee, Seon Ho [Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)

    2008-07-01

    Laser cladding technology was studied as a method for upgrading the present repair procedures of damaged tubes in a nuclear steam generator and Doosan subsequently developed and designed a new Laser Cladding Repair System. One of the important features of this newly developed Laser Cladding Repair System is that molten metal can be deposited on damaged tube surfaces using a laser beam and filler wire without the need to install sleeves inside the tube. Laser cladding qualification tests on the steam generator tube material, Alloy 600, were performed according to ASME Section IX. Residual stress analyses were performed for weld metal and heat affected zone of as-welded and PWHT with SYSWELD software.

  4. Relational Security Moderates the Effect of Serotonin Transporter Gene Polymorphism (5-HTTLPR) on Stress Generation and Depression among Adolescents

    Science.gov (United States)

    Starr, Lisa R.; Hammen, Constance; Brennan, Patricia A.; Najman, Jake M.

    2013-01-01

    Previous research demonstrates that carriers of the short allele of the serotonin transporter gene (5-HTTLPR) show both greater susceptibility to depression in response to stressful life events and higher rates of generation of stressful events in response to depression. The current study examines relational security (i.e., self-reported beliefs…

  5. Phenolics impart Au(3+)-stress tolerance to cowpea by generating nanoparticles.

    Science.gov (United States)

    Shabnam, Nisha; Pardha-Saradhi, P; Sharmila, P

    2014-01-01

    While evaluating impact of Au nanoparticles on seed germination and early seedling growth of cowpea, HAuCl4 was used as control. Seedlings of cowpea raised in HAuCl4, even at concentration as high as 1 mM, did not show any suppression in growth. Accordingly, Au(3+), despite being a heavy metal, did not alter levels of stress markers (viz. proline and malondialdehyde) in cowpea. Interestingly, cowpea turned clear pale yellow HAuCl4 solutions colloidal purple during the course of seed germination and seedling growth. These purple colloidal suspensions showed Au-nanoparticle specific surface plasmon resonance band in absorption spectra. Transmission electron microscopic and powder X-ray diffraction investigations confirmed presence of crystalline Au-nanoparticles in these purple suspensions. Each germinating seed of cowpea released ∼35 nmoles of GAE of phenolics and since phenolics promote generation of Au-nanoparticles, which are less/non toxic compared to Au(3+), it was contemplated that potential of cowpea to withstand Au(3+) is linked to phenolics. Of the different components of germinating seed of cowpea tested, seed coat possessed immense power to generate Au-nanoparticles, as it was the key source of phenolics. To establish role of phenolics in generation of Au-nanoparticles (i) seed coat and (ii) the incubation medium in which phenolics were released by germinating seeds, were tested for their efficacy to generate Au-nanoparticles. Interestingly, incubation of either of these components with Au(3+) triggered increase in generation of Au-nanoparticles with concomitant decrease in phenolics. Accordingly, with increase in concentration of Au(3+), a proportionate increase in generation of Au-nanoparticles and decrease in phenolics was recorded. In summary, our findings clearly established that cowpea possessed potential to withstand Au(3+)-stress as the phenolics released by seed coat of germinating seeds possess potential to reduce toxic Au(3+) to form non

  6. Phenolics Impart Au3+-Stress Tolerance to Cowpea by Generating Nanoparticles

    Science.gov (United States)

    Shabnam, Nisha; Pardha-Saradhi, P.; Sharmila, P.

    2014-01-01

    While evaluating impact of Au nanoparticles on seed germination and early seedling growth of cowpea, HAuCl4 was used as control. Seedlings of cowpea raised in HAuCl4, even at concentration as high as 1 mM, did not show any suppression in growth. Accordingly, Au3+, despite being a heavy metal, did not alter levels of stress markers (viz. proline and malondialdehyde) in cowpea. Interestingly, cowpea turned clear pale yellow HAuCl4 solutions colloidal purple during the course of seed germination and seedling growth. These purple colloidal suspensions showed Au-nanoparticle specific surface plasmon resonance band in absorption spectra. Transmission electron microscopic and powder X-ray diffraction investigations confirmed presence of crystalline Au-nanoparticles in these purple suspensions. Each germinating seed of cowpea released ∼35 nmoles of GAE of phenolics and since phenolics promote generation of Au-nanoparticles, which are less/non toxic compared to Au3+, it was contemplated that potential of cowpea to withstand Au3+ is linked to phenolics. Of the different components of germinating seed of cowpea tested, seed coat possessed immense power to generate Au-nanoparticles, as it was the key source of phenolics. To establish role of phenolics in generation of Au-nanoparticles (i) seed coat and (ii) the incubation medium in which phenolics were released by germinating seeds, were tested for their efficacy to generate Au-nanoparticles. Interestingly, incubation of either of these components with Au3+ triggered increase in generation of Au-nanoparticles with concomitant decrease in phenolics. Accordingly, with increase in concentration of Au3+, a proportionate increase in generation of Au-nanoparticles and decrease in phenolics was recorded. In summary, our findings clearly established that cowpea possessed potential to withstand Au3+-stress as the phenolics released by seed coat of germinating seeds possess potential to reduce toxic Au3+ to form non/less toxic Au

  7. Stressful life events, family support and successful ageing in the Biafran War generation.

    Science.gov (United States)

    Chukwuorji, JohnBosco Chika; Nwoke, Mary Basil; Ebere, Magnus Okechukwu

    2017-01-01

    Although the developing countries contribute substantially to the population of the elderly, little is known about ageing in populous countries like Nigeria, particularly the Biafran War generation (BWG). Some of those who witnessed the Biafran War (also known as Nigerian Civil War) as children are well into late adulthood, while the majority of this pre-war/wartime cohort who are in their golden years will enter into later life in less than a decade from now. The aim of the present research was to examine the role of stressful life events and family support in successful ageing of the BWG. Data were collected using a self-administered survey completed by 453 members of the BWG who were ≥45 years. The survey included measures such as the Successful Ageing Inventory, Life Events Inventory, and family support subscale of Family Dynamics Scale. Hierarchical multiple regression analyses were conducted to test the hypotheses of the study. The three dimensions of stressful life events (health events, interpersonal events and work-related/financial events) had moderate negative relationships with successful ageing. Family support was moderately and positively associated with successful ageing. For the moderation hypotheses, family support was a significant moderator of only the relationship between work-related stressful life events and successful ageing, especially for the Family support provides social protection for older people, in the face of difficult socio-economic circumstances.

  8. Stress generation in adolescence: Contributions from five-factor model (FFM) personality traits and childhood maltreatment.

    Science.gov (United States)

    Kushner, Shauna C; Bagby, R Michael; Harkness, Kate L

    2017-04-01

    Youth with depression are theorized to generate stress in their lives because of a complex interaction between their personal characteristics and their chronic environmental context. Using a moderated regression approach, we provided a novel test of this hypothesis by examining whether adolescent 5-factor model personality traits moderate the associations between early emotional, physical, and sexual maltreatment and life events experienced in the past 6 months. Participants in this cross-sectional study were 110 adolescents (M = 16.24, SD = 1.53, age range = 13-17, 74.5% female) with major depressive disorder. The relation of physical maltreatment to dependent interpersonal life events was moderated by extraversion. Among physically maltreated youth, dependent interpersonal events were positively associated with extraversion. Further, the relation of sexual maltreatment to independent events were moderated by extraversion and agreeableness. Among sexually maltreated youth, independent events were negatively associated with extraversion and positively associated with agreeableness. The observed vulnerability-risk interactions are discussed in terms of their implications for understanding the role of stress generation mechanisms in an integrated model of depression. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Susceptibility to stress-induced visceral sensitivity: a bad legacy for next generations.

    Science.gov (United States)

    Théodorou, V

    2013-12-01

    Despite high prevalence, the precise irritable bowel syndrome (IBS) pathophysiology remains poorly understood likely due to the heterogeneity of IBS populations and the multifactorial etiology of this disorder. Among risk factors, genetic predisposition and early life trauma have been reported. In this context, the debate on genetic or environmental influences in the IBS pathogenesis is still open. The study by van der Wijngaard et al., reporting for the first time that susceptibility to stress-induced visceral hypersensitivity in maternally separated rats can be transferred to the next generation without any further exposure of F2 individuals to maternal separation, supports the importance of environmental influence in the IBS phenotype. Epigenetic mechanisms such as hypermethylation in the promoter region of the glucocorticoid receptor gene mediating the long-term and transgenerational behavioral effects of maternal care on the development have been shown in some but not in all studies. Van der Wijngaard et al. incriminated maternal care in the transmitted susceptibility to stress-induced visceral hypersensitivity, but not changes in glucocorticoid receptor protein expression in the brain. This finding opens a broad field of future directions aimed at evaluating the mechanisms involved in the transmission across generations of the digestive features of IBS, including, for example, on the role of gut microbiota changes in vertical transmission or epigenetic modifications of intestinal mast cells and the junctional region of intestinal epithelial cells in vertical transfer. © 2013 John Wiley & Sons Ltd.

  10. In vivo modulation of LPS induced leukotrienes generation and oxidative stress by sesame lignans.

    Science.gov (United States)

    Yashaswini, Puttaraju Srikantamurthy; Sadashivaiah, Bettadahalli; Ramaprasad, Talahalli Ravichandra; Singh, Sridevi Annapurna

    2017-03-01

    The role of inflammation and oxidative stress is critical during onset of metabolic disorders and this has been sufficiently established in literature. In the present study, we evaluated the effects of sesamol and sesamin, two important bioactive molecules present in sesame oil, on the generation of inflammatory and oxidative stress factors in LPS injected rats. Sesamol and sesamin lowered LPS induced expression of cPLA2 (61 and 56%), 5-LOX (44 and 51%), BLT-1(32 and 35%) and LTC4 synthase (49 and 50%), respectively, in liver homogenate. The diminished serum LTB4 (53 and 64%) and LTC4 (67 and 44%) levels in sesamol and sesamin administered groups, respectively, were found to be concurrent with the observed decrease in the expression of cPLA2 and 5-LOX. The serum levels of TNF-α (29 and 19%), MCP-1 (44 and 57%) and IL-1β (43 and 42%) were found to be reduced in sesamol and sesamin group, respectively, as given in parentheses, compared to LPS group. Sesamol and sesamin offered protection against LPS induced lipid peroxidation in both serum and liver. Sesamol, but not sesamin, significantly restored the loss of catalase and glutathione reductase activity due to LPS (P<.05). However, both sesamol and sesamin reverted SOD activities by 92 and 98%, respectively. Thus, oral supplementation of sesamol and sesamin beneficially modulated the inflammatory and oxidative stress markers, as observed in the present study, in LPS injected rats. Our report further advocates the potential use of sesamol and sesamin as an adjunct therapy wherein, inflammatory and oxidative stress is of major concern. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Component reductions in oxygen delivery generate variable haemodynamic and stress hormone responses.

    Science.gov (United States)

    Dyson, A; Ekbal, N; Stotz, M; Barnes, S; Carré, J; Tully, S; Henderson, S; Barrett, L; Singer, M

    2014-10-01

    In clinical practice, global oxygen delivery (DO2) is often considered as a whole; however pathological and adaptive responses after a decrease in individual constituents of the DO2 equation (cardiac output, haemoglobin, oxyhaemoglobin saturation) are likely to be diverse. We hypothesized that an equivalent decrease in DO2 after reductions in each separate component of the equation would result in different haemodynamic, tissue oxygenation, and stress hormonal responses. Anaesthetized, fluid-resuscitated male Wistar rats were subjected to circulatory, anaemic, or hypoxic hypoxia (by haemorrhage, isovolaemic haemodilution, and breathing a hypoxic gas mix, respectively), produced either rapidly over 5 min or graded over 30 min, to a targeted 50% decrease in global oxygen delivery. Sham-operated animals acted as controls. Measurements were made of haemodynamics, skeletal muscle tissue oxygen tension, blood gas analysis, and circulating stress hormone levels. Whereas haemorrhage generated the largest decrease in cardiac output, and the greatest stress hormone response, haemodilution had the most marked effect on arterial pressure. In contrast, rapid hypoxaemia produced a minor impact on global haemodynamics yet induced the greatest decrease in regional oxygenation. A greater degree of hyperlactataemia was observed with graded insults compared with those administered rapidly. Decreasing global oxygen delivery, achieved by targeted reductions in its separate components, induces varying circulatory, tissue oxygen tension, and stress hormone responses. We conclude that not all oxygen delivery is the same; this disparity should be emphasized in classical teaching and re-evaluated in patient management. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The potential of prolonged tissue culture to reduce stress generation and retraction in engineered heart valve tissues.

    Science.gov (United States)

    van Vlimmeren, Marijke A A; Driessen-Mol, Anita; Oomens, Cees W J; Baaijens, Frank P T

    2013-03-01

    In tissue-engineered (TE) heart valves, cell-mediated processes cause tissue compaction during culture and leaflet retraction at time of implantation. We have quantified and correlated stress generation, compaction, retraction, and tissue quality during a prolonged culture period of 8 weeks. Polyglycolic acid/poly-4-hydroxybutyrate strips were seeded with vascular-derived cells and cultured for 4-8 weeks. Compaction in width, generated force, and stress was measured during culture. Retraction in length, generated force, and stress was measured after release of constraints at weeks 4, 6, and 8. Further, the amount of DNA, glycosaminoglycans (GAGs), collagen, and collagen cross-links was assessed. During culture, compaction and force generation increased to, respectively, 63.9% ± 0.8% and 43.7 ± 4.3 mN at week 4, after which they remained stable. Stress generation reached 27.7 ± 3.2 kPa at week 4, after which it decreased to ∼8.5 kPa. At release of constraints, tissue retraction was 44.0% ± 3.7% at week 4 and decreased to 29.2% ± 2.8% and 26.1% ± 2.2% at, respectively, 6 and 8 weeks. Generated force (8-16 mN) was lower at week 6 than at weeks 4 and 8. Generated stress decreased from 11.8 ± 0.9 kPa at week 4 to 1.4 ± 0.3 and 2.4 ± 0.4 kPa at, respectively, weeks 6 and 8. The amount of GAGs increased at weeks 6 and 8 compared to week 4 and correlated to the reduced stress and retraction. In summary, prolonged culture resulted in decreased stress generation and retraction, likely as a result of the increased amount of GAGs. These results demonstrate the potential of prolonged tissue culture in developing functional, nonretracting, TE heart valves.

  13. Examining coping style and the relationship between stress and subjective well-being in Australia's 'sandwich generation'.

    Science.gov (United States)

    Gillett, Jade E; Crisp, Dimity A

    2017-09-01

    The sandwich generation represents adults, often in midlife, who care for both children and ageing parents/relatives. While the stress they experience has received some attention, little research has investigated the subjective well-being (SWB) of this population. This study examined the relationship between perceived stress and SWB and the moderating effect of coping style. Ninety-three participants (80 women), aged 23-63 years, completed an online survey measuring perceived stress, coping strategies, life satisfaction and positive and negative affect. Stress was negatively associated with SWB. While emotion- and problem-focused coping were directly associated with SWB outcomes, the only moderating effect found was for avoidance-focused coping (AFC). Specifically, AFC was associated with higher positive affect for those reporting lower stress. This study highlights the need to recognise the distinct circumstances that exist for the sandwich generation. Limitations and suggestions for future research are discussed. © 2017 AJA Inc.

  14. An Experimental Study of the Influence of in-Plane Fiber Waviness on Unidirectional Laminates Tensile Properties

    Science.gov (United States)

    Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong

    2017-12-01

    As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.

  15. Effect of Strain-Induced Martensite on Tensile Properties and Hydrogen Embrittlement of 304 Stainless Steel

    Science.gov (United States)

    Kim, Young Suk; Bak, Sang Hwan; Kim, Sung Soo

    2016-01-01

    Room temperature tensile tests have been conducted at different strain rates ranging from 2 × 10-6 to 1 × 10-2/s on hydrogen-free and hydrogen-charged 304 stainless steel (SS). Using a ferritescope and neutron diffraction, the amount of strain-induced martensite (SIM) has been in situ measured at the center region of the gage section of the tensile specimens or ex situ measured on the fractured tensile specimens. The ductility, tensile stress, hardness, and the amount of SIM increase with decreasing strain rate in hydrogen-free 304 SS and decrease in hydrogen-charged one. Specifically, SIM that forms during tensile tests is beneficial in increasing the ductility, strain hardening, and tensile stress of 304 SS, irrespective of the presence of hydrogen. A correlation of the tensile properties of hydrogen-free and hydrogen-charged 304 SS and the amount of SIM shows that hydrogen suppresses the formation of SIM in hydrogen-charged 304 SS, leading to a ductility loss and localized brittle fracture. Consequently, we demonstrate that hydrogen embrittlement of 304 SS is related to hydrogen-suppressed formation of SIM, corresponding to the disordered phase, according to our proposition. Compelling evidence is provided by the observations of the increased lattice expansion of martensite with decreasing strain rate in hydrogen-free 304 SS and its lattice contraction in hydrogen-charged one.

  16. Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress

    Science.gov (United States)

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states. PMID:23035112

  17. Two new tensile devices for X-ray diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Freri, N.; Tintori, A.; Depero, L.E.; Sangaletti, L. [Brescia Univ. (Italy); Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-12-01

    Two tensile devices were designed to be used with parallel beam and parafocusing-geometry diffractometers. In thefirst case the device was designed to be attached to a strainflex diffractometer by Rigaku Inc., dedicated to stress analysis and commonly used in metallurgical industry. Since the sample does not move during the measurement, the tensile device can be kept fixed on the experimental table. The device design takes into account the steric hindrance by moving parts of diffractometer. The maximun load that can be applied to the sample is 60.000 N. An attachement to a Siemens D5000 diffractometer with Eulerian cradle has also benn designed for applying a load up tp 6000 N to a sample in the parafocusing-geometry. The installation does not require a re-alignment of the diffractometer. In both cases strain gages were applied to both sides of the specimen for the simultaneous determination of the macroscopic strains. Experiments based on the use of these devices are planned to determine the crystallographic elastic constants and study the influence of the microstructure on the mechanical behaviour of residual stresses in the zone of almost static stresses as well as the influence of residual stresses on uniaxially loaded samples. In addition, by using these devices, it is possible to measure the unstressed d-0 spacings providing useful information in the neutron diffraction study fo stress fields in steel samples.

  18. Anisotropic behavior of deep-drawn al 1017 alloy using Macroscopic tensile and cupping tests

    Science.gov (United States)

    Balogun, S. A.; Esezobor, D. E.; Adeosun, S. O.

    2008-11-01

    This paper presents a macromechanical approach for the determination of microstructural integrity of aluminum 1017 alloy (vis-à-vis recrystallization, recovery, and grain growth). Tensile and cupping tests were carried out on cold-rolled 1.2 mm and 1.6 mm samples. The paper examines the variation of the plastic strain ratio, dislocation density, degree of deformation, and ultimate tensile strength of this alloy in relation to the orientation of rolling using macromechanically based stress and strain models.

  19. Analog Experiments on Tensile Strength of Dusty and Cometary Matter

    Science.gov (United States)

    Musiolik, Grzegorz; de Beule, Caroline; Wurm, Gerhard

    2017-11-01

    The tensile strength of small dusty bodies in the solar system is determined by the interaction between the composing grains. In the transition regime between small and sticky dust (μm) and non cohesive large grains (mm), particles still stick to each other but are easily separated. In laboratory experiments we find that thermal creep gas flow at low ambient pressure generates an overpressure sufficient to overcome the tensile strength. For the first time it allows a direct measurement of the tensile strength of individual, very small (sub)-mm aggregates which consist of only tens of grains in the (sub)-mm size range. We traced the disintegration of aggregates by optical imaging in ground based as well as microgravity experiments and present first results for basalt, palagonite and vitreous carbon samples with up to a few hundred Pa. These measurements show that low tensile strength can be the result of building loose aggregates with compact (sub)-mm units. This is in favour of a combined cometary formation scenario by aggregation to compact aggreates and gravitational instability of these units.

  20. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...... in cultured cells exposed to similar PM. Inflammation is most pronounced in cultured cells and animal models, whereas an elevated level of oxidatively damaged DNA is more pronounced than inflammation in humans. There is non-congruent data showing corresponding variability in effect related to PM sampled...... of PM sampled at different locations or times. Small air pollution particles did not appear more hazardous than larger particles, which is consistent with the notion that constituents such as metals and organic compounds also are important determinants for PM-generated oxidative stress and inflammation...

  1. Surfactant effects on soil aggregate tensile strength

    Science.gov (United States)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  2. Machining technique prevents undercutting in tensile specimens

    Science.gov (United States)

    Moscater, R. E.; Royster, D. M.

    1968-01-01

    Machining technique prevents undercutting at the test section in tensile specimens when machining the four corners of the reduced section. Made with a gradual taper in the test section, the width of the center of the tensile specimen is less than the width at the four corners of the reduced section.

  3. Unexpectedly low tensile strength in concrete structures

    NARCIS (Netherlands)

    Siemes, A.J.M.; Han, N.; Visser, J.H.M.

    2002-01-01

    During an extensive investigation of some 25 concrete bridges and other structures suffering from alkali-silica reaction it has been found that the uniaxial tensile strength of the concrete was extremely low in relation to both the compressive strength and the splitting tensile strength. It is known

  4. The role of minority stress in second-generation Black emerging adult college students' high-risk drinking behaviors.

    Science.gov (United States)

    Pittman, Delishia M; Cho Kim, Sara; Hunter, Carla D; Obasi, Ezemenari M

    2017-07-01

    This study used a minority stress framework to investigate the relationships between multiple stressors (e.g., general life stress, race related stress, and acculturative stress) and high-risk drinking behaviors in a sample of second-generation Black emerging adult college students across the United States. Participants (n = 148) were recruited from U.S. colleges and universities as part of a large, multiwave cross-sectional study. Findings from this study mirrored those in the extant literature: the positive relationship between race-related stress and high-risk drinking behaviors found in other marginalized groups. However, when all stressors were entered into the model, acculturative stress accounted for significant variance in high-risk drinking behaviors above and beyond general life and race-related stressors in second generation Black emerging adult college students. Findings underscore the need to better understand the influence of acculturative stress on high-risk drinking behaviors among second-generation Black emerging adult college students: an understudied population in both the acculturation and alcohol use literatures. Implications for future research and clinical practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Granular flow in pebble-bed nuclear reactors: Scaling, dust generation, and stress

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H., E-mail: chr@seas.harvard.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Department of Mathematics, University of California, Berkeley, CA 94720 (United States); Department of Mathematics, Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Dehbi, Abdel, E-mail: abdel.dehbi@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Lind, Terttaliisa, E-mail: terttaliisa.lind@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Güntay, Salih, E-mail: salih.guentay@psi.ch [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2013-12-15

    Highlights: • The scaling properties of granular flow in pebble-bed reactors have been analyzed. • Simulations in a full-size reactor are compared to those scaled down by 3:1 and 6:1. • For some features, the scaled-down behavior is complex due to pebble packing effects. • Pebble stresses and dust generation due to pebble wear are analyzed in detail. • Approximate scaling laws for pebble stress and wear are developed. - Abstract: In experimental prototypes of pebble-bed reactors, significant quantities of graphite dust have been observed due to rubbing between pebbles as they flow through the core. At the typical operating conditions in these reactors, which feature high temperatures, pressures, and a helium atmosphere, limited data is available on the frictional properties of the pebble surfaces, and as a result, a conceptual design of a scaled-down version of a pebble-bed reactor has been proposed to investigate this issue in detail. However, this raises general questions about how the granular flow in a scaled facility will emulate that in a full-size reactor. To address this, simulations of granular flow in pebble-bed reactors using the discrete-element method (DEM) have been carried out in a full-size geometry (using 440,000 pebbles) and compared to those in geometries scaled down by factors of 3:1 and 6:1. Differences in velocity profiles, pebble ordering, pebble wear, and stresses are examined, and the effect of friction is discussed. The results show complex behavior due to discrete pebble packing effects, although several simple scaling rules can be derived.

  6. Depression as a mediator of negative cognitive style and hopelessness in stress generation.

    Science.gov (United States)

    Kleiman, Evan M; Liu, Richard T; Riskind, John H; Hamilton, Jessica L

    2015-02-01

    Over the past 20 years, there has been considerable interest in the role of cognitive factors in the stress generation process. Generally, these studies find that depressed individuals, or individuals at cognitive risk for depression, are more likely to experience stressful life events that are in part influenced by their own characteristics and behaviours (i.e., negative dependent events). However, there is still much to be learnt about the mediators of these effects. For example, does the development of depression symptoms explain why individuals at cognitive risk for depression experience increased negative dependent events? Or, is it that increases in cognitive risk explain why depressed individuals experience increased negative dependent events? To explore these questions, a short-term prospective study was conducted with 209 college students who were given measures of depression, depressogenic risk factors (i.e., negative cognitive style and hopelessness), and negative dependent events at two time points 6 weeks apart. Support was found for three models: (1) depression symptoms mediated the relationship between negative cognitive style and negative dependent events; (2) depression symptoms mediated the relationship between hopelessness and negative dependent events; and (3) first hopelessness and then depression symptoms mediated the relationship between negative cognitive style and negative dependent events in a multiple-step model. In contrast, the reverse models were not confirmed, suggesting specificity in the direction of the mediational sequence. © 2014 The British Psychological Society.

  7. A Role of Fluoride on Free Radical Generation and Oxidative Stress in BV-2 Microglia Cells

    Directory of Open Access Journals (Sweden)

    Xi Shuhua

    2012-01-01

    Full Text Available The generation of ROS and lipid peroxidation has been considered to play an important role in the pathogenesis of chronic fluoride toxicity. In the present study, we observed that fluoride activated BV-2 microglia cell line by observing OX-42 expression in immunocytochemistry. Intracellular superoxide dismutase (SOD, glutathione (GSH, malondialdehyde (MDA, reactive oxygen species (ROS, superoxide anions (O2∙-, nitric oxide synthase (NOS, nitrotyrosine (NT and nitric oxide (NO, NOS in cell medium were determined for oxidative stress assessment. Our study found that NaF of concentration from 5 to 20 mg/L can stimuli BV-2 cells to change into activated microglia displaying upregulated OX-42 expression. SOD activities significantly decreased in fluoride-treated BV-2 cells as compared with control, and MDA concentrations and contents of ROS and O2∙- increased in NaF-treated cells. Activities of NOS in cells and medium significantly increased with fluoride concentrations in a dose-dependent manner. NT concentrations also increased significantly in 10 and 50 mg/L NaF-treated cells compared with the control cells. Our present study demonstrated that toxic effects of fluoride on the central nervous system possibly partly ascribed to activiting of microglia, which enhanced oxidative stress induced by ROS and reactive nitrogen species.

  8. Activation of JAK2 by the oxidative stress generated with oxidized low-density lipoprotein.

    Science.gov (United States)

    Mazière, C; Conte, M A; Mazière, J C

    2001-12-01

    Atherosclerosis includes a series of cellular and molecular responses characteristic of an inflammatory disease. We provide evidence that cupric-ion-oxidized LDL (CuLDL) or endothelial cell-oxidized LDL (ELDL) induced the activation by Tyr-phosphorylation of JAK2, one of the Janus kinase involved upstream of STATs in the JAK/STAT pathway of cytokine transduction. Oxidized LDL (OxLDL) also initiated STAT1 and STAT3 Tyr-phosphorylation and translocation to the nucleus, with a more marked effect for the extensively modified CuLDL. Genistein, a nonspecific Tyr-kinase inhibitor, and AG490, a specific inhibitor of JAKs, markedly prevented the CuLDL-induced enhancement of STAT1 and STAT3 Tyr-phosphorylation and DNA-binding activity, suggesting that JAKs are the main kinases involved in STATs' activation by oxidized LDL. In addition, the lipid extract of CuLDL increased the intracellular levels of lipid peroxidation products and the Tyr-phosphorylation of JAK2, STAT1, and STAT3, whereas the antioxidant vitamin E prevented all these effects. These results demonstrate that OxLDL induces the activation by Tyr-phosphorylation of JAK2, STAT1, and STAT3 by generation of an intracellular oxidative stress by means of its lipid peroxidation products, and thus include JAK2 within the range of oxidative stress-activated kinases.

  9. Statistical data for the tensile properties of natural fibre composites.

    Science.gov (United States)

    Torres, J P; Vandi, L-J; Veidt, M; Heiztmann, M T

    2017-06-01

    This article features a large statistical database on the tensile properties of natural fibre reinforced composite laminates. The data presented here corresponds to a comprehensive experimental testing program of several composite systems including: different material constituents (epoxy and vinyl ester resins; flax, jute and carbon fibres), different fibre configurations (short-fibre mats, unidirectional, and plain, twill and satin woven fabrics) and different fibre orientations (0°, 90°, and [0,90] angle plies). For each material, ~50 specimens were tested under uniaxial tensile loading. Here, we provide the complete set of stress-strain curves together with the statistical distributions of their calculated elastic modulus, strength and failure strain. The data is also provided as support material for the research article: "The mechanical properties of natural fibre composite laminates: A statistical study" [1].

  10. Evaluation of the tensile strength of the human ureter - Preliminary results.

    Science.gov (United States)

    Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A

    2014-09-15

    Introduction: Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter, and of those none have determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. Materials and Methods: We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or non-functioning kidney. The specimens were then cut into multiple circumferentially and longitudinally-oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. Results: The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm-2 and 902.43±122.08 Ncm-2, respectively (pstrength in the proximal portion of the ureter was 409.89±35.13 Ncm-2 in comparison to 502.89±55.85 Ncm-2 in the distal portion (p=0.08). Conclusions: The circumferential tensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators in order to prevent complications.

  11. Evaluation of the tensile strength of the human ureter--preliminary results.

    Science.gov (United States)

    Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A

    2014-12-01

    Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter and, of those, none has determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or nonfunctioning kidney. The specimens were then cut into multiple circumferentially and longitudinally oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm(-2) and 902.43±122.08 Ncm(-2), respectively (Pureter was 409.89±35.13 Ncm(-2) in comparison with 502.89±55.85 Ncm(-2) in the distal portion (P=0.08). The circumferential tensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators to prevent complications.

  12. The Eastern Renewable Generation Integration Study: Insights on System Stress: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Aaron; Novacheck, Josh

    2017-04-12

    The Eastern Renewable Generation Integration Study (ERGIS) explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in North America's Eastern and Quebec Interconnections. We explore the impact of large scale adoption of wind and solar generation on the unit commitment and economic dispatch of the largest coordinated power system in the world by simulating hourly and five-minute operations. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the modeled system, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and solar PV at a five-minute level under a variety of conditions. Our simulations achieve instantaneous penetrations that exceed 50% of load while meeting an annual penetration of 30% on an energy basis. The system meets balanced load and supply in all intervals, with modest curtailment, using technologies and practices that are widely available today. However, a variety of the conditions present in these simulations deviate substantially from historical practice. In this work, we analyze potentially stressful system conditions that occur in the simulations and identify opportunities for innovation, regulatory reform, and changes in operating practices that require further analysis to enable the transition to a system with more wind and solar PV.

  13. Mitigating hypoxic stress on pancreatic islets via in situ oxygen generating biomaterial.

    Science.gov (United States)

    Coronel, Maria M; Geusz, Ryan; Stabler, Cherie L

    2017-06-01

    A major obstacle in the survival and efficacy of tissue engineered transplants is inadequate oxygenation, whereby unsupportive oxygen tensions result in significant cellular dysfunction and death within the implant. In a previous report, we developed an innovative oxygen generating biomaterial, termed OxySite, to provide supportive in situ oxygenation to cells and prevent hypoxia-induced damage. Herein, we explored the capacity of this biomaterial to mitigate hypoxic stress in both rat and nonhuman primate pancreatic islets by decreasing cell death, supporting metabolic activity, sustaining aerobic metabolism, preserving glucose responsiveness, and decreasing the generation of inflammatory cytokines. Further, the impact of supplemental oxygenation on in vivo cell function was explored by the transplantation of islets previously co-cultured with OxySite into a diabetic rat model. Transplant outcomes revealed significant improvement in graft efficacy for OxySite-treated islets, when transplanted within an extrahepatic site. These results demonstrate the potency of the OxySite material to mitigate activation of detrimental hypoxia-induced pathways in islets during culture and highlights the importance of in situ oxygenation on resulting islet transplant outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Tensile overpressure compartments on low-angle thrust faults

    Science.gov (United States)

    Sibson, Richard H.

    2017-08-01

    Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault-fracture meshes at low σ 3' around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fluid loss curtailing mesh activity.[Figure not available: see fulltext.

  15. Application of Numerical Simulation on the Manufacturing Process Qualification of Nuclear Power Plant Steam Generator Tube-sheet

    Directory of Open Access Journals (Sweden)

    Zhang Shao Jun

    2016-01-01

    Full Text Available Nuclear power plant key parts-steam generator (SG tube sheet forging operate in harsh environment, so it has high requirements for internal quality. According to RCC-M specification requirements (take CPR1000 reactor type for example, the manufacturer should carry out workshop qualification and part process qualification before delivery product manufacturing. It is commonly used that centre compaction process and conical plate upsetting process regard as two kinds of large forging upsetting ways. The numerical analogue simulation has been carried out on nuclear power large tube sheet forgings using France Forge simulation software. The results show that: when the same pressure size, 3-direction compressive stress in the core of the billet always exist in the process of upsetting using centre pressing process, and the strain create in the central of the billet, but stagnant zone exist on the bottom and end plane; tensile stress in the core of the billet always exist in the process of upsetting using conical plate upsetting process, it will force the billet that contact with conical plate to deform, so eliminate stagnant zone, but effective deformation don’t produce in the central of the billet. The conical plate continue press for conical plate upsetting process, tensile stress in the core of the billet disappear, and then gradually change into pressure stress, then tensile stress is generated at the bottom, finally tensile stress disappear and 3-direction compressive stress exist in the core of the billet.

  16. Study on the Tensile Creep Behavior of Carbon Nanotubes-Reinforced Sn-58Bi Solder Joints

    Science.gov (United States)

    Yang, Li; Liu, Haixiang; Zhang, Yaocheng

    2018-01-01

    The microstructure and tensile creep behavior of plain Sn-58Bi solder and carbon nanotubes (CNTs)-reinforced composite solder joints were investigated. The stress exponent n under different stresses and the creep activation energy Q c under different temperatures of solder joints were obtained by an empirical equation. The results reveal that the microstructure of the composite solder joint is refined and the tensile creep resistance is improved by CNTs. The improvement of creep behavior is due to the microstructural change of the composite solder joints, since the CNTs could provide more obstacles for dislocation pile-up, which enhances the values of the stress exponent and the creep activation energy. The steady-state tensile creep rates of plain solder and composite solder joints are increased with increasing temperature and applied stress. The tensile creep constitutive equations of plain solder and composite solder joints are written as \\dot{ɛ }_{s1} = 14.94( {σ /G} )^{3.7} \\exp ( { - 81444/RT} ) and \\dot{ɛ }_{s2} = 2.5( {σ /G} )^{4.38} \\exp ( { - 101582/RT} ) , respectively. The tensile creep mechanism of the solder joints is the effects of lattice diffusion determined by dislocation climbing.

  17. Study on the Tensile Creep Behavior of Carbon Nanotubes-Reinforced Sn-58Bi Solder Joints

    Science.gov (United States)

    Yang, Li; Liu, Haixiang; Zhang, Yaocheng

    2017-10-01

    The microstructure and tensile creep behavior of plain Sn-58Bi solder and carbon nanotubes (CNTs)-reinforced composite solder joints were investigated. The stress exponent n under different stresses and the creep activation energy Q c under different temperatures of solder joints were obtained by an empirical equation. The results reveal that the microstructure of the composite solder joint is refined and the tensile creep resistance is improved by CNTs. The improvement of creep behavior is due to the microstructural change of the composite solder joints, since the CNTs could provide more obstacles for dislocation pile-up, which enhances the values of the stress exponent and the creep activation energy. The steady-state tensile creep rates of plain solder and composite solder joints are increased with increasing temperature and applied stress. The tensile creep constitutive equations of plain solder and composite solder joints are written as \\dot{ɛ }_{s1} = 14.94( {σ /G} )^{3.7} \\exp ( { - 81444/RT} ) and \\dot{ɛ }_{s2} = 2.5( {σ /G} )^{4.38} \\exp ( { - 101582/RT} ) , respectively. The tensile creep mechanism of the solder joints is the effects of lattice diffusion determined by dislocation climbing.

  18. Muscle Fiber Orientation Angle Dependence of the Tensile Fracture Behavior of Frozen Fish Muscle

    Science.gov (United States)

    Hagura, Yoshio; Okamoto, Kiyoshi; Suzuki, Kanichi; Kubota, Kiyoshi

    We have proposed a new cutting method for frozen fish named "cryo-cutting". This method applied tensile fracture force or bending fracture force to the frozen fish at appropriate low temperatures. In this paper, to clarify cryo-cutting mechanism, we analyzed tensile fracture behavior of the frozen fish muscle. In the analysis, the frozen fish muscle was considered unidirectionally fiber-reinforced composite material which consisted of fiber (muscle fiber) and matrix (connective tissue). Fracture criteria (maximum stress criterion, Tsai-Hill criterion) for the unidirectionally fiber-reinforced composite material were used. The following results were obtained: (1) By using Tsai-Hill criterion, muscle fiber orientation angle dependence of the tensile fracture stress could be calculated. (2) By using the maximum stress theory jointly with Tsai-Hill criterion, muscle fiber orientation angle dependence of the fracture mode of the frozen fish muscle could be estimated.

  19. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with L-tyrosine and L-DOPA.

    Science.gov (United States)

    Tada, Mika; Kohno, Masahiro; Niwano, Yoshimi

    2014-10-09

    Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through L-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-D-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, L-tyrosine and L-DOPA. The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only L-tyrosine but L-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics.

  20. Trans-Generational Effects of Mild Heat Stress on the Life History Traits of an Aphid Parasitoid

    Science.gov (United States)

    Ismaeil, Ibrahim; Doury, Géraldine; Desouhant, Emmanuel; Dubois, Françoise; Prevost, Geneviève; Couty, Aude

    2013-01-01

    Temperature changes are common in nature and insects are particularly exposed and sensitive to such variations which can be potential stresses, ultimately affecting life history traits and overall fitness. Braconids have been widely used to study the effects of temperature on host-parasitoid interactions and the present work focused on the solitary endoparasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae Aphidiidae), an efficient biological control agent commercially used against aphids such as the potato aphid Macrosiphum euphorbiae Thomas (Sternorrhyncha: Aphididae). Contrary to previous studies using heat shocks at extreme temperatures, we evaluated the effects of mild heat stresses by transferring young parasitoid adults from the constant temperature of 20°C to either a warm (25°C) or hot (28°C) temperature, for either 1 h or 48 h. Such treatments are consistent with situations commonly experienced by parasitoids when moved from their rearing conditions to greenhouses or field conditions. The effects were evaluated both on the heat stressed A. ervi adults (G0) (immediate effects) and on their first generation (G1) progeny (trans-generational effects). G0 wasps’ mortality was significantly affected by the temperature in interaction with the duration of the stress. Longevity of G0 wasps surviving the heat stress was negatively affected by the temperature and females lived longer than males. Heat stress applied to A. ervi parents also had consequences on their G1 progeny whose developmental time, rates of mummification and percentage of parasitoid completing total development were negatively affected. Surprisingly, the egg load at emergence of the G1 female progeny was increased when their mothers had been submitted to a mild heat stress of 25°C or 28°C. These results clearly demonstrate trans-generational phenotypic plasticity, showing that adaptation to thermal stresses may be achieved via maternal effects. This study also sheds light on the

  1. Trans-generational effects of mild heat stress on the life history traits of an aphid parasitoid.

    Directory of Open Access Journals (Sweden)

    Ibrahim Ismaeil

    Full Text Available Temperature changes are common in nature and insects are particularly exposed and sensitive to such variations which can be potential stresses, ultimately affecting life history traits and overall fitness. Braconids have been widely used to study the effects of temperature on host-parasitoid interactions and the present work focused on the solitary endoparasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae Aphidiidae, an efficient biological control agent commercially used against aphids such as the potato aphid Macrosiphum euphorbiae Thomas (Sternorrhyncha: Aphididae. Contrary to previous studies using heat shocks at extreme temperatures, we evaluated the effects of mild heat stresses by transferring young parasitoid adults from the constant temperature of 20°C to either a warm (25°C or hot (28°C temperature, for either 1 h or 48 h. Such treatments are consistent with situations commonly experienced by parasitoids when moved from their rearing conditions to greenhouses or field conditions. The effects were evaluated both on the heat stressed A. ervi adults (G0 (immediate effects and on their first generation (G1 progeny (trans-generational effects. G0 wasps' mortality was significantly affected by the temperature in interaction with the duration of the stress. Longevity of G0 wasps surviving the heat stress was negatively affected by the temperature and females lived longer than males. Heat stress applied to A. ervi parents also had consequences on their G1 progeny whose developmental time, rates of mummification and percentage of parasitoid completing total development were negatively affected. Surprisingly, the egg load at emergence of the G1 female progeny was increased when their mothers had been submitted to a mild heat stress of 25°C or 28°C. These results clearly demonstrate trans-generational phenotypic plasticity, showing that adaptation to thermal stresses may be achieved via maternal effects. This study also sheds light on

  2. Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve.

    Science.gov (United States)

    Xuan, Yue; Krishnan, Kapil; Ye, Jian; Dvir, Danny; Guccione, Julius M; Ge, Liang; Tseng, Elaine E

    2017-05-01

    Transcatheter aortic valve replacement is established therapy for high-risk and inoperable patients with severe aortic stenosis, but questions remain regarding long-term durability. Valve design influences durability. Increased leaflet stresses in surgical bioprostheses have been correlated with degeneration; however, transcatheter valve leaflet stresses are unknown. From 2007 to 2014, a majority of US patients received first-generation balloon-expandable transcatheter valves. Our goal was to determine stent and leaflet stresses in this valve design using finite element analyses. A 26-mm Sapien Transcatheter Heart Valve (Edwards Lifesciences, Inc, Irvine, Calif) underwent high-resolution microcomputed tomography scanning to develop precise 3-dimensional geometry of the leaflets, the stent, and the polyethylene terephthalate elements. The stent was modeled using 3-dimensional elements and the leaflets were modeled using shell elements. Stent material properties were based on stainless steel, whereas those for leaflets were obtained from surgical bioprostheses. Noncylindrical Sapien valve geometry was also simulated. Pressure loading to 80 mm Hg and 120 mm Hg was performed using ABAQUS finite element software (Dassault Systèmes, Waltham, Mass). At 80 mm Hg, maximum principal stresses on Sapien leaflets were 1.31 megaspascals (MPa). Peak leaflet stress was observed at commissural tips where leaflets connected to the stent. Maximum principal stresses for the stent were 188.91 MPa and located at stent tips where leaflet commissures were attached. Noncylindrical geometry increased peak principal leaflet stresses by 16%. Using exact geometry from high-resolution scans, the 26-mm Sapien Transcatheter Heart Valve showed that peak stresses for both stent and leaflets were present at commissural tips where leaflets were attached. These regions would be prone to leaflet degeneration. Understanding stresses in first-generation transcatheter valves allows comparison to

  3. Strain rate effects on tensile strength of iron green bodies

    Directory of Open Access Journals (Sweden)

    Nishida Masahiro

    2015-01-01

    Full Text Available Impact tensile strength of iron green bodies with densities of 7.2 and 7.4 g/cm3 was examined by Brazilian test using the split-Hopkinson pressure bar (Kolsky bar method. The powder material used for the experiments was a press-ready premix containing Distaloy AE, graphite, and lubricant. During dynamic compression, the failure behavior of specimens was observed using a high-speed video camera. The failure stress and failure behavior of dynamic compressive tests were compared with those of static compressive tests.

  4. Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition

    Directory of Open Access Journals (Sweden)

    Manoj Nath

    2016-10-01

    Full Text Available A defined balance between the generation and scavenging of reactive oxygen species (ROS is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also acts as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant–microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant–microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation and scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  5. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition.

    Science.gov (United States)

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S; Anjum, Naser A; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  6. Microstructure-based simulations of the tensile strength of snow

    Science.gov (United States)

    Hagenmuller, P.; Theile, T.; Schneebeli, M.

    2012-04-01

    The mechanical behavior of snow is essential to understand the formation of snow avalanches. In particular, the failure properties of snow are determinant in snow slab avalanche release. Direct experiments on snow are difficult to conduct and to interpret. First, seasonal snow is often a very fragile material which can be easily damaged before a mechanical test is finished. Second, natural snow is generally not homogenous, but consists of many thin layers. Thus, a direct mechanical test is in this case very difficult to interpret. This motivated us to implement a numerical simulation that uses the full 3D-structure of snow. The microstructure of snow samples was captured with a micro-computer tomograph and the tensile strength of the same samples was measured. A subvolume (about 30 mm3) of the zone where the fracture occurred in the mechanical test was numerically simulated. To this purpose, the mechanical properties of monocrystalline ice were considered to model the constitutive material of snow. Because the orientation of ice grains cannot be determined in adsorption tomography, orientation-averaged properties were used as a first approximation. The results show that the average simulated tensile strength is in good agreement with the measurements for the tested snow, rounded grains at a density of about 350 kg m-3. In a second approach, a geometrical grain selection algorithm was used to associate to each ice grain a specific c-axis and the corresponding oriented anisotropic stiffness and strength. This artificial orientation of ice grains does not modify significantly the elastic stress distribution in the snow sample but decreases slightly the effective tensile strength of snow compared to the simulation using orientation-averaged properties of ice. As a conclusion, even if the size of the simulated volume remains relatively small (about 30 mm3), the direct numerical simulation of the tensile strength of snow is possible and enables the investigation of the

  7. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-01-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  8. Residual stresses in a surface remelting of castings made of cobalt alloy MAR-M509 with a plasma generated in electric arc

    Directory of Open Access Journals (Sweden)

    Z. Opiekun

    2010-01-01

    Full Text Available The manuscript presents the results of measurements of residual stresses (RS in partial meltings of casting surfaces made of cobalt alloy MAR-M509. The partial meltings were made with an argon plasma beam by GTAW method. The values of RS were deter-mined by X-ray diffraction method in grazing incident geometry, by g-sin2ψ method and in Bragg-Brentano (BB geometry. It has been stated that RS values depend on the parameters of partial melting process. It has been claimed that compressive stresses, which are present in the thin layer up to ca 2 μm, convert to tensile stresses in deeper layers of partial meltings.

  9. Stress

    Science.gov (United States)

    ... natural disaster. This type of stress can cause post-traumatic stress disorder (PTSD). Different people may feel stress in different ways. Some people experience digestive symptoms. Others may have headaches, sleeplessness, depressed mood, anger, ...

  10. Stability of machining induced residual stresses in Inconel 718 under quasi-static loading at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, A., E-mail: amadariaga@mondragon.edu [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Esnaola, J.A.; Arrazola, P.J. [Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa (Spain); Ruiz-Hervias, J.; Muñoz, P. [Departamento Ciencia de Materiales, ETSI Caminos, Universidad Politécnica de Madrid, c/Profesor Aranguren s/n, Madrid 28040 (Spain); Ostolaza, K. [Materials and Processes Technology Department, ITP S.A., Parque Tecnológico, Edificio 300, 48170 Zamudio (Spain)

    2015-01-03

    Tensile residual stresses are very often generated on the surface when machining nickel alloys. In order to determine their influence on the final mechanical behaviour of the component residual stress stability should be considered. In the present work the evolution of surface residual stresses induced by machining in Inconel 718 under static loading at room temperature was studied experimentally and numerically. An Inconel 718 disc was face turned employing industrial working conditions and specimens for tensile tests were extracted from the disc. Surface residual stresses were measured by X-ray diffraction for initial state and after applying different loads over the material's yield stress. Then, a finite element model based on the surface–core approach was fitted to experimental results and the study was extended to analyse the influence of load level, degree of work-hardening and initial surface conditions. For the studied case, initial tensile surface residual stress (776 MPa) became even more tensile when applying loads higher than the material yield stress, but a shift was observed at the highest applied load (1350 MPa) and initial residual stress was relaxed about 170 MPa. This particular behaviour is associated to the modified stress–strain properties of the machined affected surface layer which was strongly work-hardened. Moreover, if the work-hardened properties are not considered in the finite element model results differ substantially from experiments. Surface residual stress stability also depends on the initial surface residual stress, but the degree of work-hardening induced by the machining process must be considered as well. If the difference between the yield stress of the surface and the yield stress of the core is lower than the initial surface residual stress, the surface begins yielding first and consequently the surface residual stress is decreased. In contrast, if the difference between the yield stress of the surface and the

  11. Effect of Different Matrix Compositions and Micro Steel Fibers on Tensile Behavior of Textile Reinforced Concrete

    Science.gov (United States)

    Esmaeili, J.; Sharifi, I.; Andalibi, K.; Kasaei, J.

    2017-09-01

    This paper presents results of a research on uniaxial tensile behavior of textile reinforced concrete (TRC) prepared with different matrix compositions containing different contents of micro steel fibers. TRC exhibits very favorable stress-strain behavior, high Load-carrying capacity and a certain ductility which results in a strain-hardening behavior. At this paper, different Glass-TRCs were prepared using different commonly used normal and also innovative matrix compositions containing different volume fractions of micro steel fibers. Three commonly used matrices, a polymer-based composite and also a UHPC mixture were prepared containing different percentages of micro steel fibers. The direct tensile tests were applied on all specimens to study the tensile properties (first crack stress and ultimate tensile strength) and strain-hardening behavior. Considering the stress-strain curves of all specimens, it has been found that the tensile properties and strain-hardening behavior of Glass-TRC can be considerably improved by using steel micro fibers in an appropriate matrix composition.

  12. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles

    Energy Technology Data Exchange (ETDEWEB)

    Tuo, Wanyong [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); School of Civil & Architectural Engineering, Anyang Institute of Technology, Anyang 455000 (China); Chen, Jinxiang, E-mail: chenjpaper@yahoo.co.jp [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); Wu, Zhishen; Xie, Juan [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); Wang, Yong [Nantong Vocational University, Nantong, Jiangsu 226007 (China)

    2016-08-01

    Based on a tensile experiment and observations by scanning electron microscopy (SEM), this study demonstrated the characteristics of the tensile mechanical properties of the fresh and dry forewings of two types of beetles. The results revealed obvious differences in the tensile fracture morphologies and characteristics of the tensile mechanical properties of fresh and dry forewings of Cybister tripunctatus Olivier and Allomyrina dichotoma. For fresh forewings of these two types of beetles, a viscous, flow-like, polymer matrix plastic deformation was observed on the fracture surfaces, with soft morphologies and many fibers being pulled out, whereas on the dry forewings, the tensile fracture surfaces were straightforward, and there were no features resembling those found on the fresh forewings. The fresh forewings exhibited a greater fracture strain than the dry forewings, which was caused by the relative slippage of hydroxyl inter-chain bonds due to the presence of water in the fibers and proteins in the fresh forewings. Our study is the first to demonstrate the phenomenon of sudden stress drops caused by the fracturing of the lower skin because the lower skin fractured before the forewings of A. dichotoma reached their ultimate tensile strength. We also investigated the reasons underlying this phenomenon. This research provides a much better understanding of the mechanical properties of beetle forewings and facilitates the correct selection of study objects for biomimetic materials and development of the corresponding applications. - Highlights: • There is a phenomenon of sudden stress drop on the tensile stress-train curve of forewing. • The causes of the differences of mechanical properties of fresh and dry forewings are explained. • The hypothesis raised in a previous review paper is verified. • This study brings better ideas into correct understanding of the mechanical properties that the biomimetic object exhibits.

  13. Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges.

    Science.gov (United States)

    Kim, Junkyeong; Kim, Ju-Won; Lee, Chaggil; Park, Seunghee

    2017-08-30

    The tensile force of pre-stressed concrete (PSC) girders is the most important factor for managing the stability of PSC bridges. The tensile force is induced using pre-stressing (PS) tendons of a PSC girder. Because the PS tendons are located inside of the PSC girder, the tensile force cannot be measured after construction using conventional NDT (non-destructive testing) methods. To monitor the induced tensile force of a PSC girder, an embedded EM (elasto-magnetic) sensor was proposed in this study. The PS tendons are made of carbon steel, a ferromagnetic material. The magnetic properties of the ferromagnetic specimen are changed according to the induced magnetic field, temperature, and induced stress. Thus, the tensile force of PS tendons can be estimated by measuring their magnetic properties. The EM sensor can measure the magnetic properties of ferromagnetic materials in the form of a B (magnetic density)-H (magnetic force) loop. To measure the B-H loop of a PS tendon in a PSC girder, the EM sensor should be embedded into the PSC girder. The proposed embedded EM sensor can be embedded into a PSC girder as a sheath joint by designing screw threads to connect with the sheath. To confirm the proposed embedded EM sensors, the experimental study was performed using a down-scaled PSC girder model. Two specimens were constructed with embedded EM sensors, and three sensors were installed in each specimen. The embedded EM sensor could measure the B-H loop of PS tendons even if it was located inside concrete, and the area of the B-H loop was proportionally decreased according to the increase in tensile force. According to the results, the proposed method can be used to estimate the tensile force of unrevealed PS tendons.

  14. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  15. The tensile behavior of GH3535 superalloy at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Han, F.F.; Zhou, B.M.; Huang, H.F.; Leng, B.; Lu, Y.L. [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Dong, J.S. [Superalloy Division, Institute of Metal Research, Chinese Academy of Sciences (China); Li, Z.J., E-mail: lizhijun@sinap.ac.cn [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Zhou, X.T. [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China)

    2016-10-01

    The tensile behavior of GH3535 alloy has been investigated at strain rates of 8.33 × 10{sup −5}/s{sup −1}–8.33 × 10{sup −3}/s{sup −1}, in the temperature range of 25–800 °C. The results showed that the ultimate tensile strength was decreased with increasing temperature and increased with rising strain rate, whereas the yield strength kept almost a constant value at the temperature range from 550 to 800 °C in all strain rates test. The formation of M{sub 12}C carbides at the grain boundary during the tension process played an important role in increasing the yield strength of the alloy at elevated temperatures. But inhomogeneous deformation at 650 °C resulted in the minimum ductility of the alloy. Additionally, various types of serrations were noticed on the stress-strain curves for the alloy tested in the temperature range of 500–800 °C. Normal Portevin-Le Chatelier (PLC) effect and positive strain rate sensitivity were observed in this alloy. Type A and A + B serrations were presented to stress-strain curves at temperatures below 650 °C, whereas type C serration was noticed when the temperature rose above 650 °C. The analysis suggested that the interactions between substitutional solutes migration and mobile dislocations were the main reason for the serrated flow behavior in this alloy. - Highlights: • The tensile behavior of GH3535 alloy at elevated temperature was studied. • The yield strength anomaly was observed in the temperature range from 550 to 800 °C. • The formation of M{sub 12}C improves the grain boundary strength to a certain extent. • Inhomogeneous deformation at 650 °C results in the ductility loss of the alloy. • The interaction between solute atoms and dislocations results in the PLC effect.

  16. Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, J.W. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Dai, K. [Quality Engineering and Software Technology, East Hartford, CT 06108 (United States); Villegas, J.C. [Intel Corporation, Chandler, AZ (United States); Shaw, L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT (United States)], E-mail: leon.shaw@uconn.edu; Liaw, P.K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Klarstrom, D.L. [Haynes International, Inc., Kokomo, IN (United States); Ortiz, A.L. [Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-10-15

    A surface severe plastic deformation (S{sup 2}PD) method has been applied to bulk specimens of HASTELLOY C-2000 alloy, a nickel-base alloy. The mechanical properties of the processed C-2000 alloy were determined via tensile tests and Vickers hardness measurements, whereas the microstructure was characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. The improved tensile strength was related to the nanostructure at the surface region, the residual compressive stresses, and the work-hardened surface layer, all of which resulted from the S{sup 2}PD process. To understand the contributions of these three factors, finite element modeling was performed. It was found that the improved tensile strength could be interpreted based on the contributions of nano-grains, residual stresses, and work hardening.

  17. High-temperature tensile ductility in WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.C. [Kyungpook National Univ., Taegusi (Korea, Republic of); Sakuma, T. [Univ. of Tokyo (Japan). Dept. of Materials Science

    1997-09-01

    High-temperature tensile deformation in WC-Co was investigated at temperatures between 1,150 C and 1,250 C. The flow stress is sensitive to temperature, strain rate, volume fraction of binder, and the addition of other carbides. The stress-strain rate relationship is divided into three regions at each temperature as in superplastic metals. A large tensile elongation over 100 pct was first obtained in WC-6Co and WC-13Co (wt pct) at temperatures of 1,200 C. Contrary to superplastic metals, the largest tensile elongation is not obtained in region II but on the border of regions I and II. The failure mode changes from necking in region I to sharp cracking in region II.

  18. Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots.

    Science.gov (United States)

    Kolbert, Zsuzsanna; Ortega, Leandro; Erdei, László

    2010-01-01

    Nitric oxide (NO) is undoubtedly a potential signal molecule in diverse developmental processes and stress responses. Despite our extensive knowledge about the role of NO in physiological and stress responses, the source of this gaseous molecule is still unresolved. The aim of this study was to investigate the potential role of nitrate reductase (NR) as the source of NO accumulation in the root system of wild-type and NR-deficient nia1, nia2 mutant Arabidopsis plants under osmotic stress conditions induced by a polyethylene glycol (PEG 6000) treatment. Reduction of primary root (PR) length was detected as the effect of osmotic stress in wild-type and NR-deficient plants. We found that osmotic stress-induced lateral root (LR) initiation in wild-type, but not in NR-mutant plants. High levels of NO formation occurred in roots of Col-1 plants as the effect of PEG treatment. The mammalian nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) had no effect on LR initiation or NO generation, while tungstate, an NR inhibitor, inhibited the later phase of osmotic stress-induced NO accumulation and slightly decreased the LR development. In nia1, nia2 roots, the PEG treatment induced the first phase of NO production, but later NO production was inhibited. We conclude that the first phase of PEG-induced NO generation is not dependent on NOS-like or NR activity. It is also suggested that the activity of NR in roots is required for the later phase of osmotic stress-induced NO formation.

  19. Experimental Aspects of the Study of Stress Generating Mechanisms in Silicon Sheet Growth

    Science.gov (United States)

    Kaleja, J. P.; Bell, R. O.

    1984-01-01

    Stress analysis on silicon sheet grown at high speeds of the growth behavior and defect structure of 10 cm wide ribbon produced by the EFG technique was examined. The ribbon temperature field, the high temperature creep response of silicon, and approaches to measurement of the residual stress are investigated.

  20. Experimental aspects of the study of stress generating mechanisms in silicon sheet growth

    Science.gov (United States)

    Kaleja, J. P.; Bell, R. O.

    1984-04-01

    Stress analysis on silicon sheet grown at high speeds of the growth behavior and defect structure of 10 cm wide ribbon produced by the EFG technique was examined. The ribbon temperature field, the high temperature creep response of silicon, and approaches to measurement of the residual stress are investigated.

  1. NUMERICAL AND EXPERIMENTAL ANALYSIS OF RESIDUAL STRESSES GENERATED DURING HARDENING OFAISI 4140 BAR

    Directory of Open Access Journals (Sweden)

    Edwan Anderson Ariza Echeverri

    2012-09-01

    Full Text Available The aim of this work is to analyze the distribution of residual stresses resulting from the combination of volumetric changes due to heat gradients and phase changes occurring during the quenching process of an AISI/SAE 4140 steel cylinder. The mathematical model used for this objective is the AC3 modeling software of thermal treatments (transformation curves, cooling curves and microstructure, whose results were input in an finite element model, considering thermalmechanical coupling and non-linear elastic-plastic behavior, aiming the assessment of residual stresses in quenched 4140 steel cylinders. The observed microstructure confirms quantitatively and qualitatively the previsions of the AC3 Software. The results of the modeling are compared with the residual stresses measurements made using X-Ray diffraction techniques. The finite element numerical simulation shows the existence of 350 MPa compressive residual stresses in the surface region and indicates that the most significant stresses are tangential.

  2. Effects of Aluminum Addition on Tensile and Cup Forming Properties of Three Twinning Induced Plasticity Steels

    Science.gov (United States)

    Hong, Seokmin; Shin, Sang Yong; Kim, Hyoung Seop; Lee, Sunghak; Kim, Sung-Kyu; Chin, Kwang-Geun; Kim, Nack J.

    2012-06-01

    In the present study, a high Mn twinning induced plasticity (TWIP) steel and two Al-added TWIP steels were fabricated, and their microstructures, tensile properties, and cup formability were analyzed to investigate the effects of Al addition on deformation mechanisms in tensile and cup forming tests. In the high Mn steel, the twin formation was activated to increase the strain hardening rate and ultimate tensile strength, which needed the high punch load during the cup forming test. In the Al-added TWIP steels, the twin formation was reduced, while the slip activation increased, thereby leading to the decrease in strain hardening rate and ultimate tensile strength. As twins and slips were homogeneously formed during the tensile or cup forming test, the punch load required for the cup forming and residual stresses were relatively low, and the tensile ductility was sufficiently high even after the cup forming test. This indicated that making use of twins and slips simultaneously in TWIP steels by the Al addition was an effective way to improve overall properties including cup formability.

  3. Analysis of Channel Stress Induced by NiPt-Silicide in Metal-Oxide-Semiconductor Field-Effect Transistor and Its Generation Mechanism

    Science.gov (United States)

    Mizuo, Mariko; Yamaguchi, Tadashi; Kudo, Shuichi; Hirose, Yukinori; Kimura, Hiroshi; Tsuchimoto, Jun-ichi; Hattori, Nobuyoshi

    2013-09-01

    Channel stress induced by NiPt-silicide films in metal-oxide-semiconductor field-effect transistors (MOSFETs) was demonstrated using UV-Raman spectroscopy, and its generation mechanism was revealed. It was possible to accurately measure the channel stress with the Raman test structure. The channel stress depends on the source/drain doping type and the second silicide annealing method. In order to discuss the channel stress generation mechanism, NiPt-silicide microstructure analyses were performed using X-ray diffraction analysis and scanning transmission electron microscopy. The channel stress generation mechanism can be elucidated by the following two factors: the change in the NiSi lattice spacing, which depends on the annealing temperature, and the NiSi crystal orientation. The analyses of these factors are important for controlling channel stress in stress engineering for high-performance transistors.

  4. Mechanical characterization of stomach tissue under uniaxial tensile action.

    Science.gov (United States)

    Jia, Z G; Li, W; Zhou, Z R

    2015-02-26

    In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Temperature and Stress Simulation of 4H-SiC during Laser-Induced Silicidation for Ohmic Contact Generation

    Directory of Open Access Journals (Sweden)

    Benedikt Adelmann

    2017-12-01

    Full Text Available We report here on the simulation of temperature and stress evolution of 4H-SiC during laser-induced silicidation to locally generate ohmic contacts between the semiconductor and nickel metallization. The simulation is based on optical free carrier absorption, thermal conduction, and thermal radiation. Our results show that, during laser irradiation, similar temperatures and correspondingly similar contact resistances, as compared to conventional oven-driven annealing processes, are achievable, yet with the advantageous potential to limit the temperature treatment spatially to the desired regions for electrical contacts and without the necessity of heating complete wafers. However, due to temperature gradients during local laser silicidation, thermal induced stress appears, which may damage the SiC wafer. Based on the simulated results for temperature and stress increase, we identify an optimized regime for laser-induced local silicidation and compare it to experimental data and observations.

  6. Generational differences in response to desiccation stress in the desert moss Tortula inermis.

    Science.gov (United States)

    Stark, Lloyd R; Oliver, Melvin J; Mishler, Brent D; McLetchie, D Nicholas

    2007-01-01

    Active growth in post-embryonic sporophytes of desert mosses is restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due, in part, to a reduced desiccation tolerance for sporophytes relative to gametophytes. Gametophytes with attached post-embryonic sporophytes of Tortula inermis (early seta elongation phenophase) were exposed to two levels of desiccation stress, one rapid-dry cycle and two rapid-dry cycles, then moistened and allowed to recover, resume development, and/or regenerate for 35 d in a growth chamber. Gametophytes tolerated the desiccation treatments well, with 93 % survival through regenerated shoot buds and/or protonemata. At the high stress treatment, a significantly higher frequency of burned leaves and browned shoots occurred. Sporophytes were far more sensitive to desiccation stress, with only 23 % surviving after the low desiccation stress treatment, and 3 % surviving after the high desiccation stress treatment. While the timing of protonemal production and sporophytic phenophases was relatively unaffected by desiccation stress, shoots exposed to one rapid-dry cycle produced shoots more rapidly than shoots exposed to two rapid-dry cycles. It is concluded that sporophytes of Tortula inermis are more sensitive to rapid drying than are maternal gametophytes, and that sporophyte abortion in response to desiccation results from either reduced desiccation tolerance of sporophytes relative to gametophytes, or from a termination of the sporophyte on the part of the gametophyte in response to stress.

  7. The Effects of Defects on Tensile Properties of Cast ADC12 Aluminum Alloy

    Science.gov (United States)

    Okayasu, Mitsuhiro; Sakai, Hikoyuki

    2015-11-01

    To better understand the effects of cast defects on mechanical properties, cast aluminum alloys with various porosities were used. Porosity in the cast samples was created during the casting process, and to clearly identify the porosity effects on the mechanical properties, artificial defects (porosity-like tiny holes) were created mechanically. The tensile properties for the cast aluminum alloys appear to be attributed to the area fraction of the porosity on the fracture surface (namely, the defect rate, DR), although there were different trends because of the different stress concentrations: the ultimate tensile strength and 0.2 pct proof strength were linearly related to DR, while a non-linear correlation was detected for fracture strain. Even in Al alloys with small amounts of defects, significant reductions in the fracture strain were observed. These results were verified using tensile tests on specimens containing artificial defects. The effects of artificial defects on the tensile properties were further investigated using numerous tiny holes, created in several formations. The artificial defects (several small holes), lined up at perpendicular (90 deg) and 45 deg directions against the loading direction, made significant reductions in the tensile properties, even though only weak defect effects were observed for the 90 deg loading direction. No severe defect effects were obvious for the specimen with a tiny defect of ϕ0.1 mm, because of the lower stress concentration, compared to the microstructural effects in the cast Al alloys: the grain boundaries and the second phases. Such phenomena were clarified using tensile tests on cast samples with differently sized microstructures. There were no clear defect effects on the yield strength as the defect amount was less than 10 pct, and microstructural effects were not detected either in this case. Failure characteristics during tensile loading were revealed directly by in-situ strain observations using high

  8. Spiraling out of control: Stress generation and subsequent rumination mediate the link between poorer cognitive control and internalizing psychopathology

    Science.gov (United States)

    Snyder, Hannah R.; Hankin, Benjamin L.

    2016-01-01

    Poor cognitive control is associated with nearly every mental disorder and has been proposed as a transdiagnostic risk factor for psychopathology, including depression and anxiety. What specific mechanisms might cause individuals with poor cognitive control to experience higher levels of psychopathology? The current research tests a new process model linking poor cognitive control to depression and anxiety symptoms via increased dependent stress (i.e., self-generated stressors) and subsequent rumination. This model was supported across two studies in youth during the key period for emergence of internalizing psychopathology. Study 1 provides longitudinal evidence for prospective prediction of change in symptoms. Study 2 confirms this model using well-established executive function tasks in a cross-sectional study. These finding have potential implications for understanding why cognitive control impairments may be broadly associated with psychopathology, and suggest that interventions to prevent stress generation might be effective in preventing negative consequences of poor cognitive control. PMID:27840778

  9. Research data supporting "Surface residual stresses in multipass welds produced using low transformation temperature filler alloys"

    OpenAIRE

    Ramjaun, TI; Stone, HJ; Karlsson, L.; Gharghouri, M; Dalaei, K; Moat, R.; Bhadeshia, HKDH

    2017-01-01

    Tensile residual stresses at the surface of welded components are known to compromise fatigue resistance through the accelerated initiation of microcracks, especially at the weld toe. Inducement of compression in these regions is a common technique employed to enhance fatigue performance. Transformation plasticity has been established as a viable method to generate such compressive residual stresses in steel welds and exploits the phase transformation in welding filler alloys, that transform ...

  10. Tensile properties and fracturing behavior of weld joints in the CLAM at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yucheng [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Xiao, Chengwen, E-mail: emoryxiao@163.com [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Xu; Yue, Jiajia; Zhu, Qiang [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-06-15

    Highlights: • We use the stress triaxiality theory to explain the plastic deformation and facture behavior of the joints during the short term tensile tests at high temperature. • The tensile strength of CLAM welded joint at high temperature is lower compared with that at room temperature. • We explained the formation of crack and the reason of fracture. - Abstract: The tensile properties and fracturing behavior of weld joints in the Chinese low activation martensitic steel (CLAM) at high temperatures were studied. The result revealed that the cracks of weld joints in the base metal would appear in the heat-affected zone, after post-weld heat treatment for the high-temperature tensile test. The microstructure in the fractured frontier had different deformation and directions, and the fractured surface had different angles, a result associating with the normal faulting and shear fracturing. The tri-axial theory of stress can well explain the deformation and fracturing behavior of weld joints in the high-temperature tensile.

  11. ULTRACOATINGS: Enabling Energy and Power Solutions in High Contact Stress Environments through Next-Generation Nanocoatings

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.; Qu, J.; Higdon, C. III (Eaton Corp.)

    2011-09-30

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program, Grand Challenge, industry call. It consisted of a one-year effort in which ORNL participated in the area of friction and wear testing. In addition to Eaton Corporation and ORNL (CRADA), the project team included: Ames Laboratory, who developed the underlying concept for titanium- zirconium-boron (TZB) based nanocomposite coatings; Borg-Warner Morse TEC, an automotive engine timing chain manufacturer in Ithaca, New York, with its own proprietary hard coating; and Pratt & Whitney Rocketdyne, Inc., a dry-solids pump manufacturer in San Fernando Valley, California. This report focuses only on the portion of work that was conducted by ORNL, in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared for DOE by the team. The term 'ultracoatings' derives from the ambitious technical target for the new generation of nanocoatings. As applications, Eaton was specifically considering a fuel pump and a gear application in which the product of the contact pressure and slip velocity during operation of mating surfaces, commonly called the 'PV value', was equal to or greater than 70,000 MPa-m/s. This ambitious target challenges the developers of coatings to produce material capable of strong bonding to the substrate, as well as high wear resistance and the ability to maintain sliding friction at low, energy-saving levels. The partners in this effort were responsible for the selection and preparation of such candidate ultracoatings, and ORNL used established tribology testing capabilities to help screen these candidates for performance. This final report summarizes ORNL's portion of the nanocomposite coatings development effort and presents both generated data and the analyses that were used in the course of this effort. Initial contact stress and speed calculations

  12. Effect of adhesive geometry on the tensile properties of AISI 1350 steel

    Directory of Open Access Journals (Sweden)

    A. Yasar

    2011-01-01

    Full Text Available It is utilized increasingly to use adhesive bonding in automotive industry to join structural components of metallic materials. The aim of this experimental study is to extend the information available to the automotive design engineer and contribute the better understanding of how the various geometrical shaped of steel parts affect the adhesive bonding. In this study, different types of lap joints, such as butt, step butt, scarf, tubular lap, were used to determine the mechanical strength of SAE/AISI 1350 steel. It has been observed that the cylindrical geometries can be subject to more stress compared to square specimens generally and the geometries with both tensile and shear stress can stand more stress per unit compared with the specimens with only tensile stress.

  13. Expression of human Gaucher disease gene GBA generates neurodevelopmental defects and ER stress in Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Takahiro Suzuki

    Full Text Available Gaucher disease (GD is the most common of the lysosomal storage disorders and is caused by defects in the GBA gene encoding glucocerebrosidase (GlcCerase. The accumulation of its substrate, glucocylceramide (GlcCer is considered the main cause of GD. We found here that the expression of human mutated GlcCerase gene (hGBA that is associated with neuronopathy in GD patients causes neurodevelopmental defects in Drosophila eyes. The data indicate that endoplasmic reticulum (ER stress was elevated in Drosophila eye carrying mutated hGBAs by using of the ER stress markers dXBP1 and dBiP. We also found that Ambroxol, a potential pharmacological chaperone for mutated hGBAs, can alleviate the neuronopathic phenotype through reducing ER stress. We demonstrate a novel mechanism of neurodevelopmental defects mediated by ER stress through expression of mutants of human GBA gene in the eye of Drosophila.

  14. A constitutive model for mechanical response characterization of pumpkin peel and flesh tissues under tensile and compressive loadings.

    Science.gov (United States)

    Shirmohammadi, Maryam; Yarlagadda, Prasad K D V; Gu, YuanTong

    2015-08-01

    Enhancing quality of food products and reducing volume of waste during mechanical operations of food industry requires a comprehensive knowledge of material response under loadings. While research has focused on mechanical response of food material, the volume of waste after harvesting and during processing stages is still considerably high in both developing and developed countries. This research aims to develop and evaluate a constitutive model of mechanical response of tough skinned vegetables under postharvest and processing operations. The model focuses on both tensile and compressive properties of pumpkin flesh and peel tissues where the behaviours of these tissues vary depending on various factors such as rheological response and cellular structure. Both elastic and plastic response of tissue were considered in the modelling process and finite elasticity combined with pseudo elasticity theory was applied to generate the model. The outcomes were then validated using the published results of experimental work on pumpkin flesh and peel under uniaxial tensile and compression. The constitutive coefficients for peel under tensile test was α = 25.66 and β = -18.48 Mpa and for flesh α = -5.29 and β = 5.27 Mpa. under compression the constitutive coefficients were α = 4.74 and β = -1.71 Mpa for peel and α = 0.76 and β = -1.86 Mpa for flesh samples. Constitutive curves predicted the values of force precisely and close to the experimental values. The curves were fit for whole stress versus strain curve as well as a section of curve up to bio yield point. The modelling outputs had presented good agreement with the empirical values and the constructive curves exhibited a very similar pattern to the experimental curves. The presented constitutive model can be applied next to other agricultural materials under loading in future.

  15. Strain-rate-dependent non-linear tensile properties of the superficial zone of articular cartilage.

    Science.gov (United States)

    Ahsanizadeh, Sahand; Li, LePing

    2015-11-01

    The tensile properties of articular cartilage play an important role in the compressive behavior and integrity of the tissue. The stress-strain relationship of cartilage in compression was observed previously to depend on the strain-rate. This strain-rate dependence has been thought to originate mainly from fluid pressurization. However, it was not clear to what extent the tensile properties of cartilage contribute to the strain-rate dependence in compressive behavior of cartilage. The aim of the present study was to quantify the strain-rate dependent stress-strain relationship and hysteresis of articular cartilage in tension. Uniaxial tensile tests were performed to examine the strain-rate dependent non-linear tensile properties of the superficial zone of bovine knee cartilage. Tensile specimens were oriented in the fiber direction indicated by the India ink method. Seven strain-rates were used in the measurement ranging from 0.1 to 80%/s, which corresponded to nearly static to impact joint loadings. The experimental data showed substantial strain-rate and strain-magnitude dependent load response: for a given strain-magnitude, the tensile stress could vary by a factor of 1.95 while the modulus by a factor of 1.58 with strain-rate; for a given strain-rate, the modulus at 15% strain could be over four times the initial modulus at no strain. The energy loss in cartilage tension upon unloading exhibited a complex variation with the strain-rate. The strain-rate dependence of cartilage in tension observed from the present study is relatively weaker than that in compression observed previously, but is considerable to contribute to the strain-rate dependent load response in compression.

  16. Magnetoactive elastomeric composites: Cure, tensile, electrical and ...

    Indian Academy of Sciences (India)

    Cure characteristics, mechanical, electrical and magnetic properties were experimentally determined for different volume fractions of magnetoactive filler. The cure time decreases sharply for initial filler loading and the decrease is marginal for additional loading of filler. The tensile strength and modulus at 100% strain was ...

  17. Generational Differences in Response to Desiccation Stress in the Desert Moss Tortula inermis

    Science.gov (United States)

    Stark, Lloyd R.; Oliver, Melvin J.; Mishler, Brent D.; McLetchie, D. Nicholas

    2007-01-01

    Background and Aims Active growth in post-embryonic sporophytes of desert mosses is restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due, in part, to a reduced desiccation tolerance for sporophytes relative to gametophytes. Methods Gametophytes with attached post-embryonic sporophytes of Tortula inermis (early seta elongation phenophase) were exposed to two levels of desiccation stress, one rapid-dry cycle and two rapid-dry cycles, then moistened and allowed to recover, resume development, and/or regenerate for 35 d in a growth chamber. Key Results Gametophytes tolerated the desiccation treatments well, with 93 % survival through regenerated shoot buds and/or protonemata. At the high stress treatment, a significantly higher frequency of burned leaves and browned shoots occurred. Sporophytes were far more sensitive to desiccation stress, with only 23 % surviving after the low desiccation stress treatment, and 3 % surviving after the high desiccation stress treatment. While the timing of protonemal production and sporophytic phenophases was relatively unaffected by desiccation stress, shoots exposed to one rapid-dry cycle produced shoots more rapidly than shoots exposed to two rapid-dry cycles. Conclusions It is concluded that sporophytes of Tortula inermis are more sensitive to rapid drying than are maternal gametophytes, and that sporophyte abortion in response to desiccation results from either reduced desiccation tolerance of sporophytes relative to gametophytes, or from a termination of the sporophyte on the part of the gametophyte in response to stress. PMID:17098752

  18. Tensile behavior of irradiated manganese-stabilized stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  19. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    OpenAIRE

    Wei Wang; Yan Ma; Muxin Yang; Ping Jiang; Fuping Yuan; Xiaolei Wu

    2017-01-01

    The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS) with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been ...

  20. Effect of discrete fibre reinforcement on soil tensile strength

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-04-01

    Full Text Available The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to determine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly increase soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m3 is 2.8 times higher than that at 1.4 Mg/m3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interfacial mechanical interaction between fibre surface and soil matrix.

  1. Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qing [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Weizheng, E-mail: zhangwz@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Youyi [School of Mechanical Engineering, State University of New York at Stony Brook, NY 11790, US (United States)

    2015-03-25

    This study investigates the effects of tension/compression asymmetry during creep deformation under different conditions. The asymmetry is found to be dependent on stress and temperature. At high temperatures (350 °C, 70 MPa) or high levels of stress (250 °C, 130 MPa), the ratio between the tensile and compressive creep rates can be as large as 10. This ratio is smaller at lower temperatures (200 °C, 90 MPa) and lower levels of stress (300 °C, 30 MPa). Scanning electron microscopy (SEM) visualization of different microdefects indicates that the size and volume of microcavities are dependent on the level of stress applied. Similarly, transmission electron microscopy (TEM) is used to visualize dislocations and twinning. The differences in microcavity size and volume in tensile and compressive creep appear to be larger under higher temperature and stress, but no difference in dislocation is observed and no twinning crystals are found. Cavity nucleation appears to be the cause of the asymmetry in creep behavior, which is determined by temperature and stress. A new mathematical model for creep is constructed and validated considering the different asymmetric mechanisms of tensile and compressive creep.

  2. Stress generated by customized glass fiber posts and other types by photoelastic analysis.

    Science.gov (United States)

    Bosso, Kátia; Gonini Júnior, Alcides; Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Lopes, Murilo Baena

    2015-01-01

    Endodontic posts are necessary to provide adequate retention and support when no sufficient remaining structure is available to retain the core. There are different materials and techniques to construct post-and-core, but there is no consensus about which one promotes better stress distribution on the remaining tooth structure. This study aimed to quantify and evaluate the distribution of stress in the root produced by customized glass fiber posts compared to different endodontic posts. Twenty-five simulated roots from photoelastic resin were made and divided into 5 groups: CPC, cast post-and-core; SP, screw post; CF, carbon fiber post; GF, glass fiber post; and CGF, customized glass fiber post. After cementing CPC and SP posts with zinc phosphate cement, and CF, GF and CGF posts with resin cement, resin cores were made for groups 2-5. Specimens were evaluated with vertical or 45° oblique loading. To analyze the fringes, the root was divided into 6 parts: palatal cervical, palatal middle, palatal apical, vestibular cervical, vestibular middle, and vestibular apical. The formed fringes were photographed and quantified. Data were recorded and subjected to two-way ANOVA and Tukey's test (5%). SP (1.95±0.60) showed higher stress (pposts showed high stress in apical third (CPC-1.40±0.65; SP-2.30±0.44, CF-1.80±0.45, GF-1.20±0.45, CGF-1.70±1.03) Low stress was found in cervical third (CPC-0.20±0.45; CF-0.00±0.00, GF-0.00±0.00, CGF-0.00±0.00), except by SP (1.90±0.65), which showed statistical difference (ppost showed high stress concentration at the root and conventional glass fiber posts showed more favorable biomechanical behavior.

  3. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Leuning, N., E-mail: nora.leuning@iem.rwth-aachen.de [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany); Schulte, M.; Bleck, W. [Steel Institute, RWTH Aachen University, D-52072 Aachen (Germany); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany)

    2016-11-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment. - Highlights: • A detailed look at magnetic anisotropy of FeSi NGO electrical steel. • Study of magnetic behavior under elastic as well as plastic tensile stresses. • Correlation of magnetic behavior with microscopic deformation mechanisms. • Discussion of detrimental and beneficial effects of external stresses. • Loss separation at different polarizations and frequencies under increasing stress.

  4. Influence of the quenching rate and step-wise cooling temperatures on microstructural and tensile properties of PER72 ® Ni-based superalloy

    Directory of Open Access Journals (Sweden)

    Le Baillif Paul

    2014-01-01

    Full Text Available The PER72® grade is used as a wrought engine turbine disk, which is a critical high temperature component. During the heat treatment process, residual stresses are generated during the quench, which may lead to irreversible damages on the workpiece. The aim of this study is to better understand the mechanisms involved in the residual stress generation. Therefore, the influence of quenching conditions on the high temperature tensile properties and the multi-scale microstructure evolutions are investigated after cooling. PER72® specimens are annealed above the solvus temperature, directly on the servo-hydraulic testing machine. Three quenching rates are used: 30 ∘C/min, 120 ∘C/min, and 300 ∘C/min. For each condition, the cooling is interrupted at 1000 ∘C, 850 ∘C, 600 ∘C and 20 ∘C to perform isothermal tensile test. Specimens are post-mortem analysed. On one hand the fracture surface is investigated using SEM. On the other hand the microstructure evolution was observed and quantified at different scales using SEM directly on the bulk or after the chemical extraction of precipitation. The precipitation size and volume fraction statistics, X-Ray diffraction for the crystallography and composition of the different phases are investigated. It was shown that the testing temperature does not significantly influence the γ′ distribution of particles. Conversely, the γ′ precipitation is strongly influenced by the cooling rate. Notably, the average size, the distance between particles as well as the number density of γ′ precipitates are significantly modified by the cooling rate. Changes in tensile properties are related to microstructural.

  5. Cyclic tensile response of a pre-tensioned polyurethane

    Science.gov (United States)

    Nie, Yizhou; Liao, Hangjie; Chen, Weinong W.

    2017-10-01

    In the research reported in this paper, we subject a polyurethane to uniaxial tensile loading at a quasi-static strain rate, a high strain rate and a jumping strain rate where the specimen is under quasi-static pre-tension and is further subjected to a dynamic cyclic loading using a modified Kolsky tension bar. The results obtained at the quasi-static and high strain rate clearly show that the mechanical response of this material is significantly rate sensitive. The rate-jumping experimental results show that the response of the material behavior is consistent before jumping. After jumping the stress-strain response of the material does not jump to the corresponding high-rate curve. Rather it approaches the high-rate curve asymptotically. A non-linear hyper-viscoelastic (NLHV) model, after having been calibrated by monotonic quasi-static and high-rate experimental results, was found to be capable of describing the material tensile behavior under such rate jumping conditions.

  6. Incipient and Progressive Damage in Polyethylene Under Extreme Tensile Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Furmanski, Jevan [Los Alamos National Laboratory; Brown, Eric [Los Alamos National Laboratory; Trujillo, Carl P. [Los Alamos National Laboratory; Martinez, Daniel Tito [Los Alamos National Laboratory; Gray, George T. III [Los Alamos National Laboratory

    2012-06-07

    The Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) test was developed at LANL by Gray and coworkers to probe the tensile response of materials at large strains (>1) and high strain-rates (>1000/s) by firing projectiles through a conical die at 300-700 m/s. This technique has recently been applied to various polymers, such as the fluoropolymers PTFE (Teflon) and the chemically similar PCTFE, which respectively exhibited catastrophic fragmentation and distributed dynamic necking. This work details investigations of the Dyn-Ten-Ext response of high density polyethylene, both to failure and sub-critical conditions. At large extrusion ratios ({approx}7.4) and high velocities, such as those previously employed, HDPE catastrophically fragmented in a craze-like manner in the extruded jet. At more modest extrusion ratios and high velocities the specimen extruded a stable jet that ruptured cleanly, and at lower velocities was recovered intact after sustaining substantial internal damage. Thermomechanical finite element simulations showed that the damage corresponded to a locus of shear stress in the presence of hydrostatic tension. X-ray computed tomography corroborated the prediction of a shear damage mechanism by finding the region of partially damaged material to consist of macroscopic shear-mode cracks nearly aligned with the extrusion axis, originating from the location of damage inception.

  7. Effects of Voids on Concrete Tensile Fracturing: A Mesoscale Study

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2017-01-01

    Full Text Available A two-dimensional mesoscale modeling framework, which considers concrete as a four-phase material including voids, is developed for studying the effects of voids on concrete tensile fracturing under the plane stress condition. Aggregate is assumed to behave elastically, while a continuum damaged plasticity model is employed to describe the mechanical behaviors of mortar and ITZ. The effects of voids on the fracture mechanism of concrete under uniaxial tension are first detailed, followed by an extensive investigation of the effects of void volume fraction on concrete tensile fracturing. It is found that both the prepeak and postpeak mesoscale cracking in concrete are highly affected by voids, and there is not a straightforward relation between void volume fraction and the postpeak behavior due to the randomness of void distribution. The fracture pattern of concrete specimen with voids is controlled by both the aggregate arrangement and the distribution of voids, and two types of failure modes are identified for concrete specimens under uniaxial tension. It is suggested that voids should be explicitly modeled for the accurate fracturing simulation of concrete on the mesoscale.

  8. Evaluation of ultimate tensile strength using Miniature Disk Bend Test

    Science.gov (United States)

    Kumar, Kundan; Pooleery, Arun; Madhusoodanan, K.; Singh, R. N.; Chakravartty, J. K.; Shriwastaw, R. S.; Dutta, B. K.; Sinha, R. K.

    2015-06-01

    Correlations for evaluation of Ultimate Tensile Strength (UTS) using Miniature Disk Bend Test (MDBT) or Small Punch Test (SPT) has been an open issue since the development of the techniques. The larger plastic strains, in tri-axial state of stress during SPT, make the translation to the equivalent uniaxial parameter less certain. Correlations based on Pmax of load-displacement curve are also in disagreement as the point corresponding to Pmax does not represent a necking situation as in case of UTS, in a uniaxial tensile test. In present work, an attempt has been made for locating necking zone, which appears prior to Pmax, through experiments and FEM analyses. Experimental results on disk specimens from 20MnMoNi55, CrMoV ferritic steel and SS304LN materials along with FEM analyses found that load corresponding to 0.48 mm displacement is to be very close to the necking zone, and gives best fit for a UTS correlation.

  9. Distinct Tensile Response of Model Semi-flexible Elastomer Networks

    Science.gov (United States)

    Aguilera-Mercado, Bernardo M.; Cohen, Claude; Escobedo, Fernando A.

    2011-03-01

    Through coarse-grained molecular modeling, we study how the elastic response strongly depends upon nanostructural heterogeneities in model networks made of semi-flexible chains exhibiting both regular and realistic connectivity. Idealized regular polymer networks have been shown to display a peculiar elastic response similar to that of super-tough natural materials (e.g., organic adhesives inside abalone shells). We investigate the impact of chain stiffness, and the effect of including tri-block copolymer chains, on the network's topology and elastic response. We find in some systems a dual tensile response: a liquid-like behavior at small deformations, and a distinct saw-tooth shaped stress-strain curve at moderate to large deformations. Additionally, stiffer regular networks exhibit a marked hysteresis over loading-unloading cycles that can be deleted by heating-cooling cycles or by performing deformations along different axes. Furthermore, small variations of chain stiffness may entirely change the nature of the network's tensile response from an entropic to an enthalpic elastic regime, and micro-phase separation of different blocks within elastomer networks may significantly enhance their mechanical strength. This work was supported by the American Chemical Society.

  10. Job Stress Risk Factors Among Power Generation and Machine Production Employees: A Case Study-2010

    Directory of Open Access Journals (Sweden)

    Z. Naghavi

    2013-05-01

    Conclusion: Workload should be set up base on personnel ability, skills and also their physical and mental limitations. Clear definition of role responsibility is very important. Workers participation in decision making and improving physical environment of workplace were suggested for job stress mitigation approaches.

  11. The stress generated by non-Brownian fibers in turbulent channel flow simulations

    NARCIS (Netherlands)

    Gillissen, J.J.J.; Boersma, B.J.; Mortensen, P.H.; Andersson, H.I.

    2007-01-01

    Turbulent fiber suspension channel flow is studied using direct numerical simulation. The effect of the fibers on the fluid mechanics is governed by a stress tensor, involving the distribution of fiber position and orientation. Properties of this function in channel flow are studied by computing the

  12. Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights

    Directory of Open Access Journals (Sweden)

    Tianshou Ma

    2018-01-01

    Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.

  13. Effects of twin boundaries in vanadium nitride films subjected to tensile/compressive deformations

    Science.gov (United States)

    Fu, Tao; Peng, Xianghe; Huang, Cheng; Zhao, Yinbo; Weng, Shayuan; Chen, Xiang; Hu, Ning

    2017-12-01

    Two kinds of atoms can serve as the twin boundary (TB) atoms in a transition metal nitride (TMN). In this work, we performed molecular dynamics (MD) simulations for the responses of vanadium nitride (VN) films with different kinds of TB atoms (V or N) subjected to uniaxial tensile/compressive deformations, to investigate their effects and the tensile-compressive asymmetry. In compressive deformation, the migration of TBs with V atoms to that with N atoms contributes to softening, while the pile-up of dislocations at TBs contributes to strengthening. During tension, fractures occur at the TBs without distinct nucleation of dislocations, the nature of the brittle fracture, which does not result in any improvement of fracture toughness and critical stress. Different frictional effects, cutoff radii, asymmetrical tensile and compressive nature of the interatomic potential and different deformation mechanisms are responsible for the tension-compression asymmetry in VN.

  14. Tensile and superelastic fatigue characterization of NiTi shape memory cables

    Science.gov (United States)

    Sherif, Muhammad M.; Ozbulut, Osman E.

    2018-01-01

    This paper discusses the tensile response and functional fatigue characteristics of a NiTi shape memory alloy (SMA) cable with an outer diameter of 5.5 mm. The cable composed of multiple strands arranged as one inner core and two outer layers. The results of the tensile tests revealed that the SMA cable exhibits good superelastic behavior up to 10% strain. Fatigue characteristics were investigated under strain amplitudes ranging from 3% to 7% and a minimum of 2500 loading cycles. The evolutions of maximum tensile stress, residual strains, energy dissipation, and equivalent viscous damping under a number of loading cycles were analyzed. The fracture surface of a specimen subjected to 5000 loading cycles and 7% strain was discussed. Functional fatigue test results indicated a very high superelastic fatigue life cycle for the tested NiTi SMA cable.

  15. Tensile behavior of orthorhombic alpha ''-titanium alloy studied by in situ X-ray diffraction

    DEFF Research Database (Denmark)

    Wang, X.D.; Lou, H.B.; Ståhl, Kenny

    2010-01-01

    The tensile behavior of a Ti-11%Zr-14%Nb-10%Sn alloy with pure orthorhombic alpha '' phase was studied by in situ X-ray diffraction using synchrotron radiation. It is found that no phase transformation happens during the whole tensile process. The "double-yielding" platforms of this alloy...... are indeed due to a low stress yielding (similar to 400 MPa) followed with a significant work-hardening before necking and fracture. In this process, the [0 2 2] orientation of grains more approaches the tensile direction and the [2 0 0] moves to the transverse, causing the lattice parameter a to be shrunk......, and b and c elongated, and the formation of texture. The similar texture can also be produced upon cold rolling by which the yield strength of the alpha '' phase is largely improved to be over 900 MPa....

  16. Mechanisms of plastic instability and fracture of compressed and tensile tested Mg-Li alloys investigated using the acoustic emission method

    Directory of Open Access Journals (Sweden)

    A. Pawełek

    2016-01-01

    Full Text Available The results of the investigation of both mechanical and acoustic emission (AE behaviors of Mg4Li5Al alloy subjected to compression and tensile tests at room temperature are compared with the test results obtained using the same alloy and loading scheme but at elevated temperatures. The main aim of the paper is to investigate, to determine and to explain the possible influence of factors related with enhanced internal stresses such as: segregation of precipitates along grain boundaries or solute atoms along dislocations (Cottrell atmospheres or dislocation pile-ups at grain boundaries which create very high stress concentration leading to fracture. The results show that the plastic instabilities are related to the Portevin–Le Châtelier phenomenon (PL effect and they are correlated with the generation of AE peaks. The fractography of breaking samples was analyzed on the basis of light (optical, TEM and SEM images.

  17. Generation of stress-strain state in combined strip pile foundation beds through pressing of soil

    Directory of Open Access Journals (Sweden)

    Stepanov Maxim

    2017-01-01

    Full Text Available When erecting high-rise buildings, weak underlying soils cause a number of problems in design and construction. In order to ensure the required non-exceedance of the ultimate limit settlements, the combined strip pile foundation has been developed allowing the soil bed to be pre-stressed. This is achieved by injection of pressurized mortar (pressing. The paper analyzes the effect of soil pre-stressing followed by pressing of foundation with the cement mortar, as applied to existing structures using the Plaxis 3D software package in conditions of volume deformation and the Hardening Soil Model. Variable order of foundation pressing allows the required parameters of soil bed to be achieved in plan and depth, thus improving interaction with the foundation and superstructure.

  18. Tensile Instability in a Thick Elastic Body

    Science.gov (United States)

    Overvelde, Johannes; Dykstra, David; de Rooij, Rijk; Bertoldi, Katia

    A range of instabilities can occur in soft bodies that undergo large deformation. While most of them arise under compressive forces, it has previously been shown analytically that a tensile instability can occur in an elastic block subjected to equitriaxial tension. Guided by this result, we conducted centimeter-scale experiments on thick elastomeric samples under generalized plane strain conditions and observed for the first time this elastic tensile instability. We found that equibiaxial stretching leads to the formation of a wavy pattern, as regions of the sample alternatively flatten and extend in the out-of-plane direction. Our work uncovers a new type of instability that can be triggered in elastic bodies, enlarging the design space for smart structures that harness instabilities to enhance their functionality.

  19. Relation between incremental lines and tensile strength of coronal dentin.

    Science.gov (United States)

    Inoue, Toshiko; Saito, Makoto; Yamamoto, Masato; Nishimura, Fumio; Miyazaki, Takashi

    2012-01-01

    In one aspect, this study examined the tensile strength of coronal dentin, as a function of the location of incremental lines, in two types of teeth: human molar versus bovine incisor. In another aspect, tensile strength in coronal dentin was examined with tensile loading in two different orientations to the incremental lines: parallel versus perpendicular. There were four experimental groups in this study: HPa, human molar dentin with tensile orientation parallel to the incremental lines; HPe, human molar dentin with tensile orientation perpendicular to the incremental lines; BPa, bovine incisor dentin with tensile orientation parallel to the incremental lines; BPe, bovine incisor dentin with tensile orientation perpendicular to the incremental lines. Tensile strengths of the parallel group (HPa and BPa) were significantly higher (pdentin. However, there were no differences in anisotropy effect between the two tooth types.

  20. Influence of Simulated Acid Rain Corrosion on the Uniaxial Tensile Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Ying-zi Zhang

    2012-01-01

    Full Text Available An experimental study on the uniaxial tensile property of concrete exposed to the acid rain environment was carried out. Acid rain with pH level of 1.0 was deposed by the mixture of sulfate and nitric acid solution in the laboratory. Dumbbell-shaped concrete specimens were immersed in the simulated acid rain completely. After being exposed to the deposed mixture for a certain period, uniaxial tensile test was performed on the concrete specimens. The results indicate that elastic modulus, tensile strength, and peak strain have a slight increase at the initial corrosion stage, and with the extension of corrosion process, elastic modulus and tensile strength decrease gradually, while the peak strain still increases. It is found that the compressive strength is more sensitive than the tensile strength in aggressive environment. Based on the experimental results, an equation was proposed to describe the ascending branch of the stress-strain curve of the concrete corroded by acid rain.

  1. On the relevance of uniaxial tensile testing of urogynecological prostheses: the effect of displacement rate.

    Science.gov (United States)

    Bazi, Tony; Ammouri, Ali H; Hamade, Ramsey F

    2013-01-01

    Uniaxial tensile testing is commonly used to calculate values of mechanical properties of urogynecological prostheses used in stress urinary incontinence and pelvic organ prolapse surgery in women. Clinical behavior of these products has been linked to their mechanical properties, hence influencing the clinician's preference for one brand or another. The objective of this study is to assess the effect of displacement rate used in uniaxial tensile testing on peak load, extension at peak load, and initial stiffness of Prolene® mesh, used as a proxy for urogynecological prostheses. Strips of Prolene® mesh measuring 10 × 30 mm were submitted to uniaxial tensile testing at the following rates: 1, 10, 50, 100, and 500 mm/min. Peak load, elongation at peak load, and initial stiffness were computed from load vs displacement curves at all displacement rates. The effect of displacement rate on these parameters was estimated by fitting linear trend lines through the data. The displacement rate at which uniaxial tensile testing is performed has significant effects on the values of extension at peak load and initial stiffness, but not on the peak load. When urogynecological prostheses are submitted to uniaxial tensile testing, studies at more than one displacement rate should be performed. More importantly, these displacement rates should be within the range of applicability.

  2. TENSILE STRENGTH OF CIRCULAR FLAT AND CONVEX-FACED AVICEL PH102 TABLETS

    Directory of Open Access Journals (Sweden)

    I.HARIRIAN

    1999-09-01

    Full Text Available The mechanical properties of flat and convex-faced circular tablets made from a size fraction of microcrystalline cellulose (Avicel PH102, compacted under control conditions of pressures of 20 and 112 MPa have been assessed in term of tensile strength. The calculation of tensile strength (at, for flat-faced tablets was determined from the load (P in diametral compression test as described by Fell & Newton ot = 2P/ (7tDt. The material tensile strength of convex-faced tablets calculated from the observed fraction loads obtained in diametral compression testing, based on the equation derived by Pitt et al at= 10P/ [TTD2 (2.84I/D - 0.126t/W+ 3.15W/D + 0.01"1 ], where P is the fracture load, D is the tablet diameter, t is the overall tablet thickness and W is the central cylinder thickness. By comparing the tensile strength values of convex-faced tablets using porosity, tensile stress, and compaction pressure values, an optimum face-curvature in normal to unity range (D/R=0.67-1.0 and an optimum cylinder length of W/D=0.3, were found to be necessary for producing the overall strongest tablets. These optimum values varies with the formation pressure.

  3. Mechanisms of Residual Stress Generation in Mechanical Surface Treatment: the Role of Cyclic Plasticity and Texture

    Science.gov (United States)

    2015-08-24

    silicon substrates", Surface and Coatings Technology , vol. 176, no. 1, pp. 124-130. Clauer, A. 1996, Laser shock peening for fatigue resistance...Li Base Products for Aerospace and Space Applications", Metallurgical and Materials Transactions A, vol. 43, no. 9, pp. 3325-3337. Rodopoulos, C.A...34, Optics and Laser Technology , vol. 45, no. 1, pp. 389-394. Sticchi, M., Schnubel, D., Kashaev, N. & Huber, N. 2014, " Review of Residual Stress

  4. Design and Experimental Evaluation of a 3rd Generation Addressable CMOS Piezoresistive Stress Sensing Test Chip

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.

    1999-04-13

    Piezoresistive stress sensing chips have been used extensively for measurement of assembly related die surface stresses. Although many experiments can be performed with resistive structures which are directly bonded, for extensive stress mapping it is necessary to have a large number of sensor cells which can be addressed using CMOS logic circuitry. Our previous test chip, the ATC04, has 100 cells, each approximately 0.012 in. on a side, on a chip with a side dimension of 0.45 in. When a cell resistor is addressed, it is connected to a four terminal measurement bus through CMOS transmission gates. In theory, the gate resistances do not affect the measurement. In practice, there may be subtle effects which appear when very high accuracy is required. At high temperatures, gate leakage can increase to a point at which the resistor measurement becomes inaccurate. For ATC04 this occurred at or above 50 C. Here, we report on the first measurements obtained with a new prototype test chip, the ATC06. This prototype was fabricated in a 0.5 micron feature size silicided CMOS process using the MOSIS prototyping facility. The cell size was approximately 0.004 in. on a side. In order to achieve piezoresistive behavior for the implanted resistors it was necessary to employ a non-standard silicide ''blocking'' process. The stress sensitivity of both implanted and polysilicon blocked resistors is discussed. Using a new design strategy for the CMOS logic, it was possible to achieve a design in which only 5 signals had to be routed to a cell for addressing vs. 9 for ATC04. With our new design, the resistor under test is more effectively electrically isolated from other resistors on the chip, thereby improving high temperature performance. We present data showing operation up to 140 C.

  5. NUMERICAL MODELING OF STRESSES NEAR THE SURFACE IN THE INGOT OF CIRCULAR SECTION, CRYSTALLIZABLE AT CIRCULAR TORCH SECONDARY COOLING

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2004-01-01

    Full Text Available The results of computer calculations of the stresses, generated in outside layer of ingot of steel 20 of circular section with diameter 300 mm, in application to one of the industrial technological schemas of RUP “BMZ”, are presented. The segments of compressive and tensile stresses formation along the length of ingot are determined and the principal possibility of production of continuously cast slug of circular section at circular-torch spray cooling is shown.

  6. Exogenous nitric oxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity.

    Science.gov (United States)

    Aftab, Tariq; Khan, M Masroor A; Naeem, M; Idrees, Mohd; Moinuddin; Teixeira da Silva, Jaime A; Ram, M

    2012-06-01

    Nitric oxide (NO) is an important signal molecule modulating the response of plants to environmental stress. Here we report the effects of boron (B) and aluminium (Al) contamination in soil, carried out with or without application of exogenous SNP (NO donor), on various plant processes in Artemisia annua, including changes in artemisinin content. The addition of B or Al to soil medium significantly reduced the yield and growth of plants and lowered the values of net photosynthetic rate, stomatal conductance, internal CO(2) concentration and total chlorophyll content. The follow-up treatment of NO donor favoured growth and improved the photosynthetic efficiency in stressed as well as non-stressed plants. Artemisinin content was enhanced by 24.6% and 43.8% at 1mmole of soil-applied B or Al. When SNP was applied at 2mmole concentration together with either 1mmole of B and/or Al, it further stimulated artemisinin biosynthesis compared to the control. Application of B+Al+SNP proved to be the best treatment combination for the artemisinin content in Artemisia annua leaves. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Tensile properties of structural fibre reinforced concrete

    Science.gov (United States)

    Tipka, M.; Vašková, J.

    2017-09-01

    The paper deals with the comparison of several loading tests, which are using for determination of tensile strength of cementitious composites. The paper describes several test methods, their advantages, disadvantages and possible outputs. In the experimental program several recipes of concrete and fibre reinforced concrete were tested in splitting test, 3-point and 4-point bending tests and in 2 variants of axial tension test. Tension strength ratios and conversion factors between loading tests were determined for each recipe, based on test results.

  8. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction.

    Science.gov (United States)

    Sanches, Larissa Juliani; Marinello, Poliana Camila; Panis, Carolina; Fagundes, Tatiane Renata; Morgado-Díaz, José Andrés; de-Freitas-Junior, Julio Cesar Madureira; Cecchini, Rubens; Cecchini, Alessandra Lourenço; Luiz, Rodrigo Cabral

    2017-03-01

    Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.

  9. Combined Effects Of Stress Work And Heat Generation On MHD Natural Convection Flow Along A Vertical Flat Plate With Power Law Variation Of Uniform Surface Temperature

    National Research Council Canada - National Science Library

    Mohammad Mahfuzul Islam; Md. M. Alam; M. M. Parvez; M. A. Rahman

    2015-01-01

    Abstract In this paper is presented to study conjugate effects of stress work and heat generation on MHD natural convection flow along a vertical flat plate with power law variation of surface temperature...

  10. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    Science.gov (United States)

    Leuning, N.; Steentjes, S.; Schulte, M.; Bleck, W.; Hameyer, K.

    2016-11-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment.

  11. Experimental study on quasi-static tensile mechanical properties of TC11 titanium alloy at room temperature

    Directory of Open Access Journals (Sweden)

    Qiulin NIU

    2017-08-01

    Full Text Available According to the tensile properties of typical aerospace material TC11 titanium alloy, the stress-strain relationship is studied using the quasi-static tensile test at different strain rates, and the tensile fracture morphology is analyzed with SEM. The experimental results show that TC11 titanium alloy has certain strain rate sensitivity, and both tensile strength and yield strength are affected by strain rate. During quasi-static tension test, TC11 titanium alloy specimen has the phenomenon of neck shrinkage. The section of the specimen is cuppy, and there is smooth shear lip zone and grey fiber area in the sample fracture. The fracture of the samples belongs to ductile fracture, but its toughness is poor. The tensile fracture morphology of TC11 titanium alloy is mainly the dimple with different sizes, but with the increase of strain rate, the size and the depth of dimple at the tensile fracture are smaller, and the fracture surface produces a small number of tearing edges and quasi-cleavage plane, and the fracture mechanism of the specimen is mainly ductile fracture and quasi-cleavage fracture. Therefore, the mechanical behavior of TC11 titanium alloy is related to strain rate under quasi-static tensile condition.

  12. Tensile properties of a ZnS nanowire determined with a nano-manipulator and force sensor

    Science.gov (United States)

    Jang, Hoon-Sik; Nahm, Seung Hoon; Lee, Hak Joo; Kim, Jung Han; Oh, Kyu Hwan

    2012-08-01

    Tensile tests of an individual ZnS nanowire with a cubic structure were performed with a nano-manipulator inside a scanning electron microscope (SEM). To perform the tensile test of ZnS nanowires, a mechanical testing system was installed in the SEM. A nano-manipulator was set up in the SEM, and a cantilever force sensor was mounted on the nano-manipulator. The force sensor could be controlled with the nano-manipulator. The ZnS nanowires were dispersed on the transmission electron microscope (TEM) grid; then, the ends of the ZnS nanowires were welded to the TEM grid and the tip of force sensor by exposing them to the E-beam of the SEM. The tensile tests of the ZnS nanowires were performed by controlling the nano-manipulator in the SEM. The load response during the tensile tests was obtained with a force sensor. The strain-stress curve was obtained from the tensile load-displacement curve after the tensile test. The tensile strengths for nanowires 1, 2, and 3 were 364.7 ± 5.2, 146.2 ± 5.2, and 234.4 ± 5.2 MPa, respectively, and the elastic moduli for nanowires 1, 2, and 3 were 39 ± 5.2, 33.4 ± 5.2, and 37.4 ± 5.2 GPa, respectively.

  13. Some Tensile Properties of Unsaturated Polyester Resin Reinforced ...

    African Journals Online (AJOL)

    Tensile samples of 165 ×19.5 × 3.2 mm3 prepared using ASTM D638 Standard were tested in a Hounsfield (Monsato) testing unit. Results showed that tensile strength, percentage elongation and tensile toughness at fracture increased as the volume fractions of carbon black nanoparticles increased from 1% to 5% in both ...

  14. Simulation Tool to Assess Mechanical and Electrical Stresses on Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Muljadi, E.; Gevorgian, V.; Jonkman, J.

    2013-10-01

    Wind turbine generators (WTGs) consist of many different components to convert kinetic energy of the wind into electrical energy for end users. Wind energy is accessed to provide mechanical torque for driving the shaft of the electrical generator. The conversion from wind power to mechanical power is governed by the aerodynamic conversion. The aerodynamic-electrical-conversion efficiency of a WTGis influenced by the efficiency of the blades, the gearbox, the generator, and the power converter. This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG coupled with the FAST aero-elastic wind turbine computer-aided engineering tool to simulate the aerodynamic and mechanical aspects of a WTG. The combination of the two enables studiesinvolving both electrical and mechanical aspects of a WTG. This digest includes some examples of the capabilities of the FAST and MATLAB coupling, namely the effects of electrical faults on the blade moments.

  15. Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms.

    Science.gov (United States)

    Schmitt, Franz-Josef; Renger, Gernot; Friedrich, Thomas; Kreslavski, Vladimir D; Zharmukhamedov, Sergei K; Los, Dmitry A; Kuznetsov, Vladimir V; Allakhverdiev, Suleyman I

    2014-06-01

    This review provides an overview about recent developments and current knowledge about monitoring, generation and the functional role of reactive oxygen species (ROS) - H2O2, HO2, HO, OH(-), (1)O2 and O2(-) - in both oxidative degradation and signal transduction in photosynthetic organisms including microscopic techniques for ROS detection and controlled generation. Reaction schemes elucidating formation, decay and signaling of ROS in cyanobacteria as well as from chloroplasts to the nuclear genome in eukaryotes during exposure of oxygen-evolving photosynthetic organisms to oxidative stress are discussed that target the rapidly growing field of regulatory effects of ROS on nuclear gene expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Grit under Duress: Stress, Strengths, and Academic Success Among Non-Citizen and Citizen Latina/o First-Generation College Students

    Science.gov (United States)

    O'Neal, Colleen R.; Espino, Michelle M.; Goldthrite, Antoinette; Morin, Molly F.; Weston, Lynsey; Hernandez, Pamela; Fuhrmann, Amy

    2016-01-01

    Undocumented Latina/o college students face obstacles and stressors; their stressful experiences and academic strengths merit empirical attention. This cross-sectional, mixed-methods study explored stress, depression, grit, and grade point average (GPA) of 84 non-citizen, Latina/o first-generation college students with a comparison group of 180…

  17. Oxidative stress, inflammation, and pulmonary function assessment in rats exposed to laboratory-generated pollutant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Seagrave, J.; Campen, M.J.; McDonald, J.D.; Mauderly, J.L.; Rohr, A.C. [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2008-07-01

    Oxidative stress may mediate adverse health effects of many inhaled pollutants. Cardiopulmonary responses of Sprague-Dawley rats to inhalation of whole or filtered gasoline engine exhaust (GEE, FGEE); simulated downwind coal emission atmospheres (SDCAs) from two types of coal, each tested at two concentrations; and two concentrations of re-aerosolized paved road dust (RD) were evaluated. In situ chemiluminescence and thiobarbituric acid-reactive substances (TBARS) were used to evaluate oxidative reactions in the lungs, heart, and liver immediately following exposures. Pulmonary inflammatory responses were measured by bronchoalveolar lavage (BAL) cell counts. Respiratory function parameters during exposure were measured by plethysmography. Only GEE significantly enhanced in situ chemiluminescence (all three organs), but only exposure to the high RD concentration increased TBARS (hearts only). There was a weak trend toward increased macrophages recovered in lavage fluid from both SDCAs, and macrophages were significantly elevated by both FGEE and the lower concentration of RD. Respiratory function effects were small, though the effects of the Central Appalachian low-sulfur SDCA on enhanced pause and the effects of the Powder River Basin SCDA on tidal volume were significant. The discordance between the oxidative stress indicators may relate to the use of a single time point in the context of dynamic changes in compensatory mechanisms. These results further suggest that inflammatory responses measured by BAL cellularity may not always correlate with oxidative stress. Overall, the toxicological effects from exposure to these pollutant mixtures were subtle, but the results show differences in the effects of atmospheres having different physical/chemical characteristics.

  18. Oxidative stress and antioxidant defences generated by solar UV in a Subantarctic marine phytoflagellate

    Directory of Open Access Journals (Sweden)

    Marcelo Pablo Hernando

    2005-12-01

    Full Text Available The reduction of the Antarctic stratospheric ozone resulted in significant increases in ultraviolet B radiation (UV-B, 280-320 nm reaching the surface of the ocean. The main objective of this work was to study long-term (growth rate scale, days stress responses (lipid oxidative damage, TBARS, and lipid soluble antioxidants to UV-B and UV-A of a phytoflagellate species (Asteromonas sp. isolated from a natural phytoplankton community of the Subantarctic Beagle Channel. The growth rate was inhibited by UV-B and UV-A radiation during the exponential phase. A marked increase in the TBARS content was observed on day 1 of the experiment, with significant differences between algae subjected to UV-B and UV-A treatments, thus suggesting high damage to the cell membrane. During the second day of the experiment TBARS in UV-A treatments were higher than under photosynthetically active radiation (PAR. The concentration of TBARS decreased to the level of the PAR control on day 3, remaining low until the end of the experiment. Lipid antioxidant concentrations (?-tocopherol and ?-carotene were delayed with respect to variations in TBARS, showing maximum values on day 3 of the experiment. This coincided with the minimum TBARS concentrations in all treatments. The content of both antioxidants increased significantly in cultures exposed to UV-B and UV-A on days 3 and 4. In Antarctic species (phytoflagellate Asteromonas sp., AP and diatom Thalassiosira sp., AT a-tocopherol was more abundant than b-carotene. The phytoflagellate species showed a lag in reaching the maximum content of both antioxidants in relation to AT, which reached the maximum concentration within a short time scale (3 h suggesting a more rapid response to oxidative stress. AT was more resistant to UVR stress than the phytoflagellate species. Overall, our results show that UVR damage/repair balance involves the combined action of several internal factors in the cell.

  19. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats.

    Science.gov (United States)

    Zuena, Anna Rita; Mairesse, Jerome; Casolini, Paola; Cinque, Carlo; Alemà, Giovanni Sebastiano; Morley-Fletcher, Sara; Chiodi, Valentina; Spagnoli, Luigi Giusto; Gradini, Roberto; Catalani, Assia; Nicoletti, Ferdinando; Maccari, Stefania

    2008-05-14

    Prenatal Restraint Stress (PRS) in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy) on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS ("PRS rats") showed increased anxiety-like behavior in the elevated plus maze (EPM), a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF) and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females.

  20. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats.

    Directory of Open Access Journals (Sweden)

    Anna Rita Zuena

    Full Text Available Prenatal Restraint Stress (PRS in rats is a validated model of early stress resulting in permanent behavioral and neurobiological outcomes. Although sexual dimorphism in the effects of PRS has been hypothesized for more than 30 years, few studies in this long period have directly addressed the issue. Our group has uncovered a pronounced gender difference in the effects of PRS (stress delivered to the mothers 3 times per day during the last 10 days of pregnancy on anxiety, spatial learning, and a series of neurobiological parameters classically associated with hippocampus-dependent behaviors. Adult male rats subjected to PRS ("PRS rats" showed increased anxiety-like behavior in the elevated plus maze (EPM, a reduction in the survival of newborn cells in the dentate gyrus, a reduction in the activity of mGlu1/5 metabotropic glutamate receptors in the ventral hippocampus, and an increase in the levels of brain-derived neurotrophic factor (BDNF and pro-BDNF in the hippocampus. In contrast, female PRS rats displayed reduced anxiety in the EPM, improved learning in the Morris water maze, an increase in the activity of mGlu1/5 receptors in the ventral and dorsal hippocampus, and no changes in hippocampal neurogenesis or BDNF levels. The direction of the changes in neurogenesis, BDNF levels and mGlu receptor function in PRS animals was not consistent with the behavioral changes, suggesting that PRS perturbs the interdependency of these particular parameters and their relation to hippocampus-dependent behavior. Our data suggest that the epigenetic changes in hippocampal neuroplasticity induced by early environmental challenges are critically sex-dependent and that the behavioral outcome may diverge in males and females.

  1. The verification of a new approach to the experimental estimation of tensile forces in prestressed structural elements by method based on the magnetoelastic principle

    Directory of Open Access Journals (Sweden)

    Klier Tomáš

    2017-01-01

    Full Text Available There are a large number of civil engineering structures where the important structural elements are loaded by large tensile forces. In many practical cases, it is significant to know the current value of tensile force or prestressed stress in these elements for accurate assessment of the reliability of the whole structure. The brief principle and the basic validation results of the new approach to the experimental estimation of tensile forces or stress in prestressed structural elements of engineering structures by the method based on the magnetoelastic principle are described in the paper. The new approach was designed and developed especially for application on existing prestressed concrete structures.

  2. Tensile creep performance of a developmental in-situ reinforced silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, A.A.; Kirkland, T.P.; Lin, H.T.; Ferber, M.K. [Oak Ridge National Lab., TN (United States); Li, C.W.; Goldacker, J.A. [Allied-Signal, Inc., Morristown, NJ (United States)

    1997-02-01

    The evaluation was done between 1300 and 1425 C in ambient air. Minimum creep rate was evaluated vs tensile stress and temperature, and measured tensile creep performances of two different specimen geometries (buttonhead and dogbone - machined from same billet) were compared. This Si nitride exhibited comparable or better creep resistance than other Si nitrides described in the literature. Measured creep response of the material and lifetime were observed to be geometry dependent; the smaller cross-sectioned dogbone samples exhibited faster creep rates and shorter lives, presumably due to faster oxidation-induced damage in this geometry. The tensile creep rates and lifetimes were found to be well represented by the Monkman- Grant relation between 1350 and 1425 C, with some evidence suggesting stratification of the data for the 1300 C tests and a change in dominant failure mode between 1300 and 1350 C. Lastly, values of the temperature-compensated stress exponent and activation energy for tensile creep were found to decrease by 80 and 75% in compression, respectively, illustrating anisotropic creep behavior in this Si nitride.

  3. Definition of the linearity loss of the surface temperature in static tensile tests

    Directory of Open Access Journals (Sweden)

    A. Risitano

    2014-10-01

    Full Text Available Static tensile tests on material for mechanical constructions have pointed out the linearity loss of the surface temperature with the application of load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its completely thermoelastic behavior,. The identification of the static load which determines the loss of linearity of the temperature under stress, becomes extremely important to define a first dynamic characterization of the material. The temperature variations that can be recorded during the static test are often very limited (a few tenths of degree for every 100 MPa in steels and they require the use of special sensors able to measure very low temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first linearity loss (often by eye in the temperature curves, can be influenced by the sensibility of the investigator himself and can lead to incorrect estimates. The aim of this work is to validate the above mentioned observations on different steels, by applying the autocorrelation function to the data collected during the application of a static load. This, in order to make the results of the thermal analysis free from the sensitivity of the operator and to make the results as objective as possible, for defining the closest time of the linearity loss in the temperature-time function.

  4. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  5. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    Science.gov (United States)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-03-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  6. Micromechanical Modeling for Tensile Behaviour of Carbon Fiber - Reinforced Ceramic - Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    The stress-strain curves of fiber - reinforced ceramic - matrix composites (CMCs) exhibit obvious non-linear behaviour under tensile loading. The occurrence of multiple damage mechanisms, i.e., matrix multicracking, fiber/matrix interface debonding and fibers fracture, is the mainly reason for the non-linear characteristic. The micromechanics approach has been developed to predict the tensile stress-strain curves of unidirectional, cross-ply and woven CMCs. The shear-lag model was used to describe the micro stress field of the damaged composite. The damage models were used to determine the evolution of micro damage parameters, i.e., matrix crack spacing, interface debonded length and broken fibers fraction. By combining the shear-lag model with damage models and considering the effect of transverse multicracking in the 90° plies or transverse yarns in cross-ply or woven CMCs, the tensile stress-strain curves of unidirectional, cross-ply, 2D and 2.5D woven CMCs have been predicted. The results agreed with experimental data.

  7. Tensile Microcrack Formation During Experimental Dynamic Shear Rupture Under Uniaxial Loading

    Science.gov (United States)

    Chi Wan, K.; Griffith, W. A.; Pollard, D. D.; Rosakis, A. J.

    2007-12-01

    Motivated by the occurrence of high-angle pseudotachylyte injection veins along exhumed faults, we studied secondary tensile microcrack formation during dynamic shear rupture in the laboratory. Shear ruptures were induced by an exploding wire embedded along a frictionally held and glued interface in Homalite. During the experiments, the samples were held under a uniaxial load P applied at an angle α to the normal to the rupture interface. Test values of α varied between 30° and 70°, and P varied between 15MPa and 30MPa. The dynamic stress fields produced by the propagating shear rupture were recorded using photoelasticity and high-speed digital photography. Observed isochromatic fringe patterns were similar to contours of maximum shear stress evaluated using a solution for dynamic propagation of a mode II crack with a velocity-weakening endzone. Rupture velocities during experiments ranged between 60% and 90% of the shear wave velocity. Secondary microcracks were produced in the Homalite samples during rupture under multiple loading configurations. In all cases, the region of shear stress concentration was spread over a cohesive endzone (10-20 mm in length) behind the traveling rupture tip. In some cases, microcracks were observed to grow at a finite distance behind the shear rupture tip. We observed several interesting behaviors: (i) some tensile microcracks appear to form due to transient stress concentrations associated with the mode II rupture and are roughly periodic; (ii) some tensile microcracks are associated with rupture termination and are concentrated at the final rupture tips; and (iii) a correlation between rupture velocity and microcrack orientation appears to exist. Future work will address the correlation of secondary tensile fracture orientation and spacing with rupture parameters including velocity, directivity, and remote stress state.

  8. Fan-head shear rupture mechanism as a source of off-fault tensile cracking

    Science.gov (United States)

    Tarasov, Boris

    2016-04-01

    This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone

  9. Semi-analytical and Numerical Studies on the Flattened Brazilian Splitting Test Used for Measuring the Indirect Tensile Strength of Rocks

    Science.gov (United States)

    Huang, Y. G.; Wang, L. G.; Lu, Y. L.; Chen, J. R.; Zhang, J. H.

    2015-09-01

    Based on the two-dimensional elasticity theory, this study established a mechanical model under chordally opposing distributed compressive loads, in order to perfect the theoretical foundation of the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. The stress superposition method was used to obtain the approximate analytic solutions of stress components inside the flattened Brazilian disk. These analytic solutions were then verified through a comparison with the numerical results of the finite element method (FEM). Based on the theoretical derivation, this research carried out a contrastive study on the effect of the flattened loading angles on the stress value and stress concentration degree inside the disk. The results showed that the stress concentration degree near the loading point and the ratio of compressive/tensile stress inside the disk dramatically decreased as the flattened loading angle increased, avoiding the crushing failure near-loading point of Brazilian disk specimens. However, only the tensile stress value and the tensile region were slightly reduced with the increase of the flattened loading angle. Furthermore, this study found that the optimal flattened loading angle was 20°-30°; flattened load angles that were too large or too small made it difficult to guarantee the central tensile splitting failure principle of the Brazilian splitting test. According to the Griffith strength failure criterion, the calculative formula of the indirect tensile strength of rocks was derived theoretically. This study obtained a theoretical indirect tensile strength that closely coincided with existing and experimental results. Finally, this paper simulated the fracture evolution process of rocks under different loading angles through the use of the finite element numerical software ANSYS. The modeling results showed that the Flattened Brazilian Splitting Test using the optimal loading angle could guarantee the tensile

  10. Study of residual stresses generated in machining of AISI 4340 steel; Estudo das tensoes residuais geradas na usinagem de aco AISI 4340

    Energy Technology Data Exchange (ETDEWEB)

    Reis, W.P. dos; Fonseca, M.P. Cindra; Serrao, L.F.; Chuvas, T.C.; Oliveira, L.C., E-mail: mcindra@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Among the mechanical construction steels, AISI 4340 has good harden ability, while combining high strength with toughness and good fatigue strength, making it excellent for application in the metalworking industry, where it can work at different levels and types of requests. Residual stresses are generated in almost all processes of mechanical manufacturing. In this study, the residual stresses generated in different machining processes and heat treatment hardening of AISI 4340 were analyzed by X-ray diffraction, by the sen{sup 2} {psi} method, using Cr{kappa}{beta} radiation and compared. All samples, except for turned and cut by EDM, presented compressive residual stresses in the surface with various magnitudes. (author)

  11. Generating phenotypic diversity in a fungal biocatalyst to investigate alcohol stress tolerance encountered during microbial cellulosic biofuel production.

    Directory of Open Access Journals (Sweden)

    Rosanna C Hennessy

    Full Text Available Consolidated bioprocessing (CBP of lignocellulosic biomass offers an alternative route to renewable energy. The crop pathogen Fusarium oxysporum is a promising fungal biocatalyst because of its broad host range and innate ability to co-saccharify and ferment lignocellulose to bioethanol. A major challenge for cellulolytic CBP-enabling microbes is alcohol inhibition. This research tested the hypothesis that Agrobacterium tumefaciens--mediated transformation (ATMT could be exploited as a tool to generate phenotypic diversity in F. oxysporum to investigate alcohol stress tolerance encountered during CBP. A random mutagenesis library of gene disruption transformants (n=1,563 was constructed and screened for alcohol tolerance in order to isolate alcohol sensitive or tolerant phenotypes. Following three rounds of screening, exposure of select transformants to 6% ethanol and 0.75% n-butanol resulted respectively in increased (≥ 11.74% and decreased (≤ 43.01% growth compared to the wild -type (WT. Principal component analysis (PCA quantified the level of phenotypic diversity across the population of genetically transformed individuals and isolated candidate strains for analysis. Characterisation of one strain, Tr. 259, ascertained a reduced growth phenotype under alcohol stress relative to WT and indicated the disruption of a coding region homologous to a putative sugar transporter (FOXG_09625. Quantitative PCR (RT-PCR showed FOXG_09625 was differentially expressed in Tr. 259 compared to WT during alcohol-induced stress (P<0.05. Phylogenetic analysis of putative sugar transporters suggests diverse functional roles in F. oxysporum and other filamentous fungi compared to yeast for which sugar transporters form part of a relatively conserved family. This study has confirmed the potential of ATMT coupled with a phenotypic screening program to select for genetic variation induced in response to alcohol stress. This research represents a first step in the

  12. Stability of germanene under tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-09-01

    The stability of germanene under biaxial tensile strain and the accompanying modifications of the electronic properties are studied by density functional theory. The phonon spectrum shows that up to 16% strain the germanene lattice is stable, where the Dirac cone shifts towards higher energy and hole-doped Dirac states are achieved. The latter is due to weakening of the Ge-Ge bonds and reduction of the s-p hybridization. Our calculated Grüneisen parameter shows a similar dependence on the strain as reported for silicene (which is different from that of graphene). © 2013 Elsevier B.V. All rights reserved.

  13. Tensile Fabrics Enhance Architecture Around the World

    Science.gov (United States)

    2009-01-01

    Using a remarkable fabric originally developed to protect Apollo astronauts, Birdair Inc. of Amherst, New York, has crafted highly durable, safe, environmentally friendly, and architecturally stunning tensile membrane roofs for over 900 landmark structures around the world. Travelers in airports, sports fans at stadiums, and shoppers in malls have all experienced the benefits of the Teflon-coated fiberglass fabric that has enabled Birdair to grow from a small company established in its founder?s kitchen in 1955 to a multimillion-dollar specialty contractor today.

  14. Modeling and Stress Analysis of Doubly-Fed Induction Generator during Grid Voltage Swell

    DEFF Research Database (Denmark)

    Zhou, Dao; Song, Yipeng; Blaabjerg, Frede

    2016-01-01

    the DFIG modeling and challenges when facing the symmetrical voltage swell. Then, the High Voltage Ride-Through (HVRT) capability of the DFIG can be calculated by using the demagnetizing current control, and the stator current, rotor current as well as the electromagnetic torque can be deduced during...... the transient voltage swell and its recovery. It is concluded that although both higher swell level and higher rotor speed cause higher rotor electromotive force, the doubly-fed induction generator can successfully ride through the grid fault due to the relatively small swell level required by the modern grid...

  15. Static analysis of rectifier cabinet for nuclear power generating stations based on finite element method

    Science.gov (United States)

    Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui

    2017-09-01

    In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.

  16. Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system.

    Energy Technology Data Exchange (ETDEWEB)

    Moody, Neville Reid; Kennedy, Marian S. (Washington State University, Pullman, WA); Bahr, David F. (Washington State University, Pullman, WA)

    2007-09-01

    The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in extracting mode I toughness

  17. Establishment of tensile failure induced sanding onset prediction model for cased-perforated gas wells

    Directory of Open Access Journals (Sweden)

    Mohammad Tabaeh Hayavi

    2017-04-01

    Full Text Available Sand production is a challenging issue in upstream oil and gas industry, causing operational and safety problems. Therefore, before drilling the wells, it is essential to predict and evaluate sanding onset of the wells. In this paper, new poroelastoplastic stress solutions around the perforation tunnel and tip based on the Mohr–Coulomb criterion are presented firstly. Based on the stress models, a tensile failure induced sanding onset prediction model for cased-perforated gas wells is derived. Then the analytical model is applied to field data to verify its applicability. The results from the perforation tip tensile failure induced sanding model are very close to field data. Therefore, this model is recommended for forecasting the critical conditions of sand production analysis. Such predictions are necessary for providing technical support for sand control decision-making and predicting the production condition at which sanding onset occurs.

  18. The Corrosion Characteristics and Tensile Behavior of Reinforcement under Coupled Carbonation and Static Loading

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2015-12-01

    Full Text Available This paper describes the non-uniform corrosion characteristics and mechanical properties of reinforcement under coupled action of carbonation and static loading. The two parameters, namely area-box (AB value and arithmetical mean deviation (Ra, are adopted to characterize the corrosion morphology and pitting distribution from experimental observations. The results show that the static loading affects the corrosion characteristics of reinforcement. Local stress concentration in corroded reinforcement caused by tensile stress drives the corrosion pit pattern to be more irregular. The orthogonal test results from finite element simulations show that pit shape and pit depth are the two significant factors affecting the tensile behavior of reinforcement. Under the condition of similar corrosion mass loss ratio, the maximum plastic strain of corroded reinforcement increases with the increase of Ra and load time-history significantly.

  19. Stress

    OpenAIRE

    Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin

    2012-01-01

    Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...

  20. Stress proliferation across generations? Examining the relationship between parental incarceration and childhood health.

    Science.gov (United States)

    Turney, Kristin

    2014-09-01

    Stress proliferation theory suggests that parental incarceration may have deleterious intergenerational health consequences. In this study, I use data from the 2011-2012 National Survey of Children's Health (NSCH) to estimate the relationship between parental incarceration and children's fair or poor overall health, a range of physical and mental health conditions, activity limitations, and chronic school absence. Descriptive statistics show that children of incarcerated parents are a vulnerable population who experience disadvantages across an array of health outcomes. After adjusting for demographic, socioeconomic, and familial characteristics, I find that parental incarceration is independently associated with learning disabilities, attention deficit disorder and attention deficit hyperactivity disorder, behavioral or conduct problems, developmental delays, and speech or language problems. Taken together, results suggest that children's health disadvantages are an overlooked and unintended consequence of mass incarceration and that incarceration, given its unequal distribution across the population, may have implications for population-level racial-ethnic and social class inequalities in children's health. © American Sociological Association 2014.

  1. Analyses of heterogeneous deformation and subsurface fatigue crack generation in alpha titanium alloy at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Umezawa, Osamu [Department of Mechanical Engineering and Materials Science, Yokohama National University 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501 (Japan); Morita, Motoaki [Department of Mechanical Engineering and Materials Science, Yokohama National University 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan and Now Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Yuasa, Takayuki [Department of Mechanical Engineering and Materials Science, Yokohama National University 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan and Now Nippon Steel and Sumitomo Metal, Kashima, 314-0014 (Japan); Morooka, Satoshi [Department of Mechanical Engineering and Materials Science, Yokohama National University 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan and Now Tokyo Metropolitan University, Hino, Tokyo 191-0065 (Japan); Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan)

    2014-01-27

    Subsurface crack initiation in high-cycle fatigue has been detected as (0001) transgranular facet in titanium alloys at low temperature. The discussion on the subsurface crack generation was reviewed. Analyses by neutron diffraction and full constraints model under tension mode as well as crystallographic identification of the facet were focused. The accumulated tensile stress along <0001> may be responsible to initial microcracking on (0001) and the crack opening.

  2. Chronic restraint stress in rats causes sustained increase in urinary corticosterone excretion without affecting cerebral or systemic oxidatively generated DNA/RNA damage

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Maigaard, Katrine; Wörtwein, Gitta

    2013-01-01

    Increased oxidatively generated damage to nucleic acids (DNA/RNA) may be a common mechanism underlying accelerated aging in psychological stress states and mental disorders. In the present study, we measured the urinary excretion of corticosterone and markers of systemic oxidative stress on nucleic...... of nucleic acid damage from oxidation were affected by stress. In contrast, cerebral DNA repair enzymes exhibited a general trend towards an induction, which was significant for hippocampal Nudt1. The results and their implications for stress sensitivity and resilience are discussed....... acids, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, in rats subjected to chronic restraint stress. To reliably collect 24h urine samples, the full 3-week restraint stress paradigm was performed in metabolism cages. We further determined frontal...

  3. Stored energy function of rubberlike materials derived from simple tensile data.

    Science.gov (United States)

    Peng, T. J.; Landel, R. F.

    1972-01-01

    An explicit formulation is developed to obtain the stored energy function, based on the Valanis-Landel separable symmetric stored energy function. This formulation is applicable to any multiaxial stress state, from simple tensile data alone, for those cases in which the stored energy function is a separable function of the stretch ratios. By direct comparison, it is also shown that styrene butadiene rubber, at least over a specific range, follows this postulated separable form.

  4. On the Processing of Spalling Experiments. Part I: Identification of the Dynamic Tensile Strength of Concrete

    Science.gov (United States)

    Forquin, P.; Lukić, B.

    2017-11-01

    The spalling technique based on the use of a single Hopkinson bar put in contact with the tested sample has been widely adopted as a reliable method for obtaining the tensile response of concrete and rock-like materials at strain rates up-to 200 s- 1. However, the traditional processing method, based on the use of Novikov acoustic approach and the rear face velocity measurement, remains quite questionable due to strong approximations of this data processing method. Recently a new technique for deriving cross-sectional stress fields of a spalling sample filmed with an ultra-high speed camera and based on using the full field measurements and the virtual fields method (VFM) was proposed. In the present work, this topic is perused by performing several spalling tests on ordinary concrete at high acquisition speed of 1Mfps to accurately measure the tensile strength, Young's modulus, strain-rate at failure and stress-strain response of concrete at high strain-rate. The stress-strain curves contain more measurement points for a more reliable identification. The observed tensile stiffness is up-to 50% lower than the initial compressive stiffness and the obtained peak stress was about 20% lower than the one obtained by applying the Novikov method. In order to support this claim, numerical simulations were performed to show that the change of stiffness between compression and tension highly affects the rear-face velocity profile. This further suggests that the processing based only on the velocity "pullback" is quite sensitive and can produce an overestimate of the tensile strength in concrete and rock-like materials.

  5. Analysis of matrix cracking and local delamination in (0/theta/-theta)s graphite epoxy laminates under tensile load

    Science.gov (United States)

    Salpekar, S. A.; O'Brien, T. K.

    1993-01-01

    Three-dimensional element analyses of (0/theta/-theta)s graphite epoxy laminates, where theta = 15, 20, 25, 30, and 45 deg, subjected to axial tensile load, were performed. The interlaminar stresses in the theta/-theta interface were calculated with and without a matrix crack in the central -theta plies. The interlaminar normal stress changes from a small compressive stress when no matrix crack is present to a high tensile stress at the intersection of the matrix crack and the free edge. The analysis of local delamination from the -theta matrix crack indicates a high strain energy release rate and a localized Mode I component near the free edge, within one-ply distance from the matrix crack. To examine the stress state causing the matrix cracking, the maximum principal normal stress in a plane perpendicular to the fiber direction in the -theta ply was calculated in an uncracked laminate. The corresponding shear stress parallel to the fiber was also calculated. The principal normal stress at the laminate edge increased through the ply thickness and reached a very high tensile value at the theta/-theta interface indicating that the crack in the -theta ply may initiate at the theta/-theta interface.

  6. Low cycle fatigue of 2.25Cr1Mo steel with tensile and compressed hold loading at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junfeng; Yu, Dunji; Zhao, Zizhen; Zhang, Zhe; Chen, Gang; Chen, Xu, E-mail: xchen@tju.edu.cn

    2016-06-14

    A series of uniaxial strain-controlled fatigue and creep-fatigue tests of the bainitic 2.25Cr1Mo steel forging were performed at 455 °C in air. Three different hold periods (30 s, 120 s, 300 s) were employed at maximum tensile strain and compressive strain under fully reversed strain cycling. Both tensile and compressive holds significantly reduce the fatigue life. Fatigue life with tensile hold is shorter than that with compressive hold. A close relationship is found between the reduction of fatigue life and the amount of stress relaxation. Microstructural examination by scanning electron microscope reveals that strain hold introduces more crack sources, which can be probably ascribed to the intensified oxidation and the peeling-off of oxide layers. A modified plastic strain energy approach considering stress relaxation effect is proposed to predict the creep-fatigue life, and the predicted lives are in superior agreement with the experimental results.

  7. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress

    DEFF Research Database (Denmark)

    Lukas, Claudia; Savic, Velibor; Bekker-Jensen, Simon

    2011-01-01

    bodies shield chromosomal fragile sites sequestered in these compartments against erosion. Together, these data indicate that restoration of DNA or chromatin integrity at loci prone to replication problems requires mitotic transmission to the next cell generations....... stress increases the frequency of chromosomal lesions that are transmitted to daughter cells. Throughout G1, these lesions are sequestered in nuclear compartments marked by p53-binding protein 1 (53BP1) and other chromatin-associated genome caretakers. We show that the number of such 53BP1 nuclear bodies...... increases after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies are partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. Finally, we provide evidence that 53BP1 nuclear...

  8. Genetic Analysis for Some of Morphological Traits in Bread Wheat under Drought Stress Condition Using Generations Mean Analysis

    Directory of Open Access Journals (Sweden)

    Jamileh Abedi

    2015-06-01

    Full Text Available Perception of genes action controlling of quantitative traits is very important in genetic breeding methods the plant populations. to study and estimate the parameters of genetic and appointment the best genetically model for justification the genetic changing some of traits the bread wheat under drought stress condition, parents (P1 & P2 and F3, F4, F5 generations together the four control cultivars (Kharchia, Gaspard, Moghan and Mahuti were evaluated by generation mean analysis using a agoment design including six blocks. Generation mean analysis was performed for all traits with Mather and Jinks model using joint scaling test. Three parameter model [m d h] provided the best fit for all traits expect harvest index, main spike grain weight, number of grain per plant, Total spike weight of plant with significant at 5% and 1% levels . Though additive and dominance effect both had interfered in controlling often the traits but with attention to difference effects and variety component was determined that dominance is more impressive than additive effect for traits of number of tiller, main spike weight, grain yield and grain number of main spike. Therefore will benefit using of these traits in the collection and to improve these traits hybridization would be much efficient than the selection strategies. In this study additive Ч additive epistasis effect only observed for traits of Total spike weight of plant, number of grain per plant, main spike grain weight and harvest index and other traits hadn’t any epistasis effect that it was demonstration lack of existence the genes reciprocal effect in the inheritance studied traits. Therefore we can suggest that the selection strategies perform in terminal generations and additive Ч additive epistasis effect would be confirmed in selection under self-pollination condition.

  9. Oxidative stress and inhibition of nitric oxide generation underlie methotrexate-induced senescence in human colon cancer cells.

    Science.gov (United States)

    Dabrowska, Magdalena; Uram, Lukasz; Zielinski, Zbigniew; Rode, Wojciech; Sikora, Ewa

    2017-07-21

    The response of human colon cancer C85 cells to methotrexate takes the form of reversible growth arrest of the type of stress-induced senescence. In the present study it is shown that during C85 cell progression into methotrexate-induced senescence, dihydrofolate reductase, the primary intracellular target for the drug, is stabilized at the protein level and its enzymatic activity, assayed in crude cellular extracts, decreases by 2-fold. Dihydrofolate reductase inhibition results in an increase in dihydrobiopterin level and an ultimate decrease in the tetrahydrobiopterin: dihydrobiopterin ratio in senescent cells. Endothelial nitric oxide synthase expression declines. Despite concomitant upregulation of inducible nitric oxide synthase expression, no nitric oxide generation in senescent cells is detected. Progressing oxidative stress accompanies establishment of the state of senescence. DNA damage, in the form of double strand-breaks, occurs at the highest level at the senescence initiation phase and decreases as cells progress into the senescence maintenance phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cognitive vulnerability to anxiety in the stress generation process: further investigation of the interaction effect between the looming cognitive style and anxiety sensitivity.

    Science.gov (United States)

    Riskind, John H; Kleiman, Evan M; Weingarden, Hilary; Danvers, Alexander F

    2013-12-01

    The goal of the present study was to replicate and extend previous research on the relationship between stress generation and two well-documented anxiety related cognitive vulnerabilities, Looming Cognitive Style (LCS) and Anxiety Sensitivity (AS). We first sought to replicate findings that LCS and AS augment each other's stress generation effect. Next, we expanded upon these findings by conducting fine grained analyses not possible in the prior study, by using the third edition of the Anxiety Sensitivity Index (Taylor et al., 2007) and examined the individual facets of AS, which includes: Mental Incapacitation (fear of mental impairment), Physical (fear of catastrophic outcomes such as death), and Social (fear of being noticed for trembling, blushing) facets. We followed 99 female undergraduates who were assessed twice over a six-week interval. First, the results replicated a previous study and showed that LCS and AS magnified each other's impact on stress generation. Second, analyses using the individual subscales of AS indicated significant interactions between LCS and the Mental Incapacitation and Physical facets of AS but not the Social facet. Limitations of the present study include reliance on self-report measures and the use of a female only sample. Using such a sample is consistent with previous literature, but limits generalizability to males. The present findings are consistent with the emerging view that stress generation is an active, transactional process and that anxiety-related cognitive styles (much like depressive styles) contribute to stress generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mind your thoughts: associations between self-generated thoughts and stress-induced and baseline levels of cortisol and alpha-amylase.

    Science.gov (United States)

    Engert, Veronika; Smallwood, Jonathan; Singer, Tania

    2014-12-01

    Stress is a major health burden in today's society. Research shows that negative cognitive styles are associated with increased stress reactivity, low mood and accelerated cellular aging. Our study sought to unravel the relationship between the content of self-generated thoughts and psychosocial stress measured in terms of hypothalamic-pituitary-adrenal axis and sympathetic activity. Features of self-generated thoughts were assessed using thought sampling while participants performed cognitive tasks following a stress induction or in a baseline condition. More negatively toned emotional thoughts and more social temporal thoughts with a past focus were associated with increased cortisol and alpha-amylase levels, both after stress and at baseline. More social temporal thoughts with a future focus, on the other hand, had an overall attenuating effect on the levels of both stress markers. Our results indicate a fundamental link between the thoughts and stress levels we experience. Understanding the mechanisms governing this mind-body association may have important implications for understanding and counteracting the high incidence of stress-related disorders in today's society. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  13. Troxerutin with copper generates oxidative stress in cancer cells: Its possible chemotherapeutic mechanism against hepatocellular carcinoma.

    Science.gov (United States)

    Subastri, Ariraman; Suyavaran, Arumugam; Preedia Babu, Ezhuthupurakkal; Nithyananthan, Subramaniyam; Barathidasan, Rajamani; Thirunavukkarasu, Chinnasamy

    2018-03-01

    Troxerutin (TXER) a rutin derivative is known for its anticancer effect against hepatocellular carcinoma (HCC). As part of large study, recently we have shown TXER interact with genetic material and its anti-mutagenic property. In the present study we have explored its possible mode of action in HCC. Since TXER alone did not show significant anticancer effect on Huh-7 cells, in vitro biochemical assays were performed for determining anticancer efficacy of TXER + metal complex using transition metals such as Cu, Zn, and Fe. The anticancer efficacy of TXER + Cu on Huh-7 cells were evaluated using MTT assay, DCFDA, JC-1 staining, comet assay, cell cycle analysis, immunocytochemistry, and Western blotting. Non-toxic nature of TXER was analyzed on primary rat hepatocytes. The in vivo efficacy of TXER was tested in N-nitrosodiethylamine initiated and γ-benzene hexachloride and partial hepatectomy promoted rat liver cancer. Liver markers, transition metal levels, histopathological examination, and expression levels of GST-P, 8-OHdG and Ki-67 were studied to assess the in vivo anticancer effect of TXER. We observed that TXER + Cu induced extensive cellular death on Huh-7 cells through generating free radicals and did not possess any toxic effect on normal hepatocytes. The in vivo studies revealed that TXER possess significant anti-cancer effect as assessed through improved liver markers and suppressed GST-P, 8-OHdG, and Ki-67 expression. TXER treatment reduced the hepatic Cu level in cancer bearing animals. Current study brings the putative mechanism involved in anti-cancer effect of TXER, further it will help to formulate phytoconstituents coupled anti-cancer drug for effective treatment of HCC. © 2017 Wiley Periodicals, Inc.

  14. The impact of spatial structure on viral genomic diversity generated during adaptation to thermal stress.

    Directory of Open Access Journals (Sweden)

    Dilara Ally

    Full Text Available Most clinical and natural microbial communities live and evolve in spatially structured environments. When changes in environmental conditions trigger evolutionary responses, spatial structure can impact the types of adaptive response and the extent to which they spread. In particular, localized competition in a spatial landscape can lead to the emergence of a larger number of different adaptive trajectories than would be found in well-mixed populations. Our goal was to determine how two levels of spatial structure affect genomic diversity in a population and how this diversity is manifested spatially.We serially transferred bacteriophage populations growing at high temperatures (40°C on agar plates for 550 generations at two levels of spatial structure. The level of spatial structure was determined by whether the physical locations of the phage subsamples were preserved or disrupted at each passage to fresh bacterial host populations. When spatial structure of the phage populations was preserved, there was significantly greater diversity on a global scale with restricted and patchy distribution. When spatial structure was disrupted with passaging to fresh hosts, beneficial mutants were spread across the entire plate. This resulted in reduced diversity, possibly due to clonal interference as the most fit mutants entered into competition on a global scale. Almost all substitutions present at the end of the adaptation in the populations with disrupted spatial structure were also present in the populations with structure preserved.Our results are consistent with the patchy nature of the spread of adaptive mutants in a spatial landscape. Spatial structure enhances diversity and slows fixation of beneficial mutants. This added diversity could be beneficial in fluctuating environments. We also connect observed substitutions and their effects on fitness to aspects of phage biology, and we provide evidence that some substitutions exclude each other.

  15. Hot tensile properties and strain hardening behaviour of Super 304HCu stainless steel

    Directory of Open Access Journals (Sweden)

    M. Vinoth Kumar

    2017-04-01

    Full Text Available Super 304HCu austenitic stainless steel containing 2.3–3 (wt.% of Cu is mainly used in superheaters and reheaters tubing of ultra super critical boilers which operates over 600 °C of steam temperature. Tensile tests were carried out on Super 304HCu, using nominal strain rate of 1 × 10−3 s−1, at room temperature, 550 °C, 600 °C and 650 °C. The tensile strength and elongation were found to decrease with increase in test temperature. The stress strain curves were fitted using Hollomon equation to determine the strain hardening exponent value. Differential Crussard–Jaoul (C–J analysis of the tensile curve is used to determine the variation in strain hardening exponent. Kocks–Mecking (K–M type plots were used to determine the stages of strain hardening during tensile loading of the specimen. The strain hardening capacity of the Super 304HCu is found to decrease with increase in test temperature.

  16. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppett, W.K. [Argonne National Lab., IL (United States)

    1998-03-01

    A systematic study has been initiated to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with the hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, four heats of alloys (BL-63, BL-71, and T87, plus 44 from General Atomics) are being evaluated. Other variables of interest are the effect of initial grain size on hydrogen uptake and tensile properties, and the synergistic effects of oxygen and hydrogen on the tensile behavior of the alloys. Experiments conducted thus far on specimens of various V-Cr-Ti alloys exposed to pH{sub 2} levels of 0.01 and 3 {times} 10{sup {minus}6} torr showed negligible effect of H{sub 2} on either maximum engineering stress of uniform/total elongation. Further, preliminary tests on specimens annealed at different temperatures showed that grain size variation by a factor of {approx}2 had a negligible effect on tensile properties.

  17. Tensile Properties of the Deep Transverse Metatarsal Ligament in Hallux Valgus

    Science.gov (United States)

    Abdalbary, Sahar Ahmed; Elshaarawy, Ehab A.A.; Khalid, Bahaa E.A.

    2016-01-01

    Abstract The deep transverse metatarsal ligament (DTML) connects the neighboring 2 metatarsal heads and is one of the stabilizers connecting the lateral sesamoid and second metatarsal head. In this study, we aimed to determine the tensile properties of the DTML in normal specimens and to compare these results with hallux valgus specimens. We hypothesized that the tensile properties of the DTML would be different between the 2 groups of specimens. The DTML in the first interspace was dissected from 12 fresh frozen human cadaveric specimens. Six cadavers had bilateral hallux valgus and the other 6 cadavers had normal feet. The initial length (L0) and cross-sectional area (A0) of the DTML were measured using a digital caliper, and tensile tests with load failure were performed using a material testing machine. There were significant between-groups differences in the initial length (L0) P = 0.009 and cross-sectional area (A0) of the DTML P = 0.007. There were also significant between-groups differences for maximum force (N) P = 0.004, maximum distance (mm) P = 0.005, maximum stress (N/mm2) P = 0.003, and maximum strain (%) P = 0.006. The DTML is an anatomical structure for which the tensile properties differ in hallux valgus. PMID:26937914

  18. Mutant human FUS Is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic zebrafish cells.

    Directory of Open Access Journals (Sweden)

    Jamie Rae Acosta

    Full Text Available FUS mutations can occur in familial amyotrophic lateral sclerosis (fALS, a neurodegenerative disease with cytoplasmic FUS inclusion bodies in motor neurons. To investigate FUS pathology, we generated transgenic zebrafish expressing GFP-tagged wild-type or fALS (R521C human FUS. Cell cultures were made from these zebrafish and the subcellular localization of human FUS and the generation of stress granule (SG inclusions examined in different cell types, including differentiated motor neurons. We demonstrate that mutant FUS is mislocalized from the nucleus to the cytosol to a similar extent in motor neurons and all other cell types. Both wild-type and R521C FUS localized to SGs in zebrafish cells, demonstrating an intrinsic ability of human FUS to accumulate in SGs irrespective of the presence of disease-associated mutations or specific cell type. However, elevation in relative cytosolic to nuclear FUS by the R521C mutation led to a significant increase in SG assembly and persistence within a sub population of vulnerable cells, although these cells were not selectively motor neurons.

  19. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity.

    Science.gov (United States)

    Okuda, S; Nishiyama, N; Saito, H; Katsuki, H

    1998-01-01

    3-Hydroxykynurenine (3-HK) is a potential endogenous neurotoxin whose increased levels have been described in several neurodegenerative disorders. Here, we characterized in vitro neurotoxicity of 3-HK. Of the tested kynurenine pathway metabolites, only 3-HK, and to a lesser extent 3-hydroxyanthranilic acid, were toxic to primary cultured striatal neurons. 3-HK toxicity was inhibited by various antioxidants, indicating that the generation of reactive oxygen species is essential to the toxicity. 3-HK-induced neuronal cell death showed several features of apoptosis, as determined by the blockade by macromolecule synthesis inhibitors, and by the observation of cell body shrinkage with nuclear chromatin condensation and fragmentation. In addition, 3-HK toxicity was dependent on its cellular uptake via transporters for large neutral amino acids, because uptake inhibition blocked the toxicity. Cortical and striatal neurons were much more vulnerable to 3-HK toxicity than cerebellar neurons, which may be attributable to the differences in transporter activities of these neurons. These results indicate that 3-HK, depending on transporter-mediated cellular uptake and on intracellular generation of oxidative stress, induces neuronal cell death with brain region selectivity and with apoptotic features, which may be relevant to pathology of neurodegenerative disorders.

  20. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Shyh-Shin, E-mail: chiouss@kmu.edu.tw [Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China); Wang, Sophie Sheng-Wen; Wu, Deng-Chyang [Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Lin, Ying-Chu [School of Dentistry, College of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Kao, Li-Pin [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China)

    2013-07-26

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  1. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Directory of Open Access Journals (Sweden)

    Naoto Yamaguchi

    2013-07-01

    Full Text Available We report here that the Jun dimerization protein 2 (JDP2 plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2 and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS. JDP2 associates with Nrf2 and MafK (Nrf2-MafK to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  2. Dataset of tensile strength development of concrete with manufactured sand

    Directory of Open Access Journals (Sweden)

    Shunbo Zhao

    2017-04-01

    Full Text Available This article presents 755 groups splitting tensile strength tests data of concrete with manufactured sand (MSC in different curing age ranged from 1 day to 388 days related to the research article “Experimental study on tensile strength development of concrete with manufactured sand” (Zhao et al., 2017 [1]. These data were used to evaluate the precision of the prediction formulas of tensile strength of MSC, and can be applied as dataset for further studies.

  3. The Effect of Welding Residual Stress for Making Artificial Stress Corrosion Crack in the STS 304 Pipe

    Directory of Open Access Journals (Sweden)

    Jae-Seong Kim

    2015-01-01

    Full Text Available The stress corrosion crack is one of the fracture phenomena for the major structure components in nuclear power plant. During the operation of a power plant, stress corrosion cracks are initiated and grown especially in dissimilar weldment of primary loop components. In particular, stress corrosion crack usually occurs when the following three factors exist at the same time: susceptible material, corrosive environment, and tensile stress (residual stress included. Thus, residual stress becomes a critical factor for stress corrosion crack when it is difficult to improve the material corrosivity of the components and their environment under operating conditions. In this study, stress corrosion cracks were artificially produced on STS 304 pipe itself by control of welding residual stress. We used the instrumented indentation technique and 3D FEM analysis (using ANSYS 12 to evaluate the residual stress values in the GTAW area. We used the custom-made device for fabricating the stress corrosion crack in the inner STS 304 pipe wall. As the result of both FEM analysis and experiment, the stress corrosion crack was quickly generated and could be reproduced, and it could be controlled by welding residual stress.

  4. The relationship between hardness to the tensile properties of kenaf/ unsaturated polyester composite

    Science.gov (United States)

    Ghaztar, Muhammad Mustakim Mohd; Romli, Ahmad Zafir; Ibrahim, Nik Noor Idayu Nik

    2017-12-01

    The level of fibre-matrix interaction and consolidation are essential aspects to determine the composite deformation but, less attention is given to the effect of small fibre weight increment (5 wt%), chemical treatment coalition (NaOH/ silane), fibre's length and aspect ratio to the physical and mechanical properties of the composite. Hence, this paper studies the correlation between these parameters towards hardness and tensile properties of Kenaf fibre and unsaturated polyester (UP) matrix. The study was carried out by fabricating the sample into two (2) types of fibre categories and fibre loadings and tested to determine its properties. The results showed that the hardness and tensile stress were significantly influenced by the fibre loading and dispersion of the fabricated samples. At low filler loading, the treated samples for both fibre sizes showed lower hardness property compared to the untreated samples. The chemical treatment coalition might diffuse out the pectin and hemicellulose which affect the ability of the fibre to absorb the force applied by the hardness indenter. Good fibre dispersion observed for the treated samples also resulted in the fibre-dominating composite system where the fibres were efficiently absorbed and distributed the indentation force. However, chemical treatments and good fibre dispersion contributed to the higher tensile stress of the treated fibre samples especially for smaller fibre length and aspect ratio compared to the untreated samples. At high fibre loading, treated fibre samples showed higher hardness property compared to the untreated samples since the treatment resulted in better fibre wetting by the matrix and the formation of pack structure. However, high fibre loading caused the mutual abrasion among the fibre which led to the lower tensile stress compared to the low fibre loading samples. In conclusion, by understanding the factors that influenced the reinforcing mechanism of the composite, the inconsistency of

  5. Dynamic tensile tests with superimposed ultrasonic oscillations for stainless steel type 321 at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Schinke, B.; Malmberg, T.

    1987-03-01

    In recent years various containment codes for Fast Breeder Reactor accidents have been assessed by comparison with explosion tests in water-filled vessels (COVA experiments). Common to the various codes, a systematic underestimation of the circumferential vessel strains was found. In the COVA tests high frequency pressure oscillations in the ultrasonic range were observed and thus it has been conjectured that the phenomenon of ''acoustic softening'' might be relevant in explaining the discrepancies in the strains. To validate this conjecture a hydro-pneumatic tensile test apparatus was developed which allows dynamic tensile testing at room temperature with and without superimposed ultrasonic oscillations. The dynamic tensile tests on the COVA sheet material (stainless steel AISI 321) without ultrasonic insonation show a linear dependence of the flow stress on the logarithm of the strain rate. The results at low strain rates (10/sup -3/ s/sup -1/) agree favourably with previous measurements but at high rates (50 s/sup -1/) at 20% lower flow stress is observed. The dynamic tensile tests with continuous and intermittent insonation show the phenomenon of ''acoustic softening'': The average flow stress is reduced by an amount of about half the oscillating amplitude. At high strain rates the reduction is less. A severe ''acoustic softening'' observed by several authors for various metals at low strain rates was not observed. The experimental results were compared with the theory of the superpositon mechanism assuming a rate-independent elastic-plastic and an elastic-viscoplastic constitutive model. Although the rate-independent model is capable to predict qualitatively some of the observed effects, a better description is obtained with the viscoplastic model. The conclusion is that the ''acoustic softening'' of the COVA material is far too small to explain the discrepancies between measured

  6. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats.

    Science.gov (United States)

    Li, Man-Hong; Tang, Ji-Ping; Zhang, Ping; Li, Xiang; Wang, Chun-Yan; Wei, Hai-Jun; Yang, Xue-Feng; Zou, Wei; Tang, Xiao-Qing

    2014-04-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Hydrogen sulfide (H2S) acts as an endogenous neuromodulator and neuroprotectant. It has been shown that endoplasmic reticulum (ER) stress is involved in the pathological mechanisms of the learning and memory dysfunctions and that H2S exerts its neuroprotective role via suppressing ER stress. In the present work, we explored the effects of intracerebroventricular injection of Hcy on the formation of learning and memory, the generation of endogenous H2S, and the expression of ER stress in the hippocampus of rats. We found that intracerebroventricular injection of Hcy in rats leads to learning and memory dysfunctions in the Morris water maze and novel of object recognition test and decreases in the expression of cystathionine-β-synthase, the major enzyme responsible for endogenous H2S generation, and the generation of endogenous H2S in the hippocampus of rats. We also showed that exposure of Hcy could up-regulate the expressions of glucose-regulated protein 78 (GRP78), CHOP, and cleaved caspase-12, which are the major mark proteins of ER stress, in the hippocampus of rats. Taken together, these results suggest that the disturbance of hippocampal endogenous H2S generation and the increase in ER stress in the hippocampus are related to Hcy-induced defect in learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    and dimensions of Silicon-Carbide (SiC) particles are randomly distributed. Finite element simulations of the deformation and damage evolution of SiC particle reinforced Aluminum (Al) alloy composite are carried out for different microstructures and interphase strengths under tensile, shear and combined tensile......The influence of interface strength and loading conditions on the mechanical behavior of the metal-matrix composites is investigated in this paper. A program is developed to generate automatically 2D micromechanical Finite element (FE) models including interface, in which both the locations...... and aluminum alloy matrix, respectively. A series of computational experiments are performed to study the influence of particle arrangements, interface strengths and loading conditions of the representative volume element (RVE) on composite stiffness and strength properties. © 2013 Elsevier Ltd....

  8. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  9. Mixed mode I/II fatigue crack growth under tensile or compressive far-field loading

    Science.gov (United States)

    Heirani, Hasan; Farhangdoost, Khalil

    2017-11-01

    This study investigates the rate and path of fatigue crack growth under mixed mode I/II loading in the presence of tensile and compressive stresses. Compact tension shear (CTS) specimens made of 42CrMo4 steel are subjected to pure mode I, pure mode II, and mixed mode I/II loadings. Fatigue crack growth rates are determined for a number of K I/K II ratios and compared with each other. Paris’ law constants are found out for different modes of loading on the material. Crack growth paths at various loading angles, in the presence of tensile and compressive stresses, are analyzed and the specimens fracture surfaces are examined. In order to determine the stress intensity factors (SIFs) at different modes, finite element simulation of the CTS specimen is adopted. Using the SIFs yielded by simulation, the crack growth angles are obtained by a number of criteria and compared with the experimental results. At mixed mode loading involving compressive stresses, Richard’s criterion for the determination of crack growth angles gets improved. As a result, by determining Paris’ law constants and the coefficients of modified Richard’s criterion, the material behavior in mixed mode I/II fatigue involving compressive stresses is known. The specimens fracture surfaces reveals the wear of the surfaces under compressive loads.

  10. Effects of H content on the tensile properties and fracture behavior of SA508-III steel

    Science.gov (United States)

    Liu, Jia-hua; Wang, Lei; Liu, Yang; Song, Xiu; Luo, Jiong; Yuan, Dan

    2015-08-01

    SA508-III steel was charged with different hydrogen (H) contents using a high-pressure thermal charging method to study the effects of H content on the tensile properties and evaluate the H embrittlement behavior of the steel. The results indicate that the ultimate tensile strength remains nearly unchanged with the addition of H. In contrast, the yielding strength slightly increases, and the elongation significantly decreases with increasing H content, especially at concentrations exceeding 5.6 × 10-6. On the basis of fractographic analysis, it is clear that the addition of H changes the fracture mode from microvoid coalescence to a mixture of river patterns and dimples. Carbides are strong traps for H; thus, the H atoms easily migrate in the form of Cottrell atmosphere toward the carbides following moving dislocations during tensile deformation. In addition, stress-induced H atoms accumulate at the interface between carbides and the matrix after necking under three-dimensional stress, which weakens the interfacial bonding force. Consequently, when the local H concentration reaches a critical value, microcracks occur at the interface, resulting in fracture.

  11. Finite Element Modelling for Tensile Behaviour of Thermally Bonded Nonwoven Fabric

    Directory of Open Access Journals (Sweden)

    Gao Xiaoping

    2015-03-01

    Full Text Available A nonwoven fabric has been widely used in geotextile engineering in recent years; its tensile strength is an important behaviour. Since the fibre distributions in nonwoven fabrics are random and discontinuous, the unit-cell model of a nonwoven fabric cannot be developed to simulate its tensile behaviour. This article presents our research on using finite element method (FEM to study the tensile behaviour of a nonwoven fabric in macro-scale based on the classical laminate composite theory. The laminate orientation was considered with orientation distribution function of fibres, which has been obtained by analysing the data acquired from scanning electron microscopy with Hough Transform. The FE model of a nonwoven fabric was developed using ABAQUS software; the required engineering constants of a nonwoven fabric were obtained from experimental data. Finally, the nonwoven specimens were stretched along with machine direction and cross direction. The experimental stress-strain curves were compared with the results of FE simulations. The approximate agreement proves the validity of an FE model, which could be used to precisely simulate the stress relaxation, strain creep, bending and shear property of a nonwoven fabric.

  12. Dynamic tensile behavior of AZ31B magnesium alloy at ultra-high strain rates

    Directory of Open Access Journals (Sweden)

    Geng Changjian

    2015-04-01

    Full Text Available The samples having {0001} parallel to extruding direction (ED present a typical true stress–true strain curve with concave-down shape under tension at low strain rate. Ultra-rapid tensile tests were conducted at room temperature on a textured AZ31B magnesium alloy. The dynamic tensile behavior was investigated. The results show that at ultra-high strain rates of 1.93 × 102 s−1 and 1.70 × 103 s−1, the alloy behaves with a linear stress–strain response in most strain range and exhibits a brittle fracture. In this case, {10-12}  extension twinning is basic deformation mode. The brittleness is due to the macroscopic viscosity at ultra-high strain rate, for which the external critical shear stress rapidly gets high to result in a cleavage fracture before large amounts of dislocations are activated. Because {10-12} tension twinning, {10-11} compressive twinning, basal slip, prismatic slip and pyramidal slip have different critical shear stresses (CRSS, their contributions to the degree of deformation are very differential. In addition, Schmid factor plays an important role in the activity of various deformation modes and it is the key factor for the samples with different strain rates exhibit various mechanical behavior under dynamic tensile loading.

  13. Effect of Thermal Annealing on Machining-Induced Residual Stresses in Inconel 718

    Science.gov (United States)

    Madariaga, A.; Aperribay, J.; Arrazola, P. J.; Esnaola, J. A.; Hormaetxe, E.; Garay, A.; Ostolaza, K.

    2017-08-01

    Nickel-based alloys are widely employed in the manufacturing of aero-engines. These alloys are difficult to machine, and tensile residual stresses are generated during machining. These tensile residual stresses can negatively affect the performance of aero-engine components. Nevertheless, residual stresses can vary due to thermal or mechanical loading. These variations must be considered to evaluate the real influence of residual stresses on component behavior. This paper studies the effect of thermal loads on machining-induced residual stresses in the alloy Inconel 718. A ring-shaped Inconel 718 part was face-turned, and specimens were extracted from it. Specimens were exposed at 550 and 650 °C for 10 min, 1 and 10 h. Residual stresses were measured, and microstructure was observed before and after thermal exposure. Residual stress variations found after thermal exposure were the consequence of two factors: relaxation of strain bands during the early stage of exposure and diffusion-controlled creep. In addition, a modified Zener-Wert-Avrami model is proposed to predict residual stress relaxation caused by the diffusion-controlled creep. Once having fitted the modified Zener-Wert-Avrami model, the study was extended for a wider range of temperatures (400-650 °C). This analysis showed that surface residual stresses do not relax significantly at temperatures below 500 °C.

  14. Fundamental Enabling Issues in Nanotechnology: Stress at the Atomic Scale

    Energy Technology Data Exchange (ETDEWEB)

    Floro, Jerrold Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Virginia, Charlottesville, VA (United States). Dept. of Materials Science and Engineering; Foiles, Stephen Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hearne, Sean Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoyt, Jeffrey John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McMaster Univ., Hamilton, ON (Canada); Seel, Steven Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emcore Corporation, Albuquerque, NM (United States); Webb, Edmund Blackburn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Morales, Alfredo Martin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2007-10-01

    To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also support the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g., continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in

  15. Model of fracture micro mechanism of Cu-Cr-Zr system by in-situ tensile test in SEM

    Directory of Open Access Journals (Sweden)

    Besterci M.

    2003-01-01

    Full Text Available In the present work fracture mechanism of the Cu-Cr-Zr system was studied by "in-situ tensile test in SEM". It has been shown, that during tensile strain over the critical deformation the first cracks appeared due to the decohesion of matrix - large Cr particles interphase or by Cr particles failure. The further stress increase causes the cracks formation on matrix small Cr particles interfaces and in the clusters of Cu5Zr intermetalics. The trajectory affinal fracture was formed preferably by coalescence of cracks oriented about 67° to the loading direction. The model, presenting fracture mechanism in the investigated system was suggested.

  16. Tensile strength of biological fibrin sealants: a comparative study.

    Science.gov (United States)

    Lacaze, Laurence; Le Dem, Nicolas; Bubenheim, Michael; Tsilividis, Basile; Mezghani, Julien; Schwartz, Lilian; Francois, Arnaud; Ertaud, Jean Yves; Bagot d'Arc, Maurice; Scotté, Michel

    2012-08-01

    Fibrin sealants are commonly used in liver surgery, although their effectiveness in routine clinical practice remains controversial. Individual sealant characteristics are based on hemostatic effects and adhesion properties that can be experimentally measured using the 'rat skin test' or the 'pig skin test'. This study used a more relevant and realistic experimental canine model to compare the differences in the adhesive properties of four fibrin sealants in hepatectomy: Tisseel/Tissucol, Tachosil, Quixil, and Beriplast. A partial hepatectomy was performed in beagle dogs under general anesthesia to obtain liver cross-sections. Fibrin sealants were allocated to dog livers using a Youden square design. The tensile strength measurement was performed using a traction system to measure the rupture stress point of a small wooden cylinder bonded to the liver cross-section. Significantly greater adhesion properties were observed with Tisseel/Tissucol compared with Quixil or Beriplast (P = 0.002 and 0.001, respectively). Similarly, Tachosil demonstrated significantly greater adhesive properties compared with Beriplast (P = 0.009) or Quixil (P = 0.014). No significant differences were observed between Tisseel/Tissucol and Tachosil or between Beriplast and Quixil. The results of this comparative study demonstrate that different fibrin sealants exhibit different adhesive properties. Tisseel/Tissucol and Tachosil provided greatest adhesion to liver cross-section in our canine model of hepatectomy. These results may enable the optimal choice of fibrin sealants for this procedure in clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. On the dynamic tensile strength of an FCC metal

    Science.gov (United States)

    Bourne, Neil; Jones, David; Fensin, Saryu; Trujillo, Carl; Martinez, Daniel; Gray, George T., III

    2017-06-01

    The tensile response of polycrystalline metals is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In a previous study, the influence of loading path on the damage evolution in high-purity tantalum has been presented; in this paper we present complimentary measurement on a pure FCC copper. Samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical ``pull-back'' signals as measured via rear-surface velocimetry. The damage evolution in the ``soft'' recovered copper samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. We shall compare metallurgical observations, velocimetry histories and one dimensional simulations to discuss dynamic failure mechanisms in this metal.

  18. Ply tensile properties of banana stem and banana bunch fibres

    African Journals Online (AJOL)

    2012-03-01

    Mar 1, 2012 ... surface after tensile test indicated a ductile failure of the material with appreciable plastic deformation. Keywords: lamina, natural fibre, banana fibre, natural rubber, tensile properties, fracture surface, angle ply. 1. Introduction. Most governments all over the world are now very conscious of their environment.

  19. Influence of relative humidity on tensile and compressive creep of ...

    African Journals Online (AJOL)

    This paper presents an experimental study on the influence of ambient relative humidity on tensile creep of plain concrete amended with Ground Granulated Blast - furnace Slag and compares it with its influence on compressive creep. Tensile and compressive creep tests were carried out on concrete specimens of 34.49 ...

  20. New Scanning Electron Microscope Used for Cryogenic Tensile Testing

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    At CERN engineering department's installation for cryogenic tensile testing, the new scanning electron microscope (SEM) allows for detailed optical observations to be carried out. Using the SEM, surface coatings and tensile properties of materials can investigated in order to better understand how they behave under different conditions.

  1. Effect of alcoholic treated MWCNT on tensile behavior of epoxy ...

    African Journals Online (AJOL)

    Tensile strength, Young's modulus, and Elongation are found to be effectively improved with the addition of alcoholic functionalized MWCNT in epoxy matrix. Increased tensile strength and elastic modulus of epoxy composites loaded with the alcoholic functionalized MWCNT are observed through experimental studies.

  2. Hybrid filler composition optimization for tensile strength of jute fibre ...

    Indian Academy of Sciences (India)

    The effect of weight content of bagasse fibre, carbon black and calcium carbonate on tensile strength of pultruded GFRP composite is evaluated and the optimum hybrid filler composition for maximizing the tensile strength is determined. Different compositions of hybrid filler are prepared by mixing three fillers using Taguchi ...

  3. Vacuum fused deposition modelling system to improve tensile ...

    African Journals Online (AJOL)

    The results obtained show an improvement of 12.83 % of tensile strength compared to the standard specimen. This paper concludes that the low pressure environment is useful in reducing the heat loss due to convection of air, hence directly improves the specimen's tensile strength. Keywords: additive manufacturing; fused ...

  4. Sterilization effects on tensile strength of non-conventional suture ...

    African Journals Online (AJOL)

    An experiment was carried out to determine the tensile strength of embroidery, braiding, cobbler's thread and nylon mono-filament fishing line (NMFL) use as non-conventional suture material. Their tensile strength were determined pre- sterilization using various calibrated weights (50gm, 100gm, 500gm).

  5. some tensile properties of unsaturated polyester resin reinforced wi

    African Journals Online (AJOL)

    Dr Obe

    and tensile toughness at fracture increased as the volume fractions of carbon black nanoparticles ... pharmaceuticals, biomedical, energy, sports ... applications. 2.0 OBJECTIVE OF THE STUDY. The objective of this work was to investigate the monotonic tensile properties of carbon black reinforced polyester, especially at ...

  6. Effect of Temperature on the Tensile Strength and Thermoelectric ...

    African Journals Online (AJOL)

    The tensile strength and thermoelectric e.m.f. values of 6063 aluminum alloy quenched at different temperatures from 2500C to 6000C were investigated. The result empirically confirmed that a perfect correlation exists between the tensile strength and thermoelectric e.m.f. values with concurrent minimum temperature ...

  7. Tensile behaviour of polyethylene and poly(p-xylylene) fibres

    NARCIS (Netherlands)

    van der Werff, Harm

    1991-01-01

    This thesis deals with the tensile behaviour of fibres prepared from high molecular weight polymers.The tensile strength of a polymeric fibre is in general much lower than the corresponding theoretical value. In case of ultra-high molecular weight polyethylene (UHMWPE), fibres can be prepared by

  8. The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli.

    Science.gov (United States)

    Ranjit, Dev K; Young, Kevin D

    2013-06-01

    Interactions with immune responses or exposure to certain antibiotics can remove the peptidoglycan wall of many Gram-negative bacteria. Though the spheroplasts thus created usually lyse, some may survive by resynthesizing their walls and shapes. Normally, bacterial morphology is generated by synthetic complexes directed by FtsZ and MreBCD or their homologues, but whether these classic systems can recreate morphology in the absence of a preexisting template is unknown. To address this question, we treated Escherichia coli with lysozyme to remove the peptidoglycan wall while leaving intact the inner and outer membranes and periplasm. The resulting lysozyme-induced (LI) spheroplasts recovered a rod shape after four to six generations. Recovery proceeded via a series of cell divisions that produced misshapen and branched intermediates before later progeny assumed a normal rod shape. Importantly, mutants defective in mounting the Rcs stress response and those lacking penicillin binding protein 1B (PBP1B) or LpoB could not divide or recover their cell shape but instead enlarged until they lysed. LI spheroplasts from mutants lacking the Lpp lipoprotein or PBP6 produced spherical daughter cells that did not recover a normal rod shape or that did so only after a significant delay. Thus, to regenerate normal morphology de novo, E. coli must supplement the classic FtsZ- and MreBCD-directed cell wall systems with activities that are otherwise dispensable for growth under normal laboratory conditions. The existence of these auxiliary mechanisms implies that they may be required for survival in natural environments, where bacterial walls can be damaged extensively or removed altogether.

  9. Osmotic stress- and indole-3-butyric acid-induced NO generation are partially distinct processes in root growth and development in Pisum sativum.

    Science.gov (United States)

    Kolbert, Zsuzsanna; Bartha, Bernadett; Erdei, László

    2008-06-01

    In this work, the effects of osmotic stress and exogenous auxin (indole-3-butyric acid, IBA) on root morphology and nitric oxide (NO) generation in roots were compared in pea plants. Five-day-old plants were treated with 0, 10(-3), 10(-4), 10(-5), 10(-6), 10(-7), 10(-8) or 10(-9) M IBA or with PEG 6000 at concentrations that determined 0, 50, 100, 200 or 400 mOsm in the medium, during 5 days. NO generation was examined by in situ and in vivo fluorescence method. Increasing concentrations of PEG as well as IBA resulted in shortening of primary root (PR), enhancement of lateral root (LR) number and significant increase of NO generation. Time-dependent investigations revealed that in the case of IBA treatments, the LR number increased in parallel with an intensified NO generation, while elongation of PR was not followed by changes in NO levels. Under osmotic stress, the time curve of NO development was distinct compared with that of IBA-treated roots, because significantly, the appearance of lateral initials was preceded by a transient burst of NO. This early phase of NO generation under osmotic stress was clearly distinguishable from that which accompanied LR initiation. It is concluded that osmotic stress and the presence of exogenous auxin resulted in partly similar root architecture but different time courses of NO synthesis. We suppose that the early phase of NO generation may fulfill a role in the osmotic stress-induced signalization process leading to the modification of root morphology.

  10. Effect of a shear modified Gurson model on damage development in a FSW tensile specimen

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2009-01-01

    For a friction stir welded aluminum plate the resistance to ductile failure is studied by analyzing tensile test specimens cut out across the weldline. As the stress triaxiality is rather low in these tests, the Gurson material model is not expected to give a very accurate description of the void....... It is found that the modification does provide additional damage development in the friction stir weld, which may help to fit experimental data. But the suggested modification depends strongly on the overall stress state, and may have a too strong effect in some cases where the stress triaxiality is rather......, such that the damage parameter does not really represent the void volume fraction. Various amounts of the additional damage evolution are compared with predictions of the original Gurson model. The analyses are carried out for different yield stress profiles transverse to the weld and for different specimen widths...

  11. Non-linearities in tensile creep of concrete at early age

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars

    1997-01-01

    A meterial model for creep is proposed which takes into consideration some of the couplings in early age concrete. The model is in incremental form and reflect the hydration process where new layers of cement gel are formed in a stress free state. In the present context attention is on non......-linear creep at high stress levels. The parameteres in the model develop in time as a result of hydration. The creep model has been used to analyse the tensile experiments at different stress levels carried out in the HETEK project. The tests were made on dogbone shaped specimen and the test procedure...... is described. Furthermore, compressive creep at high stress levels are fitted....

  12. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  13. Combined spectrophotometry and tensile measurements of human connective tissues: potentials and limitations.

    Science.gov (United States)

    Ernstberger, Markus; Sichting, Freddy; Baselt, Tobias; Hartmann, Peter; Aust, Gabriela; Hammer, Niels

    2013-06-01

    Strain-dependent transmission data of nine iliotibial tract specimens are determined using a custom-built optical setup with a halogen light source and an industrial norm material testing machine. Polarized light microscopy and hematoxylin-eosin staining indicated that lateral contraction of collagen structures is responsible for total intensity variations during a 20-cycle preconditioning and a 5-cycle tensile test. Tensile force progress is opposite to total transmission progress. Due to dehydration, wavelength-specific radiation intensity shifting is determined during the test, primarily noticeable in a water absorption band between 1400 and 1500 nm. The results show the capability of integrating spectrophotometry technology into biomechanics for determining structural alterations of human collagen due to applied strain. Being more sensitive to drying, spectrophotometry may likely serve as a quality control in stress-strain testing of biological structures.

  14. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiaqi, E-mail: jiaqw10@uci.edu [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2660 (United States); Materials and Manufacturing Technology, University of California, Irvine, CA 92697-2660 (United States); Lee, Chin C. [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2660 (United States); Materials and Manufacturing Technology, University of California, Irvine, CA 92697-2660 (United States)

    2016-06-21

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  15. SEM and TEM analyses of microstructural changes in creep degraded and tensile tested CMSX-4 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Bubiel, B.; Czyrska-Filemonowicz, A. [AGH Univ. of Science and Technology, Krakow (Poland); Nazmy, M. [Alstom (Switzerland) Ltd., Baden (Switzerland); Lapin, J. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Materials and Machine Mechanics

    2010-07-01

    The effect of creep induced microstructural degradation caused by high temperature creep on mechanical properties of single crystal CMSX-4 superalloy was studied. Creep tests were performed at temperature 1050 C and stress of 68 MPa for 2500 h. Pre-crept specimens were subsequently tensile tested at room temperature (RT) and 950 C. Additionally, as a case study, microstructure of ex-service turbine blades after operation for 12700 hours in industrial gas turbine was investigated. Tensile tests of mini specimens cut from turbine blades were also performed. Microstructural analyses of {gamma}-{gamma}' microstructure were carried out using SEM and TEM. Observed microstructural degradation of both laboratory tested and ex-service CMSX-4 samples showed that morphological changes of {gamma}-{gamma}' microstructure associated with dislocation accumulation at {gamma}/{gamma}' interfaces influence the inhibition of deformation in {gamma} channels, what results in deterioration of CMSX-4 strength and ductility. (orig.)

  16. In situ micro-tensile testing on proton beam-irradiated stainless steel

    Science.gov (United States)

    Vo, H. T.; Reichardt, A.; Frazer, D.; Bailey, N.; Chou, P.; Hosemann, P.

    2017-09-01

    Small-scale mechanical testing techniques are currently being explored and developed for engineering applications. In particular, micro-tensile testing can add tremendous value, since the entire stress-strain curve, including the strain to failure, can be measured directly. In this work, 304 stainless steel specimens irradiated with 2 MeV protons to 10 dpa (full-cascade setting in the Stopping and Range of Ions in Matter, SRIM, software) at 360 °C was evaluated using micro-tensile testing. It was found that even on the micron scale, the measured strain corresponds well with macroscopic expectations. In addition, a new approach to analyzing sudden slip events is presented.

  17. Three-dimensional finite element study on stress generation in synchrotron X-ray tomography reconstructed nickel-manganese-cobalt based half cell

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Linmin; Xiao, Xianghui; Wen, Youhai; Zhang, Jing

    2016-12-01

    In this study, the stress generation caused by phase transitions and lithium intercalation of nickel-manganese-cobalt (NMC) based half cell with realistic 3D microstructures has been studied using finite element method. The electrochemical properties and discharged curves under various C rates are studied. The potential drops significantly with the increase of C rates. During the discharge process, for particles isolated from the conductive channels, several particles with no lithium ion intercalation are observed. For particles in the electrochemical network, the lithium ion concentration increases during the discharge process. The stress generation inside NMC particles is calculated coupled with lithium diffusion and phase transitions. The results show the stresses near the concave and convex regions are the highest. The neck regions of the connected particles 2 can break and form several isolated particles. If the isolated particles are not connected with the electrically conductive materials such as carbon and binder, the capacity loses in battery. For isolated particles in the conductive channel, cracks are more likely to form on the surface. Moreover, stresses inside the particles increase dramatically when considering phase transitions. The phase transitions introduce an abrupt volume change and generate the strain mismatch, causing the stress increase.

  18. Optimizing tensile strength of low-alloy steel joints in upset welding

    OpenAIRE

    Hamedi, M

    2006-01-01

    Purpose: Purpose In resistance upset welding, the heat is generated by resistance of the interface of abutting surfaces to the flow of electrical current in heating and post-weld heating stages. Upset welding typically results in solid-state welds with no melting at the joint. In this paper, the effect of process parameters including heating and post-weld heating power and their corresponding duration along with interference, on the tensile strength of the welded joint are experimentally inve...

  19. Slow Strain Rate Tensile Testing to Assess the Ability of Superalloys to Resist Environment-Assisted Intergranular Cracking

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin

    2014-01-01

    Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720, ATI 718Plus alloy, Haynes 282, and Inconel 740. Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.

  20. A Difference-Education Intervention Equips First-Generation College Students to Thrive in the Face of Stressful College Situations.

    Science.gov (United States)

    Stephens, Nicole M; Townsend, Sarah S M; Hamedani, MarYam G; Destin, Mesmin; Manzo, Vida

    2015-10-01

    A growing social psychological literature reveals that brief interventions can benefit disadvantaged students. We tested a key component of the theoretical assumption that interventions exert long-term effects because they initiate recursive processes. Focusing on how interventions alter students' responses to specific situations over time, we conducted a follow-up lab study with students who had participated in a difference-education intervention 2 years earlier. In the intervention, students learned how their social-class backgrounds mattered in college. The follow-up study assessed participants' behavioral and hormonal responses to stressful college situations. We found that difference-education participants discussed their backgrounds in a speech more frequently than control participants did, an indication that they retained the understanding of how their backgrounds mattered. Moreover, among first-generation students (i.e., students whose parents did not have 4-year degrees), those in the difference-education condition showed greater physiological thriving (i.e., anabolic-balance reactivity) than those in the control condition, which suggests that they experienced their working-class backgrounds as a strength. © The Author(s) 2015.

  1. Low levels of posttraumatic stress symptoms and psychiatric symptomatology among third-generation Holocaust survivors whose fathers were war veterans.

    Science.gov (United States)

    Zerach, Gadi; Solomon, Zahava

    2016-02-01

    There is an ongoing debate regarding the intergenerational transmission of Holocaust trauma to the third generation (TGH). However, due to the rareness of this population, there are no studies that have examined TGH individuals whose fathers were also victims of war-related trauma and captivity. This prospective study aimed to assess the role of parents' Holocaust background, fathers' posttraumatic stress symptoms (PTSS), and adult offspring's anxiety sensitivity (AS) in adult offspring's PTSS and psychiatric symptomatology. A sample of 123 Israeli father-child dyads (42 TGH and 71 non-TGH), that included 80 former prisoners of war (ex-POWs) dyads and a comparison group of 44 veteran dyads, completed AS, PTSS and psychiatric symptomatology self-report measures. Fathers were assessed 17 years following the Yom Kippur War (T1: 2008) while offspring took part in T2 (2013-2014). Surprisingly, results show that TGH participants reported lower levels of PTSS and psychiatric symptomatology than non-TGH participants, regardless of their fathers' captivity status. Interestingly, a moderated mediation analysis indicated that offspring's AS mediated the association between Holocaust background and participants' PTSS and psychiatric symptomatology, only among ex-POWs' offspring. This study provides evidence for relatively lower levels of PTSS and psychiatric symptomatology among TGH individuals whose fathers were war veterans. Ex-POWs' adult offspring who are grandchildren of Holocaust survivors reported lower levels of AS that was related to lower levels of PTSS and psychiatric symptomatology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. An Examination of Integrated Cognitive-Interpersonal Vulnerability to Depression: The Role of Rumination, Perceived Social Support, and Interpersonal Stress Generation

    Science.gov (United States)

    Kecmanovic, Jelena; Alloy, Lauren B.

    2014-01-01

    This research examined an integration of cognitive and interpersonal theories of depression by investigating the prospective contribution of depressive rumination to perceptions of social support, the generation of interpersonal stress, and depressive symptoms. It was hypothesized that depressive ruminators would generate stress in their relationships, and that social support discontent would account for this association. Further, depressive rumination and dependent interpersonal stress were examined as joint and unique predictors of depressive symptoms over time. Participants included 122 undergraduate students (M age = 19.78 years, SD = 3.54) who completed assessments of depressive rumination, perceptions of social support, life stress, and depressive symptoms across three waves, each spaced 9 months apart. Results revealed that social support discontent accounted for the prospective association between depressive rumination and dependent interpersonal stress, and that both depressive rumination and dependent interpersonal stress contributed to elevations in depressive symptoms over time. These findings highlight the complex interplay between cognitive and interpersonal processes that confer vulnerability to depression, and have implications for the development of integrated depression-focused intervention endeavors. PMID:25429169

  3. Tensile properties of a morphologically split supraspinatus tendon.

    Science.gov (United States)

    Matsuhashi, Tomoya; Hooke, Alexander W; Zhao, Kristin D; Goto, Akira; Sperling, John W; Steinmann, Scott P; An, Kai-Nan

    2014-07-01

    The supraspinatus tendon consists morphologically of two sub-regions, anterior and posterior. The anterior sub-region is thick and tubular while the posterior is thin and strap-like. The purpose of this study was to compare the structural and mechanical properties of the anterior and posterior sub-regions of the supraspinatus tendon. The supraspinatus tendons from seven human cadaveric shoulders were morphologically divided into the anterior and posterior sub-regions. Length, width, and thickness were measured. A servo-hydraulic testing machine (MTS Systems Corporation, Minneapolis, MN) was used for tensile testing. The maximal load at failure, modulus of elasticity and ultimate tendon stress were calculated. Repeated measures were used for statistical comparisons. The mean anterior tendon cross-sectional area was 47.3 mm(2) and the posterior was 32.1 mm(2) . Failure occurred most often at the insertion site: anterior (5/7) and posterior (6/7). All parameters of the anterior sub-region were significantly greater than those of the posterior sub-region. The moduli of elasticity at the insertion site were 592.4 MPa in the anterior sub-region and 217.7 MPa in the posterior (P = 0.01). The ultimate failure loads were 779.2 N in the anterior sub-region and 335.6 N in the posterior (P = 0.003). The ultimate stresses were 22.1 MPa in the anterior sub-region and 11.6 MPa in the posterior (P = 0.008). We recognized that the anterior and posterior sub-regions of the SSP tendon have significantly different mechanical properties. In a future study, we need to evaluate how best to repair an SSP tendon considering these region-specific properties. Copyright © 2013 Wiley Periodicals, Inc.

  4. Generation of Interpersonal Stressful Events : The Role of Poor Social Skills and Early Physical Maturation in Young Adolescents-The TRAILS Study

    NARCIS (Netherlands)

    Bakker, Martin P.; Ormel, Johan; Lindenberg, Siegwart; Verhulst, Frank C.; Oldehinkel, Albertine J.

    2011-01-01

    This study developed two specifications of the social skills deficit stress generation hypothesis: the "gender-incongruence" hypothesis to predict peer victimization and the "need for autonomy" hypothesis to predict conflict with authorities. These hypotheses were tested in a prospective large

  5. Generation of Interpersonal Stressful Events: The Role of Poor Social Skills and Early Physical Maturation in Young Adolescents--The TRAILS Study

    Science.gov (United States)

    Bakker, Martin P.; Ormel, Johan; Lindenberg, Siegwart; Verhulst, Frank C.; Oldehinkel, Albertine J.

    2011-01-01

    This study developed two specifications of the social skills deficit stress generation hypothesis: the "gender-incongruence" hypothesis to predict peer victimization and the "need for autonomy" hypothesis to predict conflict with authorities. These hypotheses were tested in a prospective large population cohort of 2,064 Dutch…

  6. Effect of quench rate on microstructure and tensile properties of ALSL 4320 and 4340 steels

    Science.gov (United States)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1987-01-01

    A study has been made of the effect of quench rate on the microstructure and tensile properties of two commercial AISI 4320 and 4340 steels having fully martensitic structures. The steels were quenched from various temperatures from 1323 to 1473 K, at two different quench rates using iced brine (fast quench treatments) and oil held at 373 K (slow quench treatments). Tensile properties of these steels, after double-tempering at 473 K with intermediate quenching and refrigeration, were determined at ambient temperature (293 K) using an Instron test machine. The microstructural changes accompanying these quench rates were examined by means of optical and thin-foil transmission electron microscopic techniques. In the 4320 steel with a relatively high Ms temperature, the slow quench treatments compared to the fast quench treatments increased both the 0.2 pct proof stress and the ultimate tensile strength at similar total elongation levels, regardless of the prior austenite grain size, while the strength data of the slowly quenched steels exhibited a large scatter as the prior austenite grain size increased. However, in the 4340 steel with a relatively low Ms temperature tensile properties were less sensitive to quench rate, while the slow quench treatments compared to the fast quench treatments increased slightly only the 0.2 pct proof stress. From microstructural results, it is suggested that the beneficial effect on the strength of the slowly-quenched steels is caused by a dispersion-hardening effect due to carbon segregation or fine carbide precipitation in the martensite during the quench (i.e., autotempering).

  7. Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading

    DEFF Research Database (Denmark)

    Asmussen, Erik; Peutzfeldt, Anne

    2008-01-01

    OBJECTIVES: It was the aim of the study to analyze by the FE method stresses generated in tooth and restoration by occlusal loading of Class I and Class II restorations of resin composite. On the basis of available information on the influence of the modulus of elasticity, the research hypothesis...... was that the marginal stresses would decrease with increasing modulus of elasticity of the restoration. METHODS: A cylindrical tooth was modelled in enamel and dentin and fitted with a Class I or a Class II restoration of resin composite. In one scenario the restoration was bonded to the tooth, in another...... the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. RESULTS: In the bonded scenario, the maximum stresses...

  8. Non-destructive measurement and role of surface residual stress monitoring in residual life assessment of a steam turbine blading material

    Science.gov (United States)

    Prabhu-Gaunkar, Gajanana; Rawat, M. S.; Prasad, C. R.

    2014-02-01

    Steam turbine blades in power generation equipment are made from martensitic stainless steels having high strength, good toughness and corrosion resistance. However, these steels are susceptible to pitting which can promote early failures of blades in the turbines, particularly in the low pressure dry/wet areas by stress corrosion and corrosion fatigue. Presence of tensile residual stresses is known to accelerate failures whereas compressive stresses can help in delaying failures. Shot peening has been employed as an effective tool to induce compressive residual stresses which offset a part of local surface tensile stresses in the surface layers of components. Maintaining local stresses at stress raisers, such as pits formed during service, below a threshold level can help in preventing the initiation microcracks and failures. The thickness of the layer in compression will, however, depend of the shot peening parameters and should extend below the bottom of corrosion pits. The magnitude of surface compressive drops progressively during service exposure and over time the effectiveness of shot peening is lost making the material susceptible to micro-crack initiation once again. Measurement and monitoring of surface residual stress therefore becomes important for assessing residual life of components in service. This paper shows the applicability of surface stress monitoring to life assessment of steam turbine blade material based on data generated in laboratory on residual surface stress measurements in relation to fatigue exposure. An empirical model is proposed to calculate the remaining life of shot peened steam turbine blades in service.

  9. Failure prediction of full-size reactor components from tensile specimen data on NBG-18 nuclear graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hindley, Michael P., E-mail: makke@mweb.co.za [Pebble Bed Modular Reactor (Pty) Ltd., P.O. Box 9396, Centurion 0046 (South Africa); Blaine, Deborah C.; Groenwold, Albert A.; Becker, Thorsten H. [Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Private Bag X1, Matieland 7602 (South Africa)

    2015-04-01

    Highlights: • Predicts failure on a full scale reactor component and compare it to experiments. • Shows the effect of volume on NBG-18 nuclear graphite failure prediction. • Provide independent verification of a previously published methodology. • Describe the influence of multiple locations of high stress on failure prediction. - Abstract: This paper concerns itself with predicting the failure of a full-size NBG-18 nuclear graphite reactor component based only on test data obtained from standard tensile test specimens. A full-size specimen structural test was developed to simulate the same failure conditions expected during a normal operation of the reactor in order to validate the failure prediction. The full-size specimen designed for this test is almost a hundred times larger than the tensile test specimen, has a completely different geometry and experiences a different loading condition to the standard tensile test specimen. Failure of the full-size component is predicted realistically, but conservatively.

  10. Dependence of the tensile properties of 316 L parent material and welds on implanted hydrogen and/or helium

    Science.gov (United States)

    Schroeder, Herbert; Liu, Wanpei

    1992-09-01

    The interest in the low temperature tensile properties of candidate alloys for first wall and blanket structures of future fusion devices is due to the possible low pressure water cooling and the associated low operation temperature in recent design studies. Therefore, the tensile properties of hydrogen and/or helium implanted 316 L stainless steel and its weldments as a function of gas concentrations and temperature were investigated. The main effects of the implantation are hardening, resulting in large increases of the yield strength proportional to the implanted gas concentration, and a gradual decrease of the corresponding rupture strain. The ultimate tensile stresses are less affected. The effect of helium implantation seems to be more pronounced than that of hydrogen implantation. At 673 K most of the implantation induced changes are recovered. Generally parent material and welds still show large ductility (≥20%) under all conditions investigated.

  11. Effect of prior creep at 1365 K on the room temperature tensile properties of several oxide dispersion strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1977-01-01

    An experimental study was conducted to determine whether oxide dispersion-strengthened (ODS) Ni-base alloys in wrought bar form are subject to creep degradation effects similar to those found in thin-gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and advanced ODS-NiCrAl types; the alloys included microstructures ranging from an essentially perfect single crystal to a structure consisting of very small elongated grains. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, appearance of dispersoid free bands, grain boundary cavitation, and/or internal oxidation are interpreted as creep degradation effects. The amount of degradation depends on creep strain, and degradation appears to be due to diffusional creep which produces dispersoid free bands around grain boundaries acting as vacancy sources.

  12. Knitting Technologies And Tensile Properties Of A Novel Curved Flat-Knitted Three-Dimensional Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Li Xiaoying

    2015-09-01

    Full Text Available This paper introduces a knitting technique for making innovative curved three-dimensional (3D spacer fabrics by the computer flat-knitting machine. During manufacturing, a number of reinforcement yarns made of aramid fibres are inserted into 3D spacer fabrics along the weft direction to enhance the fabric tensile properties. Curved, flat-knitted 3D spacer fabrics with different angles (in the warp direction were also developed. Tensile tests were carried out in the weft and warp directions for the two spacer fabrics (with and without reinforcement yarns, and their stress–strain curves were compared. The results showed that the reinforcement yarns can reduce the fabric deformation and improve tensile stress and dimensional stability of 3D spacer fabrics. This research can help the further study of 3D spacer fabric when applied to composites.

  13. The elevated temperature tensile properties of S-200E commercially pure beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Henshall, G.A.; Torres, S.G.; Hanafee, J.E.

    1995-09-01

    The tensile properties of commercially pure beryllium are sensitive to temperature, impurity content, texture, grain size, and prior processing. Therefore, tensile tests have been conducted using the commercially pure S-200E Be commonly employed at Lawrence Livermore National Laboratory. These experiments were performed at temperatures ranging from 300 to 1100{degrees}C in the longitudinal and transverse orientations at the quasi-static strain rate of 5.5 x 10{sup -4} s{sup -1}. The results of these experiments reveal that the stress-strain curve is smooth, ie. without yield points or serrations, over the entire temperature range studied. The yield stress (YS) and ultimate tensile stress (UTS) decrease monotonically with increasing temperature. Similar strengths were measured for both the longitudinal and transverse orientations, with the latter exhibiting slightly lower YS and UTS values. The measured failure elongation (e{sub f}) vs. temperature curve is complex due to the competing effects of increasing basal-plane fracture stress with increasing temperature combined with the presence of hot shortness at intermediate temperatures. The latter is believed to be caused, at least partially, by the presence of free aluminum impurities at the grain boundaries. This hypothesis is supported by the measured increase in e{sub f} at 700{degrees}C following a 100-hr anneal at 750{degrees}C, which would remove free Al from the grain boundaries. Texture also was found to influence e{sub f}. The favorable orientation of the basal planes for initiation and propagation of cleavage cracks in longitudinal specimens results in a significantly decreased failure elongation compared with the transverse orientation. The effects of testing temperature and specimen orientation on the reduction in area were found to be similar to those described for e{sub f}.

  14. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobin, E-mail: yangxb@lzu.edu.cn; Li, Xiuhong; He, Yafeng; Wang, Xiaojun; Xu, Bo

    2017-04-15

    Highlights: • The differential equation including temperature and magnetic field was derived for a long cylindrical superconductor. • Thermal stress and electromagnetic stress were studied at the same time under pulse field magnetizing. • The distributions of the magnetic field, the temperature and stresses are studied and compared for two pulse fields of the different duration. • The Role thermal stress and electromagnetic stress play in the process of pulse field magnetizing is discussed. - Abstract: A multiphysics model for the numerical computation of stresses, trapped field and temperature distribution of a infinite long superconducting cylinder is proposed, based on which the stresses, including the thermal stresses and mechanical stresses due to Lorentz force, and trapped fields in the superconductor subjected to pulsed magnetic fields are analyzed. By comparing the results under pulsed magnetic fields with different pulse durations, it is found that the both the mechanical stress due to the electromagnetic force and the thermal stress due to temperature gradient contribute to the total stress level in the superconductor. For pulsed magnetic field with short durations, the thermal stress is the dominant contribution to the total stress, because the heat generated by AC-loss builds up significant temperature gradient in such short durations. However, for a pulsed field with a long duration the gradient of temperature and flux, as well as the maximal tensile stress, are much smaller. And the results of this paper is meaningful for the design and manufacture of superconducting permanent magnets.

  15. Dislocation Generation in the Initiation of Fractures in Silicon Crystals

    Science.gov (United States)

    Nishino, Yoichi; Imura, Toru

    1982-09-01

    Notched silicon crystals were deformed in tension at elevated temperatures, and the incipient microplasticity associated with the notch was studied by in-situ X-ray topographic observation. Above a stress level of about 2 kg/mm2 at 700°C, a plastic zone was formed around the notch tip, accompanied by long-range elastic strain. Dislocations were generated on the slip planes parallel to the tensile axis by the operation of a bending moment induced around the notch tip mainly by the activity of two slip systems with the maximum Schmid factor, and the crack propagation is considered to break out as a result.

  16. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    Science.gov (United States)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  17. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    Science.gov (United States)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-10-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  18. Generator. Generator

    Energy Technology Data Exchange (ETDEWEB)

    Knoedler, R.; Bossmann, H.P.

    1992-03-12

    The invention refers to a thermo-electric generator, whose main part is a sodium concentration cell. In conventional thermo-electric generators of this kind, the sodium moving from a hot space to a colder space must be transported back to the hot space via a circulation pipe and a pump. The purpose of the invention is to avoid the disadvantages of this return transport. According to the invention, the thermo-electric generator is supported so that it can rotate, so that the position of each space relative to its propinquity to the heat source can be changed at any time.

  19. Study of residual stresses generated in P91 pipe steel welded by MCAW / FCAW processes; Estudo das tensoes residuais geradas na soldagem de tubulacao de aco P91 pelos processos MCAW/FCAW

    Energy Technology Data Exchange (ETDEWEB)

    Chuvas, Tatiane C.; Pardal, Juan M.; Garcia, Pedro P.; Souza, Guttemberg C. de; Fonseca, Maria P. Cindra, E-mail: chuvas@vm.uff.br [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Departamento de Engenharia Mecanica; Cardote, Ismael [UTC Engenharia S/A, Niteroi, Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The welding is one of the main industrial manufacturing processes structures and piping, knowledge of residual stress from this process is of paramount importance because the mechanical properties of welded components are not only determined by the microstructures present in the joint, but also by residual stresses heterogeneous introduced by thermal cycling during the process. The aim of this work is the characterization ASTM P91 joints welded by MCAW / FCAW (Metal Cored Arc Welding / Flux Cored Arc Welding) processes through the residual stresses evaluating associated with welding and post-weld heat treatments. Residual stresses were measured using X-rays diffraction sin2psi method, with Crκα radiation and they presented tensile at the root joints with larger magnitudes in the weld metal region and compressive on the surface. The post weld heat treatment resulted relief of residual stresses at the root of the joints. However, the same effect was observed in compressive surface stresses, which could adversely affect the service life of the pipe, reducing the fatigue and stress corrosion cracking resistances. (author)

  20. Stress-corrosion cracking in metals

    Science.gov (United States)

    1971-01-01

    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  1. Off-Label Prescribing of Second-Generation Antipsychotics to Elderly Veterans with Posttraumatic Stress Disorder and Dementia.

    Science.gov (United States)

    Semla, Todd P; Lee, Austin; Gurrera, Ronald; Bajor, Laura; Li, Mingfei; Miller, Donald R; Smith, Eric G; Wang, Chao; Wan, Yun; Kazis, Lewis E; Bauer, Mark S

    2017-08-01

    To determine whether elderly veterans with posttraumatic stress disorder (PTSD) and dementia are more likely to be prescribed second-generation antipsychotics (SGAs) than those with PTSD alone. National serial cross-sectional study. Veterans Health Affairs inpatient and outpatient settings. Veterans aged 65 and older with PTSD (excluding schizophrenia or bipolar disorder) with or without concomitant dementia who received care from the Veterans Health Administration between 2003 and 2010 were identified using International Classification of Diseases, Ninth Revision, codes (N = 93,068; 11.1% with dementia). Trends in SGA prescribing and odds of being prescribed an SGA were determined using a multivariable logistic regression model adjusted for clinical, sociodemographic, and geographic covariates. Between 2004 and 2009, SGA prescribing declined annually from 7.0% to 5.1% of elderly veterans with PTSD without dementia and 13.2% to 8.9% in those with dementia; findings over time consistently indicated that veterans with PTSD and dementia had at least twice the odds of being prescribed an SGA as those without PTSD (odds ratios 2.03 (95% confidence interval (CI) = 1.82-2.26) to 2.33 (95% CI = 2.10-2.58). Although the prescribing of SGAs to elderly veterans with PTSD has decreased, prescribing an SGA to those with dementia remained consistently higher than for those with PTSD alone and is problematic given the high prevalence of medical comorbidities in this aging population coupled with the lack of compelling evidence for effectiveness of SGAs in individuals with dementia. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  2. Flavonoids from Inula britannica L. inhibit injury-induced neointimal formation by suppressing oxidative-stress generation.

    Science.gov (United States)

    Zhang, Hong-Bing; Wen, Jin-Kun; Wang, Yan-Yan; Zheng, Bin; Han, Mei

    2009-10-29

    We aimed to investigate whether and how the total flavonoid extracts (TFE) from Inula britannica L. block neointimal hyperplasia induced by balloon injury in rats. Rats were administered orally TFE doses of 12.5, 25 and 50 mg/kg/d by gastric gavage from 3 days before balloon injury to 14 days after the injury. The ratio of intima (I) to media (M) thickness (I/M) in carotid arteries was examined by morphological analyses. The MDA content and SOD activity in plasma were measured. The O(2)(-) production in vascular tissues was detected in situ. The expression of p47(phox) in carotid arteries was analyzed by Western blot analysis and immunohistochemistry. The rats treated with TFE 50 mg/kg/d showed a reduction in neointimal hyperplasia, and the ratio of I/M of balloon injured-carotid arteries was significantly reduced by over 70% after TFE treatment, compared with the injured group. The inhibitory effect of TFE on neointimal hyperplasia was almost consistent with that of atorvastatin, a positive control. The plasma SOD activity was obviously increased by TFE treatment (P<0.01), while plasma MDA production was markedly decreased by TFE treatment (P<0.05). On day 14 after balloon injury, the carotid arteries showed an increase in O(2)(-) production that was most evident in the neointimal and medial layer of the vessel. Thus, TFE significantly inhibited injury-induced O(2)(-) production and p47(phox) expression in carotid arteries. Our results suggest that TFE inhibit the neointimal hyperplasia after balloon injury, at least partly, by suppressing oxidative-stress generation.

  3. High temperature tensile properties of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  4. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  5. Effect of feeding graded doses of citrinin on apoptosis and oxidative stress in male Wistar rats through the F1 generation.

    Science.gov (United States)

    Singh, Nittin Dev; Sharma, Anil Kumar; Dwivedi, Prabhaker; Leishangthem, Geeta Devi; Rahman, Shafiqur; Reddy, Jamuna; Kumar, Manoj

    2016-03-01

    The objective of the present study was to study the effect of graded doses of citrinin (CIT) on apoptosis and oxidative stress in male Wistar rats till F1 generation. The animals were divided into four groups comprising 25 males and 25 females each, that is, group I: 1 ppm CIT; group II: 3 ppm CIT; group III: 5 ppm CIT; and group IV was kept as a control. The male and female animals of all the groups were kept separately and were fed basal rations containing the above-mentioned concentrations of CIT for 10 weeks. After 10 weeks, male and female animals of respective groups were kept for mating (one male/two females). After getting 10 pregnant females, the males were killed. These 10 pregnant females were allowed to give birth to young ones (F1 generation) naturally which were fed CIT in the above-mentioned doses till the age of 6 weeks and then were killed. Apoptosis was analysed in kidneys, liver and testes by DNA ladder pattern, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labelling assay and Bcl-2/Bax ratio. Besides, tissue oxidative stress was also analysed. It was concluded in the present study that CIT induces its toxic effects till F1 generation, and apoptosis and oxidative stress both play a very important role in toxicity. The effect of CIT was observed in a dose-dependent manner. However, in kidneys, both the mechanisms (apoptosis and oxidative stress) play their role in inflicting renal damage, while in liver only reactive oxygen species play a major role. Finally, the CIT toxicity did not lead to apoptosis and oxidative stress in male gonads till F1 generation. © The Author(s) 2013.

  6. In-situ electron microscopy studies on the tensile deformation mechanisms in aluminium 5083 alloy

    CSIR Research Space (South Africa)

    Motsi, G

    2014-10-01

    Full Text Available In this study tensile deformation mechanisms of aluminium alloy 5083 were investigated under observations made from SEM equipped with a tensile stage. Observations during tensile testing revealed a sequence of surface deformation events...

  7. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    Science.gov (United States)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-09-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  8. Assessment of the Local Residual Stresses of 7050-T7452 Aluminum Alloy in Microzones by the Instrumented Indentation with the Berkovich Indenter

    Science.gov (United States)

    He, M.; Huang, C. H.; Wang, X. X.; Yang, F.; Zhang, N.; Li, F. G.

    2017-10-01

    The local residual stresses in microzones are investigated by the instrumented indentation method with the Berkovich indenter. The parameters required for determination of residual stresses are obtained from indentation load-penetration depth curves constructed during instrumented indentation tests on flat square 7050-T7452 aluminum alloy specimens with a central hole containing the compressive residual stresses generated by the cold extrusion process. The force balance system with account of the tensile and compressive residual stresses is used to explain the phenomenon of different contact areas produced by the same indentation load. The effect of strain-hardening exponent on the residual stress is tuned-off by application of the representative stress σ_{0.033} in the average contact pressure assessment using the Π theorem, while the yield stress value is obtained from the constitutive function. Finally, the residual stresses are calculated according to the proposed equations of the force balance system, and their feasibility is corroborated by the XRD measurements.

  9. Verification of yield functions by biaxial tensile tests with rotated principal axes

    Science.gov (United States)

    Ageba, Ryo; Ishiwtari, Akinobu; Hiramoto, Jiro

    2017-10-01

    A yield function is a critical factor contributing to the accuracy of FEM simulation of steel sheet forming. Yld2000-2d by Barlat is an anisotropic yield function for shell elements. Uniaxial and biaxial tensile test are required to identify the parameters of the Yld2000-2d function. In tests, the principal axes of stresses are normally either parallel or orthogonal to the rolling direction. However, the principal axes of stresses of the material are randomly oriented in actual press forming. Therefore the actual material behavior may not be correctly expressed by a yield function identified from tests always conducted with the same principal axes directions. In this study, the accuracy of the anisotropic yield function is verified under biaxial stress with different principal axes in tests using specimens with rotated principal axes. The results confirm that the accuracy of Yld2000-2d is adequate and the identifying tests are reasonable.

  10. Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading

    Science.gov (United States)

    Chu, J.-M.; Claus, B.; Chen, W.

    2017-12-01

    Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.

  11. Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading

    Science.gov (United States)

    Chu, J.-M.; Claus, B.; Chen, W.

    2017-09-01

    Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.

  12. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    Science.gov (United States)

    Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo

    2017-10-01

    A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  13. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-10-01

    Full Text Available A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  14. The effectiveness of combined gripping method in tensile testing of UHMWPE single yarn

    Science.gov (United States)

    Wang, H. X.; Hazell, P. J.; Shankar, K.; Morozov, E. V.; Escobedo, J. P.

    2015-07-01

    This paper presents the experimental study on the effectiveness of combined gripping method employed in the tensile testing of UHMWPE (Dyneema® SK75) single yarn. Seven different solutions including epoxy, acrylic, and ethyl cyanoacrylate adhesives were tested under quasi-static loadings in order to determine the most effective adhesive for bonding UHMWPE single yarn to aluminium sheets. The ethyl cyanoacrylate adhesive combined with polyolefin surface primer was found to be the best choice which could prevent yarn slippage and ensure the failure of yarn occurs in the gauge section. The single yarns were then tested at three strain rates of 3.3×10-5, 3.3×10-3, and 0.33 s-1. The tensile strength, maximum strain, and Young's modulus were determined from the measured stress-strain curves and compared with the values from literature; the results showed these tensile properties of single yarn depend on strain rate over the range tested.

  15. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    Science.gov (United States)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2018-01-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  16. Tensile characterisation of the aorta across quasi-static to blast loading strain rates

    Science.gov (United States)

    Magnus, Danyal; Proud, William; Haller, Antoine; Jouffroy, Apolline

    2017-06-01

    The dynamic tensile failure mechanisms of the aorta during Traumatic Aortic Injury (TAI) are poorly understood. In automotive incidents, where the aorta may be under strains of the order of 100/s, TAI is the second largest cause of mortality. In these studies, the proximal descending aorta is the most common site where rupture is observed. In particular, the transverse direction is most commonly affected due to the circumferential orientation of elastin, and hence the literature generally concentrates upon axial samples. This project extends these dynamic studies to the blast loading regime where strain-rates are of the order of 1000/s. A campaign of uniaxial tensile experiments are conducted at quasi-static, intermediate (drop-weight) and high (tensile Split-Hopkinson Pressure Bar) strain rates. In each case, murine and porcine aorta models are considered and the extent of damage assessed post-loading using histology. Experimental data will be compared against current viscoelastic models of the aorta under axial stress. Their applicability across strain rates will be discussed. Using a multi-disciplinary approach, the conditions applied to the samples replicate in vivo conditions, employing a blood simulant-filled tubular specimen surrounded by a physiological solution.

  17. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    Science.gov (United States)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2017-09-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m , the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  18. Research on differences and correlation between tensile, compression and flexural moduli of cement stabilized macadam

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-07-01

    Full Text Available In order to reveal the differences and conversion relations between the tensile, compressive and flexural moduli of cement stabilized macadam, in this paper, we develop a new test method for measuring three moduli simultaneously. By using the materials testing system, we test three moduli of the cement stabilized macadam under different loading rates, propose a flexural modulus calculation formula which considers the shearing effect, reveal the change rules of the tensile, compression and flexural moduli with the loading rate and establish the conversion relationships between the three moduli. The results indicate that: three moduli become larger with the increase of the loading rate, showing a power function pattern; with the shear effect considered, the flexural modulus is increased by 47% approximately over that in the current test method; the tensile and compression moduli of cement stabilized macadam are significantly different. Therefore, if only the compression modulus is used as the structural design parameter of asphalt pavement, there will be a great deviation in the analysis of the load response. In order to achieve scientific design and calculation, the appropriate design parameters should be chosen based on the actual stress state at each point inside the pavement structure.

  19. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, K.; Ioka, I.; Jitsukawa, S.; Hamada, A.; Hishinuma, A. [and others

    1996-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400{degrees}C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small for not only base metal specimens but also for the weld joint and the weld metal specimens.

  20. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase.

    NARCIS (Netherlands)

    Arisz, S.A.; van Wijk, R.; Roels, W.; Zhu, J.K.; Haring, M.A.; Munnik, T.

    2013-01-01

    Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using (32)P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid (32)P-PtdOH

  1. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  2. Infliximab treatment reduces tensile strength in intestinal anastomosis

    DEFF Research Database (Denmark)

    Jensen, Jonas Sanberg; Petersen, Nacie Bello; Biagini, Matteo

    2015-01-01

    :1) to receive either repeated IFX treatment or placebo. On day 15, three separate end-to-end anastomoses were performed on the jejunum. On postoperative day 5, tensile strength and bursting pressure for the anastomoses were tested and histologic changes examined. RESULTS: We found a significantly reduced...... tensile strength in the IFX group (1.94 +/- 0.44 N) compared with the placebo group (3.33 +/- 0.39 N), (P tensile strength and serum values of IFX (coefficient = -0.63; P = 0.003) as well...... as number of sutures in the tested anastomosis (coefficient = 0.51; P = 0.024). The general histologic score was significantly higher in the placebo group (5.00 +/- 1.26 versus 3.31 +/- 1.65, P = 0.03). CONCLUSIONS: Repeated high-dose IFX treatment reduces tensile strength significantly in rabbits...

  3. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    Science.gov (United States)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  4. Generator. Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossmann, H.P.; Knoedler, R.

    1992-03-12

    The invention refers to a thermo-electric generator, which contains sodium as the means of heat transport. The sodium moves from the space of higher temperature through a space into the space of lower temperature. One can do without a pump for transporting the sodium back from the space of lower temperature to the space of higher temperature, as the thermo-electric generator can rotate around an axis. It is therefore possible to interchange the position of the two spaces relative to the heat source.

  5. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis.

    Science.gov (United States)

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-08-01

    Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties.

  6. Tensile behaviour of radiata pine with different moisture contents at elevated temperatures

    DEFF Research Database (Denmark)

    Pearson, Hamish; Gabbitas, Brian; Ormarsson, Sigurdur

    2012-01-01

    that moisture and temperature can play a significant role in reducing stress during drying, regardless of the drying time. Properties of wood, such as tensile elastic information at elevated temperatures, are important for mechanical design, distortion modelling and understanding the fundamental behaviour...... into a mastercurve based on temperature-moisture equivalence through a modified form of the Williams, Landel, and Ferry equation for amorphous polymers. This result is consistent with the view that wood is visco-plastic around the glass transition zone of the ligno-hemicellulosic matrix. It is demonstrated...... of wood in general....

  7. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, O.L. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Allison, P.G., E-mail: pallison@eng.ua.edu [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Whittington, W.R.; Francis, D.K. [Department of Mechanical Engineering, Mississippi State University, Starkville, MS 35759 (United States); Rivera, O.G.; Chou, K.; Gong, X. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Butler, T.M. [Department of Metallurgical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Burroughs, J.F. [Geotechnical & Structures Laboratory, US Army ERDC, Vicksburg, MS 39180 (United States)

    2015-08-12

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase.

  8. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    Science.gov (United States)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  9. Ply Tensile Properties of Banana Stem and Banana Bunch Fibres ...

    African Journals Online (AJOL)

    Natural rubber composite lamina reinforced with BSF which were treated with a mixture of NaOH and Na2SO3 had a superior tensile strength of 4.0 MPa and Young's modulus of 147.34MPa over the untreated BSF with tensile strength and Young's Modulus of 3.7MPa and 84.30MPa respectively. Both the treated and ...

  10. Multifractal Approaches of the Ring Tensile Rupture Patterns of Dried Laver (Porphyra) as Affected by the Relative Humidity.

    Science.gov (United States)

    Jung, Hwabin; Yoon, Won Byong

    2017-11-07

    The effect of water activity (aw ) or the relative humidity (RH) on the tensile rupture properties of dried laver (DL) associated with structures formed with phycocolloids was investigated. The morphological characteristics of tensile ruptured DL samples at various relative humidities were evaluated by multifractal analysis. The RH of the microclimate was controlled from 10% to 90% at 25 °C using supersaturated salt solutions. The sorption isotherm of DL was experimentally obtained and quantitatively analyzed using mathematical models. The monolayer moisture contents from the Guggenheim-Anderson-de Boer (GAB) model was 5.92% (w.b.). An increase in the RH resulted in increasing ring tensile stress and maintaining constant ring tensile strain up to 58% to 75% RH, whereas the ring tensile stress and the ring tensile strain rapidly decreased and increased, respectively, when the RH was higher than 75%. The general fractal dimensions and the multifractal spectra f(α) manifested that the patterns of the lowest and the highest moisture content of dried laver showed high irregularity. The different multifractal parameters obtained from the DL at various RHs well-represented the transient moment of the structures from the monolayer moisture to texture changes associated with RH. Overall, the ring tensile test and the multifractal analysis were useful tools to analyze the change of crispness of DL from its structural characteristics. In addition, the results of this study revealed that the integration and disintegration properties of DL occurred through the networks of phycocolloids at various moisture contents. Texture properties are the most important quality attributes for commercial dried laver (DL) products. The relative humidity influences the texture properties of DL during production, storage, shipping, and consuming. This study well characterized the effect of the relative humidity on the texture properties of DL using the tensile tests under microclimate

  11. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  12. Combined Effects Of Stress Work And Heat Generation On MHD Natural Convection Flow Along A Vertical Flat Plate With Power Law Variation Of Uniform Surface Temperature

    Directory of Open Access Journals (Sweden)

    Mohammad Mahfuzul Islam

    2015-08-01

    Full Text Available Abstract In this paper is presented to study conjugate effects of stress work and heat generation on MHD natural convection flow along a vertical flat plate with power law variation of surface temperature. Stress work and heat generation effects on magneto-hydrodynamics natural convection flows are considered in this investigation. With a goal to attain similarity solutions of the problem the developed equations are made dimensionless by using suitable transformations. The non-dimensional equations are then transformed into non-similar forms by introducing non- similarity transformations. The resulting non-similar equations together with their corresponding boundary conditions based on conduction and convection are solved numerically by using the shooting method of Nachtsheim-swigert iteration technique and finite difference method together with Keller box Scheme. Numerically calculated velocity profiles and temperature profiles skin friction and the rate of heat transfer coefficient are shown on graphs for different values of the parameters entering into the problem.

  13. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with L-tyrosine and L-DOPA

    National Research Council Canada - National Science Library

    Tada, Mika; Kohno, Masahiro; Niwano, Yoshimi

    2014-01-01

    .... Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-D-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening...

  14. ARGOS8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions

    National Research Council Canada - National Science Library

    Shi, Jinrui; Gao, Huirong; Wang, Hongyu; Lafitte, H. Renee; Archibald, Rayeann L; Yang, Meizhu; Hakimi, Salim M; Mo, Hua; Habben, Jeffrey E

    2017-01-01

    Maize ARGOS 8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS 8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions...

  15. Magnetoactive elastomeric composites: Cure, tensile, electrical and ...

    Indian Academy of Sciences (India)

    the ASTM D 412 standard. For measuring the magnetic impedance an indigenous experimental set up was used. The samples were kept between the poles of two d.c. magnets, which can generate the d.c. magnetic field up to. 5 KOe. Electrical conductivity measurements were carried out using LCR Meter in the frequency ...

  16. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked?

    Science.gov (United States)

    Rehman, Kanwal; Akash, Muhammad Sajid Hamid

    2017-11-01

    Oxidative stress has been considered as a major hallmark for the pathogenesis and development of type 2 diabetes mellitus (T2DM), but still it is debatable whether it is a mere aggregation of inflammatory-induced responses or clinical entity that underlies with various pathophysiological factors. In this regard, the latest studies have shown the increasing trends for the involvement of reactive oxygen species (ROS) and oxidative stress in the pathogenesis and development of T2DM. ROS are highly reactive species and almost all cellular components are chemically changed due to the influence of ROS that ultimately results in the production of lipid peroxidation. Lipid peroxidation is a major causative factor for the development of oxidative stress that leads to overt T2DM and its associated micro- and macro-vascular complications. In this article, we have briefly described the role of various causative factors, transcriptional and metabolic pathways which are responsible to increase the production of oxidative stress, a most pivotal factor for the pathogenesis and development of T2DM. Therefore, we conclude that measurement of oxidative stress biomarkers may be one of the optional tool for the diagnosis and prediction of T2DM. Moreover, the key findings described in this article also provides a new conceptual framework for forthcoming investigations on the role of oxidative stress in pathogenesis of T2DM and drug discovery. J. Cell. Biochem. 118: 3577-3585, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. An Analysis of the Stress Induced in the Periodontal Ligament during Extrusion and Rotation Movements: A Finite Element Method Linear Study Part I.

    Science.gov (United States)

    Hemanth, M; Raghuveer, H P; Rani, M S; Hegde, Chathura; Kabbur, Karthik J; Vedavathi, B; Chaithra, D

    2015-09-01

    Orthodontic tooth movement occurs due to various biomechanical changes in the periodontium. Forces within the optimal range yield maximum tooth movement with minimum deleterious effects. Among various types of tooth movements, extrusion and rotational movements are seen to be associated with the least amount of root resorption and have not been studied in detail. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with extrusion and rotational movements using the finite element method FEM. A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with extrusive and rotational movements by a 3D FEM using ANSYS software with linear material properties. It was observed that with the application of extrusive load, the tensile stresses were seen at the apex, whereas the compressive stress was distributed at the cervical margin. With the application of rotational movements, maximum compressive stress was distributed at the apex and cervical third, whereas the tensile stress was distributed on cervical third of the PDL on the lingual surface. For extrusive movements, stress values over the periodontal ligament was within the range of optimal stress value as proposed by Lee, with a given force system by Profitt as optimum forces for orthodontic tooth movement using linear properties. During rotation there are stresses concentrated at the apex, hence due to the concentration of the compressive forces at the apex a clinician must avoid placing heavy stresses during tooth movement.

  18. Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2008-05-01

    It was the aim of the study to analyze by the FE method stresses generated in tooth and restoration by occlusal loading of Class I and Class II restorations of resin composite. On the basis of available information on the influence of the modulus of elasticity, the research hypothesis was that the marginal stresses would decrease with increasing modulus of elasticity of the restoration. A cylindrical tooth was modelled in enamel and dentin and fitted with a Class I or a Class II restoration of resin composite. In one scenario the restoration was bonded to the tooth, in another the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. In the bonded scenario, the maximum stresses in the enamel were located at the occlusal margins (range 7-11 MPa), and in the dentin centrally at the pulpal floor (range 3.4-5.5MPa). The stresses decreased with increasing modulus of elasticity of the resin composite. In the nonbonded scenario, the stresses were higher in the dentin and lower in the enamel than in the bonded cases, and the influence of the modulus of elasticity was less pronounced. The marginal stresses in the restoration were below 6 MPa in the bonded scenario and below 3 MPa in the nonbonded scenario. Occlusal restorations of resin composite should have a high modulus of elasticity in order to reduce the risk of marginal deterioration.

  19. The effect of sheet processing on the microstructure, tensile, and creep behavior of INCONEL alloy 718

    Science.gov (United States)

    Boehlert, C. J.; Dickmann, D. S.; Eisinger, Ny. N. C.

    2006-01-01

    The grain size, grain boundary character distribution (GBCD), creep, and tensile behavior of INCONEL alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer grain size and the corresponding microstructure and mechanical behavior were evaluated. The creep behavior was evaluated in the applied stress (σ a ) range of 300 to 758 MPa and the temperature range of 638 °C to 670 °C. Constant-load tensile creep experiments were used to measure the values of the steady-state creep rate and the consecutive load reduction method was used to determine the values of backstress (σ0). The values for the effective stress exponent and activation energy suggested that the transition between the rate-controlling creep mechanisms was dependent on effective stresses (σ e =σ a σ0) and the transition occurred at σ e ≅ 135 MPa. The 10 to 40 pct CR samples exhibited the greatest 650 °C strength, while IN 718SPF exhibited the greatest room-temperature (RT) tensile strength (>1550 MPa) and ductility (ɛ f >16 pct). After the 954 °C annealing treatment, the 20 pct CR and 30 pct CR microstructures exhibited the most attractive combination of elevated-temperature tensile and creep strength, while the most severely cold-rolled materials exhibited the poorest elevated-temperature properties. After the 1050 °C annealing treatment, the IN 718SPF material exhibited the greatest backstress and best creep resistance. Electron backscattered diffraction was performed to identify the GBCD as a function of CR and annealing. The data indicated that annealing above 1010 °C increased the grain size and resulted in a greater fraction of twin boundaries, which in

  20. On loading velocity oscillations during dynamic tensile testing with flying wheel systems

    Directory of Open Access Journals (Sweden)

    Erice Borja

    2015-01-01

    Full Text Available Flying Wheels (FW provide a space-saving alternative to Split Hopkinson Bar (SHB systems for generating the loading pulse for intermediate and high strain rate material testing. This is particularly attractive in view of performing ductile fracture experiments at intermediate strain rates that require a several milliseconds long loading pulse. More than 50 m long Hopkinson bars are required in that case, whereas the same kinetic energy (for a given loading velocity can be stored in rather compact flying wheels (e.g. diameter of less than 1.5 m. To gain more insight into the loading capabilities of FW tensile testing systems, a simple analytical model is presented to analyze the loading history applied by a FW system. It is found that due to the presence of a puller bar that transmits the tensile load from the rotating wheel to the specimen, the loading velocity applied onto the specimen oscillates between about zero and twice the tangential loading speed applied by the FW. The theoretical and numerical evaluation for a specific 1.1 m diameter FW system revealed that these oscillations occur at a frequency in the kHz range, thereby questioning the approximate engineering assumption of a constant strain rate in FW tensile experiments at strain rates of the order of 100/s.

  1. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  2. Effect of Recycled Rubber Particles and Silica on Tensile and Tear Properties of Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Velu CHANDRAN

    2016-05-01

    Full Text Available Application of scrap rubber and worn out tires in natural rubber compounds has been studied. The scrap rubber can, however, be recycled and compounded with natural rubber and thus can be generated as a rubber composite. In this work, recycled rubber particles (RRP were prepared using pulverization process. Then, RRP was blended with natural rubber and silica compounds, and it was synthesized by two- roll mill and hydraulic press at specified operating conditions. The samples ranging from 0 to 40 phr of RRP loaded with silica were used as constant filler. The mechanical properties and morphological analysis were carried out. The results showed that tensile strength and elongation at break gradually decreased with increasing RRP loading in natural rubber and silica compounds. Tensile modulus went down at 10 phr of RRP and then showed an increasing trend. Hardness increased up to 30 phr of RRP and tear strength increased up to 20 phr of RRP. A comparative study was also carried out with virgin natural rubber vulcanizates. The incorporation of RRP and silica up to 20 phr in natural rubber did not lower the performance of rubber articles. Morphological studies revealed that better filler dispersion, interfacial adhesion, and cross link density could increase the tensile and tear strengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7330

  3. Residual thermal stress simulation in three-dimensional molar crown systems: a finite element analysis.

    Science.gov (United States)

    Bonfante, Estevam A; Rafferty, Brian T; Silva, Nelson R F A; Hanan, Jay C; Rekow, Elizabeth Dianne; Thompson, Van P; Coelho, Paulo G

    2012-10-01

    To simulate coefficient of thermal expansion (CTE)-generated stress fields in monolithic metal and ceramic crowns, and CTE mismatch stresses between metal, alumina, or zirconia cores and veneer layered crowns when cooled from high temperature processing. A 3D computer-aided design model of a mandibular first molar crown was generated. Tooth preparation comprised reduction of proximal walls by 1.5 mm and of occlusal surfaces by 2.0 mm. Crown systems were monolithic (all-porcelain, alumina, metal, or zirconia) or subdivided into a core (metallic, zirconia, or alumina) and a porcelain veneer layer. The model was thermally loaded from 900°C to 25°C. A finite element mesh of three nodes per edge and a first/last node interval ratio of 1 was used, resulting in approximately 60,000 elements for both solids. Regions and values of maximum principal stress at the core and veneer layers were determined through 3D graphs and software output. The metal-porcelain and zirconia-porcelain systems showed compressive fields within the veneer cusp bulk, whereas alumina-porcelain presented tensile fields. At the core/veneer interface, compressive fields were observed for the metal-porcelain system, slightly tensile for the zirconia-porcelain, and higher tensile stress magnitudes for the alumina-porcelain. Increasingly compressive stresses were observed for the metal, alumina, zirconia, and all-porcelain monolithic systems. Variations in residual thermal stress levels were observed between bilayered and single-material systems due to the interaction between crown configuration and material properties. © 2012 by the American College of Prosthodontists.

  4. Accurate anisotropic material modelling using only tensile tests for hot and cold forming

    Science.gov (United States)

    Abspoel, M.; Scholting, M. E.; Lansbergen, M.; Neelis, B. M.

    2017-09-01

    Accurate material data for simulations require a lot of effort. Advanced yield loci require many different kinds of tests and a Forming Limit Curve (FLC) needs a large amount of samples. Many people use simple material models to reduce the effort of testing, however some models are either not accurate enough (i.e. Hill’48), or do not describe new types of materials (i.e. Keeler). Advanced yield loci describe the anisotropic materials behaviour accurately, but are not widely adopted because of the specialized tests, and data post-processing is a hurdle for many. To overcome these issues, correlations between the advanced yield locus points (biaxial, plane strain and shear) and mechanical properties have been investigated. This resulted in accurate prediction of the advanced stress points using only Rm, Ag and r-values in three directions from which a Vegter yield locus can be constructed with low effort. FLC’s can be predicted with the equations of Abspoel & Scholting depending on total elongation A80, r-value and thickness. Both predictive methods are initially developed for steel, aluminium and stainless steel (BCC and FCC materials). The validity of the predicted Vegter yield locus is investigated with simulation and measurements on both hot and cold formed parts and compared with Hill’48. An adapted specimen geometry, to ensure a homogeneous temperature distribution in the Gleeble hot tensile test, was used to measure the mechanical properties needed to predict a hot Vegter yield locus. Since for hot material, testing of stress states other than uniaxial is really challenging, the prediction for the yield locus adds a lot of value. For the hot FLC an A80 sample with a homogeneous temperature distribution is needed which is due to size limitations not possible in the Gleeble tensile tester. Heating the sample in an industrial type furnace and tensile testing it in a dedicated device is a good alternative to determine the necessary parameters for the FLC

  5. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1998-09-01

    A systematic study has been initiated at Argonne National Laboratory to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, the principal effort has focused on the V-4Cr-4Ti alloy of heat identified as BL-71; however other alloys (V-5Cr-5Ti alloy of heats BL-63, and T87, plus V-4Cr-4Ti alloy from General Atomics [GA]) are also being evaluated. Other variables of interest are the effect of initial grain size on the tensile behavior of the alloys. Experiments conducted on specimens of various V-Cr-Ti alloys exposed to pH{sub 2} levels of 0.01 and 3 {times} 10{sup {minus}6} torr showed negligible effect of H{sub 2} on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed to 1.0 torr H{sub 2} pressure. Preliminary data from sequential exposures of the materials to low-pO{sub 2} and several low-pH{sub 2} environments did not reveal an adverse effect on the maximum engineering stress or on uniform and total elongation. Further, tests in H{sub 2} environments on specimens annealed at different temperatures showed that grain-size variation by a factor of {approx}2 had little or no effect on tensile properties.

  6. Tensile Reinforcement of Silk Films by the Addition of Telechelic-Type Polyalanine.

    Science.gov (United States)

    Tsuchiya, Kousuke; Masunaga, Hiroyasu; Numata, Keiji

    2017-03-13

    An appropriate modification technique for silk materials is needed to effectively improve their physical properties for specific applications. A telechelic-type polyalanine (T-polyA) was synthesized by papain-catalyzed polymerization as a novel reinforcing agent for silk materials. A silk fibroin obtained from Bombyx mori was homogeneously doped with T-polyA, and casting a solution of silk fibroin and T-polyA in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) resulted in a robust and transparent film. Tensile deformation studies of the silk composite film containing T-polyA with prestretching revealed that the tensile strength and toughness were enhanced relative to those of a silk-only film. To determine the capability of T-polyA to reinforce the tensile property of silk films, the secondary structure in the silk composite film was characterized by wide-angle X-ray diffraction (WAXD) analysis. Antiparallel β-sheet structures of T-polyA and GAGAGS motifs of silk fibroin formed independently in the prestretched composite film. In addition, measuring the tensile deformation and performing WAXD analysis simultaneously demonstrated that the β-sheet structures of both T-polyA and the silk fibroin were aligned along the stretching direction and that T-polyA had no significant effect on the final morphology of the silk crystal domains. The silk film was toughened by the addition of T-polyA because of the generation of the T-polyA β-sheet in the amorphous region of the composite film. This work provides novel insight into the design and development of tough silk materials with controlled and aligned β-sheet structures.

  7. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.

    Science.gov (United States)

    Podczeck, Fridrun; Drake, Kevin R; Newton, J Michael

    2013-09-15

    In the literature various solutions exist for the calculation of the diametral compression tensile strength of doubly-convex tablets and each approach is based on experimental data obtained from single materials (gypsum, microcrystalline cellulose) only. The solutions are represented by complex equations and further differ for elastic and elasto-plastic behaviour of the compacts. The aim of this work was to develop a general equation that is applicable independently of deformation behaviour and which is based on simple tablet dimensions such as diameter and total tablet thickness only. With the help of 3D-FEM analysis the tensile failure stress of doubly-convex tables with central cylinder to total tablet thickness ratios W/D between 0.06 and 0.50 and face-curvature ratios D/R between 0.25 and 1.85 were evaluated. Both elastic and elasto-plastic deformation behaviour were considered. The results of 80 individual simulations were combined and showed that the tensile failure stress σt of doubly-convex tablets can be calculated from σt=(2P/πDW)(W/T)=2P/πDT with P being the failure load, D the diameter, W the central cylinder thickness, and T the total thickness of the tablet. This equation converts into the standard Brazilian equation (σt=2P/πDW) when W equals T, i.e. is equally valid for flat cylindrical tablets. In practice, the use of this new equation removes the need for complex measurements of tablet dimensions, because it only requires values for diameter and total tablet thickness. It also allows setting of standards for the mechanical strength of doubly-convex tablets. The new equation holds both for elastic and elasto-plastic deformation behaviour of the tablets under load. It is valid for all combinations of W/D-ratios between 0.06 and 0.50 with D/R-ratios between 0.00 and 1.85 except for W/D=0.50 in combination with D/R-ratios of 1.85 and 1.43 and for W/D-ratios of 0.40 and 0.30 in combination with D/R=1.85. FEM-analysis indicated a tendency to

  8. Face Gear Drive With Helical Involute Pinion: Geometry, Generation by a Shaper and a Worm, Avoidance of Singularities and Stress Analysis

    Science.gov (United States)

    Litvin, Faydor L.; Fuentes, Alfonso; Gonzalez-Perez, Ignacio; Piscopo, Alessandro; Ruzziconi, Paolo

    2005-01-01

    A new type of face-gear drive with intersected axes of rotation formed by a helical involute pinion and conjugated face-gear has been investigated. Generation of face-gears by a shaper free of undercutting and pointing has been investigated. A new method of grinding or cutting of face-gears by a worm of special shape has been developed. A computerized design procedure has been developed to avoid undercutting and pointing by a shaper or by a generating worm. Also, a method to determine the limitations of the helix angle magnitude has been developed. The method provides a localization of the bearing contact to reduce the shift of bearing contact caused by misalignment. The analytical method provides a simulation of the meshing and contact of misaligned gear drives. An automatic mesh generation method has been developed and used to conduct a 3D contact stress analysis of several teeth. The theory developed is illustrated with several examples.

  9. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania.

    Science.gov (United States)

    Frey, Benicio N; Valvassori, Samira S; Réus, Gislaine Z; Martins, Márcio R; Petronilho, Fabrícia C; Bardini, Katrine; Dal-Pizzol, Felipe; Kapczinski, Flávio; Quevedo, João

    2006-09-01

    Previous studies have suggested that oxidative stress may play a role in the pathophysiology of bipolar disorder (BD). Moreover, recent studies indicate that lithium and valproate exert neuroprotective effects against oxidative stress. We studied the effects of the mood stabilizers lithium and valproate on amphetamine-induced oxidative stress in an animal model of mania. In the first model (reversal treatment), adult male Wistar rats received d-amphetamine or saline for 14 days, and between the 8th and 14th days, they were treated with lithium, valproate or saline. In the second model (prevention treatment), rats were pretreated with lithium, valproate or saline, and between the 8th and 14th days, they received d-amphetamine or saline. We assessed locomotor activity with the open-field task. We measured thiobarbituric acid reactive substances (TBARS) and protein carbonyl formation, as parameters of oxidative stress, and superoxide dismutase (SOD) and catalase (CAT), the major antioxidant enzymes, in the prefrontal cortex and hippocampus. Lithium and valproate reversed (reversal treatment model) and prevented (prevention treatment model) amphetamine-induced hyperactivity and reversed and prevented amphetamine-induced TBARS formation in both experiments. However, the co-administration of lithium or valproate with amphetamine increased lipid peroxidation, depending on the brain region and treatment regimen. No changes in protein carbonyl formation were observed. SOD activity varied with different treatment regimens, and CAT activity increased when the index of lipid peroxidation was more robust. Our findings suggest that lithium and valproate exert protective effects against amphetamine-induced oxidative stress in vivo, further supporting the hypothesis that oxidative stress may be associated with the pathophysiology of BD.

  10. Analysis of tensile bond strengths using Weibull statistics.

    Science.gov (United States)

    Burrow, Michael F; Thomas, David; Swain, Mike V; Tyas, Martin J

    2004-09-01

    Tensile strength tests of restorative resins bonded to dentin, and the resultant strengths of interfaces between the two, exhibit wide variability. Many variables can affect test results, including specimen preparation and storage, test rig design and experimental technique. However, the more fundamental source of variability, that associated with the brittle nature of the materials, has received little attention. This paper analyzes results from micro-tensile tests on unfilled resins and adhesive bonds between restorative resin composite and dentin in terms of reliability using the Weibull probability of failure method. Results for the tensile strengths of Scotchbond Multipurpose Adhesive (3M) and Clearfil LB Bond (Kuraray) bonding resins showed Weibull moduli (m) of 6.17 (95% confidence interval, 5.25-7.19) and 5.01 (95% confidence interval, 4.23-5.8). Analysis of results for micro-tensile tests on bond strengths to dentin gave moduli between 1.81 (Clearfil Liner Bond 2V) and 4.99 (Gluma One Bond, Kulzer). Material systems with m in this range do not have a well-defined strength. The Weibull approach also enables the size dependence of the strength to be estimated. An example where the bonding area was changed from 3.1 to 1.1 mm diameter is shown. Weibull analysis provides a method for determining the reliability of strength measurements in the analysis of data from bond strength and tensile tests on dental restorative materials.

  11. Capturing tensile size-dependency in polymer nanofiber elasticity.

    Science.gov (United States)

    Yuan, Bo; Wang, Jun; Han, Ray P S

    2015-02-01

    As the name implies, tensile size-dependency refers to the size-dependent response under uniaxial tension. It defers markedly from bending size-dependency in terms of onset and magnitude of the size-dependent response; the former begins earlier but rises to a smaller value than the latter. Experimentally, tensile size-dependent behavior is much harder to capture than its bending counterpart. This is also true in the computational effort; bending size-dependency models are more prevalent and well-developed. Indeed, many have questioned the existence of tensile size-dependency. However, recent experiments seem to support the existence of this phenomenon. Current strain gradient elasticity theories can accurately predict bending size-dependency but are unable to track tensile size-dependency. To rectify this deficiency a higher-order strain gradient elasticity model is constructed by including the second gradient of the strain into the deformation energy. Tensile experiments involving 10 wt% polycaprolactone nanofibers are performed to calibrate and verify our model. The results reveal that for the selected nanofibers, their size-dependency begins when their diameters reduce to 600 nm and below. Further, their characteristic length-scale parameter is found to be 1095.8 nm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Device Design and Test of Fatigue Behaviour of Expansion Anchor Subjected to Tensile Loads

    Directory of Open Access Journals (Sweden)

    Zhang Jinfeng

    2016-01-01

    Full Text Available In order to study on the fatigue behaviour of expansion anchor (M16, grade 8.8 for overhead contact system in electrification railways, a set of safe, practical loading device is designed and a fatigue test campaign was carried out at structural laboratory of China Academy of Building Research on expansion anchor embedded in concrete block. The mobile frame of the loading device was designed well by finite-element simulation. According to some fatigue performance test of expansion anchor with different size and form, the device have been assessed experimentally its dependability. The results were found that no fatigue damage phenomenon occurred in all specimens after 2×106 cycles tensile fatigue test in this specific series. It shows that in the condition of medium level or slightly lower maximum stress limit and nominal stress range, expansion bolt has good fatigue resistance. The biggest relative displacement and the residual relative displacement after test (Δδ = δ2-δ1 was also strongly lower than the symbol of the fatigue test failure index of this specific series (0.5mm in the high cycle fatigue regime. The ultimate tension failures mode after fatigue tests in all tested samples take place in the concrete anchorage zone. The reduction range of the ultimate tensile strength properties of the anchorage system was not obvious, and the concrete was seen to be the weakest link of the system.

  13. Tensile behavior of Cu50Zr50 metallic glass nanowire with a B2 crystalline precipitate

    Science.gov (United States)

    Sepulveda-Macias, Matias; Amigo, Nicolas; Gutierrez, Gonzalo

    2018-02-01

    A molecular dynamics study of the effect of a single B2-CuZr precipitate on the mechanical properties of Cu50Zr50 metallic glass nanowires is presented. Four different samples are considered: three with a 2, 4 and 6 nm radii precipitate and a precipitate-free sample. These systems are submitted to uniaxial tensile test up to 25% of strain. The interface region between the precipitate and the glass matrix has high local atomic shear strain, activating shear transformation zones, which concentrates in the neighborhood of the precipitate. The plastic regime is dominated by necking, and no localized shear band is observed for the samples with a 4 and 6 nm radii precipitate. In addition, the yield stress decreases as the size of the precipitate increases. Regarding the precipitate structure, no martensitic phase transformation is observed, since neither the shear band hit the precipitate nor the stress provided by the tensile test is enough to initiate the transformation. It is concluded that, in contrast to the case when multiple precipitates are present in the sample, a single precipitate concentrates the shear strain around its surface, eventually causing the failure of the nanowire.

  14. Application of ANFIS for analytical modeling of tensile strength of functionally graded steels

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2012-06-01

    Full Text Available In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems (ANFIS. To build the model for graded ferritic and austenitic steels, training, testing and validation using respectively 174 and 120 experimental data were conducted. According to the input parameters, in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation which correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels configuration was found through a numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.

  15. Effects of Multi-Generational Stress Exposure and Offspring Environment on the Expression and Persistence of Transgenerational Effects in Arabidopsis thaliana.

    Science.gov (United States)

    Groot, Maartje P; Kooke, Rik; Knoben, Nieke; Vergeer, Philippine; Keurentjes, Joost J B; Ouborg, N Joop; Verhoeven, Koen J F

    2016-01-01

    Plant phenotypes can be affected by environments experienced by their parents. Parental environmental effects are reported for the first offspring generation and some studies showed persisting environmental effects in second and further offspring generations. However, the expression of these transgenerational effects proved context-dependent and their reproducibility can be low. Here we study the context-dependency of transgenerational effects by evaluating parental and transgenerational effects under a range of parental induction and offspring evaluation conditions. We systematically evaluated two factors that can influence the expression of transgenerational effects: single- versus multiple-generation exposure and offspring environment. For this purpose, we exposed a single homozygous Arabidopsis thaliana Col-0 line to salt stress for up to three generations and evaluated offspring performance under control and salt conditions in a climate chamber and in a natural environment. Parental as well as transgenerational effects were observed in almost all traits and all environments and traced back as far as great-grandparental environments. The length of exposure exerted strong effects; multiple-generation exposure often reduced the expression of the parental effect compared to single-generation exposure. Furthermore, the expression of transgenerational effects strongly depended on offspring environment for rosette diameter and flowering time, with opposite effects observed in field and greenhouse evaluation environments. Our results provide important new insights into the occurrence of transgenerational effects and contribute to a better understanding of the context-dependency of these effects.

  16. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyejin; Cho, Chongdu [Inha University, Incheon (Korea, Republic of)

    2017-08-15

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  17. Comparison and evaluation of stresses generated by rapid maxillary expansion and the implant-supported rapid maxillary expansion on the craniofacial structures using finite element method of stress analysis.

    Science.gov (United States)

    Jain, Varun; Shyagali, Tarulatha R; Kambalyal, Prabhuraj; Rajpara, Yagnesh; Doshi, Jigar

    2017-12-01

    The study aimed to evaluate and compare the stress distribution and 3-dimensional displacements along the craniofacial sutures in between the Rapid maxillary Expansion (RME) and Implant supported RME (I-RME). METHODS: Finite element model of the skull and the implants were created using ANSYS software. The finite element model thus built composed of 537692 elements and 115694 nodes in RME model & 543078 elements and 117948 nodes with implants model. The forces were applied on the palatal surface of the posterior teeth to cause 5mm of transverse displacement on either side of the palatal halves, making it a total of 10mm. The stresses and the displacement values were obtained and interpreted. Varying pattern of stress and the displacements with both positive and negative values were seen. The maximum displacement was seen in the case of plain RME model and that too at Pterygomaxillary suture and Mid-palatal suture in descending order. In the case of I-RME maximum displacement was seen at Zygomaticomaxillary suture followed by Pterygomaxillary suture. The displacements produced in all the three planes of space for the plain RME model were greater in comparison to the Implant Supported RME model. And the stresses remained high for all the sutures in case of an I-RME. There is a definite difference in the stress and the displacement pattern produced by RME and I-RME model and each can be used according to the need of the patient. The stresses generated in case of conventional RME were considerably less than that of the I-RME for all the sutures.

  18. Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity

    Science.gov (United States)

    Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut

    2015-01-01

    Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235

  19. Influence of resin cement polymerization shrinkage on stresses in porcelain crowns.

    Science.gov (United States)

    May, Liliana G; Kelly, J Robert

    2013-10-01

    The aim of this study was to analyze the influence of polymerization shrinkage of the cement layer on stresses within feldspathic ceramic crowns, using experimentally validated FEA models for (1) increasing occlusal cement thickness; and, (2) bonded versus non-bonded ceramic-cement interfaces. 2-D axial symmetric models simulated stylized feldspathic crowns (1.5mm occlusal thickness) cemented with resin-cement layers of 50-500μm on dentin preparations, being loaded (500N) or not. Ceramic-cement interface was either bonded or not. Cement was bonded to the dentin in all models. Maximum axial shrinkage of 0%, 1%, 2%, 3%, 4% and 4.65% were simulated. The first principal stresses developing in the cementation surface at the center and at the occluso-axial line-angle of the crown were registered. Polymerization shrinkage of the cement increased tensile stresses in the ceramic, especially in loaded non-bonded crowns for thicker cement layers. Stresses in loaded non-bonded crowns increased as much as 87% when cement shrinkage increased from 0% to 4.65% (100-187MPa), for a 500μm-thick cement. Increasing polymerization shrinkage strain raised the tensile stresses, especially at the internal occlusal-axial line-angle, for bonded crowns. Changes in the polymerization shrinkage strain (from 0% to 4.65%) have little effect on the tensile stresses generated at the cementation surface of the ceramic crowns, when the occlusal cement thickness is thin (approx. 50μm for bonded crowns). However, as the cement becomes thicker stresses within the ceramic become significant. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Prenatal Stress Exposure Generates Higher Early Survival and Smaller Size without Impacting Developmental Rate in a Pacific Salmon.

    Science.gov (United States)

    Capelle, Pauline M; Semeniuk, Christina A D; Sopinka, Natalie M; Heath, John W; Love, Oliver P

    2016-12-01

    Prenatal exposure to elevated glucocorticoids can act as a signal of environmental stress, resulting in modifications to offspring phenotype. While "negative" phenotypic effects (i.e., smaller size, slower growth) are often reported, recent research coupling phenotype with other fitness-related traits has suggested positive impacts of prenatal stress. Using captive Chinook salmon (Oncorhynchus tshawytscha), we treated eggs with biologically relevant cortisol levels-low (300 ng mL(-1) ), high (1,000 ng mL(-1) ), or control (0 ng mL(-1) )-to examine the early-life impacts of maternally transferred stress hormones on offspring. Specifically, we measured early survival, rate of development, and multiple measures of morphology. Low and high cortisol dosing of eggs resulted in significantly higher survival compared to controls (37% and 24% higher, respectively). Fish reared from high dose eggs were structurally smaller compared to control fish, but despite this variation in structural size, exposure to elevated cortisol did not impact developmental rate. These results demonstrate that elevations in egg cortisol can positively influence offspring fitness through an increase in early survival while also altering phenotype at a critical life-history stage. Overall, these results suggest that exposure to prenatal stress may not always produce apparently negative impacts on offspring fitness and further proposes that complex phenotypic responses should be examined in relevant environmental conditions. © 2017 Wiley Periodicals, Inc.

  1. Methacryloxylethyl Cetyl Ammonium Chloride Induces DNA Damage and Apoptosis in Human Dental Pulp Cells via Generation of Oxidative Stress.

    Science.gov (United States)

    Jiao, Yang; Ma, Sai; Wang, Yirong; Li, Jing; Shan, Lequn; Sun, Jinlong; Chen, Jihua

    2016-01-01

    The polymerizable antibacterial monomer methacryloxylethyl cetyl ammonium chloride (DMAE-CB) has provided an effective strategy to combat dental caries. However, the application of such material raises the question about the biological safety and the question remains open. The mechanism of this toxic action, however, is not yet clearly understood. The present study aims at providing novel insight into the possible causal link between cellular oxidative stress and DNA damage, as well as apoptosis in human dental pulp cells exposed to DMAE-CB. The enhanced formation of reactive oxygen species and depletion of glutathione, as well as differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase in DMAE-CB-treated cells indicated oxidative stress. By using substances that can alter GSH synthesis, we found that GSH was the key component in the regulation of cell response towards oxidative stress induced by DMAE-CB. The increase in oxidative stress-sensitive 8-Oxo-2'-deoxyguanosine (8-OHdG) content, formation of γ-H2AX and cell cycle G1 phase arrest indicated that DNA damage occurred as a result of the interaction between DNA base and ROS beyond the capacities of antioxidant mechanisms in cells exposed to DMAE-CB. Such oxidative DNA damage thus triggers the activation of ataxia telangiectasia-mutated (ATM) signaling, the intrinsic apoptotic pathway, and destruction of mitochondrial morphology and function.

  2. The influence of fibre orientation on the post-cracking tensile behaviour of steel fibre reinforced self-compacting concrete

    Directory of Open Access Journals (Sweden)

    A. Abrishambaf

    2015-01-01

    Full Text Available Adding fibres to concrete provides several advantages, especially in terms of controlling the crack opening width and propagation after the cracking onset. However, distribution and orientation of the fibres toward the active crack plane are significantly important in order to maximize its benefits. Therefore, in this study, the effect of the fibre distribution and orientation on the post-cracking tensile behaviour of the steel fibre reinforced self-compacting concrete (SFRSCC specimens is investigated. For this purpose, several cores were extracted from distinct locations of a panel and were subjected to indirect (splitting and direct tensile tests. The local stress-crack opening relationship (σ-w was obtained by modelling the splitting tensile test under the finite element framework and by performing an Inverse Analysis (IA procedure. Afterwards the σ-w law obtained from IA is then compared with the one ascertained directly from the uniaxial tensile tests. Finally, the fibre distribution/orientation parameters were determined adopting an image analysis technique.

  3. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-12-01

    Full Text Available The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been found to play an important role for this HSSS due to load transfer and strain partitioning between two phases, and a higher strain rate could cause even higher strain partitioning in the softer austenite grains, delaying the deformation instability. Deformation twins are observed in the austenite grains at all strain rates to facilitate the uniform tensile deformation. The B2 phase (FeAl intermetallic compound is less deformable at higher strain rates, resulting in easier brittle fracture in B2 particles, smaller dimple size and a higher density of phase interfaces in final fracture surfaces. Thus, more energy need be consumed during the final fracture for the experiments conducted at higher strain rates, resulting in better tensile toughness.

  4. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    Directory of Open Access Journals (Sweden)

    Md. Arman Chowdhury

    2016-01-01

    Full Text Available Plain concrete and steel fiber reinforced concrete (SFRC cylinder specimens are modeled in the finite element (FE platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A total of 8 numbers of cylinder specimens are cast and tested in 1000 kN capacity digital universal testing machine (UTM and also modeled in ANSYS. The enhancement of compressive strength and splitting tensile strength of SFRC specimen is achieved up to 17% and 146%, respectively, compared to respective plain concrete specimen. Results gathered from finite element analyses are validated with the experimental test results by identifying as well as optimizing the controlling parameters to make FE models. Modulus of elasticity, Poisson’s ratio, stress-strain behavior, tensile strength, density, and shear transfer coefficients for open and closed cracks are found to be the main governing parameters for successful model of plain concrete and SFRC in FE platform. After proper evaluation and logical optimization of these parameters by extensive analyses, finite element (FE models showed a good correlation with the experimental results.

  5. Handbook for tensile properties of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Chung, M. K.; Han, C. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    Database system of nuclear materials has not been developed and the physical and mechanical properties of materials used in nuclear power plant are not summarized systematically in Korea. Although Korea designs nuclear power plant, many materials used in nuclear power plant are imported because we do not have database system of nuclear material yet and it was hard to select a proper material for the structural materials of nuclear power plant. To develop database system of nuclear materials, data of mechanical, corrosion, irradiation properties are needed. Of theses properties, tensile properties are tested and summarized in this report. Tensile properties of stainless steel used in nuclear reactor internal were investigated. Data between Korea Atomic Energy Research Institute and foreign laboratory were compared to determine the precision of the result. To develope database system, materials, chemical composition, heat treatment, manufacturing process, and grain size were classified. Tensile properties were tested and summarized to use input data of database system. 9 figs., 9 tabs. (Author)

  6. Tensile strength of glulam laminations of Nordic spruce

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Bräuner, Lise; Boström, Lars

    1999-01-01

    Design of glulam according to the European timber code Eurocode 5 is based on the standard document prEN1194 , according to which glulam beam strength is to be established either by full scale testing or by calculation. The calculation must be based on a knowledge of lamination tensile strength....... This knowledge may be obtained either by adopting a general rule that the characteristic tensile strength is sixty percent of the characteristic bending strength, or by performing tensile tests on an adequate number of laminations representative of the whole population. The present paper presents...... an investigation aimed at establishing such an adequate experimental background for the assignment of strength classes for glulam made of visually strength graded laminations from Nordic sawmills. The investigation includes more than 1800 boards (laminations) of Norway spruce (Picea abies) sampled from eight...

  7. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    Science.gov (United States)

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  8. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    Science.gov (United States)

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  9. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  10. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2014-01-01

    Timber is normally dried by kiln drying, in the course of which moisture-induced stresses and fractures can occur. Cracks occur primarily in the radial direction due to tangential tensile strength (TSt) that exceeds the strength of the material. The present article reports on experiments and nume...

  11. Atomistic Insights into the Effects of Residual Stress during Nanoindentation

    Directory of Open Access Journals (Sweden)

    Kun Sun

    2017-08-01

    Full Text Available The influence of in-plane residual stress on Hertzian nanoindentation for single-crystal copper thin film is investigated using molecular dynamics simulations (MD. It is found that: (i the yield strength of incipient plasticity increases with compressive residual stress, but decreases with tensile residual stress; (ii the hardness decreases with tensile residual stress, and increases with compressive residual stress, but abruptly drops down at a higher compressive residual stress level, because of the deterioration of the surface; (iii the indentation modulus reduces linearly with decreasing compressive residual stress (and with increasing tensile residual stress. It can be concluded from the MD simulations that the residual stress not only strongly influences the dislocation evolution of the plastic deformation process, but also significantly affects the size of the plastic zone.

  12. Mode of Strong Earthquake Recurrence In Central Ionian Islands (greece). Possible Triggering Due To Coulomb Stress Changes Generated By The Occurrence of Previous Strong Shocks

    Science.gov (United States)

    Papadimitriou, E.

    The spatial-temporal distribution of shallow strong (M>6.3) earthquakes occurring in the area of central Ionian Islands is analyzed. These shocks generated on two adja- cent fault segments with different strike, but both associated with strike-slip faulting, constituting the boundary between continental collision to the north and oceanic sub- duction to the south. Seismic activity is confined in short time intervals alternating by much longer relatively quiescent periods. Each active period consists of a relatively large event or series (two to four) of events occurring closely both in space and time. This alteration was observed to happen four times since 1867, from when complete data exist for the study area. Since the phenomenon is not strictly periodic and during each active period multiple events occurred, it is attempted to interpret the seismic behavior on the basis of possible triggering. It is then investigated how changes in Coulomb Failure Function (DCFF) associated with one or more earthquakes may trig- ger subsequent events. Both the coseismic slip due to the generation of the strong earthquakes and stress build up associated with the two major fault segments were taken into account for the DCFF calculation. Earthquakes can be modeled as static dislocations in elastic half-space, and the stress pattern has been inverted according to the geometry and slip of each of the faults that ruptured in the chain of events. These calculations show that 13 out of 14 earthquakes with M>6.3 were preceded by a static stress change that encouraged failure. The magnitude of the stress increases transferred from one earthquake to another ranged from 0.01 MPa (0.1 bar) to over 0.1 MPa (1 bar). Maps of current DCFF provide additional information to long-term earthquake prediction. Areas of positive DCFF have been identified at two sites in Ke- falonia and Lefkada faults, respectively, where the next strong events are expected to occur.

  13. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening

    Science.gov (United States)

    Sun, Rujian; Li, Liuhe; Zhu, Ying; Zhang, Lixin; Guo, Wei; Peng, Peng; Li, Bo; Guo, Chao; Liu, Lei; Che, Zhigang; Li, Weidong; Sun, Jianfei; Qiao, Hongchao

    2017-09-01

    Laser shock peening (LSP), an innovative surface treatment technique, generates compressive residual stress on the surface of metallic components to improve their fatigue performance, wear resistance and corrosion resistance. To illustrate the dynamic response during LSP and residual stress fields after LSP, this study conducted FEM simulations of LSP in a Ti6Al4V alloy. Results showed that when power density was 7 GW cm-2, a plastic deformation occurred at 10 ns during LSP and increased until the shock pressure decayed below the dynamic yield strength of Ti6Al4V after 60 ns. A maximum tensile region appeared beneath the surface at around 240 ns, forming a compressive-tensile-compressive stress sandwich structure with a thickness of 98, 1020 and 606 μm for each layer. After the model became stabilized, the value of the surface residual compressive stress was 564 MPa at the laser spot center. Higher value of residual stress across the surface and thicker compressive residual stress layers were achieved by increasing laser power density, impact times and spot sizes during LSP. A ‘Residual stress hole’ occurred with a high laser power density of 9 GW cm-2 when laser pulse duration was 10 ns, or with a long laser pulse duration of 20 ns when laser power density was 7 GW cm-2 for Ti6Al4V. This phenomenon occurred because of the permanent reverse plastic deformation generated at laser spot center.

  14. Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways.

    Directory of Open Access Journals (Sweden)

    Irena Moserova

    Full Text Available We have analyzed the molecular mechanisms of photoinduced cell death using porphyrins with similar structure differing only in the position of the ethylene glycol (EG chain on the phenyl ring. Meta- and para-positioned EG chains targeted porphyrins to different subcellular compartments. After photoactivation, both types of derivatives induced death of tumor cells via reactive oxygen species (ROS. Para derivatives pTPP(EG4 and pTPPF(EG4 primarily accumulated in lysosomes activated the p38 MAP kinase cascade, which in turn induced the mitochondrial apoptotic pathway. In contrast, meta porphyrin derivative mTPP(EG4 localized in the endoplasmic reticulum (ER induced dramatic changes in Ca(2+ homeostasis manifested by Ca(2+ rise in the cytoplasm, activation of calpains and stress caspase-12 or caspase-4. ER stress developed into unfolded protein response. Immediately after irradiation the PERK pathway was activated through phosphorylation of PERK, eIF2α and induction of transcription factors ATF4 and CHOP, which regulate stress response genes. PERK knockdown and PERK deficiency protected cells against mTPP(EG4-mediated apoptosis, confirming the causative role of the PERK pathway.

  15. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.

    Science.gov (United States)

    Wang, Yan; Xu, Liang; Chen, Yinglong; Shen, Hong; Gong, Yiqin; Limera, Cecilia; Liu, Liwang

    2013-01-01

    Lead (Pb), one of the most toxic heavy metals, can be absorbed and accumulated by plant roots and then enter the food chain resulting in potential health risks for human beings. The radish (Raphanus sativus L.) is an important root vegetable crop with fleshy taproots as the edible parts. Little is known about the mechanism by which radishes respond to Pb stress at the molecular level. In this study, Next Generation Sequencing (NGS)-based RNA-seq technology was employed to characterize the de novo transcriptome of radish roots and identify differentially expressed genes (DEGs) during Pb stress. A total of 68,940 assembled unique transcripts including 33,337 unigenes were obtained from radish root cDNA samples. Based on the assembled de novo transcriptome, 4,614 DEGs were detected between the two libraries of untreated (CK) and Pb-treated (Pb1000) roots. Gene Ontology (GO) and pathway enrichment analysis revealed that upregulated DEGs under Pb stress are predominately involved in defense responses in cell walls and glutathione metabolism-related processes, while downregulated DEGs were mainly involved in carbohydrate metabolism-related pathways. The expression patterns of 22 selected genes were validated by quantitative real-time PCR, and the results were highly accordant with the Solexa analysis. Furthermore, many candidate genes, which were involved in defense and detoxification mechanisms including signaling protein kinases, transcription factors, metal transporters and chelate compound biosynthesis related enzymes, were successfully identified in response to heavy metal Pb. Identification of potential DEGs involved in responses to Pb stress significantly reflected alterations in major biological processes and metabolic pathways. The molecular basis of the response to Pb stress in radishes was comprehensively characterized. Useful information and new insights were provided for investigating the molecular regulation mechanism of heavy metal Pb accumulation and

  16. Activation of PPARβ/δ protects cardiac myocytes from oxidative stress-induced apoptosis by suppressing generation of reactive oxygen/nitrogen species and expression of matrix metalloproteinases.

    Science.gov (United States)

    Barlaka, Eleftheria; Görbe, Anikó; Gáspár, Renáta; Pálóczi, János; Ferdinandy, Péter; Lazou, Antigone

    2015-01-01

    Heart failure still remains one of the leading causes of morbidity and mortality worldwide. A major contributing factor is reactive oxygen/nitrogen species (RONS) overproduction which is associated with cardiac remodeling partly through cardiomyocyte apoptosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily and have been implicated in cardioprotection. However, the molecular mechanisms are largely unexplored. In this study we sought to investigate the potential beneficial effects evoked by activation of PPARβ/δ under the setting of oxidative stress induced by H2O2 in adult rat cardiac myocytes. The selective PPARβ/δ agonist GW0742 inhibited the H2O2-induced apoptosis and increased cell viability. In addition, generation of RONS was attenuated in cardiac myocytes in the presence of PPARβ/δ agonist. These effects were abolished in the presence of the PPARβ/δ antagonist indicating that the effect was through PPARβ/δ receptor activation. Treatment with PPARβ/δ agonist was also associated with attenuation of caspase-3 and PARP cleavage, upregulation of anti-apoptotic Bcl-2 and concomitant downregulation of pro-apoptotic Bax. In addition, activation of PPARβ/δ inhibited the oxidative-stress-induced MMP-2 and MMP-9 mRNA upregulation. It is concluded that PPARβ/δ activation exerts a cytoprotective effect in adult rat cardiac myocytes subjected to oxidative stress via inhibition of oxidative stress, MMP expression, and apoptosis. Our data suggest that the novel connection between PPAR signaling and MMP down-regulation in cardiac myocytes might