WorldWideScience

Sample records for tensile strength properties

  1. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.

    Science.gov (United States)

    Ching, W Y; Rulis, Paul; Misra, A

    2009-10-01

    We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.

  2. Influence of gamma-radiation on tensile strength properties of polytetrafluoroethylene (PTFE)

    CERN Document Server

    Gafurov, U G; Nemkova, N

    2002-01-01

    The tensile strength properties of polytetrafluoroethylene are studied at modification doses of gamma-irradiation. The main molecular process of polymer destruction is found to be the thermostimulated slippage of molecular chains. (author)

  3. Properties analysis of tensile strength, crystallinity degree and microstructure of polymer composite polypropylene-sand

    International Nuclear Information System (INIS)

    Sudirman; Karo-Karo, Aloma; Ari-Handayani; Bambang-Sugeng; Rukihati; Mashuri

    2004-01-01

    Materials modification base on polymer toward polymer composite is needed by addition of filler. Mechanical properties such as tensile strength, crystallinity degree and microstructure of polymer composite based on polypropylene with sand filler have been investigated. In this work, the polymer composite has been made by mixing the matrix of polypropylene melt flow 2 (PP MF2) or polypropylene melt flow 10 (PP MF 10) with sand filler in a labo plastomill. The composition of sand filler was varied to 10, 30, 40 and 50 % v/v, a then the composite were casted to the film sheets form. The sheets were characterized mechanically i.e tensile strength, crystallinity degree and microstructure. The result showed that the tensile strength decreased by increasing the volume fraction of sand filler, in accordance with microstructure investigation that the matrix area under zone plastic deformation (more cracks), while the filler experienced elastic deformation, so that the strength mechanism of filler did not achieved with expectation (Danusso and Tieghi theory). For filler more than 30 % of volume fraction, the tensile strength of polypropylene melt flow 10 (PP MF 10) was greater than that polypropylene melt flow 2 (PP MF2). It was caused by plasticities in PP MF 10. The tensile strength of PP MF2 was greater than that PP MF 10 for volume fraction of sand filler less than 30 %. It was caused by PP MF2 to be have more degree of crystallinity

  4. Tensile properties of machine strength graded timber for glued laminated timber

    DEFF Research Database (Denmark)

    Boström, Lars; Hoffmeyer, Preben; Solli, Kjell-Helge

    1999-01-01

    Special setting values based on tensile properties of Norway spruce are established for four different strength grading machines. The machines included are Computermatic, Cook-Bolinder, Ersson and Dynagrade.The study shows that the yield of timber to be used in tension, such as laminations...

  5. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    Directory of Open Access Journals (Sweden)

    Edith eMäder

    2015-07-01

    Full Text Available An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test.In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis.The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this

  6. Tensile and fatigue strength properties of Kevlar 29 aramid/epoxy unidirectional composites

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, C.

    1981-07-22

    Static and fatigue tensile strength properties of filament wound undirectional Kevlar 29/epoxy, typical of filament wound material used in flywheel rotors, were studied. Machining techniques were developed to minimize fiber fuzzing on edges. The static modulus, normalized to 70% fiber volume fraction is 8.87 x 10/sup 6/ psi. The major Poisson's ratio is 0.37. The static composite tensile strength, normalized to 70% fiber volume fraction is 200 x 10/sup 3/ psi, corresponding to a fiber stress at failure of 286 x 10/sup 3/ psi, which is good for materials having a very high fiber volume fraction. The S-N curve for R = 0.7 was found to be quite flat. Although the techniques used in this program had previously been employed successfully to study the fatigue behavior of Kevlar 29/epoxy and Kevlar 49/epoxy unidirectional materials, we were unable to overcome the persistent problem of cohesive material failure in the tab regions. The apparent reason for this is the very low interlaminar shear strength of the filament wound material. 16 figures.

  7. Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels

    International Nuclear Information System (INIS)

    Chakraborti, P.C.; Mitra, M.K.

    2007-01-01

    Duplex ferrite-martensite (DFM) steels containing 38-80% martensite of varying morphologies were developed by batch intercritical annealing of a commercial variety vanadium bearing 0.2% C-Mn steel at different temperatures. Microstructures before intercritical annealing were found to control the morphological distribution of the phase constituents of the developed DFM steels. Tensile test results revealed best strength-ductility combination for finely distributed lamellar ferrite-martensite phase aggregate containing ∼60% martensite developed from a prior martensitic structure. Taking consideration of the modified law of mechanical mixture the experimental tensile strength data of the developed DFM steels has been formulated with some success and very good estimation for tensile strengths of pure ferrite and low carbon martensite has been made from tensile strength data of DFM steels

  8. Tensile properties and temperature-dependent yield strength prediction of GH4033 wrought superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jianzuo [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Li, Weiguo, E-mail: wgli@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xianhe; Kou, Haibo; Shao, Jiaxing; Geng, Peiji; Deng, Yong [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Fang, Daining [LTCS and College of Engineering, Peking University, Beijing 100871 (China)

    2016-10-31

    The tensile properties of superalloy GH4033 have been evaluated at temperatures ranging from room temperature to 1000 °C. Fracture surfaces and precipitation were observed using a field-emission scanning electron microscope (FE-SEM). The alloy mainly consisted of γ’ precipitate particles homogeneously dispersed in the γ matrix interior. The effects of dynamic strain aging and precipitation on the strength were verified. A temperature-dependent yield strength model was developed to describe the temperature and precipitation effects on the alloy's yield behaviour. The model is able to consider the effect of precipitation strengthening on the yield strength. The yield behaviour of the precipitation-strengthened superalloy was demonstrated to be adequately predictable over a wide range of temperatures. Note that this model reflects the quantitative relationship between the yield strength of the precipitation-strengthened superalloy and the temperature, the elastic modulus, the specific heat capacity at constant pressure, Poisson's ratio, the precipitate particle size and the volume fraction of the particles.

  9. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    Science.gov (United States)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  10. Tensile strength and impact resistance properties of materials used in prosthetic check sockets, copolymer sockets, and definitive laminated sockets.

    Science.gov (United States)

    Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek M; Colvin, James M

    2011-01-01

    Prosthetic sockets serve as the interface between people with amputations and their prostheses. Although most materials used to make prosthetic sockets have been used for many years, knowledge of these materials' properties is limited, especially after they are subjected to fabrication processes. This study evaluated tensile and impact properties of the current state-of-the-art materials used to fabricate prosthetic check sockets, copolymer sockets, and definitive laminated sockets. Thermolyn Rigid and Orfitrans Stiff check socket materials produced significantly lower tensile strength and impact resistance than polyethylene terephthalate glycol (PETG). Copolymer socket materials exhibited greater resistance to impact forces than the check socket materials but lower tensile strengths than PETG. The heated molding processes, for the check socket and copolymer materials, reduced both tensile strength and elongation at break. Definitive laminated sockets were sorted according to fabrication techniques. Nyglass material had significantly higher elongation, indicating a more ductile material than carbon-based laminations. Carbon sockets with pigmented resin had higher tensile strength and modulus at break than nonpigmented carbon sockets. Elongation at yield and elongation at break were similar for both types of carbon-based laminations. The material properties determined in this study provide a foundation for understanding and improving the quality of prosthetic sockets using current fabrication materials and a basis for evaluating future technologies.

  11. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Ravisankar, V.; Reddy, G. Madhusudhan

    2007-01-01

    This paper reveals the effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded AA7075 aluminium alloy. This alloy has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. As welded joint strength is much lower than the base metal strength and hence, a simple aging treatment has been given to improve the tensile strength of the joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Post weld aging treatment is accompanied by an increase in tensile strength and tensile ductility

  12. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Devon S. Ellis

    2018-02-01

    Full Text Available The use of fiber reinforced polymer (FRP bars in reinforced concrete members enhances corrosion resistance when compared to traditional steel reinforcing bars. Although there is ample research available on the behavior of FRP bars and concrete members reinforced with FRP bars under elevated temperatures (due to fire, there is little published information available on their post-fire residual load capacity. This paper reports residual tensile strength, modulus of elasticity, and bond strength (to concrete of glass fiber reinforced polymer (GFRP bars after exposure to elevated temperatures of up to 400 °C and subsequent cooling to an ambient temperature. The results showed that the residual strength generally decreases with increasing temperature exposure. However, as much as 83% of the original tensile strength and 27% of the original bond strength was retained after the specimens were heated to 400 °C and then cooled to ambient temperature. The residual bond strength is a critical parameter in post-fire strength assessments of GFRP-reinforced concrete members.

  13. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures.

    Science.gov (United States)

    Ellis, Devon S; Tabatabai, Habib; Nabizadeh, Azam

    2018-02-27

    The use of fiber reinforced polymer (FRP) bars in reinforced concrete members enhances corrosion resistance when compared to traditional steel reinforcing bars. Although there is ample research available on the behavior of FRP bars and concrete members reinforced with FRP bars under elevated temperatures (due to fire), there is little published information available on their post-fire residual load capacity. This paper reports residual tensile strength, modulus of elasticity, and bond strength (to concrete) of glass fiber reinforced polymer (GFRP) bars after exposure to elevated temperatures of up to 400 °C and subsequent cooling to an ambient temperature. The results showed that the residual strength generally decreases with increasing temperature exposure. However, as much as 83% of the original tensile strength and 27% of the original bond strength was retained after the specimens were heated to 400 °C and then cooled to ambient temperature. The residual bond strength is a critical parameter in post-fire strength assessments of GFRP-reinforced concrete members.

  14. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Eatherly, W.S.

    1997-01-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle (∼1 degrees C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle (∼100 degrees C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475 degrees C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to ∼65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500 degrees C on one of these new heats of CuNiBe, similar to that observed in other heats

  15. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.

  16. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  17. Effects of material properties and speed of compression on microbial survival and tensile strength in diclofenac tablet formulations.

    Science.gov (United States)

    Ayorinde, J O; Itiola, O A; Odeniyi, M A

    2013-03-01

    A work has been done to study the effects of material properties and compression speed on microbial survival and tensile strength in diclofenac tablet formulations. Tablets were produced from three formulations containing diclofenac and different excipients (DC, DL and DDCP). Two types of machines (Hydraulic hand press and single punch press), which compress the tablets at different speeds, were used. The compression properties of the tablets were analyzed using Heckel and Kawakita equations. A 3-dimensional plot was produced to determine the relationship between the tensile strength, compression speed and percentage survival of Bacillus subtilis in the diclofenac tablets. The mode of consolidation of diclofenac was found to depends on the excipient used in the formulation. DC deformed mainly by plastic flow with the lowest Py and Pk values. DL deformed plastically at the initial stage, followed by fragmentation at the later stage of compression, whereas DDCP deformed mainly by fragmentation with the highest Py and Pk values. The ranking of the percentage survival of B. subtilis in the formulations was DDCP > DL > DC, whereas the ranking of the tensile strength of the tablets was DDCP > DL > DC. Tablets produced on a hydraulic hand press with a lower compression speed had a lower percentage survival of microbial contaminants than those produced on a single punch press, which compressed the tablets at a much higher speed. The mode of consolidation of the materials and the speed at which tablet compression is carried out have effects on both the tensile strength of the tablets and the extent of destruction of microbial contaminants in diclofenac tablet formulations.

  18. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  19. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena

  20. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R. [and others

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  1. Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete

    Science.gov (United States)

    Jhatial, Ashfaque Ahmed; Inn, Goh Wan; Mohamad, Noridah; Johnson Alengaram, U.; Mo, Kim Hung; Abdullah, Redzuan

    2017-11-01

    As almost half of the world’s population now lives in the urban areas, the raise in temperature in these areas has necessitated the development of thermal insulating material. Conventional concrete absorbs solar radiation during the daytime while releasing it at night causing raise in temperature in urban areas. The thermal conductivity of 2200 kg/m3 density conventional concrete is 1.6 W/mK. Higher the thermal conductivity value, greater the heat flow through the material. To reduce this heat transfer, the construction industry has turned to lightweight foamed concrete. Foamed concrete, due to its air voids, gives excellent thermal properties and sound absorption apart from fire-resistance and self-leveling properties. But due to limited studies on different densities of foamed concrete, the thermal properties are not understood properly thus limiting its use as thermal insulating material. In this study, thermal conductivity is determined for 1400, 1600 and 1800 kg/m3 densities of foamed concrete. 0.8% of Polypropylene fibres (PP) is used to reinforce the foamed concrete and improve the mechanical properties. Based upon the results, it was found that addition of PP fibres enhances the tensile strength and slightly reduced the thermal conductivity for lower densities, while the reverse affect was noticed in 1800 kg/m3 density.

  2. Tensile properties of orthodontic elastomeric ligatures.

    Science.gov (United States)

    Ahrari, F; Jalaly, T; Zebarjad, M

    2010-01-01

    Tensile properties of elastomeric ligatures become important when efficiency of orthodontic appliances is considered. The aim of this study was to compare tensile strength, extension to tensile strength, toughness and modulus of elasticity of elastomeric ligatures in both the as--received condition and after 28 days of immersion in the simulated oral environment. Furthermore, the changes that occurred in tensile properties of each brand of ligatures after 28 days were evaluated. Experimental-laboratory based. Elastomeric ligatures were obtained from different companies and their tensile properties were measured using Zwick testing machine in both the as-received condition and after 28 days of immersion in the simulated oral environment. The data were analyzed using independent sample t-tests, analysis of variance and Tukey tests. After 28 days, all the ligatures experienced a significant decrease in tensile strength, extension to tensile strength and toughness ( P tensile properties of different brands of ligatures in both conditions ( P tensile properties of different brands of ligatures, which should be considered during selection of these products.

  3. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  4. SOLID BURNT BRICKS’ TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    Aneta Maroušková

    2017-11-01

    Full Text Available This paper deals with experimental testing of solid burnt bricks and mortar in pure (axial tension. The obtained working diagrams will be further use for a detailed numerical analysis of whole brick masonry column under concentric compressive load. Failure mechanism of compressed brick masonry column is characterized by the appearance and development of vertical tensile cracks in masonry units (bricks passing in the direction of principal stresses and is accompanied by progressive growth of horizontal deformations. These cracks are caused by contraction and interaction between two materials with different mechanical characteristics (brick and mortar. The aim of this paper is more precisely describe the response of quasi-brittle materials to uniaxial loading in tension (for now only the results from three point bending test are available. For these reasons, bricks and mortar tensile behavior is experimentally tested and the obtained results are discussed.

  5. Tensile strength and impact resistance properties of materials used in prosthetic check sockets, copolymer sockets, and definitive laminated sockets

    OpenAIRE

    Maria J. Gerschutz, PhD; Michael L. Haynes, MS; Derek M. Nixon, BS; James M. Colvin, MS

    2011-01-01

    Prosthetic sockets serve as the interface between people with amputations and their prostheses. Although most materials used to make prosthetic sockets have been used for many years, knowledge of these materials' properties is limited, especially after they are subjected to fabrication processes. This study evaluated tensile and impact properties of the current state-of-the-art materials used to fabricate prosthetic check sockets, copolymer sockets, and definitive laminated sockets. Thermolyn...

  6. Effects of excipients on the tensile strength, surface properties and free volume of Klucel{sup ®} free films of pharmaceutical importance

    Energy Technology Data Exchange (ETDEWEB)

    Gottnek, Mihály [Department of Pharmaceutical Technology, University of Szeged, Eötvös utca 6, H-6720 Szeged (Hungary); Süvegh, Károly [Laboratory of Nuclear Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Pintye-Hódi, Klára [Department of Pharmaceutical Technology, University of Szeged, Eötvös utca 6, H-6720 Szeged (Hungary); Regdon, Géza [Department of Pharmaceutical Technology, University of Szeged, Eötvös utca 6, H-6720 Szeged (Hungary)

    2013-08-15

    The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel{sup ®} hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel{sup ®} MF films had better physicochemical properties than those of the LF films. Klucel{sup ®} MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects. - Highlights: • Glycerol increases, whereas xylitol decreases the free volume of both LF and MF HPC. • Both xylitol and glycerol increase the tensile strength of MF films. • The tensile strength of the MF product makes it suitable for pharmaceutical use. • The surface properties reveal a macroscopically stable film structure. • All measurements indicate a macroscopically homogeneous film structure.

  7. Effects of excipients on the tensile strength, surface properties and free volume of Klucel® free films of pharmaceutical importance

    International Nuclear Information System (INIS)

    Gottnek, Mihály; Süvegh, Károly; Pintye-Hódi, Klára; Regdon, Géza

    2013-01-01

    The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel ® hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel ® MF films had better physicochemical properties than those of the LF films. Klucel ® MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects. - Highlights: • Glycerol increases, whereas xylitol decreases the free volume of both LF and MF HPC. • Both xylitol and glycerol increase the tensile strength of MF films. • The tensile strength of the MF product makes it suitable for pharmaceutical use. • The surface properties reveal a macroscopically stable film structure. • All measurements indicate a macroscopically homogeneous film structure

  8. 7 CFR 29.3061 - Strength (tensile).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.3061 Section 29.3061 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Official...

  9. 7 CFR 29.6040 - Strength (tensile).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Definitions §...

  10. Tensile Strength of the Eggshell Membranes

    Czech Academy of Sciences Publication Activity Database

    Strnková, J.; Nedomová, Š.; Kumbár, V.; Trnka, Jan

    2016-01-01

    Roč. 64, č. 1 (2016), s. 159-164 ISSN 1211-8516 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : eggshell membrane * tesile test * loading rate * tensile strength * fracture strain Subject RIV: GM - Food Processing

  11. Elevated temperature tensile properties of borated 304 stainless steel: Effect of boride dispersion on strength and ductility

    International Nuclear Information System (INIS)

    Stephens, J.J.; Sorenson, K.B.; McConnell, P.

    1992-01-01

    Conventional cast and wrought (open-quotes Ingot Metallurgyclose quotes) borated 304 stainless steel has been used for a number of years in spent fuel storage applications where a combination of structural integrity and neutron criticality control are required. Similar requirements apply for materials used in transport cask baskets. However, in the high boron contents (>1.0 wt. %) which are most useful for criticality control, the conventional cast and wrought material suffers from low ductility as well as low impact toughness. The microstructural reason for these poor properties is the relatively coarse size of the boride particles in these alloys, which act as sites for crack initiation. Recently, a open-quotes premiumclose quotes grade of borated 304 stainless steel has been introduced (Strober and Smith, 1988) which is made by a Powder Metallurgy (PM) process. This material has greatly improved ductility and impact properties relative to the conventional cast and wrought product. In addition, an ASTM specification (ATSM A887) has been developed for borated stainless steel, containing 8 different material Types with respect to boron content - with the highest level (Type B7) having permissible range from 1.75 to 2.25 wt. % boron - and each Type contains two different Grades of material based on tensile and impact properties. While the ASTM specification is properties-based and does not require a specific production process for a particular grade of material, the PM material qualifies as open-quotes Grade Aclose quotes material while the conventional Ingot Metallurgy (IM) material generally qualifies as open-quotes Grade Bclose quotes material. This paper presents a comparison of the tensile properties of PM open-quotes Grade Aclose quotes material with that of the conventional IM open-quotes Grade Bclose quotes material for two selected Types (i.e., boron contents) as defined by the ASTM A887 specification: Types 304B5 and 304B7

  12. Identification of tensile strength properties of abaca fiber by weakest-linkage approach-statistic property of fiber diameter

    Science.gov (United States)

    Suardi; Homma, H.; Abubakar

    2018-02-01

    Fiber reinforced plastics or metals (FRPor FRM) are usually ecological materials, because their specific strength defined as the strengthperunit mass is much larger than metal, and weight ofmachines and structuresfor transport made ofFRP can be significantly reduced so that the consumption of fossil fuel scan be saved to result in tremendous reduction of CO2emissions. However, when we consider life cycle assessment (LCA) of synthetic fibers like carbon fiber and glass fiber, we can recognize much CO2 emission in production of these fibers. Therefore, more ecological reinforcement fibers must be developed. For this end, we should utilization cellulose fibers derived from plant tissue structure as an alternative fibers for synthetic fibers, which are considered as carbon neutral materials, and natural degraded material. This study selectsabaca fiber, which is a natural fiber and is abundant in Indonesia, but its usagehas not been optimized for engineering material. The purpose of this study is to identify the mechanical strength of a single abaca fiber by statistical approach. First, weakest link theory and Weibull theory are used to discuss experimental data. 90 specimens of almost identical geometry and biological aspects are tested under tension. These data are analyzed by Weibull theory or other statistical theory. Final target is to look into optimal method to reduce scatter ratio, ratio of standard deviation to mean value, of less than 0.1, which is the level of metallic materials. If we can reduce scatter ration to such level, we can design machines and structures using abaca fiber in the same way as carbon fibers or glass fibers. Summary of Diameter Measurement the all mean value is 0.1 and standardeviasi. The t-Test showed that mean value of each part is estimated as sampling from group with the same mean value, at confidence level of 99%.

  13. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  14. Modeling of quantitative relationships between physicochemical properties of active pharmaceutical ingredients and tensile strength of tablets using a boosted tree.

    Science.gov (United States)

    Hayashi, Yoshihiro; Oishi, Takuya; Shirotori, Kaede; Marumo, Yuki; Kosugi, Atsushi; Kumada, Shungo; Hirai, Daijiro; Takayama, Kozo; Onuki, Yoshinori

    2018-07-01

    The aim of this study was to explore the potential of boosted tree (BT) to develop a correlation model between active pharmaceutical ingredient (API) characteristics and a tensile strength (TS) of tablets as critical quality attributes. First, we evaluated 81 kinds of API characteristics, such as particle size distribution, bulk density, tapped density, Hausner ratio, moisture content, elastic recovery, molecular weight, and partition coefficient. Next, we prepared tablets containing 50% API, 49% microcrystalline cellulose, and 1% magnesium stearate using direct compression at 6, 8, and 10 kN, and measured TS. Then, we applied BT to our dataset to develop a correlation model. Finally, the constructed BT model was validated using k-fold cross-validation. Results showed that the BT model achieved high-performance statistics, whereas multiple regression analysis resulted in poor estimations. Sensitivity analysis of the BT model revealed that diameter of powder particles at the 10th percentile of the cumulative percentage size distribution was the most crucial factor for TS. In addition, the influences of moisture content, partition coefficients, and modal diameter were appreciably meaningful factors. This study demonstrates that BT model could provide comprehensive understanding of the latent structure underlying APIs and TS of tablets.

  15. Micro-tensile strength of a welded turbine disc superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Oluwasegun, K.M.; Cooper, C.; Chiu, Y.L.; Jones, I.P. [School of Metallurgy and Materials, University of Birmingham, B15 2TT (United Kingdom); Li, H.Y., E-mail: h.y.li.1@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, B15 2TT (United Kingdom); Baxter, G. [Rolls-Royce plc., P.O. Box 31, Derby DE24 8BJ (United Kingdom)

    2014-02-24

    A micro-tensile testing system coupled with focussed ion beam (FIB) machining was used to characterise the micro-mechanical properties of the weld from a turbine disc alloy. The strength variations between the weld and the base alloy are rationalised via the microstructure obtained.

  16. Tensile and shear strength of adhesives

    Science.gov (United States)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  17. Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP

    Directory of Open Access Journals (Sweden)

    Zhao Yang

    2016-01-01

    Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study can provide reference to popularization and application of sprayed FRP material used in structure reinforcement.

  18. Elevated temperature tensile properties of borated 304 stainless steel: Effect of boride dispersion on strength and ductility

    International Nuclear Information System (INIS)

    Stephens, J.J.; Sorenson, K.B.; McConnell, P.

    1991-01-01

    This paper has documented the increase in strain to fracture and yield strength obtained with Grade A versions of types 304B5 and 304B7 relative to their respective Grade B, counterparts. The apparent microstructural reason for these property increases is the finer dispersion of boride in the Grade A material, obtained by means of a Powder Metallurgy process, relative to the conventional Grade B material which is produced using an Ingot Metallurgy process. The area size distribution of borides can be well approximated using a log-normal distribution, with the largest boride particles in the Grade B material having areas in the range of 450--600 μm 2 . By comparison, the largest boride particles in the Grade A material have areas nearly an order of magnitude smaller than the largest particles in their Grade B counterparts. A Section III ASME B ampersand PV code case inquiry has been initiated for non-welded versions of 304B4A, 3045A and 3046A ,material

  19. Discrete analysis of clay layer tensile strength

    International Nuclear Information System (INIS)

    Le, T.N.H.; Ple, O.; Villard, P.; Gourc, J.P.

    2010-01-01

    The Discrete Element Method is used to investigate the tensile behaviour and cracks mechanisms of a clay material submitted to bending loading. It is the case of compacted clay liners in landfill cap cover application. Such as the soil tested in this study is plastic clay, the distinct elements model was calibrated with previous data results by taking into account cohesive properties. Various contact and cohesion laws are tested to show that the numerical model is able to reproduce the failure mechanism. Numerical results are extending to simulate a landfill cap cover and comparing to experimental large scale field bending tests achieved in a real site of storage. (authors)

  20. EXPERIMENTAL INVESTIGATION ON TENSILE STRENGTH OF JACQUARD KNITTED FABRICS

    Directory of Open Access Journals (Sweden)

    BRAD Raluca

    2015-05-01

    Full Text Available An objective approach to select the best fabric for technical and home textiles consists in mechanical properties evaluation. The goal of this study is to analyze the behavior of knitted fabrics undergoing stretch stress. In this respect, three types of 2 colors Rib structure (backstripes jacquard, twillback jacquard and double-layered 3x3 rib fabric have been presented and tested for tensile strength and elongation on three directions. First, the elasticity and the behavior of knitted Rib fabrics were described The fabrics were knitted using 100% PAN yarns with Nm 1/15x2 on a E5 CMS 330 Stoll V-bed knitting machine, and have been tested using INSTROM 5587 Tensile Testing Machine in respect of standards conditions. After a relaxation period, 15 specimens were prepared, being disposed at 0°, 45 and 90 angles to the wale direction on the flat knitted panel. The tensile strength and the elongation values were recorded and mean values were computed. After strength and tensile elongation testing for 3 types of rib based knitted fabrics, one can see that the double layer knit presents the best mechanical behavior, followed by birds-eyebacking 2 colors Jacquard and then back striped Jacquard. For tensile stress in bias direction, the twillbacking Jacquard has a good breakage resistance value due to the higher number of rib sinker loops in structure that are positioned on the same direction with the tensile force. The twillbacking Jacquard structure could be considered as an alternative for the base material for decorative and home textile products.

  1. Tensile Strength of Water Exposed to Pressure Pulses

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2012-01-01

    at an extended water-solid interface by imposing a tensile stress pulse which easily causes cavitation. Next, a compressive pulse of duration ~1 ms and a peak intensity of a few bar is imposed prior to the tensile stress pulse. A dramatic increase of the tensile strength is observed immediately after......It is well known that pressurization for an extended period of time increases the tensile strength of water, but little information is available on the effect of pressure pulses of short duration. This is addressed in the present paper where we first measure the tensile strength of water...

  2. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    Science.gov (United States)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  3. Tensile Strength of GFRP Reinforcing Bars with Hollow Section

    Directory of Open Access Journals (Sweden)

    Young-Jun You

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP has been proposed to replace steel as a reinforcing bar (rebar due to its high tensile strength and noncorrosive material properties. One obstacle in using FRP rebars is high price. Generally FRP is more expensive than conventional steel rebar. There are mainly two ways to reduce the cost. For example, one is making the price of each composition cost of FRP rebar (e.g., fibers, resin, etc. lower than steel rebar. Another is making an optimized design for cross section and reducing the material cost. The former approach is not easy because the steel price is very low in comparison with component materials of FRP. For the latter approach, the cost could be cut down by reducing the material cost. Therefore, an idea of making hollow section over the cross section of FRP rebar was proposed in this study by optimizing the cross section design with acceptable tensile performance in comparison with steel rebar. In this study, glass reinforced polymer (GFRP rebars with hollow section and 19 mm of outer diameter were manufactured and tested to evaluate the tensile performance in accordance with the hollowness ratio. From the test results, it was observed that the tensile strength decreased almost linearly with increase of hollowness ratio and the elastic modulus decreased nonlinearly.

  4. Evaluation of the tensile strength of the human ureter - Preliminary results.

    Science.gov (United States)

    Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A

    2014-09-15

    Introduction: Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter, and of those none have determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. Materials and Methods: We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or non-functioning kidney. The specimens were then cut into multiple circumferentially and longitudinally-oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. Results: The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm-2 and 902.43±122.08 Ncm-2, respectively (ptensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators in order to prevent complications.

  5. Evaluation of the tensile strength of the human ureter--preliminary results.

    Science.gov (United States)

    Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A

    2014-12-01

    Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter and, of those, none has determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or nonfunctioning kidney. The specimens were then cut into multiple circumferentially and longitudinally oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm(-2) and 902.43±122.08 Ncm(-2), respectively (Ptensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators to prevent complications.

  6. The Effect of Corrosive Environment on Geopolymer Concrete Tensile Strength

    Directory of Open Access Journals (Sweden)

    Bayuaji Ridho

    2017-01-01

    Full Text Available This study has the purpose to explore the potential of geopolymer concrete tensile strength in particular on the effects of corrosive environments. Geopolymer concrete, concrete technology used no OPC that has advantages, one of which is durability, especially for corrosive seawater environment. In addition, geopolymer concrete with polymerization mechanism does not require large energy consumption or an environmentally friendly concept. Geopolymer concrete in this study is using a type C fly ash from PT. International Power Mitsui Operation & Maintenence Indonesia (IPMOMI Paiton. The type of alkaline activator used NaOH (14 molar and Na2SiO3. Coarse and fine aggregate used are local aggregate. Geopolymer concrete molded test specimen with dimensions of (10 × 20 cm cylinder, further heating and without heating, then maintained at room temperature and seawater up to 28 days. Then to determine the mechanical properties, the tensile strength testing is done with reference. This result of study indicates the curing of geopolymer concrete at 60 ° C for 24 hours to raise the tensile strength of geopolymer concrete.

  7. THE EFFECT OF PHASE CHANGE MATERIALS ON THE TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    HERROELEN Thomas

    2016-05-01

    Full Text Available PCM’s need some important properties to have use such as high heat storage capacity, easy availability and low cost and can have different effects such as flavour, softness or exchange of heat. They are put inside of microcapsules, so they can be inbedded inside the strain, otherwise it wouldn’t be so effective. So basically the microcapsules consist of a core that’s the PCM and a polymer shell. This shell needs to be strong enough to hold the PCM and also withstand up to a certain level of heat and mechanical damage. This study investigates the tensile strength of fabrics composed by fibres, some of these fibres have benn inbedded phase change microcapsules (PCM’s. The investigated fabrics are divided by composition and by structure. By knitting the fabrics in different structures you could be able to investigate which knitting way could be the most effective to have a high tensile strength. Tensile strength tests are performed on specimens with different structures but also with different compositions which could indicate that some strains are tougher then others and more specifically if the PCM’s have a different effect on them.

  8. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  9. Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2017-02-01

    Full Text Available Tensile strength is an important material property for rocks. In applications where rocks are subjected to dynamic loads, the dynamic tensile strength is the controlling parameter. Similar to the study of static tensile strength, there are various methods proposed to measure the dynamic tensile strength of rocks. Here we examine dynamic tensile strength values of Laurentian granite (LG measured from three methods: dynamic direct tension, dynamic Brazilian disc (BD test, and dynamic semi-circular bending (SCB. We found that the dynamic tensile strength from direct tension has the lowest value, and the dynamic SCB gives the highest strength at a given loading rate. Because the dynamic direct tension measures the intrinsic rock tensile strength, it is thus necessary to reconcile the differences in strength values between the direct tension and the other two methods. We attribute the difference between the dynamic BD results and the direct tension results to the overload and internal friction in BD tests. The difference between the dynamic SCB results and the direct tension results can be understood by invoking the non-local failure theory. It is shown that, after appropriate corrections, the dynamic tensile strengths from the two other tests can be reduced to those from direct tension.

  10. Compressive and tensile strength for concrete containing coal bottom ash

    Science.gov (United States)

    Maliki, A. I. F. Ahmad; Shahidan, S.; Ali, N.; Ramzi Hannan, N. I. R.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Azmi, M. A. Mohammad; Rahim, M. Abdul

    2017-11-01

    The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.

  11. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    International Nuclear Information System (INIS)

    Bahrami, Mohsen; Helmi, Nader; Dehghani, Kamran; Givi, Mohammad Kazem Besharati

    2014-01-01

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results

  12. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Mohsen, E-mail: Mohsen.bahrami@aut.ac.ir [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Helmi, Nader [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Dehghani, Kamran [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Centre of Excellence in Smart Structures and Dynamical Systems (Iran, Islamic Republic of); Givi, Mohammad Kazem Besharati [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-02-10

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results.

  13. Tensile properties of the modified 13Cr martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mabruri, Efendi, E-mail: effe004@lipi.go.id; Anwar, Moch Syaiful, E-mail: moch.syaiful.anwar@lipi.go.id; Prifiharni, Siska, E-mail: siska.prifiharni@lipi.go.id; Romijarso, Toni B.; Adjiantoro, Bintang [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI) Kawasan Puspiptek Gd. 470 Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  14. Tensile properties of the modified 13Cr martensitic stainless steels

    International Nuclear Information System (INIS)

    Mabruri, Efendi; Anwar, Moch Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-01-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  15. Ultrasound transmission measurements for tensile strength evaluation of tablets.

    Science.gov (United States)

    Simonaho, Simo-Pekka; Takala, T Aleksi; Kuosmanen, Marko; Ketolainen, Jarkko

    2011-05-16

    Ultrasound transmission measurements were performed to evaluate the tensile strength of tablets. Tablets consisting of one ingredient were compressed from dibasic calcium phosphate dehydrate, two grades of microcrystalline cellulose and two grades of lactose monohydrate powders. From each powder, tablets with five different tensile strengths were directly compressed. Ultrasound transmission measurements were conducted on every tablet at frequencies of 2.25 MHz, 5 MHz and 10 MHz and the speed of sound was calculated from the acquired waveforms. The tensile strength of the tablets was determined using a diametrical mechanical testing machine and compared to the calculated speed of sound values. It was found that the speed of sound increased with the tensile strength for the tested excipients. There was a good correlation between the speed of sound and tensile strength. Moreover, based on the statistical tests, the groups with different tensile strengths can be differentiated from each other by measuring the speed of sound. Thus, the ultrasound transmission measurement technique is a potentially useful method for non-destructive and fast evaluation of the tensile strength of tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Tensile strength of glulam laminations of Nordic spruce

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Bräuner, Lise; Boström, Lars

    1999-01-01

    Design of glulam according to the European timber code Eurocode 5 is based on the standard document prEN1194 , according to which glulam beam strength is to be established either by full scale testing or by calculation. The calculation must be based on a knowledge of lamination tensile strength....... This knowledge may be obtained either by adopting a general rule that the characteristic tensile strength is sixty percent of the characteristic bending strength, or by performing tensile tests on an adequate number of laminations representative of the whole population. The present paper presents...... an investigation aimed at establishing such an adequate experimental background for the assignment of strength classes for glulam made of visually strength graded laminations from Nordic sawmills. The investigation includes more than 1800 boards (laminations) of Norway spruce (Picea abies) sampled from eight...

  17. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  18. Evaluation of microtensile and tensile bond strength tests ...

    African Journals Online (AJOL)

    2015-11-03

    Nov 3, 2015 ... Bond strength tests and Er,Cr:YSGG laser frequency. 586 ... power, 90% air pressure, 75% water pressure, 45 s irradiation ..... geometry on the measurement of the tensile bond strength to dentin. J Dent ... Bur‑cut enamel and.

  19. Using hardness to model yield and tensile strength

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Schrems, Karol K.

    2005-02-01

    The current direction in hardness research is towards smaller and smaller loads as nano-scale materials are developed. There remains, however, a need to investigate the mechanical behavior of complex alloys for severe environment service. In many instances this entails casting large ingots and making numerous tensile samples as the bounds of the operating environment are explored. It is possible to gain an understanding of the tensile strength of these alloys using room and elevated temperature hardness in conjunction with selected tensile tests. The approach outlined here has its roots in the work done by Tabor for metals and low alloy and carbon steels. This research seeks to extend the work to elevated temperatures for multi-phase, complex alloys. A review of the approach will be given after which the experimental data will be examined. In particular, the yield stress and tensile strength will be compared to their corresponding hardness based values.

  20. In vitro tensile strength of luting cements on metallic substrate.

    Science.gov (United States)

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  1. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  2. The tensile properties of single sugar palm (Arenga pinnata) fibre

    Science.gov (United States)

    Bachtiar, D.; Sapuan, S. M.; Zainudin, E. S.; Khalina, A.; Dahlan, K. Z. M.

    2010-05-01

    This paper presents a brief description and characterization of the sugar palm fibres, still rare in the scientific community, compared to other natural fibres employed in polymeric composites. Sugar palm fibres are cellulose-based fibres extracted from the Arenga pinnata plant. The characterization consists of tensile test and the morphological examination. The average tensile properties results of fibres such as Young's modulus is equal to 3.69 GPa, tensile strength is equal to 190.29 MPa, and strain at failure is equal to 19.6%.

  3. The tensile properties of single sugar palm (Arenga pinnata) fibre

    International Nuclear Information System (INIS)

    Bachtiar, D; Sapuan, S M; Zainudin, E S; Khalina, A; Dahlan, K Z M

    2010-01-01

    This paper presents a brief description and characterization of the sugar palm fibres, still rare in the scientific community, compared to other natural fibres employed in polymeric composites. Sugar palm fibres are cellulose-based fibres extracted from the Arenga pinnata plant. The characterization consists of tensile test and the morphological examination. The average tensile properties results of fibres such as Young's modulus is equal to 3.69 GPa, tensile strength is equal to 190.29 MPa, and strain at failure is equal to 19.6%.

  4. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    OpenAIRE

    A.E. Ismail; M.A. Che Abdul Aziz

    2015-01-01

    This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that...

  5. Tensile strength of biological fibrin sealants: a comparative study.

    Science.gov (United States)

    Lacaze, Laurence; Le Dem, Nicolas; Bubenheim, Michael; Tsilividis, Basile; Mezghani, Julien; Schwartz, Lilian; Francois, Arnaud; Ertaud, Jean Yves; Bagot d'Arc, Maurice; Scotté, Michel

    2012-08-01

    Fibrin sealants are commonly used in liver surgery, although their effectiveness in routine clinical practice remains controversial. Individual sealant characteristics are based on hemostatic effects and adhesion properties that can be experimentally measured using the 'rat skin test' or the 'pig skin test'. This study used a more relevant and realistic experimental canine model to compare the differences in the adhesive properties of four fibrin sealants in hepatectomy: Tisseel/Tissucol, Tachosil, Quixil, and Beriplast. A partial hepatectomy was performed in beagle dogs under general anesthesia to obtain liver cross-sections. Fibrin sealants were allocated to dog livers using a Youden square design. The tensile strength measurement was performed using a traction system to measure the rupture stress point of a small wooden cylinder bonded to the liver cross-section. Significantly greater adhesion properties were observed with Tisseel/Tissucol compared with Quixil or Beriplast (P = 0.002 and 0.001, respectively). Similarly, Tachosil demonstrated significantly greater adhesive properties compared with Beriplast (P = 0.009) or Quixil (P = 0.014). No significant differences were observed between Tisseel/Tissucol and Tachosil or between Beriplast and Quixil. The results of this comparative study demonstrate that different fibrin sealants exhibit different adhesive properties. Tisseel/Tissucol and Tachosil provided greatest adhesion to liver cross-section in our canine model of hepatectomy. These results may enable the optimal choice of fibrin sealants for this procedure in clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Tensile strength of two soldered alloys (Minalux and Verabond2

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Rezaee S

    2002-07-01

    Full Text Available Recently. Minalux alloy, a base metal free from Be, has been presented on the market while no special soldering has been recommended for it. On the other hand, based on the manufacturer's claim, this alloy is similar to Verabond2. The aim of this study was to investigate the tensile strength of Minalux and Verabond2, soldered by Verasolder. Twelve standard dambble shape samples, with the length of 18 mm and the diameter of 3mm, were prepared from each alloy. Six samples of each alloy were divided into two pieces with carboradom disk. Soldering gap distance was 0.3mm, measured by a special jig and they were soldered by Verasolder alloy. Six other samples, of both Iranian and foreign unsoldered alloys were considered as control group. Then samples were examined under tensile force and their tensile strength was recorded. Two- way variance analysis showed that the tensile strength of Minalux alloy and Verabond2 were not statistically significant (Verasoler 686, Minalux 723, but after soldering, such difference became significant (Minalux 308, Verabond2 432. Verabond2 showed higher tensile strength after soldering.

  7. Tensile and shear methods for measuring strength of bilayer tablets.

    Science.gov (United States)

    Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin

    2017-05-15

    Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. EFFECTS OF EDGE COVERING ON TENSILE STRENGTH OF MDF

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available Dowels, 6, 8 and 10 mm ? diameters were bonded with PVAc adhesive on Medium Density Fiberboard (MDF. Edges were covered with 5, 8 and 12 mm beech wood materials, drilled 25 mm depth. Tensile strength measurments were made on the samples. The highest tensile strength value was given as 6 mm ? dowel and MDF covered with 8 mm thickness beech wood material (2.294 N/mm2, the lowest value was obtained with 10 mm ? dowel and with unprocessed MDF (1.314 N/mm2.

  9. Tensile properties of irradiated TZM and tungsten

    International Nuclear Information System (INIS)

    Steichen, J.M.

    1975-04-01

    The effect of neutron irradiation on the elevated temperature tensile properties of TZM and tungsten has been experimentally determined. Specimens were irradiated at a temperature of approximately 720 0 F to fluences of 0.4 and 0.9 x 10 22 n/cm 2 (E greater than 0.1 MeV). Test parameters for both control and irradiated specimens included strain rates from 3 x 10 -4 to 1 s -1 and temperatures from 72 to 1700 0 F. The results of these tests were correlated with a rate-temperature parameter (T ln A/epsilon) to provide a concise description of material behavior over the range of deformation conditions of this study. The yield strength of the subject materials was significantly increased by decreasing temperature, increasing strain rate, and increasing fluence. Ductility was significantly reduced at any temperature or strain rate by increasing fluence. Cleavage fractures occurred in both unirradiated and irradiated specimens when the yield strength was elevated to the effective cleavage stress by temperature and/or strain rate. Neutron irradiation for the conditions of this study increased the ductile-to-brittle transition temperature of tungsten by approximately 300 0 F and TZM by approximately 420 0 F. (U.S.)

  10. Flexural and diametral tensile strength of composite resins

    Directory of Open Access Journals (Sweden)

    Álvaro Della Bona

    2008-03-01

    Full Text Available This study evaluated the flexural strength (sf and the diametral tensile strength (st of light-cured composite resins, testing the hypothesis that there is a positive relation between these properties. Twenty specimens were fabricated for each material (Filtek Z250- 3M-Espe; AM- Amelogen, Ultradent; VE- Vit-l-escence, Ultradent; EX- Esthet-X, Dentsply/Caulk, following ISO 4049 and ANSI/ADA 27 specifications and the manufacturers’ instructions. For the st test, cylindrical shaped (4 mm x 6 mm specimens (n = 10 were placed with their long axes perpendicular to the applied compressive load at a crosshead speed of 1.0 mm/min. The sf was measured using the 3-point bending test, in which bar shaped specimens (n = 10 were tested at a crosshead speed of 0.5 mm/min. Both tests were performed in a universal testing machine (EMIC 2000 recording the fracture load (N. Strength values (MPa were calculated and statistically analyzed by ANOVA and Tukey (a = 0.05. The mean and standard deviation values (MPa were Z250-45.06 ± 5.7; AM-35.61 ± 5.4; VE-34.45 ± 7.8; and EX-42.87 ± 6.6 for st; and Z250-126.52 ± 3.3; AM-87.75 ± 3.8; VE-104.66 ± 4.4; and EX-119.48 ± 2.1 for sf. EX and Z250 showed higher st and sf values than the other materials evaluated (p < 0.05, which followed a decreasing trend of mean values. The results confirmed the study hypothesis, showing a positive relation between the material properties examined.

  11. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Mengjie; Wang, Shubin; Yu, Yalin; Feng, Qihang; Yang, Jiping; Zhang, Boming

    2017-01-01

    Highlights: • Carboxyl functionalized CF is acquired by simple chemical oxidation method. • These CF have preserved the tensile strength, better electrochemical properties. • The presence of H_3PO_4 prevented the turbostratic carbon from over-oxidization. • There CF can be used as anodes of multifunctional structural battery. • The preservation and improvement is result from the hindered over-oxidization. - Abstract: Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H_2SO_4/HNO_3 considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H_3PO_4 preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers.

  12. Tensile Strength of Finger Joints at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nielsen, Peter C.; Olesen, Frits Bolonius

    A series of test s aimed a t establishing the effect of temperature upon the tensile strength parallel-to-grain of finger jointed laminae for glulam has been conducted in the Fire Research Laboratory at Aalborg University Centre. The objective of this report is to present the background...

  13. Evaluation of microtensile and tensile bond strength tests ...

    African Journals Online (AJOL)

    Objectives: The aim of the present study was to compare two different bond strength test methods (tensile and microtensile) in investing the influence of erbium, chromium: yttrium‑scandium‑gallium‑garnet (Er, Cr: YSGG) laser pulse frequency on resin‑enamel bonding. Materials and Methods: One‑hundred and twenty‑five ...

  14. Tensile properties of unirradiated path A PCA

    International Nuclear Information System (INIS)

    Braski, D.N.; Maziasz, P.J.

    1983-01-01

    The tensile properties of PCA in the Al (solution annealed), A3 (25%-cold worked), and B2 (aged, cold worked, and reaged) conditions were determined from room temperature to 600 0 C. The tensile behavior of PCA-A1 and -A3 was generally similar to that of titanium-modified type 316 stainless steel with similar microstructures. The PCA-B2 was weaker than PCA-A3, especially above 500 0 C, but demonstrated slightly better ducility

  15. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    Science.gov (United States)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  16. Effect of dispersion hardening process on change of Rm tensile strength of EN AC-46000 alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-01-01

    Full Text Available Heat treatment of aluminum alloys is performed mainly to increase mechanical properties of the alloys. Very important issue, from improvement of mechanical properties point of view as well as economical aspects of performed treatment, is selection of a suitable parameters of solutioning and ageing operations. The paper presents results of the investigations concerning effect of the performed heat treatment on change of tensile strength of the EN AC-46000 (AlSi9Cu3 alloy. Investigated alloy was melted in electric resistance furnace. Run of crystallization is presented with making use of the thermal derivative method (ATD. This method was also implemented to determination of heat treatments’ temperature range of the alloy. Performed heat treatment resulted in growth of the Rm tensile strength. Performed tests have enabled determination of temperature and duration of solutioning and ageing operations of the investigated alloy, which would condition obtainment of improved Rm tensile strength. The tests were performed in laboratory conditions.

  17. Infliximab treatment reduces tensile strength in intestinal anastomosis

    DEFF Research Database (Denmark)

    Jensen, Jonas Sanberg; Petersen, Nacie Bello; Biagini, Matteo

    2015-01-01

    :1) to receive either repeated IFX treatment or placebo. On day 15, three separate end-to-end anastomoses were performed on the jejunum. On postoperative day 5, tensile strength and bursting pressure for the anastomoses were tested and histologic changes examined. RESULTS: We found a significantly reduced...... as number of sutures in the tested anastomosis (coefficient = 0.51; P = 0.024). The general histologic score was significantly higher in the placebo group (5.00 +/- 1.26 versus 3.31 +/- 1.65, P = 0.03). CONCLUSIONS: Repeated high-dose IFX treatment reduces tensile strength significantly in rabbits...... effect on the healing process in intestinal anastomosis. The objective of this study was to examine the effect of repeated IFX treatment on anastomotic strength and degree of inflammation in the anastomotic line in the small intestine of rabbits. METHODS: Thirty-two rabbits were randomized (2...

  18. The theoretical tensile strength of fcc crystals predicted from shear strength calculations

    International Nuclear Information System (INIS)

    Cerny, M; Pokluda, J

    2009-01-01

    This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.

  19. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    OpenAIRE

    Mydin M.A.O.; Sani N. Md.; Mohd Yusoff M.A.; Ganesan S.

    2014-01-01

    This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC) and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the m...

  20. Study of root tensile strength of softwood and hardwood tree species: Implications for slope stability

    Science.gov (United States)

    Esmaiili, Marzieh; Abdi, Ehsan; Jafary, Mohammad; Majnounian, Baris

    2017-04-01

    Landslides are known as one of the major natural hazards and often incurring economics and human life losses. The role of tree roots in slope stability is very important, especially when human lives and infrastructure are at risk. The anchorage of roots and improvement of slope stability mainly depend on specific properties of root network systems, such as tensile strength. These properties of the roots which govern the degree of reinforcement are different among tree species. Although, many studies have been conducted about plant biotechnical properties of species, yet there is lack of knowledge on comparing root systems of softwood and hardwood tree species for similar site conditions. Therefore this study was conducted to assess the tensile strength of the root system of Picea abies (softwood species) and Fraxinus excelsior (hardwood species) planted on two forested hillslopes. To this aim, single root specimens were sampled for each species and their tensile strength were then measured in laboratory using a computer controlled Instron Universal Testing Machine. According to the results root tensile strength tends to decrease with diameter according to a power law for both species. Based on analysis of covariance (ANCOVA), a significant difference has been observed in the tensile strength between the two studied species. Also the results showed that the value of mean root tensile strength for Picea abies (19.31 ± 2.64 MPa) was much more than that of Fraxinus excelsior (16.98 ± 1.01 MPa) within all root diameter classes. The data presented in this study may expand the knowledge of biotechnical properties of Picea abies and Fraxinus excelsior, as biomaterial for soil bioengineering.

  1. Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs

    Science.gov (United States)

    Attree, N.; Groussin, O.; Jorda, L.; Nébouy, D.; Thomas, N.; Brouet, Y.; Kührt, E.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hartogh, P.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Kovacs, G.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Lowry, S.; Marchi, S.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Toth, I.; Tubiana, C.; Vincent, J.-B.; Shi, X.

    2018-03-01

    We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features andthe implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).

  2. Influence of surface defects on the tensile strength of carbon fibers

    Science.gov (United States)

    Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

    2014-12-01

    The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

  3. Tensile rock mass strength estimated using InSAR

    KAUST Repository

    Jonsson, Sigurjon

    2012-11-01

    The large-scale strength of rock is known to be lower than the strength determined from small-scale samples in the laboratory. However, it is not well known how strength scales with sample size. I estimate kilometer-scale tensional rock mass strength by measuring offsets across new tensional fractures (joints), formed above a shallow magmatic dike intrusion in western Arabia in 2009. I use satellite radar observations to derive 3D ground displacements and by quantifying the extension accommodated by the joints and the maximum extension that did not result in a fracture, I put bounds on the joint initiation threshold of the surface rocks. The results indicate that the kilometer-scale tensile strength of the granitic rock mass is 1–3 MPa, almost an order of magnitude lower than typical laboratory values.

  4. Tensile rock mass strength estimated using InSAR

    KAUST Repository

    Jonsson, Sigurjon

    2012-01-01

    The large-scale strength of rock is known to be lower than the strength determined from small-scale samples in the laboratory. However, it is not well known how strength scales with sample size. I estimate kilometer-scale tensional rock mass strength by measuring offsets across new tensional fractures (joints), formed above a shallow magmatic dike intrusion in western Arabia in 2009. I use satellite radar observations to derive 3D ground displacements and by quantifying the extension accommodated by the joints and the maximum extension that did not result in a fracture, I put bounds on the joint initiation threshold of the surface rocks. The results indicate that the kilometer-scale tensile strength of the granitic rock mass is 1–3 MPa, almost an order of magnitude lower than typical laboratory values.

  5. Effect of River Indus Sand on Concrete Tensile Strength

    Directory of Open Access Journals (Sweden)

    M. T. Lakhiar

    2018-04-01

    Full Text Available In the development of Pakistan construction industry, the utilization of River Indus sand in concrete as fine aggregate has expanded tremendously. The aim of this research is to study the effect of Indus River sand on the tensile strength of various grades of concrete when it is utilized as fine aggregate. Concrete Samples of M15, M20 and M25 grade concrete were cured for 7, 14, 21 and 28 days. Based on the results, it is found that concrete became less workable when Indus river sand was utilized. It is recorded that tensile strength of concrete is decreased from 5% up to 20% in comparison with hill sand. The results were derived from various concrete grades.

  6. Tensile strength comparison between peroneus longus and hamstring tendons: A biomechanical study

    Directory of Open Access Journals (Sweden)

    Rudy

    2017-01-01

    Conclusion: The tensile strength of the peroneus longus tendon, which is similar to that of hamstring, gives information that both have the same biomechanic properties. Peroneus longus should not be used as a first option in ACL reconstruction, but may be used as an alternative donor in cases involving multiple instability that require more tendon donors in the reconstruction.

  7. Thermal properties of graphene under tensile stress

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-05-01

    Thermal properties of graphene display peculiar characteristics associated to the two-dimensional nature of this crystalline membrane. These properties can be changed and tuned in the presence of applied stresses, both tensile and compressive. Here, we study graphene monolayers under tensile stress by using path-integral molecular dynamics (PIMD) simulations, which allows one to take into account quantization of vibrational modes and analyze the effect of anharmonicity on physical observables. The influence of the elastic energy due to strain in the crystalline membrane is studied for increasing tensile stress and for rising temperature (thermal expansion). We analyze the internal energy, enthalpy, and specific heat of graphene, and compare the results obtained from PIMD simulations with those given by a harmonic approximation for the vibrational modes. This approximation turns out to be precise at low temperatures, and deteriorates as temperature and pressure are increased. At low temperature, the specific heat changes as cp˜T for stress-free graphene, and evolves to a dependence cp˜T2 as the tensile stress is increased. Structural and thermodynamic properties display non-negligible quantum effects, even at temperatures higher than 300 K. Moreover, differences in the behavior of the in-plane and real areas of graphene are discussed, along with their associated properties. These differences show up clearly in the corresponding compressibility and thermal expansion coefficient.

  8. Relationship between the Compressive and Tensile Strength of Recycled Concrete

    International Nuclear Information System (INIS)

    El Dalati, R.; Haddad, S.; Matar, P.; Chehade, F.H

    2011-01-01

    Concrete recycling consists of crushing the concrete provided by demolishing the old constructions, and of using the resulted small pieces as aggregates in the new concrete compositions. The resulted aggregates are called recycled aggregates and the new mix of concrete containing a percentage of recycled aggregates is called recycled concrete. Our previous researches have indicated the optimal percentages of recycled aggregates to be used for different cases of recycled concrete related to the original aggregates nature. All results have shown that the concrete compressive strength is significantly reduced when using recycled aggregates. In order to obtain realistic values of compressive strength, some tests have been carried out by adding water-reducer plasticizer and a specified additional quantity of cement. The results have shown that for a limited range of plasticizer percentage, and a fixed value of additional cement, the compressive strength has reached reasonable value. This paper treats of the effect of using recycled aggregates on the tensile strength of concrete, where concrete results from the special composition defined by our previous work. The aim is to determine the relationship between the compressive and tensile strength of recycled concrete. (author)

  9. STUDY ON IMPACT AND TENSILE PROPERTIES OF CONCRETE WITH COCONUT SHELL AS COARSE AGGREGATE

    OpenAIRE

    R. Ranjith*

    2017-01-01

    The mechanical properties of coconut shell aggregate concrete (CSAC) namely splitting tensile strength, impact strength have been determined and a comparison is made with conventional granite aggregate concrete (CGAC) in the 30 days short-term experimental investigation. From the test results it is observed that coconut shell aggregate concrete has considerably sufficient strength. But the splitting tensile strength of coconut shell aggregate concrete is 50 % less than that of conventional gr...

  10. Effects of the phase fractions on the carbide morphologies, Charpy and tensile properties in SA508 Gr.4N High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    To improve the strength and toughness of RPV (reactor pressure vessel) steels for nuclear power plants, an effective way is the change of material specification from tempered bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel into tempered martensitic/bainitic SA508 Gr.4N Ni-Cr-Mo low alloy steel. It is known that the phase fractions of martensitic/bainitic steels are very sensitive to the austenitizing cooling rates. Kim reported that there are large differences of austenitizing cooling rates between the surface and the center locations in RPV due to its thickness of 250mm. Hence, the martensite/bainite fractions would be changed in different locations, and it would affect the microstructure and mechanical properties in Ni-Cr-Mo low alloy steel. These results may lead to inhomogeneous characteristics after austenitizing. Therefore, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite/bainite fractions on microstructure and mechanical properties in Ni-Cr-Mo low alloy steel were examined. The changes in phase fractions of Ni-Cr-Mo low alloy steel with different cooling rates were analyzed, and then the phase fractions were correlated with its microstructural observation and mechanical properties

  11. Dataset of the relationship between unconfined compressive strength and tensile strength of rock mass

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Yui, Mikazu

    2002-02-01

    This report summary the dataset of the relationship between unconfined compressive strength and tensile strength of the rock mass described in supporting report 2; repository design and engineering technology of second progress report (H12 report) on research and development for the geological disposal of HLW in Japan. (author)

  12. Tensile strength of Zr-2.5 Nb pressure tubes: A statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Priti Kotak, E-mail: pritik@barc.gov.in [Senior Scientist, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Dubey, J.S.; Datta, D.; Shriwastaw, R.S.; Rath, B.N.; Singh, R.N. [Senior Scientist, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Anantharaman, S. [Head, Post Irradiation Examination Division, Bhabha Atomic Research Centre, Mumbai (India); Chakravartty, J.K. [Director, Materials Group, Bhabha Atomic Research Centre, Mumbai (India)

    2015-12-15

    Highlights: • Tensile properties in axial and transverse direction for a number of Indian Zr-2.5 Nb PHWR pressure tubes. • Distribution of tensile properties of double-melted and quadruple-melted pressure tubes. • Tensile properties at front-end and back-end of the quadruple melted pressure tubes at room temperature and at 300 °C. - Abstract: In order to get an idea of the statistical variation in the tensile properties of the double-melted as well as quadruple melted Zr-2.5 Nb pressure tubes (PTs) and also the variation in tensile properties between the two ends of the pressure tubes, tension tests were carried out on around 50 pressure tube off-cuts. Longitudinal and transverse tensile specimens were prepared from these off-cuts of pressure tubes of double-melted and quadruple melted types. For quadruple melted pressure tubes the specimens were tested from both front-end and back-end off-cuts. Miniature flat tensile specimens having 1.8 mm width and 1.5 mm thickness and 7.6 mm gauge length were prepared from the pressure tube off-cuts without any flattening treatment. Tension tests were carried out in a screw-driven machine at room temperature and 300 °C for both front-end and back-end off-cuts of each of 16 pressure tubes. In general the transverse specimens showed higher yield strength (YS) and ultimate tensile strength (UTS) compared to the longitudinal specimens. Transverse specimens showed less strain hardening compared to the longitudinal specimens. The axial specimens showed higher uniform (UE) and total elongation (TE) compared to the transverse specimens. Double-melted pressure tubes showed relatively higher strength and lower elongation and larger standard deviation compared to the quadruple melted pressure tubes. Mean values of tensile properties showed that back-end off-cuts were relatively stronger and less ductile compared to the front-end off-cuts.

  13. Indigenous Design for Automatic Testing of Tensile Strength Using Graphical User Interface

    OpenAIRE

    Ali Rafay; Junejo Faraz; Imtiaz Rafey; Shamsi Usama Sultan

    2016-01-01

    Tensile Testing is a fundamental material test to measure the tenacity and tensile strength. Tensile strength means ability to take tensile stress. This Universal Testing Machine is designed using Dual Cylinder Technique in order to comply with the maximun load (tensile force) with the reduction of minimum physical effort and minimized losses.It is to provide material testing opportunity to the students of different institutions, locally and globally, at lowest price; so that they can have a ...

  14. Ab initio calculation of tensile strength in iron

    Czech Academy of Sciences Publication Activity Database

    Friák, Martin; Šob, Mojmír; Vitek, V.

    2003-01-01

    Roč. 83, 31-34 (2003), s. 3529-3537 ISSN 1478-6435. [Multiscale Materials Modelling: Working Theory for Industry /1./. London, 17.06.2002-20.06.2002] R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Tensile strength and failure load of sutures for robotic surgery.

    Science.gov (United States)

    Abiri, Ahmad; Paydar, Omeed; Tao, Anna; LaRocca, Megan; Liu, Kang; Genovese, Bradley; Candler, Robert; Grundfest, Warren S; Dutson, Erik P

    2017-08-01

    Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595-600, 1985. doi: 10.1002/jbm.820190511 ). However, these systems still suffer from lack of haptic feedback, which results in exertion of excessive force, often leading to suture failures (Barbash et al. in Ann Surg 259(1):1-6, 2014. doi: 10.1097/SLA.0b013e3182a5c8b8 ). This work catalogs tensile strength and failure load among commonly used sutures in an effort to prevent robotic surgical consoles from exceeding identified thresholds. Trials were thus conducted on common sutures varying in material type, gauge size, rate of pulling force, and method of applied force. Polydioxanone, Silk, Vicryl, and Prolene, gauges 5-0 to 1-0, were pulled till failure using a commercial mechanical testing system. 2-0 and 3-0 sutures were further tested for the effect of pull rate on failure load at rates of 50, 200, and 400 mm/min. 3-0 sutures were also pulled till failure using a da Vinci robotic surgical system in unlooped, looped, and at the needle body arrangements. Generally, Vicryl and PDS sutures had the highest mechanical strength (47-179 kN/cm 2 ), while Silk had the lowest (40-106 kN/cm 2 ). Larger diameter sutures withstand higher total force, but finer gauges consistently show higher force per unit area. The difference between material types becomes increasingly significant as the diameters decrease. Comparisons of identical suture materials and gauges show 27-50% improvement in the tensile strength over data obtained in 1985 (Ballantyne in Surg Endosc Other Interv Tech 16(10):1389-1402, 2002. doi: 10.1007/s00464-001-8283-7 ). No significant differences were observed when sutures were pulled at different rates. Reduction in suture strength appeared to be strongly affected by the technique used to manipulate the suture. Availability of suture tensile strength and failure load data will help define software safety

  16. Comparison of tensile strength of different carbon fabric reinforced epoxy composites

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2006-03-01

    Full Text Available Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS using pre-impregnated materials (prepregs based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW and Eight Harness Satin (8HS. The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry.

  17. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  18. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  19. ANALYSIS OF THE TENSILE STRENGTH OF 100% WOOL YARN FROM DIFFERENT CLIMATIC AREAS

    Directory of Open Access Journals (Sweden)

    OANA Dorina

    2017-05-01

    Full Text Available One of the basic conditions required of yarns is to have enough tensile strength to allow them to be turned into textiles and also to give the final product durability. During processing, threads are subjected to various unavoidable forms of mechanical stress, simple or compounded, but the amount of stress can be kept under control by adjusting the corresponding operating parameters (speed, gauges, push force on the cylinders of the rolling train etc.. The values of the operating parameters of the spinning operation are set so as to obtain uniform products in large scale production, but also to ensure the preservation of the properties of the fibers and yarns, for further processing. To this end we analyzed the tensile strength of three batches of 100% wool yarn meant for knitting, from three different geo-climatic areas. These are fine woolen yarn of 25 tex and torque of 620 twists/meter. The study of the tensile strength was carried out using a Uster R Tensojet 4 (UTj4 tension meter, analyzing ten samples of 500 m from each batch. The statistical and mathematical processing of the data obtained after analyzing the samples indicated that the yarns from South Africa have better tensile strength and a lower mechanical impedance variation coefficient than yarns from Asia and England.

  20. Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights

    Directory of Open Access Journals (Sweden)

    Tianshou Ma

    2018-01-01

    Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.

  1. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mengjie [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Shubin, E-mail: shubinwang@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu, Yalin; Feng, Qihang; Yang, Jiping; Zhang, Boming [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-01-15

    Highlights: • Carboxyl functionalized CF is acquired by simple chemical oxidation method. • These CF have preserved the tensile strength, better electrochemical properties. • The presence of H{sub 3}PO{sub 4} prevented the turbostratic carbon from over-oxidization. • There CF can be used as anodes of multifunctional structural battery. • The preservation and improvement is result from the hindered over-oxidization. - Abstract: Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H{sub 2}SO{sub 4}/HNO{sub 3} considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H{sub 3}PO{sub 4} preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers.

  2. Comparative Evaluation of Tensile Strength in Die Stone Incorporated with Sodium and Calcium Hypochlorite as Disinfectants: An in vitro Study.

    Science.gov (United States)

    Pramodh, N R; Kumar, C N Vijay; Pradeep, M R; Naik, Ravi; Mahesh, C S; Kumari, Manju R

    2017-12-01

    The aim of this study was to evaluate the tensile strength of die stone incorporated with sodium and calcium hypochlorite as disinfectants. Two commercially available type IV die stone (Kalrock: Kalabhai Karson Pvt., Ltd and Pearlstone: Asian Chemicals) and two commercially available disinfectant solutions (sodium hypochlorite and calcium hypochlorite: Beachem Laboratory Chemical Private Limited, Chennai and Leo Chem Private Limited, Bengaluru) were used in this study, and the tensile strength was measured using Lloyd's Universal Testing Machine. The results show that incorporating the disinfecting solutions decreases the tensile strength of both products. The effect of decreasing tensile strength on type IV gypsum product is seen more in calcium hypochlorite when compared with sodium hypochlorite disinfecting solution, and the tensile strength of Kalrock specimens is higher than Pearlstone specimens after disinfecting with sodium hypochlorite and calcium hypochlorite solution. The statistical results also show significant results in all the groups when compared with the control group. The incorporation of sodium and calcium hypochlorite disinfecting solutions is not an encouraging method for both die materials as it reduces the tensile strength of type IV gypsum product. Tensile strength of Kalstone® die material is superior than Pearlstone® die material after mixing with sodium hypochlorite and calcium hypochlorite. According to the recommendations of Americans with Disability Act (ADA) and the Centers for Disease Control and Prevention, disinfecting the whole cast without or minimal changes in physical and mechanical properties was the motto of the study. The tensile strength in type IV gypsum product plays a most important role in retrieval of cast from impression, especially in narrow tooth preparation. This study reveals that incorporating method of disinfecting solutions is not recommended as it reduces the tensile strength.

  3. Statistical data for the tensile properties of natural fibre composites

    Directory of Open Access Journals (Sweden)

    J.P. Torres

    2017-06-01

    Full Text Available This article features a large statistical database on the tensile properties of natural fibre reinforced composite laminates. The data presented here corresponds to a comprehensive experimental testing program of several composite systems including: different material constituents (epoxy and vinyl ester resins; flax, jute and carbon fibres, different fibre configurations (short-fibre mats, unidirectional, and plain, twill and satin woven fabrics and different fibre orientations (0°, 90°, and [0,90] angle plies. For each material, ~50 specimens were tested under uniaxial tensile loading. Here, we provide the complete set of stress–strain curves together with the statistical distributions of their calculated elastic modulus, strength and failure strain. The data is also provided as support material for the research article: “The mechanical properties of natural fibre composite laminates: A statistical study” [1].

  4. The tensile strength of mechanical joint prototype of lontar fiber composite

    Science.gov (United States)

    Bale, Jefri; Adoe, Dominggus G. H.; Boimau, Kristomus; Sakera, Thomas

    2018-03-01

    In the present study, an experimental activity has been programmed to investigate the effect of joint prototype configuration on tensile strength of lontar (Borassus Flabellifer) fiber composite. To do so, a series of tests were conducted to establish the tensile strength of different joint prototype configuration specimen of lontar fiber composite. In addition, post observation of macroscope was used to map damage behavior. The analysis of lontar fiber composite is a challenge since the material has limited information than others natural fiber composites materials. The results shown that, under static tensile loading, the tensile strength of 13 MPa produced by single lap joint of lontar fiber composite is highest compare to 11 MPa of tensile strength generated by step lap joint and double lap joint where produced the lowest tensile strength of 6 MPa. It is concluded that the differences of tensile strength depend on the geometric dimensions of the cross-sectional area and stress distribution of each joint prototype configuration.

  5. Enhancement of hydrophobicity and tensile strength of muga silk fiber by radiofrequency Ar plasma discharge

    International Nuclear Information System (INIS)

    Gogoi, D.; Choudhury, A.J.; Chutia, J.; Pal, A.R.; Dass, N.N.; Devi, D.; Patil, D.S.

    2011-01-01

    The hydrophobicity and tensile strength of muga silk fiber are investigated using radiofrequency (RF) Ar plasma treatment at various RF powers (10-30 W) and treatment times (5-20 min). The Ar plasma is characterized using self-compensated Langmuir and emissive probe. The ion energy is observed to play an important role in determining the tensile strength and hydrophobicity of the plasma treated fibers. The chemical compositions of the fibers are observed to be affected by the increase in RF power rather than treatment time. XPS study reveals that the ions that are impinging on the substrates are mainly responsible for the cleavage of peptide bond and side chain of amino acid groups at the surface of the fibers. The observed properties (tensile strength and hydrophobicity) of the treated fibers are found to be dependent on their variation in atomic concentration and functional composition at the surfaces. All the treated muga fibers exhibit almost similar thermal behavior as compared to the virgin one. At RF power of 10 W and treatment time range of 5-20 min, the treated fibers exhibit properties similar to that of the virgin one. Higher RF power (30 W) and the increase in treatment time deteriorate the properties of the fibers due to incorporation of more surface roughness caused by sufficiently high energetic ion bombardment. The properties of the plasma treated fibers are attempted to correlate with the XPS analysis and their surface morphologies.

  6. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    Science.gov (United States)

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  7. Effects of Laser Energies on Wear and Tensile Properties of Biomimetic 7075 Aluminum Alloy

    Science.gov (United States)

    Yuan, Yuhuan; Zhang, Peng; Zhao, Guoping; Gao, Yang; Tao, Lixi; Chen, Heng; Zhang, Jianlong; Zhou, Hong

    2018-03-01

    Inspired by the non-smooth surface of certain animals, a biomimetic coupling unit with various sizes, microstructure, and hardness was prepared on the surface of 7075 aluminum alloy. Following experimental studies were conducted to investigate the wear and tensile properties with various laser energy inputs. The results demonstrated that the non-smooth surface with biomimetic coupling units had a positive effect on both the wear resistance and tensile property of 7075 aluminum alloy. In addition, the sample with the unit fabricated by the laser energy of 420.1 J/cm2 exhibited the most significant improvement on the wear and tensile properties owing to the minimum grain size and the highest microhardness. Also, the weight loss of the sample was one-third of the untreated one's, and the yield strength, the ultimate tensile strength, and the elongation improved by 20, 20, and 34% respectively. Moreover, the mechanisms of wear and tensile properties improvement were also analyzed.

  8. Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires

    International Nuclear Information System (INIS)

    Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2013-01-01

    The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.

  9. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    OpenAIRE

    He, Jingjing; Shi, Junping; Cao, Xiaoshan; Hu, Yifeng

    2018-01-01

    Uniaxial tensile tests of basalt fiber/epoxy (BF/EP) composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the ...

  10. Mechanical Properties of Commercial Carbon Fibers Using a Single Filament Tensile Test

    International Nuclear Information System (INIS)

    Joh, Han-Ik; Song, Hae Kyung; Ku, Bon-Cheol; Lee, Sungho; Kim, Ki-Young; Kang, Phil-Hyun

    2013-01-01

    In this study, mechanical properties of commercial carbon fibers were evaluated using a single filament tensile test with various fiber gauge lengths. Tensile strength increased significantly with a decreasing length of the test specimens possibly due to small defect sites. The compliance method provided more accurate moduli of the carbon fibers, removing system errors during the single filament tensile test. The Weibull modulus revealed that shorter specimens had an inhomogeneous defect distribution, leading to a higher tensile strength and its standard deviation. X-ray diffractograms of carbon fibers showed a similar crystallinity and orientation in spite of significant differences in the fiber modulus and strength, indicating that crystalline structure of the commercial carbon fibers used in the study was not attributable to the difference in their tensile properties.

  11. The Statistical Analysis of Relation between Compressive and Tensile/Flexural Strength of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Kępniak M.

    2016-12-01

    Full Text Available This paper addresses the tensile and flexural strength of HPC (high performance concrete. The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.

  12. Tensile strength and the mining of black holes.

    Science.gov (United States)

    Brown, Adam R

    2013-11-22

    There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings.

  13. Tensile strength and fatigue strength of 6061 aluminum alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, H.; Tsujino, R. [Osaka Inst. of Tech., Asahi-ku Osaka (Japan); Sawai, T. [Osaka Sangyo Univ., Daito (Japan); Yamamoto, Y. [Setsunan Univ., Neyagawa (Japan); Ogawa, K. [Osaka Prefecture Univ., Sakai (Japan); Suga, Y. [Keio Univ., Kohoku-ku, Yokohama (Japan)

    2002-07-01

    Friction welding of 6061 aluminum alloy was carried out in order to examine the relationship between deformation heat input in the upset stage and joint performance. The joint performance was evaluated by tensile testing and fatigue testing. Stabilized tensile strength was obtained when the deformation heat input in the upset stage exceeded 200 J/s. Weld condition at the weld interface and the width of softened area affected fatigue strength more than tensile strength. That is, when the weld condition at the weld interface is good and the softened area is wide, fatigue strength increases. On the other hand, when the weld condition at the weld interface is good and the softened area is narrow, and when the weld condition at the weld interface is somewhat poor in spite of the wide softened area, fatigue strength decreases. The fatigue limit obtained by the fatigue testing revealed that, when the deformation heat input in the upset stage exceeded a certain value, sound joints could be produced. (orig.)

  14. The postirradiation tensile properties and microstructure of several vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1988-01-01

    Tensile specimens of V-15Cr-5Ti, Vanstar-7, V-3Ti-1si, and V-20Ti were irradiated at 420/degrees/C in FFTF-MOTA to a damage level of 82 dpa. Helium was preimplanted to levels up to 480 appm in selected specimens using a modified tritium trick. Irradiation hardening was the dominant effect influencing the postirradiation tensile properties, and it markedly increased the yield strength and reduced the total elogation. The V-15Cr-5Ti alloy was very sensitive to helium embrittlement, but Vanstar-7 and V-3Ti-1Si were only slightly affected. Without helium, negligible swelling (<1%) were measured in V-3Ti-1Si and V-20Ti. Preimplanted helium increased swelling in V-3Ti-1Si by increasing cavity nucleation. 11 refs., 11 figs., 3 tabs

  15. Tensile properties of interwoven hemp/PET (Polyethylene Terephthalate) epoxy hybrid composites

    Science.gov (United States)

    Ahmad, M. A. A.; Majid, M. S. A.; Ridzuan, M. J. M.; Firdaus, A. Z. A.; Amin, N. A. M.

    2017-10-01

    This paper describes the experimental investigation of the tensile properties of interwoven Hemp/PET hybrid composites. The effect of hybridization of hemp (warp) with PET fibres (weft) on tensile properties was of interest. Hemp and PET fibres were selected as the reinforcing material while epoxy resin was chosen as the matrix. The interwoven Hemp/PET fabric was used to produce hybrid composite using a vacuum infusion process. The tensile test was conducted using Universal Testing Machine in accordance to the ASTM D638. The tensile properties of the interwoven Hemp/PET hybrid composite were then compared with the neat woven hemp/epoxy composite. The results show that the strength of hemp/PET with the warp direction was increased by 8% compared to the neat woven hemp composite. This enhancement of tensile strength was due to the improved interlocking structure of interwoven Hemp/PET hybrid fabric.

  16. Tensile testing

    CERN Document Server

    2004-01-01

    A complete guide to the uniaxial tensile test, the cornerstone test for determining the mechanical properties of materials: Learn ways to predict material behavior through tensile testing. Learn how to test metals, alloys, composites, ceramics, and plastics to determine strength, ductility and elastic/plastic deformation. A must for laboratory managers, technicians, materials and design engineers, and students involved with uniaxial tensile testing. Tensile Testing , Second Edition begins with an introduction and overview of the test, with clear explanations of how materials properties are determined from test results. Subsequent sections illustrate how knowledge gained through tensile tests, such as tension properties to predict the behavior (including strength, ductility, elastic or plastic deformation, tensile and yield strengths) have resulted in improvements in materals applications. The Second Edition is completely revised and updated. It includes expanded coverage throughout the volume on a variety of ...

  17. Diametral tensile strength of two dental composites when immersed in ethanol, distilled water and artificial saliva.

    Science.gov (United States)

    Rehman, Abdur; Amin, Faiza; Abbas, Muhammad

    2014-11-01

    To examine the effect of distilled water, artificial saliva and ethanol on the tensile strength of direct tooth-coloured restorative material. The study was conducted at Dr. Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences (DUHS), Karachi, from April 2011 to September 2012. The testing was performed at the Pakistan Council of Scientific and Industrial Research (PCSIR) laboratories. Two composite resins Filtek Z250 and Spectrum TPH were tested. Specimens (13 mm x 3 mm x 2 mm) of each material were prepared in the stainless steel mould according to the manufacturers' instructions and distributed into 3 equal groups: one immersed in distilled water, the other in artificial saliva, and the last one in ethanol for 24 hours. Tensile strength was determined after 24 hours in universal Instron Testing Machine. There were 72 specimens in all; 36 (50%) each for Filtek Z250 and Spectrum TPH. The three sub-groups in each case had 12 (33.3%) specimens. For the Filtek Z250, there was no statistically significant difference between immersion in distilled water and artificial saliva, but the ethanol group presented lower tensile strength (ptensile strength compared to distilled water (ptested composite resins were affected by the immersion media and adversely affected the mechanical properties of composite resins.

  18. Effect of process parameters on tensile strength of friction stir welding A356/C355 aluminium alloys joint

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Shashi Prakash [Noida Institute of Engineering and Technology, Greater Noida (Korea, Republic of)

    2014-01-15

    In the present investigation, A356/C355 aluminium alloys are welded by friction stir welding by controlling various welding parameters. A356 and C355 aluminium alloys materials have a set of mechanical and physical properties that are ideally suited for application in aerospace and automobile industries and not widely used because of its poor weldebility. To overcome this barrier, weldebility analysis of A356 and C355 aluminium alloys with high speed steel (Wc-Co) tool has been investigated. An attempt has been made to investigate the influence of the rotational speed of the tools, the axial force and welding speed on tensile strength of A356/C355 aluminium alloys joint. The experiments were conducted on a milling machine. The main focus of investigation is to determine good tensile strength. Response surface methodology (box Behnken design) is chosen to design the optimum welding parameters leading to maximum tensile strength. The result shows that axial force increases, tensile strength decreases. Whereas tool rotational speed and welding speed increase, tensile strength increases. Optimum values of axial force (3 /KN), tool rotational speed (900 RPM) and welding speed (75 mm/min.) during welding of A356/C355 aluminium alloys joint to maximize the tensile strength (Predicted 223.2 MPa) have been find out.

  19. Effect of process parameters on tensile strength of friction stir welding A356/C355 aluminium alloys joint

    International Nuclear Information System (INIS)

    Dwivedi, Shashi Prakash

    2014-01-01

    In the present investigation, A356/C355 aluminium alloys are welded by friction stir welding by controlling various welding parameters. A356 and C355 aluminium alloys materials have a set of mechanical and physical properties that are ideally suited for application in aerospace and automobile industries and not widely used because of its poor weldebility. To overcome this barrier, weldebility analysis of A356 and C355 aluminium alloys with high speed steel (Wc-Co) tool has been investigated. An attempt has been made to investigate the influence of the rotational speed of the tools, the axial force and welding speed on tensile strength of A356/C355 aluminium alloys joint. The experiments were conducted on a milling machine. The main focus of investigation is to determine good tensile strength. Response surface methodology (box Behnken design) is chosen to design the optimum welding parameters leading to maximum tensile strength. The result shows that axial force increases, tensile strength decreases. Whereas tool rotational speed and welding speed increase, tensile strength increases. Optimum values of axial force (3 /KN), tool rotational speed (900 RPM) and welding speed (75 mm/min.) during welding of A356/C355 aluminium alloys joint to maximize the tensile strength (Predicted 223.2 MPa) have been find out.

  20. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    Science.gov (United States)

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  1. Tensile and impact properties of TZM and Mo-5% Re

    International Nuclear Information System (INIS)

    Filacchioni, G.; Casagrande, E.; Angelis, U. de; Santis, G. de; Ferrara, D.

    1994-01-01

    Some aspects of the mechanical behaviour of two molybdenum alloys, one belonging to the precipitation hardened sub-family (TZM) and the other is a solid solution Mo 5% rhenium-bearing alloy, have been investigated. Experimental data (tensile mechanical strength, ductility and impact properties of unirradiated materials) show that a difference in behaviour exists between the precipitation hardened and the solid solution strengthened alloy, but at the same time a serious discrepancy has been found between the present results and previously reported ductile to brittle transition temperature values for Mo alloys. ((orig.))

  2. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    Science.gov (United States)

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  3. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.

    Science.gov (United States)

    Drexel, Martin; Theiner, Yvonne; Hofstetter, Günter

    2018-06-12

    The present contribution deals with the experimental investigation of the time-dependent behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays, which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at different concrete ages. The creep tests as well as the companion shrinkage tests are performed in a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends on the change of moisture content, the evolution of the mass water content is determined at the center of each specimen by means of an electrolytic resistivity-based system. Together with the experimental results for compressive creep from a previous study, a consistent set of time-dependent material data, determined for the same composition of the concrete mixture and on identical specimens, is now available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both sealed and drying conditions, the respective compliance functions, and the mass water contents in sealed and unsealed, loaded and load-free specimens.

  4. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-09-15

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/{+-}45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

  5. Temperature dependency of tensile properties of GFRP composite for wind turbine blades

    International Nuclear Information System (INIS)

    Huh, Yong Hak; Kim, Jong Il; Kim, Dong Jin; Lee, Gun Chang

    2012-01-01

    In this study, the temperature dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial (0 .deg.) and triaxial (0/±45.deg) laminate composite plates were measured at four different testing temperatures-room temperature, -30 .deg. C, -50 .deg. C, and 60 .deg. C. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature

  6. The exercise-induced biochemical milieu enhances collagen content and tensile strength of engineered ligaments.

    Science.gov (United States)

    West, Daniel W D; Lee-Barthel, Ann; McIntyre, Todd; Shamim, Baubak; Lee, Cassandra A; Baar, Keith

    2015-10-15

    Exercise stimulates a dramatic change in the concentration of circulating hormones, such as growth hormone (GH), but the biological functions of this response are unclear. Pharmacological GH administration stimulates collagen synthesis; however, whether the post-exercise systemic milieu has a similar action is unknown. We aimed to determine whether the collagen content and tensile strength of tissue-engineered ligaments is enhanced by serum obtained post-exercise. Primary cells from a human anterior cruciate ligament (ACL) were used to engineer ligament constructs in vitro. Blood obtained from 12 healthy young men 15 min after resistance exercise contained GH concentrations that were ∼7-fold greater than resting serum (P Ligament constructs were treated for 7 days with medium supplemented with serum obtained at rest (RestTx) or 15 min post-exercise (ExTx), before tensile testing and collagen content analysis. Compared with RestTx, ExTx enhanced collagen content (+19%; 181 ± 33 vs. 215 ± 40 μg per construct P = 0.001) and ligament mechanical properties - maximal tensile load (+17%, P = 0.03 vs. RestTx) and ultimate tensile strength (+10%, P = 0.15 vs. RestTx). In a separate set of engineered ligaments, recombinant IGF-1, but not GH, enhanced collagen content and mechanics. Bioassays in 2D culture revealed that acute treatment with post-exercise serum activated mTORC1 and ERK1/2. In conclusion, the post-exercise biochemical milieu, but not recombinant GH, enhances collagen content and tensile strength of engineered ligaments, in association with mTORC1 and ERK1/2 activation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  7. Investigations on the tensile strength of high performance concrete incorporating silica fume

    International Nuclear Information System (INIS)

    Santanu Bhanja; Bratish Sengupta

    2005-01-01

    Though the literature is rich in reporting on silica fume concrete the technical data on tensile strength is quite limited. The present paper is directed towards developing a better understanding on the isolated contribution of silica fume on the tensile strengths of High Performance Concrete. Extensive experimentation was carried out over water-binder ratios ranging from 0.26 to 0.42 and silica fume binder ratios from 0.0 to 0.3. For all the mixes compressive, flexural and split tensile strengths were determined at 28 days. The results of the present investigation indicate that silica fume incorporation results in significant improvements in the tensile strengths of concrete. It is also observed that the optimum replacement percentage, which led to maximization of strength, is not a constant one but depends on the water- cementitious material ratio of the mix. Compared to split tensile strengths, flexural strengths have exhibited greater percentage gains in strength. Increase in split tensile strength beyond 15% silica fume replacement is almost insignificant whereas sizeable gains in flexural tensile strength have occurred even up to 25% replacements. For the present investigation transgranular failure of concrete was observed which indicate that silica fume incorporation results in significant improvements in the strength of both paste and transition zone. (authors)

  8. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4  s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  9. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Erzar, Benjamin

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504

  10. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  11. Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites

    Science.gov (United States)

    Abral, H.; Kenedy, E.

    2015-07-01

    The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix.

  12. Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites

    International Nuclear Information System (INIS)

    Abral, H; Kenedy, E

    2015-01-01

    The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix. (paper)

  13. Guidelines to come to minimized tensile strength loss upon cellulase application

    NARCIS (Netherlands)

    Lenting, H.B.M.; Lenting, H.B.M.; Warmoeskerken, Marinus

    2001-01-01

    Application of cellulase technology in the textile production process often results in a certain loss of tensile strength along with the desired performance. In this paper guidelines are given how to come to minimization or even prevention of tensile strength loss. Part of the considerations is

  14. Effect of heat treatment operations on the Rm tensile strength of silumins

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-10-01

    Full Text Available Owing to good technological properties, low weight and good corrosion resistance, aluminum-silicon alloys are widely used as a material for cast machinery components. State of macro- and microstructure of a castings manufactured from Al-Si alloys, which is determined by a shape and distribution of hardening phases, segregation of alloying constituents and impurities, as well as distribution of porosity, create conditions to obtainment of proper mechanical properties. These properties can be improved through modification of the alloy and performed heat treatment operations. The paper presents effect of modification and heat treatment process on the Rm tensile strength of a selected silumins (EN AB-AlSi9Cu3(Fe, EN AB-AlSi12CuNiMg, EN AB-AlSi17Cu1Ni1Mg. Investigated alloys were put to treatments of refining and modification, and next to heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results illustrate registered curves of melting and solidification from the ATD method and strength tests. On base of performed initial tests one determined parameters of the heat treatment process (temperature and duration of solutionig and ageing treatments enabling obtainment of improved Rm tensile strength of the investigated alloys.

  15. Kenaf Fibre Reinforced Polypropylene Composites: Effect of Cyclic Immersion on Tensile Properties

    Directory of Open Access Journals (Sweden)

    W. H. Haniffah

    2015-01-01

    Full Text Available This research studied the degradation of tensile properties of kenaf fibre reinforced polypropylene composites due to cyclic immersion into two different solutions, as well as comparison of the developed composites’ tensile properties under continuous and cyclic immersion. Composites with 40% and 60% fibre loadings were immersed in tap water and bleach for 4 cycles. Each cycle consisted of 3 days of immersion and 4 days of conditioning in room temperature (28°C and 55% humidity. The tensile strength and modulus of composites were affected by fibre composition, type of liquid of immersion, and number of cycles. The number of immersion cycles and conditioning caused degradation to tensile strength and modulus of kenaf fibre reinforced polypropylene composites. Continuous and cyclic immersion in bleach caused tensile strength of the composites to differ significantly whereas, for tensile modulus, the difference was insignificant in any immersion and fibre loadings. However, continuous immersion in the bleach reduced the tensile strength of composites more compared to cyclic immersion. These preliminary results suggest further evaluation of the suitability of kenaf fibre reinforced polypropylene composites for potential bathroom application where the composites will be exposed to water/liquid in cyclic manner due to discontinuous usage of bathroom.

  16. Relationship between surface area for adhesion and tensile bond strength--evaluation of a micro-tensile bond test.

    Science.gov (United States)

    Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H

    1994-07-01

    The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.

  17. swelling characteristics and tensile properties of natural fiber rei

    African Journals Online (AJOL)

    USER

    The swelling behavior and tensile strength of natural fiber-reinforced plastic in premium motor spirit (PMS), dual ... with fibers usually of glass fiber, Kevlar and carbon have gained ... NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.2 ...

  18. Ply Tensile Properties of Banana Stem and Banana Bunch Fibres ...

    African Journals Online (AJOL)

    Natural rubber composite lamina reinforced with BSF which were treated with a mixture of NaOH and Na2SO3 had a superior tensile strength of 4.0 MPa and Young's modulus of 147.34MPa over the untreated BSF with tensile strength and Young's Modulus of 3.7MPa and 84.30MPa respectively. Both the treated and ...

  19. Effect of phosphoric acid on the morphology and tensile properties of halloysite-polyurethane composites

    Science.gov (United States)

    Gaaz, Tayser Sumer; Luaibi, Hasan Mohammed; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.

    2018-06-01

    The high aspect ratio of nanoscale reinforcements enhances the tensile properties of pure polymer matrix. The composites were first made by adding halloysite nanotubes (HNTs) at low weight percentages of 1, 2, and 3 wt% to thermoplastic polyurethane (TPU). Then, HNTs were phosphoric acid-treated before adding to TPU at same weight percentage to create phosphoric acid HNTs-TPU composites. The samples were fabricated using injection moulding. The HNTs-TPU composites were characterized according to the tensile properties including tensile strength, tensile strain and Young's modulus. The loading has shown its highest tensile values at 2 wt% HNTs loading and same findings are shown with the samples that treated with phosphoric acid. The tensile strength increased to reach 24.65 MPa compare with the 17.7 MPa of the neat TPU showing about 26% improvement. For the phosphoric acid-treated composites, the improvement has reached 35% compared to the neat sample. Regarding the tensile stain, the improvement was about 83% at 2 wt% HNTs loading. For Young's modulus, the results obtained in this study have shown that Young's modulus is linearly improved with either the loading content or the phosphoric acid treated achieving its highest values at 3 wt% HNTs of 14.53 MPa and 16.27 MPa for untreated and treated, respectively. FESEM results showed that HNTs were well dispersed in TPU matrix. Thus, HNTs-TPU has improved tensile properties compared with pure TPU due to the addition of nanofiller.

  20. Tensile strength of concrete under static and intermediate strain rates: Correlated results from different testing methods

    International Nuclear Information System (INIS)

    Wu Shengxing; Chen Xudong; Zhou Jikai

    2012-01-01

    Highlights: ► Tensile strength of concrete increases with increase in strain rate. ► Strain rate sensitivity of tensile strength of concrete depends on test method. ► High stressed volume method can correlate results from various test methods. - Abstract: This paper presents a comparative experiment and analysis of three different methods (direct tension, splitting tension and four-point loading flexural tests) for determination of the tensile strength of concrete under low and intermediate strain rates. In addition, the objective of this investigation is to analyze the suitability of the high stressed volume approach and Weibull effective volume method to the correlation of the results of different tensile tests of concrete. The test results show that the strain rate sensitivity of tensile strength depends on the type of test, splitting tensile strength of concrete is more sensitive to an increase in the strain rate than flexural and direct tensile strength. The high stressed volume method could be used to obtain a tensile strength value of concrete, free from the influence of the characteristics of tests and specimens. However, the Weibull effective volume method is an inadequate method for describing failure of concrete specimens determined by different testing methods.

  1. Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene–clay nanocomposites

    International Nuclear Information System (INIS)

    Eslami-Farsani, Reza; Reza Khalili, S. Mohammad; Hedayatnasab, Ziba; Soleimani, Neda

    2014-01-01

    Highlights: • We studied tensile properties of basalt fiber/nanoclay-polypropylene (BF–PPCN). • Addition of nanoclay improves the yield strength and Young’s modulus of BF–PPCN. • The tensile properties of BF–PPCN are high at low temperature (−196 °C). - Abstract: In this paper, a comparative study on the tensile properties of clay reinforced polypropylene (PP) nanocomposites (PPCN) and chopped basalt fiber reinforced PP–clay nanocomposites (PPCN-B) is presented. PP matrix are filled with 1, 3 and 5 wt.% of nanoclays. The ultimate tensile strength, yield strength, Young’s modulus and toughness are measured at various temperature conditions. The thermal conditions are included the room temperature (RT), low temperature (LT) and high temperature (HT). The basal spacing of clay in the composites is measured by X-ray diffraction (XRD). Nanoscale morphology of the samples is observed by transmission electron microscopy (TEM). Addition of nanoclay improves the yield strength and Young’s modulus of PPCN and PPCN-B; however, it reduces the ultimate tensile strength. Furthermore, the addition of chopped basalt fibers to PPCN improves the Young’s modulus of the composites. The Young’s modulus and the yield strength of both PPCN and PPCN-B are significantly high at LT (−196 °C), descend at RT (25 °C) and then low at HT (120 °C)

  2. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    OpenAIRE

    Sivaraj, P.; Kanagarajan, D.; Balasubramanian, V.

    2014-01-01

    This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features....

  3. Studying of Compressive, Tensile and Flexural Strength of Concrete by Using Steel Fibers

    Directory of Open Access Journals (Sweden)

    Muslim Abdul-Ameer

    2016-12-01

    Full Text Available This research aims to study the effect of adding steel fibers on the mechanical properties of concrete. Steel fiber has a very significant effect on concrete because it delays the propagation of micro cracks that generate due to loading on concrete members such as beams and slabs, therefore ,it increases the strength of concrete. The steel fiber was used in this study as a percentage of the volume of concrete. Mix proportion was 1: 2:4 (cement: sand: gravel by volume for all mixes and using 0% as (control mix,0.1 %,0.2%,0.5 % and 1.0% of steel fibers, these ratios leads to increase the compressive, tensile ,and flexural strength of concrete, where the improvement in flexural strength was significant

  4. Experimental study of tensile strength of pharmaceutical tablets: effect of the diluent nature and compression pressure

    Directory of Open Access Journals (Sweden)

    Juban Audrey

    2017-01-01

    Full Text Available In the pharmaceutical field, tablets are the most common dosage form for oral administration in the world. Among different manufacturing processes, direct compression is widely used because of its economics interest and it is a process which avoids the steps of wet granulation and drying processes. Tablets are composed of at least two ingredients: an active pharmaceutical ingredient (API which is mixed with a diluent. The nature of the powders and the processing conditions are crucial for the properties of the blend and, consequently, strongly influence the mechanical characteristics of tablets. Moreover, tablets have to present a suitable mechanical strength to avoid crumbling or breaking when handling, while ensuring an appropriate disintegration after administration. Accordingly, this mechanical property is an essential parameter to consider. Experimental results showed that proportion of the diluent, fragmentary (DCPA or plastic (MCC, had a large influence on the tensile strength evolution with API content as well as the compression load applied during tableting process. From these results a model was developed in order to predict the tensile strength of binary tablets by knowing the compression pressure. The validity of this model was demonstrated for the two studied systems and a comparison was made with two existing models.

  5. Experimental study of tensile strength of pharmaceutical tablets: effect of the diluent nature and compression pressure

    Science.gov (United States)

    Juban, Audrey; Briançon, Stéphanie; Puel, François; Hoc, Thierry; Nouguier-Lehon, Cécile

    2017-06-01

    In the pharmaceutical field, tablets are the most common dosage form for oral administration in the world. Among different manufacturing processes, direct compression is widely used because of its economics interest and it is a process which avoids the steps of wet granulation and drying processes. Tablets are composed of at least two ingredients: an active pharmaceutical ingredient (API) which is mixed with a diluent. The nature of the powders and the processing conditions are crucial for the properties of the blend and, consequently, strongly influence the mechanical characteristics of tablets. Moreover, tablets have to present a suitable mechanical strength to avoid crumbling or breaking when handling, while ensuring an appropriate disintegration after administration. Accordingly, this mechanical property is an essential parameter to consider. Experimental results showed that proportion of the diluent, fragmentary (DCPA) or plastic (MCC), had a large influence on the tensile strength evolution with API content as well as the compression load applied during tableting process. From these results a model was developed in order to predict the tensile strength of binary tablets by knowing the compression pressure. The validity of this model was demonstrated for the two studied systems and a comparison was made with two existing models.

  6. Assessment of models predicting irradiation effects on tensile properties of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pineau, L.; Landron, C.

    2015-01-01

    In this paper, an analysis of tensile data acquired as part of the French Reactor Vessel Surveillance Program (RVSP) is produced. This program contains amongst other mechanical tests, tensile tests at 20 and 300 C degrees on non irradiated base metals and at 300 C degrees only on irradiated materials. It shows that irradiation leads to an increase in the yield strength and a decrease in the strain hardening. The exploitation of tensile results has permitted to express a relationship between yield strength increase measured and fluence value, as well as between strain hardening decrease and yield strength evolution. The use of these relations in the aim at predicting evolution of tensile properties with irradiation has then permitted to propose a methodology to model entire stress-strain curves of irradiated base metal only based on the non irradiated stress-strain curve. These predictions were successfully compared with an experimental standard case. (authors)

  7. Tensile Strength of the Al-9%Si Alloy Modified with Na, F and Cl Compounds

    Directory of Open Access Journals (Sweden)

    T. Lipiński

    2010-01-01

    Full Text Available The modification of the Al-9%Si alloy with the use of a complex modifier containing Na, F and Cl was investigated in the study. The modifier was composed of NaCl, Na3AlF6 and NaF compounds. The modifier and the liquid Al-Si alloy were kept in the crucible for 15 minutes. The modifier's effect relative to the weight of the processed alloy on its tensile strength was presented in graphic form. The results of the study indicate that the complex modifier altered the investigated properties of the eutectic Al-9%Si alloy.

  8. Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al-5Ti-1B grain refiner

    Energy Technology Data Exchange (ETDEWEB)

    Haghparast, Amin [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nourimotlagh, Masoud [Young Researchers Club, Dareshahr Branch, Islamic Azad university (Iran, Islamic Republic of); Alipour, Mohammad, E-mail: Alipourmo@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-09-15

    In this study, the effect of Al-5Ti-1B grain refiners and modified strain-induced melt activation process on an Al-Zn-Mg-Cu alloy was studied. The optimum level of Ti was found to be 0.1 wt.%. The specimens subjected to deformation ratio of 40% (at 300 Degree-Sign C) and various heat treatment times (10-40 min) and temperature (550-600 Degree-Sign C) regimes were characterized in this study. Reheating condition to obtain a fine globular microstructure was optimized. Microstructural examinations were conducted by optical and scanning electron microscopy coupled with an energy dispersive spectrometry. The optimum temperature and time in strain-induced melt activation process are 575 Degree-Sign C and 20 min, respectively. T6 heat treatment including quenching to room temperature and aging at 120 Degree-Sign C for 24 h was employed to reach to the maximum strength. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 and 332 MPa to 617 for samples refined with 2 wt.% Al-5Ti-1B before and after strain-induced melt activation process and extrusion process, respectively. Ultimate strength of Ti-refined specimens without SIMA process has a lower value than globular microstructure specimens after SIMA and extrusion process. - Highlights: Black-Right-Pointing-Pointer The effect of Al-5Ti-1B on the aluminum alloy produced by SIMA process was studied. Black-Right-Pointing-Pointer Al-5Ti-1B is an effective in reducing the grain and reagent fine microstructure. Black-Right-Pointing-Pointer Reheating condition to obtain a fine globular microstructure was optimized. Black-Right-Pointing-Pointer The optimum temperature and time in SIMA process are 575 Degree-Sign C and 20 min respectively. Black-Right-Pointing-Pointer UTS of globular structure specimens have a more value than Ti-refined specimens.

  9. A user's manual for managing database system of tensile property

    International Nuclear Information System (INIS)

    Ryu, Woo Seok; Park, S. J.; Kim, D. H.; Jun, I.

    2003-06-01

    This manual is written for the management and maintenance of the tensile database system for managing the tensile property test data. The data base constructed the data produced from tensile property test can increase the application of test results. Also, we can get easily the basic data from database when we prepare the new experiment and can produce better result by compare the previous data. To develop the database we must analyze and design carefully application and after that, we can offer the best quality to customers various requirements. The tensile database system was developed by internet method using Java, PL/SQL, JSP(Java Server Pages) tool

  10. Generating material strength standards of aluminum alloys for research reactors. Pt. 1. Yield strength values Sy and tensile strength values Su

    International Nuclear Information System (INIS)

    Tsuji, H.; Miya, K.

    1995-01-01

    Aluminum alloys are frequently used as structural materials for research reactors. The material strength standards, however, such as the yield strength values (S y ), the tensile strength values (S u ) and the design fatigue curve -which are needed to use aluminum alloys as structural materials in ''design by analysis'' - for those materials have not been determined yet. Hence, a series of material tests was performed and the results were statistically analyzed with the aim of generating these material strength standards. This paper, the first in a series on material strength standards of aluminum alloys, describes the aspects of the tensile properties of the standards. The draft standards were compared with MITI no. 501 as well as with the ASME codes, and the trend of the available data also was examined. It was revealed that the draft proposal could be adopted as the material strength standards, and that the values of the draft standards at and above 150 C for A6061-T6 and A6063-T6 could be applied only to the reactor operating conditions III and IV. Also the draft standards have already been adopted in the Science and Technology Agency regulatory guide (standards for structural design of nuclear research plants). (orig.)

  11. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalate – PBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  12. Relationship between the tensile strengths and diameters of human umbilical cords.

    Science.gov (United States)

    Fernando, D M G; Gamage, S M K; Ranmohottige, S; Weerakkody, I; Abeyruwan, H; Parakrama, H

    2018-05-01

    Mothers of alleged infanticides might claim that umbilical cord broke during precipitate delivery causing injuries detected on baby at autopsy. There is paucity of evidence regarding this possibility. The objective of the study was to determine relationship between tensile strength and diameter or weight per unit length of cord. Diameters and weights per unit length of fresh umbilical cords were determined. Tensile strengths were measured by Hounsfield Testing Machine. Relationship between tensile strength versus cord diameter and weight per unit length were analyzed. Of 122 cords, average tensile strength, diameter and weight per centimeter were 50.4 N, 7.73 mm and 6.87 g respectively. The tensile strengths were directly proportional to diameter. There was no association between tensile strength and weight per centimeter. Measurement of the diameter of cord is important during autopsy to predict tensile strength and thereby to presume whether cord could have broken by the weight of the baby. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  13. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    Science.gov (United States)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  14. Weibull modulus of hardness, bend strength, and tensile strength of Ni−Ta−Co−X metallic glass ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Henry J., E-mail: hjn2@case.edu [Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH (United States); Petersen, Alex S.; Cheung, Andrew M.; Poon, S. Joseph; Shiflet, Gary J. [University of Virginia, 395 McCormick Road, P.O. Box 400745, Charlottesville, VA 22904 (United States); Widom, Mike [Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213 (United States); Lewandowski, John J. [Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH (United States)

    2015-05-14

    In this study, the variations in mechanical properties of Ni−Co−Ta-based metallic glasses have been analyzed. Three different chemistries of metallic glass ribbons were analyzed: Ni{sub 45}Ta{sub 35}Co{sub 20}, Ni{sub 40}Ta{sub 35}Co{sub 20}Nb{sub 5}, and Ni{sub 30}Ta{sub 35}Co{sub 30}Nb{sub 5}. These alloys possess very high density (approximately 12.5 g/cm{sup 3}) and very high strength (e.g. >3 GPa). Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) were used to characterize the amorphicity of the ribbons. Mechanical properties were measured via a combination of Vickers hardness, bending strength, and tensile strength for each chemistry. At least 50 tests were conducted for each chemistry and each test technique in order to quantify the variability of properties using both 2- and 3-parameter Weibull statistics. The variability in properties and their source(s) were compared to that of other engineering materials, while the nature of deformation via shear bands as well as fracture surface features have been determined using scanning electron microscopy (SEM). Toughness, the role of defects, and volume effects are also discussed.

  15. Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy

    Science.gov (United States)

    Shi, Xiaohui; Zeng, Weidong; Sun, Yu; Han, Yuanfei; Zhao, Yongqing; Guo, Ping

    2015-04-01

    Finding the quantitative microstructure-tensile properties correlations is the key to achieve performance optimization for various materials. However, it is extremely difficult due to their non-linear and highly interactive interrelations. In the present investigation, the lamellar microstructure features-tensile properties correlations of the Ti-6Al-4V alloy are studied using an error back-propagation artificial neural network (ANN-BP) model. Forty-eight thermomechanical treatments were conducted to prepare the Ti-6Al-4V alloy with different lamellar microstructure features. In the proposed model, the input variables are microstructure features including the α platelet thickness, colony size, and β grain size, which were extracted using Image Pro Plus software. The output variables are the tensile properties, including ultimate tensile strength, yield strength, elongation, and reduction of area. Fourteen hidden-layer neurons which can make ANN-BP model present the most excellent performance were applied. The training results show that all the relative errors between the predicted and experimental values are within 6%, which means that the trained ANN-BP model is capable of providing precise prediction of the tensile properties for Ti-6Al-4V alloy. Based on the corresponding relations between the tensile properties predicted by ANN-BP model and the lamellar microstructure features, it can be found that the yield strength decreases with increasing α platelet thickness continuously. However, the α platelet thickness exerts influence on the elongation in a more complicated way. In addition, for a given α platelet thickness, the yield strength and the elongation both increase with decreasing β grain size and colony size. In general, the β grain size and colony size play a more important role in affecting the tensile properties of Ti-6Al-4V alloy than the α platelet thickness.

  16. Microstructure and tensile properties of tungsten at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tielong [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dai, Yong, E-mail: yong.dai@psi.ch [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Lee, Yongjoong [European Spallation Source, Tunavägen 24, 223 63 Lund (Sweden)

    2016-01-15

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250–300 °C for the HR tungsten and about 350 °C for the HF tungsten. - Highlights: • This work was conducted to support the development of the 5 MW spallation target for the European Spallation Source. • The effect of fabrication process on microstructure, ductile-to-brittle transition temperature and tensile behaviour was studied with hot-rolled and hot-forged tungsten. • The tungsten materials were characterized with metallography analysis, hardness measurement and tensile test in a temperature range of 25–500 °C. • The results indicate that the HR tungsten has better mechanical properties in terms of greater ductility and lower ductile-to-brittle transition temperature.

  17. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  18. Developing of tensile property database system

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, D. H.; Jeon, J.; Ryu, W. S.

    2002-01-01

    The data base construction using the data produced from tensile experiment can increase the application of test results. Also, we can get the basic data ease from database when we prepare the new experiment and can produce high quality result by compare the previous data. The development part must be analysis and design more specific to construct the database and after that, we can offer the best quality to customers various requirements. In this thesis, the tensile database system was developed by internet method using JSP(Java Server pages) tool

  19. Properties of aluminum alloys tensile, creep, and fatigue data at high and low temperatures

    CERN Document Server

    1999-01-01

    This book compiles more than 300 tables listing typical average properties of a wide range of aluminum alloys. The individual test results were compiled, plotted in various ways, and analyzed. The average values from the tensile and creep tests were then normalized to the published typical room-temperature tensile properties of the respective alloys for easy comparison. This extensive project was done by Alcoa Laboratories over a period of several years. The types of data presented include: Typical Mechanical Properties of Wrought and Cast Aluminum Alloys at Various Temperatures, including tensile properties at subzero temperatures, at temperature after various holding times at the test temperature, and at room temperature after exposure at various temperatures for various holding times; creep rupture strengths for various times at various temperatures; stresses required to generate various amounts of creep in various lengths of time; rotating-beam fatigue strengths; modulus of elasticity as a function of t...

  20. In-situ tensile test of high strength nanocrystalline bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Mike, E-mail: mike.haddad@uni-ulm.de [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany); Ivanisenko, Yulia; Courtois-Manara, Eglantine [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fecht, Hans-Jörg [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany)

    2015-01-03

    Because of its great importance in modern engineering and technology applications, steel continues to be highly relevant in the modern research field of nanocrystalline materials. Innovative processing methods and procedures are required for the production of such materials, which possess superior properties compared to their conventional counter parts. In this research, the original microstructure of a commercial C45 steel (Fe, 0.42–0.5 wt% C, 0.5–0.8 wt% Mn) was modified from ferritic–pearlitic to bainitic. Warm high pressure torsion for 5 rotations at 6 GPa and 350 °C was used to process the bainitic sample leading to an ultrafine/nano-scale grain size. A unique nano-crystalline microstructure consisting of equiaxed and elongated ferrite grains with a mean size smaller than 150 nm appeared in images taken by Transmission Electron Microscopy. Results of in-situ tensile testing in a scanning electron microscope showed very high tensile strength, on the order of 2100 MPa with a total elongation of 4.5% in comparison with 800 MPa and around 16% in the original state. Fracture occurred abruptly, without any sign of necking, and was typically caused by the stress concentration at a surface flaw. Also, stress concentrations near all surface defects were observed on the sample, visualized by the formation of shear bands. The fracture surface was covered with dimples, indicating ductile fracture. These properties are fully comparable with high strength, high alloyed steels.

  1. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Ptensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Tensile, swelling and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites

    Science.gov (United States)

    Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras

    2017-10-01

    Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.

  3. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints.

    Science.gov (United States)

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-12-01

    Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (ptensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint.

  4. High strain rate tensile properties of annealed 2 1/4 Cr--1 Mo steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Oakes, R.E. Jr.

    1975-01-01

    The high strain rate tensile properties of annealed 2 1 / 4 Cr-1 Mo steel were determined and the tensile behavior from 25 to 566 0 C and strain rates of 2.67 x 10 -6 to 144/s were described. Above 0.1/s at 25 0 C, both the yield stress and the ultimate tensile strength increased rapidly with increasing strain rate. As the temperature was increased, a dynamic strain aging peak appeared in the ultimate tensile strength-temperature curves. The peak height was a maximum at about 350 0 C and 2.67 x 10 -6 /s. With increasing strain rate, a peak of decreased height occurred at progressively higher temperatures. The major effect of strain rate on ductility occurred at elevated temperatures, where a decrease in strain rate caused an increase in total elongation and reduction in area

  5. ZrO2 nanoparticles' effects on split tensile strength of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2010-12-01

    Full Text Available In the present study, split tensile strength of self compacting concrete with different amount of ZrO2 nanoparticles has been investigated. ZrO2 nanoparticles with the average particle size of 15 nm were added partially to cement paste (Portland cement together with polycarboxylate superplasticizer and split tensile strength of the specimens has been measured. The results indicate that ZrO2 nanoparticles are able to improve split tensile strength of concrete and recover the negative effects of polycarboxylate superplasticizer. ZrO2 nanoparticle as a partial replacement of cement up to 4 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration. The increased the ZrO2 nanoparticles' content more than 4 wt. (%, causes the reduced the split tensile strength because of unsuitable dispersion of nanoparticles in the concrete matrix.

  6. Influence of Welding Time on Tensile-Shear Strength of Linear Friction Welded Birch (Betula pendula L. Wood

    Directory of Open Access Journals (Sweden)

    Jussi Ruponen

    2015-04-01

    Full Text Available The purpose of this work was to determine the optimal welding time for linear friction welding of birch (Betula pendula L. wood while keeping the other parameters constant and at similar levels compared to other species in a similar density range. Specimens with dimensions of 20 × 5 × 150 mm3 were welded together, and the influence of welding time (2.5, 3.0, 3.5, and 4.0 s on the mechanical properties of the specimens was determined. The studies included a tensile-shear strength test as well as visual estimation of wood failure percentage (WFP. Additionally, X-ray microtomographic imaging was used to investigate and characterise the bond line properties as a non-destructive testing method. The highest mean tensile-shear strength, 7.9 MPa, was reached with a welding time of 3.5 s. Generally, all four result groups showed high, yet decreasing proportional standard deviations as the welding time increased. X-ray microtomographic images and analysis express the heterogeneity of the weld line clearly as well. According to the averaged group-wise results, WFP and tensile-shear strength correlated positively with an R2 of 0.93. An extrapolation of WFP to 65% totals a tensile-shear strength of 10.6 MPa, corresponding to four common adhesive bonds determined for beech.

  7. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs.

    Science.gov (United States)

    Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua

    2017-11-10

    As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.

  8. A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression.

    Science.gov (United States)

    Persson, Ann-Sofie; Alderborn, Göran

    2018-04-01

    The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b -1 parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b -1 but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Hu, Huanhuan; Asif, Muhammad; Hussain, Shahid; She, Jia

    2015-01-01

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area

  10. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Hu, Huanhuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Hussain, Shahid [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); She, Jia [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-04-10

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area.

  11. Tensile properties of polymethyl methacrylate coated natural fabric Sterculia urens

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2009-04-01

    Full Text Available stress, Young's modulus and % elongation at break were determined using a Universal Testing Machine. The effect of alkali treatment and the polymethyl methacrylate coating on tensile properties of the fabric was studied. The morphology of the fabric...

  12. Comparative evaluation of tensile strength of Gutta-percha cones with a herbal disinfectant.

    Science.gov (United States)

    Mahali, Raghunandhan Raju; Dola, Binoy; Tanikonda, Rambabu; Peddireddi, Suresh

    2015-01-01

    To evaluate and compare the tensile strength values and influence of taper on the tensile strength of Gutta-percha (GP) cones after disinfection with sodium hypochlorite (SH) and Aloe vera gel (AV). Sixty GP cones of size 110, 2% taper, 60 GP cones F3 ProTaper, and 60 GP of size 30, 6% taper were obtained from sealed packs as three different groups. Experimental groups were disinfected with 5.25% SH and 90% AV gel except the control group. Tensile strengths of GP were measured using the universal testing machine. The mean tensile strength values for Group IA, IIA and IIIA are 11.8 MPa, 8.69 MPa, and 9.24 MPa, respectively. Results were subjected to statistical analysis one-way analysis of variance test and Tukey post-hoc test. 5.25% SH solutions decreased the tensile strength of GP cones whereas with 90% AV gel it was not significantly altered. Ninety percent Aloe vera gel as a disinfectant does not alter the tensile strength of GP cones.

  13. Effect of conventional and experimental gingival retraction solutions on the tensile strength and inhibition of polymerization of four types of impression materials

    Directory of Open Access Journals (Sweden)

    Sérgio Sábio

    2008-08-01

    Full Text Available In the present study, two types of tests (tensile strength test and polymerization inhibition test were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic, a polyether (Impregum, a condensation silicone (Xantopren and a polyvinylsiloxane (Aquasil ,3; when polymerized in contact with of one conventional (Hemostop and two experimental (Vislin and Afrin gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength

  14. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    Science.gov (United States)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  15. Computational Simulation on Facial Expressions and Experimental Tensile Strength for Silicone Rubber as Artificial Skin

    Science.gov (United States)

    Amijoyo Mochtar, Andi

    2018-02-01

    Applications of robotics have become important for human life in recent years. There are many specification of robots that have been improved and encriched with the technology advances. One of them are humanoid robot with facial expression which closer with the human facial expression naturally. The purpose of this research is to make computation on facial expressions and conduct the tensile strength for silicone rubber as artificial skin. Facial expressions were calculated by determining dimension, material properties, number of node elements, boundary condition, force condition, and analysis type. A Facial expression robot is determined by the direction and the magnitude external force on the driven point. The expression face of robot is identical with the human facial expression where the muscle structure in face according to the human face anatomy. For developing facial expression robots, facial action coding system (FACS) in approached due to follow expression human. The tensile strength is conducting due to check the proportional force of artificial skin that can be applied on the future of robot facial expression. Combining of calculated and experimental results can generate reliable and sustainable robot facial expression that using silicone rubber as artificial skin.

  16. A COMPARISON OF THE TENSILE STRENGTH OF PLASTIC PARTS PRODUCED BY A FUSED DEPOSITION MODELING DEVICE

    Directory of Open Access Journals (Sweden)

    Juraj Beniak

    2015-12-01

    Full Text Available Rapid Prototyping systems are nowadays increasingly used in many areas of industry, not only for producing design models but also for producing parts for final use. We need to know the properties of these parts. When we talk about the Fused Deposition Modeling (FDM technique and FDM devices, there are many possible settings for devices and models which could influence the properties of a final part. In addition, devices based on the same principle may use different operational software for calculating the tool path, and this may have a major impact. The aim of this paper is to show the tensile strength value for parts produced from different materials on the Fused Deposition Modeling device when the horizontal orientation of the specimens is changed.

  17. Influence of processing parameters on microstructure and tensile properties of TG6 titanium alloy

    International Nuclear Information System (INIS)

    Wang Tao; Guo Hongzhen; Wang Yanwei; Yao Zekun

    2010-01-01

    Research highlights: → This paper highlights the relationships among processing parameters, microstructure and tensile properties of TG6 high temperature titanium alloy. → The microstructural evolutions under different processing parameters were studied by the quantitative metallography, and the effects of microstructure on room and high temperature tensile properties of TG6 alloy were analysed by SEM and TEM. → Linear relationships of elongation vs. volume fraction of primary α phase and ultimate tensile strength vs. thickness of lamellar α phase were determined. - Abstract: Near-isothermal forging of the TG6 titanium alloy was conducted on microprocessor-controlled 630 ton hydraulic press at the deformation temperatures ranging from 850 deg. C to 1045 deg. C, the strain rates of 0.0008 s -1 , 0.003 s -1 and 0.008 s -1 and the deformation degree from 10% to 70%, and then different double heat treatments were applied to the forged specimens. The microstructural evolutions were researched by optical microscope and the microstructural features, i.e. volume fraction of primary α phase and thickness of lamellar α phase, were measured by means of the image analysis software. The room and high temperature tensile properties were obtained for all the specimens. Effects of microstructure on the properties were analysed by scanning electronic microscope. It was found that tenslie properties depended on microstructural features strongly. The plots of ultimate tensile strength vs. thickness of α lamellae and elongation vs. volume fraction of primary α phase produced straight lines. The liner equations were determined by fitting the experimental date, respectively. Compared to other parameters, heat treatment had more influence on the tensile strength and the tensile plasticity was more sensitive to the forging temperature.

  18. Thermal and tensile properties of alumina filled PET nanocomposites

    Science.gov (United States)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2018-05-01

    In the present investigation, nanocomposites of poly(ethylene terephathalate)(PET) with different content (0 to 5 wt.%) of alumina nanoparticles (n-Al2O3) were prepared by melt-extrusion technique. Morphological characterization of samples was examined by transmission electron microscopy (TEM). Morphological analysis revealed that degree of dispersion of alumina nanoparticles (ANPs) was increased at lower content (i.e. upto 2 wt.%), which observed by TEM. Thermal and tensile measurements were carried out using and differential scanning calorimetry (DSC) and universal testing machine (UTM). The thermal analysis showed that the glass transition termperature (Tg), melting temperature (Tm), crystallization temperature (Tc) of PET/alumina nanocomposites (PNCs) were higher than neat PET (PET0). The heat enthalpy (ΔHm) of crystallization for PNCs was increased compared to PET0, which indicates that degree of crystallinity of PNCs also increased compared to PET0. The half-time (t0.5) of crystallization of PNCs were decreased compared to PET0 which indicates that the incorporation of ANPs nucleate the PET molecular chains and allowing the easily crystallization during nonisothermal process. The tensile analysis revealed that the tensile elastic modulus (i.e. Young's modulus) of PNCs increased almost linearly with increasing the content of ANPs while tensile elongation at break decreased nonlinearly. The tensile strength of PNCs increased with a 1 wt.% of ANPs whereas the higher content of ANPs decreased the tensile strength.

  19. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.

    2014-01-01

    Full Text Available This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the mechanical properties of concrete materials and it is also chosen due to certain economic reasons. The foamed concrete used in this study was cured at a relative humidity of 70% and a temperature of ±28°C. The improvement of mechanical properties was due to a significant densification in the microstructure of the cement paste matrix in the presence of silica fume hybrid supplementary binder as observed from micrographs obtained in the study. The overall results showed that there is a potential to utilize silica fume in foamed concrete, as there was a noticeable enhancement of thermal and mechanical properties with the addition of silica fume.

  20. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Bachtiar, D.; Sapuan, S.M.; Hamdan, M.M.

    2008-01-01

    A study on the effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites is presented in this paper. The treatment was carried out using sodium hydroxide (NaOH) solutions at two different concentrations and three different soaking times. The hydrophilic nature of sugar palm fibre makes it difficult to adhere to hydrophobic epoxy and therefore posed the problem of interfacial bonding between fibre and matrix and such treatment was needed to alleviate such problem. The composite specimens were tested for tensile property determination. Some fractured specimens were examined under scanning electron microscope (SEM) to study the microstructure of the materials. Inconsistent results were obtained for tensile strengths, which indicate that the treatment is not very effective yet to improve the interfacial bonding. However, for tensile modulus, the results are much higher than untreated fibre composite specimens, which proved the effectiveness of the treatment

  1. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shen

    2013-01-01

    Full Text Available Graphene nanoplatelets (GNPs are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.

  2. The effects of sterilization on the tensile strength of orthodontic wires.

    Science.gov (United States)

    Staggers, J A; Margeson, D

    1993-01-01

    The purpose of this study was to evaluate the effect of sterilization on the tensile strength of 0.016" beta-titanium, nickel titanium and stainless steel wires. Three common methods of sterilization--autoclaving, dry heat and ethylene oxide--were evaluated in three test trials involving zero, one and five sterilization cycles. For each of the test trials, five pieces each of 0.016" TMA, 0.016" Sentalloy and 0.016" Tru-chrome stainless steel wires were sterilized using a standard autoclave. Five other pieces of each of the same wires were sterilized in a dryclave, while an additional five pieces of each of the three wire types were sterilized using ethylene oxide. The ultimate tensile strengths of the wires were then determined using an Instron Universal Testing Machine. The data were compared for statistical differences using analysis of variance. The results showed that dry heat sterilization significantly increased the tensile strength of TMA wires after one cycle, but not after five cycles. Autoclaving and ethylene oxide sterilization did not significantly alter the tensile strength of TMA wires. Dry heat and autoclave sterilization also significantly increased the tensile strength of Sentalloy wires, but the mean strength after five sterilization cycles was not significantly different than after one cycle. Ethylene oxide sterilization of Sentalloy wires did not significantly alter the tensile strengths of that wire. There were no significant differences in the tensile strengths of the stainless steel wires following zero, one or five cycles for any of the sterilization methods.

  3. Tensile and dimensional properties of wood strands made from plantation southern pine lumber

    Science.gov (United States)

    Qinglin Wu; Zhiyong Cai; Jong N. Lee

    2005-01-01

    Working stresses and performance of strand composite lumber largely depend upon the properties of each individual strand. Southern pine strands from plantation lumber grown in southern Louisiana were investigated in this study in order to understand strand behaviors. The effects of hot-pressing and resin application on tensile modulus, strength, and dimensional...

  4. Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites

    Science.gov (United States)

    Amir, S. M. M.; Sultan, M. T. H.; Jawaid, M.; Cardona, F.; Ishak, M. R.; Yusof, M. R.

    2017-12-01

    Hybrid composites with natural and synthetic fibers have captured the interests of many researchers. In this work, Kevlar/oil palm Empty Fruit Bunch (EFB)/Kevlar and carbon/oil palm EFB hybrid/carbon composites were prepared using hand lay-up technique by keeping the oil palm EFB fiber as the core material. The tensile properties which include tensile strength, tensile modulus and elongation at break were investigated. It is observed that the tensile strength and modulus for carbon/oil palm EFB/carbon hybrid composites were much higher as compared with Kevlar/oil palm EFB/Kevlar hybrid composites. However, the elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites exhibited higher value as compared to carbon/oil palm EFB/carbon hybrid composites and oil palm EFB/epoxy composites. The tensile strength for carbon/oil palm EFB/carbon hybrid composites is 93.6 MPa and the tensile modulus for carbon/oil palm EFB/carbon hybrid composites is 6.5 GPa. The elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites is 3.6%.

  5. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2018-01-01

    Full Text Available Uniaxial tensile tests of basalt fiber/epoxy (BF/EP composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the fiber orientation angle is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all increase with increasing fiber volume fraction. A certain degree of fiber clustering appears in the epoxy resin when the basalt fiber volume fraction is >1.2%. The fiber equidistribution coefficient and clustering fiber content were used to characterize the basalt fiber clustering effect. With the increase of fiber volume fraction, the clustering fiber content gradually increased, but the fiber equidistribution coefficient decreased. Meanwhile, based on Tsai theory, a geometric model and a tensile mechanical model of the clustering fiber are established. By considering the fiber clustering effect, the BF/EP composite material tensile strength is calculated, and the calculated values are close to the experimental results.

  6. Handbook for tensile properties of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Chung, M. K.; Han, C. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    Database system of nuclear materials has not been developed and the physical and mechanical properties of materials used in nuclear power plant are not summarized systematically in Korea. Although Korea designs nuclear power plant, many materials used in nuclear power plant are imported because we do not have database system of nuclear material yet and it was hard to select a proper material for the structural materials of nuclear power plant. To develop database system of nuclear materials, data of mechanical, corrosion, irradiation properties are needed. Of theses properties, tensile properties are tested and summarized in this report. Tensile properties of stainless steel used in nuclear reactor internal were investigated. Data between Korea Atomic Energy Research Institute and foreign laboratory were compared to determine the precision of the result. To develope database system, materials, chemical composition, heat treatment, manufacturing process, and grain size were classified. Tensile properties were tested and summarized to use input data of database system. 9 figs., 9 tabs. (Author)

  7. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    International Nuclear Information System (INIS)

    Cruz, P; Shoemake, E D; Adam, P; Leachman, J

    2015-01-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength. (paper)

  8. Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Hyeon; Han, Seung-Wook; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2017-08-15

    High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

  9. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  10. Swelling Characteristics and Tensile Properties of Natural Fiber ...

    African Journals Online (AJOL)

    The swelling behavior and tensile strength of natural fiber-reinforced plastic in premium motor spirit (PMS), dual purpose kerosene (DPK) and sea water have been studied. Composite formed by reinforcing polyester resin with Okam fibers was immersed in the selected solvents for 16 weeks (4 months). Swelling ...

  11. Tensile strength of structural concrete repaired with hi-bond polymer modified mortar

    International Nuclear Information System (INIS)

    Khaskheli, G.B.

    2009-01-01

    Repair of cracks in concrete is often required to save the concrete structures. Appearance of crack in concrete is bound with the tensile strength of concrete. Recently a cement factory in Sindh has launched a HBPMM (Hi-Bond Polymer Modified Mortar) that can be used as a concrete repairing material instead of normal OPC (Ordinary Portland Cement). It is needed to investigate its performance compared to that of OPC. In total 144 concrete cylinders (150x300mm) having strength of 3000 and 5000 psi were manufactured. These cylinders were then splitted by using a UTM (Universal Testing Machine) and their actual tensile strength was obtained. The concrete cylinders were then repaired with different applications of HBPMM and arc. The repaired samples were again splitted at different curing ages (3, 7 and 28 days) and their tensile strength after repair was obtained. The results show that the concrete cylinders repaired with HBPMM could give better tensile strength than that repaired with arc, the tensile strength of concrete cylinders after repair could increase with increase in the application of repairing material i.e. HBPMM or OPC and with curing time, and HBPMM could remain more effective in case of rich mix concrete than that of normal mix concrete. (author)

  12. Mass variation effect of teki grass (cyperus rotundus) composite against tensile strength and density

    Science.gov (United States)

    Rafiq Yanhar, Muhammad; Haris Nasution, A.

    2018-05-01

    The primary purpose of this study is to determine the tensile strength using ASTM D638 - 02a type IVB and density of teki grass (Cyperus rotundus) composite. The production process is carried out by mass variation of 2 gr, 3 gr, and 4 gr. Hand lay-up method with three repetitions is applied. Teki grass is chosen because it is easy to find and has some advantages biodegradable, harmless to health, available in large quantities, and cost-efficient. The test result showed the largest tensile strength is 21,61 MPa at 2-gram mass fiber. Fiber addition to 3 gram and 4-gram cause tensile strength decreases to 18,51 MPa and 11,65 MPa. It happens because the fibers are random and spread in all directions, so many fibers are undirectional with the tensile force. Beside that fibers addition made matrix volume reduced and a bond between fiber and matrix decreases, finally make fiber unable to hold the tensile force properly. It is recommended to use another type of ASTM D638 - 02a which has a larger narrow section like type I (13 mm) and type III (19mm) so specimens are not broken when removed from the mold, and there isn’t any decrease in tensile strength.Density test showed that fiber mass does not significantly affect the density.

  13. Influence of Simulated Acid Rain Corrosion on the Uniaxial Tensile Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Ying-zi Zhang

    2012-01-01

    Full Text Available An experimental study on the uniaxial tensile property of concrete exposed to the acid rain environment was carried out. Acid rain with pH level of 1.0 was deposed by the mixture of sulfate and nitric acid solution in the laboratory. Dumbbell-shaped concrete specimens were immersed in the simulated acid rain completely. After being exposed to the deposed mixture for a certain period, uniaxial tensile test was performed on the concrete specimens. The results indicate that elastic modulus, tensile strength, and peak strain have a slight increase at the initial corrosion stage, and with the extension of corrosion process, elastic modulus and tensile strength decrease gradually, while the peak strain still increases. It is found that the compressive strength is more sensitive than the tensile strength in aggressive environment. Based on the experimental results, an equation was proposed to describe the ascending branch of the stress-strain curve of the concrete corroded by acid rain.

  14. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires

    International Nuclear Information System (INIS)

    Magagnosc, D.J.; Kumar, G.; Schroers, J.; Felfer, P.; Cairney, J.M.; Gianola, D.S.

    2014-01-01

    Ion irradiation of thermoplastically molded Pt 57.5 Cu 14.3 Ni 5.7 P 22.5 metallic glass nanowires is used to study the relationship between glass structure and tensile behavior across a wide range of structural states. Starting with the as-molded state of the glass, ion fluence and irradiated volume fraction are systematically varied to rejuvenate the glass, and the resulting plastic behavior of the metallic glass nanowires probed by in situ mechanical testing in a scanning electron microscope. Whereas the as-molded nanowires exhibit high strength, brittle-like fracture and negligible inelastic deformation, ion-irradiated nanowires show tensile ductility and quasi-homogeneous plastic deformation. Signatures of changes to the glass structure owing to ion irradiation as obtained from electron diffraction are subtle, despite relatively large yield strength reductions of hundreds of megapascals relative to the as-molded condition. To reconcile changes in mechanical behavior with glass properties, we adapt previous models equating the released strain energy during shear banding to a transit through the glass transition temperature by incorporating the excess enthalpy associated with distinct structural states. Our model suggests that ion irradiation increases the fictive temperature of our glass by tens of degrees – the equivalent of many orders of magnitude change in cooling rate. We further show our analytical description of yield strength to quantitatively describe literature results showing a correlation between severe plastic deformation and hardness in a single glass system. Our results highlight not only the capacity for room temperature ductile plastic flow in nanoscaled metallic glasses, but also processing strategies capable of glass rejuvenation outside of the realm of traditional thermal treatments

  15. Tensile properties of unirradiated PCA from room temperature to 7000C

    International Nuclear Information System (INIS)

    Braski, D.N.; Maziasz, P.J.

    1983-01-01

    The tensile properties of Prime Candidate Alloy (PCA) austenitic stainless steel after three different thermomechanical treatments were determined from room temperature to 700 0 C. The solution-annealed PCA had the lowest strength and highest ductility, while the reverse was true for the 25%-cold-worked material. The PCA containing titanium-rich MC particles fell between the other two heats. The cold-worked PCA had nearly the same tensile properties as cold-worked type 316 stainless steel. Both alloys showed ductility minima at 300 0 C

  16. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    Science.gov (United States)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  17. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  18. Effects of Elevated Temperature Treatment on Compositions and Tensile Properties of Several Kinds of Basalt Fibers

    Directory of Open Access Journals (Sweden)

    CHEN Jing

    2017-06-01

    Full Text Available Five kinds of domestic basalt fibers were studied for the changes of chemical compositions, physical properties and tensile properties of these fibers before and after 200-800℃ treatment in air atmosphere and in nitrogen atmosphere. These works were done mainly by means of X-ray fluorescence spectrometry and fiber monofilament tensile testing methods in order to understand the elevated temperature resistance of basalt fiber. The experimental results show that the surface of basalt fibers becomes smoother with slightly smaller in diameter and mass reduction at the same time, due to the removal of fiber surface treatment agent after elevated temperature treatment in air atmosphere. Mass fractions of SiO2 and Al2O3 decrease while mass fractions of FeO+Fe2O3, CaO and MgO increase, among which the mass fraction of FeO+Fe2O3 increase the most with the maximum increase of 21%. The monofilament tensile strength of basalt fiber is reduced after 200℃ treatment and the maximum strength retention percentage is 98.3%. The monofilament tensile strength reduces evidently after 400℃ treatment and the maximum strength retention percentage is 64.6%. Moreover, the strength retention percentages of five kinds of basalt fibers are all less than 20% after 800℃ treatment. In addition, the fiber elongation at break decreases with the increase of treating temperature and the elastic modulus increases. Compared with that in air atmosphere, strength retention rate of basalt fiber is higher and tensile properties are more stable in nitrogen atmosphere.

  19. Effect of fluoride mouthwash on tensile strength of stainless steel orthodontic archwires

    Science.gov (United States)

    Fatimah, D. I.; Anggani, H. S.; Ismah, N.

    2017-08-01

    Patients with orthodontic treatment are commonly recommended to use a fluoride mouthwash for maintaining their oral hygiene and preventing dental caries. However, fluoride may affect the characteristics of stainless steel orthodontic archwires used during treatment. The effect of fluoride mouthwash on the tensile strength of stainless steel orthodontic archwires is still unknown. The purpose of this study is to know the effect of fluoride mouthwash on the tensile strength of stainless steel orthodontic archwires. Examine the tensile strength of 0.016 inch stainless steel orthodontic archwires after immersion in 0.05%, 100 ml fluoride mouthwash for 30, 60, and 90 min. There is no statistically significant difference in the tensile strength of stainless steel orthodontic archwires after immersed in fluoride mouthwash. The p-values on immersion fluoride mouthwash for 30, 60, and 90 min consecutively are 0.790; 0.742; and 0.085 (p > 0.05). The use of fluoride mouthwash did not have an effect on the tensile strength of stainless Steel orthodontic archwires.

  20. Colour Fastness and Tensile Strength of Cotton Fabric Dyed with Natural Extracts of Alkanna tinctoria by Continuous Dyeing Technique

    International Nuclear Information System (INIS)

    Khattak, S. P.; Rafique, S.; Inayat, F.; Ahmad, B.

    2015-01-01

    A natural dye extracted from the roots of alkanet (Alkanna tinctoria) was applied on cotton fabric by pad-steam dyeing technique. The study was designed to evaluate the colour fastness and tensile properties of dyed cotton after using various mordants, cationizing agents, UV absorbers and crosslinkers with this natural dye. Metallic mordants included aluminium sulphate, copper sulphate, ferric chloride, potassium dichromate and hydrated potassium aluminum sulphate or alum. Alkanet root extract produced variety of green shades with different dyeing auxiliaries. Better wash, light, crocking fastness; good colour coordinates such as chroma, hue, colour strength and increase in tensile strength was accomplished with post-mordanting of CuSO/sub 4/. Cationization of cotton with quaternary ammonium compound (both pre-treatment and post-treatment) and post-finishing with soft polyurethane emulsion has enhanced the fastness properties, tensile strength as well as relative colour strength (K/S) , whereas, reactive UV absorber based on oxalanilide and heterocyclic compound as UV absorber greatly increased the light fastness of alkanet dyed cotton. Crosslinkers applied with alkanet dye on cotton (methylolation product based on glyoxalmonourein, modified dimethyloldihydroxyethylene urea, modified dihydroxy ethylene urea) also improved the fastness but could not bring further development in the shade and K/S value of the dyed sample. (author)

  1. design of ceramic membrane supports: permeability, tensile strength and stress

    NARCIS (Netherlands)

    Biesheuvel, Pieter Maarten; Biesheuvel, P.M.; Verweij, H.

    1999-01-01

    A membrane support provides mechanical strength to a membrane top layer to withstand the stress induced by the pressure difference applied over the entire membrane and must simultaneously have a low resistance to the filtrate flow. In this paper an experimental and a theoretical approach toward the

  2. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    Science.gov (United States)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  3. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  4. Strength analysis of aged polymer composites subjected to tensile loads

    Science.gov (United States)

    Valesyan, S.

    2018-04-01

    It follows from the obtained data that the change of durability of the getinacks in stretching significantly depends on the pressing pressure value both at the age of 1 year and at the age of 4 years. According to the data, in the case of samples of the first series, the ageing has not practically affected the durability of getinacks in stretching. In the case of samples of other series, the increase of age from 1 year to 4 years results in an increase of the getinacks durability, in particular, the increase is about 9% for the third series. Comparing the values of failure tensile stresses given in the handbook of electrotechnics materials [1] with the data obtained by experimental investigation of aged glass textolite (GFRP composite-laminate) with the woven fiber orientation 0° and 90°, one can see a corresponding increase by approximately 25% and 35%. The test results are approximated and compared with the experimental data. The corresponding figures are plotted on the basis of these data.

  5. Effect of T6 heat treatment on tensile strength of EN AB-48000 alloy modified with strontium

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2011-07-01

    Full Text Available Among alloys of non-ferrous metals, aluminum alloys have found their broadest application in foundry industry. Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron. The silumins can be characterized by high mechanical properties. To upgrade mechanical properties of a castings made from silumins one makes use of heat treatment, what leads to change of their structure and advantageously affects on mechanical properties of the silumins. In the paper are presented test results concerning effect of dispersion hardening on change of tensile strength of EN AB-48000 silumin modified with strontium. Investigated alloy was melted in electric resistance furnace. Temperature ranges of solution heat treatment and ageing heat treatment were selected on base of curves from ATD method, recorded for refined alloy and for modified alloy. The heat treatment resulted in change of Rm tensile strength, while performed investigations have enabled determination of temperatures and durations of solution heat treatment and ageing heat treatment, which precondition obtainment of the best tensile strength Rm of the investigated alloy.

  6. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  7. Effects of annealing on tensile property and corrosion behavior of Ti-Al-Zr alloy

    International Nuclear Information System (INIS)

    Kim, Tae-Kyu; Choi, Byung-Seon; Jeong, Yong-Hwan; Lee, Doo-Jeong; Chang, Moon-Hee

    2002-01-01

    The effects of annealing on the tensile property and corrosion behavior of Ti-Al-Zr alloy were evaluated. The annealing in the temperature range from 500 to 800 deg. C for 1 h induced the growth of the grain and the precipitate sizes. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. However, the results of corrosion test in an ammonia aqueous solution of pH 9.98 at 360 deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 220 days also increased with the annealing temperature. It could be attributed to the growth of Fe-rich precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  8. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  9. Tensile strength decreases and perfusion pressure of 3-holed polyamide epidural catheters increases in long-term epidural infusion.

    Science.gov (United States)

    Kim, Pascal; Meyer, Urs; Schüpfer, Guido; Rukwied, Roman; Konrad, Christoph; Gerber, Helmut

    2011-01-01

    Epidural analgesia is an established method for pain management. The failure rate is 8% to 12% due to technical difficulties (catheter dislocation and/or disconnection; partial or total catheter occlusion) and management. The mechanical properties of the catheters, like tensile strength and flow rate, may also be affected by the analgesic solution and/or the tissue environment. We investigated the tensile strength and perfusion pressure of new (n=20), perioperatively (n=30), and postoperatively (n=73) used epidural catheters (20-gauge, polyamide, closed tip, 3 side holes; Perifix [B. Braun]). To prevent dislocation, epidural catheters were taped (n=5) or fixed by suture (n=68) to the skin. After removal, mechanical properties were assessed by a tensile-testing machine (INSTRON 4500), and perfusion pressure was measured at flow rates of 10, 20, and 40 mL/h. All catheters demonstrated a 2-step force transmission. Initially, a minimal increase of length could be observed at 15 N followed by an elongation of several cm at additional forces (7 N). Breakage occurred in the control group at 23.5±1.5 N compared with 22.4±1.6 N in perioperative and 22.4±1.7 N in postoperative catheters (Ptensile strength, whereas perfusion pressure at clinically used flow rates (10 mL/h) increased significantly from 19±1.3 to 44±72 mm Hg during long-term (≥7 days) epidural analgesia (Ptensile strength or perfusion pressure. Epidural catheter use significantly increases the perfusion pressure and decreases the tensile strength. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine

  10. Corticosteroids reduce the tensile strength of isolated collagen fascicles

    DEFF Research Database (Denmark)

    Haraldsson, Bjarki Thor; Langberg, Henning; Aagaard, Per

    2006-01-01

    Overuse tendon injuries are frequent. Corticosteroid injections are commonly used as treatment, although their direct effects on the material properties of the tendon are poorly understood.......Overuse tendon injuries are frequent. Corticosteroid injections are commonly used as treatment, although their direct effects on the material properties of the tendon are poorly understood....

  11. Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN

    Directory of Open Access Journals (Sweden)

    E. Gülbandılar

    2017-01-01

    Full Text Available This study was designed to investigate with two different artificial neural network (ANN prediction model for the behavior of concrete containing zeolite and diatomite. For purpose of constructing this model, 7 different mixes with 63 specimens of the 28, 56 and 90 days splitting tensile strength experimental results of concrete containing zeolite, diatomite, both zeolite and diatomite used in training and testing for ANN systems was gathered from the tests. The data used in the ANN models are arranged in a format of seven input parameters that cover the age of samples, Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer and an output parameter which is splitting tensile strength of concrete. In the model, the training and testing results have shown that two different ANN systems have strong potential as a feasible tool for predicting 28, 56 and 90 days the splitting tensile strength of concrete containing zeolite and diatomite.

  12. Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.

    Science.gov (United States)

    Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2010-06-01

    The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere.

  13. The effect of pretreatment with fluoride on the tensile strength of orthodontic bonding

    International Nuclear Information System (INIS)

    Wang, W.N.; Sheen, D.H.

    1991-01-01

    White spot decalcifications and caries occurring adjacent to bonded orthodontic brackets have long been a concern to orthodontists. One procedure suggested to overcome this problem is fluoride treatment prior to bonding. The purpose of this study was to compare the tensile bond strength of orthodontic self-cured resin from Concise on teeth rinsed 4 minutes in 1.23% APF with untreated controls. Measurements were made on an Instron machine. Debonding interfaces were observed with a scanning electron microscope and energy dispersive x-ray spectrometry. Distributions were calculated. The tensile bond strengths of the fluoride-treated teeth and the untreated teeth were not significantly different. The debonding interfaces between resin and bracket base, within the resin itself, and between enamel and resin were similar in the two experimental groups. However, greater enamel detachment was seen within the fluoride pretreatment group. So while fluoride pretreatment does not significantly affect tensile bond strength, it may cause enamel detachment after debonding

  14. Empirical relations for tensile properties of austenitic stainless steels irradiated in mixed-spectrum reactors

    International Nuclear Information System (INIS)

    Grossbeck, M.L.

    1991-01-01

    An assessment has been made of available tensile property data relevant to the design of fusion reactors, especially near term devices expected to operate at lower temperatures than power reactors. Empirical relations have been developed for the tensile properties as a functions of irradiation temperature for neutron exposures of 10-15, 20, 30, and 50 dpa. It was found that yield strength depends little on the particular austenitic alloy and little on the helium concentration. Strength depends upon initial condition of the alloy only for exposures of less than 30 dpa. Uniform elongation was found to be more sensitive to alloy and condition. It was also more sensitive than strength to helium level. However, below 500deg C, helium only appeared to have an efect at 10-15 dpa. At higher temperatures, helium embrittlement was apparent, and its threshold temperature decreased with increasing neutron exposure level. (orig.)

  15. INVESTIGATION OF THE EFFECTS OF DIFFERENT EDGE JOINT ELEMENTS ON DIAGONAL TENSILE STRENGTH IN FURNITURE EDGE JOINTS

    Directory of Open Access Journals (Sweden)

    Arif GÜRAY

    2002-01-01

    Full Text Available In this work, the diagonal tensile strength of furniture edge joints such as wooden dowel, minifix, and alyan screw was investigated in panel-constructed boards for Suntalam and MDF Lam. For this purpose, a diagonal tensile strength test was applied to the 72 samples. According to the results, the maximum diagonal tensile strength was found to be in MDF Lam boards that jointed with alyan screw.

  16. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact

    International Nuclear Information System (INIS)

    Chang, Litao; Sun, Wenru; Cui, Yuyou; Yang, Rui

    2014-01-01

    Inconel 718 powders have been hot-isostatic-pressed (HIPed) at representative temperatures to investigate the variations in microstructure, tensile properties and tensile fracture mode of the powder compact. Microstructure of the powder compacts were characterized by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and so on. The results showed that the interdendritic precipitates inherited from the powders were partially retained in the powder compacts when the powders were HIPed at or below 1210 °C but were eliminated when HIPed at and above 1260 °C. The grain size uniformity of the powder compacts first increases and then decreases with increasing HIPing temperature. Prior particle boundaries (PPBs) were observed in the powder compacts HIPed at and below 1260 °C but was eliminated when HIPed at 1275 °C. The PPBs were decorated with carbide particles, the amount of the carbide particles at the PPBs decreases with increasing HIPing temperature. Most of the PPBs were pinned by the carbide particles in the compacts HIPed at 1140 °C. When the HIPing temperature was increased to 1210 °C and 1260 °C, a large number of PPBs de-pinned and moved beyond the pinning carbide particles, leading to grain growth and leaving carbide particles at the site of the original PPBs within the new grains. With increasing HIPing temperature, the 0.2% yield strength of the powder compacts at 650 °C decreases, the tensile elongation increases, and the tensile fracture mode changed from inter-particle dominant fracture to fully dimple ductile fracture

  17. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Litao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); University of Chinese Academy of Sciences, Beijing (China); Sun, Wenru; Cui, Yuyou [Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Yang, Rui, E-mail: ryang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China)

    2014-04-01

    Inconel 718 powders have been hot-isostatic-pressed (HIPed) at representative temperatures to investigate the variations in microstructure, tensile properties and tensile fracture mode of the powder compact. Microstructure of the powder compacts were characterized by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and so on. The results showed that the interdendritic precipitates inherited from the powders were partially retained in the powder compacts when the powders were HIPed at or below 1210 °C but were eliminated when HIPed at and above 1260 °C. The grain size uniformity of the powder compacts first increases and then decreases with increasing HIPing temperature. Prior particle boundaries (PPBs) were observed in the powder compacts HIPed at and below 1260 °C but was eliminated when HIPed at 1275 °C. The PPBs were decorated with carbide particles, the amount of the carbide particles at the PPBs decreases with increasing HIPing temperature. Most of the PPBs were pinned by the carbide particles in the compacts HIPed at 1140 °C. When the HIPing temperature was increased to 1210 °C and 1260 °C, a large number of PPBs de-pinned and moved beyond the pinning carbide particles, leading to grain growth and leaving carbide particles at the site of the original PPBs within the new grains. With increasing HIPing temperature, the 0.2% yield strength of the powder compacts at 650 °C decreases, the tensile elongation increases, and the tensile fracture mode changed from inter-particle dominant fracture to fully dimple ductile fracture.

  18. Comparison of polymer-based temporary crown and fixed partial denture materials by diametral tensile strength.

    Science.gov (United States)

    Ha, Seung-Ryong; Yang, Jae-Ho; Lee, Jai-Bong; Han, Jung-Suk; Kim, Sung-Hun

    2010-03-01

    The purpose of this study was to investigate the diametral tensile strength of polymer-based temporary crown and fixed partial denture (FPD) materials, and the change of the diametral tensile strength with time. One monomethacrylate-based temporary crown and FPD material (Trim) and three dimethacrylate-based ones (Protemp 3 Garant, Temphase, Luxtemp) were investigated. 20 specimens (ø 4 mm × 6 mm) were fabricated and randomly divided into two groups (Group I: Immediately, Group II: 1 hour) according to the measurement time after completion of mixing. Universal Testing Machine was used to load the specimens at a cross-head speed of 0.5 mm/min. The data were analyzed using one-way ANOVA, the multiple comparison Scheffe test and independent sample t test (α = 0.05). Trim showed severe permanent deformation without an obvious fracture during loading at both times. There were statistically significant differences among the dimethacrylate-based materials. The dimethacrylate-based materials presented an increase in strength from 5 minutes to 1 hour and were as follows: Protemp 3 Garant (23.16 - 37.6 MPa), Temphase (22.27 - 28.08 MPa), Luxatemp (14.46 - 20.59 MPa). Protemp 3 Garant showed the highest value. The dimethacrylate-based temporary materials tested were stronger in diametral tensile strength than the monomethacrylate-based one. The diametral tensile strength of the materials investigated increased with time.

  19. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  20. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion

    Science.gov (United States)

    Sun, Jingfeng; Zhao, Feng; Yao, Yue; Jin, Zhen; Liu, Xu; Huang, Yudong

    2017-08-01

    Most of the surface modification technologies for carbon fibers, no matter in laboratory scale or for commercial manufacture, are accompanied by a simultaneous decrease in tensile strength. In this paper, a feasible and high efficient strategy for carbon fiber treatment which could obviously improve both tensile strength and interfacial adhesion was proposed. Continuously moving carbon fibers were treated with atmospheric helium plasma for 1 min, followed by a 5 min pyrolytic carbon deposition using ethanol as precursor at 800 °C. The effects of the new approach were characterized by SEM, AFM, nanoindentation, XPS, Raman, wettability analysis, single fiber tensile strength testing and single fiber pull-out testing. After modification, pyrolytic carbon coating was deposited on the fiber surface uniformly, and the roughness and surface energy increased significantly. The single fiber tensile testing results indicate that the resulting fiber strength increased 15.7%, rising from 3.13 to 3.62 GPa. Meanwhile, the interfacial shear strength of its epoxy composites increased from 65.3 to 83.5 MPa. The comparative studies of carbon fibers modified with commercial anodic oxidation and sizing were also carried out. The results demonstrate that the new method can be utilized in the carbon fiber manufacture process and is more efficient than the traditional approaches.

  1. Effect of gap distance on tensile strength of preceramic base metal solder joints.

    Science.gov (United States)

    Fattahi, Farnaz; Motamedi, Milad

    2011-01-01

    In order to fabricate prostheses with high accuracy and durability, soldering techniques have been introduced to clinical dentistry. However, these prostheses always fail at their solder joints. The purpose of this study was to evaluate the effect of gap distance on the tensile strength of base metal solder joints. Based on ADA/ISO 9693 specifications for tensile test, 40 specimens were fabricated from a Ni-Cr alloy and cut at the midpoint of 3-mm diameter bar and placed at desired positions by a specially designed device. The specimens were divided into four groups of 10 samples according to the desired solder gap distance: Group1: 0.1mm; Group2: 0.25mm; Group3: 0.5mm; and Group4: 0.75mm. After soldering, specimens were tested for tensile strength by a universal testing machine at a cross-head speed of 0.5mm/min with a preload of 10N. The mean tensile strength values of the groups were 162, 307.8, 206.1 and 336.7 MPa, respectively. The group with 0.75-mm gap had the highest and the group with 0.1-mm gap had the lowest tensile strength. Bonferroni test showed that Group1 and Group4 had statistically different values (P=0.023), but the differences between other groups were not sig-nificant at a significance level of 0.05. There was no direct relationship between increasing soldering gap distance and tensile strength of the solder joints.

  2. Analysis of AISI 304 Tensile Strength as an Anchor Chain of Mooring System

    Science.gov (United States)

    Hamidah, I.; Wati, R.; Hamdani, R. A.

    2018-05-01

    The background of this research is the use of mild steel (i.e., St37) as anchor chain that works on the corrosive environment of seawater which is possible to decrease its tensile strength. The longer soaked in seawater, the more significant the lowering of its tensile strength. Anchor chain needs to be designed by considering its tensile strength and corrosion resistance, so it’s able to support mooring system well. The primary purpose of this research is obtaining the decreasing of stainless steel 304 (AISI 304) tensile strength which is corroded by seawater as anchor chain of the mooring system. It is also essential to obtain the lifetime of AISI304 and St37 as anchor chain with the same load, the corrosion rate of AISI 304, and St 37 in seawater. The method which was employed in this research is an experiment with four pieces of stainless steel AISI 304, and of St 37 corrosion testing samples, six pieces of stainless steel 304, and six pieces of St 37 for tensile testing samples. The result of this research shows that seawater caused stainless steel AISI 304 as anchor chain has decreased of tensile strength about 1.68 % during four weeks. Also, it indicates that AISI 304 as anchor chain has a lifetime about 130 times longer than St 37. Further, we found that the corrosion rate of stainless steel 304 in seawater is 0.2042 mpy in outstanding category, while the St 37 samples reached up to 27.0247 mpy ranked as fair category. This result recommends that AISI 304 more excellence than St 37 as anchor chain of the mooring system.

  3. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles

    Energy Technology Data Exchange (ETDEWEB)

    Tuo, Wanyong [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); School of Civil & Architectural Engineering, Anyang Institute of Technology, Anyang 455000 (China); Chen, Jinxiang, E-mail: chenjpaper@yahoo.co.jp [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); Wu, Zhishen; Xie, Juan [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); Wang, Yong [Nantong Vocational University, Nantong, Jiangsu 226007 (China)

    2016-08-01

    Based on a tensile experiment and observations by scanning electron microscopy (SEM), this study demonstrated the characteristics of the tensile mechanical properties of the fresh and dry forewings of two types of beetles. The results revealed obvious differences in the tensile fracture morphologies and characteristics of the tensile mechanical properties of fresh and dry forewings of Cybister tripunctatus Olivier and Allomyrina dichotoma. For fresh forewings of these two types of beetles, a viscous, flow-like, polymer matrix plastic deformation was observed on the fracture surfaces, with soft morphologies and many fibers being pulled out, whereas on the dry forewings, the tensile fracture surfaces were straightforward, and there were no features resembling those found on the fresh forewings. The fresh forewings exhibited a greater fracture strain than the dry forewings, which was caused by the relative slippage of hydroxyl inter-chain bonds due to the presence of water in the fibers and proteins in the fresh forewings. Our study is the first to demonstrate the phenomenon of sudden stress drops caused by the fracturing of the lower skin because the lower skin fractured before the forewings of A. dichotoma reached their ultimate tensile strength. We also investigated the reasons underlying this phenomenon. This research provides a much better understanding of the mechanical properties of beetle forewings and facilitates the correct selection of study objects for biomimetic materials and development of the corresponding applications. - Highlights: • There is a phenomenon of sudden stress drop on the tensile stress-train curve of forewing. • The causes of the differences of mechanical properties of fresh and dry forewings are explained. • The hypothesis raised in a previous review paper is verified. • This study brings better ideas into correct understanding of the mechanical properties that the biomimetic object exhibits.

  4. The influence of prior ageing on microstructure, tensile properties and hot hardness of alloy 800HT

    International Nuclear Information System (INIS)

    El-Magd, E.

    1996-01-01

    For high temperature applications especially in the construction of equipment, carbide strengthened steels are widely used because of their good mechanical properties and relatively low cost. These materials undergo microstructural changes under such service conditions which contribute greatly to the strength properties and thus play an important role in equipment design considerations. The influence of a prior thermal ageing on the tensile strength values and the hot hardness of the austenitic iron base alloy, Alloy 800HT, is examined in this work. It was therefore necessary to carry out tensile and hot hardness tests with the solution treated and overaged material at ranges between room temperature and 900 . The microstructural changes are investigated using lightmicroscopy, SEM and TEM. The changes of the material properties with thermal pretreatment conditions is studied and discussed in the context of the determined microstructural development. (orig.) [de

  5. Measurements of the tensile and compressive properties of micro-concrete used in the Winfrith missile impact experiments

    International Nuclear Information System (INIS)

    Wilson, P.A.

    1982-10-01

    Tests to determine the tensile and compressive properties of a micro-concrete mix are described. The material is a nominally 40MPa ultimate compressive strength concrete used in impact tests with scale models in the prediction of responses in prototype concrete structures. Compressive tests were intended to give complete stress-strain relationships beyond initial failure. Tensile properties were measured by the Brazilian splitting technique and direct tension dog-bone specimens for comparison reasons. (U.K.)

  6. Woven Hybrid Composites - Tensile and Flexural Properties of Jute Mat Fibres with Epoxy Composites

    Science.gov (United States)

    Gopal, P.; Bupesh Raja, V. K.; Chandrasekaran, M.; Dhanasekaran, C.

    2017-03-01

    The jute mat fibers are fabricated with several layers of fiber with opposite orientation in addition with coconut shell powder and resins. In current trends, metallic components are replaced by natural fibers because of the inherent properties such as light in weight, easy to fabricate, less cost and easy availability. This material has high strength and withstands the load. In this investigation the plates are made without stitching the fiber. The result of tensile strength and flexural strength are compared with nano material (coconut shell powder).

  7. Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness

    Science.gov (United States)

    Baek, Gyeong Yun; Lee, Ki Yong; Park, Sang Hu; Shim, Do Sik

    2017-11-01

    This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes in the metallurgical and mechanical properties of the high-speed tool steel M4 deposited on an AISI D2 substrate with changes in the substrate preheating temperature. Five preheating temperatures (100-500 °C; interval of 100 °C) were selected, and the changes in the temperature of the substrate during deposition were observed. As the preheating temperature of the substrate was increased, the temperature gradient between the melting layer and the substrate decreased; this prevented the formation of internal cracks, owing to thermal stress relief. Field-emission scanning electron microscopy showed that a dendritic structure was formed at the interface between the deposited layer and the substrate while a cellular microstructure was formed in the deposited layer. As the preheating temperature was increased, the sizes of the cells and precipitated carbides also increased. Furthermore, the hardness increased slightly while the strength and toughness decreased. Moreover, the tensile and impact properties deteriorated rapidly at excessively high preheating temperatures (greater than 500 °C). The results of this study can be used as preheating criteria for achieving the desired mechanical properties during the hardfacing of dies and molds.

  8. Statistical behavior of the tensile property of heated cotton fiber

    Science.gov (United States)

    The temperature dependence of the tensile property of single cotton fiber was studied in the range of 160-300°C using Favimat test, and its statistical behavior was interpreted in terms of structural changes. The tenacity of control cotton fiber was well described by the single Weibull distribution,...

  9. Improvement in tensile properties of PVC–montmorillonite ...

    Indian Academy of Sciences (India)

    mechanical properties of PVC–montmorillonite materials are also currently of huge ... Its hard form can withstand a tensile stress in the order of 46–52 MPa before .... 2θ at 25 mA and 40 kV using Cu-Kα radiation. X-ray diffraction patterns of the ...

  10. Relationship between micro-porosity and tensile properties of 6063 alloy

    Directory of Open Access Journals (Sweden)

    Li Xiehua

    2013-01-01

    Full Text Available The micro-porosity is usually present in the as-cast microstructure, which decreases the tensile strength and ductility and therefore limit the application of cast aluminum parts. Although much work has been done to investigate the effects of various casting parameters on the formation of porosity in various aluminum alloys, up to now, little information has been available for the relationship between micro-porosity and tensile properties of 6063 alloy. In this study, the influences of size and area fraction of micro-porosity on the tensile properties and fracture behavior of 6063 aluminum alloy were investigated by means of tensile testing, optical microscopy (OM, and scanning electron microscopy (SEM. The tensile tests were conducted in air at 100 ℃, 200 ℃ and 300 ℃, respectively. Results show that the large micro-porosity with sizes between 100 μm and 800 μm located at the center and top of the ingot, while the small micro-porosity with size between 2 μm and 60 μm distributed at the edge and bottom of the ingot. The area fraction of micro-porosity at the center of the ingot is much bigger than that at the edge of the ingot. When tested at 100 ℃, with the decrease in the area fraction of micro-porosity from the top of the ingot to the bottom of the ingot, the ultimate tensile strength, yield strength and the elongation are increased from 82 to 99 MPa, 32 to 66 MPa and 7% to 11%, respectively. When the temperature is no more than 200 ℃, the strain hardening exponent decreases with an increase in the area fraction of micro-porosity; while the deviation disappears when the temperature reaches 300 ℃. The fracture mode of the alloy is greatly influenced by the size and area fraction of the micro-porosity.

  11. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  12. Electronic, mechanical and dielectric properties of silicane under tensile strain

    International Nuclear Information System (INIS)

    Jamdagni, Pooja; Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-01-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices

  13. Analysis/design of tensile property database system

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, D. H.; Jeon, I.; Lyu, W. S.

    2001-01-01

    The data base construction using the data produced from tensile experiment can increase the application of test results. Also, we can get the basic data ease from database when we prepare the new experiment and can produce high quality result by compare the previous data. The development part must be analysis and design more specific to construct the database and after that, we can offer the best quality to customers various requirements. In this thesis, the analysis and design was performed to develop the database for tensile extension property

  14. Statistical characterization of tensile strengths for a nuclear-type core graphite

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Eatherly, W.P.

    1986-09-01

    A data set of tensile strengths comprising over 1200 experimental points has been analyzed statistically in conformance with the observed phenomenon of background and disparate flaws. The data are consistent with a bimodal normal distribution. If corrections are made for strength dependence on density, the background mode is Weibull. It is proposed the disparate mode can be represented by a combination of binomial and order statistics. The resultant bimodal model would show a strong dependence on stress volume

  15. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    International Nuclear Information System (INIS)

    Katman, Herda Yati; Norhisham, Shuhairy; Ismail, Norlela; Ibrahim, Mohd Rasdan; Matori, Mohd Yazip

    2013-01-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  16. Effect of surface treatment of titanium posts on the tensile bond strength

    NARCIS (Netherlands)

    Schmage, P; Sohn, J; Ozcan, M; Nergiz, [No Value

    Objectives. Retention of composite resins to metal can be improved when metal surfaces are conditioned. The purpose of this investigation was to investigate the effect of two conditioning treatments on the tensile bond strength of four resin-based luting cements and zinc phosphate cement to titanium

  17. Various conditioning methods for root canals influencing the tensile strength of titanium posts

    NARCIS (Netherlands)

    Schmage, P.; Sohn, J.; Nergiz, I.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    Conditioning the root canal is frequently advised to achieve high post-retention when resin composite luting cements are used. However, Manufacturers’ instructions for this purpose differ widely from one another. The aim of this study was to compare the tensile bond strengths of passive, tapered,

  18. Water absorption and tensile strength degradation of Petung bamboo (Dendrocalamus asper) fiber-reinforced polymeric composites

    NARCIS (Netherlands)

    Judawisastra, H.; Sitohang, Ramona; Rosadi, M. S.

    2017-01-01

    Bamboo fibers have attracted great interest and are believed to have the potential as natural fiber for reinforcing polymer composites. This research aims to study water absorption behavior and its effect to tensile strength of the composites made from petung bamboo fiber, which is one of the most

  19. Tensile strength of hydrated cement paste phases assessed by microbending tests and nanoindentation

    Czech Academy of Sciences Publication Activity Database

    Němeček, J.; Králík, V.; Šmilauer, V.; Polívka, Leoš; Jäger, Aleš

    2016-01-01

    Roč. 73, Oct (2016), 164-173 ISSN 0958-9465 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : cement * hydration products * micro-beam * tensile strength * fracture energy * nanoindentation * focused ion beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.265, year: 2016

  20. Tensile Adhesion Strength of Biomass Ash Deposits: Effect of the Temperature Gradient and Ash Chemistry

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Nair, Akhilesh Balachandran; Jensen, Peter Arendt

    2018-01-01

    Replacing coal with biomass in power plants is a viable option for reducing net CO2 emissions and combating climate change. However, biomass combustion in boilers may exacerbate problems related to ash deposition and corrosion, demanding effective deposit removal. The tensile adhesion strength...

  1. STUDY OF THE MECHANICAL PROPERTIES OF INCONEL 718 SUPERALLOY AFTER HOT TENSILE TESTS

    Directory of Open Access Journals (Sweden)

    Tarcila Sugahara

    2014-10-01

    Full Text Available This research work investigated some important mechanical properties of Inconel 718 superalloy using hot tensile tests like conventional yield strength to 0.2% strain (σe , ultimate strength (σr , and specific elongation (εu . Samples were strained to failure at temperatures of 600°C, 650°C, 700°C, 750°C, 800°C and 850°C and strain rate of 0.5 mm/min (2 × 10–4 s–1 according to ASTM E-8. The results showed higher values σe of yield strength at 700°C, this anomalous behavior can be attributed to the presence of hardening precipitates as observed in the TTT diagram of superalloy Inconel 718. Examination of the sample’s surfaces tensile fracture showed that with increasing temperature test the actuating mechanism changes from intergranular fracture to coalescence of the microcavities.

  2. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2012-12-01

    Full Text Available In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI chemical treatment on kenaf (Hibiscus cannabinus reinforced thermoplastic polyurethane (TPU/KF was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively. FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability.

  3. Low temperature tensile properties and stress corrosion cracking resistance in the super duplex stainless steels weldments

    International Nuclear Information System (INIS)

    Lee, Jeung Woo; Sung, Jang Hyun; Lee, Sung Keun

    1998-01-01

    Low temperature tensile properties and SCC resistances of super duplex stainless steels and their weldments are investigated. Tensile strengths increase remarkably with decreasing test temperature, while elongations decrease steeply at -196 .deg. C after showing peak or constant value down to -100 .deg. C. Owing to the low tensile deformation of weld region, elongations of welded specimen decrease in comparison to those of unwelded specimen. The welded tensile specimen is fractured through weld region at -196 .deg. C due to the fact that the finely dispersed ferrite phase in the austenite matrix increases an opportunity to supply the crack propagation path through the brittle ferrite phase at low temperature. The stress corrosion cracking initiates preferentially at the surface ferrite phase of base metal region and propagates through ferrite phase. When the corrosion crack meets with the fibrously aligned austenite phase to the tensile direction, the ferrite phase around austenite continues to corrode. Eventually, fracture of the austenite phase begins without enduring the tensile load. The addition of Cu+W to the super duplex stainless steel deteriorates the SCC resistance in boiling MgCl 2 solution, possibly due to the increment of pits in the ferrite phase and reduction of N content in the austenite phase

  4. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  5. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  6. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  7. A study on the compressive and tensile strength of foamed concrete containing pulverized bone as a partial replacement of cement

    International Nuclear Information System (INIS)

    Falade, F.

    2013-01-01

    In this study, structural properties of foamed aerated concrete with and without pulverized bone were investigated. These properties are workability, plastic and testing densities, compressive strength, and tensile strength at the design density of 1600kg/m/sub 3/. The tensile strength was evaluated by subjecting 150 x 150 x750mm unreinforced foamed concrete beams to flexural test and 150x300mm cylinder specimens were subjected to splitting test. 150mm cube specimens were used for the determination of both the compressive strength and the testing density of the foamed aerated concrete. The plastic density was investigated using a container of known volume, and its workability determined using the slump test. The pulverized bone content was varied from 0 to 20% at interval of 5%. The specimens without the pulverized bone served as the control. At the designed density of 1600 kg/m/sub 3/, the results for the control specimens at 28-day curing age are 15.43 and 13.89N/mm/sub 2/ for air-and water-cured specimens respectively. The modulus of rupture and splitting tensile strength are 2.53 and 1.63N/mm/sub 2/ respectively. The results for specimens with pulverized bone did not differ significantly from the specimens without pulverized bone. From the results of this investigation, it can be concluded that foamed aerated concrete used for this study has potential for structural applications. Also pulverized bone can be used to reduce (partially replace) the quantity of cement used in aerated concrete production; thus ridding our environment of potentially harmful wastes, as well as reduce the consumption of non-renewable resources. (author)

  8. Consolidation effects on tensile properties of an elemental Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, F. [Building 4515, MS 6064, Metals and Ceramics Division, Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)]. E-mail: tangf@ornl.gov; Meeks, H. [Ceracon Inc., 5150 Fairoaks Blvd. 01-330, Carmichael, CA 95628 (United States); Spowart, J.E. [UES Incorporated, AFRL/MLLM Building 655, 2230 Tenth St. Suite 1, Wright-Patterson AFB, OH 45433 (United States); Gnaeupel-Herold, T. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Prask, H. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Anderson, I.E. [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States)

    2004-11-25

    In a simplified composite design, an unalloyed Al matrix was reinforced by spherical Al-Cu-Fe alloy particles (30 vol.%), using either commercial purity (99.7%) or high purity (99.99%) fine powders (diameter < 10 {mu}m). This composite material was consolidated by either vacuum hot pressing (VHP) or quasi-isostatic forging. The spatial distribution of reinforcement particles in both VHP and forged samples was shown to be almost the same by quantitative characterization with a multi-scale area fraction analysis technique. The tensile properties of all composite samples were tested and the forged materials showed significantly higher strength, while the elastic modulus values of all composite materials were close to the upper bound of theoretical predictions. Neutron diffraction measurements showed that there were high compressive residual stresses in the Al matrix of the forged samples and relatively low Al matrix residual stresses (predominantly compressive) in the VHP samples. By tensile tests and neutron diffraction measurements of the forged samples after annealing, it was shown that the high compressive residual stresses in the Al matrix were relieved and that tensile strength was also reduced to almost the same level as that of the VHP samples. Therefore, it was deduced that increased compressive residual stresses and enhanced dislocation densities in the forged composites raised the tensile strength to higher values than those of the VHP composites.

  9. Experimental Investigations on the effect of Additive on the Tensile Properties of Fiber Glass Fabric Lamina

    Science.gov (United States)

    Nava Sai Divya, A.; Raghu Kumar, B., Dr; Lakshmi Narayana, G., Dr

    2017-09-01

    The main objective of this work is to investigate the effect of additives on tensile behaviour of fiber glass fabric at lamina level to explore an alternative skin material for the outer body of aerospace applications and machines. This experimental work investigates the effect of silica concentration in epoxy resin lapox L-12 on the tensile properties of glass fabric lamina of 4H-satin weave having 3.6 mm thickness. The lamina was prepared by using hand lay-up method and tests were conducted on it. Various tensile properties values obtained from experimentation were compared for four glass fiber lamina composites fabricated by adding the silica powder to resin bath. The effect of variations in silica concentration (0% SiO2, 5% SiO2, 10% SiO2 and 15% SiO2) on the tensile properties of prepared material revealed that maximum stiffness was obtained at 15% and yield strength at 10% SiO2 concentration in glass fiber lamina. Increasing the silica concentration beyond 10% had led to deterioration in the material properties. The experimentation that was carried out on test specimen was reasonably successful as the effect of silica powder as an additive in glass fiber lamina enhanced the mechanical properties up to certain limit. The underpinning microscopic behaviour at the source of these observations will be investigated in a follow up work.

  10. The effect of thermocycling on tensile bond strength of two soft liners.

    Science.gov (United States)

    Geramipanah, Farideh; Ghandari, Masoumeh; Zeighami, Somayeh

    2013-09-01

    Failure of soft liners depends mostly on separation from the denture base resin; therefore measurement of the bond strength is very important. The purpose of this study was to compare the tensile bond strength of two soft liners (Acropars, Molloplast-B) to denture base resin before and after thermocycling. Twenty specimens fromeach of the two different soft liners were processed according to the manufacturer's instructions between two polymethyl methacrylate (PMMA) sheets. Ten specimens in each group were maintained in 37°C water for 24 hours and 10 were thermocycled (5000 cycles) among baths of 5° and 55°C. The tensile bond strength was measured using a universal testing machine at a crosshead speed of 5 mm/min. Mode of failure was determined with SEM (magnification ×30). Two-way ANOVA was used to analyze the data. The mean and standard deviation of tensile bond strength of Acropars and Molloplast-B before thermocycling were 6.59±1.85 and1.51±0.22 MPa, respectively and 5.89±1.52 and1.37±0.18 MPa, respectively after thermocycling. There was no significant difference before and after thermocycling. Mode of failure in Acropars and Molloplast-B were adhesive and cohesive, respectivley. The bond strength of Acropars was significantly higher than Molloplast-B (P<0.05).

  11. Comparative evaluation of tensile bond strength and microleakage of conventional glass ionomer cement, resin modified glass ionomer cement and compomer: An in vitro study.

    Science.gov (United States)

    Rekha, C Vishnu; Varma, Balagopal; Jayanthi

    2012-07-01

    The purpose of this study was to evaluate and compare the tensile bond strength and microleakage of Fuji IX GP, Fuji II LC, and compoglass and to compare bond strength with degree of microleakage exhibited by the same materials. Occlusal surfaces of 96 noncarious primary teeth were ground perpendicular to long axis of the tooth. Preparations were distributed into three groups consisting of Fuji IX GP, Fuji II LC and Compoglass. Specimens were tested for tensile bond strength by mounting them on Instron Universal Testing Machine. Ninety-six primary molars were treated with Fuji IX GP, Fuji II LC, and compoglass on box-only prepared proximal surface. Samples were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. ANOVA and Bonferrani correction test were done for comparisons. Pearson Chi-square test and regression analysis were done to assess the association between the parameters. Compoglass showed highest tensile strength and Fuji II LC showed least microleakage. There was a significant difference between the three groups in tensile strength and microleakage levels. The correlation between tensile strength and microleakage level in each group showed that there was a significant negative correlation only in Group 3. Fuji II LC and compoglass can be advocated in primary teeth because of their superior physical properties when compared with Fuji IX GP.

  12. Comparative evaluation of tensile bond strength and microleakage of conventional glass ionomer cement, resin modified glass ionomer cement and compomer: An in vitro study

    Directory of Open Access Journals (Sweden)

    C Vishnu Rekha

    2012-01-01

    Full Text Available Aim: The purpose of this study was to evaluate and compare the tensile bond strength and microleakage of Fuji IX GP, Fuji II LC, and compoglass and to compare bond strength with degree of microleakage exhibited by the same materials. Materials and Methods: Occlusal surfaces of 96 noncarious primary teeth were ground perpendicular to long axis of the tooth. Preparations were distributed into three groups consisting of Fuji IX GP, Fuji II LC and Compoglass. Specimens were tested for tensile bond strength by mounting them on Instron Universal Testing Machine. Ninety-six primary molars were treated with Fuji IX GP, Fuji II LC, and compoglass on box-only prepared proximal surface. Samples were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. ANOVA and Bonferrani correction test were done for comparisons. Pearson Chi-square test and regression analysis were done to assess the association between the parameters. Results: Compoglass showed highest tensile strength and Fuji II LC showed least microleakage. There was a significant difference between the three groups in tensile strength and microleakage levels. The correlation between tensile strength and microleakage level in each group showed that there was a significant negative correlation only in Group 3. Conclusion: Fuji II LC and compoglass can be advocated in primary teeth because of their superior physical properties when compared with Fuji IX GP.

  13. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)

    2013-02-15

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10{sup −3} s{sup −1}. The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n{sub v}’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed.

  14. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Nandagopal, M.; Sam, Shiju; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-01-01

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10 −3 s −1 . The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n v ’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed

  15. Comparison of the Effect of two Denture Cleansers on Tensile bond Strength of a Denture Liner.

    Science.gov (United States)

    Farzin, M; Bahrani, F; Adelpour, E

    2013-09-01

    One of the most clinical challenging issues in prosthodontics is debonding of soft liners from the denture base. The aim of this study was to evaluate and compare tensile bond strength between soft liner and heat-cured acrylic resin when immersed in two different types of denture cleanser and distilled water, at different period of times. In this experimental in vivo study, 238 heat-cured acrylic blocks were made. A soft liner was embedded between the acrylic blocks. Samples were divided into four groups: 17 samples were in the control group and were not soaked in any solution .The remaining samples were divided into 3 groups (Distilled water, Calgon and Fittydent). Each group was then subdivided into two subcategories, regarding the immersion time variable; 15 and 45 minutes. All samples were placed in tension force and tensile bond strength was recorded with the testing machine. One- way ANOVA and Tucky HSD post-hoc test were adopted to analyze the yielded data (α> 0.05). Specimens which were immersed in two denture cleansers (Fittydent and Calgon) and in distilled water showed significant difference (p= 0.001) in bonding strength when compared to the control group. The subjects immersed in denture cleanser solutions and distilled water did not reveal any significant difference (p= 0.90). For all groups; most of the bonding failures (72%) were cohesive type. The effect of the denture cleansers and distilled water on the bond strength was not statistically different; however, the difference was significant between the immersed groups with the non-immersed group. Moreover, type of the denture cleanser did not show any effect on the tensile strength. The tensile strength increases with time of immersion.

  16. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  17. Experimental assessments of notch ductility and tensile strength of stainless steel weldments after 1200C neutron irradiation

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Menke, B.H.; Awadalla, N.G.; O'Kula, K.R.

    1986-01-01

    The Charpy-V (C/sub v/) properties of AISI 300 series stainless steel plate, weld, and weld heat-affected zone (HAZ) materials from commercial production weldments in 406-mm-diameter pipe (12.7-mm wall) were investigated in unirradiated and irradiated conditions. Weld and HAZ tensile properties were also assessed in the two conditions. The plates and weld filler wires represent different steel melts; the welds were produced using the multipass MIG process. Weldment properties in two test orientations were evaluated. Specimens were irradiated in the UBR reactor to 1 x 10 20 n/cm 2 , E >0.1 MeV in a controlled temperature assembly. Specimen tests were performed at 25 0 C and 125 0 C. The radiation-induced reductions in C/sub v/ energy absorption at 25 0 C were about 42 percent for the weld and HAZ materials evaluated. A trend of energy increase with temperature was observed. The concomitant elevation in yield strength was about 53%. In contrast, the increase in tensile strength was only 16%. The postirradiation yield strength of the axial test orientation in the pipe was less than that of the circumferential test orientation. Results for the HAZ indicate that this component may be the weakest link in the weldment from a fracture resistant viewpoint

  18. Experimental assessments of notch ductility and tensile strength of stainless steel weldments after 1200C neutron irradiation

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Menke, B.H.; Awadalla, N.G.; O'Kula, K.R.

    1987-01-01

    The Charpy-V (C/sub V/) properties of American Iron and Steel Institute (AISI) 300 series stainless steel plate, weld, and weld heat-affected zone (HAZ) materials from commercial production weldments in 406-mm-diameter pipe (12.7-mm wall) were investigated in unirradiated and irradiated conditions. Weld and HAZ tensile properties were also assessed in the two conditions. The plates and weld filler wires represent different steel melts; the welds were produced using the multipass metal inert gas (MIG) process. Weldment properties in two test orientations were evaluated. Specimens were irradiated in a light water cooled and moderated reactor to 1 x 10/sup 20/ n/cm/sup 2/, E > 0.1 MeV, using a controlled temperature assembly. Specimen tests were performed at 25 and 125 0 C. The radiation-induced reductions in C/sub V/ energy absorption at 25 0 C were about 42% for the weld and the HAZ materials evaluated. A trend of energy increase with temperature was observed. The concomitant elevation in yield strength was about 53%. The increase in tensile strength in contrast was only 16%. The postirradiation yield strength of the axial test orientation in the pipe was less than that of the circumferential test orientation. Results for the HAZ indicate that this component may be the weakest link in the weldment from a fracture resistance viewpoint

  19. Preparation and tensile properties of linear low density polyethylene/rambutan peels (Nephelium chryseum Blum.) flour blends

    Science.gov (United States)

    Nadhirah, A. Ainatun.; Sam, S. T.; Noriman, N. Z.; Voon, C. H.; Samera, S. S.

    2015-05-01

    The effect of rambutan peels flour (RPF) content on the tensile properties of linear low density polyethylene filled with rambutan peel flour was studied. RPF was melt blended with linear low-density polyethylene (LLDPE). LLDPE/RPF blends were prepared by using internal mixer (brabender) at 160 °C with the flour content ranged from 0 to 15 wt%. The tensile properties were tested by using a universal testing machine (UTM) according to ASTM D638. The highest tensile strength was observed for pure LLDPE while the tensile strength LLDPE/RPF decreased gradually with the addition of rambutan peels flour content from 0% to 15%. Young's modulus of 63 µm to 250 µm rambutan peels blends with LLDPE with the fiber loading of 0 - 15 wt% increased with increasing fiber loading.

  20. Estimating the Uncertainty of Tensile Strength Measurement for A Photocured Material Produced by Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Adamczak Stanisław

    2014-08-01

    Full Text Available The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is.

  1. Effect of helium on tensile properties of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  2. Elevated temperature tensile properties of borated 304 stainless steel

    International Nuclear Information System (INIS)

    Stephens, J.J.; Sorenson, K.B.; McConnell, P.

    1993-01-01

    This paper presents a comparison of the tensile properties of Powder Metallurgy (PM) 'Grade A' material with that of the conventional IM 'Grade B' material for two selected Types (i.e., boron contents) as defined by the ASTM A887 specification: Types 304B5 and 304B7. Tensile properties have been generated for these materials at temperatures ranging from room temperature to 400degC (752degF). The data at higher temperatures are required for ASME Code Case purposes, since the use temperature of a basket under 'worst case' cask conditions may be as high as 343degC (650degF), due to self-heating by the activated fuel elements. We will also discuss the current status of efforts aimed at obtaining an ASME Boiler and Pressure Vessel Code Case for selected grades of borated stainless steel covered by the ASTM A887 specification. (J.P.N.)

  3. In vitro comparison of the tensile bond strength of denture adhesives on denture bases.

    Science.gov (United States)

    Kore, Doris R; Kattadiyil, Mathew T; Hall, Dan B; Bahjri, Khaled

    2013-12-01

    With several denture adhesives available, it is important for dentists to make appropriate patient recommendations. The purpose of this study was to evaluate the tensile bond strength of denture adhesives on denture base materials at time intervals of up to 24 hours. Fixodent, Super Poligrip, Effergrip, and SeaBond denture adhesives were tested with 3 denture base materials: 2 heat-polymerized (Lucitone 199 and SR Ivocap) and 1 visible-light-polymerized (shade-stable Eclipse). Artificial saliva with mucin was used as a control. Tensile bond strength was tested in accordance with American Dental Association specifications at 5 minutes, 3 hours, 6 hours, 12 hours, and 24 hours after applying the adhesive. Maximum forces before failure were recorded in megapascals (MPa), and the data were subjected to a 2-way analysis of variance (α=.05). All 4 adhesives had greater tensile bond strength than the control. Fixodent, Super Poligrip, and SeaBond had higher tensile bond strength values than Effergrip. All adhesives had the greatest tensile bond strength at 5 minutes and the least at 24 hours. The 3 denture bases produced significantly different results with each adhesive (Padhesives had the greatest tensile bond strength, followed by Ivocap and Eclipse. All 4 adhesives had greater tensile bond strength than the control, and all 4 adhesives were strongest at the 5-minute interval. On all 3 types of denture bases, Effergrip produced significantly lower tensile bond strength, and Fixodent, Super Poligrip, and SeaBond produced significantly higher tensile bond strength. At 24 hours, the adhesive-base combinations with the highest tensile bond strength were Fixodent on Lucitone 199, Fixodent on Eclipse, Fixodent on Ivocap, and Super Poligrip on Ivocap. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  5. The tensile properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    1985-01-01

    Elevated temperature tensile data on Mo containing and Mo free austenitic weld metals have been collected from French, German and UK sources and the results analysed. In the as welded condition the proof strength is significantly higher than that of wrought material and Mo containing weld metal is stronger than Mo free weld metal. The differences in UTS values are not so marked, and on average at temperatures above 400 0 the weld metal UTS is slightly lower than that of wrought material. The ductility of weld metal is significantly lower than that for wrought material. 7 refs, 2 tables, 20 figs

  6. Effect of machining damage on tensile properties of beryllium

    International Nuclear Information System (INIS)

    Hanafee, J.E.

    1976-01-01

    It is well established that damage introduced at the surface of beryllium during machining operations can lower its mechanical properties. Tensile tests were conducted to illustrate this on beryllium presently being used for parts in the W79 program and similar to the new powder-processed beryllium specified for production (tentative specification MEL 76-001319). The objective of this study is to quantitatively illuminate the importance of controlling machining damage in this particular grade of powder-processed beryllium

  7. Assessment of the Tensile Properties for Single Fibers

    Science.gov (United States)

    2018-02-01

    release; distribution is unlimited. 24 7. Conclusions A method for accurately characterizing the tensile material properties of single fibers...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/ AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES

  8. Antibacterial Effect and Tensile Bond Strength of Self-etching Adhesive Resins with and without Methacryloyloxydodecylpyridinium Bromide: An in vitro Study.

    Science.gov (United States)

    Krishnamurthy, Madhuram; Kumar, V Naveen; Leburu, Ashok; Dhanavel, Chakravarthy; Selvendran, Kasiswamy E; Praveen, Nehrudhas

    2018-04-01

    Aim: The aim of the present study was to compare the antibacterial activity of a self-etching primer containing antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB) (Clearfil protect bond) with a conventional self-etching primer without MDPB (Clearfil SE bond) against Streptococcus mutans and the effect of incorporation of MDPB on the tensile bond strength of the experimental self-etching primer (Clearfil protect bond). Materials and methods: The antibacterial activity of the self-etching primers was assessed using agar disk diffusion method and the diameters of the zones of inhibition were measured and ranked. For tensile bond strength testing, 20 noncarious human molars were selected and randomly divided into two groups comprising 10 teeth in each group. Group I specimens were treated with Clearfil SE bond (without MDPB). Group II specimens were treated with Clearfil protect bond (with MDPB). Composite material was placed incrementally and cured for 40 seconds in all the specimens. Tensile bond strength was estimated using the Instron Universal testing machine at a crosshead speed of 1 mm/min. Results: The addition of MDPB into a self-etching primer exerts potential antibacterial effect against S. mutans. The tensile bond strength of MDPB containing self-etching primer was slightly lower than that of the conventional self-etching Clearfil protect bond primer, but the difference was not statistically significant. Conclusion: Thus, a self-etching primer containing MDPB will be a boon to adhesive dentistry as it has bactericidal property with adequate tensile bond strength. Clinical significance: The concept of prevention of extension in adhesive dentistry would result in micro/nanoleakage due to the presence of residual bacteria in the cavity. Self-etching primers with MDPB would improve the longevity of such restorations by providing adequate antibacterial activity without compromising the bond strength. Keywords: Antibacterial property

  9. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  10. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Odette, G.R.; Lucas, G.E.

    2002-01-01

    A study to explore approaches to optimizing nanocomposited ferritic alloys was carried out on dispersion strengthened mechanically alloyed (MA) MA957, in the form of extruded bar stock. Previous studies had indicated that this alloy manifested superior high temperature strength and radiation stability, but was extremely brittle in notch impact tests. Thus our objective was to develop a combination of tensile, fracture toughness and microstructural data to clarify the basis for this brittle behavior. To this end, tensile properties and fracture toughness were characterized as a function of temperature in various orientations relative to the grain and inclusion structures. This database along with extensive fractography suggests that brittleness is due to the presence of a large volume fraction of impurity alumina stringers. In orientations where the effects of the stringers are reduced, much higher toughness was observed. These results provide a path for alloy development approach to achieve high strength and toughness

  11. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys

    Science.gov (United States)

    Alinger, M. J.; Odette, G. R.; Lucas, G. E.

    2002-12-01

    A study to explore approaches to optimizing nanocomposited ferritic alloys was carried out on dispersion strengthened mechanically alloyed (MA) MA957, in the form of extruded bar stock. Previous studies had indicated that this alloy manifested superior high temperature strength and radiation stability, but was extremely brittle in notch impact tests. Thus our objective was to develop a combination of tensile, fracture toughness and microstructural data to clarify the basis for this brittle behavior. To this end, tensile properties and fracture toughness were characterized as a function of temperature in various orientations relative to the grain and inclusion structures. This database along with extensive fractography suggests that brittleness is due to the presence of a large volume fraction of impurity alumina stringers. In orientations where the effects of the stringers are reduced, much higher toughness was observed. These results provide a path for alloy development approach to achieve high strength and toughness.

  12. Effect of heat treatment on microstructures and tensile properties of Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    The effect of solution treatment (ST) on tensile properties of M963 Ni-base superalloy tested at 800 deg. C has been investigated. The detailed microstructures, fracture surfaces and dislocation structures are examined through energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). With increasing solution treated temperature, the yield strength (YS) and ultimate tensile strength (UTS) increase, however, the elongation decreases. Microstructural observations show that the morphologies of carbide, primary γ' and re-precipitated γ' change significantly with increasing solution treated temperature. The main deformation mode is γ' by-pass when solution treated temperature is lower than 1220 deg. C, and changes to γ' shearing at 1230 deg. C. The interface of carbide with matrix is the main site of crack initiation and propagation under all testing conditions

  13. Ion irradiation effects on tensile properties of carbon fibres

    International Nuclear Information System (INIS)

    Kurumada, A.; Ishihara, M.; Baba, S.; Aihara, J.

    2004-01-01

    Carbon/carbon composite materials have high thermal conductivity and excellent mechanical properties at high temperatures. They have been used as structural materials at high temperatures in fission and experimental fusion reactors. The changes in the microstructures and the mechanical properties due to irradiation damage must be measured for the safety design and the life assessment of the materials. The purpose of this study is to obtain a basic knowledge of the development of new carbon composite materials having high thermal conductivity and excellent resistance to irradiation damage. Five kinds of carbon fibres were selected, including a vapour growth carbon fibre (VGCF; K1100X), a polyacrylonitrile-based fibre (PAN; M55JB by Toray Corp.), two meso-phase pitch-based fibres (YS-15-60S and YS-70-60S by Nippon Graphite Fiber Corp.) and a pitch-based fibre (K13C2U by Mitsubishi Chemical Co.). They were irradiated by high-energy carbon, nickel and argon ions. Irradiation damages in the carbon fibres are expected to be uniform across the cross-section, as the diameters of the carbon fibres are about 20 μm and are sufficiently smaller than the ranges of ions. The cross-sectional areas increased due to ion irradiation, with the exception of the K1100X of VGCF. One of the reasons for the increases is the swelling of carbon basal planes due to lattice defects in the graphite interlayer. The tensile strengths and the Young's moduli decreased due to ion irradiation except for the K1100X of VGCF and the YS-15-60S of meso-phase pitch-based fibres. One of the reasons for the decreases is thought to be that the microstructures of carbon fibres are damaged in the axial direction, as ions were irradiated vertically with respect to the longitudinal direction of carbon fibres. The results of this study indicate that the VGCF and the meso-phase pitch-based carbon fibres could be useful as reinforcement fibres of new carbon composite materials having high thermal conductivity and

  14. The ideal tensile strength and deformation behavior of a tungsten single crystal

    International Nuclear Information System (INIS)

    Liu Yuelin; Zhou Hongbo; Zhang Ying; Jin Shuo; Lu Guanghong

    2009-01-01

    We employ first-principles total energy method based on the density functional theory with the generalized gradient approximation to investigate the ideal tensile strengths of a bcc tungsten (W) single crystal systemically. The ideal tensile strengths are shown to be 29.1, 49.2 and 37.6 GPa for bcc W in the [0 0 1], [1 1 0] and [1 1 1] directions, respectively. The [0 0 1] direction is shown to be the weakest direction due to the occurrence of structure transition at the lower strain and the [1 1 0] direction is strongest. The results can provide a useful reference for W as a PFM in the nuclear fusion Tokamak.

  15. On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    Science.gov (United States)

    Zhao, Ziyu; Liu, Jinxing; Soh, Ai Kah

    2018-01-01

    In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials' amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.

  16. On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Ziyu Zhao

    2018-01-01

    Full Text Available In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials’ amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.

  17. Weathering effects on tensile and stress rupture strength of glass fiber reinforced vinylester and epoxy thermoset pipes

    Science.gov (United States)

    Nizamuddin, Syed

    stress rupture behavior after 12 months of exposure. The as received GFRE pipe specimens revealed higher average tensile strength when compared to the as received GFRV sample, whereas the stress rupture behavior was comparatively low. The seawater exposure of the GFRE specimens resulted in drastic reduction in both tensile and stress rupture properties. Fractographic analysis was performed using an optical microscope and SEM in order to explain the possible controlling mechanisms of failure.

  18. Tensile properties of commercially pure vanadium from room temperature to 1200 degree C

    International Nuclear Information System (INIS)

    Henshall, G.A.; Torres, S.G.

    1993-12-01

    The tensile properties of vanadium are sensitive to interstitial impurity content, on grain size and strain rate. Thus, it is problematic to use published tensile data for materials potentially varying in these quantities. This investigation was undertaken to fully characterize the tensile properties of the commercially pure vanadium used at Lawrence Livermore. Both sheet and rod stock were tested in vacuum from ambient temperature to 1200C at strain rates 6.67 x 10 -5 to 6.67 x 10 -2 s -1 . The results of these experiments show that vanadium behaves in a manner typical of many bcc metals containing interstitial impurities. Local peaks in yield stress and ultimate tensile stress vs temperature curves are observed at intermediate temperatures. Serrated yielding also is observed in some temperature ranges. Changes in strain rate within the quasi-static regime have a relatively small, predictable effect. The rod and sheet stock have similar properties, except that the lower yield stress of the rod is less than that of the sheet over most of the temperature range studied. No plateau in yield strength vs temperature curve was observed for the rod. In both forms, and for all temperatures, vanadium is ductile. The elongation to failure reaches a minimum of approximately 35% at a temperature of 500C and a maximum of approximately 140% at 1200C

  19. Influence of Immersion Conditions on The Tensile Strength of Recycled Kevlar®/Polyester/Low-Melting-Point Polyester Nonwoven Geotextiles through Applying Statistical Analyses

    Directory of Open Access Journals (Sweden)

    Jing-Chzi Hsieh

    2016-05-01

    Full Text Available The recycled Kevlar®/polyester/low-melting-point polyester (recycled Kevlar®/PET/LPET nonwoven geotextiles are immersed in neutral, strong acid, and strong alkali solutions, respectively, at different temperatures for four months. Their tensile strength is then tested according to various immersion periods at various temperatures, in order to determine their durability to chemicals. For the purpose of analyzing the possible factors that influence mechanical properties of geotextiles under diverse environmental conditions, the experimental results and statistical analyses are incorporated in this study. Therefore, influences of the content of recycled Kevlar® fibers, implementation of thermal treatment, and immersion periods on the tensile strength of recycled Kevlar®/PET/LPET nonwoven geotextiles are examined, after which their influential levels are statistically determined by performing multiple regression analyses. According to the results, the tensile strength of nonwoven geotextiles can be enhanced by adding recycled Kevlar® fibers and thermal treatment.

  20. Fine tuning of dwelling time in friction stir welding for preventing material overheating, weld tensile strength increase and weld nugget size decrease

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2016-01-01

    Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds

  1. High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel

    International Nuclear Information System (INIS)

    Chauhan, Ankur; Litvinov, Dimitri; Aktaa, Jarir

    2016-01-01

    This article describes the tensile properties and fracture characteristics of a 12Cr oxide dispersion strengthened (ODS) ferritic steel with unique elongated bimodal grain size distribution. The tensile tests were carried out at four different temperatures, ranging from room temperature to 700 °C, at a nominal strain rate of 10"−"3 s"−"1. At room temperature the material exhibits a high tensile strength of 1294 MPa and high yield strength of 1200 MPa. At 700 °C, the material still exhibits relatively high tensile strength of 300 MPa. The total elongation-to-failure exceeds 18% over the whole temperature range and has a maximum value of 29% at 600 °C. This superior ductility is attributed to the material's bimodal grain size distribution. In comparison to other commercial, as well as experimental, ODS steels, the material shows an excellent compromise between strength and ductility. The fracture surface studies reveal a change in fracture behavior from a mixed mode fracture at room temperature to fully ductile fracture at 600 °C. At 700 °C, the fracture path changes from intragranular to intergranular fracture, which is associated with a reduced ductility. - Highlights: • The steel has a unique elongated bimodal grain size distribution. • The steel shows an excellent compromise between strength and ductility. • Superior ductility in comparison to other commercial and experimental ODS steels. • Fracture behavior changes from mixed mode fracture at room temperature to fully ductile fracture at 600 °C. • Fracture path changes from intragranular to intergranular fracture at 700 °C.

  2. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    International Nuclear Information System (INIS)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-01-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below M_d (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90–270 nm, accompanied by TiC precipitates with 20–50 nm in grain interior and 70–110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6–21%, respectively, depending on the heat treatment temperature after rolling at −196 °C. - Highlights: • Nanostructured SUS316L-2%TiC exhibiting sufficient tensile ductility and strength is developed. • The development requires an advanced powder metallurgical route. • The route includes MA, HIP, GSMM and thermo-mechanical treatments for phase transformation. • The austenite grain sizes are 90–270 nm and TiC precipitates 20–50 nm in grain interior. • The tensile strength are 1100–1920 MPa and uniform elongation 0.6–21%.

  3. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T., E-mail: sakamoto.tatsuaki.mm@ehime-u.ac.jp [Department of Materials Science and Biotechnology, Ehime University, Matsuyama 790-8577 (Japan); Kurishita, H.; Matsuo, S.; Arakawa, H. [International Research Center for Nuclear Materials Science, IMR, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takahashi, S.; Tsuchida, M. [Ehime University, Matsuyama 790-8577 (Japan); Kobayashi, S.; Nakai, K. [Department of Materials Science and Biotechnology, Ehime University, Matsuyama 790-8577 (Japan); Terasawa, M. [Laboratory of Advanced Science & Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori-cho, Hyogo 678-1205 (Japan); Yamasaki, T. [Department of Materials Science & Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan); Kawai, M. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki-ken 305-0801 (Japan)

    2015-11-15

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below M{sub d} (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90–270 nm, accompanied by TiC precipitates with 20–50 nm in grain interior and 70–110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6–21%, respectively, depending on the heat treatment temperature after rolling at −196 °C. - Highlights: • Nanostructured SUS316L-2%TiC exhibiting sufficient tensile ductility and strength is developed. • The development requires an advanced powder metallurgical route. • The route includes MA, HIP, GSMM and thermo-mechanical treatments for phase transformation. • The austenite grain sizes are 90–270 nm and TiC precipitates 20–50 nm in grain interior. • The tensile strength are 1100–1920 MPa and uniform elongation 0.6–21%.

  4. Tensile and Torsional Structural Properties of the Native Scapholunate Ligament.

    Science.gov (United States)

    Pang, Eric Quan; Douglass, Nathan; Behn, Anthony; Winterton, Matthew; Rainbow, Michael J; Kamal, Robin N

    2018-02-17

    The ideal material for reconstruction of the scapholunate interosseous ligament (SLIL) should replicate the mechanical properties of the native SLIL to recreate normal kinematics and prevent posttraumatic arthritis. The purpose of our study was to evaluate the cyclic torsional and tensile properties of the native SLIL and load to failure tensile properties of the dorsal SLIL. The SLIL bone complex was resected from 10 fresh-frozen cadavers. The scaphoid and lunate were secured in polymethylmethacrylate and mounted on a test machine that incorporated an x-y stage and universal joint, which permitted translations perpendicular to the rotation/pull axis as well as nonaxial angulations. After a 1 N preload, specimens underwent cyclic torsional testing (±0.45 N m flexion/extension at 0.5 Hz) and tensile testing (1-50 N at 1 Hz) for 500 cycles. Lastly, the dorsal 10 mm of the SLIL was isolated and displaced at 10 mm/min until failure. During intact SLIL cyclic torsional testing, the neutral zone was 29.7° ± 6.6° and the range of rotation 46.6° ± 7.1°. Stiffness in flexion and extension were 0.11 ± 0.02 and 0.12 ± 0.02 N m/deg, respectively. During cyclic tensile testing, the engagement length was 0.2 ± 0.1 mm, the mean stiffness was 276 ± 67 N/mm, and the range of displacement was 0.4 ± 0.1 mm. The dorsal SLIL displayed a 0.3 ± 0.2 mm engagement length, 240 ± 65 N/mm stiffness, peak load of 270 ± 91 N, and displacement at peak load of 1.8 ± 0.3 mm. We report the torsional properties of the SLIL. Our novel test setup allows for free rotation and translation, which reduces out-of-plane force application. This may explain our observation of greater dorsal SLIL load to failure than previous reports. By matching the natural ligament with respect to its tensile and torsional properties, we believe that reconstructions will better restore the natural kinematics of the wrist and lead to improved outcomes. Future clinical studies should aim to investigate this

  5. Effect of Incorporation of Antifungal Agents on the Ultimate Tensile Strength of Temporary Soft Denture Liners.

    Science.gov (United States)

    Neppelenbroek, Karin Hermana; Lima, Jozely Francisca Mello; Hotta, Juliana; Galitesi, Lucas Lulo; Almeida, Ana Lucia Pompéia Fraga; Urban, Vanessa Migliorini

    2018-02-01

    To investigate the ultimate tensile strength of temporary soft denture liners modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm (SC5314) determined in previous microbiological research. Dumbbell-shaped specimens (n = 7) with a central cross-sectional area of 6 × 3 × 33 mm were produced by Softone and Trusoft, without (control) or with incorporation of drugs in powder form at MICs for C. albicans biofilm (per g of material powder): nystatin (0.032 g), chlorhexidine diacetate (0.064 g), ketoconazole (0.128 g), miconazole (0.256 g), and itraconazole (0.256 g). After plasticization, specimens were immersed in distilled water at 37°C for 24 hours, 7 or 14 days, and then tested in tension in a universal testing machine at 40 mm/min. Data of tensile strength (MPa) and elongation percentage (%) were submitted to 3-way ANOVA and Tukey's test (α = 0.05). At the end of 14 days, the tensile strength for both materials was significantly lower in the groups modified by miconazole and itraconazole compared to the other groups (p 0.05). After 7 and 14 days in water, miconazole and itraconazole added into both materials resulted in significantly lower elongation percentages compared to the other antifungal agents and control (p 0.05). The addition of the nystatin, chlorhexidine, and ketoconazole at MICs for C. albicans biofilm resulted in no harmful effects on the tensile strength and elongation percentage of the temporary soft denture liner materials up to 14 days. © 2017 by the American College of Prosthodontists.

  6. Ideal tensile strength of Ni3Al and Fe3Al with D03 structure

    Czech Academy of Sciences Publication Activity Database

    Legut, Dominik; Šob, Mojmír

    2008-01-01

    Roč. 567-568, - (2008), s. 77-80 ISSN 0255-5476. [MSMF /5./. Brno, 27.06.2007-29.06.2007] R&D Projects: GA ČR GA106/07/1078; GA AV ČR IAA1041302 Institutional research plan: CEZ:AV0Z20410507 Keywords : ideal tensile strength * intermetallics * DO3 structure * magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  8. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    International Nuclear Information System (INIS)

    Law, M.; Bowie, G.

    2007-01-01

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted

  9. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  10. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    Science.gov (United States)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  11. Effects of liquid lead on 316l tensile properties

    International Nuclear Information System (INIS)

    Ionescu, V.; Pitigoi, V.; Nitu, A.; Hororoi, M.; Voicu, F.; Cojocaru, V.

    2016-01-01

    The lead-cooled fast reactor (LFR) is one of the concepts of the Generation IV reactor systems. Compatibility of the candidate structural materials with the liquid lead is known to be one of the critical issues to allow development of the LFR reactors. In contact with the liquid metal, the mechanical integrity of the structural materials can be affected. The steel.s mechanical properties are assessed by tensile testing as a function of temperature in heavy liquid metal and in an air environment. RATEN ICN is involved in several European projects aimed to Generation IV research activities. In a first stage an Experimental Facility for Tensile Tests in Liquid Lead environment has been set up. This installation is adapted on the Instron testing machine, already existing in institute. 316L alloy is one of a candidate structural material for this type of reactor. This document presents the effect of liquid lead on tensile properties of 316L material tested in liquid lead (in static conditions) and in air environment at 500°C, without oxygen monitoring system. When solid metals are placed in contact to liquid metals and stress is applied, they may undergo abrupt brittle failure. Stress-strain curves of slow strain rate tests have been obtained in conformity with ASTM, E-8. Mechanical characteristics determined are in accordance with literature. (authors)

  12. Effect of laser welding on the titanium ceramic tensile bond strength

    Directory of Open Access Journals (Sweden)

    Rodrigo Galo

    2011-08-01

    Full Text Available Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. OBJECTIVE: The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3 conditions was also studied. MATERIAL AND METHODS: Forty CpTi cylindrical rods (3 mm x 60 mm were cast and divided into 2 groups: with laser welding (L and without laser welding (WL. Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm; B - Al2O3 (180 µm; C - Al2O3 (110 µm; D - Al2O3 (50 µm. Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p<0.05. RESULTS: Significant differences were found among all subgroups (p<0.05. The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa and LD (24.02 MPa, respectively. CONCLUSION: Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.

  13. Effect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites

    Science.gov (United States)

    Ridzuan, M. J. M.; Majid, M. S. Abdul; Afendi, M.; Firdaus, A. Z. Ahmad; Azduwin, K.

    2017-11-01

    The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.

  14. Tensile strength of AK7 alloy after treatment by exothermic mixtures

    International Nuclear Information System (INIS)

    Lipinski, T.

    2002-01-01

    The paper presents the influence of treatment by chemical compounds giving exothermic effect on the tensile strength of AK7 alloy. The research was carried out on 1100 g of the alloy in classical mould. The chemical mixture was composed of Na 2 B 4 O 7 , NaNO 3 and Cr 2 O 3 + AlNi. The studies were conducted following a mathematical experiment plan. The action of Borax was free from interference whereas the two residual constituents were mass-dependence. Excess NaNO 3 was caused by the reduction of the value of the tensile strength. Cr 2 O 3 + AlNi strengthened the influence of NaNO 3 . It was found that the blending of Na 2 B 4 O 7 and NaNO 3 on weight ratio 1,5 to 1 and of NaNO 3 and Cr 2 O 3 + AlNi on weight ratio 1 to 3 improved the tensile strength of the AK7 alloy after treatment. (author)

  15. Modification of Rule of Mixtures for Tensile Strength Estimation of Circular GFRP Rebars

    Directory of Open Access Journals (Sweden)

    Young-Jun You

    2017-12-01

    Full Text Available The rule of mixtures (ROM method is often used to estimate the tensile strength of fiber reinforced polymers (FRPs reinforcing bars (rebars. Generally, the ROM method predicts the FRP rebars’ modulus of elasticity adequately but overestimates their tensile strength. This may result from defects occurred during manufacture that prevent the used materials from exhibiting a sound performance and the shear-lag phenomenon by transmission of external forces through the surface of the rebar having a circular cross section. Due to the latter, there is a difference in fiber breaking points regarding the fibers located on the surface and fibers located at the center, and thus results in differences between the values calculated from the conventional ROM and the experimental result. In this study, for the purpose of resolving the problem, glass FRP (GFRP rebars were shaped to have a hollow section at the center of their cross sections and were further subject to tensile strength tests. The test results were further placed under regression analysis and a modified ROM within ±5% accuracy compared to the experimental value was proposed for GFRP rebars with 13, 16, and 19 mm diameters.

  16. Tensile properties of four types of austenitic stainless steel welded joints

    International Nuclear Information System (INIS)

    Balladon, P.

    1990-01-01

    In the field of an LMFBR research programme on austenitic stainless steel welds in a Shared Cost Action Safety, Research Area 8, coordinated by JRC-Ispra, four cooperating laboratories (ECN, IKE/MPA, the Welding Institute and UNIREC) have been involved in the fabrication and extensive characterization of welded joints made from one plate of ICL 167 stainless steel. The materials included parent metal, four vacuum electron beam welds, one non vacuum electron beam weld, one submerged arc weld, one gas metal arc weld and one manual metal arc weld. This report summarizes the 106 tensile tests performed at room temperature and 550 0 C, including the influence of strain rate, specimen orientation and welding procedure. Main results are that electron beam welds have tensile properties close to those of parent metal with higher values of yield strength in longitudinal orientation and lower values of total elongation in transverse orientation but with a similar reduction of area, that filler metal welds own the highest values of yield strength and lowest values of ductility. Most of the welds properties are higher than the minimum specified for parent metal, except for some values of total elongation, mainly in transverse orientation. In view of using electron beam welding for production of components used in LMFBR, results obtained show that tensile properties of electron beam welds compare well to those of classical welds. (author)

  17. The effect of tungsten on the tensile and creep rupture strength of 12 CrMoV steels

    International Nuclear Information System (INIS)

    Oakes, G.; Orr, J.

    1978-01-01

    A collaborative project involving the Brown-Firth Research Laboratories, the Sheffield Laboratories of the British Steel Corporation and Tube Investments Limited has been carried out to assess the effect of a controlled tungsten addition (0.5%) on the tensile and rupture properties of 12 CrMoV steel. The results obtained indicate that 0.5% tungsten increases the tensile properties at room temperature by approximately 3% but this diminishes with increasing test temperature. The creep rupture properties of the tungsten-bearing material showed a marked short time (500-1000 hours) strength advantage over the tungsten-free material at temperatures up to 650 0 C. At longer times and higher temperatures this stress advantage was reduced considerably so that at times in the region of 10,000 to 15,000 hours it was approximately 5%. In view of the limited data generated, it was found impossible to extrapolate with confidence to longer times but there was, however, no indication that a significant strength advantage is to be anticipated at 100,000 hours for the tungsten-bearing material. (author)

  18. Evaluation and Study the Effect of Additives and Other Factors on Tensile Strength of Asphalt Paving Mixtures

    Directory of Open Access Journals (Sweden)

    Hanaa Khaleel A. Al-Baiti

    2012-03-01

    Full Text Available The resistance of asphaltic concrete to cracking is dependent upon its tensile strength and flexibility characteristics. Also the low tensile strength has recognized as a major contributor to other performance problems. The fatigue life of mixtures decreases exponentially with decreasing of tensile strength. This trend is justified by the loss in stiffness and thereby initiating cracks and stripping. The main objective of this research is intended to study the effect of different variables related with the used materials and the external conditions on the tensile strength and predict a model of indirect tensile strength in asphalt concrete paving materials under the local prevailing conditions and investigate the effect of percent of additives of (Polyestrene resins and Hydrated Lime to enhance the resistance ability of asphalt concrete mixture against distresses. The main affected factors; soaking, asphalt content, compaction, aggregate maximum size and temperature, influence on the indirect tensile strength and presented through a statistics analysis model for tensile strength in asphalt mixture

  19. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.

  20. An Investigation on Tensile Properties of Glass Fiber/Aluminium Laminates

    Directory of Open Access Journals (Sweden)

    M. Sadighi

    2009-12-01

    Full Text Available The idea of combining low weight and good mechanical properties has led to efforts to develop a new light fiber/metal laminate (FML in the last decade. FMLs are hybrid composites consisting of alternating thin layers of metal sheets and fiber-reinforced epoxy prepregs. In this study, the effect of fiber orientation on tensile properties of this material is investigated both analytically and experimentally. An analytical constitutive model based on classical lamination theory by using Kirchhoff-Love assumption, which incorporates the elastic-plastic behavior of the aluminium alloy was applied. Test results show that fiber sheet, with zero angle in laminates, improve the tensile strength. The composite layers with different fiber orientation change specimens' mode of fracture. Good agreement is obtained between the model predictions and experimental results.

  1. Evaluation of tensile properties and water absortion of cassava starch film

    Science.gov (United States)

    Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.

    2017-09-01

    Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.

  2. Nondestructive/in-situ evaluation of the tensile properties in industrial facilities using indentation system

    International Nuclear Information System (INIS)

    Jang, Jae Il; Choi, Yeol; Son, Dong Il; Kwon, Dong Il

    2001-01-01

    Exact reliability evaluation and lifetime prediction through the in-field diagnosis of materials properties is needed for safe usage of degraded industrial structures. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property. Therefore, an advanced indentation technique was proposed for simple and non-destructive testing of in-field structures and for selected testing of local range such as heat affected zone and weldment. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  3. Water absorption and its effect on the tensile properties of tapioca starch/polyvinyl alcohol bioplastics

    Science.gov (United States)

    Judawisastra, H.; Sitohang, R. D. R.; Marta, L.; Mardiyati

    2017-07-01

    Tapioca is one of the largest sources of starch and makes it suitable to be used for bioplastic material. Addition of polyvinyl alcohol (PVA) has been shown to successfully reduce the brittleness of starch bioplastic. This study aims to investigate the influence of PVA addition to water absorption behavior and its effect on the tensile properties of tapioca starch/PVA bioplastics, which are still not yet fully understood until now. The bioplastics were prepared by solution casting method at gelatinization temperature, with PVA addition from 0 to 29 wt%. Examinations were carried out by means of water absorption test, tensile test and Fourier Transform Infrared (FTIR) Spectroscopy. Increasing content of PVA, up to 29 wt%, was found to decrease the water absorption of the bioplastics, with the lowest water saturation point of 251%. This is due to the interaction between starch and PVA which reduces the free OH groups in the resulting bioplastics. Consequently, this led to a decrease in water absorption-related deterioration, i.e. tensile properties degradation of the bioplastics. The addition of 29 wt% resulted into the lowest degradation in tensile strength (6%) and stiffness (30%), while accompanied with the highest elongation increase (39%) after water immersion.

  4. Tensile properties and fracture of (α+γ) two phase stainless steel with fine grained microstructure

    International Nuclear Information System (INIS)

    Ogiyama, Hiroyuki; Tsukuda, Hitoshi; Soyama, Yoshiro

    1989-01-01

    The tensile properties and fracture of the (α+γ) two phase stainless steel with very fine γ grains were investigated. Two different microstructures with very fine γ grains can be obtianed by the thermomechanical treatments; One has both very fine γ and α grains, and the other has very fine γ and large α grains. The specimens were prepared in quenched and aged (475degC) conditions. The results obtained are as follows. The 0.2 % proof stress and tensile strength increase with the aging at 475degC for all specimens. The refinement of the γ grains plays an important role for the increase of strength in both quenched and aged conditions, and also for the ductility in the quenched condition. The refinement of α grains, however, contributes to the increase of the ductility in the aged condition. Accordingly, it is found that very good combinations of tensile strength and ductility can be achieved by the aging and the refinement of the γ and α grains (micro duplex structure). (author)

  5. Effect of Recycled Rubber Particles and Silica on Tensile and Tear Properties of Natural Rubber Composites

    Directory of Open Access Journals (Sweden)

    Velu CHANDRAN

    2016-05-01

    Full Text Available Application of scrap rubber and worn out tires in natural rubber compounds has been studied. The scrap rubber can, however, be recycled and compounded with natural rubber and thus can be generated as a rubber composite. In this work, recycled rubber particles (RRP were prepared using pulverization process. Then, RRP was blended with natural rubber and silica compounds, and it was synthesized by two- roll mill and hydraulic press at specified operating conditions. The samples ranging from 0 to 40 phr of RRP loaded with silica were used as constant filler. The mechanical properties and morphological analysis were carried out. The results showed that tensile strength and elongation at break gradually decreased with increasing RRP loading in natural rubber and silica compounds. Tensile modulus went down at 10 phr of RRP and then showed an increasing trend. Hardness increased up to 30 phr of RRP and tear strength increased up to 20 phr of RRP. A comparative study was also carried out with virgin natural rubber vulcanizates. The incorporation of RRP and silica up to 20 phr in natural rubber did not lower the performance of rubber articles. Morphological studies revealed that better filler dispersion, interfacial adhesion, and cross link density could increase the tensile and tear strengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7330

  6. Stiff and tough: a comparative study on the tensile properties of shark skin.

    Science.gov (United States)

    Creager, Shelby B; Porter, Marianne E

    2018-02-01

    In sharks, the skin is a biological composite with mineralized denticles embedded within a collagenous matrix. Swimming performance is enhanced by the dermal denticles on the skin, which have drag reducing properties produced by regional morphological variations and changes in density along the body. We used mechanical testing to quantify the effect of embedded mineralized denticles on the quasi-static tensile properties of shark skin to failure in four coastal species. We investigated regional differences in denticle density and skin properties by dissecting skin from the underlying fascia and muscle at 10 anatomical landmarks. Hourglass-shaped skin samples were extracted in the cranial to caudal orientation. Denticle density was quantified and varied significantly among both regions and species. We observed the greatest denticle densities in the cranial region of the body for the bonnethead, scalloped hammerhead, and bull sharks. Skin samples were then tested in tension until failure, stress strain curves were generated, and mechanical properties calculated. We found significant species and region effects for all three tensile mechanical properties. We report the greatest ultimate tensile strength, stiffness, and toughness near the cranial and lateral regions of the body for all 4 of the coastal species. We also report that denticle density increases with skin stiffness but decreases with toughness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid Green Composites during Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Hideaki Katogi

    2016-07-01

    Full Text Available This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid (PLA during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  8. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling.

    Science.gov (United States)

    Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki

    2016-07-14

    This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35-45 °C and 35-55 °C. The maximum number of cycles was 10³ cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35-45 °C, tensile strength of composite at 10³ cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35-55 °C, tensile strength and Young's modulus of composite at 10³ cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 10³ cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  9. Tensile strength of cementing agents on the CeraOne system of dental prosthesis on implants.

    Science.gov (United States)

    Montenegro, Alexandre Campos; Machado, Aldir Nascimento; Depes Gouvêa, Cresus Vinicius

    2008-12-01

    The aim of this in vitro study was to evaluate the tensile strength of titanium cylinders cemented on stainless steel abutment mock-ups by the Cerazone system. Four types of cements were used: glass ionomer, Fuji I (GC); zinc phosphate, Cimento LS (Vigodent); zinc oxide without eugenol, Rely x Temp NE (3M ESPE); and resin cement, Rely x ARC (3M ESPE). Four experimental groups were formed, each composed of 5 test specimens. Each test specimen consisted of a set of 1 cylinder and 1 stainless steel abutment mock-up. All cements tested were manipulated in accordance with manufacturers' instructions. A static load of 5 Newtons (N) for 2 minutes was used to standardize the procedure. The tensile tests were performed by a mechanical universal testing machine (EMIC DL500MF) at a crosshead speed of 0.5 mm/min. The highest bonding values resulting from the experiment were obtained by Cimento LS (21.86 MPa mean), followed by the resin cement Rely x ARC (12.95 MPa mean), Fuji I (6.89 MPa mean), and Rely x Temp NE (4.71 MPa mean). The results were subjected to analysis of variance (ANOVA) and the Student's t test. The cements differed amongst them as regards tensile strength, with the highest bonding levels recorded with zinc phosphate (Cimento LS) and the lowest with the zinc oxide without eugenol (Rely x Temp NE).

  10. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60

    Directory of Open Access Journals (Sweden)

    Xuezhi Zhang

    2012-05-01

    Full Text Available The development of alternative casting processes is essential for the high demand of light weight magnesium components to be used in the automotive industry, which often contain different section thicknesses. Squeeze casting with its inherent advantages has been approved for the capability of minimizing the gas porosity in magnesium alloys. For advanced engineering design of light magnesium automotive applications, it is critical to understand the effect of section thickness on mechanical properties of squeeze cast magnesium alloys. In this study, magnesium alloy AM60 with different section thicknesses of 6, 10 and 20 mm squeeze cast under an applied pressure of 30 MPa was investigated. The prepared squeeze cast AM60 specimens were tensile tested at room termperature. The results indicate that the mechanical properties including yield strength (YS, ultimate tensile strength (UTS and elongation (A decrease with an increase in section thickness of squeeze cast AM60. The microstructure analysis shows that the improvement in the tensile behavior of squeeze cast AM60 is primarily attributed to the low-gas porosity level and fine grain strucuture which result from the variation of cooling rate of different section thickness. The numerical simulation (Magmasoft? was employed to determine the solidification rates of each step, and the simulated results show that the solidification rate of the alloy decreases with an increase in the section thickness. The computed solidification rates support the experimental observation on grain structural development.

  11. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: z.oksiuta@pb.edu.pl [Bialystok Technical University, Mechanical Department, Wiejska 45c, 15-351 Bialystok (Poland); Ozieblo, A.; Perkowski, K.; Osuchowski, M. [Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw (Poland); Lewandowska, M. [Warsaw University of Technology, Woloska 141, 02-504 Warsaw (Poland)

    2014-02-15

    Highlights: • The HIPping parameters of the 14Cr–2W–0.3Ti–0.3Y{sub 2}O{sub 3} ODS steel powder were investigated. • The density and microstructure of the tested specimens after HIPping were studied. • The mechanical properties, high temperature tensile tests, were performed. • Residual porosity was observed in all tested specimens. • HIPping pressure has negligible influence on the strength of the ODS steel however improves material ductility. - Abstract: An oxide dispersion strengthened ferritic steel with a nominal composition of Fe–14Cr–2W–0.3Ti–0.3Y{sub 2}O{sub 3} (in wt.%) was consolidated by hot isostatic pressing at 1150 °C under various pressures in the range of 185–300 MPa for 3 h. The microstructure, microhardness and high temperature tensile properties of the steel were investigated. With increasing compaction pressure the density of specimens also increased, however OM and SEM observations revealed residual porosity in all tested specimens and similar ferritic microstructure with bimodal-like grains and numerous of large oxide particles, located at the grain boundaries. Mechanical testing revealed that compaction pressure has negligible influence on the hardness and tensile strength of the ODS steel, however improves the material ductility.

  12. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Ozieblo, A.; Perkowski, K.; Osuchowski, M.; Lewandowska, M.

    2014-01-01

    Highlights: • The HIPping parameters of the 14Cr–2W–0.3Ti–0.3Y 2 O 3 ODS steel powder were investigated. • The density and microstructure of the tested specimens after HIPping were studied. • The mechanical properties, high temperature tensile tests, were performed. • Residual porosity was observed in all tested specimens. • HIPping pressure has negligible influence on the strength of the ODS steel however improves material ductility. - Abstract: An oxide dispersion strengthened ferritic steel with a nominal composition of Fe–14Cr–2W–0.3Ti–0.3Y 2 O 3 (in wt.%) was consolidated by hot isostatic pressing at 1150 °C under various pressures in the range of 185–300 MPa for 3 h. The microstructure, microhardness and high temperature tensile properties of the steel were investigated. With increasing compaction pressure the density of specimens also increased, however OM and SEM observations revealed residual porosity in all tested specimens and similar ferritic microstructure with bimodal-like grains and numerous of large oxide particles, located at the grain boundaries. Mechanical testing revealed that compaction pressure has negligible influence on the hardness and tensile strength of the ODS steel, however improves the material ductility

  13. Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.

    Science.gov (United States)

    Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

    In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

  14. Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model

    International Nuclear Information System (INIS)

    Elangovan, K.; Balasubramanian, V.; Babu, S.

    2009-01-01

    AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio and good corrosion resistance. Compared to the fusion welding processes that are routinely used for joining structural aluminium alloys, friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force etc., and tool pin profile play a major role in deciding the joint strength. An attempt has been made to develop a mathematical model to predict tensile strength of the friction stir welded AA6061 aluminium alloy by incorporating FSW process parameters. Four factors, five levels central composite design has been used to minimize number of experimental conditions. Response surface method (RSM) has been used to develop the model. Statistical tools such as analysis of variance (ANOVA), student's t-test, correlation co-efficient etc. have been used to validate the developed model. The developed mathematical model can be effectively used to predict the tensile strength of FSW joints at 95% confidence level

  15. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  16. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  17. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    Directory of Open Access Journals (Sweden)

    P. Sivaraj

    2014-03-01

    Full Text Available This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.

  18. Effects of hydrogen on the tensile strength characteristics of stainless steels

    International Nuclear Information System (INIS)

    Blanchard, R.; Pelissier, J.; Pluchery, M.; Commissariat a l'Energie Atomique, Saclay

    1961-01-01

    This paper deals with the effects of hydrogen on stainless steel, that might possibly be used as a canning material in hydrogen-cooled reactors. Apparent ultimate-tensile strength is only 80 per cent of initial value for hydrogen content about 50 cc NTP/ 100 g, and reduction in area decreases from 80 to 55 per cent. A special two-stage replica technique has been developed which allows fracture surface of small tensile specimens (about 0.1 mm diam.) to be examined in an electron microscope. All the specimens showed evidence of ductile character throughout the range of hydrogen contents investigated, but the aspect of the fracture surfaces gradually changes with increasing amounts. (author) [fr

  19. Microstructure, process, and tensile property relationships in an investment cast near-γTiAl alloy

    International Nuclear Information System (INIS)

    Jones, P.E.; Porter, W.J. III.; Keller, M.M.; Eylon, D.

    1992-01-01

    The brittle nature of near-γ TiAl alloys makes fabrication difficult. This paper reports on developing near-net shape technologies, such as investment casting, for these alloys which is one of the essential approached to their commercial introduction. The near-γ TiAl alloy Ti-48Al-2Nb-2Cr (a%) is investment cast with two cooling rates. The effect of casting cooling rate on the fill and surface integrity was studied for complex shape thin walled components. Block and bar castings are hot isostatically pressed (HIP'd) and heat treated to produce duplex (lamellar + equiaxed) microstructures for mechanical property evaluation. The relationships between the casting conditions, microstructures, and tensile properties are studied. The strength and elongation below the ductile to brittle transition temperature are dependent on the casting cooling rate and section size. The tensile properties improved with faster cooling during the casting process as a result of microstructural refinement. Faster cooled castings are more fully transformed to a duplex structure during post-casting heat treatments. Above the ductile to brittle transition temperature the effect of casting cooling rate on tensile properties is less pronounced

  20. Effect of salivary pH on diametral tensile strength of glass ionomer cement coated with coating agent

    Science.gov (United States)

    Farahdillah; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to analyze the effect of salivary pH to diametral tensile strength of glass ionomer cement (GIC) coated with a coating agent. GIC specimens coated with varnish and nano-filled coating agent were stored in artificial saliva at pH values of 4.5, 5.5, and 7 for 24 h at 37°C, then the diametral tensile strength was tested by universal testing machine. Results showed that there was no significant difference in the diametral tensile strength of the GIC coated with varnish and nano-filled coating agent with decreasing of salivary pH (p salivary pH does not affect the diametral tensile strength of GIC coated by varnish or nano-filled coating agent

  1. Theoretical Conversions of Different Hardness and Tensile Strength for Ductile Materials Based on Stress-Strain Curves

    Science.gov (United States)

    Chen, Hui; Cai, Li-Xun

    2018-04-01

    Based on the power-law stress-strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength ( σ b ) and Hollomon parameters ( K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength ( σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -( K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.

  2. Tensile properties and microstructural analysis of spheroidized hydroxyapatite-poly (etheretherketone) biocomposites

    International Nuclear Information System (INIS)

    Abu Bakar, M.S.; Cheang, P.; Khor, K.A.

    2003-01-01

    Poly(etheretherketone) or PEEK, is a high performance thermoplastic possessing exceptional mechanical properties, high temperature durability, good chemical and fatigue resistance. These coupled with its ability to withstand sterilization treatment, make it a preferred material for biomedical applications. This study examines the benefit of incorporating hydroxyapatite particulates in poly(etheretherketone) for possible usage as bone analogue materials. Flame spheroidized hydroxyapatite (FSHA) were incorporated into semi-crystalline poly(etheretherketone) polymer through a series of processes comprising melt compounding, granulating and injection molding. Biocomposites with high hydroxyapatite loading of up to 40 vol.% were processed successfully using this technique. Scanning electron microscopy (SEM) revealed fair dispersion and distribution of hydroxyapatite particles within the polymer matrix. The series of composites were characterized in terms of tensile and microhardness properties. Microstructural analysis was also carried out to correlate the structure-property relationship of the composite. The dependency of tensile properties such as modulus, strength and strain to fracture as well as the micro-hardness on the volume percentage of hydroxyapatite were investigated. By varying the amount of hydroxyapatite particles in the composite, a wide range of mechanical properties were obtained. In general, the tensile modulus and microhardness increased, while strength and strain to fracture decreased correspondingly with progressive addition of hydroxyapatite particles. The composite system under investigation also exhibited mechanical properties matching those of human bone. With hydroxyapatite loading beyond 30 vol.%, the modulus were within the bounds of the human cortical bone. Findings from this study suggest that this bioactive composite system have the potential as an alternative implant material for orthopaedic application

  3. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.M.A., E-mail: madel@uqac.ca [Center for Advanced Materials, Qatar University, Doha (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Samuel, F.H. [Université du Québec à Chicoutimi, Chicoutimi, QC, Canada G7H 2B1 (Canada); Al Kahtani, Saleh [Industrial Engineering Program, Mechanical Engineering Department, College of Engineering, Salman bin Abdulaziz University, Al Kharj (Saudi Arabia)

    2013-08-10

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si){sub 3}(Zr, Ti), Al{sub 3}CuNi and Al{sub 9}NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied.

  4. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    International Nuclear Information System (INIS)

    Mohamed, A.M.A.; Samuel, F.H.; Al Kahtani, Saleh

    2013-01-01

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si) 3 (Zr, Ti), Al 3 CuNi and Al 9 NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied

  5. Processing, Structural Characterization and Comparative Studies on Uniaxial Tensile Properties of a New Type of Porous Twisted Wire Material

    Directory of Open Access Journals (Sweden)

    Fei Wu

    2015-08-01

    Full Text Available A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e., a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension. The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs.

  6. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  7. The difference of tensile bond strength between total and self etch adhesive systems in dentin

    Directory of Open Access Journals (Sweden)

    Selly Yusalina

    2010-03-01

    Full Text Available Total etch adhesive system has been widely used in teeth conservation area as an adhesive agent before implicating composite resin restoration agent. The aim of this research is to prove the difference of tensile bond strength between total etch (Single Bond and self etch adhesive system (Adper prompt L-Pop on dentin surface in vitro. The extracted and non carries maxillary premolar teeth were used in this research and were divided into 2 groups. The first group comprised 15 specimen teeth etched in phosphoric acid and was applicated with the Single Bond adhesive agent. The second group comprised 15 specimen teeth, applicated with the Adper Prompt-L-Pop. The composite resin (Z 350, 3M was applied incrementally and each of the layers was rayed for 20 seconds. The specimens were stored in physiologic solution before they were tested. Tensile bond strength was measured by LRX Plus Lloyd Instrument, with 1 N load and 1 mm/minute speed, and the measurement result was in Mpa unit. The result was evaluated statistically by the Student t-test with α = 0.05. Single Bond (the 5th generation showed a better bond strength compared to the Adper Prompt-L-Pop (the 6th generation.

  8. Standard test method for splitting tensile strength for brittle nuclear waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This test method is used to measure the static splitting tensile strength of cylindrical specimens of brittle nuclear waste forms. It provides splitting tensile-strength data that can be used to compare the strength of waste forms when tests are done on one size of specimen. 1.2 The test method is applicable to glass, ceramic, and concrete waste forms that are sufficiently homogeneous (Note 1) but not to coated-particle, metal-matrix, bituminous, or plastic waste forms, or concretes with large-scale heterogeneities. Cementitious waste forms with heterogeneities >1 to 2 mm and 5 mm can be tested using this procedure provided the specimen size is increased from the reference size of 12.7 mm diameter by 6 mm length, to 51 mm diameter by 100 mm length, as recommended in Test Method C 496 and Practice C 192. Note 1—Generally, the specimen structural or microstructural heterogeneities must be less than about one-tenth the diameter of the specimen. 1.3 This test method can be used as a quality control chec...

  9. The relationship between hardness to the tensile properties of kenaf/ unsaturated polyester composite

    Science.gov (United States)

    Ghaztar, Muhammad Mustakim Mohd; Romli, Ahmad Zafir; Ibrahim, Nik Noor Idayu Nik

    2017-12-01

    The level of fibre-matrix interaction and consolidation are essential aspects to determine the composite deformation but, less attention is given to the effect of small fibre weight increment (5 wt%), chemical treatment coalition (NaOH/ silane), fibre's length and aspect ratio to the physical and mechanical properties of the composite. Hence, this paper studies the correlation between these parameters towards hardness and tensile properties of Kenaf fibre and unsaturated polyester (UP) matrix. The study was carried out by fabricating the sample into two (2) types of fibre categories and fibre loadings and tested to determine its properties. The results showed that the hardness and tensile stress were significantly influenced by the fibre loading and dispersion of the fabricated samples. At low filler loading, the treated samples for both fibre sizes showed lower hardness property compared to the untreated samples. The chemical treatment coalition might diffuse out the pectin and hemicellulose which affect the ability of the fibre to absorb the force applied by the hardness indenter. Good fibre dispersion observed for the treated samples also resulted in the fibre-dominating composite system where the fibres were efficiently absorbed and distributed the indentation force. However, chemical treatments and good fibre dispersion contributed to the higher tensile stress of the treated fibre samples especially for smaller fibre length and aspect ratio compared to the untreated samples. At high fibre loading, treated fibre samples showed higher hardness property compared to the untreated samples since the treatment resulted in better fibre wetting by the matrix and the formation of pack structure. However, high fibre loading caused the mutual abrasion among the fibre which led to the lower tensile stress compared to the low fibre loading samples. In conclusion, by understanding the factors that influenced the reinforcing mechanism of the composite, the inconsistency of

  10. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions

    International Nuclear Information System (INIS)

    Karamouz, Mostafa; Azarbarmas, Mortaza; Emamy, Masoud; Alipour, Mohammad

    2013-01-01

    In this work, the effects of lithium (Li) on the microstructure, hardness and mechanical properties of A380 aluminum alloy have been investigated. The alloy was produced by conventional casting. Microstructures of the samples were investigated using the optical and scanning electron microscopy. The results showed that with increase of Li content up to 0.1%, the morphology of β-Al 5 FeSi and eutectic Si phases changed from intersected and branched coarse platelets into fine and independent ones. Li decreased hardness values of the alloy. Also, it was revealed from tensile tests that with addition of 0.6% Li, the ultimate tensile strength (UTS) and elongation values increased from 274 to 300 MPa and 3.8% to 6%, respectively. Fractographic examination of the fracture surfaces indicated that the alloys with Li addition had more ductile dimple and fewer brittle cleavage surfaces

  11. Research on hardness and tensile properties of A390 alloy with tin addition

    Science.gov (United States)

    Si, Yi

    2018-03-01

    The effect of tin content on hardness and tensile properties of A390 alloys has been discussed. The microstructure of the A390 alloy with tin addition has been surveyed by OM and investigated by SEM. Research showed that β-Sn in the alloy precipitation forms were mainly small blocks and thin strips, particles within the Al2Cu network or large blocks consisting of β-Sn and Al2Cu on Al/Si interfaces or α-Al grain boundaries. Spheroidization of the primary and eutectic silicon was improved due to Sn accretion. With the augment of element tin, hardness of casting alloy is much higher than that of alloy after heat treatment. The elongation and ultimate tensile strength (UTS) were increased in Sn addition from 0 to 1%, which is attributed to the multiple action of Sn.

  12. Tensile properties and fracture mechanism of IN-100 superalloy in high temperature range

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2017-06-01

    Full Text Available Tensile properties and fracture mechanism of a polycrystalline IN-100 superalloy have been investigated in the range from room temperature to 900°C. Optical microscopy (OM and transmission electron microscopy (TEM applying replica technique were used for microstructural investigation, whereas scanning electron microscopy (SEM was utilized for fracture study. High temperature tensile tests were carried out in vacuumed chamber. Results show that strength increases up to 700°C, and then sharply decreases with further increase in temperature. Elongation increases very slowly (6-7.5% till 500°C, then decreases to 4.5% at 900°C. Change in elongation may be ascribed to a change of fracture mechanism. Appearance of a great number of microvoids prevails up to 500°C resulting in a slow increase of elongation, whereas above this temperature elongation decrease is correlated with intergranular crystallographic fracture and fracture of carbides.

  13. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions

    Energy Technology Data Exchange (ETDEWEB)

    Karamouz, Mostafa [Research Center of Materials engineering, University of Kerman Industrial Graduate, Kerman (Iran, Islamic Republic of); Research Center of Materials engineering, University of Kerman Industrial Graduate, Kerman (Iran, Islamic Republic of); Azarbarmas, Mortaza, E-mail: mazarbarmas@ut.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Emamy, Masoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Alipour, Mohammad [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-10-10

    In this work, the effects of lithium (Li) on the microstructure, hardness and mechanical properties of A380 aluminum alloy have been investigated. The alloy was produced by conventional casting. Microstructures of the samples were investigated using the optical and scanning electron microscopy. The results showed that with increase of Li content up to 0.1%, the morphology of β-Al{sub 5}FeSi and eutectic Si phases changed from intersected and branched coarse platelets into fine and independent ones. Li decreased hardness values of the alloy. Also, it was revealed from tensile tests that with addition of 0.6% Li, the ultimate tensile strength (UTS) and elongation values increased from 274 to 300 MPa and 3.8% to 6%, respectively. Fractographic examination of the fracture surfaces indicated that the alloys with Li addition had more ductile dimple and fewer brittle cleavage surfaces.

  14. Factors influencing the tensile strength of repaired Achilles tendon: a biomechanical experiment study.

    Science.gov (United States)

    Jielile, Jiasharete; Bai, Jing Ping; Sabirhazi, Gulnur; Redat, Darebai; Yilihamu, Tuoheti; Xinlin, Baoltri; Hu, Geyang; Tang, Bin; Liang, Bing; Sun, Qi

    2010-10-01

    Operative treatment has been advocated as the method of choice to repair Achilles tendon rupture as surgery results in reduced re-rupture rate and faster rehabilitation. Many surgical techniques have been introduced allowing for postoperative early motion of the ankle joint. However, it is currently very difficult for surgeons to determine the optimal treatment conditions for ruptured Achilles tendon with an increasing number of end-to-end suture methods, suture materials, and epitenon suture techniques. In the present biomechanical experiment study based on an orthogonal design, thirty-two New Zealand white rabbits received Achilles tendon tenotomy and subsequent operative treatment to repair the tendon employing four end-to-end suture methods, four suture materials, and four epitenon suture techniques. The tensile strength of the repaired Achilles tendon was investigated at four rehabilitation periods, and in comparison with the results of another sixteen rabbits with normal Achilles tendons. The end-to-end suture method contributed most to the final Achilles tendon tensile strength in addition to rehabilitation period, with the highest values occurring with the use of the parachute-like ("Pa" bone) suture method. The other two factors, namely, suture material and epitenon suture technique, had relatively little influence on the results. The parachute-like ("Pa" bone) surgical technique is superior to the other three end-to-end suture methods, with enhanced tensile strength of the repaired tendon. This method allows for postoperative early kinesitherapy of the ankle and knee joints. Therefore, this technique is highly recommended in clinical situations for treatment of ruptured Achilles tendon. 2010 Elsevier Ltd. All rights reserved.

  15. Tensile Property of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion Based on Treatment of Laser Shock Processing.

    Science.gov (United States)

    Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang

    2018-05-16

    Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced.

  16. Development of micro tensile testing method in an FIB system for evaluating grain boundary strength

    International Nuclear Information System (INIS)

    Fujii, Katsuhiko; Fukuya, Koji

    2010-01-01

    A micro tensile testing method for evaluating grain boundary strength was developed. Specimens of 2 x 2 x 10μm having one grain boundary were made by focused ion beam (FIB) micro-processing and tensioned in an FIB system in situ. The load was measured from the deflection of the silicon cantilever. The method was applied to aged and unaged Fe-Mn-P alloy specimens with different level of grain boundary phosphorus segregation. The load at intergranular fracture decreased with increasing phosphorus segregation. (author)

  17. Effect of strain rate on the tensile properties of α- and delta-stabilized plutonium

    International Nuclear Information System (INIS)

    Hecker, S.S.; Morgan, J.R.

    1975-01-01

    The tensile properties of unalloyed α-Pu and 3.4 at. percent Ga-stabilized delta-Pu were determined at strain rates from 10 -5 to 100/s. Tests at strain rates less than 10 -2 /s were conducted on an Instron Testing Machine; those at strain rates between 10 -2 and 3/s on a closed-loop electrohydraulic MTS system; and those at strain rates greater than 3/s on a specially modified Charpy Impact Tester. Three lots of delta-Pu, one rolled and annealed and the other two cast and homogenized, were tested. The 0.2 percent yield strengths and ultimate tensile strengths increased by an average of 5.2 and 6.0 MPa per factor of 10 increase in strain rate. This increase was achieved without penalty in tensile ductility as measured by total elongation to fracture and by reduction in area. The isostatically pressed α-Pu specimens also showed a large increase in fracture stress with strain rate (34.3 MPa per factor to 10 increase in strain rate). The fracture was macroscopically brittle (plastic strains less than 0.3 percent) although we observed extensive evidence of microscopic flow in the ductile dimple-type appearance of the fracture surfaces. The strain to fracture appeared to exhibit a minimum at a strain rate of 10 -2 /s. (U.S.)

  18. Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

    Directory of Open Access Journals (Sweden)

    Kang Xia

    2014-03-01

    Full Text Available Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.

  19. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    Science.gov (United States)

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  20. Effect of tempering upon the tensile properties of a nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, H.S. [University of Technology, Baghdad (Iraq); Peet, M.J., E-mail: mjp54@cam.ac.uk [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Avettand-Fènoël, M-N. [Unité Matériaux Et Transformations (UMET) UMR CNRS 8207, Université, Lille 1, 59655 Villeneuve D' ASCQ (France); Bhadeshia, H.K.D.H. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-10-06

    The tensile properties of a nanostructured carbide-free bainitic steel formed at 200–250 °C are compared against those after tempering sufficiently to remove the retained austenite. Although significant ductility is observed following tempering, a comparison of tempered and untempered samples shows that it is in fact reduced when a comparison is made at identical strength. The shape of the stress–strain curves shows clear evidence that the capacity for work hardening is reduced with the loss of austenite. The nanostructure of the steel transformed at 250 °C is examined by transmission electron microscopy, to compare the as-transformed to the tempered structure. In this case after tempering at 500 °C the energy absorbed during the tensile test is lower, due to the lower strength. Reduction of strength is caused by the slight coarsening of the bainite plates, and lower dislocation density after tempering. Considering the formation of carbide particles in high strength steel, impressive ductility is exhibited even in the tempered condition.

  1. Effect of tempering upon the tensile properties of a nanostructured bainitic steel

    International Nuclear Information System (INIS)

    Hasan, H.S.; Peet, M.J.; Avettand-Fènoël, M-N.; Bhadeshia, H.K.D.H.

    2014-01-01

    The tensile properties of a nanostructured carbide-free bainitic steel formed at 200–250 °C are compared against those after tempering sufficiently to remove the retained austenite. Although significant ductility is observed following tempering, a comparison of tempered and untempered samples shows that it is in fact reduced when a comparison is made at identical strength. The shape of the stress–strain curves shows clear evidence that the capacity for work hardening is reduced with the loss of austenite. The nanostructure of the steel transformed at 250 °C is examined by transmission electron microscopy, to compare the as-transformed to the tempered structure. In this case after tempering at 500 °C the energy absorbed during the tensile test is lower, due to the lower strength. Reduction of strength is caused by the slight coarsening of the bainite plates, and lower dislocation density after tempering. Considering the formation of carbide particles in high strength steel, impressive ductility is exhibited even in the tempered condition

  2. Effect of tensile overloads on fatigue crack growth of high strength steel wires

    International Nuclear Information System (INIS)

    Haag, J.; Reguly, A.; Strohaecker, T.R.

    2013-01-01

    Highlights: • A proof load process may be an option to increase the fatigue life of flexible pipelines. • There is possibility to produce plastic deformation at crack tip of tensile armor wires. • Controlled overloads provide effective crack growth retardation. • Crack growth retardation is also evident at higher stress ratios. - Abstract: Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress

  3. Preliminary study on tensile properties and fractography of the recycled aluminum cast product

    International Nuclear Information System (INIS)

    Hishamuddin Hussain; Mohd Harun; Hafizal Yazid; Shaiful Rizam Shamsudin; Zaiton Selamat; Mohd Shariff Sattar

    2004-01-01

    Among many mechanical properties of materials, tensile properties are probably the most frequently considered, evaluated, and referred by the industry. This paper presents the result of preliminary study regarding the tensile properties and fractography of the recycled aluminum cast product. For this purpose, three sets of specimen were prepared for tensile testing by using permanent mold casting technique. The cast products are in durable shaped tensile specimens with the gauge length of 50mm. The tensile testing was conducted in accordance with BS EN 10002-1 and ISO 6892 standards. Fracture surface analysis was also conducted to understand materials behaviour. (Author)

  4. Tensile properties of modified 9Cr-1Mo steel by shear punch testing and correlation with microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, V., E-mail: karthik@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Kasiviswanathan, K.V.; Jayakumar, T.; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2011-10-15

    Modified 9Cr-1Mo ferritic steel (P91) is subjected to a series of heat treatments consisting of soaking for 5 min at the selected temperatures in the range 973 K-1623 K (below Ac{sub 1} to above Ac{sub 4}) followed by oil quenching and tempering at 1033 K for 1 h to obtain different microstructural conditions. The tensile properties of the different microstructural conditions are evaluated from small volumes of material by shear punch test technique. A new methodology for evaluating yield strength, ultimate tensile strength and strain hardening exponent from shear punch test by using correlation equations without employing empirical constants is presented and validated. The changes in the tensile properties are related to the microstructural changes of the steel investigated by electron microscopic studies. The steel exhibits minimum strength and hardness when soaked between Ac{sub 1} and Ac{sub 3} (intercritical range) temperatures due to the replacement of original lath martensitic structure with subgrains. The finer martensitic microstructure produced in the steel after soaking at temperatures above Ac{sub 3} leads to a monotonic increase in hardness and strength with decreasing strain hardening exponent. For soaking temperatures above Ac{sub 4}, the hardness and strength of the steel increases marginally due to the formation of soft {delta} ferrite. - Highlights: > A methodology presented for computing tensile properties from shear punch test. > UTS and strain hardening estimated using extended analysis of blanking models. > The analysis methodology validated for different heat treated 9Cr-1Mo steel. > Changes in tensile properties of steel correlated with microstructures.

  5. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.L., E-mail: ljlhpu123@163.com; Xiong, Y.C.; Wang, X.D.; Yan, S.J.; Yang, C.; He, W.W.; Chen, J.Z.; Wang, S.Q.; Zhang, X.Y.; Dai, S.L.

    2015-02-25

    In order to develop high strength metal–matrix composites with acceptable ductility, bulk nanostructured aluminum–matrix composites reinforced with graphene nanoflakes were fabricated by cryomilling and hot extrusion processes. Microstructure and mechanical properties were characterized and determined using transmission electron microscopy, electron dispersion spectroscopy, as well as static tensile tests. The results show that, with an addition of only 0.5 wt% graphene nanoflakes, the bulk nanostructured aluminum/graphene composite exhibited increased strength and unsubdued ductility over pure aluminum. Besides, the mechanical properties of the composites with higher content of graphene nanoflakes were also measured and investigated. Above 1.0 wt% of graphene nanoflakes, however, this strengthening effect sharply dropped due to the clustering of graphene nanoflakes. Furthermore, the optimal addition of graphene nanoflakes into the nanocrystalline aluminum matrix was calculated and discussed.

  6. Effect of curing and silanizing on composite repair bond strength using an improved micro-tensile test method.

    Science.gov (United States)

    Eliasson, Sigfus Thor; Dahl, Jon E

    2017-01-01

    Objectives: To evaluate the micro-tensile repair bond strength between aged and new composite, using silane and adhesives that were cured or left uncured when new composite was placed. Methods: Eighty Filtek Supreme XLT composite blocks and four control blocks were stored in water for two weeks and thermo-cycled. Sandpaper ground, etched and rinsed specimens were divided into two experimental groups: A, no further treatment and B, the surface was coated with bis-silane. Each group was divided into subgroups: (1) Adper Scotchbond Multi-Purpose, (2) Adper Scotchbond Multi-Purpose adhesive, (3) Adper Scotchbond Universal, (4) Clearfil SE Bond and (5) One Step Plus. For each adhesive group, the adhesive was (a) cured according to manufacturer's instructions or (b) not cured before repair. The substrate blocks were repaired with Filtek Supreme XLT. After aging, they were serially sectioned, producing 1.1 × 1.1 mm square test rods. The rods were prepared for tensile testing and tensile strength calculated at fracture. Type of fracture was examined under microscope. Results: Leaving the adhesive uncured prior to composite repair placement increased the mean tensile values statistically significant for all adhesives tested, with or without silane pretreatment. Silane surface treatment improved significantly ( p strength values for all adhesives, both for the cured and uncured groups. The mean strength of the control composite was higher than the strongest repair strength ( p strength. Not curing the adhesive before composite placement increased the tensile bond strength.

  7. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    Directory of Open Access Journals (Sweden)

    Liuyang Duan

    2018-01-01

    Full Text Available There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures. The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The

  8. The effect of silanated and impregnated fiber on the tensile strength of E-glass fiber reinforced composite retainer

    Directory of Open Access Journals (Sweden)

    Niswati Fathmah Rosyida

    2015-12-01

    Full Text Available Background: Fiber reinforced composite (FRC is can be used in dentistry as an orthodontic retainer. FRC  still has a limitations because of to  a weak bonding between fibers and matrix. Purpose: This research was aimed to evaluate the effect of silane as coupling agent and fiber impregnation on the tensile strength of E-glass FRC. Methods: The samples of this research were classified into two groups each of which consisted of three subgroups, namely the impregnated fiber group (original, 1x addition of silane, 2x addition of silane and the non-impregnated fiber group (original, 1x addition of silane, 2x addition of silane. The tensile strength was measured by a universal testing machine. The averages of the tensile strength in all groups then were compared by using Kruskal Wallis and Mann Whitney post hoc tests. Results: The averages of the tensile strength (MPa in the impregnated fiber group can be known as follow; original impregnated fiber (26.60±0.51, 1x addition of silane (43.38±4.42, and 2x addition of silane (36.22±7.23. The averages of tensile strength (MPa in the non-impregnated fiber group can also be known as follow; original non-impregnated fiber (29.38±1.08, 1x addition of silane (29.38±1.08, 2x addition of silane (12.48±2.37. Kruskal Wallis test showed that there was a significant difference between the impregnated fiber group and the non-impregnated fiber group (p<0.05. Based on the results of post hoc test, it is also known that the addition of silane in the impregnated fiber group had a significant effect on the increasing of the tensile strength of E-glass FRC (p<0.05, while the addition of silane in the non-impregnated fiber group had a significant effect on the decreasing of the tensile strength of E-glass FRC. Conclusion: It can be concluded that the addition of silane in the non-silanated fiber group can increase the tensile strength of E-glass FRC, but the addition of silane in the silanated fiber group can

  9. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes.

    Science.gov (United States)

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-11-21

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites.

  10. Influence of disinfectant solutions on the tensile bond strength of a fourth generation dentin bonding agent

    Directory of Open Access Journals (Sweden)

    BOCANGEL Jorge Saldivar

    2000-01-01

    Full Text Available The purpose of the present study was to evaluate the influence of different disinfectant solutions on the tensile bond strength of a fourth generation dentin bonding agent. Forty non carious human molars were selected. Teeth were embedded in acrylic resin and ground until the exposure of a flat superficial dentin surface. Teeth were randomly divided in 4 groups and treated as follows: Group 1 - 2.5% NaOCl for 40 seconds; Group 2 - 2% chlorhexidine for 40 seconds; Group 3 - 1.23% acidulated fluoride for 4 minutes; and Group 4 - control (without disinfectant solution. Following treatments, Scotchbond Multipurpose Plus® (3M was used according to the manufacturer's instructions. After that, the test specimens were built with composite resin (Z100®-3M, using a standard Teflon matrix. The specimens were stored in distilled water for 24 hours at a temperature of 37ºC. The tensile strength test was performed using a Mini Instrom testing machine. The mean values obtained for each group, in MPa, were: Group 1 - 7.37 (± 2.51; Group 2 - 11.25 (± 4.65; Group 3 - 9.80 (± 3.11; and Group 4 - 10.96 (± 3.37. The results were submitted to statistical analysis using the ANOVA test, and no statistical significant differences among the groups were found. It can be concluded that the different disinfectant substances used in this research do not adversely affect dentin adhesion.

  11. Fabric tensile strength as affected by different anti pilling agents at various concentration and ph levels

    International Nuclear Information System (INIS)

    Tusief, M.Q.; Mahmood, N.; Saleem, M.

    2013-01-01

    Pilling is a phenomenon that has a long cause trouble in textile industry. It is the formation of pills or knops on the surface of woven or knitted fabrics caused by friction and abrasion. If fabric has a pronounced tendency to pilling, their appearances suffer severely after a short period of use. The pilling of fabrics is a serious problem for the apparel industry. The use of anti pilling finishes is one of the best techniques to control the pilling of the fabric. In this method fabric is treated with special anti pilling agents to prevent pilling that promote adhesion of the fibres in the yarn or the fabric. This paper endeavors to optimize the application of different anti pilling agents at different concentration and pH levels on the Tensile Strength of P/C fabric for best results. The results exposed that different anti pilling finishes have significant effects on the Tensile Strength of fabric at different concentration level however different pH levels have no considerable effects. (author)

  12. Application of ANFIS for analytical modeling of tensile strength of functionally graded steels

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2012-06-01

    Full Text Available In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems (ANFIS. To build the model for graded ferritic and austenitic steels, training, testing and validation using respectively 174 and 120 experimental data were conducted. According to the input parameters, in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation which correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels configuration was found through a numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.

  13. HYBRID CONTINUUM-DISCONTINUUM MODELLING OF ROCK FRACUTRE PROCESS IN BRAZILIAN TENSILE STRENGTH TEST

    Directory of Open Access Journals (Sweden)

    Huaming An

    2017-10-01

    Full Text Available A hybrid continuum-discontinuum method is introduced to model the rock failure process in Brazilian tensile strength (BTS test. The key component of the hybrid continuum-discontinuum method, i.e. transition from continuum to discontinuum through fracture and fragmentation, is introduced in detail. A laboratory test is conducted first to capture the rock fracture pattern in the BTS test while the tensile strength is calculated according to the peak value of the loading forces. Then the proposed method is used to model the rock behaviour during BTS test. The stress propagation is modelled and compared with those modelled by finite element method in literatures. In addition, the crack initiation and propagation are captured and compared with the facture patter in laboratory test. Moreover, the force-loading displacement curve is obtained which represents a typical brittle material failure process. Furthermore, the stress distributions along the vertical direction are compared with the theoretical solution. It is concluded that the hybrid continuum-discontinuum method can model the stress propagation process and the entire rock failure process in BTS test. The proposed method is a valuable numerical tool for studying the rock behaviour involving the fracture and fragmentation processes.

  14. Improving Tensile Bond Strength of Orthodontic Bracket by Applying Papain Gel as an Email Deproteinization Agent

    Directory of Open Access Journals (Sweden)

    Niswati Fathmah Rosyida

    2017-12-01

    Full Text Available An effort to improve the bonding between bracket and tooth surface is required. Objective: The aim of this studywas to evaluate the effect of papain gel on tensile bond strength (TBS and adhesive remnant index (ARI of the orthodontic brackets. Methods: A total of 42 healthy human premolars were randomly divided into six groups. 1 Resin-modifed glass ionomer cement (RMGIC without papain, 2 RMGIC with papain 8%, 3 RMGIC with papain 10%, 4 Composite resin (CR without papain, 5 CR with papain 8%, 6 CR with papain 10%. The TBS was determined using a universal testing machine. Bond failure was classifed according to the ARI. The TBS data were analyzed with Kruskal-Wallis test followed by Mean Whitney tests with 5% of signifcance level. Results: The mean of TBS(MPa values of RMGIC groups are without papain (5.03 ± 1.52, papain 8% (4.79 ± 2.61, papain 10 (7.75 ± 1, 48. CR groups without papain (5.45 ± 1.23, papain 8% (2.30 ± 0.73, and papain 10% (4.84 ± 1.72 Bond failure was mainly classifed as score 1. The TBS values were statistically influenced by the application of papain and adhesive. Conclusion: The application of papain 10% before RMGIC cementation improves the tensile bond strength and could decrease the bond failure of the orthodontic bracket.

  15. Tensile and Compressive Properties of Woven Kenaf/Glass Sandwich Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman J. Sharba

    2016-01-01

    Full Text Available Monotonic (tensile and compression properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.

  16. Prediction of Tensile Strength of Friction Stir Weld Joints with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Neural Network

    Science.gov (United States)

    Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.

    2015-01-01

    Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.

  17. Effects of diode laser welding with dye-enhanced glue on tensile strength of sutures commonly used in urology.

    Science.gov (United States)

    Kirsch, A J; Chang, D T; Kayton, M L; Libutti, S K; Connor, J P; Hensle, T W

    1996-01-01

    Tissue welding using laser-activated protein solders may soon become an alternative to sutured tissue approximation. In most cases, approximating sutures are used both to align tissue edges and provide added tensile strength. Collateral thermal injury, however, may cause disruption of tissue alignment and weaken the tensile strength of sutures. The objective of this study was to evaluate the effect of laser welding on the tensile strength of suture materials used in urologic surgery. Eleven types of sutures were exposed to diode laser energy (power density = 15.9 W/cm2) for 10, 30, and 60 seconds. Each suture was compared with and without the addition of dye-enhanced albumin-based solder. After exposure, each suture material was strained (2"/min) until ultimate breakage on a tensometer and compared to untreated sutures using ANOVA. The strength of undyed sutures were not significantly affected; however, violet and green-dyed sutures were in general weakened by laser exposure in the presence of dye-enhanced glue. Laser activation of the smallest caliber, dyed sutures (7-0) in the presence of glue caused the most significant loss of tensile strength of all sutures tested. These results indicate that the thermal effects of laser welding using our technique decrease the tensile strength of dyed sutures. A thermally resistant suture material (undyed or clear) may prevent disruption of wounds closed by laser welding techniques.

  18. Effect of Oil Application, Age, Diet, and Pigmentation on the Tensile Strength and Breaking Point of Hair.

    Science.gov (United States)

    Kavitha, S; Natarajan, Karthika; Thilagavathi, G; Srinivas, C R

    2016-01-01

    Hair strength depends on various factors such as nutrition, environmental factors, sunlight, oiling, aging, conditioner, etc. To compare the tensile strength and breaking point of the hair shaft between (1) vegetarian and nonvegetarian. (2) Those who regularly apply and those who do not apply oil. (3) Pigmented and nonpigmented hair, (4) childhood and elderly. Hair fibers were mounted in tensile strength testing machine Zwick/Roell Z010 and gradual force was administered. The elongation of hair fiber in mm and the maximum force required to break the hair strand were recorded for each fiber. Elasticity of the children's hair was more than the elasticity of adult ( P = 0.05) although tensile strength in children hair was not statistically significant (>0.05). Similarly, the tensile strength was more among those who regularly consumed nonvegetarian food but the difference was not statistically significant ( P > 0.05). There was no statistically significant difference in other groups ( P > 0.05). Elasticity in children hair is statistically more than elderly hair although there is no significant change in tensile strength.

  19. White cast iron with a nano-eutectic microstructure and high tensile strength and considerable ductility prepared by an aluminothermic reaction casting

    International Nuclear Information System (INIS)

    La, Peiqing; Wei, Fuan; Hu, Sulei; Li, Cuiling; Wei, Yupeng

    2013-01-01

    A white cast iron with nano-eutectic microstructure was prepared by an aluminothermic reaction casting. Microstructures of the cast iron were investigated by optical microscope (OM), electron probe micro-analyzer (EPMA), scanning electron microscope (SEM) and X-ray diffraction (XRD). Mechanical properties of the cast iron were tested. The results showed that the cast iron consisted of pearlite and cementite phases. Lamellar spacing of the pearlite phase was in a range of 110–275 nm and much smaller than that of the Ni-Hard 2 cast iron. Hardness of the cast iron was 552 Hv, tensile strength was 383 MPa, total elongation was 3% and compressive strength was 2224 MPa. Tensile strength and hardness of the cast iron was same to Ni-Hard 2 cast iron, besides the ductility was much better than that of the Ni-Hard 2 cast iron which is much expensive than the cast iron.

  20. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    Science.gov (United States)

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  1. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Science.gov (United States)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  2. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    Directory of Open Access Journals (Sweden)

    M. Mahmoudiniya

    2017-03-01

    Full Text Available Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment

  3. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    Directory of Open Access Journals (Sweden)

    Cécile Bernard

    2015-01-01

    Full Text Available The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL and a two-steps/self-etch adhesive system (Optibond XTR were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR. All specimens were submitted to thermocycling ageing (10000 cycles. The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL.

  4. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material.

    Science.gov (United States)

    Gad, Mohammed M; Abualsaud, Reem; Rahoma, Ahmed; Al-Thobity, Ahmad M; Al-Abidi, Khalid S; Akhtar, Sultan

    2018-01-01

    Polymethyl methacrylate (PMMA) is widely used for the fabrication of removable prostheses. Recently, zirconium oxide nanoparticles (nano-ZrO 2 ) have been added to improve some properties of PMMA, but their effect on the optical properties and tensile strength are neglected. The aim of this study was to investigate the effect of nano-ZrO 2 addition on the translucency and tensile strength of the PMMA denture base material. Eighty specimens (40 dumbbell-shaped and 40 discs) were prepared out of heat-polymerized acrylic resin and divided into four groups per test (n=10). The control group for each test included unreinforced acrylic, while the test groups were reinforced with 2.5, 5, and 7.5 wt% nano-ZrO 2 . Acrylic resin was mixed according to manufacturer's instructions, packed, and processed by conventional method. After polymerization, all specimens were finished, polished, and stored in distilled water at 37°C for 48±2 hours. Tensile strength (MPa) was evaluated using the universal testing machine while the specimens' translucency was examined using a spectrophotometer. Statistical analysis was carried out by SPSS using the paired sample t -test ( p ≤0.05). A scanning electron microscope was used to analyze the morphological changes and topography of the fractured surfaces. This study showed that the mean tensile strength of the PMMA in the test groups of 2.5%NZ, 5%NZ, and 7.5%NZ was significantly higher than the control group. The tensile strength increased significantly after nano-ZrO 2 addition, and the maximum increase seen was in the 7.5%NZ group. The translucency values of the experimental groups were significantly lower than those of the control group. Within the reinforced groups, the 2.5%NZ group had significantly higher translucency values when compared to the 5%NZ and 7.5%NZ groups. The addition of nano-ZrO 2 increased the tensile strength of the denture base acrylic. The increase was directly proportional to the nano-ZrO 2 concentration. The

  5. Microstructure, Tensile and Fatigue Properties of Al-5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

    Science.gov (United States)

    Heo, Joon-Young; Baek, Min-Seok; Euh, Kwang-Jun; Lee, Kee-Ahn

    2018-04-01

    This study investigated the microstructure, tensile and fatigue properties of Al-5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al-5 wt.%Mg based on the findings.

  6. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y., E-mail: yano.yasuhide@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T. [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Ukai, S.; Oono, N. [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, S. [Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Torimaru, T. [Nippon Nuclear Fuel Development Co., Ltd., 2163, Narita-cho, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2017-04-15

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900–1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  7. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Science.gov (United States)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  8. Tensile and compressive properties of fresh human carotid atherosclerotic plaques.

    LENUS (Irish Health Repository)

    Maher, Eoghan

    2009-12-11

    Accurate characterisation of the mechanical properties of human atherosclerotic plaque is important for our understanding of the role of vascular mechanics in the development and treatment of atherosclerosis. The majority of previous studies investigating the mechanical properties of human plaque are based on tests of plaque tissue removed following autopsy. This study aims to characterise the mechanical behaviour of fresh human carotid plaques removed during endarterectomy and tested within 2h. A total of 50 radial compressive and 17 circumferential tensile uniaxial tests were performed on samples taken from 14 carotid plaques. The clinical classification of each plaque, as determined by duplex ultrasound is also reported. Plaques were classified as calcified, mixed or echolucent. Experimental data indicated that plaques were highly inhomogeneous; with variations seen in the mechanical properties of plaque obtained from individual donors and between donors. The mean behaviour of samples for each classification indicated that calcified plaques had the stiffest response, while echolucent plaques were the least stiff. Results also indicated that there may be a difference in behaviour of samples taken from different anatomical locations (common, internal and external carotid), however the large variability indicates that more testing is needed to reach significant conclusions. This work represents a step towards a better understanding of the in vivo mechanical behaviour of human atherosclerotic plaque.

  9. Tensile properties of ADI material in water and gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Balos, Sebastian; Sidjanin, Leposava [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Eric Cekic, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade (Serbia); Grbovic Novakovic, Jasmina [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  10. Mechanical properties of weakly segregated block copolymers : 1. Synergism on tensile properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers

    NARCIS (Netherlands)

    Weidisch, R.; Michler, G.H.; Fischer, H.; Arnold, M.; Hofmann, S.; Stamm, M.

    1999-01-01

    Mechanical properties of poly(styrene-b-n-butylmethacrylate) diblock copolymers, PS-b-PBMA, with different lengths of the polystyrene block were investigated. The copolymers display a composition range where the tensile strength of the block copolymers exceeds the values of the corresponding

  11. Examining the influence of injection speed and mould temperature on the tensile strength of polypropylene and ABS

    DEFF Research Database (Denmark)

    Aarøe, Esben Raahede; Blaimschein, Karl Stephan; Deker, Lasse

    This report is the final task of course “41738 Experimental Plastics Technology” in the three weeks period of June 2009 at DTU, IPL. The aim of this project has been to investigate the ultimate tensile strength behaviour of two different polymers, with different structural composition, by varying...... the injection speed and the mold temperature independently while keeping all other process parameters fixed. In addition the scaling from production of large to small geometries has been investigated by doing two parallel productions and test setups of respectively injection moulded and micro injection moulded...... specimens. After production and tensile testing the specimens were examined with a microscope to underpin conclusions from the tensile test data. It was experienced that the injection speed in general increased the the tensile strength by orienting the polymeric-chains lengthwise in the specimens and thus...

  12. Effect of Numbers of Load Cycling on the Micro Tensile Bond Strength of Total Etch Adhesives to Dentin

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2013-06-01

    Full Text Available Introduction: Today load cycling is used for similarity of invitro and invivo studies, though different results were reported in different studies. Therefore, this study aimed to investigate the effect of load cycling on micro tensile bond strength of two total etch adhesives to dentin. Methods: Enamel of 48 molar teeth were removed to expose the superficial dentin. The teeth were randomly divided into two equal groups, and were restored with Single bond (SB, ExciTE and Synergy composite. Then the teeth of each group were divided to 4 equal sub groups. Moreover, load cycling of 0, 50, 100, 200 k load cycle with 50 newton load was used. In each sub group, 12 hour glass slabs with 1mm2 thickness were made. Then the samples were loaded by Dartec testing machine (Model HC/10 with 1 mm/min cross head speed to make the fracture occur. Data were analyzed by ANOVA, t-test, Bonferroni tests. Results: The most micro tensile bond strength belonged to ExciTE without load cycling and lowest refered to SB with 200 k. There was a significant difference between the groups (p ExciTE= 0.0001, p SB = 0.001. Micro tensile bond strength in SB group was significantly lower than ExciTE (p= 0.001. Moreover, load cycling had negative effect on micro tensile bond strength. Conclusion: By increasing load cycling, micro tensile bond strength of both bondings decreased significantly

  13. In vitro Comparative Evaluation of Tensile Bond Strength of 6(th), 7(th) and 8(th) Generation Dentin Bonding Agents.

    Science.gov (United States)

    Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut

    2015-05-01

    Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6(th), 7(th) and 8(th) generation bonding agents by in vitro method. Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6(th) generation bonding agent-Adper SE plus 3M ESPE, Group II: 7(th) generation bonding agent-G-Bond GC Corp Japan and Group III: 8(th) generation dentin adhesives-FuturaBond, DC, Voco, Germany). With high-speed diamond disc, coronal dentin was exposed, and selected dentin bonding agents were applied, followed by composite restoration. All samples were saved in saline for 24 h and tensile bond strength testing was done using a universal testing machine. The obtained data were tabulated and statistically analyzed using ANOVA test. The tensile bond strength readings for 6(th) generation bonding agent was 32.2465, for 7(th) generation was 31.6734, and for 8(th)-generation dentine bonding agent was 34.74431. The highest tensile bond strength was seen in 8(th) generation bonding agent compared to 6(th) and 7(th) generation bonding agents. From the present study it can be conclude that 8(th) generation dentine adhesive (Futura DC, Voco, Germany) resulted in highest tensile bond strength compared to 6(th) (Adper SE plus, 3M ESPE) and 7(th) generation (G-Bond) dentin bonding agents.

  14. Incorporation of polydimethylsiloxane with reduced graphene oxide and zinc oxide for tensile and electrical properties

    Science.gov (United States)

    Danial, N. S.; Ramli, Muhammad. M.; Halin, D. S. C.; Hong, H. C.; Isa, S. Salwa M.; Abdullah, M. M. A. B.; Anhar, N. A. M.; Talip, L. F. A.; Mazlan, N. S.

    2017-09-01

    Polydimethylsiloxane (PDMS) is an organosilicon polymer that is commonly used to incorporate with other fillers. PDMS in high viscous liquid form is mechanically stirred with reduced graphene oxide (rGO) and mixed with zinc oxide (ZnO) with specific ratio, thus rendering into two types of samples. The mechanical and electrical properties of both samples are characterized. The result shows that PDMS sample with 50 mg rGO has the highest tensile strength with the value of 9.1 MPa. For electrical properties, sample with the lowest resistance is PDMS with 50 mg rGO and ZnO with the value of l.67×l05 Ω. This experiment shows the significant role of conductive fillers like rGO and ZnO incorporated in polymeric material such as PDMS to improve its electrical properties.

  15. Influence of adipic acid on tensile and morphology properties of linear low density polyethylene/rambutan peels flour blends

    Science.gov (United States)

    Nadhirah, A. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.

    2015-07-01

    This study investigate about the tensile and morphological properties of degradable polymer produced from linear low density polyethylene/rambutan peel flour (LLDPE/RPF) blends and adipic acid (AA) was used as a compatibilizer by varying the rambutan peel flour (RPF) amount from 0-25wt%. The samples were subjected to tensile and morphological tests. AA compatibilized showed higher strength compared to uncompatibilized blends. The Young's modulus for LLDPE/RPF blends increased with increasing flour content. However, the addition of adipic acid had reduced the Young's Modulus.

  16. Effects of gamma-ray irradiation on tensile properties of ultradrawn polyethylene

    International Nuclear Information System (INIS)

    Iida, Shozo; Sakami, Hiroshi

    1977-01-01

    The deformation of ultradrawn polyethylene was previously shown that crystalline chains were pulled out by the tension applied to tie chains which connected crystal blocks. This paper deals with the effects of γ-ray irradiation on crosslinking which prevent crystalline chains being pulled out and to improve the tensile properties. The tensile strength of high density polyethylene, drawn by a factor of 40, increased from 73 to 113 kg/mm 2 at 20 0 C and from 13 to 42 kg/mm 2 at 80 0 C with increasing irradiation dose from zero to 100 Mrad. The tensile elongation, the residual strain measured by cyclic strain test, and the rate of stress decrease by the stress relaxation measurement diminished with increasing irradiation dose. These facts showed the existence of preventive effects by crosslinks on pulling. The stress-strain relation of crosslinked polymer was calculated thermodynamically from the melting of crystalline chains accompanied by the sliding of chains, assuming that the sliding of crystalline chains was brought about by an unbalance of the tension applied to tie chains with which both sides of crystalline chains were connected. The equation of stress was derived; stress increased with increasing strain and was proportional to the Gibbs' free energy of fusion. The observed stress-strain relations obeyed the above mentioned equation. (auth.)

  17. Study of Tensile Properties and Deflection Temperature of Polypropylene/Subang Pineapple Leaf Fiber Composites

    Science.gov (United States)

    Hafizhah, R.; Juwono, A. L.; Roseno, S.

    2017-05-01

    The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.

  18. Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gadaud, Pascal; Caccuri, Vincenzo; Bertheau, Denis [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France); Carr, James [HMXIF, Materials Science Centre, The University of Manchester, M13 9PL (United Kingdom); Milhet, Xavier, E-mail: xavier.milhet@ensma.fr [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France)

    2016-07-04

    Silver pastes sintering is a potential candidate for die bonding in power electronic modules. The joints, obtained by sintering, exhibit a significant pore fraction thus reducing the density of the material compared to bulk silver. This was shown to alter drastically the mechanical properties (Young's modulus, yield strength and ultimate tensile stress) at room temperature. While careful analysis of the microstructure has been reported for the as-sintered material, little is known about its quantitative evolution (pores and grains) during thermal ageing. To address this issue, sintered bulk specimens and sintered joints were aged either under isothermal conditions (125 °C up to 1500 h) or under thermal cycling (between −40 °C/+125 °C with 30 min dwell time at each temperature for 2400 cycles). Under these conditions, it is shown that the density of the material does not change but the sub-micron porosity evolves towards a broader size distribution, consistent with Oswald ripening. It is also shown that only the step at 125 °C during the non-isothermal ageing is responsible for the microstructure evolution: isothermal ageing at high temperature can be regarded as a useful tool to perform accelerated ageing tests. Tensile properties are investigated as both a function of ageing time and a function of density. It is shown that the elastic properties do not evolve with the ageing time unlike the plastic properties. This is discussed as a function of the material microstructure evolution.

  19. Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis

    Science.gov (United States)

    Ye, Xuan; Zhao, Liang; Liang, Jiecun; Li, Xide; Chen, Guo-Qiang

    2017-04-01

    Multicellular fibres formed by Bacillus subtilis (B. subtilis) are attracting interest because of their potential application as degradable biomaterials. However, mechanical properties of individual fibres remain unknown because of their small dimensions. Herein, a new approach is developed to investigate the tensile properties of individual fibres with an average diameter of 0.7 μm and a length range of 25.7-254.3 μm. Variations in the tensile strengths of fibres are found to be the result of variable interactions among pairs of microbial cells known as septa. Using Weibull weakest-link model to study this mechanical variability, we predict the length effect of the sample. Moreover, the mechanical properties of fibres are found to depend highly on relative humidity (RH), with a brittle-ductile transition occurring around RH = 45%. The elastic modulus is 5.8 GPa in the brittle state, while decreases to 62.2 MPa in the ductile state. The properties of fibres are investigated by using a spring model (RH  45%) for the time-dependent response. Loading-unloading experiments and numerical calculations demonstrate that necking instability comes from structural changes (septa) and viscoelasticity dominates the deformation of fibres at high RH.

  20. CHARACTERIZATION AND PERFORMANCE OF ELEMENTARY HEMP FIBRES: FACTORS INFLUENCING TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    Mizi Fan

    2010-09-01

    Full Text Available This paper presents the outcomes from an extensive investigation on the structure and geometry of single hemp fibres, as well as configurations and related tensile strength (TS of hemp fibres, with the aid of field emission scanning and optical microscopy. The results showed that 1 the TS increased with the decrease of the diameter of individual test pieces, due possibly to the stacks of multiple single fibres within the test pieces; 2 shear failure between single fibres in a test pieces played a significant role in the test results; 3 the TS was closely related to the number of both the inherent joints along the fibre length and single fibres contained in the test pieces; 4 the splits along the length and width of hemp fibres may complicate the test results, and 5 the optimized treatment prior to decortications may double the TS of hemp fibres compared to a normal retting processing. Reliable TS of single hemp fibres have been derived by a power regression, and the predicted TS were verified with an excellent agreement with experimentally tested results. The tensile strain-stress plot was found to be linear for all hemp test pieces, showing that the behaviour of single hemp fibres obeys Hooke’s law.

  1. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  2. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2018-06-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  3. Influence of Cutting Temperature on the Tensile Strength of a Carbon Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Jérémy Delahaigue

    2017-12-01

    Full Text Available Carbon fiber-reinforced plastics (CFRP have seen a significant increase in use over the years thanks to their specific properties. Despite continuous improvements in the production methods of laminated parts, a trimming operation is still necessary to achieve the functional dimensions required by engineering specifications. Laminates made of carbon fibers are very abrasive and cause rapid tool wear, and require high cutting temperatures. This creates damage to the epoxy matrix, whose glass-transition temperature is often recognized to be about 180 °C. This study aims to highlight the influence of the cutting temperature generated by tool wear on the surface finish and mechanical properties obtained from tensile tests. Trimming operations were performed on a quasi-isotropic 24-ply carbon/epoxy laminate, of 3.6 mm thickness, with a 6 flutes diamond-coated (CVD cutter. The test specimens of 6 mm and 12 mm wide were obtained by trimming. The reduced width of the coupons allowed amplification of the effect of defects on the measured properties by increasing the proportion of coupon cross-section occupied by the defects. A new tool and a tool in an advanced state of wear were used to generate different cutting temperatures. Results showed a cutting temperature of 300 °C for the new tool and 475 °C for the worn tool. The analysis revealed that the specimens machined with the new tool have no thermal damage and the cut is clean. The plies oriented at −45° presented the worst surface finish according to the failure mode of the fiber. For the worn tool, the surface was degraded and the matrix was carbonized. After cutting, observations showed a degraded resin spread on the machined surface, which reduced the surface roughness and hid the cutting defects. In support of these observations, the tensile tests showed no variation of the mechanical properties for the 12 mm-wide specimens, but did show a 10% loss in mechanical properties for the 6 mm

  4. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L.; Faulkner, R.G. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  5. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    International Nuclear Information System (INIS)

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1997-01-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within ±53 MPa. The accuracy of the correlation improves with increasing material strength, to within ± MPa for predicting tensile yield strengths in the range of 400-800 MPa

  6. Analysis of Ninety Degree Flexure Tests for Characterization of Composite Transverse Tensile Strength

    Science.gov (United States)

    OBrien, T. Kevin; Krueger, Ronald

    2001-01-01

    Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.

  7. MODELS TO ESTIMATE BRAZILIAN INDIRECT TENSILE STRENGTH OF LIMESTONE IN SATURATED STATE

    Directory of Open Access Journals (Sweden)

    Zlatko Briševac

    2016-06-01

    Full Text Available There are a number of methods of estimating physical and mechanical characteristics. Principally, the most widely used is the regression, but recently the more sophisticated methods such as neural networks has frequently been applied, as well. This paper presents the models of a simple and a multiple regression and the neural networks – types Radial Basis Function and Multiple Layer Perceptron, which can be used for the estimate of the Brazilian indirect tensile strength in saturated conditions. The paper includes the issues of collecting the data for the analysis and modelling and the overview of the performed analysis of the efficacy assessment of the estimate of each model. After the assessment, the model which provides the best estimate was selected, including the model which could have the most wide-spread application in the engineering practice.

  8. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    International Nuclear Information System (INIS)

    Banowati, Lies; Hadi, Bambang K.; Suratman, Rochim; Faza, Aulia

    2016-01-01

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  9. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Banowati, Lies, E-mail: liesbano@gmail.com; Hadi, Bambang K., E-mail: bkhadi@ae.itb.ac.id; Suratman, Rochim, E-mail: rochim@material.itb.ac.id; Faza, Aulia [Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Indonesia Jl. Ganesha 10, Bandung (Indonesia)

    2016-03-29

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  10. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-xun, E-mail: zhangyuxun198@163.com; Yi, You-ping, E-mail: yyp@csu.edu.cn; Huang, Shi-quan, E-mail: huangsqcsu@sina.com; Dong, Fei

    2016-09-30

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  11. Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings

    International Nuclear Information System (INIS)

    Zhang, Yu-xun; Yi, You-ping; Huang, Shi-quan; Dong, Fei

    2016-01-01

    To balance the quenching residual stress and the mechanical properties of aluminum alloys, the influence of cooling rate on the residual stress and tensile properties was investigated by numerical simulation and quenching experiments. During the quenching experiments, 2A14 aluminum alloy samples were treated with different water temperatures (20 °C, 70 °C, 100 °C) and a step quenching process. X-ray diffraction (XRD) was used to measure the residual stress. Prior to them, the quenching sensitivity was studied. For this purpose, the time-temperature-properties (TTP) curves were measured and the alloy microstructure was observed using transmission electron microscopy (TEM). The results indicated that the mechanical properties of 2A14 aluminum alloys were mainly determined by the cooling rate within the quenching sensitive temperature range from 300 to 400 °C. Lower cooling rates reduced the tensile strength and yield strength due to a decrease amount of fine precipitates, and reduced the residual stress with the reduction of plastic strain and the degree of inhomogeneous plastic deformation. In addition, the residual stress changed faster than the tensile properties with decreasing cooling rate. Therefore, warm water (70 °C) was used to balance the residual stress and tensile properties of 140-mm-thick 2A14 aluminum alloy forgings, since it can achieve low cooling rates. Furthermore, by combining this characteristic and the material quenching sensitivity, step quenching produced similar tensile properties and lower residual stress, compared with the sample quenched in warm water (70 °C), by increasing cooling rate within quenching sensitivity range and reducing it in other ranges.

  12. Influence of heat treatment on microstructure and tensile properties of a cast Al-Cu-Si-Mn alloy

    Directory of Open Access Journals (Sweden)

    Liu Zhixue

    2013-11-01

    Full Text Available Solution and aging treatments are important approaches to improve mechanical properties and microstructure of aluminum-base alloys. In this research, a new type high strength Al-Cu-Si-Mn cast alloy was prepared. The effect of different solution and aging treatment temperatures on microstructure and mechanical properties of the Al-Cu-Si-Mn cast alloy were studied by means of microstructure observation and mechanical properties testing. Results showed that after solution treated at different temperatures for 12 h and aged at 175 ℃ for 12 h, with the increase of the solution temperature, both the tensile strength and the elongation of the alloy firstly increase and then decrease, and reach their peak values at 530 ℃. When the solution temperature is below 530 ℃, the microstructure of the alloy consists of α phase, undissolved θ phase and T phase; while when it exceeds 530 ℃, the microstructure only consists of α phase and T phase. After solution treated at 530 ℃ for 12 h and aged at different temperatures for 12 h, both the tensile strength and the elongation of the alloy firstly increase and then decrease with the increasing of temperature, and reach their peak values at 175 ℃. Therefore, the optimal heat treatment process for the alloy in this study is 12 h solution at 530 ℃ and 12 h aging at 175 ℃, and the corresponding tensile strength is 417 MPa, elongation is 4.0%.

  13. Laser solder welding of articular cartilage: tensile strength and chondrocyte viability.

    Science.gov (United States)

    Züger, B J; Ott, B; Mainil-Varlet, P; Schaffner, T; Clémence, J F; Weber, H P; Frenz, M

    2001-01-01

    The surgical treatment of full-thickness cartilage defects in the knee joint remains a therapeutic challenge. Recently, new techniques for articular cartilage transplantation, such as mosaicplasty, have become available for cartilage repair. The long-term success of these techniques, however, depends not only on the chondrocyte viability but also on a lateral integration of the implant. The goal of this study was to evaluate the feasibility of cartilage welding by using albumin solder that was dye-enhanced to allow coagulation with 808-nm laser diode irradiation. Conventional histology of light microscopy was compared with a viability staining to precisely determine the extent of thermal damage after laser welding. Indocyanine green (ICG) enhanced albumin solder (25% albumin, 0.5% HA, 0.1% ICG) was used for articular cartilage welding. For coagulation, the solder was irradiated through the cartilage implant by 808-nm laser light and the tensile strength of the weld was measured. Viability staining revealed a thermal damage of typically 500 m in depth at an irradiance of approximately 10 W/cm(2) for 8 seconds, whereas conventional histologies showed only half of the extent found by the viability test. Heat-bath investigations revealed a threshold temperature of minimum 54 degrees C for thermal damage of chondrocytes. Efficient cartilage bonding was obtained by using bovine albumin solder as adhesive. Maximum tensile strength of more than 10 N/cm(2) was achieved. Viability tests revealed that the thermal damage is much greater (up to twice) than expected after light microscopic characterization. This study shows the feasibility to strongly laser weld cartilage on cartilage by use of a dye-enhanced albumin solder. Possibilities to reduce the range of damage are suggested. Copyright 2001 Wiley-Liss, Inc.

  14. Effect of robotic manipulation on unidirectional barbed suture integrity: evaluation of tensile strength and sliding force.

    Science.gov (United States)

    Kaushik, Dharam; Clay, Kevin; Hossain, S G M; Park, Eugene; Nelson, Carl A; LaGrange, Chad A

    2012-06-01

    One of the more challenging portions of robot-assisted radical prostatectomy (RARP) is the urethrovesical anastomosis. Because of this, a unidirectional absorbable barbed suture (V-Loc(™)) has been used to complete the anastomosis with better efficiency and less tension. The effect of robotic needle driver manipulation on barbed suture is unknown. Therefore, the aim of this study is to determine whether robotic manipulation decreases the tensile strength and peak sliding force of V-Loc barbed suture. Fifty-six V-Loc sutures were compared with 56 Maxon sutures. All sutures were 3-0 caliber. Half of the sutures in each group were manipulated with a da Vinci(®) robot large needle driver five times over a 5 cm length of suture. The other half was not manipulated. Breaking force was determined by placing sutures in a Bose ElectroForce load testing device. For sliding force testing, 28 V-Loc sutures were manipulated in the same fashion and compared with 28 nonmanipulated V-Loc sutures. Peak force needed to make the suture slip backward in porcine small intestine was determined to be the sliding force. Scanning electron microscopy of the barbs before and after robotic manipulation was also performed. The mean difference in breaking forces for manipulated vs nonmanipulated Maxon sutures was 4.52 N (P=0.004). The mean difference in breaking forces for manipulated vs nonmanipulated V-Loc sutures was 1.30 N (P=0.046). The manipulated V-Loc group demonstrated a lower peak sliding force compared with the nonmanipulated group (0.76 vs 0.88 N, P=0.199). Electron microscopy revealed minor structural damage to the barbs and suture. Tensile strength and peak sliding force of V-Loc suture is decreased by robotic manipulation. This is likely because of structural damage to the suture and barbs. This structural damage, however, is likely not clinically significant.

  15. Diametral tensile strength and film thickness of an experimental dental luting agent derived from castor oil

    Directory of Open Access Journals (Sweden)

    Juliana Cabrini Carmello

    2012-02-01

    Full Text Available The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. OBJECTIVE: The aim of this study was to evaluate the diametral tensile strength (DTS and film thickness (FT of an experimental dental luting agent derived from castor oil (COP with or without addition of different quantities of filler (calcium carbonate - CaCO3. MATERIAL AND METHODS: Eighty specimens were manufactured (DTS N=40; FT N=40 and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control. The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min. For FT test, the cements were sandwiched between two glass plates (2 cm² and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (α=0.05. RESULTS: The values of DTS (MPa were: Pure COP- 10.94±1.30; COP 10%- 30.06±0.64; COP 50%- 29.87±0.27; zinc phosphate- 4.88±0.96. The values of FT (µm were: Pure COP- 31.09±3.16; COP 10%- 17.05±4.83; COP 50%- 13.03±4.83; Zinc Phosphate- 20.00±0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10. CONCLUSION: The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness.

  16. Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments

    International Nuclear Information System (INIS)

    Sivaprasad, K.; Ganesh Sundara Raman, S.; Mastanaiah, P.; Madhusudhan Reddy, G.

    2006-01-01

    The aim of the present work is to study the effect of magnetic arc oscillation and current pulsing on the microstructure and high temperature tensile strength of alloy 718 tungsten inert gas weldments. The magnetic arc oscillation technique resulted in refined Laves phase with lesser interconnectivity. The full benefits of current pulsing in breaking the dendrites could not be realized in the present study due to relatively higher heat input used in the welding process. In the direct aged condition weldments prepared using magnetic arc oscillation technique exhibited higher tensile strength due to the presence of refined and lesser-interconnected Laves particles. In the solution treated and aged condition, magnetic arc oscillated weldments exhibited lower tensile strength compared with the weldments made without arc oscillation due to the presence of large amounts of finer δ needles

  17. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    Science.gov (United States)

    Sanchez Perez, Jose Roberto

    Silicon, germanium, and their alloys, which provide the leading materials platform of microelectronics, are extremely inefficient light emitters because of their indirect fundamental energy band gap. This basic materials property has so far hindered the development of group-IV photonic-active devices, including light emitters and diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy band gap relative to the indirect one, and that, with sufficient strain, Ge becomes direct-band gap, thus enabling facile interband light emission and the fabrication of Group IV lasers. It has, however, not been possible to impart sufficient strain to Ge to reach the direct-band gap goal, because bulk Ge fractures at much lower strains. Here it is shown that very thin sheets of Ge(001), called nanomembranes (NMs), can be used to overcome this materials limitation. Germanium nanomembranes (NMs) in the range of thicknesses from 20nm to 100nm were fabricated and then transferred and mounted to a flexible substrate [a polyimide (PI) sheet]. An apparatus was developed to stress the PI/NM combination and provide for in-situ Raman measurements of the strain as a function of applied stress. This arrangement allowed for the introduction of sufficient biaxial tensile strain (>1.7%) to transform Ge to a direct-band gap material, as determined by photoluminescence (PL) measurements and theory. Appropriate shifts in the emission spectrum and increases in PL intensities were observed. The advance in this work was nanomembrane fabrication technology; i.e., making thin enough Ge sheets to accept sufficiently high levels of strain without fracture. It was of interest to determine if the strain at which fracture ultimately does occur can be raised, by evaluating factors that initiate fracture. Attempts to assess the effect of free edges (enchant

  18. Effect of the Strain Rate on the Tensile Properties of the AZ31 Magnesium Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seunghun; Park, Jiyoun; Choi, Ildong [Korea Maritime University, Busan (Korea, Republic of); Park, Sung Hyuk [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2013-10-15

    The effect of the strain rate at a range of 10‒4 ⁓ 3 × 10{sup 2}s{sup -}1 on the tensile characteristics of a rolled AZ31 magnesium alloy was studied. The normal tensile specimens were tested using a high rate hydraulic testing machine. Specimens were machined from four sheets with different thicknesses, 1, 1.5, 2 and 3 mm, along three directions, 0°, 45°, and 90° to the rolling direction. The results revealed that all the specimens had a positive strain rate sensitivity of strength, that is, the strength increased with increasing strain rate. This is the same tendency as other automotive steels have. Our results suggest that the AZ31 magnesium alloy has better collision characteristics at high strain rates because of improved strength with an increasing strain rate. Ductility decreased with an increasing strain rate with a strain rate under 1 s{sup -}1, but it increased with an increasing strain rate over 1 s{sup -}1. The mechanical properties of the AZ31 magnesium alloy depend on the different microstructures according to the thickness. Two and 3 mm thickness specimens with a coarse and non-uniform grain structure exhibited worse mechanical properties while the 1.5 mm thickness specimens with a fine and uniform grain structure had better mechanical properties. Specimens machined at 0° and 45° to the rolling direction had higher absorbed energy than that of the 90° specimen. Thus, we demonstrate it is necessary to choose materials with proper thickness and machining direction for use in automotive applications.

  19. Effect of the Strain Rate on the Tensile Properties of the AZ31 Magnesium Alloy

    International Nuclear Information System (INIS)

    Jeong, Seunghun; Park, Jiyoun; Choi, Ildong; Park, Sung Hyuk

    2013-01-01

    The effect of the strain rate at a range of 10‒4 ⁓ 3 × 10"2s"-1 on the tensile characteristics of a rolled AZ31 magnesium alloy was studied. The normal tensile specimens were tested using a high rate hydraulic testing machine. Specimens were machined from four sheets with different thicknesses, 1, 1.5, 2 and 3 mm, along three directions, 0°, 45°, and 90° to the rolling direction. The results revealed that all the specimens had a positive strain rate sensitivity of strength, that is, the strength increased with increasing strain rate. This is the same tendency as other automotive steels have. Our results suggest that the AZ31 magnesium alloy has better collision characteristics at high strain rates because of improved strength with an increasing strain rate. Ductility decreased with an increasing strain rate with a strain rate under 1 s"-1, but it increased with an increasing strain rate over 1 s"-1. The mechanical properties of the AZ31 magnesium alloy depend on the different microstructures according to the thickness. Two and 3 mm thickness specimens with a coarse and non-uniform grain structure exhibited worse mechanical properties while the 1.5 mm thickness specimens with a fine and uniform grain structure had better mechanical properties. Specimens machined at 0° and 45° to the rolling direction had higher absorbed energy than that of the 90° specimen. Thus, we demonstrate it is necessary to choose materials with proper thickness and machining direction for use in automotive applications.

  20. An investigation into UV light exposure as an experimental model for artificial aging on tensile strength and force delivery of elastomeric chain.

    Science.gov (United States)

    Wahab, Siti Waznah; Bister, Dirk; Sherriff, Martyn

    2014-02-01

    This study investigated the effect of ultraviolet type A light (UVA) exposure on the tensile properties of elastomeric chain. UVA light exposure was used as model for artificial aging, simulating prolonged storage of elastomeric chain. Tensile strength (n = 60) was measured after exposing Ormco, Forestadent and 3M chains to UVA light for 0, 2, 3, and 4 weeks. Force decay was measured (n = 60) using chain exposed for 5, 10, and 14 days. The chains were subsequently stretched at a constant distance and the resulting forces measured at 0, 1, 24 hours and 7, 14, 21, and 28 days. This test simulated a clinical scenario of pre-stretching and subsequent shortening of elastomeric chain. Tensile strength had statistically significant difference and was directly related to the duration of ultraviolet (UV) light exposure. Forestadent chain, which had the second highest value for the 'as received' product, showed the most consistent values over time with the lowest degradation. Ormco showed the lowest values for 'as received' as well as after UV exposure; 3M chain had the highest loss of tensile strength. Force decay was also significantly different. UV light exposure of 10 days or more appears to mark a 'watershed' between products: 3M had most survivors, Forestadent chain had some survivors, depending on the time the chain was stretched for. None of the Ormco product survived UV light exposure for more than 5 days. UVA light exposure may be used as a model for artificial aging as it reduces force delivery and tensile strength of exposed chains.

  1. Effect of current pulsing on tensile properties of titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Jayabalan, V.; Balasubramanian, M.

    2008-01-01

    Titanium and its alloys have been considered as one of the best engineering metals for industrial applications. This is due to the excellent combination of properties such as elevated strength to weight ratio, high toughness, excellent resistance to corrosion and good fatigue properties make them attractive for many industrial applications. Recently, considerable research has been performed on pulsed current gas tungsten arc welding process and reported advantages include improved bead contour, lower heat input requirements, reduced residual stresses and distortion. Metallurgical advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, reduced width of heat affected zone, etc. All these factors will help in improving the mechanical properties. Hence, in this investigation an attempt has been made to study the effect of pulsed current gas tungsten arc welding parameters on Ti-6Al-4V titanium alloy

  2. Effect of current pulsing on tensile properties of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com

    2008-07-01

    Titanium and its alloys have been considered as one of the best engineering metals for industrial applications. This is due to the excellent combination of properties such as elevated strength to weight ratio, high toughness, excellent resistance to corrosion and good fatigue properties make them attractive for many industrial applications. Recently, considerable research has been performed on pulsed current gas tungsten arc welding process and reported advantages include improved bead contour, lower heat input requirements, reduced residual stresses and distortion. Metallurgical advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, reduced width of heat affected zone, etc. All these factors will help in improving the mechanical properties. Hence, in this investigation an attempt has been made to study the effect of pulsed current gas tungsten arc welding parameters on Ti-6Al-4V titanium alloy.

  3. The effect of intravitreal bevacizumab and ranibizumab on cutaneous tensile strength during wound healing

    Directory of Open Access Journals (Sweden)

    Christoforidis JB

    2013-01-01

    : saline controls, 18.31 ± 0.43; bevacizumab, 11.02 ± 0.45 (P < 0.0001; and ranibizumab, 13.55 ± 0.43 (P < 0.0001. The interobserver correlation coefficient was 0.928.Conclusion: At day 7, both anti–vascular endothelial growth factor (anti-VEGF agents had significantly suppressed MNV scores and exerted a significant reduction of cutaneous wound tensile strength compared with saline controls. At day 14, neither agent produced a significant effect on tensile wound strength. Since angiogenesis is an integral component of the proliferative phase of wound healing, we encourage clinicians to be aware of their patients' recent surgical history during intravitreal anti-VEGF therapy and to consider refraining from their use during the perioperative period.Keywords: wound healing, tensile strength, bevacizumab, ranibizumab

  4. Evaluation of mechanical properties of construction joint between new and old concrete under combined tensile and shear stresses; Shinkyu concrete no uchitsugime no incho sendan oryokuka no kyodo tokusei no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ujiike, I. [Ehime University, Ehime (Japan). Faculty of Engineering; Yoshida, N. [Shikoku Railway Company, Kagawa (Japan); Morishita, S. [Oriental Construction Co. Ltd., Tokyo (Japan)

    1998-01-15

    The objective of this study is to examine the mechanical properties of construction joints between existing and newly placed concrete under combined tensile and shear stresses. Loading tests are conducted by using push off type specimens. The joint surface of existing concrete is roughened by shot blast and a half of the specimen is reconstructed by new concrete using ultra rapid hardening cement. The insufficient treatment of joint surface of the old concrete causes the lowering of tensile rigidity, while shearing rigidity is almost the same as that of the other specimen. The shearing and tensile rigidities of non jointed concrete and concrete shot blasted properly are not dependent on the combination of shearing and tensile forces. For the jointed concrete shot blasted insufficiently, the shearing rigidity decreases with the increase of tensile force and the tensile digidity also becomes lower by the action of shearing force. Both the tensile strength and shearing strength of jointed concrete become small compared to those of non jointed concrete. The ratio of reduction in tensile strength is larger than that in shearing strength. The strength of jointed concrete under combined tensile and shear stresses can be evaluated by Mohr`s failure envelope expressed by parabola tangent to both tensile strength circle and compressive strength circle. 7 refs., 12 figs., 2 tabs.

  5. Improving the casting properties of high-strength aluminium alloys:

    OpenAIRE

    Ekrt, Ondřej; Šerák, Jan; Vojtěch, Dalibor

    2004-01-01

    Al-Zn-Mg-Cu alloys are examples of high-strength alloys. After age-hardening they often possess tensile strengths of more than 500 MPa. However, their casting properties are relatively poor as a result of solidification intervals that are too wide. Therefore, they often require an extrusion, rolling, or forging treatment, and the production of small series of special parts can, as a consequence, be very expensive. In this study, an improvement in the castability and a reduction of the hot-tea...

  6. Research and application of fuzzy subtractive clustering model on tensile strength of radiation vulcanization for nitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Zuo Duwen; Wang Hong; Zhu Nankang

    2010-01-01

    By use of fuzzy subtractive clustering model, the relationship between tensile strength of radiation vulcanization of NBRL (Nitrile-butadiene rubber latex) and irradiation parameters have been investigated. The correlation coefficient was calculated to be 0.8222 in the comparison of experimental data to the predicted data. It was obvious that fuzzy model identification method is not only high precision with small computation, but also easy to be used. It can directly supply the evolution of tensile strength of NBR by fuzzy modeling method in radiation vulcanization process for nitrile-butadiene rubber. (authors)

  7. Tensile strength of solution-spun, ultradrawn ultrahigh-molecular-weight polyethylene fibers. 1. Influence of fiber diameter

    OpenAIRE

    Bastiaansen, C.W.M.

    1992-01-01

    The influence of fiber diam. on the tensile strength of soln.-spun, ultradrawn, ultrahigh-mol.-wt. polyethylene (UHMWPE, mol. wt. >103 kg/mol) fibers was studied. Fibers with a wide range of diams. were produced by varying the polymer concn. in soln. and by applying a drawdown to the fibers. The tensile strength of drawn fibers was compared at a const. Young's modulus in order to eliminate the influence of morphol. parameters, such as degree of chain orientation and extension, on the fracture...

  8. Effects of Sn addition on the microstructure and tensile properties of AX55 alloys

    Science.gov (United States)

    Qiu, K. Q.; Huang, P.

    2018-04-01

    The microstructures and tensile properties at both room and elevated temperatures for both the as-cast and as-aged Mg-5Al-5Ca (AX55) alloy with 0–2 wt% Sn addition were studied. The results indicate that the α-Mg dendrite is gradually refined and the interdendritic Al2Ca and Mg2Ca intermetallics become more connected with Sn addition. The as-cast AX55-1Sn alloy shows optimal ultimate tensile strength (UTS) at testing temperature from 25 to 225 °C. After T61 and T62 heat treatment, the eutectic-lamellar microstructure of the as-cast alloys tends to be spheroidized and distributed uniformly along the grain boundaries. While the alloys with higher Sn content show higher density of granulated and needle-shaped Al2Ca phases precipitated into α-Mg matrix, which results in the increase of UTS, yield strength (YS), elongation and microhardness with Sn addition. The morphology of CaMgSn phase can be improved by T62 treatment, which makes as-aged AX55-2.0Sn alloy exhibit a smaller decrease rate of the UTS at temperature up to 225 °C. The heat resistance of different heat-resistant magnesium alloys were compared and discussed by using the decrease rate of the UTS.

  9. Tensile properties of cotton yarn as affected by different yarn singeing machine variables

    International Nuclear Information System (INIS)

    Tausief, M.Q.; Mahmood, N.; Iqbal, W.

    2014-01-01

    The present study endeavours to optimise the yam quality in respect of its tensile properties by choosing the best combination of the yam singeing machine variables for excellent manufacture results. This research study revealed that different values of winding speed, gas pressure and air pressure of yam singeing machine put significant effect upon the tensile properties of cotton yam after singeing. (author)

  10. Tensile and electrical properties of unirradiated and irradiated Hycon 3HP{trademark} CuNiBe

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The unirradiated tensile properties of two different heats of Hycon 3HP{trademark} CuNiBe (HT Temper) have been measured over the temperature range of 20-500{degrees}C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for both heats. Both heats exhibited a very good combination of strength and conductivity at room temperature. The strength remained relatively high at all test temperatures, with a yield strength of 420-520 MPa at 500{degrees}C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250{degrees}C, due to flow localization adjacent to grain boundaries. Fission neutron irradiation to a dose of {approximately}0.7 dpa at temperatures between 100 and 240{degrees}C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of {approximately}3.3% observed at 240{degrees}C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. The data indicate that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250{degrees}C, and may be suitable for certain fusion energy structural applications.

  11. Effect of Microwave Disinfection on Compressive and Tensile Strengths of Dental Stones

    Directory of Open Access Journals (Sweden)

    Mahmood Robati Anaraki

    2013-03-01

    Full Text Available Background and aims. Although microwave irradiation has been used for disinfection of dental stone casts, there are concerns regarding mechanical damage to casts during the process. The aim of this study was to evaluate the effect of microwave irradiation on the compressive strength (CS and diametral tensile strength (DTS of stone casts. Materials and methods. In this in vitro study, 80 cylindrical type III and IV stone models (20 × 40 mm were prepared and divided into 8 groups of 10. The DTS and CS of the specimens were measured by a mechanical testing machine at a crosshead speed of 0.5 cm/min after 7 times of frequent wetting, irradiating at an energy level of 600 W for 3 minutes and cooling. Data were analyzed by Student’s t-test. Results. Microwave irradiation significantly increased DTS of type III and IV to 5.23 ± 0.64 and 8.17 ± 0.94, respectively (P < 0.01. Conclusion. According to the results, microwave disinfection increases DTS of type III and IV stone casts without any effects on their CS.

  12. Experimental Tensile Strength Analysis of Woven-Glass/Epoxy Composite Plates with Central Circular Hole

    Science.gov (United States)

    Hadi, Bambang K.; Rofa, Bima K.

    2018-04-01

    The use of composite materials in aerospace engineering, as well as in maritime structure has increased significantly during the recent years. The extensive use of composite materials in industrial applications should make composite structural engineers and scientists more aware of the advantage and disadvantage of this material and provide them with necessary data and certification process. One of the problems in composite structures is the existence of hole. Hole can not be avoided in actual structures, since it may be the necessity of providing access for maintenance or due to impact damage. The presence of hole will weaken the structures. Therefore, in this paper, the effect of hole on the strength of glass-woven/epoxy composite will be discussed. Extensive tests have been carried out to study the effect of hole-diameter on the tensile strengths of these specimens. The results showed that the bigger the hole-diameter compared to the width of the specimens has weakened the structures further, as expected. Further study should be carried in the future to model it with the finite element and theoretical analysis precisely.

  13. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2010-06-01

    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  14. Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene–organoclay nanocomposites

    International Nuclear Information System (INIS)

    Mamaghani Shishavan, Sajjad; Azdast, Taher; Rash Ahmadi, Samrand

    2014-01-01

    Highlights: • Development of polymer/clay nanocomposites. • Compatibility of ABS and montmorillonite nanoclay and composition capability of them. • Effect of nanoclay content and process parameters on the mechanical properties of nanocomposite. • Analyzing the distribution of nanoclay layers using XRD test. • Dependency of tensile strength and hardness to the nanoclay content and processing conditions. - Abstract: Polymer–clay nanocomposites have attracted considerable interest over recent years due to their dramatic improved mechanical properties. In the present study, compatibility of Acrylonitrile Butadiene Styrene (ABS) and organically modified montmorillonite nanoclay (Cloisite 30B) and composition capability of them are investigated. Polymethylmethacrylate (PMMA) in varying amount (0, 2, and 4 wt%) is used as the compatibilizer. In order to produce nanocomposite parts, the material is first compounded using a twin-screw extruder and then injected into a mold. The effect of the nanoclay percentage and processing parameters on the tensile strength and hardness of nanocomposite parts is also explored using Taguchi Design of Experiments method. Nanoclay content (in three levels: 0, 2 and 4 wt%), melt temperature (in three levels: 190, 200 and 210 °C), holding pressure (in three levels: 80, 105 and 130 MPa) and holding pressure time (in three levels: 1, 2.5 and 4 s) are considered as the variable parameters. Moreover, distribution of nanoclay layers is analyzed using Wide Angle X-ray Diffraction (XRD) test. XRD results displayed that with the presence of PMMA, nanoclay in ABS matrix is compounded in more exfoliated and less intercalated dispersion mode. Adding PMMA also leads to a remarkable increase in the fluidity of the melt during injection molding process. Results also illustrated that nanocomposites with medium loading level (i.e. 2%) of nanoclay have the highest tensile strength, while the highest hardness number belongs to nanocomposites with

  15. Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2011-10-21

    Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.

  16. Tensile strength changeability of multilayered composites, fabricated through optimized VARTM Technology, an experimental

    International Nuclear Information System (INIS)

    Nasir, M.A.; Khan, Z.M.

    2016-01-01

    Life span estimation up to tensile fracture of different fiber reinforced composites, Kevlar Fiber Reinforced Polymer (KFRP) and Glass Fiber Reinforced Polymer (GFRP) along with the strain rate effects on dynamic properties is mainly viewed on experimental basis in this paper. Lab-scale Vacuum Assisted Resin Transfer Molding (VARTM) technique is used to fabricate flawless dog bone specimens considering ASTM standard D638-03 and by using LY5052 resin and HY 5052 hardener. In this research, it is tried to maintain 65% of fiber participation in whole specimen composition matrix. Detail design description of VARTM is also discussed and optimized up to maximum scale to acquire compact, uniformly strengthen and porosity banned standard specimens. A conventional stress-strain curve is established to compare the tensile validity of above mentioned competitive composites. Crack Opening Displacement (COD) of research materials after equal intervals of time is observed; results depict the shear stability and reinforcement perfection of these materials. The crack penetration behavior is examined transversely and longitudinally in this research. (author)

  17. Effect of normalization heat treatment on creep and tensile properties of modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Panneer Selvi, S.; Sakthivel, T.; Parameswaran, P.; Laha, K.

    2016-01-01

    Creep and tensile properties have been investigated on modified 9Cr-1Mo steel subjected to single and double normalization heat treatments. Optical, scanning and transmission electron microscopic investigation revealed the presence of refined prior austenite grain size and fine M 23 C 6 precipitates in the double normalized steel compared to the steel subjected to single normalization heat treatment. Increased creep strain and significant reduction in creep rupture life were observed with the double normalized steel in comparison with single normalized steel. Increased tensile ductility coupled with marginal decrease in tensile strength at higher test temperature was observed with double normalized steel compared to single normalized steel. It has been attributed to the presence of refined prior austenite grain size and coarsening of Nb rich MX precipitates in double normalized steel. (author)

  18. Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces.

    Science.gov (United States)

    De Munck, Jan; Luehrs, Anne-Katrin; Poitevin, André; Van Ende, Annelies; Van Meerbeek, Bart

    2013-06-01

    To assess interfacial fracture toughness of different adhesive approaches and compare to a standard micro-tensile bond-strength (μTBS) test. Chevron-notched beam fracture toughness (CNB) was measured following a modified ISO 24370 standard. Composite bars with dimensions of 3.0×4.0×25 mm were prepared, with the adhesive-dentin interface in the middle. At the adhesive-dentin interface, a chevron notch was prepared using a 0.15 mm thin diamond blade mounted in a water-cooled diamond saw. Each specimen was loaded until failure in a 4-point bend test setup and the fracture toughness was calculated according to the ISO specifications. Similarly, adhesive-dentin micro-specimens (1.0×1.0×8-10 mm) were stressed in tensile until failure to determine the μTBS. A positive correlation (r(2)=0.64) was observed between CNB and μTBS, which however was only nearly statistically significant, mainly due to the dissimilar outcome of Scotchbond Universal (3M ESPE). While few μTBS specimens failed at the adhesive-dentin interface, almost all CNB specimens failed interfacially at the notch tip. Weibull moduli for interfacial fracture toughness were much higher than for μTBS (3.8-11.5 versus 2.7-4.8, respectively), especially relevant with regard to early failures. Although the ranking of the adhesives on their bonding effectiveness tested using CNB and μTBS corresponded well, the outcome of CNB appeared more reliable and less variable. Fracture toughness measurement is however more laborious and requires specific equipment. The μTBS nevertheless appeared to remain a valid method to assess bonding effectiveness in a versatile way. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Tensile properties of Zr-2.5 Nb pressure tube alloy between 25 and 800 degC

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Sinha, T.K.; Banerjee, S.

    2000-10-01

    Tensile properties of zirconium-2.5 wt. % niobium pressure tube material were evaluated by uniaxial tension tests at temperatures between 25 and 800 degC and under strain-rates varying from 3.3 x 10 -5 to 3.3 x 10 -3 /s. Tests were carried out on specimens fabricated from the sections of finished (autoclaved) tubes as well as on those machined from the sections of cold worked (2 nd pilgered) tubes. Moreover, specimens fabricated from finished tubes belonging to twenty different heats were tested at 300 degC to study the heat to heat variation in tensile properties of this alloy. In order to study the effect of the crystallographic texture on the tensile properties, specimens oriented in longitudinal as well as, in transverse directions of the tubes were also tested. Results showed that both yield and ultimate tensile strengths of this alloy decreased monotonically with increasing test temperatures, with a rapid fall in strengths above a temperature of 350 degC (623 K). The tensile ductility did not change appreciably up to 400 degC (673K) but increased rapidly above this temperature. The observed results on the temperature dependence of the strength and ductility indicated the possible occurrence of dynamic strain-ageing in this alloy in the temperature range of 200-300 degC (473 to 573 K). The transverse specimens showed higher strengths and lower ductility as compared to those of the longitudinal specimens up to a temperature of 350 degC (623 K). Above 350 degC, the difference in the strengths and the ductility of the two types of the specimens, became negligibly small indicating that the texture did not appreciably influence the tensile properties of this alloy at temperatures exceeding 350 degC. The alloy developed extensive superplasticity (ductility exceeding 100 %), when tested in the temperature range of 650-800 degC. Maximum ductility values of 650 % for longitudinal and 900 % for the transverse orientation with strain-rate sensitivity (m) exceeding 0

  20. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  1. A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles

    Science.gov (United States)

    Bulut, Mehmet; Alsaadi, Mohamad; Erkliğ, Ahmet

    2018-02-01

    Present study compares the tensile and impact characteristics of Kevlar, carbon and glass fiber reinforced composites with addition of microscale silicon carbide (SiC) within the common matrix of epoxy. The variation of tensile and impact strength values was explored for different content of SiC in the epoxy resin by weight (0, 5, 10, 15 and 20 wt%). Resulting failure characteristics were identified by assisting Charpy impact tests. The influence of interfacial adhesion between particle and fiber/matrix on failure and tensile properties was discussed from obtained results and scanning electron microscopy (SEM) figures. It is concluded from results that the content of SiC particles, and fiber types used as reinforcement are major parameters those effecting on tensile and impact resistance of composites as a result of different interface strength properties between particle-matrix and particle-fiber.

  2. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  3. Drying time of tray adhesive for adequate tensile bond strength between polyvinylsiloxane impression and tray resin material.

    Science.gov (United States)

    Yi, Myong-Hee; Shim, Joon-Sung; Lee, Keun-Woo; Chung, Moon-Kyu

    2009-07-01

    Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material (Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile

  4. Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.N., E-mail: prabhukn_2002@yahoo.co.in [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India); Deshapande, Parashuram; Satyanarayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Effect of cooling rate on tensile and impact properties of Sn-9Zn alloy was assessed. Black-Right-Pointing-Pointer Both DBTT and UTS of the solder alloy increased with increase in cooling rate. Black-Right-Pointing-Pointer An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile-brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn-9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 Degree-Sign C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the

  5. Effect of cooling rate during solidification of Sn–9Zn lead-free solder alloy on its microstructure, tensile strength and ductile–brittle transition temperature

    International Nuclear Information System (INIS)

    Prabhu, K.N.; Deshapande, Parashuram; Satyanarayan

    2012-01-01

    Highlights: ► Effect of cooling rate on tensile and impact properties of Sn–9Zn alloy was assessed. ► Both DBTT and UTS of the solder alloy increased with increase in cooling rate. ► An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile–brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn–9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 °C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the DBTT.

  6. Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China); Wang, F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, H.; Yu, B.D. [China Railway Shanhaiguan Bridge Group Co. LTD, Qinhuangdao 066205 (China)

    2017-01-02

    The microstructures and tensile behaviors of traditional Hadfield steel, named Mn12 steel, and Hadfield steel alloyed with N+Cr, named Mn12CrN steel were studied through optical microscopy, transmission electron microscopy, and scanning electron microscopy, among others. Three different tensile strain rates of 5×10{sup −4}, 5×10{sup −3}, and 5×10{sup −2} s{sup −1} were selected in the tensile test. The deformation microstructures and fracture morphologies of the two steels after fracture in the tensile test were observed to analyze the tensile deformation response to different tensile strain rates. Results showed that the grain size of Mn12CrN steel was evidently refined after alloying with N+Cr. The grain would not become abnormally coarse even with increasing austenitizing temperature. During tensile deformation, the strength and plasticity of Mn12CrN steel were superior to those of Mn12 steel at the same strain rate. With increasing the strain rate, the changes in strength and plasticity of Mn12CrN steel were less sensitive to tensile strain rate compared with Mn12 steel. The effects of grain refinement and N+Cr alloying on dynamic strain aging and deformation twining behaviors were responsible for this lack of sensitivity to strain rate.

  7. Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel

    International Nuclear Information System (INIS)

    Chen, C.; Zhang, F.C.; Wang, F.; Liu, H.; Yu, B.D.

    2017-01-01

    The microstructures and tensile behaviors of traditional Hadfield steel, named Mn12 steel, and Hadfield steel alloyed with N+Cr, named Mn12CrN steel were studied through optical microscopy, transmission electron microscopy, and scanning electron microscopy, among others. Three different tensile strain rates of 5×10 −4 , 5×10 −3 , and 5×10 −2 s −1 were selected in the tensile test. The deformation microstructures and fracture morphologies of the two steels after fracture in the tensile test were observed to analyze the tensile deformation response to different tensile strain rates. Results showed that the grain size of Mn12CrN steel was evidently refined after alloying with N+Cr. The grain would not become abnormally coarse even with increasing austenitizing temperature. During tensile deformation, the strength and plasticity of Mn12CrN steel were superior to those of Mn12 steel at the same strain rate. With increasing the strain rate, the changes in strength and plasticity of Mn12CrN steel were less sensitive to tensile strain rate compared with Mn12 steel. The effects of grain refinement and N+Cr alloying on dynamic strain aging and deformation twining behaviors were responsible for this lack of sensitivity to strain rate.

  8. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    International Nuclear Information System (INIS)

    Katman, Herda Yati; Norhisham, Shuhairy; Ismail, Norlela; Ibrahim, Mohd Rasdan; Matori, Mohd Yazip

    2013-01-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  9. Effect of maleated natural rubber on tensile strength and compatibility of natural rubber/coconut coir composite

    Science.gov (United States)

    Ujianto, O.; Noviyanti, R.; Wijaya, R.; Ramadhoni, B.

    2017-07-01

    Natural rubber (NR)/coconut coir (CF) composites were fabricated using co-rotating twin screw extruder with maleated NR (MNR) used as compatibilizer. The MNR was produced at three level of maleic anhydride (MA), and analyzed qualitative and quantitatively using FTIR and titration technique. Analysis on MNR using FTIR and titration methods showed that MA was grafted on NR chain at different percentage (0.76, 2.23, 4.79%) depended on MA concentration. Tensile strength data showed the best tensile strength was produced at 7 phr of MNR with 1 phr of MA level in MNR resulting 16.4 MPa. The improvement of compatibilized samples were more than 300% compare to uncompatibilized composite attributed to better interfacial bonding. The improvement on tensile strength was significantly influenced by MNR level and amount of MA added to produce MNR, as well as their interaction. The optimum conditions for producing NR-CF composite were predicted at 6.5 phr of MNR level with 1 phr of MA concentration added in MNR production, regardless screw rotation settings. Results from verification experiments confirm that developed model was capable of describing phenomena during composite preparation. Morphology analysis using scanning electron microscopy shows smooth covered fiber in compatibilized samples than that of without MNR. The morphology also showed less voids on compatibilized samples attributed to better interfacial bonding leading to tensile strength improvement.

  10. Process for preparing polyolefin gel articles as well as for preparing herefrom articles having a high tensile strength and modulus

    NARCIS (Netherlands)

    1990-01-01

    A process is described for the preparation of highly stretchable high-molecular weight polyolefin gel articles and polyolefin gel articles prepared therefrom having combined high tensile strength and high modulus, wherein an initial shaped article of the polyolefin is exposed to or contacted with a

  11. Experimental Investigation of the Effects of Concrete Alkalinity on Tensile Properties of Preheated Structural GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Hwasung Roh

    2017-01-01

    Full Text Available The combined effects of preexposure to high temperature and alkalinity on the tensile performance of structural GFRP reinforcing bars are experimentally investigated. A total of 105 GFRP bar specimens are preexposed to high temperature between 120°C and 200°C and then immersed into pH of 12.6 alkaline solution for 100, 300, and 660 days. From the test results, the elastic modulus obtained at 300 immersion days is almost the same as those of 660 immersion days. For all alkali immersion days considered in the test, the preheated specimens provide slightly lower elastic modulus than the unpreheated specimens, showing only 8% maximum difference. The tensile strength decreases for all testing cases as the increase of the alkaline immersing time, regardless of the prehearing levels. The tensile strength of the preheated specimens is about 90% of the unpreheated specimen for 300 alkali immersion days. However, after 300 alkali immersion days the tensile strengths are almost identical to each other. Such results indicate that the tensile strength and elastic modulus of the structural GFRP reinforcing bars are closely related to alkali immersion days, not much related to the preheating levels. The specimens show a typical tensile failure around the preheated location.

  12. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment.

    Science.gov (United States)

    Kaur, Harsimran; Datta, Kusum

    2015-01-01

    To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA) were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P) and rest 80 to heat-cured resilient liner (Molloplast B). Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm) in the space provided by a spacer of 3 mm, thermocycled (5-55°C) for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student's t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B) increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  13. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment

    Directory of Open Access Journals (Sweden)

    Harsimran Kaur

    2015-01-01

    Full Text Available Purpose: To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Materials and Methods: Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P and rest 80 to heat-cured resilient liner (Molloplast B. Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm in the space provided by a spacer of 3 mm, thermocycled (5-55°C for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. Results: One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student′s t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Conclusion: Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  14. Impact of Gluma Desensitizer on the tensile strength of zirconia crowns bonded to dentin: an in vitro study.

    Science.gov (United States)

    Stawarczyk, Bogna; Hartmann, Leonie; Hartmann, Rahel; Roos, Malgorzata; Ender, Andreas; Ozcan, Mutlu; Sailer, Irena; Hämmerle, Christoph H F

    2012-02-01

    This study tested the impact of Gluma Desensitizer on the tensile strength of zirconia crowns bonded to dentin. Human teeth were prepared and randomly divided into six groups (N = 144, n = 24 per group). For each tooth, a zirconia crown was manufactured. The zirconia crowns were cemented with: (1) Panavia21 (PAN), (2) Panavia21 combined with Gluma Desensitizer (PAN-G), (3) RelyX Unicem (RXU), (4) RelyX Unicem combined with Gluma Desensitizer (RXU-G), (5) G-Cem (GCM) and (6) G-Cem combined with Gluma Desensitizer (GCM-G). The initial tensile strength was measured in half (n = 12) of each group and the other half (n = 12) subjected to a chewing machine (1.2 Mio, 49 N, 5°C/50°C). The cemented crowns were pulled in a Universal Testing Machine (1 mm/min, Zwick Z010) until failure occurred and tensile strength was calculated. Data were analyzed with one-way and two-way ANOVA followed by a post hoc Scheffé test, t test and Kaplan-Meier analysis with a Breslow-Gehan analysis test (α = 0.05). After the chewing simulation, the self-adhesive resin cements combined with Gluma Desensitizer showed significantly higher tensile strength (RXU-G, 12.8 ± 4.3 MPa; GCM-G, 13.4 ± 6.2 MPa) than PAN (7.3 ± 1.7 MPa) and PAN-G (0.9 ± 0.6). Within the groups, PAN, PAN-G and RXU resulted in significantly lower values when compared to the initial tensile strength; the values of all other test groups were stable. In this study, self-adhesive resin cements combined with Gluma Desensitizer reached better long-term stability compared to PAN and PAN-G after chewing simulation.

  15. Tensile properties of a dual-axial forged Ti–Fe–Cu alloy containing boron

    Energy Technology Data Exchange (ETDEWEB)

    Zadorozhnyy, V.Yu., E-mail: zadorozhnyyvlad@gmail.com [National University of Science and Technology “MISIS”, Leninsky prospect, 4, Moscow 119049 (Russian Federation); Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Shchetinin, I.V.; Chirikov, N.V. [National University of Science and Technology “MISIS”, Leninsky prospect, 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2014-09-22

    In the present work we introduce a micro/nano-structured α+β Ti-based low-alloy produced by the tilt-casting method and subjected to subsequent thermo-mechanical treatment. After hot dual-axial forging at 900 °C, subsequent heating at 700 °C and water quenching a Ti{sub 94}Fe{sub 3}Cu{sub 3}+1000 ppm of boron alloy, containing inexpensive alloying elements, showed an ultimate tensile strength value of about 950 MPa and percentage elongation of about 5.2%. It is shown that the intensive forging treatment and subsequent heat treatment are leading to significantly improved mechanical properties of such an alloy compared to the as-cast state.

  16. Utilization of Agrowaste Polymers in PVC/NBR Alloys: Tensile, Thermal, and Morphological Properties

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-01-01

    Full Text Available Poly(vinyl chloride/nitrile butadiene rubber (PVC/NBR alloys were melt-mixed using a Brabender Plasticorder at 180∘C and 50 rpm rotor speed. Alloys obtained by melt mixing from PVC and NBR were formulated with wood-flour- (WF- based olive residue, a natural byproduct from olive oil extraction industry. WF was progressively increased from 0 to 30 phr. The effects of WF loadings on the tensile properties of the fabricated samples were inspected. The torque rheometry, which is an indirect indication of the melt strength, is reported. The pattern of water uptake for the composites was checked as a function WF loading. The fracture mode and the quality of bonding of the alloy with and without filler are studied using electron scanning microscope (SEM.

  17. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  18. Effects of botulinum toxin A injection on healing and tensile strength of ruptured rabbit Achilles tendons.

    Science.gov (United States)

    Tuzuner, Serdar; Özkan, Özlenen; Erin, Nuray; Özkaynak, Sibel; Cinpolat, An; Özkan, Ömer

    2015-04-01

    Tendon lacerations are most commonly managed with surgical repair. Postoperative complications such as adhesions and ruptures often occur with immobilization. Early postoperative mobilization is therefore advised to minimize complications and time required to return to daily life. The aim of this study was to evaluate whether botulinum neurotoxin type-A (BoNT-A) can be used to enhance healing and prevent rupture in mobilized animals with Achilles tenotomy. Twenty-seven rabbits were divided into 3 groups, namely, I, II, and III, after surgical 1-sided Achilles tenotomy and end-to-end repair. The control group for biomechanical comparisons consisted of randomly selected contralateral (unoperated) healthy Achilles tendons. Group I received BoNT-A (4 U/kg) injection into the calf muscles. One week later, electromyographical confirmation was performed to establish the effects of injection. Surgery was then performed. Animals in the second group (n = 9, group II) were immobilized with a cast postoperatively. The third group (n = 9, group III) was mobilized immediately with no cast or BoNT-A. Tendons were harvested and gap formation or ruptures as well as strength of the repaired tendon were assessed 6 weeks after surgery. Achilles tendons healed in all animals injected with BoNT-A, whereas all were ruptured in group III. All Achilles tendons of animals in groups I and II healed. However, group I repaired tendons were biomechanically equivalent to healthy tendons, whereas group II repaired tendons demonstrated significantly decreased tensile strength (P = 0.009). The present study suggests that local injection of BoNT-A can be used for treatment of tendon rupture and may replace the use of cast for immobilization. However, further studies are needed to determine whether BoNT-A injection can have a beneficial effect on the healing of tendon repairs in humans.

  19. High Tensile Strength of Engineered β-Solenoid Fibrils via Sonication and Pulling.

    Science.gov (United States)

    Peng, Zeyu; Parker, Amanda S; Peralta, Maria D R; Ravikumar, Krishnakumar M; Cox, Daniel L; Toney, Michael D

    2017-11-07

    We present estimates of ultimate tensile strength (UTS) for two engineered β-solenoid protein mutant fibril structures (spruce budworm and Rhagium inquisitor antifreeze proteins) derived from sonication-based measurements and from force pulling molecular dynamics simulations, both in water. Sonication experiments generate limiting scissioned fibrils with a well-defined length-to-width correlation for the mutant spruce budworm protein and the resultant UTS estimate is 0.66 ± 0.08 GPa. For fibrils formed from engineered R. inquisitor antifreeze protein, depending upon geometry, we estimate UTSs of 3.5 ± 3.2-5.5 ± 5.1 GPa for proteins with interfacial disulfide bonds, and 1.6 ± 1.5-2.5 ± 2.3 GPa for the reduced form. The large error bars for the R. inquisitor structures are intrinsic to the broad distribution of limiting scission lengths. Simulations provide pulling velocity-dependent UTSs increasing from 0.2 to 1 GPa in the available speed range, and 1.5 GPa extrapolated to the speeds expected in the sonication experiments. Simulations yield low-velocity values for the Young's modulus of 6.0 GPa. Without protein optimization, these mechanical parameters are similar to those of spider silk and Kevlar, but in contrast to spider silk, these proteins have a precisely known sequence-structure relationship. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Novak, J [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs.

  1. Analysis of mechanical tensile properties of irradiated and annealed RPV weld overlay cladding

    International Nuclear Information System (INIS)

    Novak, J.

    1993-01-01

    Mechanical tensile properties of irradiated and annealed outer layer of reactor pressure vessel weld overlay cladding, composed of Cr19Ni10Nb alloy, have been experimentally determined by conventional tensile testing and indentation testing. The constitutive properties of weld overlay cladding are then modelled with two homogenization models of the constitutive properties of elastic-plastic matrix-inclusion composites; numerical and experimental results are then compared. 10 refs., 4 figs., 4 tabs

  2. Effect of surface decarburization on the mechanical properties of high strength low alloy steel

    International Nuclear Information System (INIS)

    Saqib, S.

    1993-01-01

    An attempt has been made to study the relationship of mechanical properties with the microstructure of a high strength low alloy steel. A thorough investigation was conducted on the steel sheet and variation in mechanical properties was observed across its thickness with a change in the microstructure. Change in hardness and tensile strength at the surface compare to the core of the material is attributed to decarburization. The current research indicates that the correlation between hardness and tensile strength is not valid for steels if the hardness is determined on the surface only. Great care should be taken at the time of determination of tensile strength by using conversion charts/tables on the basis of hardness values obtained by practical means. (author)

  3. Effect of cocoa pod husk filler loading on tensile properties of cocoa pod husk/polylactic acid green biocomposite films

    Science.gov (United States)

    Sanyang, M. L.; Sapuan, S. M.; Haron, M.

    2017-10-01

    Over the years, cocoa-pod husk (CPH) generation significantly increased due to the growing global demand of chocolate products, since cocoa bean is the main ingredient for chocolate production. Proper utilization of CPH as natural filler for reinforcement of polymer composites provides economic advantages as well as environmental solutions for CPH waste disposal problems. In this study, CPH filled PLA composite films were developed using solution casting method. The effect of CPH loading on the tensile properties of CPH/PLA composite films were investigated. The obtained results manifested that increasing CPH loading from 0% to 10 % significantly increased tensile strength of CPH/PLA composite. However, further addition of CPH loading up to 15 % decreased the tensile strength of film samples. As CPH loading increased from 0% to 15%, tensile modulus of CPH/PLA composite films also increased from 1.5MPa to 10.4MPa, whereas their elongation at break reduced from 190% to 90%. These findings points out CPH as a potential natural filler for reinforcing thermoplastic polymer composites.

  4. Effect of tensile pre-strain at different orientation on martensitic transformation and mechanical properties of 316L stainless steel

    Science.gov (United States)

    Wibowo, F.; Zulfi, F. R.; Korda, A. A.

    2017-01-01

    Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.

  5. Modeling of hot tensile and short-term creep strength for LWR piping materials under severe accident conditions

    International Nuclear Information System (INIS)

    Harada, Y.; Maruyama, Y.; Chino, E.; Shibazaki, H.; Kudo, T.; Hidaka, A.; Hashimoto, K.; Sugimoto, J.

    2000-01-01

    The analytical study on severe accident shows the possibility of the reactor coolant system (RCS) piping failure before reactor pressure vessel failure under the high primary pressure sequence at pressurized water reactors. The establishment of the high-temperature strength model of the realistic RCS piping materials is important in order to predict precisely the accident progression and to evaluate the piping behavior with small uncertainties. Based on material testing, the 0.2% proof stress and the ultimate tensile strength above 800degC were given by the equations of second degree as a function of the reciprocal absolute temperature considering the strength increase due to fine precipitates for the piping materials. The piping materials include type 316 stainless steel, type 316 stainless steel of nuclear grade, CF8M cast duplex stainless steel and STS410 carbon steel. Also the short-term creep rupture time and the minimum creep rate at high-temperature were given by the modified Norton's Law as a function of stress and temperature considering the effect of the precipitation formation and resolution on the creep strength. The present modified Norton's Law gives better results than the conventional Larson-Miller method. Correlating the creep data (the applied stress versus the minimum creep rate) with the tensile data (the 0.2% proof stress or the ultimate tensile strength versus the strain rate), it was found that the dynamic recrystallization significantly occurred at high-temperature. (author)

  6. Relationship between splitting tensile and compressive strengths for self-compacting concrete containing nano- and micro silica

    Directory of Open Access Journals (Sweden)

    Jaber Ali

    2018-01-01

    Full Text Available This paper describes the relationship between splitting tensile strength and compressive strength of self-consolidating concrete using data collected from laboratory specimens tested at standard conditions. The results were then compared with some expressions published in international literature. The investigated variables included: type of cement, percentage of nanosilica and percentage of microsilica as a cement replacement by weight. In spite of concrete not being designed to resist direct tension the knowledge of tensile strength is needed to estimate the cracking load. In the absence of test results an estimate of the tensile strength may be obtained by using the relationship proposed. The verification of the proposed formula based on experimental data was estimated by means of the integral absolute error (IAE. The output of this study has provided a better understanding of the correlation between splitting and compressive strengths of SCCs and the effect of some related variables on the resultant behavior, which has therefore, helped to generate new expression with better accuracy.

  7. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-12-01

    Full Text Available The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been found to play an important role for this HSSS due to load transfer and strain partitioning between two phases, and a higher strain rate could cause even higher strain partitioning in the softer austenite grains, delaying the deformation instability. Deformation twins are observed in the austenite grains at all strain rates to facilitate the uniform tensile deformation. The B2 phase (FeAl intermetallic compound is less deformable at higher strain rates, resulting in easier brittle fracture in B2 particles, smaller dimple size and a higher density of phase interfaces in final fracture surfaces. Thus, more energy need be consumed during the final fracture for the experiments conducted at higher strain rates, resulting in better tensile toughness.

  8. The elevated temperature tensile properties of S-200E commercially pure beryllium

    International Nuclear Information System (INIS)

    Henshall, G.A.; Torres, S.G.; Hanafee, J.E.

    1995-01-01

    The tensile properties of commercially pure beryllium are sensitive to temperature, impurity content, texture, grain size, and prior processing. Therefore, tensile tests have been conducted using the commercially pure S-200E Be commonly employed at Lawrence Livermore National Laboratory. These experiments were performed at temperatures ranging from 300 to 1100 degrees C in the longitudinal and transverse orientations at the quasi-static strain rate of 5.5 x 10 -4 s -1 . The results of these experiments reveal that the stress-strain curve is smooth, ie. without yield points or serrations, over the entire temperature range studied. The yield stress (YS) and ultimate tensile stress (UTS) decrease monotonically with increasing temperature. Similar strengths were measured for both the longitudinal and transverse orientations, with the latter exhibiting slightly lower YS and UTS values. The measured failure elongation (e f ) vs. temperature curve is complex due to the competing effects of increasing basal-plane fracture stress with increasing temperature combined with the presence of hot shortness at intermediate temperatures. The latter is believed to be caused, at least partially, by the presence of free aluminum impurities at the grain boundaries. This hypothesis is supported by the measured increase in e f at 700 degrees C following a 100-hr anneal at 750 degrees C, which would remove free Al from the grain boundaries. Texture also was found to influence e f . The favorable orientation of the basal planes for initiation and propagation of cleavage cracks in longitudinal specimens results in a significantly decreased failure elongation compared with the transverse orientation. The effects of testing temperature and specimen orientation on the reduction in area were found to be similar to those described for e f

  9. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Directory of Open Access Journals (Sweden)

    Gustavo Waldemar Mugica

    2004-06-01

    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  10. Matrix composition effects on the tensile properties of tungsten-molybdenum heavy alloys

    International Nuclear Information System (INIS)

    Bose, A.; German, R.N.

    1990-01-01

    Tungsten-base heavy alloys are liquid-phase sintered from mixed tungsten, nickel, and iron powders. The sintered product is a composite consisting of interlaced tungsten and solidified matrix (W-Ni-Fe) phases. These alloys are most useful in applications requiring high density, strength, and toughness. The design of improved tungsten heavy alloys has been the subject of several research investigations. Much success has taken place through improved processing, but parallel compositional studies have resulted in new microstructure-property combinations. As part of these investigations, the Ni/Fe ratio has been varied, with the general conclusion that optimal strength and ductility occur with a ratio between 2 and 4. Brittle intermetallic phases can form outside of this composition range. Historically, a 7/3 Ni/Fe ratio has been selected for processing studies. Recently, others reported higher ductilities and impact energies for 90 and 93 pct W heavy alloys with the 8/2 Ni/Fe ratio. Alternatively, these alloys can be strengthened by both solid solution and grain size refinement through incorporation of molybdenum, tantalum, or rhenium. These additions are soluble in both the tungsten and matrix phases and retard solution-reprecipitation during liquid phase sintering. In this study, the alloy composition was varied in the nickel/iron ratio and molybdenum was partially substituted for tungsten. The sintered tensile properties are assessed vs these compositional variations

  11. The origins of tritium and helium effects on the tensile properties of metals

    International Nuclear Information System (INIS)

    Robinson, S.L.; Yang, N.Y.C.

    1992-01-01

    In this paper, the effects of internal tritium and helium on the tensile properties of two austenitic stainless steels and an iron-based superalloys have been studied. The materials tested were, forged 21 Cr-6Ni-9Mn and 304L (tested in the annealed condition and tow forged conditions), and a modified A-286 alloy. The accumulation of 3 He from the radioactive decay of tritium caused an increase in the yield strength and a continuous decrease in the ductility in almost all materials tested. Increased 3 He concentrations also caused a change in fracture mode form ductile rupture to predominantly intergranular fracture. The property changes resulted from 3 He bubble-induced strengthening, which produced a change in deformation mode form long-range dislocation activity to deformation twinning. In the deformation-twinning mode, the 3 He-accelerated fracture initiated at the intersections of deformation twins with grain boundaries. High-strength forged 304L was most resistant to 3 He effects owing to the redistribution of 3 He on dislocations

  12. Investigation on Tensile Strength Ratio (TSR Specimen to Predict Moisture Sensitivity of Asphalt Pavements Mixture and Using Polymer to Reduce Moisture Damage

    Directory of Open Access Journals (Sweden)

    Mohammed Aziz Hameed Al-Shaybani

    2017-05-01

    Full Text Available Moisture damage of asphalt concrete is defined as losing the strength and Permanence caused by the active presence of moisture.The most common technique to reduce moisture damage is using modifiers with the asphalt binder or the aggregate.The goal of this study was to explore the effect of various modifiers of polymer on the moisture susceptibility mixture of asphaltic concrete pavement. Modifiers included in this research selected two kinds of polymers Crumb Rubber No 50 (CR No 50 and Methyl Methacrylates (MMA(which are available in the local markets in Iraq and have been used in three percentages for each type. These percentages are (5, 10 and 15% for (CR No 50 and (2.5, 5 and 7.5(% for (MMA.Each type of these polymers is blended with asphalt by wet process at constant blending times for a suitable range of temperatures. The experimental works showed that all polymers modified mixtures have indirect tensile strength higher than control asphalt mixtures, its about (2-15 %, dependent on different type of polymer and polymer concentration under predicted suitable blending time.Test results of indirect tensile strength indicated betterment in modifying the proprieties of mixture, the increased resistance mixture of asphalt concrete pavement versus moisture damage, and reduced the effect of water on asphalt concrete properties. The final result is the addition of (10% CR No 50 and (5% MMA to asphalt mixtures showed an improved mixture of asphalt concrete properties and produced strong mixtures for road construction.One model is predicted for tensile strength ratio [TSR]to estimate the effects of polymer modification on moisture susceptibility mixture of asphalt concrete.

  13. Effect of water storage and surface treatments on the tensile bond strength of IPS Empress 2 ceramic.

    Science.gov (United States)

    Salvio, Luciana A; Correr-Sobrinho, Lourenço; Consani, Simonides; Sinhoreti, Mário A C; de Goes, Mario F; Knowles, Jonathan C

    2007-01-01

    The aim of this study was to evaluate the effect of water storage (24 hours and 1 year) on the tensile bond strength between the IPS Empress 2 ceramic and Variolink II resin cement under different superficial treatments. One hundred and eighty disks with diameters of 5.3 mm at the top and 7.0 mm at the bottom, and a thickness of 2.5 mm were made, embedded in resin, and randomly divided into six groups: Groups 1 and 4 = 10% hydrofluoric acid for 20 seconds; Groups 2 and 5 = sandblasting for 5 seconds with 50 microm aluminum oxide; and Groups 3 and 6 = sandblasting for 5 seconds with 100 microm aluminum oxide. Silane was applied on the treated ceramic surfaces, and the disks were bonded into pairs with adhesive resin cement. The samples of Groups 1 to 3 were stored in distilled water at 37 degrees C for 24 hours, and Groups 4 to 6 were stored for 1 year. The samples were subjected to a tensile strength test in an Instron universal testing machine at a crosshead speed of 1.0 mm/min, until failure. The data were submitted to analysis of variance and Tukey's test (5%). The means of the tensile bond strength of Groups 1, 2, and 3 (15.54 +/- 4.53, 10.60 +/- 3.32, and 7.87 +/- 2.26 MPa) for 24-hour storage time were significantly higher than those observed for the 1-year storage (Groups 4, 5, and 6: 10.10 +/- 3.17, 6.34 +/- 1.06, and 2.60 +/- 0.41 MPa). The surface treatments with 10% hydrofluoric acid (15.54 +/- 4.53 and 10.10 +/- 3.17 MPa) showed statistically higher tensile bond strengths compared with sandblasting with 50 microm(10.60 +/- 3.32 and 6.34 +/- 1.06 MPa) and 100 microm (7.87 +/- 2.26 and 2.60 +/- 0.41 MPa) aluminum oxide for the storage time 24 hours and 1 year. Storage time significantly decreased the tensile bond strength for both ceramic surface treatments. The application of 10% hydrofluoric acid resulted in stronger tensile bond strength values than those achieved with aluminum oxide.

  14. A study of tensile and thermal properties of 3D printed conductive ABS - ZnO composite

    Science.gov (United States)

    Aw, Y. Y.; Yeoh, C. K.; Idris, M. A.; Amali, H. K.; Aqzna, S. S.; Teh, P. L.

    2017-04-01

    Research into 3D printed composites are interesting because the properties of 3D printed components are usually insufficient for robust engineering applications. In this paper, conductive ABS - ZnO composites were successfully fabricated using a 3D printer. Tensile strength increases when filler loading increases up to 11wt%. Dynamic storage modulus of the conductive ABS-ZnO composite increases with the addition of ZnO filler, indicating stiffness enhancement of the composites. Higher loss modulus is also observed on samples with ZnO filler. Thermal conductivity increases from 0.2204 W/mK to 0.3508 W/mK when the filler concentration increases to 14wt% due to the formation of conductive network among fillers within the polymer matrix. With these promising tensile and thermal properties, the 3D printed composites are suitable to be used as automobile parts.

  15. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction.

    Science.gov (United States)

    Reinstein, Dan Z; Archer, Timothy J; Randleman, J Bradley

    2013-07-01

    To develop a mathematical model to estimate the relative differences in postoperative stromal tensile strength following photorefractive keratectomy (PRK), LASIK, and small incision lenticule extraction (SMILE). Using previously published data where in vitro corneal stromal tensile strength was determined as a function of depth, a mathematical model was built to calculate the relative remaining tensile strength by fitting the data with a fourth order polynomial function yielding a high correlation coefficient (R(2) = 0.930). Calculating the area under this function provided a measure of total stromal tensile strength (TTS), based only on the residual stromal layer for PRK or LASIK and the residual stromal layers above and below the lenticule interface for SMILE. Postoperative TTS was greatest after SMILE, followed by PRK, then LASIK; for example, in a 550-μm cornea after 100-μm tissue removal, postoperative TTS was 75% for SMILE (130-μm cap), 68% for PRK, and 54% for LASIK (110-μm flap). The postoperative TTS decreased for thinner corneal pachymetry for all treatment types. In LASIK, the postoperative TTS decreased with increasing flap thickness by 0.22%/μm, but increased by 0.08%/μm for greater cap thickness in SMILE. The model predicted that SMILE lenticule thickness could be approximately 100 μm greater than the LASIK ablation depth and still have equivalent corneal strength (equivalent to approximately 7.75 diopters). This mathematical model predicts that the postoperative TTS is considerably higher after SMILE than both PRK and LASIK, as expected given that the strongest anterior lamellae remain intact. Consequently, SMILE should be able to correct higher levels of myopia. Copyright 2013, SLACK Incorporated.

  16. The effect of erbium family laser on tensile bond strength of composite to dentin in comparison with conventional method.

    Science.gov (United States)

    Shahabi, Sima; Chiniforush, Nasim; Bahramian, Hoda; Monzavi, Abbas; Baghalian, Ali; Kharazifard, Mohammad Javad

    2013-01-01

    The purpose of this study was to evaluate the effect of Er:YAG and Er,Cr:YSGG laser on tensile bond strength of composite resin to dentine in comparison with bur-prepared cavities. Fifteen extracted caries-free human third molars were selected. The teeth were cut at a level below the occlusal pit and fissure plan and randomly divided into three groups. Five cavities were prepared by diamond bur, five cavities prepared by Er:YAG laser, and the other group prepared by Er,Cr:YSGG laser. Then, all the cavities were restored by composite resin. The teeth were sectioned longitudinally with Isomet and the specimens prepared in dumbbelled shape (n = 36). The samples were attached to special jigs, and the tensile bond strength of the three groups was measured by universal testing machine at a speed of 0.5 mm/min. The results of the three groups were analyzed with one-way ANOVA and Tamhane test. The means and standard deviations of tensile bond strength of bur-cut, Er:YAG laser-ablated, and Er,Cr:YSGG laser-ablated dentine were 5.04 ± 0.93, 13.37 ± 3.87, and 4.85 ± 0.93 MPa, respectively. There is little difference in tensile bond strength of composite resin in Er,Cr:YSGG lased-prepared cavities in comparison with bur-prepared cavities, but the Er:YAG laser group showed higher bond strength than the other groups.

  17. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    Science.gov (United States)

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  18. Heat treatment effects on tensile properties of V-(4-5) wt.% Cr-(4-5) wt.% Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-08-01

    Effects of thermomechanical treatments on microstructures and mechanical properties are of interest for long term application of V-Cr-Ti alloys in fusion reactor systems. Influence of thermal annealing at 1050{degrees}C on stress/strain behavior, maximum engineering strength, and uniform and total elongation were evaluated. The results show that multiple annealing has minimal effect on the tensile properties of V-(4-5)Cr-(4-5)Ti alloys tested at room temperature and at 500{degrees}C.

  19. Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2016-06-01

    Full Text Available Friction stir processing (FSP was applied to produce aluminum matrix composites (AMCs. Aluminum alloy AA6082 was used as the matrix material. Various ceramic particles, such as SiC, Al2O3, TiC, B4C and WC, were used as reinforcement particle. AA6082 AMCs were produced using a set of optimized process parameters. The microstructure was studied using optical microscopy, filed emission scanning electron microscopy and electron back scattered diagram. The results indicated that the type of ceramic particle did not considerably vary the microstructure and ultimate tensile strength (UTS. Each type of ceramic particle provided a homogeneous dispersion in the stir zone irrespective of the location and good interfacial bonding. Nevertheless, AA6082/TiC AMC exhibited superior hardness and wear resistance compared to other AMCs produced in this work under the same set of experimental conditions. The strengthening mechanisms and the variation in the properties are correlated to the observed microstructure. The details of fracture mode are further presented.

  20. Influence of Binding Rates on Strength Properties of Moulding Sands with the GEOPOL Binder

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2014-03-01

    Full Text Available The results of investigations of moulding sands with an inorganic binder called GEOPOL, developed by the SAND TEAM Company are presented in the paper. Hardeners of various hardening rates are used for moulding sands with this binder. The main aim of investigations was determination of the influence of the hardening rate of moulding sands with the GEOPOL binder on technological properties of these sands (bending strength, tensile strength, permeability and grindability. In addition, the final strength of moulding sands of the selected compositions was determined by two methods: by splitting strength and shear strength measurements. No essential influence of the hardening rate on such parameters as: permeability, grindability and final strength was found. However, the sand in which the slowest hardener (SA 72 were used, after 1 hour of holding, had the tensile and bending strength practically zero. Thus, the time needed for taking to pieces the mould made of such moulding sand will be 1.5 - 2 hours.

  1. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments.

    Science.gov (United States)

    Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith

    2012-09-01

    Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    Science.gov (United States)

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  3. Elastic and strength properties of Hanford concrete mixes at room and elevated temperatures

    International Nuclear Information System (INIS)

    Abrams, M.S.; Gillen, M.; Campbell, D.H.

    1979-03-01

    The effects of long-term exposure to elevated temperatures on the physical properties of concrete mixes used in Hanford radioactive waste storage tanks were determined. Temperature had a significant effect on the elastic modulus of concretes. Poisson's ratio determined by the sonic method remained relatively constant. The splitting tensile strength increased rapidly up to 190 days of age. Then strength decreased to about 350 days and either leveled off or increased from that point on. Compressive strength data were erratic

  4. Predicting the tensile strength of A UD basalt/ epoxy composite used for the confinement of concrete structures

    Science.gov (United States)

    Ciniņa, I.; Zīle, O.; Andersons, J.

    2013-01-01

    The principal aim of the present research was to predict the strength of UD basalt fiber/epoxy matrix composites in tension along the reinforcement direction. Tension tests on single basalt fibers were performed to determine the functional form of their strength distribution and to evaluate the parameters of the distribution. Also, microbond tests were carried out to assess the interfacial shear strength of the fibers and polymer matrix. UD composite specimens were produced and tested for the longitudinal tensile strength. The predicted strength of the composite was found to exceed the experimental values by ca. 20%, which can be explained by imperfections in the fiber alignment, impregnation, and adhesion in the composite specimens.

  5. Effect of Controlled Cooling on Microstructure and Tensile Properties of Low C Nb-Ti-Containing HSLA Steel for Construction

    Directory of Open Access Journals (Sweden)

    Yi Fan

    2017-01-01

    Full Text Available The thermo-mechanical control processing (TMCP of low carbon (C Nb-Ti-containing HSLA steel with different cooling rates from 5 to 20 °C/s was simulated using a Gleeble 3500 system. The samples’ microstructure was characterized and the tensile properties measured. The results show that a microstructure mainly consisting of quasi-polygonal ferrite (QPF, granular bainitic ferrite (GBF, and martensite/austenite (M/A constituent formed in each sample. Furthermore, the accelerated cooling led to a significant grain refinement of the QPF and GBF, and an increase in the density of dislocations, as well as suppressed the precipitation of nanoscale particles; however, the overall yield strength (YS still increased obviously. The accelerated cooling also brought about a decrease in amount of M/A constituent acting as a mixed hard phase, which weakened the overall strain-hardening capacity of the QPF + GBF + M/A multiphase steel and simultaneously elevated yield-to-tensile strength ratio (YR. In addition, the mechanisms in dominating the influence of controlled cooling on the final microstructure and tensile properties were discussed.

  6. An Experimental Study of the Influence of in-Plane Fiber Waviness on Unidirectional Laminates Tensile Properties

    Science.gov (United States)

    Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong

    2017-12-01

    As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.

  7. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Adkins, Nicholas J.E.; Attallah, Moataz M.

    2013-01-01

    Ti–6Al–4V samples have been prepared by selective laser melting (SLM) with varied processing conditions. Some of the samples were stress-relieved or hot isostatically pressed (HIPed). The microstructures of all samples were characterised using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and the tensile properties measured before and after HIPing. It was found that the porosity level generally decreased with increase of laser power and laser scanning speed. Horizontally built samples were found to have a higher level of porosity than vertically built samples. The as-fabricated microstructure was dominated by columnar grains and martensites. HIPing closed the majority of the pores and also fully transformed the martensite into α and β phases. The as-fabricated microstructure exhibits very high tensile strengths but poor ductility with elongation generally smaller than 10%. The horizontally built samples show even lower elongation than vertically built samples. HIPing considerably improved ductility but led to a reduction in strength. With HIPing, the SLMed samples were found to show tensile properties comparable with those thermomechanically processed and annealed samples

  8. Effect of Local Post Weld Heat Treatment on Tensile Properties in Friction Stir Welded 2219-O Al Alloy

    Science.gov (United States)

    Chu, Guannan; Sun, Lei; Lin, Caiyuan; Lin, Yanli

    2017-11-01

    To improve the formability of the aluminum alloy welds and overcome the size limitation of the bulk post weld heat treatment (BPWHT) on large size friction stir welded joints, a local post weld heat treatment method (LPWHT) was proposed. In this method, the resistance heating as the moving heat source is adopted to only heat the weld seam. The temperature field of LPWHT and its influence on the mechanical properties and formability of FSW 2219-O Al alloy joints was investigated. The evaluation of the tensile properties of FSW samples was also examined by mapping the global and local strain distribution using the digital image correlation methodology. The results indicated that the formability was improved greatly after LPWHT, while the hardness distribution of the FSW joint was homogenized. The maximum elongation can reach 1.4 times that of as-welded joints with increase the strength and the strain of the nugget zone increased from 3 to 8% when annealing at 300 °C. The heterogeneity on the tensile deformation of the as-welded joints was improved by the nugget zone showing large local strain value and the reason was given according to the dimple fracture characteristics at different annealing temperatures. The tensile strength and elongation of LPWHT can reach 93.3 and 96.1% of the BPWHT, respectively. Thus, the LPWHT can be advantageous compared to the BPWHT for large size welds.

  9. Influence of (TiC+TiB) on the microstructure and tensile properties of Ti-B20 matrix alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rahoma, H.K.S. [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Chen, Y.Y., E-mail: yychen@hit.edu.cn [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, X.P.; Xiao, S.L. [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-05

    Highlights: • After forging, the microstructure was significantly refined and uniform. • The presence of carbide and boride also led to uniform and finer precipitation of α during aging as compared to the matrix alloy. • The size of secondary α phase increased with the increase of aging temperature. This trend leads to the decrease of strength and the increase of ductility. - Abstract: A hybrid of (TiB+TiC) reinforced beta titanium matrix (Ti-B20) were produced by non-consumable arc-melting technology and hot-forging. Microstructures of the composites were observed by optical microscopy (OM), transmission electron microscope (TEM) and scanning electron microscopy (SEM). The results show that both the TiB whiskers and TiC particles tend to segregate at β boundaries. The β grain size and secondary α lath width are refined by reinforcements and aging treatment. Evolution of tensile properties shows that enhancement in yield strength and ultimate tensile strength with the addition of reinforcements, as well as the remarkable increase in the ductility can be attributed to aging treatment at 600 °C and 650 °C. The size of secondary α phase increased with the increase of aging temperature. This trend leads to the decrease of strength and the increase of ductility to get good balance of properties. The fracture mechanism of the composite can be attributed to the cracking of the reinforcements.

  10. Basic investigation of the laminated alginate impression technique: Setting time, permanent deformation, elastic deformation, consistency, and tensile bond strength tests.

    Science.gov (United States)

    Kitamura, Aya; Kawai, Yasuhiko

    2015-01-01

    Laminated alginate impression for edentulous is simple and time efficient compared to border molding technique. The purpose of this study was to examine clinical applicability of the laminated alginate impression, by measuring the effects of different Water/Powder (W/P) and mixing methods, and different bonding methods in the secondary impression of alginate impression. Three W/P: manufacturer-designated mixing water amount (standard), 1.5-fold (1.5×) and 1.75-fold (1.75×) water amount were mixed by manual and automatic mixing methods. Initial and complete setting time, permanent and elastic deformation, and consistency of the secondary impression were investigated (n=10). Additionally, tensile bond strength between the primary and secondary impression were measured in the following surface treatment; air blow only (A), surface baking (B), and alginate impression material bonding agent (ALGI-BOND: AB) (n=12). Initial setting times significantly shortened with automatic mixing for all W/P (p<0.05). The permanent deformation decreased and elastic deformation increased as high W/P, regardless of the mixing method. Elastic deformation significantly reduced in 1.5× and 1.75× with automatic mixing (p<0.05). All of these properties resulted within JIS standards. For all W/P, AB showed a significantly high bonding strength as compared to A and B (p<0.01). The increase of mixing water, 1.5× and 1.75×, resulted within JIS standards in setting time, suggesting its applicability in clinical setting. The use of automatic mixing device decreased elastic strain and shortening of the curing time. For the secondary impression application of adhesives on the primary impression gives secure adhesion. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    Science.gov (United States)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  12. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  13. The Effects of Fe-Particles on the Tensile Properties of Al-Si-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Anton Bjurenstedt

    2016-12-01

    Full Text Available The effect of Fe-rich particles has been a topic for discussion in the aluminum casting industry because of the negative impact they exert on the mechanical properties. However, there are still contradictions on the effects of various morphologies of Fe-particles. In this study, microstructural characterization of tensile tested samples has been performed to reveal how unmodified and modified Fe-rich particles impact on the tensile behavior. Analysis of additions of Fe modifiers such as Mn and Cr, showed higher amounts of primary Fe-rich particles (sludge with increased porosity and, as result, degraded tensile properties. From the fracture analysis of tensile tested hot isostatic pressed (HIPed samples it could be concluded that the mechanical properties were mainly governed by the Fe-rich particles, which were fracturing through cleavage, not by the porosity.

  14. Measurement of the yield and tensile strengths of neutron-irradiated and post-irradiation recovered vessel steels with notched specimens

    International Nuclear Information System (INIS)

    Valiente, A.

    1996-01-01

    Tensile circumferentially notched bars are examined as test specimens for measuring the yield and tensile strengths of nuclear pressure vessel steels under several conditions of irradiation and temperature that a vessel can experience during its service life, including recovery post-irradiation treatment. For all the vessel steels, notch geometries and conditions explored, it has been found that notched specimens fail by plastic collapse, and simple formulae have been derived that allow the yield and tensile strengths to be determined from the yielding and plastic collapse load of a notched specimen. Values measured in this way show good agreement with those measured by the standard tensile test method. (orig.)

  15. Degradation of Peel and Tensile Strength of Bonded Panels Exposed to High Humidity

    National Research Council Canada - National Science Library

    Rider, Andrew

    2001-01-01

    .... The work presented in this report summarizes honeycomb studies undertaken in AIR task 98/186 that were designed to examine the influence that environmental exposure would have on the peel and tensile...

  16. Effect of soldering techniques and gap distance on tensile strength of soldered Ni-Cr alloy joint.

    Science.gov (United States)

    Lee, Sang-Yeob; Lee, Jong-Hyuk

    2010-12-01

    The present study was intended to evaluate the effect of soldering techniques with infrared ray and gas torch under different gap distances (0.3 mm and 0.5 mm) on the tensile strength and surface porosity formation in Ni-Cr base metal alloy. Thirty five dumbbell shaped Ni-Cr alloy specimens were prepared and assigned to 5 groups according to the soldering method and the gap distance. For the soldering methods, gas torch (G group) and infrared ray (IR group) were compared and each group was subdivided by corresponding gap distance (0.3 mm: G3 and IR3, 0.5 mm: G5, IR5). Specimens of the experimental groups were sectioned in the middle with a diamond disk and embedded in solder blocks according to the predetermined distance. As a control group, 7 specimens were prepared without sectioning or soldering. After the soldering procedure, a tensile strength test was performed using universal testing machine at a crosshead speed 1 mm/min. The proportions of porosity on the fractured surface were calculated on the images acquired through the scanning electronic microscope. Every specimen of G3, G5, IR3 and IR5 was fractured on the solder joint area. However, there was no significant difference between the test groups (P > .05). There was a negative correlation between porosity formation and tensile strength in all the specimens in the test groups (P tensile strength of joints and porosity formations between the gas-oxygen torch soldering and infrared ray soldering technique or between the gap distance of 0.3 mm and 0.5 mm.

  17. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study.

    Science.gov (United States)

    Brindha, M; Kumaran, N Kurunji; Rajasigamani, K

    2014-07-01

    The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys.

  18. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mehdi; Mehrali, Mohammad

    2016-01-01

    -matrix interaction. In this present study, effects of micro steel fibers (MSF) incorporation on mechanical properties of fly ash based geopolymer was investigated at different volume ratio of matrix. Various properties of the co