WorldWideScience

Sample records for tensile fracture behaviour

  1. A Monte Carlo-shear lag simulation of tensile fracture behaviour of Bi2223 filament

    International Nuclear Information System (INIS)

    Ochiai, S; Ishida, T; Doko, D; Morishita, K; Okuda, H; Oh, S S; Ha, D W; Hojo, M; Tanaka, M; Sugano, M; Osamura, K

    2005-01-01

    The damage evolution in Bi2223 filaments and its influence on critical current was described by a Monte Carlo-shear lag simulation method. The experimentally observed zigzag crack propagation across aligned Bi2223 grains under tensile strain was effectively modelled by including transverse and longitudinal failure modes for individual grains. From the simulated stress-strain curve, the survival parameter (slope of the stress-strain curve normalized with respect to the original Young's modulus) was estimated with increasing applied strain. With this parameter combined with the strain sensitivity of the critical current, the measured change of critical current of the composite tape with applied strain could be described well

  2. A comparison of tensile, fracture and fatigue mechanical behaviour of structural reinforcing bars made with different steels

    Directory of Open Access Journals (Sweden)

    Rodríguez, C.

    2013-09-01

    Full Text Available The use of austenitic stainless steels as rebar is an option increasingly used in reinforced concrete structures exposed to aggressive environments and especially those that have to work in marine environments. The same is true for duplex stainless steel rebars, although nowadays they have a lower use, mainly due to the fact that their inclusion in the reinforced concrete standards was delayed 10 years compared to austenitic stainless steel ones, and consequently their in-service behavior is not as well known. A study of the mechanical properties, including fracture toughness, fatigue behaviour and corrosion resistance in saline alkaline environments of austenitic (AISI 304LN and 316LN and duplex (D2205 stainless steel reinforcing bars was performed in this work. Bars made on a high ductility carbon steel (B500SD that are normally used to reinforce concrete were also characterized and used as a comparison. Stainless steel reinforcing bars show mechanical properties at least similar but usually higher than one of the best carbon steel re-bars (B500SD, along with a significantly higher ductility and, of course, much better corrosion behaviour in saline alkaline environments.El uso de aceros inoxidables austeníticos como armaduras de refuerzo es una opción cada vez más utilizada en estructuras de hormigón armado expuestas a ambientes agresivos y especialmente en las que han de trabajar en ambientes marinos. Lo mismo cabe decir de las armaduras de acero inoxidable dúplex, si bien su uso es menor, debido sobre todo a que su inclusión en la normativa aplicable al armado de hormigón se retrasó 10 años con respecto a los inoxidables austeníticos y, consecuentemente, su comportamiento en servicio es menos conocido. En este trabajo se analiza el comportamiento mecánico, incluyendo fractura y fatiga, así como la resistencia a la corrosión en medios que simulan un hormigón contaminado de cloruros, de armaduras fabricadas tanto con

  3. Tensile and fracture behavior of polymer foams

    International Nuclear Information System (INIS)

    Kabir, Md. E.; Saha, M.C.; Jeelani, S.

    2006-01-01

    Tensile and mode-I fracture behavior of cross-linked polyvinyl chloride (PVC) and rigid polyurethane (PUR) foams are examined. Tension tests are performed using prismatic bar specimens and mode-I fracture tests are performed using single edge notched bend (SENB) specimens under three-point bending. Test specimens are prepared from PVC foams with three densities and two different levels of cross-linking, and PUR foam with one density. Tension and quasi-static fracture tests are performed using a Zwick/Rowell test machine. Dynamic fracture tests are performed using a DYNATUP model 8210 instrumented drop-tower test set up at three different impact energy levels. Various parameters such as specimen size, loading rate, foam density, cross-linking, crack length, cell orientation (flow and rise-direction) and solid polymer material are studied. It is found that foam density and solid polymer material have a significant effect on tensile strength, modulus, and fracture toughness of polymer foams. Level of polymer cross-linking is also found to have a significant effect on fracture toughness. The presence of cracks in the rise- and flow direction as well as loading rate has minimal effect. Dynamic fracture behavior is found to be different as compared to quasi-static fracture behavior. Dynamic fracture toughness (K d ) increases with impact energy. Examination of fracture surfaces reveals that the fracture occurs in fairly brittle manner for all foam materials

  4. Solution Treatment Effect on Tensile, Impact and Fracture Behaviour of Trace Zr Added Al-12Si-1Mg-1Cu Piston Alloy

    Science.gov (United States)

    Kaiser, Md. Salim

    2018-04-01

    The effects of T6 solution treatment on tensile, impact and fracture properties of cast Al-12Si-1Mg-1Cu piston alloys with trace of zirconium were investigated. Cast alloys were given precipitation strengthening treatment having a sequence of homogenizing, solutionizing, quenching and ageing. Both cast and solutionized samples are isochronally aged for 90 min at different temperatures up to 300 °C. Tensile and impact properties of the differently processed alloys have been studied to understand the precipitation strengthening of the alloys. Fractograpy of the alloys were observed to understand the mode of fracture. It is observed that the improvement in tensile properties in the aged alloys through heat treatment is mainly attributed to the formation of the Al2Cu and Mg2Si precipitates within the Al matrix. Solution treatment improves the tensile strength for the reason that during solution treatment some alloying elements are re-dissolved to produce a solute-rich solid solution. Impact energy decreases with ageing temperature due to formation of GP zones, β' and β precipitates. The fractography shows large and small dimple structure and broken or cracked primary Si, particles. Microstructure study of alloys revealed that the solution treatment improved distribution of silicon grains. The addition of Zr produces an improvement in the tensile properties as a result of its grain refining action and grain coarsening resistance in the matrix at a higher temperature.

  5. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    Science.gov (United States)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  6. Fracture toughness evaluation using circumferential notched tensile specimens by the tensile test and ANSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Meydanlik, N. [Mechanical Engineering Department, Trakya University, Edirne (Turkey)

    2013-07-01

    Fracture toughness (K{sub Ic} ) is the most important parameter that defines mechanical behaviour of the materials using machine design. Since, fracture tests are both difficult and time consuming, the researchers have been investigating for the easier evaluation of K{sub Ic} for many years. In this work; K{sub Ic} values have been obtained by using ANSYS software based on the experimental values evaluated in the previous studies. It was shown that there is no significant difference between the experimental ones and the ones obtained by ANSYS. This procedure can provide an important advantage on obtaining of the K{sub IC} values. Key words: Fracture toughness (K{sub Ic} ), circumferential notched tensile specimens, ANSYS.

  7. Tensile fracture properties of seven tropical grasses at different phenological stages

    NARCIS (Netherlands)

    Jacobs, A.A.A.; Scheper, J.A.; Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P.; Elgersma, A.

    2011-01-01

    The intake of forage grasses by grazing ruminants is closely related to the mechanical fracture properties of grasses. The relationship between the tensile fracture properties of grasses and foraging behaviour is of particular importance in tropical reproductive swards composed of both stems and

  8. Fracture behavior of nuclear graphites under tensile impact loading

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni

    1994-01-01

    Impact tensile strength test was performed with two kinds of HTTR graphites, fine grained isotropic graphite, IG-11 and coarse grained near isotropic graphite, PGX and deformation and fracture behavior under the strain rate of over 100s -1 was measured and the following results were derived: (1) Tensile strength for IG-11 graphite does not depend on the strain rate less than 1 s -1 , but over 1 s -1 , tensile strength for IG-11 graphite increase larger than that measured under 1 s -1 . At the strain rate more than 100 s -1 , remarkable decrease of tensile strength for IG-11 graphite was found. Tensile strength of PGX graphite does not depend on the strain rate less than 1 s -1 , but beyond this value, the sharp tensile strength decrease occurs. (2) Under 100 s -1 , fracture strain for both graphites increase with increase of strain rate and over 100 s -1 , drastic increase of fracture strain for IG-11 graphite was found. (3) At the part of gage length, volume of specimen increase with increase of tensile loading level and strain rate. (4) Poisson's ratio for both graphites decrease with increase of tensile loading level and strain rate. (5) Remarkable change of stress-strain curve for both graphites under 100 s -1 was not found, but over 100 s -1 , the slope of these curve for IG-11 graphite decrease drastically. (author)

  9. Effect of tensile dwell on high-temperature low-cycle fatigue and fracture behaviour of cast superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel

    2017-01-01

    Roč. 185, NOV (2017), s. 92-100 ISSN 0013-7944. [ICMFM 2016 - International Colloquium on Mechanical Fatigue of Metals /18./. Gijón, 05.09.2016-07.09.2016] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : Nickel-based superalloy * High-temperature low-cycle fatigue * Tensile dwell * Fatigue life * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering , reliability analysis Impact factor: 2.151, year: 2016

  10. Interface waves propagating along tensile fractures in dolomite

    International Nuclear Information System (INIS)

    Roy, S.; Pyrak-Nolte, L.J.

    1995-01-01

    Elastic interface waves have been observed in induced tensile fractures in dolomite rock cores. Multiscaling wavelet analysis distinguishes the interface wave from bulk shear waves, quantifies the interface wave spectral content, and determines the arrival time of peak energy. The dominant seismic energy is concentrated in the slow interface wave, with little or no detectable energy in the fast wave. As stress across the fracture increases, the slow interface wave velocity increases, and the frequency of the spectral peak shifts to higher frequencies. The shear dynamic specific stiffness of the fracture was calculated from the peak energy arrival time as a function of stress. 13 refs., 5 figs., 1 tab

  11. Behaviour of eggshell membranes at tensile loading

    Czech Academy of Sciences Publication Activity Database

    Strnková, M.J.; Nedomová, Š.; Trnka, Jan; Buchar, J.; Kumbár, V.

    46 B, December (2014), s. 44-48 ISSN 0324-1130 Institutional support: RVO:61388998 Keywords : eggshell membrane * tensile loading * loading rate * stress * strain strength Subject RIV: GM - Food Processing Impact factor: 0.201, year: 2014

  12. Tensile Behaviour of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Řehořek, Lukáš; Dlouhý, Ivo; Chlup, Zdeněk

    2009-01-01

    Roč. 53, č. 4 (2009), s. 237-241 ISSN 0862-5468 R&D Projects: GA ČR GA101/09/1821; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Keywords : Tensile test * Ceramics foam * Open porosity * Tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.649, year: 2009

  13. An electron microscopy appraisal of tensile fracture in metallic glasses

    International Nuclear Information System (INIS)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  14. A Lateral Tensile Fracturing Model for Listric Fault

    Science.gov (United States)

    Qiu, Z.

    2007-12-01

    The new discovery of a major seismic fault of the great 1976 Tangshan earthquake suggests a lateral tensile fracturing process at the seismic source. The fault is in listric shape but can not be explained with the prevailing model of listric fault. A double-couple of forces without moment is demonstrated to be applicable to simulate the source mechanism. Based on fracture mechanics, laboratory experiments as well as numerical simulations, the model is against the assumption of stick-slip on existing fault as the cause of the earthquake but not in conflict with seismological observations. Global statistics of CMT solutions of great earthquakes raises significant support to the idea that lateral tensile fracturing might account for not only the Tangshan earthquake but also others.

  15. Tensile Fracture Behavior of Progressively-Drawn Pearlitic Steels

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2016-05-01

    Full Text Available In this paper a study is presented of the tensile fracture behavior of progressively-drawn pearlitic steels obtained from five different cold-drawing chains, including each drawing step from the initial hot-rolled bar (not cold-drawn at all to the final commercial product (pre-stressing steel wire. To this end, samples of the different wires were tested up to fracture by means of standard tension tests, and later, all of the fracture surfaces were analyzed by scanning electron microscopy (SEM. Micro-fracture maps (MFMs were assembled to characterize the different fractographic modes and to study their evolution with the level of cumulative plastic strain during cold drawing.

  16. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  17. Environmental behaviour of tensile membrane structures

    OpenAIRE

    Elnokaly, Amira; Chilton, John; Wilson, Robin

    2002-01-01

    This paper considers the environmental properties of spaces enclosed by tensile membrane structures (TMS). Limitations in the understanding of the environmental and thermal performance of TMS have to some extent hindered their acceptance by building clients and the building industry. A review of the early attempts to model the thermal environment of spaces enclosed by TMS is given and their environmental and thermal properties are discussed. The lack of appropriate tools for the investigation...

  18. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    Science.gov (United States)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  19. Deep gold mine fracture zone behaviour

    CSIR Research Space (South Africa)

    Napier, JAL

    1998-12-01

    Full Text Available The investigation of the behaviour of the fracture zone surrounding deep level gold mine stopes is detailed in three main sections of this report. Section 2 outlines the ongoing study of fundamental fracture process and their numerical...

  20. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    International Nuclear Information System (INIS)

    Dogan, B.

    1988-01-01

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  1. Fracture behaviour of heat cured fly ash based geopolymer concrete

    International Nuclear Information System (INIS)

    Sarker, Prabir K.; Haque, Rashedul; Ramgolam, Karamchand V.

    2013-01-01

    Highlights: ► Fly ash geopolymer (GPC) can help reduce carbon footprint of concrete. ► Fracture behaviour of GPC as compared to OPC concrete was studied. ► Fracture energy of GPC was similar to that of OPC concrete. ► GPC showed higher fracture toughness than OPC concrete. ► Higher bond strength resulted in higher crack resistance of GPC. -- Abstract: Use of fly ash based geopolymer as an alternative binder can help reduce CO 2 emission of concrete. The binder of geopolymer concrete (GPC) is different from that of ordinary Portland cement (OPC) concrete. Thus, it is necessary to study the effects of the geopolymer binder on the behaviour of concrete. In this study, the effect of the geopolymer binder on fracture characteristics of concrete has been investigated by three point bending test of RILEM TC 50 – FMC type notched beam specimens. The peak load was generally higher in the GPC specimens than the OPC concrete specimens of similar compressive strength. The failure modes of the GPC specimens were found to be more brittle with relatively smooth fracture planes as compared to the OPC concrete specimens. The post-peak parts of the load–deflection curves of GPC specimens were steeper than that of OPC concrete specimens. Fracture energy calculated by the work of fracture method was found to be similar in both types of concrete. Available equations for fracture energy of OPC concrete yielded conservative estimations of fracture energy of GPC. The critical stress intensity factor of GPC was found to be higher than that of OPC concrete. The different fracture behaviour of GPC is mainly because of its higher tensile strength and bond strength than OPC concrete of the same compressive strength.

  2. Discrete fracture in quasi-brittle materials under compressive and tensile stress states

    CSIR Research Space (South Africa)

    Klerck, PA

    2004-01-01

    Full Text Available A method for modelling discrete fracture in geomaterials under tensile and compressive stress fields has been developed based on a Mohr-Coulomb failure surface in compression and three independent anisotropic rotating crack models in tension...

  3. Development of the transverse tensile and fracture toughness test techniques for spent fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. B.; Hong, K. P.; Jung, Y. H.; Seo, H. S.; Oh, W. H.; Yoo, B. O.; Kim, D. S.; Seo, K. S

    2001-12-01

    To define the cause of cladding damage which can take place during the operation of nuclear power plant and the storage through the degradation aspect of mechanical characteristics, the transverse tensile an fracture toughness test were developed in hot cell at IMEF(Irradiated Material Experiment Facility). The following hot cell techniques were developed. 1. The development of a jig and a specimen for transverse tensile test 2. The acquisition of a manufacturing technique for the transverse tensile specimen at hot cell 3. The acquisition of testing procedures and an analysis technque for the transverse tensile 4. The dimensional determination of an optimized fracture toughness specimen 5. The acquisition of manufacturing technique for the fracture toughness test specimen at the hot cell 6. The acquisition of testing procedures and analysis technique for the fracture toughness test (Multiple specimen method, DCPD method, Load ratio method)

  4. Fracture behaviour of zirconia FPDs substructures.

    Science.gov (United States)

    Kou, W; Sjögren, G

    2010-04-01

    The purpose of this study was to evaluate the occurrence of superficial flaws after machining and to identify fracture initiation and propagation in three-unit heat-treated machined fixed partial dentures (FPDs) substructures made of hot isostatic pressed (HIPed) yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) after loaded to fracture. Four three-unit HIPed Y-TZP-based FPDs substructures were examined. To evaluate the occurrence of superficial flaws after machining, the surfaces were studied utilizing a fluorescent penetrant method. After static loading to fracture, characteristic fracture features on both mating halves of the fractured specimens were studied using a stereomicroscope and a scanning electron microscope. Grinding grooves were clearly visible on the surfaces of the machined FPDs substructures, but no other flaws could be seen with the fluorescent penetrant method. After loading to fracture, the characteristic fracture features of arrest lines, compression curl, fracture mirror, fracture origin, hackle and twist hackle were detected. These findings indicated that the decisive fracture was initiated at the gingival embrasure of the pontic in association with a grinding groove. Thus, in three-unit heat-treated machined HIPed Y-TZP FPDs substructures, with the shape studied in this study, the gingival embrasure of the pontic seems to be a weak area providing a location for tensile stresses when they are occlusally loaded. In this area, fracture initiation may be located to a grinding groove.

  5. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact

    International Nuclear Information System (INIS)

    Chang, Litao; Sun, Wenru; Cui, Yuyou; Yang, Rui

    2014-01-01

    Inconel 718 powders have been hot-isostatic-pressed (HIPed) at representative temperatures to investigate the variations in microstructure, tensile properties and tensile fracture mode of the powder compact. Microstructure of the powder compacts were characterized by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and so on. The results showed that the interdendritic precipitates inherited from the powders were partially retained in the powder compacts when the powders were HIPed at or below 1210 °C but were eliminated when HIPed at and above 1260 °C. The grain size uniformity of the powder compacts first increases and then decreases with increasing HIPing temperature. Prior particle boundaries (PPBs) were observed in the powder compacts HIPed at and below 1260 °C but was eliminated when HIPed at 1275 °C. The PPBs were decorated with carbide particles, the amount of the carbide particles at the PPBs decreases with increasing HIPing temperature. Most of the PPBs were pinned by the carbide particles in the compacts HIPed at 1140 °C. When the HIPing temperature was increased to 1210 °C and 1260 °C, a large number of PPBs de-pinned and moved beyond the pinning carbide particles, leading to grain growth and leaving carbide particles at the site of the original PPBs within the new grains. With increasing HIPing temperature, the 0.2% yield strength of the powder compacts at 650 °C decreases, the tensile elongation increases, and the tensile fracture mode changed from inter-particle dominant fracture to fully dimple ductile fracture

  6. Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Litao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); University of Chinese Academy of Sciences, Beijing (China); Sun, Wenru; Cui, Yuyou [Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Yang, Rui, E-mail: ryang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China)

    2014-04-01

    Inconel 718 powders have been hot-isostatic-pressed (HIPed) at representative temperatures to investigate the variations in microstructure, tensile properties and tensile fracture mode of the powder compact. Microstructure of the powder compacts were characterized by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and so on. The results showed that the interdendritic precipitates inherited from the powders were partially retained in the powder compacts when the powders were HIPed at or below 1210 °C but were eliminated when HIPed at and above 1260 °C. The grain size uniformity of the powder compacts first increases and then decreases with increasing HIPing temperature. Prior particle boundaries (PPBs) were observed in the powder compacts HIPed at and below 1260 °C but was eliminated when HIPed at 1275 °C. The PPBs were decorated with carbide particles, the amount of the carbide particles at the PPBs decreases with increasing HIPing temperature. Most of the PPBs were pinned by the carbide particles in the compacts HIPed at 1140 °C. When the HIPing temperature was increased to 1210 °C and 1260 °C, a large number of PPBs de-pinned and moved beyond the pinning carbide particles, leading to grain growth and leaving carbide particles at the site of the original PPBs within the new grains. With increasing HIPing temperature, the 0.2% yield strength of the powder compacts at 650 °C decreases, the tensile elongation increases, and the tensile fracture mode changed from inter-particle dominant fracture to fully dimple ductile fracture.

  7. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites

    International Nuclear Information System (INIS)

    Riesch, J; Feichtmayer, A; Fuhr, M; Gietl, H; Höschen, T; Neu, R; Almanstötter, J; Coenen, J W; Linsmeier, Ch

    2017-01-01

    In tungsten fibre-reinforced tungsten composites (W f /W) the brittleness problem of tungsten is solved by utilizing extrinsic toughening mechanisms. The properties of the composite are very much related to the properties of the drawn tungsten wire used as fibre reinforcements. Its high strength and capability of ductile deformation are ideal properties facilitating toughening of W f /W. Tensile tests have been used for determining mechanical properties and study the deformation and the fracture behaviour of the wire. Tests of as-fabricated and straightened drawn wires with a diameter between 16 and 150 μ m as well as wire electrochemically thinned to a diameter of 5 μ m have been performed. Engineering stress–strain curves and a microscopic analysis are presented with the focus on the ultimate strength. All fibres show a comparable stress–strain behaviour comprising necking followed by a ductile fracture. A reduction of the diameter by drawing leads to an increase of strength up to 4500 MPa as a consequence of a grain boundary hardening mechanism. Heat treatment during straightening decreases the strength whereas electrochemical thinning has no significant impact on the mechanical behaviour. (paper)

  8. High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel

    International Nuclear Information System (INIS)

    Chauhan, Ankur; Litvinov, Dimitri; Aktaa, Jarir

    2016-01-01

    This article describes the tensile properties and fracture characteristics of a 12Cr oxide dispersion strengthened (ODS) ferritic steel with unique elongated bimodal grain size distribution. The tensile tests were carried out at four different temperatures, ranging from room temperature to 700 °C, at a nominal strain rate of 10"−"3 s"−"1. At room temperature the material exhibits a high tensile strength of 1294 MPa and high yield strength of 1200 MPa. At 700 °C, the material still exhibits relatively high tensile strength of 300 MPa. The total elongation-to-failure exceeds 18% over the whole temperature range and has a maximum value of 29% at 600 °C. This superior ductility is attributed to the material's bimodal grain size distribution. In comparison to other commercial, as well as experimental, ODS steels, the material shows an excellent compromise between strength and ductility. The fracture surface studies reveal a change in fracture behavior from a mixed mode fracture at room temperature to fully ductile fracture at 600 °C. At 700 °C, the fracture path changes from intragranular to intergranular fracture, which is associated with a reduced ductility. - Highlights: • The steel has a unique elongated bimodal grain size distribution. • The steel shows an excellent compromise between strength and ductility. • Superior ductility in comparison to other commercial and experimental ODS steels. • Fracture behavior changes from mixed mode fracture at room temperature to fully ductile fracture at 600 °C. • Fracture path changes from intragranular to intergranular fracture at 700 °C.

  9. Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate

    Science.gov (United States)

    Xue, Jia; Wang, Wen-Xue; Zhang, Jia-Zhen; Wu, Su-Jun; Li, Hang

    2015-10-01

    A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.

  10. Tensile fracture behaviors of T-ZnOw/polyamide 6 composites

    International Nuclear Information System (INIS)

    Shi Jing; Wang Yong; Liu Li; Bai Hongwei; Wu Jun; Jiang Chongxi; Zhou, Zuowan

    2009-01-01

    As a part of serial work about the application of tetra-needle-shaped zinc oxide whisker (T-ZnOw) in polymer composites, this work is focused on the crystallization and tensile fracture behaviors of T-ZnOw/polyamide 6 (T-ZnOw/PA6) composites. Our results show that the addition of T-ZnOw improves the composites tensile strength greatly. For virgin PA6, the stress-strain curve exhibits double-yielding phenomenon. Surface modified T-ZnOw reinforced PA6 composites exhibit higher yield stress and smaller strain-to-fracture compared with virgin PA6. The morphologies of tensile-fractured surfaces show that, addition of T-ZnOw changes the fracture mode from crazing-tearing/brittle fracture mode of virgin PA6 into fibrillation/brittle fracture mode of PA6 composites. Especially, the fracture process of T-ZnOw in composites during the tensile test has been characterized by scanning electronic microscope (SEM) and the corresponding reinforcement mechanism has been discussed.

  11. Tensile properties and fracture mechanism of IN-100 superalloy in high temperature range

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2017-06-01

    Full Text Available Tensile properties and fracture mechanism of a polycrystalline IN-100 superalloy have been investigated in the range from room temperature to 900°C. Optical microscopy (OM and transmission electron microscopy (TEM applying replica technique were used for microstructural investigation, whereas scanning electron microscopy (SEM was utilized for fracture study. High temperature tensile tests were carried out in vacuumed chamber. Results show that strength increases up to 700°C, and then sharply decreases with further increase in temperature. Elongation increases very slowly (6-7.5% till 500°C, then decreases to 4.5% at 900°C. Change in elongation may be ascribed to a change of fracture mechanism. Appearance of a great number of microvoids prevails up to 500°C resulting in a slow increase of elongation, whereas above this temperature elongation decrease is correlated with intergranular crystallographic fracture and fracture of carbides.

  12. Microscopic observation and statics consideration of tensile fracture of TiC coating on stainless steel

    International Nuclear Information System (INIS)

    Okawa, Akira; Hasiguti, Ryukiti

    1986-01-01

    We have measured the tensile fracture properties of the TiC coated SUS316L stainless steel, applying a stress perpendicular to the plane of interface between the coating and the substrate. The fracture of the as grown or non-annealed specimens occurred partially within the TiC layer. A tensile fracture of the TiC coated specimens after vacuum annealing at about 1373 K (1100 deg C) presented arc-shape curved fracture surfaces which can be understood by statics consideration taking into account the maximum stress plane theory and the residual thermal stress. The strengths of non-annealed and annealed specimens are 34.4 MPa (350 kgf/cm 2 ) and 30.2 MPa (308 kgf/cm 2 ), respectively, expressed in terms of Weibull's 50 % fracture stresses. (author)

  13. Evaluation of tensile strength and fracture toughness of yttria-stabilized zirconia polycrystals with fracture surface analysis

    International Nuclear Information System (INIS)

    Oishi, Manabu; Matsuda, Yukihisa; Noguchi, Kenichi; Masaki, Takaki

    1995-01-01

    The tensile strength of yttria-stabilized tetragonal zirconia polycrystals (Y-TZPs) was measured and the fracture surfaces were analyzed with the scanning electron microscope and X-ray microanalyzer. The fracture origins of the pressureless-sintered samples were voids or inclusions such as Al 2 O 3 , Al 2 O 3 with SiO 2 , and cubic-ZrO 2 , while the fracture origins of the hot isostatically pressed samples were inclusions; no voids were detected at fracture origins. The higher strengths of the hot isostatically pressed samples versus those of the pressureless-sintered samples were consistent with the change in fracture origins. The fracture toughness of the samples calculate from the tensile strength and analysis of the fracture origins was 3.4 to 3.7 MPa ·√m. These values are lower than those measured with the SEPB method. These discrepancies might be caused by the difference in the state of the fracture origin and its neighborhood, such as the size of the fracture origin and interaction between two surfaces in the precrack

  14. Measurement of tensile and fracture toughness properties using small punch test

    International Nuclear Information System (INIS)

    Chatterjee, S.; Shah Priti Kotak

    2005-05-01

    Small punch test wu carried out at room temperature on five different steels using 10 mm by 10 mm specimens of 0.4 mm thickness in a univesal testing machine. The tensile and fracture toughness properties of the five steels obtained from small punch test were compared with those obtained from the standard test method. The results (except in one steel) show that the tensile properties obtained from small punch test are in close proximity to those obtained ftom uni-axial tension test. The results also show that fracture toughness (Jic) properties obtained ftom small punch test are within ±20% of the corresponding values obtained using standard test procedures. (author)

  15. Prediction of fracture toughness temperature dependance from tensile test parameters

    Czech Academy of Sciences Publication Activity Database

    Šmida, T.; Babjak, J.; Dlouhý, Ivo

    2010-01-01

    Roč. 48, č. 6 (2010), s. 345-352 ISSN 0023-432X R&D Projects: GA ČR(CZ) GAP108/10/0466; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : steels * brittle to ductile transition * fracture Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.471, year: 2010

  16. Coulomb stress change during and after tensile fracture opening in a geothermal reservoir

    NARCIS (Netherlands)

    Urpi, L.; Blöcher, G.; Zimmermann, G.; Wees, J.D. van; Fokker, P.

    2013-01-01

    Stress shadowing and the ratio of shear to normal stress in the rock surrounding a newly created tensile fracture are investigated. Shearing on plane of weakness near the stimulated volume can be inhibited or promoted by change in poro- and thermo-elastic stress, while pore pressure increase tends

  17. Tensile toughness test and high temperature fracture analysis of thermal barrier coatings

    International Nuclear Information System (INIS)

    Qian, G.; Nakamura, T.; Berndt, C.C.; Leigh, S.H.

    1997-01-01

    In this paper, an effective fracture toughness test which uses interface fracture mechanics theory is introduced. This method is ideally suited for determining fracture resistance of multilayered thermal barrier coatings (TBCs) consisting of ceramic and bond layers and, unlike other fracture experiments, requires minimal set-up over a simple tensile adhesion test. Furthermore, while other test methods usually use edge cracked specimens, the present test models a crack embedded within the coatings, which is more consistent with actual TBCs where failure initiates from internal voids or defects. The results of combined computational and experimental analysis show that any defects located within the ceramic coating can significantly weaken a TBC, whereas the debonding resistances of the bond coating and its interfaces are found to be much higher. In a separate analysis, the authors have studied fracture behavior of TBCs subjected to thermal loading in a high temperature environment. The computed fracture parameters reveal that when the embedded crack size is on order of the coating thickness, the fracture driving force is comparable to the fracture resistance of the coating found in the toughness test. In addition, the major driving force for fracture derives from the thermal insulating effect across the crack faces rather than the mismatch in the coefficients of thermal expansion. The authors have also investigated the effects of functionally graded material (FGM) within TBCs and found its influences on the fracture parameters to be small. This result implies that the FGM may not contribute toward enhancing the fracture toughness of the TBCs considered here

  18. Tensile and fracture toughness characteristics of Zr-2.5Nb pressure tube

    International Nuclear Information System (INIS)

    Jung, H. C.; Kim, Y. S.; Ahn, S. B.; Kim, S. S.; Im, K. S.

    2004-01-01

    The object of this study is to evaluate the characteristics of tensile and fracture toughness of Zr-2.5Nb pressure tube. The transverse tensile tests were performed at various temperatures and the fracture toughness tests were carried out at room temperature using the CCT (curved compact tension) specimen. These specimens were directly machined from the pressure tube retaining original curvatures. Also, the fracture toughness of two sets of Zr-2.5Nb manufactured at different time was compared. The chemical analysis and the Vicker's hardness tests were performed at two sets of Zr-2.5Nb pressure tube. The Vicker's hardness value of SET-2 containing more oxygen and carbon relatively was higher about 11 than that of SET-1

  19. Tensile and fracture characteristics of oxide dispersion strengthened Fe–12Cr produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vanessa de, E-mail: vanessa.decastro@uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain); Garces-Usan, Jose Maria; Leguey, Teresa; Pareja, Ramiro [Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid (Spain)

    2013-11-15

    The mechanical characteristics of a model oxide dispersion strengthened (ODS) alloy with nominal composition Fe–12 wt%Cr–0.4 wt%Y{sub 2}O{sub 3} were investigated by means of microhardness measurements, tensile tests up to fracture in the temperature range of 298–973 K, and fracture surface analyses. A non-ODS Fe–12 wt%Cr alloy was also studied to assess the real capacity of the oxide dispersion for strengthening the alloy. The materials were produced by mechanical alloying followed by hot isostatic pressing consolidation and heat treatment at 1023 K. The strengthening effect of the oxide nanodispersion was effective at all temperatures studied, although the tensile strength converges towards the one obtained for the reference alloy at higher temperatures. Moreover, the ODS alloys failed prematurely at T < 673 K due to the presence of Y-rich inclusions, as seen in the fracture surface of these alloys.

  20. Tensile and fracture characteristics of oxide dispersion strengthened Fe–12Cr produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Castro, Vanessa de; Garces-Usan, Jose Maria; Leguey, Teresa; Pareja, Ramiro

    2013-01-01

    The mechanical characteristics of a model oxide dispersion strengthened (ODS) alloy with nominal composition Fe–12 wt%Cr–0.4 wt%Y 2 O 3 were investigated by means of microhardness measurements, tensile tests up to fracture in the temperature range of 298–973 K, and fracture surface analyses. A non-ODS Fe–12 wt%Cr alloy was also studied to assess the real capacity of the oxide dispersion for strengthening the alloy. The materials were produced by mechanical alloying followed by hot isostatic pressing consolidation and heat treatment at 1023 K. The strengthening effect of the oxide nanodispersion was effective at all temperatures studied, although the tensile strength converges towards the one obtained for the reference alloy at higher temperatures. Moreover, the ODS alloys failed prematurely at T < 673 K due to the presence of Y-rich inclusions, as seen in the fracture surface of these alloys

  1. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    Directory of Open Access Journals (Sweden)

    Verleysen P.

    2012-08-01

    Full Text Available It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  2. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.M.A., E-mail: madel@uqac.ca [Center for Advanced Materials, Qatar University, Doha (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Samuel, F.H. [Université du Québec à Chicoutimi, Chicoutimi, QC, Canada G7H 2B1 (Canada); Al Kahtani, Saleh [Industrial Engineering Program, Mechanical Engineering Department, College of Engineering, Salman bin Abdulaziz University, Al Kharj (Saudi Arabia)

    2013-08-10

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si){sub 3}(Zr, Ti), Al{sub 3}CuNi and Al{sub 9}NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied.

  3. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    International Nuclear Information System (INIS)

    Mohamed, A.M.A.; Samuel, F.H.; Al Kahtani, Saleh

    2013-01-01

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si) 3 (Zr, Ti), Al 3 CuNi and Al 9 NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied

  4. Study of creep behaviour in P-doped copper with slow strain rate tensile tests

    International Nuclear Information System (INIS)

    Xuexing Yao; Sandstroem, Rolf

    2000-08-01

    Pure copper with addition of phosphorous is planned to be used to construct the canisters for spent nuclear fuel. The copper canisters can be exposed to a creep deformation up to 2-4% at temperatures in services. The ordinary creep strain tests with dead weight loading are generally employed to study the creep behaviour; however, it is reported that an initial plastic deformation of 5-15% takes place when loading the creep specimens at lower temperatures. The slow strain rate tensile test is an alternative to study creep deformation behaviour of materials. Ordinary creep test and slow strain rate tensile test can give the same information in the secondary creep stage. The advantage of the tensile test is that the starting phase is much more controlled than in a creep test. In a tensile test the initial deformation behaviour can be determined and the initial strain of less than 5% can be modelled. In this study slow strain rate tensile tests at strain rate of 10 -4 , 10 -5 , 10 -6 , and 10 -7 /s at 75, 125 and 175 degrees C have been performed on P-doped pure Cu to supplement creep data from conventional creep tests. The deformation behaviour has successfully been modelled. It is shown that the slow strain rate tensile tests can be implemented to study the creep deformation behaviours of pure Cu

  5. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    International Nuclear Information System (INIS)

    Jonsen, P.; Haeggblad, H.-A.

    2007-01-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments

  6. Correlation of fracture toughness with tensile properties for irradiated 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Garner, F.A.; Wolfer, W.G.

    1983-08-01

    A correlation has been developed which allows an estimate to be made of the toughness of austenitic alloys using more easily obtained tensile data. Tensile properties measured on 20% cold-worked AISI 316 specimens made from ducts and cladding irradiated in EBR-II were used to predict values for the plane strain fracture toughness according to a model originally developed by Krafft. Some microstructural examination is required to determine a parameter designated as the process zone size. In contrast to the frequently employed Hahn-Rosenfeld model, this model gives results which agree with recent experimental determinations of toughness performed in the transgranular failure regime

  7. Effect of tensile holds on the deformation behaviour of a nickel base superalloy subjected to low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Zrnik, J.; Semenak, J.; Wangyao, P.; Vrchovinsky, V.; Hornak, P. [Dept. of Materials Science, Technical Univ. of Kosice, Kosice (Slovakia)

    2002-07-01

    The deformation behaviour of the wrought nickel base superalloy EI698 VD has been investigated in conditions of low cycle fatigue. The tensile hold periods, imposing a constant stress into the fatigue loading, have been introduced at the maximum stress value. The individual hold periods were in the range of 1 minute to 10 hours. The fatigue tests were of tension-tension type defined by a stress ratio R = 0.027 and were conducted at temperature of 650 C. The tests were performed until fracture. The time to failure, the time to failure corresponding to total load at peak amplitude and the number of cycles to failure have been criteria to evaluate the deformation behaviour of the alloy subjected to complex cyclic creep loading. In order to predict lifetime of alloy, regarding the respective types cyclic test, the Kitagawa's modified the linear cumulative damage criterion has been considered. The two regression functions for applied hold period interval were proposed time to calculate the time to failure. The formulae can be used to predict the life of nickel base superalloy considering the specific conditions of low cycle fatigue with tensile hold period introduced at stress amplitude peaks. The failure analysis of fracture surfaces contributed to evaluation of the role of repeatedly reduced stress in damage process. (orig.)

  8. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Odette, G.R.; Lucas, G.E.

    2002-01-01

    A study to explore approaches to optimizing nanocomposited ferritic alloys was carried out on dispersion strengthened mechanically alloyed (MA) MA957, in the form of extruded bar stock. Previous studies had indicated that this alloy manifested superior high temperature strength and radiation stability, but was extremely brittle in notch impact tests. Thus our objective was to develop a combination of tensile, fracture toughness and microstructural data to clarify the basis for this brittle behavior. To this end, tensile properties and fracture toughness were characterized as a function of temperature in various orientations relative to the grain and inclusion structures. This database along with extensive fractography suggests that brittleness is due to the presence of a large volume fraction of impurity alumina stringers. In orientations where the effects of the stringers are reduced, much higher toughness was observed. These results provide a path for alloy development approach to achieve high strength and toughness

  9. Tensile and fracture toughness properties of MA957: implications to the development of nanocomposited ferritic alloys

    Science.gov (United States)

    Alinger, M. J.; Odette, G. R.; Lucas, G. E.

    2002-12-01

    A study to explore approaches to optimizing nanocomposited ferritic alloys was carried out on dispersion strengthened mechanically alloyed (MA) MA957, in the form of extruded bar stock. Previous studies had indicated that this alloy manifested superior high temperature strength and radiation stability, but was extremely brittle in notch impact tests. Thus our objective was to develop a combination of tensile, fracture toughness and microstructural data to clarify the basis for this brittle behavior. To this end, tensile properties and fracture toughness were characterized as a function of temperature in various orientations relative to the grain and inclusion structures. This database along with extensive fractography suggests that brittleness is due to the presence of a large volume fraction of impurity alumina stringers. In orientations where the effects of the stringers are reduced, much higher toughness was observed. These results provide a path for alloy development approach to achieve high strength and toughness.

  10. Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, N.; Soboyejo, W.O.; Tarquinio, C.

    2008-01-01

    In situ scanning electron microscopy micro-tensile tests were conducted on freestanding LIGA nickel thin films of two thicknesses (70 and 270 μm). The deformation and fracture mechanisms were elucidated by in situ scanning electron microscopy imaging and ex situ fractographic analysis. Due to the film microstructural gradient, an apparent thickness effect on the film yield strengths was observed, which was then rationalized with a continuum micromechanics model

  11. Tensile behaviour and properties of a bone analogue composite (HA, HDPE) crosslinked by gamma radiation

    International Nuclear Information System (INIS)

    Romero, G.; Smolko, Eduardo E.

    2005-01-01

    A natural composite material, hydroxyapatite (HA) and high density polyethylene (HDPE) crosslinked by ionizing radiations is been developed as a bioactive analogue material for bone replacement. Mechanical properties of the composites irradiated up to 300 kGy under tensile tests was studied. Gel content and micrographs of different composite fractures are shown. (author)

  12. Deformation behaviour of body centered cubic Fe nanowires under tensile and compressive loading

    OpenAIRE

    Sainath, G.; Choudhary, B. K.; Jayakumar, T.

    2014-01-01

    Molecular Dynamics (MD) simulations have been carried out to investigate the deformation behaviour of /{111} body centered cubic (BCC) Fe nanowires under tensile and compressive loading. An embedded atom method (EAM) potential was used to describe the interatomic interactions. The simulations were carried out at 10 K with a constant strain rate of $1\\times10^{8}$ $s^{-1}$. The results indicate a significant differences in deformation mechanisms under tensile and compressive loading. Under ten...

  13. A Simulation Model for Tensile Fracture Procedure Analysis of Graphite Material based on Damage Evolution

    International Nuclear Information System (INIS)

    Zhao Erqiang; Ma Shaopeng; Wang Hongtao

    2014-01-01

    Graphite material is generally easy to be damaged by the widely distributed micro-cracks when subjects to load. For numerically analyzing of the structure made of graphite material, the influences of the degradation of the material in damaged areas need to be considered. In this paper, an axial tension test method is proposed to obtain the dynamic damage evolution rule of the material. Using the degradation rule (variation of elastic modulus), the finite element model is then constructed to analyze the tensile fracture process of the L-shaped graphite specimen. An axial tension test of graphite is performed to obtain the stress-strain curve. Based on the variation of the measured curve, the damage evolution rule of the material are fitted out. A simulation model based on the above measured results is then constructed on ABAQUS by user subroutine. Using this simulation model, the tension failure process of L-shaped graphite specimen with fillet are simulated. The calculated and experimental results on fracture load are in good agreement. The damage simulation model based on the stress-strain curve of axial tensile test can be used in other tensile fracture analysis. (author)

  14. Tensile and fracture properties of primary heat transport system piping material

    International Nuclear Information System (INIS)

    Singh, P.K.; Chattopadhyay, J.; Kushwaha, H.S.

    1997-07-01

    The fracture mechanics calculations in leak-before-break analysis of nuclear piping system require material tensile data and fracture resistance properties in the form of J-R curve. There are large variations in fracture parameters due to variation in chemical composition and process used in making the steel components. Keeping this in view, a comprehensive program has been planned to generate the material data base for primary heat transport system piping using the specimens machined from actual pipes used in service. The material under study are SA333 Gr.6 (base as well as weld) and SA350 LF2 (base). Since the operating temperatures of 500 MWe Indian PHWR PHT system piping range from 260 degC to 304 degC the test temperature chosen are 28 degC, 200 degC, 250 degC and 300 degC. Tensile and compact tension specimens have been fabricated from actual pipe according to ASTM standard. Fracture toughness of base metal has been observed to be higher compared to weld metal in SA333 Gr.6 material for the temperature under consideration. Fracture toughness has been observed to be higher for LC orientation (notch in circumferential direction) compared to CL orientation (notch is in longitudinal direction) for the temperature range under study. Fracture toughness value decreases with increase in temperature for the materials under study. Finally, chemical analysis has been carried out to investigate the reason for high toughness of the material. It has been concluded that low percentage of carbon and nitrogen, low inclusion rating and fine grain size has enhanced the fracture toughness value

  15. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    Science.gov (United States)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  16. Quantitative tomography of hydrogen precharged and uncharged Al-Zn-Mg-Cu alloy after tensile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C., E-mail: joy_gupta71@yahoo.co.in [Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8150 (Japan); Toda, H.; Fujioka, T.; Kobayashi, M. [Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8150 (Japan); Hoshino, H. [Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8150 (Japan); Japan Synchrotron Radiation Institute, Sayo-Gun, Hyogo (Japan); Uesugi, K.; Takeuchi, A.; Suzuki, Y. [Japan Synchrotron Radiation Institute, Sayo-Gun, Hyogo (Japan)

    2016-07-18

    Quantitative tomography is carried out on datasets derived from tensile fracture sample of electrochemically precharged Al-Zn-Mg-Cu alloy in the underaged condition and its uncharged counterpart. It is shown that precharging which induces a transition of tensile fracture mode from ductile to brittle, results in a significant increase in micro-damage content in the regions near the fracture surfaces. Using quantitative tomography analysis based on spatial mapping of morphologically segmented micro-damage content of the datasets it is found that the precharged sample contains an inhomogenous distribution of micro-pores near grain boundaries. It is also shown that the spatial architecture of micro-pores in the dataset is not influenced by the plastic zone of the intergranular cracks lying along the grain boundaries. Contrastingly the micro-pores in the tomographic dataset of the uncharged sample are shown to be present near intermetallic particles. It is therefore rationalized that the spatial architecture of micro-pores in the datasets from uncharged sample originate from particle cracking during ductile fracture, and from the tendency for damage enhancement by the synergism of hydrogen exposure near grain boundaries and localization of deformation in the precharged sample dataset.

  17. Effect of size on fracture and tensile manipulation of gold nanowires

    International Nuclear Information System (INIS)

    Wang, Fenying; Dai, Yanfeng; Zhao, Jianwei; Li, Qianjin; Zhang, Bin

    2014-01-01

    The fracture of metallic nanowires has attracted much attention owing to its reliability of application in nanoelectromechanical system. In this paper, we studied the fracture of [100] single-crystal gold nanowire subjected to uniaxial tension. The statistical breaking position distributions showed that the size effects had dominated the deformation and fracture of nanowires, and the quasi-static tensile deformations are insensitive to the styles of tensile rates. Furthermore, it was observed that the small-sized nanowire broke in the middle with disordered crystalline structure; for the middle-sized nanowire, although slippage plane had maintained the lattice degree, the fracture also happened in the middle due to symmetric tension; for the large-sized nanowire, the slippage was destroyed by symmetric tension, which induced the broken neck at one end of the nanowire. When the nanowire width is less than 5a (“a” means lattice constant, 0.408 nm for gold), the mechanical strength is relatively strong with obvious uncertainty, which can be attributed to the surface atom effect; when the width is larger than 5a, the influence of size on the mechanical property is more obvious at the constant strain rate than that at the absolute rate. Finally, the mechanical strength of the nanowire decreases with the size increasing

  18. The effect of grain size on dynamic tensile extrusion behaviour

    Directory of Open Access Journals (Sweden)

    Park Leeju

    2015-01-01

    Full Text Available Dynamic tensile extrusion (DTE tests were conducted on coarse grained and ultrafine grained (UFG OFHC Cu, Interstitial free (IF Steel, and pure Ta. Equal channel angular pressing (ECAP of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm to the conical extrusion die at a speed of ∼500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  19. Analysis of tensile and fracture toughness results on irradiated molybdenum alloys, TZM and Mo-5%Re. Analysis of results performed in the frame of the NET task PDS 1.4

    International Nuclear Information System (INIS)

    Scibetta, M.; Chaouadi, R.; Puzzolante, J.L.

    1999-10-01

    Due to their good resistance at high temperature, good thermal conductivity and swelling resistance, molybdenum alloys are considered amongst the candidates for divertor structural materials. However, little is known about their tensile and fracture toughness behaviour, in particular after irradiation. This report aims to investigate the tensile and fracture toughness properties of two molybdenum alloys, namely TZM and Mo-5%Re. Tensile and compact tension specimens were irradiated in the BR2 reactor at 40 and 450 degrees Celsius up to a fast neutron fluence of 3.5 1020 n/cm 2 (0.2 dpa). Fracture toughness tests were performed on both precracked and notched specimens. Results show a drastic decrease of the ductility due to irradiation, but only a slight decrease of the fracture toughness in the lower shelf domain

  20. Analysis of tensile and fracture toughness results on irradiated molybdenum alloys, TZM and Mo-5%Re. Analysis of results performed in the frame of the NET task PDS 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Scibetta, M.; Chaouadi, R.; Puzzolante, J.L

    1999-10-01

    Due to their good resistance at high temperature, good thermal conductivity and swelling resistance, molybdenum alloys are considered amongst the candidates for divertor structural materials. However, little is known about their tensile and fracture toughness behaviour, in particular after irradiation. This report aims to investigate the tensile and fracture toughness properties of two molybdenum alloys, namely TZM and Mo-5%Re. Tensile and compact tension specimens were irradiated in the BR2 reactor at 40 and 450 degrees Celsius up to a fast neutron fluence of 3.5 1020 n/cm{sup 2} (0.2 dpa). Fracture toughness tests were performed on both precracked and notched specimens. Results show a drastic decrease of the ductility due to irradiation, but only a slight decrease of the fracture toughness in the lower shelf domain.

  1. Mechanical behaviour of adhesive joint under tensile and shear loading

    NARCIS (Netherlands)

    Jiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2013-01-01

    Due to various advantages of Fibre-Reinforced Polymer (FRP) decks, the FRP to steel composite bridge system is being increasingly used in new bridge structures as well as rehabilitation projects for old bridges. This paper focuses on the mechanical behaviours and failure modes of the

  2. Ductility and failure behaviour of both unirradiated and irradiated zircaloy-4 cladding using plane strain tensile specimens

    International Nuclear Information System (INIS)

    Carassou, S.; Le Saux, M.; Pizzanelli, J.P.; Rabouille, O.; Averty, X.; Poussard, C.; Cazalis, B.; Desquines, J.; Bernaudat, C.

    2010-01-01

    In this work, eight PST (Plan Strain Tensile) tests machined from a Zircaloy-4 (Zy-4) cladding irradiated up to 5 annual cycles have been performed at 280, 350 and 480 Celsius degrees. The specimen displacements during the tests were filmed and digitally recorded to allow the use of a Digital Image Correlation (DIC) analysis technique to experimentally determine the local strains on the outer surface of the specimens. The plane strain conditions have been verified and prevail over a wide area between the notches of the specimen, as expected from full 3D FE numerical analysis performed in support of the tests. For the first time, the location of the onset of fracture for this geometry on irradiated material has been experimentally observed: at 280 C.degrees, crack initiates in the vicinity of the notches, in an area where plane strain conditions are not fulfilled, and for a local circumferential strain value of about 5%. At 350 C. degrees and 480 C. degrees, cracks initiate at a location where plane strain conditions prevail, for circumferential strain values respectively close to 10% and greater than 50%. These results have been compared to results obtained previously by similar test on fresh and hydrided material, as well as tests performed as support to the study. At 350 C. degrees, the homogeneous 700 ppm hydrided Zy-4 and the Zy-4 irradiated during 5 annual cycles exhibit similar fracture behaviour, for both fracture hoop strain values (10%) and fracture mode (through-wall slant fracture). For the irradiated material, it has clearly been established that at 350 C. degrees, a brittle fracture occurs at the outer surface in the hydride rim. The crack propagates subsequently toward the inner surface and the notches, where final fracture occurs

  3. The effect of strain rate and temperature on the tensile behaviour of uranium - 2sup(w)/o molybdenum

    International Nuclear Information System (INIS)

    Harding, J.; Boyd, G.A.C.

    1983-01-01

    This report describes the uniaxial tensile behaviour of uranium 2 w/o molybdenum alloy over a wide range of temperature and strain rate. Specimen blanks taken from co-reduced and extruded U2 w/o Mo rods were given one of two heat treatments. Longitudinal tensile test pieces, taken from these blanks at near surface locations were tested in the temperature range -150 deg C to +100 deg C at strain rates from quasistatic (10 -4 s -1 ) to 10 3 s -1 . To achieve this range of testing rates three machines were required: an Instron screw driven machine for rates up to 0.1 s -1 , a second specially constructed hydraulic machine for the range 0.1 s -1 to 50 s -1 and a drop weight machine for the highest strain rates. The ways in which the mechanical properties - elongation to fracture, flow stresses and ultimate tensile stress - vary with both temperature and strain rate are presented and discussed for material in both heat treatment conditions. (author)

  4. The effect of strain rate and temperature on the tensile behaviour of uranium 2 w/o molybdenum

    International Nuclear Information System (INIS)

    Harding, J.; Boyd, G.A.C.

    1983-01-01

    This report describes the uniaxial tensile behaviour of uranium 2 w/o molybdenum alloy over a wide range of temperature and strain rate. Specimen blanks taken from co-reduced and extruded U 2 w/o Mo rods were given one of two heat treatments. Longitudinal tensile test pieces, taken from these blanks at near surface locations were tested in the temperature range -150 deg C to +100 deg C at strain rates from quasistatic (10 -4 s -1 ) to 10 3 s -1 . To achieve this range of testing rates three machines were required: an Instron screw driven machine for rates up to 0.1 s -1 , a second specially constructed hydraulic machine for the range 0.1 s -1 to 50 s -1 and a drop weight machine for the highest strain rates. The ways in which the mechanical properties - elongation to fracture, flow stresses and ultimate tensile stress - vary with both temperature and strain rate are presented and discussed for material in both heat treatment conditions. (author)

  5. A study of the tensile behaviour of flax tows and their potential for composite processing

    International Nuclear Information System (INIS)

    Moothoo, J.; Allaoui, S.; Ouagne, P.; Soulat, D.

    2014-01-01

    Highlights: • Flax tows are characterised by tensile testing under various conditions. • The tensile properties and their dispersion are dependent on the gauge length. • The distribution of the fibres length in specimens commands the tensile behaviour. • Packs of fibre bundle debonding failure mode are observed by image correlation. • Interesting tensile properties are obtained on epoxy impregnated and cured tows. - Abstract: To study the potential of flax tows in composite processing as an alternative to flax spun yarns, a flat flax tow consisting of aligned fibre bundles held together by a natural binder was used and characterised in tension under various conditions. The effect of the gauge length was studied on the dry reinforcement. The experimental results showed that the mechanical properties and failure mechanism varied significantly depending on the gauge length and are discussed in relation to the distribution of elementary fibres within the tow. A characteristic length as from which the mechanical properties are stable has been identified. At this length, the effect of the strain rate on the tensile properties was measured and their sensitivity to the strain rate suggests a viscous effect in the behaviour of the flax tow. To approach process conditions such as wet filament winding, a batch of specimens was impregnated with epoxy prior to tensile testing. The tensile properties under wet conditions were found to be close to the properties under dry conditions and shows that the tow can withstand typical processing tensions. Finally, tensile tests on cured-impregnated tows showed interesting mechanical properties for composite application

  6. Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-02-01

    Herein we investigate how the oxygen content in hot isostatically pressed (HIP'd) 316L stainless steel affects the mechanical properties and tensile fracture behavior. This work follows on from previous studies, which aimed to understand the effect of oxygen content on the Charpy impact toughness of HIP'd steel. We expand on the work by performing room-temperature tensile testing on different heats of 316L stainless steel, which contain different levels of interstitial elements (carbon and nitrogen) as well as oxygen in the bulk material. Throughout the work we repeat the experiments on conventionally forged 316L steel as a reference material. The analysis of the work indicates that oxygen does not contribute to a measureable solution strengthening mechanism, as is the case with carbon and nitrogen in austenitic stainless steels (Werner in Mater Sci Eng A 101:93-98, 1988). Neither does oxygen, in the form of oxide inclusions, contribute to precipitation hardening due to the size and spacing of particles. However, the oxide particles do influence fracture behavior; fractography of the failed tension test specimens indicates that the average ductile dimple size is related to the oxygen content in the bulk material, the results of which support an on-going hypothesis relating oxygen content in HIP'd steels to their fracture mechanisms by providing additional sites for the initiation of ductile damage in the form of voids.

  7. Dynamic tensile fracture of mortar at ultra-high strain-rates

    International Nuclear Information System (INIS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-01-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10 4 to 4 × 10 4  s −1 . The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading

  8. Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces.

    Science.gov (United States)

    De Munck, Jan; Luehrs, Anne-Katrin; Poitevin, André; Van Ende, Annelies; Van Meerbeek, Bart

    2013-06-01

    To assess interfacial fracture toughness of different adhesive approaches and compare to a standard micro-tensile bond-strength (μTBS) test. Chevron-notched beam fracture toughness (CNB) was measured following a modified ISO 24370 standard. Composite bars with dimensions of 3.0×4.0×25 mm were prepared, with the adhesive-dentin interface in the middle. At the adhesive-dentin interface, a chevron notch was prepared using a 0.15 mm thin diamond blade mounted in a water-cooled diamond saw. Each specimen was loaded until failure in a 4-point bend test setup and the fracture toughness was calculated according to the ISO specifications. Similarly, adhesive-dentin micro-specimens (1.0×1.0×8-10 mm) were stressed in tensile until failure to determine the μTBS. A positive correlation (r(2)=0.64) was observed between CNB and μTBS, which however was only nearly statistically significant, mainly due to the dissimilar outcome of Scotchbond Universal (3M ESPE). While few μTBS specimens failed at the adhesive-dentin interface, almost all CNB specimens failed interfacially at the notch tip. Weibull moduli for interfacial fracture toughness were much higher than for μTBS (3.8-11.5 versus 2.7-4.8, respectively), especially relevant with regard to early failures. Although the ranking of the adhesives on their bonding effectiveness tested using CNB and μTBS corresponded well, the outcome of CNB appeared more reliable and less variable. Fracture toughness measurement is however more laborious and requires specific equipment. The μTBS nevertheless appeared to remain a valid method to assess bonding effectiveness in a versatile way. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Tensile behaviour of radiata pine with different moisture contents at elevated temperatures

    DEFF Research Database (Denmark)

    Pearson, Hamish; Gabbitas, Brian; Ormarsson, Sigurdur

    2012-01-01

    that moisture and temperature can play a significant role in reducing stress during drying, regardless of the drying time. Properties of wood, such as tensile elastic information at elevated temperatures, are important for mechanical design, distortion modelling and understanding the fundamental behaviour...

  10. Determination of the resistance to tensile fracture of refractory mixtures of gunite

    International Nuclear Information System (INIS)

    Gomez Sanchez, A; Tomba Martinez, A.G

    2004-01-01

    The determination of the mechanical properties of cooled refractory mixtures is useful since it allows the materials to be compared for the purposes of selection and reports on their degree of internal cohesion, green or calcination, so that their structural ability can be estimated, especially during installation. Given the testing difficulties originating in the fragility of the ceramic materials, the tension test is not generally used in refractories. However, ASTM C-307 94 determines the tensile strength of cured chemical-resistant materials, for which this work considered the possibility of testing cement-based monolithic refractories in this non conventional condition. The tensile resistance to the fracture of three different refractory mixtures (A, B 1 and B 2 ), used in heat repairing by gunite in coking ovens, that were characterized by chemical, granulometric, and mineralogical analysis pycnometric density measurements. The pieces for the tests ('bone' type: length = 75 mm, maximum width = 40 mm, minimum width = 25 mm, thickness = 10 - 25 mm) were prepared by ramming of mixtures of material/water in a metallic mold; they were sinterized (1200 o C, 1h) and characterized by measures of bulk density, porosity and observation of the surface texture, in green and calcinated. The tensile tests, based on ASTM C-307 94, were performed in an Instron model 4467 machine in open air, at room temperature and position control (0.5 mm/min). The following values were obtained, in kPa: AW347±308; B 1 W738±130; B 2 W604±64. These values were lower than those for the tensile fracture module (MOR), although they displayed an equivalent order: A≤B 2 ≤B 1 . This was related to the characteristics of each refractory mixture and at the end of the pieces tested (CW)

  11. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    International Nuclear Information System (INIS)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil

    2009-01-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  12. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of)

    2009-07-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  13. Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of); Kim, Tae Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  14. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)

    2013-02-15

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10{sup −3} s{sup −1}. The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n{sub v}’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed.

  15. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Nandagopal, M.; Sam, Shiju; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-01-01

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10 −3 s −1 . The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n v ’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed

  16. Investigation on the Productivity Behaviour in Deformable Heterogeneous Fractured Reservoirs

    DEFF Research Database (Denmark)

    Kadeethum, Teeratorn; Salimzadeh, Saeed; Nick, Hamid

    reasons for this reduction. Discrete fracture and matrix (DFM) modelling is selected in this investigation because of its ability to represent fracture behaviours more realistically. Moreover, it has become a preferential method for modelling flow in fractured formations for the past decade (Bisdom et al...

  17. Tensile properties and fracture of (α+γ) two phase stainless steel with fine grained microstructure

    International Nuclear Information System (INIS)

    Ogiyama, Hiroyuki; Tsukuda, Hitoshi; Soyama, Yoshiro

    1989-01-01

    The tensile properties and fracture of the (α+γ) two phase stainless steel with very fine γ grains were investigated. Two different microstructures with very fine γ grains can be obtianed by the thermomechanical treatments; One has both very fine γ and α grains, and the other has very fine γ and large α grains. The specimens were prepared in quenched and aged (475degC) conditions. The results obtained are as follows. The 0.2 % proof stress and tensile strength increase with the aging at 475degC for all specimens. The refinement of the γ grains plays an important role for the increase of strength in both quenched and aged conditions, and also for the ductility in the quenched condition. The refinement of α grains, however, contributes to the increase of the ductility in the aged condition. Accordingly, it is found that very good combinations of tensile strength and ductility can be achieved by the aging and the refinement of the γ and α grains (micro duplex structure). (author)

  18. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  19. Effect of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures

    International Nuclear Information System (INIS)

    Jaswin, M. Arockia; Lal, D. Mohan

    2011-01-01

    Research highlights: → Tensile behaviour of cryo-treated valve steels are investigated at elevated temperature. → En 52 and 21-4N valve steel materials are treated at - 196 o C . → Tensile strength of cryo-treated En 52 and 21-4N valve steel has improved by 8 % and 12 % respectively. → Precipitation of fine carbides through cryogenic treatment is the reason for the improved strength. -- Abstract: This experimental study investigates the effects of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures. The materials are subjected to shallow cryogenic treatment (SCT) at 193 K and deep cryogenic treatment (DCT) at 85 K and the tensile behaviour is compared with that of the conventional heat treatment (CHT). The high temperature tensile test is conducted at 673 K (400 o C) and 923 K (650 o C) for the En 52 and 21-4N valve steels respectively. The ultimate tensile strength of the En 52 and 21-4N DCT samples show an enhancement of 7.87% and 6.76% respectively, over the CHT samples tested at the elevated temperature. The average yield strength of the En 52 DCT samples has an improvement 11% than that of the CHT samples when tested at room and elevated temperatures. The deep cryogenic treatment conducted at the optimized condition shows 7.84% improvement in the tensile strength for the En 52 valve steel and 11.87% improvement for the 21-4N valve steel when compared to the strength of the samples without the cryogenic treatment. A scanning electron microscopic analysis of the fracture surface indicates the presence of dimples and microvoid coalescence on the grain facets and interfaces of the cryo-treated specimens. The fracture surface of the deep cryo-treated 21-4N valve steel specimen shows a complete intergranular fracture with deep secondary cracks between the grains. On comparing the results of the percentage elongation, the cryo-treated samples show a smaller reduction in the elongation than that of the

  20. Plugging wellbore fractures : limit equilibrium of a Bingham drilling mud cake in a tensile crack

    Energy Technology Data Exchange (ETDEWEB)

    Garagash, D.I. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Civil and Resource Engineering

    2009-07-01

    The proper selection of drilling muds is important in order to successfully drill hydrocarbon wells in which wellbore mud pressure remains low enough to prevent circulation loss and high enough to support the uncased wellbore against the shear failure. This paper presented a mathematical model to study invasion of mud cake into a drilling-induced planar fracture at the edge of a wellbore perpendicular to the minimum in situ principal stress. The model assumed a planar edge-crack geometry loaded by the wellbore hoop stress, variable mud pressure along the invaded region adjacent to the wellbore, and uniform pore-fluid pressure along the rest of the crack. The invading mud was assumed to freely displaces the pore-fluid in the crack without mixing with it. The case corresponding to a sufficiently permeable formation was considered. This solution provides a means to evaluate whether or not the mud cake could effectively plug the fracture, thereby prevent fracture propagation and associated uncontrollable loss of wellbore drilling mud. The toughness or tensile strength is evaluated based on criterion for initiation of crack propagation, which may lead to uncontrollable loss of mud circulation in a well. The study provided information on the breakdown pressure as a function of the rock ambient stress, ambient pore pressure, pre-existing crack length, and mud cake properties. 12 refs., 6 figs.

  1. Applicability of Voce equation for tensile flow and work hardening behaviour of P92 ferritic steel

    International Nuclear Information System (INIS)

    Sainath, G.; Choudhary, B.K.; Christopher, J.; Isaac Samuel, E.; Mathew, M.D.

    2015-01-01

    Detailed analysis of true stress (σ)-true plastic strain (ε) data indicated that tensile flow behaviour of P92 ferritic steel can be adequately described by Voce equation at strain rates ranging from 3.16 × 10 −5 to 1.26 × 10 −3  s −1 over a temperature range 300–923 K. The steel exhibited two-stage work hardening in the variations of instantaneous work hardening rate (θ = dσ/dε) with stress. At all the strain rates, the variations in σ-ε, θ-σ and work hardening parameters associated with Voce equation with temperature exhibited three distinct temperature regimes. At intermediate temperatures, the variations in σ-ε, θ-σ and work hardening parameters with temperature and strain rate exhibited anomalous behaviour due to the occurrence of dynamic strain ageing in the steel. The shift in θ-σ towards low stresses, and rapid decrease in flow stress and work hardening parameters with increasing temperature and decreasing strain rate suggested dominance of dynamic recovery at high temperatures. - Highlights: • Tensile flow and work hardening behaviour of P92 steel has been examined. • Applicability of Voce equation to P92 steel is demonstrated. • Three temperature regimes in flow and work hardening has been observed. • Good match between predicted and the experimental tensile properties has been shown

  2. Tensile and fracture behavior of AA6061-T6 aluminum alloys: micro-mechanical approach

    International Nuclear Information System (INIS)

    Shen, Y.

    2012-01-01

    The AA6061-T6 aluminum alloy was chosen as the material for the core vessel of the future Jules Horowitz testing reactor (JHR). The objective of this thesis is to understand and model the tensile and fracture behavior of the material, as well as the origin of damage anisotropy. A micro-mechanical approach was used to link the microstructure and mechanical behavior. The microstructure of the alloy was characterized on the surface via Scanning Electron Microscopy and in the 3D volume via synchrotron X-ray tomography and laminography. The damage mechanism was identified by in-situ SEM tensile testing, ex-situ X-ray tomography and in-situ laminography on different levels of triaxiality. The observations have shown that damage nucleated at lower strains on Mg 2 Si coarse precipitates than on iron rich intermetallics. The identified scenario and the in-situ measurements were then used to develop a coupled GTN damage model incorporating nucleation, growth and coalescence of cavities formed by coarse precipitates. The relationship between the damage and the microstructure anisotropies was explained and simulated. (author)

  3. Mechanical Behaviour of Materials Volume II Fracture Mechanics and Damage

    CERN Document Server

    François, Dominique; Zaoui, André

    2013-01-01

    Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydogen embrittlement and to environment assisted cracking, chapter VIII...

  4. Influence of interface properties on fracture behaviour of concrete

    Indian Academy of Sciences (India)

    Interface; concrete; bond strength; fracture toughness; stiffness; ductility. 1. Introduction .... behaviour of concrete using sandwich, and direct rock-mortar compact specimens under mode I and mode II ... pulse velocity technique. 4.2 Geometry of ...

  5. Microstructure evolution and fracture behaviour for electron beam ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of microstructural characteristics on fracture behaviour mechanism for electron beam welding of ... petrochemical plants and surgical implants (Messler 1981;. Jinkeun ... viding a scientific basis for welded structure design, manu-.

  6. Microstructure Deformation and Fracture Mechanism of Highly Filled Polymer Composites under Large Tensile Deformation

    International Nuclear Information System (INIS)

    Tao Zhangjiang; Ping Songdan; Mei Zhang; Cheng Zhaipeng

    2013-01-01

    The microstructure deformation and fracture mechanisms of particulate-filled polymer composites were studied based on microstructure observations in this paper. By using in-situ tensile test system under scanning electron microscopy, three different composites composed of polymer binder filled by three different types of particles, namely Al particles, AP particles and HMX particles, with the same total filler content were tested. The roles of initial microstructure damage and particle type on the microstructure deformation and damage are highlighted. The results show that microstructure damage starts with the growth of the initial microvoids within the binders or along the binder/particle interfaces. With the increase of strain, the microstructure damages including debonding at the particle/binder interface and tearing of the binder lead to microvoid coalescence, and finally cause an abrupt fracture of the samples. Coarse particles lead to an increase of debonding at the particle/binder interface both in the initial state and during the loading process, and angular particles promote interface debonding during the loading process.

  7. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M.E., E-mail: alam@engineering.ucsb.edu [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Pal, S.; Fields, K. [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoelzer, D.T. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Odette, G.R. [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2016-10-15

    A new larger heat of a 14YWT nanostructured ferritic alloy (NFA), FCRD NFA-1, was synthesized by ball milling FeO and argon atomized Fe-14Cr-3W-0.4Ti-0.2Y (wt%) powders, followed by hot extrusion, annealing and cross rolling to produce an ≈10 mm-thick plate. NFA-1 contains a bimodal size distribution of pancake-shaped, mostly very fine scale, grains. The as-processed plate also contains a large population of microcracks running parallel to its broad surfaces. The small grains and large concentration of Y–Ti–O nano-oxides (NOs) result in high strength up to 800 °C. The uniform and total elongations range from ≈1–8%, and ≈10–24%, respectively. The strength decreases more rapidly above ≈400 °C and deformation transitions to largely viscoplastic creep by ≈600 °C. While the local fracture mechanism is generally ductile-dimple microvoid nucleation, growth and coalescence, perhaps the most notable feature of tensile deformation behavior of NFA-1 is the occurrence of periodic delamination, manifested as fissures on the fracture surfaces.

  8. Hot Tensile and Fracture Behavior of 35CrMo Steel at Elevated Temperature and Strain Rate

    Directory of Open Access Journals (Sweden)

    Zhengbing Xiao

    2016-08-01

    Full Text Available To better understand the tensile deformation and fracture behavior of 35CrMo steel during hot processing, uniaxial tensile tests at elevated temperatures and strain rates were performed. Effects of deformation condition on the flow behavior, strain rate sensitivity, microstructure transformation, and fracture characteristic were characterized and discussed. The results indicated that the flow stress was sensitive to the deformation condition, and fracture occurs immediately after the peak stress level is reached, especially when the temperature is low or the strain rate is high. The strain rate sensitivity increases with the deformation temperature, which indicates that formability could improve at high temperatures. Photographs showing both the fracture surfaces and the matrix near the fracture section indicated the ductile nature of the material. However, the fracture mechanisms varied according to the deformation condition, which influences the dynamic recrystallization (DRX condition, and the DRX was accompanied by the formation of voids. For samples deformed at high temperatures or low strain rates, coalescence of numerous voids formed in the recrystallized grains is responsible for fracture, while at high strain rates or low temperatures, the grains rupture mainly by splitting because of cracks formed around the inclusions.

  9. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping

    Directory of Open Access Journals (Sweden)

    Hoyeol Kim

    2017-11-01

    Full Text Available AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM and energy disperse X-ray spectrometry (EDS. Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.

  10. Effect of heat treatment on the elevated temperature tensile and fracture toughness behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1980-05-01

    The effect of heat treatment on the tensile and fracture toughness properties of Alloy 718 weldments was characterized at room temperature and elevated temperatures. The two heat treatments employed during this investigation were the convectional (ASTM A637) precipitation treatment and a modified treatment designed to improve the toughness of Alloy 718 welds. Weldments were also examined in the as-welded condition. The fracture toughness behavior of the Alloy 718 weldments was determined at 24, 427 and 538 degree C using both linear-elastic (K Ic ) and elastic-plastic (J Ic ) fracture mechanics concepts. Metallographic and electron fractographic examination of Alloy 718 weld fracture surfaces revealed that differences in fracture toughness behavior for the as-welded, conventional and modified conditions were associated with variations in the weld microstructure. 28 refs., 16 figs., 4 tabs

  11. Fracture mechanics behaviour of neutron irradiated Alloy A-286

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    The effect of fast-neutron irradiation on the fatigue-crack propagation and fracture toughness behaviour of Alloy A-286 was characterized using fracture mechanics techniques. The fracture toughness was found to decrease continuously with increasing irradiation damage at both 24 deg. C and 427 deg. C. In the unirradiated and low fluence conditions, specimens displayed appreciable plasticity prior to fracture, and equivalent Ksub(Ic) values were determined from Jsub(Ic) fracture toughness results. At high irradiation exposure levels, specimens exhibited a brittle Ksub(Ic) fracture mode. The 427 deg. C fracture toughness fell from 129 MPa√m in the unirradiated condition to 35 MPa√m at an exposure of 16.2 dpa (total fluence of 5.2x10 22 n/cm 2 ). Room temperature fracture toughness values were consistently 40 to 60 percent higher than the 427 deg. C values. Electron fractography revealed that the reduction in fracture resistance was attributed to a fracture mechanism transition from ductile microvoid coalescence to channel fracture. Fatigue-crack propagation tests were conducted at 427 deg. C on specimens irradiated at 2.4 dpa and 16.2 dpa. Crack growth rates at the lower exposure level were comparable to those in unirradiated material, while those at the higher exposure were slightly higher than in unirradiated material. (author)

  12. Tensile Properties and Fracture Behavior of a Powder-Thixoformed 2024Al/SiCp Composite at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Pubo Li

    2017-10-01

    Full Text Available In the present work, the tensile properties and fracture behavior of a 2024Al composite reinforced with 10 vol % SiCp and fabricated via powder thixoforming (PT were studied at temperatures ranging from 25 °C to 300 °C with a strain rate of 0.05 s−1, as well as the PT 2024 alloy. The results indicated that the tensile strengths of both the PT materials were all decreased with increasing the temperature, but the decrease rate of the composite was smaller than that of the 2024 alloy, and the composite exhibited higher tensile strength than that of the 2024 alloy at all of the employed testing temperatures due to the strengthening role of SiCp. Increasing temperature was beneficial for enhancing the ductility of materials, and the maximum elongation was reached at 250 °C. The elongation decrease over 250 °C was attributed to the cavity formation due to the debonding of the SiCp/Al interface and the fracturing of the matrix between SiCp. The fracture of the composite at room temperature initiated from the fracture of SiCp and the debonding of the SiCp/Al interface, but that at high temperatures was dominated by void nucleation and growth in the matrix besides the interface debonding.

  13. Influence of heat treatments on the microstructure and tensile behaviour of selective laser melting-produced TI-6AL-4V parts

    Directory of Open Access Journals (Sweden)

    Ter Haar, Gerrit Matthys

    2016-11-01

    Full Text Available In industry, post-process heat treatments of Ti-6Al-4V are performed with the aim of improving its tensile behaviour. While heat treatments of wrought Ti6Al4V have been standardised (e.g., Aerospace Material Specification H-81200, heat treatments of selective laser melting (SLM-produced Ti-6Al-4V lacks research and understanding. Significant concern exists about SLM Ti6-Al-4V’s achievable ductility attributed to its martensitic (α’ phase. In this research, heat treatments at a range of temperatures are applied to SLM-produced Ti-6Al-4V tensile samples. Microstructural analysis (both optically and through electron backscatter diffraction was used to identify links between heat treatments and microstructure. Subsequently, uniaxial tensile tests were performed to determine the respective tensile properties of all samples. Correlations in the data show a significant loss in strength with respect to an increase in annealing temperature due to grain growth, while no noticeable trend was observed for fracture strain with regard to annealing temperatures.

  14. Implicit fracture modelling in FLAC3D: Assessing the behaviour of fractured shales, carbonates and other fractured rock types

    NARCIS (Netherlands)

    Osinga, S.; Pizzocolo, F.; Veer, E.F. van der; Heege, J.H. ter

    2016-01-01

    Fractured rocks play an important role in many types of petroleum and geo-energy operations. From fractured limestone reservoirs to unconventionals, understanding the geomechanical behaviour and the dynamically coupled (dual) permeability system is paramount for optimal development of these systems.

  15. The fracture behaviour of dental enamel

    OpenAIRE

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A.

    2009-01-01

    Abstract Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterised in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge...

  16. Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes

    International Nuclear Information System (INIS)

    Jafarifar, N.; Pilakoutas, K.; Angelakopoulos, H.; Bennett, T.

    2017-01-01

    Fracture of steel-fibre-reinforced-concrete occurs mostly in the form of a smeared crack band undergoing progressive microcracking. For FE modelling and design purposes, this crack band could be characterised by a stress-strain (σ-ε) relationship. For industrially-produced steel fibres, existing methodologies such as RILEM TC 162-TDF (2003) propose empirical equations to predict a trilinear σ-ε relationship directly from bending test results. This paper evaluates the accuracy of these methodologies and their applicability for roller-compacted-concrete and concrete incorporating steel fibres recycled from post-consumer tyres. It is shown that the energy absorption capacity is generally overestimated by these methodologies, sometimes up to 60%, for both conventional and roller-compacted concrete. Tensile behaviour of fibre-reinforced-concrete is estimated in this paper by inverse analysis of bending test results, examining a variety of concrete mixes and steel fibres. A multilinear relationship is proposed which largely eliminates the overestimation problem and can lead to safer designs. [es

  17. Acoustic emission during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches

    International Nuclear Information System (INIS)

    Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission generated during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches has been studied. The extent of acoustic activity generated depends on notch tip severity, notch tip blunting and tearing of the notches. The equation N=AK m applied to the acoustic emission data of the notched specimens has shown good correlation. Acoustic emission technique can be used to estimate the size of an unknown notch. (author)

  18. Fracture toughness behaviour using small CCT specimen of Zr-2.5Nb pressure tube materials

    International Nuclear Information System (INIS)

    Oh, Dong Joon; Kim, Young Suk; Ahn, Sang Bok; Im, Kyung Soo; Kwon, Sang Chul; Cheong, Yong Mu

    2001-03-01

    Fracture toughness of Zr-2.5Nb pressure tube is the essential data to estimate the CCL(critical crack length) for the concept of LBB(Leak-Before-Break) in PHWR. Zr-2.5Nb pressure tubes could be degraded due to the absorption of hydrogen from coolant and the irradiation. To investigate the fracture toughness behaviour such as J-resistance curves, dJ/da, and CCL of some Zr-alloys (CANDU-double, -quad, CW-E125, TMT-E125, E-635), the transverse tensile test and the fracture toughness test of small CCT (Curved Compact Tension) specimen with 17 mm width were carried out with the variation of testing temperature at different testing condition. To define the fracture mechanism of degradation, the fractographic comparison of fracture surface was performed using the stereoscope and SEM. In addition, the effect of non-uniformed pre-fatigue crack was also studied. In conclusion, CANDU double-melted was less tougher than CANDU quad-melted and the hydrogen embrittlement was found at room temperature. Finally, while the effect of non-uniformed pre-fatigue crack was considerable at room temperature, this effect was disappeared at 250-300 .deg. C

  19. Fracture behaviour of brittle (glass) matrix composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Boccaccini, A. R.

    2005-01-01

    Roč. 482, - (2005), s. 115-122 ISSN 0255-5476. [International Conference on Materials Structure and Micromechanics of Fracture /4./. Brno, 23.06.2004-25.06.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Institutional research plan: CEZ:AV0Z2041904 Keywords : Ceramic matrix composites * fracture toughness * toughening effects Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.399, year: 2005

  20. Device Design and Test of Fatigue Behaviour of Expansion Anchor Subjected to Tensile Loads

    Directory of Open Access Journals (Sweden)

    Zhang Jinfeng

    2016-01-01

    Full Text Available In order to study on the fatigue behaviour of expansion anchor (M16, grade 8.8 for overhead contact system in electrification railways, a set of safe, practical loading device is designed and a fatigue test campaign was carried out at structural laboratory of China Academy of Building Research on expansion anchor embedded in concrete block. The mobile frame of the loading device was designed well by finite-element simulation. According to some fatigue performance test of expansion anchor with different size and form, the device have been assessed experimentally its dependability. The results were found that no fatigue damage phenomenon occurred in all specimens after 2×106 cycles tensile fatigue test in this specific series. It shows that in the condition of medium level or slightly lower maximum stress limit and nominal stress range, expansion bolt has good fatigue resistance. The biggest relative displacement and the residual relative displacement after test (Δδ = δ2-δ1 was also strongly lower than the symbol of the fatigue test failure index of this specific series (0.5mm in the high cycle fatigue regime. The ultimate tension failures mode after fatigue tests in all tested samples take place in the concrete anchorage zone. The reduction range of the ultimate tensile strength properties of the anchorage system was not obvious, and the concrete was seen to be the weakest link of the system.

  1. Behaviour of MZFR-type Zircaloy-4 cans under tensile stress

    International Nuclear Information System (INIS)

    Bordoni, R.A.; Casario, J.A.; Coroli, Graciela; Povolo, Francisco

    1981-01-01

    The paper describes the experimental procedure and results from the tensile tests of Zircaloy-4 fuel cans of the MZFR-type, performed at temperatures ranging from 250 to 450 deg C and for a relative deformation velocity of about 0.5%/min. In the representation of the results by a curve of the type sigma = K epsilon/sup n/, two different stages are observed. By statistically fitting the experimental curves, the values for the K and n parameters were obtained for each stage as a function of temperature. The results are discussed and compared with similar data found in current literature. It is concluded that new tests on tubes of different characteristics are necessary in order to obtain a clearer idea about the mechanical behaviour of these materials. (C.A.K.) [es

  2. Mechanical and fracture behaviour of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloys

    International Nuclear Information System (INIS)

    Dogan, B.; Schwalbe, K.H.

    1990-01-01

    Titanium alloys have increasingly been used in gas turbine applications due to their high strength-to-weight ratio that leads to improved engine performance and fuel efficiency. The development of required mechanical properties in titanium alloys is strongly controlled by the microstructure achieved by heat treatment and thermomechanical processing. A study is conducted on two Ti-6242-Si alloys with a lamellar and an equiaxed microstructure, to assess the effects of microstructure on the deformation and fracture behaviour based on structural observations. The observations are made on fracture surfaces and sectioned side surfaces of fractured tensile, creep, impact and fracture toughness specimens tested at test temperatures up to 500deg C, correlated with the microstructural constituents. (orig.) With 6 figs., 3 tabs [de

  3. The fracture behaviour of dental enamel.

    Science.gov (United States)

    Bechtle, Sabine; Habelitz, Stefan; Klocke, Arndt; Fett, Theo; Schneider, Gerold A

    2010-01-01

    Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).

  4. Thermomechanical Morphology of Peas and Its Relation to Fracture Behaviour

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Schutyser, M.A.I.; Boom, R.M.

    2013-01-01

    Milling and subsequent air classification can be exploited for production of functional protein-enriched fractions from legumes and grains. Fracture behaviour is of large relevance to optimal disentanglement of protein and starch and is determined by the thermomechanical morphology of the seeds.

  5. Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behaviour of UHMWPE-GUR 410-medical grade

    International Nuclear Information System (INIS)

    Mourad, A.-H.I.; Fouad, H.; Elleithy, Rabeh

    2009-01-01

    The present work was undertaken to examine the effect of some environmental media (sodium hydroxide NaOH solution, water, ice, UV irradiation dose and pre-heat treatment) on the mechanical (quasi-static tensile creep-recovery and relaxation) and physical/thermal (melting and crystallinity) behaviour of the ultra high molecular weight polyethylene (UHMWPE-GUR 410-medical grade), that has several biomedical and engineering applications. The results show changes in the mechanical properties due to these environmental effects. The pre-heat treatment has significantly enhanced the tensile properties compared to virgin specimens' properties. Improvement due to pre-heat treatment at 100 o C is more than that at 50 o C. Specimens' storing in ice, NaOH and water has not affected significantly the tensile properties. All properties except fracture strain have enhanced due to specimens exposure to UV irradiation. The differential scanning calorimetry results indicate that environmental media have not any noticeable effects on the melting temperature. However, a significant increase in the degree of crystallinity was observed for all specimens versus that for virgin specimens. The creep and permanent strains of the tested virgin material increase with temperature and lineally increase with applied load. The specimens' exposure to environmental media has improved the creep resistance and the permanent creep strain when compared with that for virgin ones. Remarkable increase was observed in the initial relaxation and residual stress of the exposed specimens against that for virgin specimens.

  6. Testing the Fracture Behaviour of Chocolate

    Science.gov (United States)

    Parsons, L. B.; Goodall, R.

    2011-01-01

    In teaching the materials science aspects of physics, mechanical behaviour is important due to its relevance to many practical applications. This article presents a method for experimentally examining the toughness of chocolate, including a design for a simple test rig, and a number of experiments that can be performed in the classroom. Typical…

  7. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    Science.gov (United States)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  8. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  9. Fracture spacing in tensile brittle layers adhering to a rigid substrate

    Science.gov (United States)

    Lazarus, Véronique

    2017-01-01

    A natural question arising when observing crack networks in brittle layers such as, e.g., paints, muds, skins, pottery glazes, coatings, ceramics, is what determines the distance between cracks. This apparently simple question received a wealth of more or less complex and appropriate answers, but no consensus has emerged. Here, we show that the cracks interact mutually as soon as the spacing between them is smaller than ten times the thickness of the layer. Then, a simple Griffith-type balance between the elastic deformation energy and the fracture bulk and debonding costs captures a broad number of observations, going from the square-root or linear increase of the spacing with the thickness, to its decrease with loading until saturation. The adhesion strength is identified as playing a key role in these behaviour changes. As illustration, we show how the model can be applied to study the influence of the layer thickness on crack patterns. We believe that the versatility of the approach should permit wide applicability, from geosciences to engineering.

  10. Fracture resistance of welded panel specimen with perpendicular crack in tensile

    International Nuclear Information System (INIS)

    Gochev, Todor; Adziev, Todor

    1998-01-01

    Defects caused by natural crack in welded joints of high-strength low-alloy (HSLA) steels are very often. Perpendicular crack in welded joints and its heat treatment after the welding has also an influence on the fracture resistance. The fracture resistance of welded joints by crack in tense panel specimens was investigated by crack mouse opening displesment (CMOD), the parameter of fracture mechanic. Crack propagation was analysed by using a metallographic analysis of fractured specimens after the test. (Author)

  11. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  12. Fracture and flaking off behavior of coated layer of DyBCO coated conductor under applied tensile strain

    International Nuclear Information System (INIS)

    Arai, T.; Shin, J.K.; Matsubayashi, H.; Ochiai, S.; Okuda, H.; Osamura, K.; Prusseit, W.

    2009-01-01

    The tensile behavior of the DyBa 2 Cu 3 O 7-δ (DyBCO) coated conductor with MgO buffer layer deposited on the Hastelloy C-276 substrate by inclined substrate deposition (ISD) was studied. The tensile stress-strain curve showed a flat region, characterized by the discontinuous yielding of the substrate due to the Lueders band extension from the gripped portions of the sample. In the area where the Lueders band had passed, the coating layer showed severe multiple transverse cracking due to the localized plastic deformation of the substrate. The flaking off of the coating layers took place at high applied strain, due to the buckling fracture of the coated layers in the sample width direction, accompanied by the interfacial debonding.

  13. Crack and fracture behaviour in tough ductile materials

    International Nuclear Information System (INIS)

    Venter, R.D.; Hoeppner, D.W.

    1985-10-01

    The report describes various approaches and developments pertaining to the understanding of crack and fracture behaviour in tough ductile materials. The fundamental elastic fracture mechanics concepts based on the concepts of energy, stress field, and displacement are introduced and their interrelationships demonstrated. The extension of these concepts to include elasto-plastic fracture mechanics considerations is reviewed in the context of the preferred options available for the development of appropriate design methodologies. The recommendations of the authors are directed towards the continued development of the J-integral concept. This energy-based concept, in its fundamental form, has a sound theoretical basis and as such offers the possibility of incorporating elasto-plastic fracture mechanics considerations in the crack and fracture behaviour of tough ductile materials. It must however be emphasized that the concise defintion of J becomes increasingly suspect as the crack length increases. J is not a material property, as is J IC , but emerges as a useful empirical parameter which is dependent upon the particular geometry and the loading imposed on the structure. It is proposed that 'lowest bound' J-resistance curves and the associated J-T curves be experimentally developed and employed in the design process. Improvements to these 'lowest bounds' can be developed through extensive analysis of the twin J-CTOA criteria and validation of this approach through near full scale tests

  14. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  15. Unusual tensile behaviour of fibre-reinforced indium matrix composite and its in-situ TEM straining observation

    International Nuclear Information System (INIS)

    Luo, Xin; Peng, Jianchao; Zandén, Carl; Yang, Yanping; Mu, Wei; Edwards, Michael; Ye, Lilei; Liu, Johan

    2016-01-01

    Indium-based thermal interface materials are superior in thermal management applications of electronic packaging compared to their polymer-based counterparts. However, pure indium has rather low tensile strength resulting in poor reliability. To enhance the mechanical properties of such a material, a new composite consisting of electrospun randomly oriented continuous polyimide fibres and indium was fabricated. The composite has been characterised by tensile tests and in-situ transmission electron microscopy straining observations. It is shown that the composite's ultimate tensile strength at 20 °C is five times higher than that of pure indium, and the strength of the composite exceeds the summation of strengths of the individual components. Furthermore, contrary to most metallic matrix materials, the ultimate tensile strength of the composite decreases with the increased strain rate in a certain range. The chemical composition and tensile fracture of the novel composite have been analysed comprehensively by means of scanning transmission electron microscopy and scanning electron microscopy. A strengthening mechanism based on mutually reinforcing structures formed by the indium and surrounding fibres is also presented, underlining the effect of compressing at the fibre/indium interfaces by dislocation pileups and slip pinning.

  16. Aging effects on fracture behavior of 63Sn37Pb eutectic solder during tensile tests under the SEM

    International Nuclear Information System (INIS)

    Ding Ying; Wang Chunqing; Li Mingyu; Bang Hansur

    2004-01-01

    This study investigates the influence of aging treatment on fracture behavior of Sn-Pb eutectic solder alloys at different loading rate regime during tensile tests under the scanning electron microscope. In high homologous temperature, the solder exhibit the creep behavior that could be confirmed through the phenomena of grain boundary sliding (GBS) to both as-cast and aged specimens. Owing to the large grain scale after high temperature storage, boundary behavior was limited to some extent for the difficulty in grain rotation and boundary migration. Instead, drastic intragranular deformation occurred. Also, the phase coarsening weakened the combination between lead-rich phase and tin matrix. Consequently, surface fragmentation was detected for the aged specimens. Furthermore, the fracture mechanism changed from intergranular dominated to transgranular dominated with increasing loading rate to both specimens during early stage

  17. Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-04-01

    Herein we assess the differences in Charpy impact behavior between Hot Isostatically Pressed and forged Inconel 690 alloy over the temperature range of 300 °C to - 196 °C. The impact toughness of forged 690 exhibited a relatively small temperature dependence, with a maximum difference of ca. 40 J measured between 300 °C and - 196 °C, whereas the HIP'd alloy exhibited a difference of approximately double that of the forged alloy over the same temperature range. We have conducted Charpy impact testing, tensile testing, and metallographic analyses on the as-received materials as well as fractography of the failed Charpy specimens in order to understand the mechanisms that cause the observed differences in material fracture properties. The work supports a recent series of studies which assess differences in fundamental fracture behavior between Hot Isostatically Pressed and forged austenitic stainless steel materials of equivalent grades, and the results obtained in this study are compared to those of the previous stainless steel investigations to paint a more general picture of the comparisons between HIP vs forged material fracture behavior. Inconel 690 was selected in this study since previous studies were unable to completely omit the effects of strain-induced martensitic transformation at the tip of the Chary V-notch from the fracture mechanism; Inconel 690 is unable to undergo strain-induced martensitic transformation due to the alloy's high nickel content, thereby providing a sister study with the omission of any martensitic transformation effects on ductile fracture behavior.

  18. Viscoelastic behaviour and fracture toughness of linear-low-density polyethylene reinforced with synthetic boehmite alumina nanoparticles

    Directory of Open Access Journals (Sweden)

    D. Pedrazzoli

    2013-08-01

    Full Text Available Aim of the present study is to investigate how synthetic boehmite alumina (BA nanoparticles modify the viscoleastic and fracture behaviour of linear low-density polyethylene. Nanocomposites containing up to 8 wt% of untreated and octyl silane-functionalized BA nanoparticles, were prepared by melt compounding and hot pressing. The BA nanoparticles were finely and unformly dispersed within the matrix according to scanning electron microscopy inspection. The results of quasi-static tensile tests indicated that nanoparticles can provide a remarkable stiffening effect at a rather low filler content. Short term creep tests showed that creep stability was significatively improved by nanofiller incorporation. Concurrently, both storage and loss moduli were enhanced in all nanocomposites, showing better result for surface treated nanoparticles. The plane-stress fracture toughness, evaluated by the essential work of fracture approach, manifested a dramatic increase (up to 64% with the BA content, with no significant differences among the various types of BA nanoparticles.

  19. Fracture Testing with Surface Crack Specimens. [especially the residual tensile strength test

    Science.gov (United States)

    Orange, T. W.

    1974-01-01

    Recommendations are given for the design, preparation, and static fracture testing of surface crack specimens. The recommendations are preceded by background information including discussions of stress intensity factors, crack opening displacements, and fracture toughness values associated with surface crack specimens. Cyclic load and sustained load tests are discussed briefly.

  20. Ductile fracture evaluation of ductile cast iron and forged steel by nonlinear-fracture-mechanics. Pt. 1. Tensile test by large scaled test pieces with surface crack

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ajima, Tatsuro; Inohara, Yasuto

    1999-01-01

    The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)

  1. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja4@gmail.com [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar, Gujarat (India); Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-05-15

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  2. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  3. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic–martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-01-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic–Martensitic (RAFM) steel (9Cr–1W–0.06Ta–0.22V–0.08C) have been investigated over a temperature range of 300–873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  4. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    Science.gov (United States)

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  5. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  6. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F.; Niroumand, B. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Forouzan, M.R.; Mohseni mofidi, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Barlat, F. [Materials Mechanics Laboratory (MML), Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology POSTECH, San 31 Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2015-09-17

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models.

  7. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    International Nuclear Information System (INIS)

    Saeidi, N.; Ashrafizadeh, F.; Niroumand, B.; Forouzan, M.R.; Mohseni mofidi, S.; Barlat, F.

    2015-01-01

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models

  8. Tensile behaviour at room and high temperatures of novel metal matrix composites based on hyper eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Valer, J.; Rodriguez, J.M.; Urcola, J.J.

    1997-01-01

    This work shows the improvement obtained on tensile stress at room and high temperatures of hyper eutectic Al-Si alloys. These alloys are produced by a combination of spray-forming, extrusion and thixoforming process, in comparison with conventional casting alloys.Al-25% Si-5%Cu. Al-25%Si-5%Cu-2%Mg and Al-30%Si-5%Cu alloys have been studied relating their microstructural parameters with tensile stress obtained and comparing them with conventional Al-20%Si. Al-36%Si and Al-50%Si alloys. Al-25%Si-5%Cu alloy-was tested before and after semi-solid forming, in order to distinguish the different behaviour of this alloy due to the different microstructure. The properties obtained with these alloys were also related to Al-SiC composites formed by similar processes. (Author) 20 refs

  9. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700/sup 0/C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625/sup 0/C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities.

  10. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700 0 C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625 0 C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities

  11. Tensile and fracture behavior of boron and carbon modified Ti-15-3 alloys in aged conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R., E-mail: rajdeepsarkar@dmrl.drdo.in [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Ghosal, P.; Nandy, T.K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2016-02-22

    This work illustrates the effect of boron and carbon addition on the mechanical behavior of a beta Ti alloy, Ti–15V–3Cr–3Al–3Sn (Ti-15-3), in differently aged conditions. The alloys were prepared by consumable vacuum arc melting followed by forging and hot rolling. These were subsequently solution treated and aged at different temperatures above 500 °C for 8 h. Standard tensile and plane strain fracture toughness tests were carried out to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. Both the boron- and the carbon-containing alloys exhibit improved strength with comparable elongation to failure values as compared to the base Ti-15-3 alloy. The presence of TiB and TiC precipitates in a matrix of fine α with β results in lower fracture toughness (K{sub IC}) in the boron- and carbon-containing alloys as compared to the base alloy. However, at higher aging temperatures K{sub IC} improves due to more tortuous crack path because of the presence of coarse α-phase. An empirical relationship has been proposed correlating K{sub IC} with the volume fraction, size and interspacing of α in these alloys.

  12. Fracture behaviour of the 14Cr ODS steel exposed to helium and liquid lead

    Science.gov (United States)

    Hojna, Anna; Di Gabriele, Fosca; Hadraba, Hynek; Husak, Roman; Kubena, Ivo; Rozumova, Lucia; Bublikova, Petra; Kalivodova, Jana; Matejicek, Jiri

    2017-07-01

    This work describes the fracture behaviour of the 14Cr ODS steel produced by mechanical alloying process, after high temperature exposures. Small specimens were exposed to helium gas in a furnace at 720 °C for 500 h. Another set of specimens was exposed to flowing liquid lead in the COLONRI II loop at 650 °C for 1000 h. All specimens were tested for the impact and tensile behaviour. The impact test results are compared to other sets of specimens in the as received state and after isothermal annealing at 650 °C for 1000 h. The impact curves of the exposed materials showed positive shifts on the transition temperature. While the upper shelf value did not change in the Pb exposed ODS steel, it significantly increased in the He exposed one. The differences are discussed in terms of surface and subsurface microscopy observation. The embrittlement can be explained as the effect of a slight change in the grain boundary and size distribution combined with the depletion of sub-surface region from alloying elements forming oxide scale on the surface.

  13. Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Anandh [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Saha, Mrinal C., E-mail: msaha@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2011-01-25

    Rubber toughened epoxy/CNT nanocomposites were manufactured at different weight percents between 0 and 1% of multiwall carbon nanotube (MWNT) using a high intensity ultrasonic liquid processor with a titanium probe. Mechanical properties of manufactured dog bone samples were measured in tension and the results indicated a maximum of 23% increase in the elastic modulus at 0.6% by weight of MWNT. However, the fracture strength showed a maximum decrease of about 11% as a function of increasing MWNT loading. Scanning Electron Microscopy (SEM) images from the neat samples revealed a distinct circular pit at the top left edge of the specimen with an overall tearing deformation causing the fracture paths. Comparatively, all nanocomposite samples on an average seemed to show a prominent brittle fracture with little or no evidence of circular pit formation. The amount of tearing deformation seemed to be enhanced in the nanocomposite specimens as compare to the neat ones. Finally, Transmission Electron Microscopy images indicated that different states of dispersion exist in all of the nanocomposite samples. The data showed that agglomeration of nanotubes increases as a function of weight percent. In addition to mechanical property characterization, thermal conductivity of all the samples was determined as a function of temperature between 30 deg. C and 100 deg. C using the 3{omega} method. The tested samples showed an almost 16% increase in thermal conductivity. The minimal enhancement in thermal conductivity has been analyzed from the standpoint of the Effective Medium Theory. Interfacial thermal resistances exhibit no order of magnitude changes explaining the conductivity results.

  14. Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites

    International Nuclear Information System (INIS)

    Balakrishnan, Anandh; Saha, Mrinal C.

    2011-01-01

    Rubber toughened epoxy/CNT nanocomposites were manufactured at different weight percents between 0 and 1% of multiwall carbon nanotube (MWNT) using a high intensity ultrasonic liquid processor with a titanium probe. Mechanical properties of manufactured dog bone samples were measured in tension and the results indicated a maximum of 23% increase in the elastic modulus at 0.6% by weight of MWNT. However, the fracture strength showed a maximum decrease of about 11% as a function of increasing MWNT loading. Scanning Electron Microscopy (SEM) images from the neat samples revealed a distinct circular pit at the top left edge of the specimen with an overall tearing deformation causing the fracture paths. Comparatively, all nanocomposite samples on an average seemed to show a prominent brittle fracture with little or no evidence of circular pit formation. The amount of tearing deformation seemed to be enhanced in the nanocomposite specimens as compare to the neat ones. Finally, Transmission Electron Microscopy images indicated that different states of dispersion exist in all of the nanocomposite samples. The data showed that agglomeration of nanotubes increases as a function of weight percent. In addition to mechanical property characterization, thermal conductivity of all the samples was determined as a function of temperature between 30 deg. C and 100 deg. C using the 3ω method. The tested samples showed an almost 16% increase in thermal conductivity. The minimal enhancement in thermal conductivity has been analyzed from the standpoint of the Effective Medium Theory. Interfacial thermal resistances exhibit no order of magnitude changes explaining the conductivity results.

  15. Analysis of the tensile behaviour of zircaloy-4 in the region of dynamic strain aging

    International Nuclear Information System (INIS)

    Dellaretti Filho, O.

    1974-01-01

    An analysis of the tensile behavior of Zircaloy 4, centering around the influence of dynamic strain aging and strain rate history, is presented. This analysis is based on techniques introduced by Jaoul-Crussard and Reed-Hill. An attempt is also made to assess the experimental errors that influence these methods. (author)

  16. Influence of sample thickness on fracture behaviour of polyketone and a polyketone-rubber blend

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Huetink, Han; Vlasveld, D.P.N.; Gaymans, R.J.

    2005-01-01

    The influence of sample thickness on the fracture behaviour of an aliphatic polyketone and a blend of this polymer and 10 wt% core–shell rubber was studied. The sample thickness was varied from 0.1 to 8 mm. The skin morphology was studied by SEM. The fracture behaviour was studied on single edge

  17. The influence of void and porosity on deformation behaviour of nanocrystalline Ni under tensile followed by compressive loading

    Science.gov (United States)

    Meraj, Md.; Nayak, Shradha; Krishanjeet, Kumar; Pal, Snehanshu

    2018-03-01

    In this paper, we present a lucid understanding about the deformation behaviour of nanocrystalline (NC) Ni with and without defects subjected to tensile followed by compressive loading using molecular dynamic (MD) simulations. The embedded atom method (EAM) potential have been incorporated in the simulation for three kinds of samples-i.e. for NC Ni (without any defect), porous NC Ni and NC Ni containing a centrally located void. All the three samples, which have been prepared by implementing the Voronoi method and using Atom Eye software, consist of 16 uniform grains. The total number of atoms present in NC Ni, porous NC Ni and NC Ni containing a void are 107021, 105968 and 107012 respectively. The stress-strain response of NC Ni under tensile followed by compressive loading are simulated at a high strain rate of 107 s-1 and at a constant temperature of 300K. The stress-strain curves for the NC Ni with and without defects have been plotted for three different types of loading: (a) tensile loading (b) compressive loading (c) forward tensile loading followed by reverse compressive loading. Prominent change in yield strength of the NC Ni is observed due to the introduction of defects. For tensile followed by compressive loading (during forward loading), the yield point for NC Ni with void is lesser than the yield point of NC Ni and porous NC Ni. The saw tooth shape or serration portion of the stress-strain curve is mainly due to three characteristic phenomena, dislocation generation and its movement, dislocation pile-up at the junctions, and dislocation annihilation. Both twins and stacking faults are observed due to plastic deformation as the deformation mechanism progresses. The dislocation density, number of clusters and number of vacancy of the NC sample with and without defects are plotted against the strain developed in the sample. It is seen that introduction of defects brings about change in mechanical properties of the NC Ni. The crystalline nature of NC Ni

  18. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    Science.gov (United States)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-03-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} f ), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}} 1}-{10{\\bar{1}} 2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} f value. A combination of basal, prismatic, and pyramidal slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal slip, and the improved {ɛ} f values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  19. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    Science.gov (United States)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-06-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} _{ {f}}), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}}1}-{10{\\bar{1}}2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} _{ {f}} value. A combination of basal, prismatic, and pyramidal slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal slip, and the improved {ɛ} _{ {f}} values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  20. Time-dependent Fracture Behaviour of Polyampholyte Hydrogels

    Science.gov (United States)

    Sun, Tao Lin; Luo, Feng; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    Recently, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and self-healing hydrogels with excellent multiple mechanical functions. The randomness makes ionic bonds with a wide distribution of strength, via inter and intra chain complexation. As the breaking and reforming of ionic bonds are time dependent, the hydrogels exhibit rate dependent mechanical behaviour. We systematically studied the tearing energy by tearing test with various tearing velocity under different temperature, and the linear viscoelastic behaviour over a wide range of frequency and temperature. Results have shown that the tearing energy markedly increase with the crack velocity and decrease with the measured temperature. In accordance with the prediction of Williams, Landel, and Ferry (WLF) rate-temperature equivalence, a master curve of tearing energy dependence of crack velocity can be well constructed using the same shift factor from the linear viscoelastic data. The scaling relation of tearing energy as a function of crack velocity can be predicted well by the rheological data according to the developed linear fracture mechanics.

  1. Theoretical and experimental study on unstable fracture for type 304 stainless steel plates with a soft tensile testing machine

    International Nuclear Information System (INIS)

    Yagawa, G.; Takahashi, Y.; Ando, Y.

    1981-01-01

    The object of this paper is to show experimental results on stable as well as unstable fractures for Type 304 stainless steel plates with a central crack using a soft tensile testing machine. The test machine was installed specially for the safety study of nuclear piping systems and its maximum loading capacity and maximum displacement are 600 ton and 500 mm, respectively. The compliance of the machine is 1.0 x 10 -4 (mm/N). The transition points from the stable to the unstable crack growth observed in the test were theoretically determined by using three methods. In the first method, the 'applied' value of T was calculated with the simple expression based on the dimensional analysis. In the second method, the fully-plastic solutions were used to calculate the nonlinear value of J, which was added to the linear value of J, thus the 'applied' values of T was determined by differentiating the total value of J, which was obtained for the material with the Ramberg-Osgood type stress-strain relation. In the final method, the finite element method was fully utilized to determine the 'applied' value of T. The value of J in the finite element method was obtained with the use of the path-integral. (orig./GL)

  2. Influence of Ti addition on fracture behaviour of HSLA steel using TIG melting technique

    Science.gov (United States)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2017-03-01

    The welding process is a critical stage in the production of structural parts and the microstructure and mechanical properties of the welded joints must be appropriate in order to guarantee the reliability and durability of the components. The fracture toughness behaviour, which accounts for the residual strength of the component in the presence of flaws or cracks, is one of the most important properties to be evaluated in terms of microstructure and mechanical properties. In this present study, the surface of high strength low alloy (HSLA) steel was surface modified with the preplacement of pure Titanium (Ti) powder using a tungsten inert gas (TIG) arc heat source, at 100 ampere current with a voltage 30 V and a constant traversing speed of 1.0 mm/s using Argon shielded gas. The effect of preplaced Ti powder on the strength and toughness properties of the modified HSLA steel surface was investigated. The results indicated that the tensile and yield strength of HSLA steel decreased by ∼12% and ∼14%, respectively. While the impact toughness increased by ∼33% and the ductility decreased by ∼50%. The fractography analysis results by scanning electron microscopy (SEM) were also presented in this paper.

  3. Tensile stress–strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Christopher, J.; Choudhary, B.K.; Isaac Samuel, E.; Mathew, M.D.; Jayakumar, T.

    2012-01-01

    Highlights: ► σ–ε behaviour has been adequately described by Ludwigson and Hollomon equations. ► Instantaneous work hardening rate (θ) exhibited two-stage behaviour. ► σ–ε, flow parameters, θ and θσ vs.σ exhibited three distinct temperature regimes. ► Influence of dynamic strain ageing at intermediate temperatures has been identified. ► Dominance of dynamic recovery at high temperatures was demonstrated. - Abstract: Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300–873 K) at a strain rate of 1.3 × 10 −3 s −1 . Ludwigson equation described true stress (σ)–true plastic strain (ε) data most accurately in the range 300–723 K. At high temperatures (773–873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate (θ = dσ/dε) and θσ with stress indicated two-stage work hardening behaviour. True stress–true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ–σ and θσ–σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  4. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  5. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Preliminary study on tensile properties and fractography of the recycled aluminum cast product

    International Nuclear Information System (INIS)

    Hishamuddin Hussain; Mohd Harun; Hafizal Yazid; Shaiful Rizam Shamsudin; Zaiton Selamat; Mohd Shariff Sattar

    2004-01-01

    Among many mechanical properties of materials, tensile properties are probably the most frequently considered, evaluated, and referred by the industry. This paper presents the result of preliminary study regarding the tensile properties and fractography of the recycled aluminum cast product. For this purpose, three sets of specimen were prepared for tensile testing by using permanent mold casting technique. The cast products are in durable shaped tensile specimens with the gauge length of 50mm. The tensile testing was conducted in accordance with BS EN 10002-1 and ISO 6892 standards. Fracture surface analysis was also conducted to understand materials behaviour. (Author)

  7. Understanding the tensile behaviour of masonry parallel to the bed joints: A numerical approach

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.; Pluijm, R. van der

    1999-01-01

    The lack of experimental data for the complete characterisation of the inelastic behaviour of masonry is a key issue in numerical modelling of masonry structures. A solution to obtain the material properties of masonry at the macro-level is to derive them on the basis of the geometrical and material

  8. Fracture behaviour of the 14Cr ODS steel exposed to helium and liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Hojna, Anna, E-mail: Anna.Hojna@cvrez.cz [Centrum Vyzkumu Rez s.r.o., UJV Group, Rez 130, 250 68 Husinec (Czech Republic); Di Gabriele, Fosca [Centrum Vyzkumu Rez s.r.o., UJV Group, Rez 130, 250 68 Husinec (Czech Republic); Hadraba, Hynek; Husak, Roman; Kubena, Ivo [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic); Rozumova, Lucia; Bublikova, Petra; Kalivodova, Jana [Centrum Vyzkumu Rez s.r.o., UJV Group, Rez 130, 250 68 Husinec (Czech Republic); Matejicek, Jiri [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 1782/3, 182 00 Praha (Czech Republic)

    2017-07-15

    This work describes the fracture behaviour of the 14Cr ODS steel produced by mechanical alloying process, after high temperature exposures. Small specimens were exposed to helium gas in a furnace at 720 °C for 500 h. Another set of specimens was exposed to flowing liquid lead in the COLONRI II loop at 650 °C for 1000 h. All specimens were tested for the impact and tensile behaviour. The impact test results are compared to other sets of specimens in the as received state and after isothermal annealing at 650 °C for 1000 h. The impact curves of the exposed materials showed positive shifts on the transition temperature. While the upper shelf value did not change in the Pb exposed ODS steel, it significantly increased in the He exposed one. The differences are discussed in terms of surface and subsurface microscopy observation. The embrittlement can be explained as the effect of a slight change in the grain boundary and size distribution combined with the depletion of sub-surface region from alloying elements forming oxide scale on the surface. - Highlights: •We compared the impact energy curves of as received, isothermally aged and He/Pb exposed ODS steel samples. •The highest transition temperature showed the ODS steel exposed to liquid Pb at 650 °C for 1000 h. •We observed the higher tendency of the He exposed samples to crack arrester delamination than the Pb exposed ones. •The crack arrested delamination induced apparent increase of impact energies.

  9. Development of a new code to solve hydro-mechanical coupling, shear failure and tensile failure due to hydraulic fracturing operations.

    Science.gov (United States)

    María Gómez Castro, Berta; De Simone, Silvia; Carrera, Jesús

    2016-04-01

    Nowadays, there are still some unsolved relevant questions which must be faced if we want to proceed to the hydraulic fracturing in a safe way. How much will the fracture propagate? This is one of the most important questions that have to be solved in order to avoid the formation of pathways leading to aquifer targets and atmospheric release. Will the fracture failure provoke a microseismic event? Probably this is the biggest fear that people have in fracking. The aim of this work (developed as a part of the EU - FracRisk project) is to understand the hydro-mechanical coupling that controls the shear of existing fractures and their propagation during a hydraulic fracturing operation, in order to identify the key parameters that dominate these processes and answer the mentioned questions. This investigation focuses on the development of a new C++ code which simulates hydro-mechanical coupling, shear movement and propagation of a fracture. The framework employed, called Kratos, uses the Finite Element Method and the fractures are represented with an interface element which is zero thickness. This means that both sides of the element lie together in the initial configuration (it seems a 1D element in a 2D domain, and a 2D element in a 3D domain) and separate as the adjacent matrix elements deform. Since we are working in hard, fragile rocks, we can assume an elastic matrix and impose irreversible displacements in fractures when rock failure occurs. The formulation used to simulate shear and tensile failures is based on the analytical solution proposed by Okada, 1992 and it is part of an iterative process. In conclusion, the objective of this work is to employ the new code developed to analyze the main uncertainties related with the hydro-mechanical behavior of fractures derived from the hydraulic fracturing operations.

  10. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    Science.gov (United States)

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  11. The behaviour of flexible riser tensile armour in the region of an end fitting

    OpenAIRE

    Martindale, H. G. A.

    2006-01-01

    This is a study of axial and transverse slip in helically wound armour wires on flexible pipe under the influence of end restraint. Analysis of steel strip layers in order to find the effect of end restraint prompted the development of a new model to describe their behaviour. This avoids the shortfalls of adapting previous models designed either for similar but different structures or for application away from any end fitting restraint. Previous analytical solutions concerning flexible pipe t...

  12. Effect of Bi modification treatment on microstructure, tensile properties, and fracture behavior of cast Al-Mg2Si metal matrix composite

    Directory of Open Access Journals (Sweden)

    Wu Xiaofeng

    2013-01-01

    Full Text Available Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline structure and crystallization process, the present study investigated the effects of different concentrations of Bi on the microstructure, tensile properties, and fracture behavior of cast Al-15wt.%Mg2Si in-situ metal matrix composite. The results show that the addition of the proper amount of Bi has a significant modification effect on both primary and eutectic Mg2Si in the Al-15wt.%Mg2Si composite. With an increase in Bi content from 0 to 1wt.%, the morphology of the primary Mg2Si is changed from irregular or dendritic to polyhedral shape; and its average particle size is significantly decreased from 70 to 6 μm. Moreover, the morphology of the eutectic Mg2Si phase is altered from flake-like to very short fibrous or dot-like. When the Bi addition exceeds 4.0wt.%, the primary Mg2Si becomes coarse again. However, the eutectic Mg2Si still exhibits the modified morphology. Tensile tests reveal that the Bi addition can improve the tensile strength and ductility of the material. Compared with those of the unmodified composite, the ultimate tensile strength and percentage elongation after fracture with 1.0wt.% Bi increase 51.2% and 100%, respectively. At the same time, the Bi addition changes the fracture behavior from brittle to ductile.

  13. Fracture behaviour of a magnesium–aluminium alloy treated by selective laser surface melting treatment

    International Nuclear Information System (INIS)

    Taltavull, C.; López, A.J.; Torres, B.; Rams, J.

    2014-01-01

    Highlights: • β-Mg 17 Al 12 presents fragile fracture behavior decreasing the ductility of AZ91D. • SLSM treatment only modifies the β-Mg 17 Al 12 phase whilst α-Mg remains unaltered. • In-situ SEM bending test allows to observe and data record of the crack propagation. • Eutectic microestructure of modified β-phase presents ductile fracture behaviour. • Fracture toughness of laser treated specimen is 40% greater than as-received alloy. - Abstract: Fracture behaviour of AZ91D magnesium alloy is dominated by the brittle fracture of the β-Mg 17 Al 12 phase so its modification is required to improve the toughness of this alloy. The novel laser treatment named as Selective Laser Surface Melting (SLSM) is characterized by the microstructural modification of the β-Mg 17 Al 12 phase without altering the α-Mg matrix. We have studied the effect of the selected microstructural modification induced by the laser treatment in the fracture behaviour of the alloy has been studied using in situ Scanning Electron Microscopy bending test. This test configuration allows the in situ observation of the crack progression and the record of the load–displacement curve. It has been observed that the microstructural modification introduced by SLSM causes an increase of 40% of the fracture toughness of the treated specimen. This phenomenon can be related with the transition from brittle to ductile fracture behaviour of the laser modified β-phase

  14. Effect of heat treatment, with and without mechanical work, on the tensile and creep behaviour at 6000C of austenitic stainless steel stabilised with titanium

    International Nuclear Information System (INIS)

    Padilha, A.F.

    1983-01-01

    The effect of various heat treatments, with and without mechanical work, on the microstructure and the tensile and creep behaviour at 600 0 C of the titanium stabilised austenitic stainless steel DIN 1.4970, as well as the effects of aging temperature, pre-strain and small boron additions on the creep behaviour of these steels are discussed. The most probable mechanism is suggested. (Author) [pt

  15. Polypropylene-rubber blends b 3: the effect of test speed on the fracture behaviour

    NARCIS (Netherlands)

    van der Wal, A.; Wal, A.; Gaymans, R.J.

    1999-01-01

    Polypropylene–EPDM blends were prepared on a twin screw extruder with a rubber content 0–40 vol%. On these materials the yield strength and the notched tensile behaviour was studied as function of test speed (10−4–10 m/s). With an infrared temperature camera the heat development in the notched

  16. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    Science.gov (United States)

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (pgrinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its

  17. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2014-01-01

    Timber is normally dried by kiln drying, in the course of which moisture-induced stresses and fractures can occur. Cracks occur primarily in the radial direction due to tangential tensile strength (TSt) that exceeds the strength of the material. The present article reports on experiments and nume......Timber is normally dried by kiln drying, in the course of which moisture-induced stresses and fractures can occur. Cracks occur primarily in the radial direction due to tangential tensile strength (TSt) that exceeds the strength of the material. The present article reports on experiments...... and numerical simulations by finite element modeling (FEM) concerning the TSt and fracture behavior of Norway spruce under various climatic conditions. Thin log disc specimens were studied to simplify the description of the moisture flow in the samples. The specimens designed for TS were acclimatized...... to a moisture content (MC) of 18% before TSt tests at 20°C, 60°C, and 90°C were carried out. The maximum stress results of the disc simulations by FEM were compared with the experimental strength results at the same temperature levels. There is a rather good agreement between the results of modeling...

  18. Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals

    International Nuclear Information System (INIS)

    Mayer, Alexander E.; Mayer, Polina N.

    2015-01-01

    A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, and Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets

  19. Post-uniform elongation and tensile fracture mechanisms of Fe-18Mn-0.6C-xAl twinning-induced plasticity steels

    International Nuclear Information System (INIS)

    Yu, Ha-Young; Lee, Sang-Min; Nam, Jae-Hoon; Lee, Seung-Joon; Fabrègue, Damien; Park, Myeong-heom; Tsuji, Nobuhiro; Lee, Young-Kook

    2017-01-01

    The objective of the present study was to elucidate the complicated interrelationship between necking, post-uniform elongation (e_p_u), strain rate sensitivity (SRS), fracture mechanism and Al concentration in Fe-18Mn-0.6C-xAl twinning-induced plasticity steels. Many tensile tests were conducted for in- and ex-situ observations of necking, fracture surfaces, crack propagation and the density and size of micro-voids with the assistance of a high-speed camera and X-ray tomographic equipment. The addition of Al increased e_p_u, SRS and reduction ratios in dimension of the neck part of tensile specimens, and also changed fracture mode from quasi-cleavage to ductile fracture at the edge part. The quasi-cleavage surface of Al-free specimen was induced by edge and side cracks occurring along grain boundary junctions and twin boundaries within the edges and side surfaces where local deformation bands meet. The ductile-fracture surface of 1.5 %Al-added specimen was formed by the coalescence of micro-voids. While the side-to-middle crack propagation occurred in Al-free and 1 %Al-added specimens due to side cracks, the middle-to-side crack propagation was observed in 1.5 %Al-added specimen. The Al-free specimen had the larger size of the 20 largest voids compared to the 1.5 %Al-added specimen despite its lower void density and local strain due to the accelerated growth of voids near the tips of side cracks. Evaluating the negligible e_p_u of Al-free specimen by SRS is not deemed to be reasonable due to its inappreciable necking and side cracks. The improvement of e_p_u in 1.5 %Al-added specimen is primarily due to disappearance of edge and side cracks.

  20. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  1. Crack tip fields and mixed mode fracture behaviour of progressively drawn pearlitic steel

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available This paper deals with the influence of the cold drawing process on the fracture behaviour of pearlitic steels. To this end, fracture tests under axial loading were performed on steel wires with different drawing degree (from a hot rolled bar to a commercial prestressing steel wire, transversely pre-cracked by fatigue, analyzing in detail the changes in fracture micromechanisms. The deflection angles of the fracture path were measured by longitudinal metallographic sections and the characteristic parameters of the loaddisplacement plot were related to different fracture events. Results allowed a calculation of critical stress intensity factors for different fracture angles and drawing degrees, thus evaluating the strength anisotropy and obtaining a sort of directional toughness.

  2. Tensile and fracture toughness properties of copper alloys and their HIP joints with austenitic stainless steel in unirradiated and neutron irradiated condition

    International Nuclear Information System (INIS)

    Taehtinen, S.; Pyykkoenen, M.; Singh, B.N.; Toft, P.

    1998-03-01

    The tensile strength and ductility of unirradiated CuAl25 IG0 and CuCrZr alloys decreased continuously with increasing temperature up to 350 deg C. Fracture toughness of unirradiated CuAl25 IG0 alloy decreased continuously with increasing temperature from 20 deg C to 350 deg C whereas the fracture toughness of unirradiated CuCrZr alloy remained almost constant at temperatures up to 100 deg C, was decreased significantly at 200 deg C and slightly increased at 350 deg C. Fracture toughness of HIP joints were lower than that of corresponding copper alloy and fracture path in HIP joint specimen was always within copper alloy side of the joint. Neutron irradiation to a dose level of 0.3 dpa resulted in hardening and reduction in uniform elongation to about 2-4% at 200 deg C in both copper alloys. At higher temperatures softening was observed and uniform elongation increased to about 5% and 16% for CuAl25 IG0 and CuCrZr alloys, respectively. Fracture toughness of CuAl25 IG0 alloy reduced markedly due to neutron irradiation in the temperature range from 20 deg C to 350 deg C. The fracture toughness of the irradiated CuCrZr alloy also decreased in the range from 20 deg C to 350 deg C, although it remained almost unaffected at temperatures below 200 deg C and decreased significantly at 350 deg C when compared with that of unirradiated CuCrZr alloy. (orig.)

  3. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  4. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    Science.gov (United States)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  5. Influence of interface properties on fracture behaviour of concrete

    Indian Academy of Sciences (India)

    Hardened concrete is a three-phase composite consisting of cement paste, aggregate and interface between cement paste and aggregate. The interface in concrete plays a key role on the overall performance of concrete. The interface properties such as deformation, strength, fracture energy, stress intensity and its ...

  6. Loading rate effect on the fracture behaviour of highstrength concrete

    Directory of Open Access Journals (Sweden)

    Del Viso J.

    2010-06-01

    Full Text Available This research deals with the sensitivity of eight types of performancedesigned high-strength concrete to the loading rate. Variations in the composition of the concrete produce the desired performance, for instance having null shrinkage or being able to be pumped at elevated heights without segregation, but they also produce variations in the fracture properties that are reported in this paper. We performed tests at five loading rates spanning six orders of magnitude in the displacement rate, from 1.74 × 10-5 mm/s to 17.4 mm/s. Load-displacement curves show that their peak is higher as the displacement rate increases, whereas the corresponding displacement is almost constant. Fracture energy also increases, but only for loading rates higher than 0.01 mm/s. We use a formula based on a cohesive law with a viscous term to study the results. The correlation of the formula to the experimental results is good and it allows us to obtain the theoretical value for the fracture energy under strictly static conditions. In addition, both the fracture energy and the characteristic length of the concretes used in the study diminish as the compressive strength of their aggregates increases.

  7. Effects of stacking sequence on fracture mechanisms in quasi-isotropic Carbon/epoxy laminates under tensile loading

    International Nuclear Information System (INIS)

    Hessabi, Z. R.; Majidi, B.; Aghazadeh, J.

    2006-01-01

    The progress of damage in quasi-isotropic carbon/epoxy laminates under tensile loading has been Investigated microscopically. One significant mode of failure in laminated composites is delamination initiating at free edges. The interlaminar stress in the boundary ply along the free edges of a laminated composite is the main factor to cause delamination. The laminate stacking sequence affects the interlaminar stress distribution and consequently may change the mode of failure. It is of design importance to determine a suitable criterion based on stress analysis to obtain the best stacking sequence. In the present work, tensile properties of six samples with different stacking sequences have been examined. Results showed that stress analysis at distance very close to the free edges is a suitable criterion to predict the initiation of delamination and the stacking sequence of [90/45/0/-45] s , has the highest strength among the others. Furthermore finite element analysis showed that the adjacent ±45 plies cause premature delamination during tensile loading

  8. Wedge Splitting Test on Fracture Behaviour of Fiber Reinforced and Regular High Performance Concretes

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    The fracture behaviour of three fiber reinforced and regular High Performance Concretes (HPC) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens...

  9. Fracture behaviour of Cu-Al-Ni shape memory alloys obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P. P.; Perez-Saez, R. B.; Recarte, V.; San Juan, J.M.; Ruano, O. A.; No, M. L.

    2001-01-01

    Polycrystalline Cu-Al-Ni shape memory alloys have been scarcely employed for technological applications due to their high brittleness. The development of a new elaboration technique based on powder metallurgy has recently overcome this problem, through the improvement of the ductility of the produced alloys without affecting its shape memory properties. The fracture behaviour of an alloy obtained using the elaboration technique has been studied by means of Scanning Electron Microscopy and mechanical testing. The results show a ductile fracture with a maximum strain close to 13%, which is the best fracture behaviour obtained for Cu-Al-Ni polycrystals. The microstructure of such alloys ha been studied by means of Transmission Electron Microscopy, showing a poligonyzed structure in which martensite plated passing through the subboundaries easily. (Author) 19 refs

  10. Post-cracking Behaviour and Fracture Energy of Synthetic Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Marta KOSIOR-KAZBERUK

    2016-11-01

    Full Text Available The paper reports the results of experimental programme focused on the effect of various synthetic fibres on fracture properties and ductility of concrete. The fracture energy was assessed on beams with initial notches in three-point bend test. The incorporation of synthetic fibres had a slight effect on mechanical properties of concrete but, at the same time, it had a significant influence on the fracture energy by modification of post-cracking behaviour of concrete. It was found that the modern synthetic fibres might be able to impart significant toughness and ductility to concrete. However, the beneficial effect of fibres depends on their length and flexibility. The analysis of load-deflection curves obtained made it possible to fit the simple function, describing the post-peak behaviour of fibre reinforced concrete, which can be useful for the calculation of GF value.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13246

  11. Hydromechanical and Thermomechanical Behaviour of Elastic Fractures during Thermal Stimulation of Naturally Fractured Reservoirs

    Science.gov (United States)

    Jalali, Mohammadreza; Valley, Benoît

    2015-04-01

    During the last two decades, incentives were put in place in order to feed our societies in energy with reduced CO2 emissions. Various policies have been considered to fulfill this strategy such as replacing coal by natural gas in power plants, producing electricity using CO2 free resources, and CO2 sequestration as a remediation for large point-source emitters (e.g. oil sands facilities, coal-fired power plants, and cement kilns). Naturally fractured reservoirs (NFRs) are among those geological structures which play a crucial role in the mentioned energy revolution. The behavior of fractured reservoirs during production processes is completely different than conventional reservoirs because of the dominant effects of fractures on fluid flux, with attendant issues of fracture fabric complexity and lithological heterogeneity. The level of complexity increases when thermal effects are taking place - as during the thermal stimulation of these stress-sensitive reservoirs in order to enhance the gas production in tight shales and/or increase the local conductivity of the fractures during the development of enhanced geothermal systems - where temperature is introduced as another degree of freedom in addition to pressure and displacement (or effective stress). Study of these stress-pressure-temperature effects requires a thermo-hydro-mechanical (THM) coupling approach, which considers the simultaneous variation of effective stress, pore pressure, and temperature and their interactions. In this study, thermal, hydraulic and mechanical behavior of partially open and elastic fractures in a homogeneous, isotropic and low permeable porous rock is studied. In order to compare the hydromechanical (HM) and thermomechanical (TM) characteristics of these fractures, three different injection scenarios, i.e. constant isothermal fluid injection rate, constant cooling without any fluid injection and constant cold fluid injection, are considered. Both thermomechanical and hydromechanical

  12. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature.

    Science.gov (United States)

    Bruchhausen, Matthias; Lapetite, Jean-Marc; Ripplinger, Stefan; Austin, Tim

    2016-12-01

    Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from -196 °C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT). Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN)https://odin.jrc.ec.europa.eu. The data presented in the current work has been analyzed in the research article "On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel" (M. Bruchhausen, S. Holmström, J.-M. Lapetite, S. Ripplinger, 2015) [1].

  13. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y2O3

    International Nuclear Information System (INIS)

    Eiselt, Ch.Ch.; Klimenkov, M.; Lindau, R.; Moeslang, A.; Odette, G.R.; Yamamoto, T.; Gragg, D.

    2011-01-01

    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2 O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 2 0 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  14. Design of a cruciform bend specimen for determination of out-of- plane biaxial tensile stress effects on fracture toughness for shallow cracks

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Mcafee, W.J.; Pennell, W.E.; Theiss, T.J.

    1993-01-01

    Pressurized-thermal-shock loading in a reactor pressure vessel produces significant positive out-of-plane stresses along the crack front for both circumferential and axial cracks. Experimental evidence, while very limited, seems to indicate that a reduction in toughness is associated with out-of-plane biaxial loading when compared with toughness values obtained under uniaxial conditions. A testing program is described that seeks to determine the effects of out-of-plane biaxial tensile loading on fracture toughness of RPV steels. A cruciform bend specimen that meets specified criteria for the testing pregam is analyzed using three-dimensional elastic-plastic finite-element techniques. These analysis results provide the basis for proposed test conditions that are judged likely to produce a biaxial loading effect in the cruciform bend specimen

  15. Status report on experiments and modelling of the cleavage fracture behaviour of F82Hmod using local fracture grid. Task TTMS-005

    International Nuclear Information System (INIS)

    Riesch-Oppermann, H.; Walter, M.

    2001-09-01

    Within the European Fusion Technology Programme framework, a fracture mechanics description of the material behaviour in the ductile to brittle transition-regime is developed using local fracture criteria. Based on experimental results using axisymmetrically notched and pre-cracked specimens together with a numerical stress analysis at fracture load, a statistical evaluation of cleavage fracture parameters can be performed along the lines described in various code schemes such as the British Energy R6-Code or the ESIS P6 procedure. The report contains results of the experimental characterization of the deformation and fracture behaviour of the fusion candidate RAFM steel variant F82Hmod, details and background of the numerical procedure for cleavage fracture parameter determination as well as additional statistical inference methods for transferability analysis. Fractographic results give important information about fracture mode and fracture origin sites and their location. Numerical prediction of fracture origin distribution is an important tool for transferability assessment. Future issues comprise constraint effect and ductile damage as well as incorporation of irradiation effects, which are topically addressed. The methodology developed and described in the present report will be applied to characterize material behaviour of future RAFM variants as the EUROFER 97, for which analysis is currently under way. (orig.)

  16. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Tschegg, E.K.; Gerstenberg, H.

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and 6O Co γ-rays up to 1.8 x 1 0 8 Gy as well as with different reactor spectra up to a fast neutron fluence of 5 x lO 22 m -2 (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed

  17. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Humer, K.; Weber, H.W. [Atominstitut der Oesterreichischen Hochschulen, Vienna (Austria); Tschegg, E.K. [Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik; Egusa, Shigenori [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Birtcher, R.C. [Argonne National Lab., IL (United States); Gerstenberg, H. [Technische Univ. Muenchen, Garching (Germany). Fakultaet fuer Physik

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and {sup 6O}Co {gamma}-rays up to 1.8 {times} 1 0{sup 8} Gy as well as with different reactor spectra up to a fast neutron fluence of 5 {times} lO{sup 22} m{sup {minus}2} (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed.

  18. Morphology of intermetallic phases in Al-Si cast alloys and their fracture behaviour

    Directory of Open Access Journals (Sweden)

    Lenka Hurtalová

    2015-03-01

    Full Text Available Applications of Al-Si cast alloys in recent years have increased especially in the automotive industry (dynamic exposed cast, en-gine parts, cylinder heads, pistons and so on. Controlling the microstructure of secondary aluminium cast alloys is very important, because these alloys contain more additional elements that form various intermetallic phases in the structure. Therefore, the contribution is dealing with the valuation type of intermetallic phases and their identification with using optical and scanning microscopy. Some of the intermetallic phases could be identified on the basis of morphology but some of them must be identified according EDX analysis. The properties of alu-minium alloy are affected by morphology of intermetallic phases and therefore it is necessary to study morphology and its fracture behav-iour. The present work shows morphology and typical fracture behaviour as the most common intermetallic phases forming in Al-Si alloys.

  19. The theory of planned behaviour explains intentions to use antiresorptive medication after a fragility fracture.

    Science.gov (United States)

    Sale, Joanna E M; Cameron, Cathy; Thielke, Stephen; Meadows, Lynn; Senior, Kevin

    2017-06-01

    Our objective was to ascertain whether the Theory of Planned Behaviour (TPB) explains patient intentions to use antiresorptive medication after a fracture. A qualitative study was conducted with English-speaking members of the Canadian Osteoporosis Patient Network (COPN) who had sustained a fragility fracture at 50+ years of age and were not taking antiresorptive medication at the time of that fracture. Questions during a 1-h telephone interview were guided by the domains of the TPB: they addressed the antecedent constructs regarding antiresorptive medication (attitudes, subjective norms, and perceived behavioural control) as well as intentions regarding antiresorptive medication use. We created a coding template a priori based on the TPB domains and applied this template to the interview data. Twenty-six eligible participants (24 females, 2 males) aged 51-89 completed an interview. The TPB appeared to be predictive of intentions in 19 (73%) participants. In the majority of participants where the TPB did not appear to be predictive (57%), a positive attitude toward antiresorptive medication was the most important antecedent variable in determining intentions. The TPB appeared to be predictive of intentions to use antiresorptive medication among individuals who had experienced a fragility fracture. Attitudes towards medication were especially important.

  20. Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, H., E-mail: huwdawson@gmail.com [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Serrano, M.; Hernandez, R. [Structural Materials Division, Technology Department, CIEMAT, Avda de la Complutense 40, 28040 Madrid (Spain); Cater, S. [Friction and Forge Processes Department, Joining Technologies Group, TWI Technology Centre (Yorkshire), Advanced Manufacturing Park, Wallis Way, Catcliffe, Rotherham S60 5TZ (United Kingdom); Jimenez-Melero, E. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-05-02

    We have assessed the microstructure and the temperature-dependent mechanical behaviour of five bead-on-plate friction stir welds of Oxide Dispersion Strengthened (ODS) steel, produced using systematic changes to the tool rotation and traverse speed. Friction stir welding can potentially retain the fine dispersion of nanoparticles, and therefore also the high-temperature strength and radiation damage resistance of these materials. Tensile testing was carried out on the MA956 base material at a range of temperatures, from room temperature up to 750 °C. The mechanical properties of the welds were investigated via tensile testing at room temperature and at 500 °C, together with micro-hardness testing. The welds exhibited similar strength and ductility to the base material at both testing temperatures as welding caused a partial loss of particle strengthening, alongside an increase in grain boundary strengthening due to a greatly refined grain size in the stir zones. The micro-hardness data revealed a trend of increasing hardness with increasing tool traverse speed or decreasing rotation speed. This was attributed to the smaller grain size and lower nanoparticle number density in the welds created with these parameters. At 500 °C, the yield stress and ultimate tensile stress of the base material and the welds decreased, due to a progressive reduction in both the Orowan-type particle strengthening and the grain boundary strengthening.

  1. Tensile testing

    CERN Document Server

    2004-01-01

    A complete guide to the uniaxial tensile test, the cornerstone test for determining the mechanical properties of materials: Learn ways to predict material behavior through tensile testing. Learn how to test metals, alloys, composites, ceramics, and plastics to determine strength, ductility and elastic/plastic deformation. A must for laboratory managers, technicians, materials and design engineers, and students involved with uniaxial tensile testing. Tensile Testing , Second Edition begins with an introduction and overview of the test, with clear explanations of how materials properties are determined from test results. Subsequent sections illustrate how knowledge gained through tensile tests, such as tension properties to predict the behavior (including strength, ductility, elastic or plastic deformation, tensile and yield strengths) have resulted in improvements in materals applications. The Second Edition is completely revised and updated. It includes expanded coverage throughout the volume on a variety of ...

  2. Fracture behaviour of a self-healing microcapsule-loaded epoxy system

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available The effect of temperature on the fracture behaviour of a microcapsule-loaded epoxy matrix was investigated. Microencapsulated epoxy and mercaptan-derivative healing agents were incorporated into an epoxy matrix to produce a polymer composite capable of self-healing. Maximum fracture loads were measured using the double-torsion method. Thermal aging at 55 and 110°C for 17 hours [hrs] was applied to heal the pre-cracked samples. The addition of microcapsules appeared to increase significantly the load carrying capacity of the epoxy after healing. Once healed, the composites achieved as much as 93–171% of its virgin maximum fracture load at 18, 55 and 110°C. The fracture behavior of the microcapsule- loaded epoxy matrix was influenced by the healing temperature. The high self-healing efficiency may be attributed to the result of the subsurface micro-crack pinning or deviation, and to a stronger microencapsulated epoxy and mercaptanderivative binder than that of the bulk epoxy. The results show that the healing temperature has a significant effect on recovery of load transferring capability after fracture.

  3. Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy

    Science.gov (United States)

    Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran

    2018-04-01

    The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.

  4. Behaviour of E-glass fibre reinforced vinylester resin composites ...

    Indian Academy of Sciences (India)

    A well-defined impact fatigue (S–N) behaviour, having a progressive endurance below the threshold single cycle impact fracture stress with decreasing applied stress has been demonstrated. Fractographic analysis revealed fracture by primary debonding having fibre breakage and pullout at the tensile zone, but a shear ...

  5. Cyclic deformation behaviour of quenched and tempered AISI 4140 at two-step tensile-compressive-loading

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V.; Lang, K.-H.; Voehringer, O.; Macherauch, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    1997-08-30

    The cyclic deformation behaviour in stress-controlled two-step experiments with one or more changes between two blocks of certain lengths and amplitudes was investigated at the technically important steel AISI 4140 (German grade 42 CrMo 4). In all two-step experiments cyclic worksoftening behaviour is found. The degree of work softening is discussed in comparison to single-step experiments. In several cases effects of static strain-ageing can be found. (orig.) 10 refs.

  6. Estimation of a stress field in the earth`s crust using drilling-induced tensile fractures observed at well WD-1 in the Kakkonda geothermal field; Kakkonda WD-1 sei de kansokusareta drilling induced tensile fracture ni yoru chikaku oryokuba no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, T. [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Hayashi, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science; Kato, O.; Doi, N.; Miyazaki, S. [Japan Metals and Chemicals Co. Ltd., Tokyo (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-05-27

    This paper describes estimation of a stress field in the earth`s crust in the Kakkonda geothermal field. Formation micro imager (FMI) logging known as a crack detecting logging was performed in the well WD-1. This FMI logging has made observation possible on cracks along well axis thought to indicate size and direction of the crust stress, and drilling-induced tensile fractures (DTF). It was verified that these DTFs are generated initially in an azimuth determined by in-situ stress (an angle up to the DTF as measured counterclockwise with due north as a starting point, expressed in {theta}) in the well`s circumferential direction. It was also confirmed that a large number of cracks incline at a certain angle to the well axis (an angle made by the well axis and the DTF, expressed in {gamma}). The DTF is a crack initially generated on well walls as a result of such tensile stresses as mud pressure and thermal stress acting on the well walls during well excavation, caused by the in-situ stress field. Measurement was made on the {theta} and {gamma} from the FMI logging result, and estimation was given on a three-dimensional stress field. Elucidating the three-dimensional crust stress field in a geothermal reservoir is important in making clear the formation mechanism thereof and the growth of water-permeable cracks. This method can be regarded as an effective method. 9 refs., 8 figs., 1 tab.

  7. Fracture behaviour of weld joints made of pearlitic and bainitic steel

    Directory of Open Access Journals (Sweden)

    Libor Válka

    2016-06-01

    Full Text Available The paper is concerned with microstructure evaluations and the hardness and fracture behaviour of welded joints made from cast bainitic Lo8CrNiMo steel and pearlitic rail steel of the type UIC 900A. The materials mentioned are predetermined for frogs of switches. The study is based mainly on microstructural observations and hardness measurements of the base materials, weld, and heat affected zone (HAZ. Dynamic fracture toughness was evaluated based on data from pre-cracked Charpy type specimens. The pearlitic UIC 900A steel and its HAZ had the lowest dynamic fracture toughness values and therefore the highest risk of brittle fracture. At application temperature range, this steel is on the lower shelf of the ductile-to-brittle transition, and the tempering in the HAZ did not affect the toughness substantially. The cast bainitic steel in the weld joint is characterized by higher toughness values compared to the pearlitic one, and a further increase in toughness may be expected in the HAZ. The weld zone itself is characterized by high scatter of toughness data; nevertheless, all the values are above the scatter band characterizing the pearlitic steel.

  8. Fracture mechanical investigations about crack resistance behaviour in non-transforming ceramics in particular aluminum oxide

    International Nuclear Information System (INIS)

    Baer, K.K.O.; Kleist, G.; Nickel, H.

    1991-03-01

    The aim of this work is the clearification of R-curve behaviour of non-transforming ceramics, in particular aluminum oxide exhibiting incrystalline fracture. Investigations of crack growth in controlled bending experiments were performed using 3-Pt- and 4-Pt-bending samples of differing sizes under inert conditions. The fracture experiments were realized using several loading techniques, for example constant and varying displacement rates, load rupture (P = 0) and relaxation tests (v = 0). In addition unloading and reloading experiments were performed to investigate hysteresis curves and residual displacements in accordance with R-curve behaviour. During the crack-growth experiments, the crack extension was measured in situ using a high resolution immersion microscope. With this technique, the fracture processes near the crack tip (crack activity zone) was observed as well. The crack resistance as a function of crack extension (R-curve) was determined using differing calculation methods. All of the methods used resulted in approximately identical R-curves, within the statistical error band. The crack resistance at initiation R 0 was 20 N/m. The crack resistance increased during approximately 3 mm of growth to a maximum of 90 N/m. A decrease in the crack resistance was determined for large a/W (crack length normalized with sample height) values, independant of the calculation methods. The R-curve behaviour was interpreted as due to a functional resistance behind the observed crack tip, which arises from a volume dilatation in the crack activity zone while the crack proceeds. (orig.) [de

  9. Men's health-seeking behaviours regarding bone health after a fragility fracture: a secondary analysis of qualitative data.

    Science.gov (United States)

    Sale, J E M; Ashe, M C; Beaton, D; Bogoch, E; Frankel, L

    2016-10-01

    In our qualitative study, men with fragility fractures described their spouses as playing an integral role in their health behaviours. Men also described taking risks, preferring not to dwell on the meaning of the fracture and/or their bone health. Communication strategies specific to men about bone health should be developed. We examined men's experiences and behaviours regarding bone health after a fragility fracture. We conducted a secondary analysis of five qualitative studies. In each primary study, male and female participants were interviewed for 1-2 h and asked to describe recommendations they had received for bone health and what they were doing about those recommendations. Maintaining the phenomenological approach of the primary studies, the transcripts of all male participants were re-analyzed to highlight experiences and behaviours particular to men. Twenty-two men (50-88 years old) were identified. Sixteen lived with a wife, male partner, or family member and the remaining participants lived alone. Participants had sustained hip fractures (n = 7), wrist fractures (n = 5), vertebral fractures (n = 2) and fractures at other locations (n = 8). Fourteen were taking antiresorptive medication at the time of the interview. In general, men with a wife/female partner described these women as playing an integral role in their health behaviours, such as removing tripping hazards and organizing their medication regimen. While participants described giving up activities due to their bone health, they also described taking risks such as drinking too much alcohol and climbing ladders or deliberately refusing to adhere to bone health recommendations. Finally, men did not dwell on the meaning of the fracture and/or their bone health. Behaviours consistent with those shown in other studies on men were described by our sample. We recommend that future research address these findings in more detail so that communication strategies specific to men about

  10. Nylon-6/rubber blends: 6. Notched tensile impact testing of nylon-6(ethylene-propylene rubber) blends

    NARCIS (Netherlands)

    Dijkstra, Krijn; Dijkstra, K.; ter Laak, J.A.; ter Laak, J.; Gaymans, R.J.

    1994-01-01

    The deformation and fracture behaviour of nylon-6/EPR (ethylene-propylene rubber) blends is studied as a function of strain rate and rubber content. Therefore, tensile experiments are conducted on notched specimens over a broad range of draw speeds (including strain rates as encountered in normal

  11. Behaviour of filamentary MgB2 wires subjected to tensile stress at 4.2 K

    International Nuclear Information System (INIS)

    Kováč, P; Kopera, L; Melišek, T; Hušek, I; Rindfleisch, M; Haessler, W

    2013-01-01

    Different filamentary MgB 2 wires have been subjected to tensile stress at 4.2 K. Stress–strain and critical current versus stress and strain characteristics of wires differing by filament architecture, sheath materials, deformation and heat treatment were measured and compared. It was found that the linear increase of critical current due to the pre-compression effect (ranging from 5% up to ≈20%) is affected by thermal expansion and the strength of used metallic sheaths. The values of irreversible strain ε irr and stress σ irr depend dominantly on the applied outer sheath and its final heat treatment conditions. Consequently, the strain-tolerance of MgB 2 wires is influenced by several parameters and it is difficult to see a clear relation between I c (ε) and σ(ε) characteristics. The lowest ε irr was measured for Monel sheathed wires (0.3–0.6%), medium for GlidCop ® sheath (0.48–0.6%), and the highest ε irr = 0.6–0.9% were obtained for MgB 2 wires reinforced by the stainless steel 316L annealed at temperature between 600 and 800 ° C. The highest ε irr = 0.9% and σ irr = 900 MPa were measured for the work-hardened steel, which is not considerably softened by the heat treatment at 600 ° C/2.5 h. (paper)

  12. An Experimental Study of the Fracture Coalescence Behaviour of Brittle Sandstone Specimens Containing Three Fissures

    Science.gov (United States)

    Yang, S. Q.; Yang, D. S.; Jing, H. W.; Li, Y. H.; Wang, S. Y.

    2012-07-01

    To analyse the fracture coalescence behaviour of rock, rectangular prismatic sandstone specimens (80 × 160 × 30 mm in size) containing three fissures were tested under uniaxial compression. The strength and deformation behaviours of the specimens are first analysed by investigating the effects of the ligament angle β2 on the peak strength, peak strain and crack initiation stress of the specimens. To confirm the sequence of crack coalescence, a photographic monitoring technique is used throughout the entire period of deformation. Based on the results, the relationship between the real-time crack coalescence process and the axial stress-strain curve of brittle sandstone specimens is also developed, and this relationship can be used to evaluate the macroscopic deformation characteristics of pre-cracked rock. The equivalent strain evolution fields of the specimen, with α = β1 = 45° and β2 = 90°, are obtained using the digital image correlation technique and show good agreement with the experimental results of pre-cracked brittle sandstone. These experimental results are expected to improve the understanding of fracture mechanisms and be used in rock engineering with intermittent structures, such as deep underground excavated tunnels.

  13. Tensile behaviour of natural fibres. Effect of loading rate, temperature and humidity on the “accommodation” phenomena

    Directory of Open Access Journals (Sweden)

    Placet V.

    2010-06-01

    Full Text Available The use of natural fibres in high performance composite requires an accurate understanding of the mechanical behaviour of the fibres themselves. As for all biobased materials, the mechanical properties of natural fibres depend generally on the testing rate and on the environmental conditions. In addition, natural fibres as hemp for example exhibit a particular mechanism of stiffness increase and accommodation phenomena under cyclic loading. Loading rate, temperature and humidity effects on the viscoelastic properties of hemp fibres were investigated in this work. The collected results clearly emphasis the involvement of time-dependant and mechano-sorptive mechanisms.

  14. Tensile tests and metallography of brazed AISI 316L specimens after irradiation

    International Nuclear Information System (INIS)

    Groot, P.; Franconi, E.

    1994-01-01

    Stainless steel type 316L tensile specimens were vacuum brazed with three kinds of alloys: BNi-5, BNi-6, and BNi-7. The specimens were irradiated up to 0.7 dpa at 353 K in the High Flux Reactor at JRC Petten, the Netherlands. Tensile tests were performed at a constant displacement rate of 10 -3 s -1 at room temperature in the ECN hot cell facility. BNi-5 brazed specimens showed ductile behaviour. Necking and fractures were localized in the plate material. BNi-6 and BNi-7 brazed specimens failed brittle in the brazed zone. This was preceded by uniform deformation of the plate material. Tensile test results of irradiated specimens showed higher stresses due to radiation hardening and a reduction of the elongation of the plate material compared to the reference. SEM examination of the irradiated BNi-6 and BNi-7 fracture surfaces showed nonmetallic phases. These phases were not found in the reference specimens. ((orig.))

  15. Wedge Splitting Test and Inverse Analysis on Fracture Behaviour of Fiber Reinforced and Regular High Performance Concretes

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2014-01-01

    The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens...

  16. Fracture Behaviours in Compression-loaded Triangular Corrugated Core Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2016-01-01

    Full Text Available The failure modes occurring in sandwich panels based on the corrugations of aluminium alloy, carbon fibre-reinforced plastic (CFRP and glass fibre-reinforced plastic (GFRP are analysed in this work. The fracture behaviour of these sandwich panels under compressive stresses is determined through a series of uniform lateral compression performed on samples with different cell wall thicknesses. Compression test on the corrugated-core sandwich panels were conducted using an Instron series 4505 testing machine. The post-failure examinations of the corrugated-core in different cell wall thickness were conducted using optical microscope. Load-displacement graphs of aluminium alloy, GFRP and CFRP specimens were plotted to show progressive damage development with five unit cells. Four modes of failure were described in the results: buckling, hinges, delamination and debonding. Each of these failure modes may dominate under different cell wall thickness or loading condition, and they may act in combination. The results indicate that thicker composites corrugated-core panels tend can recover more stress and retain more stiffness. This analysis provides a valuable insight into the mechanical behaviour of corrugated-core sandwich panels for use in lightweight engineering applications.

  17. Experimental study on the usefulness of magnetotherapy in bone fractures (tibial osteotomy in the rat). Accumulation of 99 mTc MDP - tests of tensile strength - determination of alkaline phosphatase

    International Nuclear Information System (INIS)

    Sailer, R.

    1985-01-01

    Non-directional magnetic field therapy using a flux density of 60 G and a frequency of 25 Hz was carried out over 12 hours daily in rats in order to ascertain its influence on the healing process following osteotomy of the tibia with internal splint fixation of the fractured bone being carried out as an additional measure. The results thus achieved were compared to those seen in control animals, were no magnetotherapy was carried out, on the basis of scintiscan studies using 99 mTc MDP (degree of density in the callus formed around the fracture zone), the plasma levels of alkaline phosphatase and tests of tensile strength. The follow-up observations of the healing process were additionally based on radiological and histological evaluations of the animals. Beneficial effects of magnetotherapy on the healing process could not be confirmed with any statistical significance. (TRV) [de

  18. Fracture modelling of a high performance armour steel

    Science.gov (United States)

    Skoglund, P.; Nilsson, M.; Tjernberg, A.

    2006-08-01

    The fracture characteristics of the high performance armour steel Armox 500T is investigated. Tensile mechanical experiments using samples with different notch geometries are used to investigate the effect of multi-axial stress states on the strain to fracture. The experiments are numerically simulated and from the simulation the stress at the point of fracture initiation is determined as a function of strain and these data are then used to extract parameters for fracture models. A fracture model based on quasi-static experiments is suggested and the model is tested against independent experiments done at both static and dynamic loading. The result show that the fracture model give reasonable good agreement between simulations and experiments at both static and dynamic loading condition. This indicates that multi-axial loading is more important to the strain to fracture than the deformation rate in the investigated loading range. However on-going work will further characterise the fracture behaviour of Armox 500T.

  19. Influence of heat treatments for laser welded semi solid metal cast A356 alloy on the fracture mode of tensile specimens

    CSIR Research Space (South Africa)

    Kunene, G

    2008-09-01

    Full Text Available were then butt laser welded. It was found that the pre-weld as cast, T4 and post-weld T4 heat treated specimens fractured in the base metal. However, the pre-weld T6 heat treated specimens were found to have fractured in the heat affected zone (HAZ)...

  20. Corrigendum to 'On the influence of microstructure on the fracture behaviour of hot extruded ferritic ODS steels' [J. Nucl. Mater. 497 (2017) 60-75

    Science.gov (United States)

    Das, A.; Viehrig, H. W.; Altstadt, E.; Heintze, C.; Hoffmann, J.

    2018-02-01

    ODS steels are known to show inferior fracture properties as compared to ferritic martensitic non-ODS steels. Hot extruded 13Cr ODS steel however, showed excellent fracture toughness at a temperature range from room temperature to 400 °C. In this work, the factors which resulted in superior and anisotropic fracture behaviour were investigated by comparing different orientations of two hot extruded materials using scanning electron, electron backscatter and transmission electron microscopy. Fracture behaviour of the two materials was compared using unloading compliance fracture toughness tests. Anisotropic fracture toughness was predominantly influenced by grain morphology. Superior fracture toughness in 13Cr ODS-KIT was predominantly influenced by factors such as smaller void inducing particle size and higher sub-micron particle-matrix interfacial strength.

  1. Time-dependent crack growth and fracture in concrete

    International Nuclear Information System (INIS)

    Zhou Fan Ping.

    1992-02-01

    The objectives of this thesis are to study time-dependent fracture behaviour in concrete. The thesis consists of an experimental study, costitutive modelling and numerical analysis. The experimental study was undertaken to investigate the influences of time on material properties for the fracture process zone and on crack growth and fracture in plain concrete structures. The experiments include tensile relaxation tests, bending tests on notched beams to determine fracture energy at varying deflection rates, and sustained bending and compact tensile tests. From the tensile relaxation tests, the envelope of the σ-w relation does not seem to be influenced by holding periods, though some local detrimental effect does occur. Fracture energy seems to decrease as rates become slower. In the sustained loading tests, deformation (deflection or CMOD) growth curves display three stages, as usually observed in a creep rupture test. The secondary stage dominates the whole failure lifetime, and the secondary deformation rate appears to have good correlation with the failure lifetime. A crack model for time-dependent fracture is proposed, by applying the idea of the Fictitious Crack Model. In this model, a modified Maxwell model is introduced for the fracture process zone incorporated with the static σ-w curve as a failure criterion, based on the observation of the tensile relaxation tests. The time-dependent σ-w curve is expressed in an incremental law. The proposed model has been implemented in a finite element program and applied to simulating sustained flexural and compact tensile tests. Numerical analysis includes simulations of crack growth, load-CMOD curves, stress-failure lifetime curves, size effects on failure life etc. The numerical results indicate that the model seems to be able to properly predict the main features of time-dependent fracture behaviour in concrete, as compared with the experimental results. 97 refs

  2. On modeling the large strain fracture behaviour of soft viscous foods

    Science.gov (United States)

    Skamniotis, C. G.; Elliott, M.; Charalambides, M. N.

    2017-12-01

    Mastication is responsible for food breakdown with the aid of saliva in order to form a cohesive viscous mass, known as the bolus. This influences the rate at which the ingested food nutrients are later absorbed into the body, which needs to be controlled to aid in epidemic health problems such as obesity, diabetes, and dyspepsia. The aim of our work is to understand and improve food oral breakdown efficiency in both human and pet foods through developing multi-scale models of oral and gastric processing. The latter has been a challenging task and the available technology may be still immature, as foods usually exhibit a complex viscous, compliant, and tough mechanical behaviour. These are all addressed here through establishing a novel material model calibrated through experiments on starch-based food. It includes a new criterion for the onset of material stiffness degradation, a law for the evolution of degradation governed by the true material's fracture toughness, and a constitutive stress-strain response, all three being a function of the stress state, i.e., compression, shear, and tension. The material model is used in a finite element analysis which reproduces accurately the food separation patterns under a large strain indentation test, which resembles the boundary conditions applied in chewing. The results lend weight to the new methodology as a powerful tool in understanding how different food structures breakdown and in optimising these structures via parametric analyses to satisfy specific chewing and digestion attributes.

  3. Characterization of the tensile behaviour of argillaceous soils for the barriers of waste disposal facilities; Caracterisation du comportement en traction des sols argileux pour les barrieres de centres de stockage de dechets

    Energy Technology Data Exchange (ETDEWEB)

    Madjoudj Guessasma, N

    2001-12-01

    Compacted clay beds are traditionally used for the covering of radioactive waste repositories. Their implementation is a delicate task which requires to take into consideration the type of waste and the environment properties: climate, hydrology, topography and sociology. Several works have been performed on the mechanical behaviour of such soils with respect to their elastic or compression rupture properties. However, their sensibility with respect to the cracking generated by an hydric change or by a flexural strength (differential compaction of the wastes) remains badly known. The aim of this work is to propose a laboratory test for the characterization of the suitability of these materials with respect to their tensile extensibility. This test has been performed on two types of argillaceous materials. The document is structured as follows: after a synthesis of the main causes of alteration of cover materials, a characterization of two natural fine soils which could be used as cover material is presented. Their tensile properties is analyzed, in particular their deformation during cracking and rupture. Different direct or indirect tensile tests are analyzed in order to define a simple test for the characterization of the tensile properties of soils. The influence of the compacting mode on the cracking and rupture is also studied. Finally, a real scale experiment simulating the bending of an argillaceous cover above a cavity has been performed in-situ. The results are compared with those obtained at the laboratory in order to validate the choices proposed for an application to waste repository covers. (J.S.)

  4. Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave

    International Nuclear Information System (INIS)

    Yadav, S.N.; Kumar, Vijai; Verma, Sushil K.

    2006-01-01

    This work was to evaluate as to how mode II fracture toughness G II is affected by interleave having Kevlar fibre reinforcement in the fracture plane. Thermoset interleave and chopped Kevlar fibres were applied between the carbon/epoxy composite layers. An artificial crack starter was implanted in the mid-plane to initiate the fracture process. The following five different types of carbon fibre/epoxy composites were prepared and tested. (a) Base laminate without interleave (b) unreinforced interleave and (c) 0.5, 1.0 and 1.5 mg/cm 2 chopped Kevlar fibre reinforced interleave. Results obtained show that fracture toughness G IIC enhanced up to about two times in all the laminates. However, enhancement in fracture toughness G IIC was more effective in interleaved laminate than Kevlar reinforced interleaved because of large energy absorbing capabilities of interleaf. Mechanism of fracture and toughening were examined by using scanning electron microscope

  5. Effect of Annealing Temperature on the Microstructure, Tensile Properties, and Fracture Behavior of Cold-Rolled High-Mn Light-Weight Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hyun; Cho, Kyung Mox [Pusan National University, Busan (Korea, Republic of); Park, Seong-Jun; Moon, Joonoh; Kang, Jun-Yun; Park, Jun-Young; Lee, Tae-Ho [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-05-15

    The effects of the annealing temperature on the microstructure and tensile properties of cold-rolled light-weight steels are investigated using two Fe-30Mn-xAl-0.9C alloys that contain different Al content. The initial alloy microstructure is composed of a single austenite or a mixture of austenite and ferrite depending on the nominal aluminum content. For the alloy with 9 wt%Al content, the recrystallization and grain growth of austenite occurrs depending on the annealing temperature. However, for the alloy with 11 wt%Al content, the β-Mn phase is observed after annealing for 10 min at 550~800 ℃. The β-Mn transformation kinetics is the fastest at 700 ℃. The formation of the β-Mn phase has a detrimental effect on the ductility, and this leads to significant decreases in the total elongation. The same alloy also forms κ-carbide and DO3 ordering at 550~900 ℃. The investigated alloys exhibit a fully recrystallized microstructure after annealing at 900 ℃ for 10 min, which results in a high total elongation of 25~55%with a high tensile strength of 900~1170 MPa.

  6. Fracture behaviour assessment of a flawed pressure vessel in the hydro-test

    Energy Technology Data Exchange (ETDEWEB)

    Sarkimo, M; Rintamac, R

    1988-12-31

    This document deals with the fracture properties of a flawed pressure vessel. The experiment was carried out within the Nordic Countries on a vessel in a Finnish refinery. The instrumentation used included acoustic emission. Some results are provided. (TEC).

  7. Analysis of the competition between brittle and ductile fracture: application for the mechanical behaviour of C-Mn and theirs welds

    International Nuclear Information System (INIS)

    Le Corre, V.

    2006-09-01

    This study deals with the fracture behaviour of welded thin structures in the ductile to brittle transition range. It aims to propose a criterion to define the conditions for which the risk of fracture by cleavage does not exist on a cracked structure. The literature review shows that the difficulties of prediction of the fracture behaviour of a structure are related to the dependence of the fracture probability to the mechanical fields at the crack tip. The ductile to brittle transition range thus depends on the studied geometry of the structure. A threshold stress, below which cleavage cannot take place, is defined using fracture tests on notched specimens broken at very low temperature. The finite element numerical simulation of fracture tests on CT specimens in the transition range shows a linear relationship between the fracture probability and the volume exceeding the threshold stress, thus showing the relevance of the proposed criterion. Moreover, several relations are established allowing to simplify the identification of the criterion parameters. The criterion is applied to a nuclear structural C-Mn steel, by focusing more particularly on the higher boundary of the transition range. A fracture test on a full-scale pipe is designed, developed, carried out and analysed using its numerical simulation. The results show firstly that, on the structure, the transition range is shifted in temperature, compared to laboratory specimens, due to the low plasticity constraint achieved in thin structures, and secondly that the threshold stress criterion allows to estimate simply this shift. (author)

  8. Failure behaviour of carbon/carbon composite under compression

    Energy Technology Data Exchange (ETDEWEB)

    Tushtev, K.; Grathwohl, G. [Universitaet Bremen, Advanced Ceramics, Bremen (Germany); Koch, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Institut fuer Bauweisen- und Konstruktionsforschung, Keramische Verbundstrukturen, Stuttgart (Germany); Horvath, J.

    2012-11-15

    In this work the properties of Carbon/Carbon-material are investigated under quasi-static compression and model-like characterized. The investigated material was produced by pyrolysis of a Carbon/Carbon - composite of bidirectionally reinforced fabric layers. For the compression tests, a device to prevent additional bending stress was made. The stress-strain behaviour of this material has been reproduced in various publications. This will be discussed on the fracture behaviour and compared the experimental results from the compression tests with the characteristics of tensile and shear tests. The different compression and tensile properties of stiffness, poisson and strength were assessed. Differences between the tensile and compression behaviour resulting from on-axis tests by micro buckling and crack closure and off-axis experiments by superimposed pressure normal stresses that lead to increased shear friction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments

    DEFF Research Database (Denmark)

    Zhao, P.; Riesch, J.; Höschen, T.

    2017-01-01

    Plastic deformation of tungsten wire is an effective source of toughening tungsten fibre-reinforced tungsten composites (Wf/W) and other tungsten fibre-reinforced composites. To provide a reference for optimization of those composites, unconstrained pure tungsten wire is studied after various hea...... a rather different microstructure. As-fabricated wire and wire recrystallized at 1273 K for 3 h show fine grains with a high aspect ratio and a substantial plastic deformability: a clearly defined tensile strength, high plastic work, similar necking shape, and the characteristic knife...

  10. Influence of Aging Conditions on Fatigue Fracture Behaviour of 6063 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rafiq Ahmed Siddiqui

    2001-12-01

    Full Text Available Aluminum - Magnesium - Silicon (Al-Mg-Si 6063 alloy was heat-treated using under aged, peak aged and overage temperatures. The numbers of cycles required to cause the fatigue fracture, at constant stress, was considered as criteria for the fatigue resistance. Moreover, the fractured surface of the alloy at different aging conditions was evaluated by optical microscopy and the Scanning Electron Microscopy (SEM. The SEM micrographs confirmed the cleavage surfaces with well-defined fatigue striations. It has been observed that the various aging time and temperature of the 6063 Al-alloy, produces different modes of fractures. The most suitable age hardening time and temperature was found to be between 4 to 5 hours and to occur at 460 K. The increase in fatigue fracture property of the alloy due to aging could be attributed to a vacancy assisted diffusion mechanism or due to pinning of dislocations movement by the precipitates produced during aging. However, the decrease in the fatigue resistance, for the over aged alloys, might be due to the coalescence of precipitates into larger grains.

  11. The fracture behaviour and its predicion based on the local approach

    Czech Academy of Sciences Publication Activity Database

    Kozák, Vladislav; Dlouhý, Ivo; Holzmann, Miloslav

    č. 212 (2002), s. 67-73 ISSN 0029-5493 R&D Projects: GA ČR GA101/00/0170 Institutional research plan: CEZ:AV0Z2041904 Keywords : container for spent nuclear fuel * fracture toughness -charpy pre cracked specimen Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.386, year: 2002

  12. HYBRID CONTINUUM-DISCONTINUUM MODELLING OF ROCK FRACUTRE PROCESS IN BRAZILIAN TENSILE STRENGTH TEST

    Directory of Open Access Journals (Sweden)

    Huaming An

    2017-10-01

    Full Text Available A hybrid continuum-discontinuum method is introduced to model the rock failure process in Brazilian tensile strength (BTS test. The key component of the hybrid continuum-discontinuum method, i.e. transition from continuum to discontinuum through fracture and fragmentation, is introduced in detail. A laboratory test is conducted first to capture the rock fracture pattern in the BTS test while the tensile strength is calculated according to the peak value of the loading forces. Then the proposed method is used to model the rock behaviour during BTS test. The stress propagation is modelled and compared with those modelled by finite element method in literatures. In addition, the crack initiation and propagation are captured and compared with the facture patter in laboratory test. Moreover, the force-loading displacement curve is obtained which represents a typical brittle material failure process. Furthermore, the stress distributions along the vertical direction are compared with the theoretical solution. It is concluded that the hybrid continuum-discontinuum method can model the stress propagation process and the entire rock failure process in BTS test. The proposed method is a valuable numerical tool for studying the rock behaviour involving the fracture and fragmentation processes.

  13. Application of X-ray microtomography to study the influence of the casting microstructure upon the tensile behaviour of an Al–Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Limodin, Nathalie, E-mail: nathalie.limodin@ec-lille.fr [Laboratoire de Mécanique de Lille (LML), CNRS, UMR 8107, Cité Scientifique, 59650 Villeneuve d’Ascq (France); El Bartali, Ahmed, E-mail: ahmed.elbartali@ec-lille.fr [Laboratoire de Mécanique de Lille (LML), CNRS, UMR 8107, Cité Scientifique, 59650 Villeneuve d’Ascq (France); Ecole Centrale de Lille, 59650 Villeneuve d’Ascq (France); Wang, Long, E-mail: long.wang@ec-lille.fr [Laboratoire de Mécanique de Lille (LML), CNRS, UMR 8107, Cité Scientifique, 59650 Villeneuve d’Ascq (France); Ecole Centrale de Lille, 59650 Villeneuve d’Ascq (France); Lachambre, Joël, E-mail: joel.lachambre@insa-lyon.fr [Laboratoire Matériaux, Ingénierie et Sciences (MATEIS), INSA-Lyon, CNRS, UMR 5510, 20 Av. Albert Einstein, 69621 Villeurbanne (France); Buffiere, Jean-Yves, E-mail: jean-yves.buffiere@insa-lyon.fr [Laboratoire Matériaux, Ingénierie et Sciences (MATEIS), INSA-Lyon, CNRS, UMR 5510, 20 Av. Albert Einstein, 69621 Villeurbanne (France); Charkaluk, Eric, E-mail: eric.charkaluk@ec-lille.fr [Laboratoire de Mécanique de Lille (LML), CNRS, UMR 8107, Cité Scientifique, 59650 Villeneuve d’Ascq (France)

    2014-04-01

    In cast aluminium alloys used in the automotive industry the microstructure inherited from the foundry process has a strong influence on the mechanical properties. In the cylinder heads produced by the Lost Foam Casting process, the microstructure consists of hard intermetallic phases and large gas and microshrinkage pores. To study its influence, full field measurements at the microstructure scale were performed during a tensile test performed in situ under X-ray microtomography. Intermetallics were used as a natural speckle pattern. Feasibility of Digital Volume Correlation on this alloy was proved and the accuracy of the measurement was assessed and discussed in light of the small volume fraction of intermetallics and in comparison with the accuracy of Digital Image Correlation performed on optical images at a finer spatial resolution.

  14. Tensile flow behaviour of 2.25Cr-1Mo ferritic steel base metal an simulated heat affected zone structures of 2.25 Cr-1Mo weld joint

    International Nuclear Information System (INIS)

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S. L.; Sastry, D.H.

    1999-01-01

    Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (σ = K 1 ε n1 ) at higher (>623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower ( 1 ε n1 + exp (K 2 + n 2 ε), was found to describe the flow curve. In general, the flow parameters n 1 , K 1 , n 2 and K 2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n 1 value increased and the K 1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of n 1 with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n 1 . (orig.)

  15. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, B.K., E-mail: bkc@igcar.gov.in; Mathew, M.D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-15

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24–0.60% have been examined in the temperature range 300–873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24–0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  16. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    Science.gov (United States)

    Choudhary, B. K.; Mathew, M. D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24-0.60% have been examined in the temperature range 300-873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24-0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  17. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Mathew, M.D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-01-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24–0.60% have been examined in the temperature range 300–873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24–0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature

  18. Tensile Strength of the Eggshell Membranes

    Czech Academy of Sciences Publication Activity Database

    Strnková, J.; Nedomová, Š.; Kumbár, V.; Trnka, Jan

    2016-01-01

    Roč. 64, č. 1 (2016), s. 159-164 ISSN 1211-8516 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : eggshell membrane * tesile test * loading rate * tensile strength * fracture strain Subject RIV: GM - Food Processing

  19. Fracture behaviour of steel 20 MnMoNi 5 5 under stress wave loading

    International Nuclear Information System (INIS)

    Clos, R.; Schreppel, U.; Veit, P.; Zencker, U.; Specht, E.

    1994-01-01

    Crack initiation in fine grained 20 MnMoNi 5 5 steel has been investigated under stress wave loading conditions in the temperature range from -50 C to 20 C by a loading setup similar the ''Split Hopkinson Pressure Bar'' technique. For temperatures up to 20 C, fracture occurs by cleavage and K Id approaches and falls below the reference fracture toughness, while at room temperature stable crack growth occurs with a J i close to the static initiation value of the J-integral. The analysis of the crack tip configuration suggests that stable crack growth is the result of the following simultaneously induced stochastical processes: generation of constrained local microcracks, blunting of the individual crack tips and the deformation of material bridges at different regions along the crack tip front. (orig.)

  20. Behaviour of high stretch bolts in tension working as part of elements of steel structures, and their tendency to delayed fracturing

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    2014-12-01

    Full Text Available In the article, the author has proven that manufacturing and installation errors, as well as contact deformations of high strength bolts, if analyzed as part of tensile connections of steel structures, work in eccentric tension. In pursuance of the effective state standards, the analysis of these bolts is based on the axial tension. The author has analyzed the failure of a steel structure, caused by the fracture of eccentrically loaded bolts made of steel grade XC 42 (France, or C40 (Germany, that later followed the delayed fracturing pattern. The author provides the findings of the lab tests, whereby the above bolts were tested in the presence of an angle washer. The author has also analyzed the findings of low-temperature tests of bolts in tension. The author demonstrates that the strength of high strength bolts is driven by the material, the structure shape, and the thermal treatment pattern. Eccentric tension tests of bolts have proven that cracks emerge in the areas of maximal concentration of stresses (holes in shafts, etc. that coincide with the areas where fibers are in tension; cracks tend to follow the delayed fracturing pattern, and their development is accompanied by the deformation-induced metal heating in the fracture area. Therefore, the analysis of high strength bolts shall concentrate on the eccentric tension with account for contact-induced loads, while the tendency to delayed fracturing may be adjusted through the employment of both metallurgical and process techniques.

  1. Use of run statistics to validate tensile tests

    International Nuclear Information System (INIS)

    Eatherly, W.P.

    1981-01-01

    In tensile testing of irradiated graphites, it is difficult to assure alignment of sample and train for tensile measurements. By recording location of fractures, run (sequential) statistics can readily detect lack of randomness. The technique is based on partitioning binomial distributions

  2. Experimental Investigation of the Fracture Behaviour of Reinforced Ultra High Strength Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Aarup, B.

    the structural behaviour of a very high strength cement based material with and without steel fibres is investigated. A simple structural geometry has been tested, namely a beam subjected to three point bending. The results shows that the increase of ductility of the material also gives a more ductile behaviour......In the last fifteen years new types of cement based materials have been developed in Denmark at the Aalborg Portland Cement Factory. These types of new materials are characterized by very high strength even when mixed at room temperature and using conventional mixing techniques. In this paper...

  3. Microstructure and tensile properties of tungsten at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tielong [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dai, Yong, E-mail: yong.dai@psi.ch [Laboratory for Nuclear Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Lee, Yongjoong [European Spallation Source, Tunavägen 24, 223 63 Lund (Sweden)

    2016-01-15

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250–300 °C for the HR tungsten and about 350 °C for the HF tungsten. - Highlights: • This work was conducted to support the development of the 5 MW spallation target for the European Spallation Source. • The effect of fabrication process on microstructure, ductile-to-brittle transition temperature and tensile behaviour was studied with hot-rolled and hot-forged tungsten. • The tungsten materials were characterized with metallography analysis, hardness measurement and tensile test in a temperature range of 25–500 °C. • The results indicate that the HR tungsten has better mechanical properties in terms of greater ductility and lower ductile-to-brittle transition temperature.

  4. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, V L; Bueno, L O, E-mail: sordi@ufscar.b [Federal University of Sao Carlos, Materials Engineering Department, Sao Carlos (SP), 13565-905 (Brazil)

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700{sup 0}C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300{sup 0}C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation {epsilon}-dot = A.{sigma}{sup n} and the Monkman-Grant relation {epsilon}-dot .t{sup m}{sub R} = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  5. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700°C

    Science.gov (United States)

    Sordi, V. L.; Bueno, L. O.

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700°C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300°C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation dot epsilon = A.σn and the Monkman-Grant relation dot epsilon.tmR = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  6. EFAM GTP 02 - the GKSS test procedure for determining the fracture behaviour of materials

    International Nuclear Information System (INIS)

    Schwalbe, K.H.; Heerens, J.; Zerbst, U.; Kocak, M.

    2002-01-01

    This document describes a unified fracture mechanics test method in procedural form for quasi-static testing of materials. It is based on the ESIS Procedures P1 and P2 and introduces additional features, such as middle cracked tension specimens, shallow cracks, the δ 5 crack tip opening displacement, the crack tip opening angle, the rate of dissipated energy, testing of weldments, and guidance for statistical treatment of scatter. Special validity criteria are given for tests on specimens with low constraint. This document represents an updated version of EFAM GTP 94. (orig.) [de

  7. Fracture behaviour of the 14Cr ODS steel exposed to helium and liquid lead

    Czech Academy of Sciences Publication Activity Database

    Hojná, A.; Di Gabriele, F.; Hadraba, Hynek; Husák, Roman; Kuběna, Ivo; Rozumová, L.; Bublíková, P.; Kalivodová, J.; Matějíček, Jiří

    2017-01-01

    Roč. 490, JUL (2017), s. 143-154 ISSN 0022-3115 R&D Projects: GA ČR(CZ) GA14-25246S; GA ČR(CZ) GA14-12837S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Impact fracture * Microanalysis * Nanostructured steel * Oxidation * Thermal ageing Subject RIV: JG - Metallurgy; JG - Metallurgy (UFP-V) OBOR OECD: Materials engineering; Materials engineering (UFP-V); Materials engineering (UFM-A) Impact factor: 2.048, year: 2016

  8. Fracture behaviour of teeth with conventional and mini-invasive access cavity designs

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Žižka, R.; Kania, J.; Přibyl, M.

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4423-4429 ISSN 0955-2219. [FAC 2016 - International Conference on Fractography of Advanced Ceramic s /5./. Smolenice, 09.10.2016-12.10.2016] R&D Projects: GA ČR GA14-11234S; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : endodontically treated premolars * in-vitro * maxillary premolars * stress-distribution * cusp coverage * resistance * composite * resin * restorations * scaffolds * Fracture resistance * Cavity * Tooth * Compressive test * Fractography Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 3.411, year: 2016

  9. Damage-induced tensile instability

    International Nuclear Information System (INIS)

    Hult, J.

    1975-01-01

    The paper presents a unified description of ductile and brittle rupture phenomena in structural components under tensile loading with particular emphasis on creep rupture. Two structural elements are analyzed in detail: 1) the uniform tensile bar subject to a Heaviside history of tensile force and superimposed such loadings, i.e. staircase histories, and 2) the thinwalled spherical pressure vessel subject to a Heaviside history of internal pressure. For both these structures the conditions for instantaneous as well as delayed rupture are analysed. It is shown that a state of mechanical instability will be reached at a certain load or after a certain time. The cases of purely ductile rupture and purely brittle fracture are identified as two limiting cases of this general instability phenomenon. The Kachanov-Rabotnov damage law implies that a structural component will fail in tension only when it has reached a state of complete damage, i.e. zero load carrying capacity. The extended law predicts failure at an earlier stage of the deterioration process and is therefore more compatible with experimental observation. Further experimental support is offered by predictions for staircase loading histories, both step-up and step-down type. The presented damage theory here predicts strain histories which are in closer agreement with test data than predictions based on other phenomenological theories

  10. Fracture behaviour and fracture phenomena

    International Nuclear Information System (INIS)

    This proceedings volume contains the full text of the 15 papers read at the 4th seminar of the Stuttgart Materials Testing Institute (Materialpruefungsanstalt Stuttgart) in October 1978. All of them discuss safety aspects of the pressure containment of LWR-type reactors. (RW) [de

  11. Thermal/moisture-related stresses and fracture behaviour in solid wood members during forced drying

    DEFF Research Database (Denmark)

    Larsen, Finn

    , in particular the stress and cracking that takeplace during kiln-drying. Both experimental and numerical work was carried out so as to obtain knowledge regarding stress, strain, mechano-sorption and crackbehaviours in wood during drying.The investigations aimed also at revealing how drying damagecan best...... of wood without injury to the timber itself. When solid wood products are dried from a green condition down to an average moisture content level close to the service life conditions of the final product, significant moisture-induced stresses and related fracturing can occur. The drying stresses arise...... with a drying history that was generated, to verify a model that was used to simulate disc samples of the same type. The stresses were analyzed so as to clarify whether and when critical stress stateswere encountered during the drying process. The reversibility of the mechano-sorptive strains, i...

  12. Effects of HIP and forging on fracture behaviour in cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Nishigaki, K.; Okajima, D.; Ogasawara, M.

    2010-01-01

    The cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure was developed as a die material due to its high hardness. In order to achieve high performances of dies, not only the hardness but also the mechanical properties such as fracture toughness and fatigue crack propagation (FCP) resistance should be improved. In this paper, hot isostatic pressing (HIP) or forging was applied to the cast iron to improve mechanical properties, and the fracture behaviour, such as flexural strength, fracture toughness and FCP, was studied. The average flexural strength was reduced by forging because of the enhanced notch sensitivity due to the increase in the hardness. The fracture toughness was not affected by HIP nor forging while its scatter was significantly reduced by both post-treatments. The intrinsic FCP resistance taking account of crack closure was the same regardless of the application of HIP or forging, indicating that a slight change in the microstructure resulting from both treatments and the presence of casting defects exerted little influence on FCP behaviour. It could be concluded that both HIP and forging could improve the hardness of the material, while fracture toughness and FCP resistance were maintained.

  13. Acoustic emission technique for characterisation of deformation, fatigue, fracture and phase transformation and for leak detection with high sensitivity- our experiences

    International Nuclear Information System (INIS)

    Jayakumar, T.; Mukhopadhyay, C.K.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used for studying tensile deformation, fracture behaviour, detection and assessment of fatigue crack growth and α-martensite phase transformation in austenitic alloys. A methodology for amplification of weak acoustic emission signals has been established. Acoustic emission technique with advanced spectral analysis has enabled detection with high sensitivity of minute leaks in noisy environments. (author)

  14. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  15. A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model.

    Science.gov (United States)

    Bradley, Amanda L; Swain, Michael V; Neil Waddell, J; Das, Raj; Athens, Josie; Kieser, Jules A

    2014-05-01

    Forensic biomechanics is increasingly being used to explain how observed injuries occur. We studied infant rib fractures from a biomechanical and morphological perspective using a porcine model. We used 24, 6th ribs of one day old domestic pigs Sus scrofa, divided into three groups, desiccated (representing post-mortem trauma), fresh ribs with intact periosteum (representing peri-mortem trauma) and those stored at -20°C. Two experiments were designed to study their biomechanical behaviour fracture morphology: ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and Scanning Electron Microscopy (SEM). During axial compression fresh ribs did not fracture because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening and visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. Frozen then thawed bone showed similar patterns to fresh bone. Morphologically, fresh ribs showed extensive periosteal damage to the tensile surface with areas of collagen fibre pull-out along the tensile surface. While all dry ribs fractured precipitously, with associated fibre pull-out, the latter feature was absent in thawed ribs. Our study highlights the fact that under controlled loading, fresh piglet ribs (representing perimortem trauma) did not fracture through bone, but was associated with periosteal tearing. These results suggest firstly, that complete lateral rib fracture in infants may in fact not result from pure compression as has been previously assumed; and

  16. Effects of rolling orientation in the fracture behaviour of a hot rolled structural steel; Efeito da orientacao de laminacao no comportamento a fratura de um aco estrutural laminado a quente

    Energy Technology Data Exchange (ETDEWEB)

    Strohaecker, Telmo R; Bastian, Fernando L; Salles, Ricardo M. Correia; Vilarom, Alexandre B [Rio de Janeiro Univ., RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1988-12-31

    The crack opening displacement (COD) testing method was used to evaluate the anisotropy of the fracture behaviour of a C-Mn (A36) structural steel. The values of COD at initiation, at maximum load and the resistance curve were obtained. The differences in fracture behaviour of the differently oriented samples was attributed to the orientation of the inclusion and the banding of the microstructure. Fractographic and metallographic analyses showed that there is a strong influence of banding on the fracture behaviour of the steel. 7 refs., 9 figs., 3 tabs.

  17. Measurements of radiated elastic wave energy from dynamic tensile cracks

    Science.gov (United States)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  18. [Growth behaviour after fractures of the proximal radius: differences to the rest of the skeleton].

    Science.gov (United States)

    Hell, A K; von Laer, L

    2014-12-01

    Fractures of the proximal end of the radius in the growth phase have three characteristics: the head of the radius articulates with two joint partners and is therefore indispensable for an undisturbed function of the elbow. The blood supply of the proximal end of the radius is via periosteal vessels in the sense of a terminal circulation which makes it extremely vulnerable. Severe trauma caused either by accidents or treatment, can result in partial or complete necrosis with deformity of the head and neck region of the radius. Radioulnar synostosis and chronic epiphysiolysis are irreversible complications which can occur after excessive physiotherapy. Despite a low potency growth plate, in young patients the proximal end of the radius shows an enormous spontaneous correction of dislocations. Side to side shifts, however, will not be remodeled. Therapy should be as atraumatic as possible. Due to the blood supply situation, with the appropriate indications the spontaneous correction and a brief period of immobilization without physiotherapy should be integrated into the therapy concept. If an operation is necessary, repeated traumatic repositioning maneuvers should be avoided and in case of doubt closed or careful open repositioning can be achieved with intramedullary nailing. In order to take the special characteristics of the proximal radius into consideration, the vulnerability and correction potential must be weighed up against each other. Therapy must be as atraumatic as possible. The spontaneous correction potential should be integrated into the primary therapy without overestimating this potential with respect to the extent and age of the patient.

  19. Experimental investigation on the fracture behaviour of black shale by acoustic emission monitoring and CT image analysis during uniaxial compression

    Science.gov (United States)

    Wang, Y.; Li, C. H.; Hu, Y. Z.

    2018-04-01

    Plenty of mechanical experiments have been done to investigate the deformation and failure characteristics of shale; however, the anisotropic failure mechanism has not been well studied. Here, laboratory Uniaxial Compressive Strength tests on cylindrical shale samples obtained by drilling at different inclinations to bedding plane were performed. The failure behaviours of the shale samples were studied by real-time acoustic emission (AE) monitoring and post-test X-ray computer tomography (CT) analysis. The experimental results suggest that the pronounced bedding planes of shale have a great influence on the mechanical properties and AE patterns. The AE counts and AE cumulative energy release curves clearly demonstrate different morphology, and the `U'-shaped curve relationship between the AE counts, AE cumulative energy release and bedding inclination was first documented. The post-test CT image analysis shows the crack patterns via 2-D image reconstructions, an index of stimulated fracture density is defined to represent the anisotropic failure mode of shale. What is more, the most striking finding is that the AE monitoring results are in good agreement with the CT analysis. The structural difference in the shale sample is the controlling factor resulting in the anisotropy of AE patterns. The pronounced bedding structure in the shale formation results in an anisotropy of elasticity, strength and AE information from which the changes in strength dominate the entire failure pattern of the shale samples.

  20. In Situ Radiography During Tensile Tests

    Science.gov (United States)

    Baaklini, George Y.; Bhatt, Ramakrishna T.

    1994-01-01

    Laboratory system for testing specimens of metal-, ceramic-, and intermetallic-matrix composite materials incorporates both electromechanical tensile-testing subsystem and either of two imaging subsystems that take x-ray photographs of specimens before, during, and after tensile tests. Used to test specimens of reaction-bonded silicon nitride reinforced with silicon carbide fibers (SiC/RBSN) considered for high-temperature service in advanced aircraft turbine engines. Provides data on effects of preexisting flaws (e.g., high-density impurities and local variations of density) on fracture behavior. Accumulated internal damage monitored during loading. X-ray source illuminates specimen in load frame while specimen is pulled. X-ray images on film correlated with stress-vs.-strain data from tensile test.

  1. Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory

    Science.gov (United States)

    Jesse K. Kreye; J. Morgan Varner; Eric E. Knapp

    2011-01-01

    Mechanical mastication is a fuels treatment that converts shrubs and small trees into dense fuelbeds composed of fractured woody particles. Although compaction is thought to reduce fireline intensity, the added particle surface area due to fracturing could also influence fire behavior. We evaluated effects of particle fracturing and moisture content (ranging from 2.5...

  2. Comparative tensile flow and work hardening behaviour of thin section and forged thick section 9Cr–1Mo ferritic steel in the framework of Voce equation and Kocks–Mecking approach

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Rao Palaparti, D.P.

    2012-01-01

    Detailed analysis indicated that true stress (σ)-true plastic strain (ε) and work hardening behaviour of 9Cr–1Mo steel in two different forms, i.e. 20 mm plate and thick section tubeplate forging can be adequately described by Voce equation and Kocks–Mecking approach in the temperature range 300–873 K. The steel exhibited two-stage work hardening in the variations of instantaneous work hardening rate (θ = dσ/dε) and θσ with stress. The variations in σ–ε, work hardening parameters, θ–σ and θσ–σ with temperature exhibited three distinct temperature regimes. Good correlations between the predicted tensile properties using Voce equation and the respective experimental values along with analogy between Voce equation and Kocks–Mecking approach have been demonstrated for the steel. The differences in σ–ε, work hardening parameters, θ–σ and θσ–σ observed between plate and tubeplate forging have been ascribed to the effects associated with initial microstructures for the two product forms of the steel.

  3. Brittle versus ductile behaviour of nanotwinned copper: A molecular dynamics study

    International Nuclear Information System (INIS)

    Pei, Linqing; Lu, Cheng; Zhao, Xing; Zhang, Liang; Cheng, Kuiyu; Michal, Guillaume; Tieu, Kiet

    2015-01-01

    Nanotwinned copper (Cu) exhibits an unusual combination of ultra-high yield strength and high ductility. A brittle-to-ductile transition was previously experimentally observed in nanotwinned Cu despite Cu being an intrinsically ductile metal. However, the atomic mechanisms responsible for brittle fracture and ductile fracture in nanotwinned Cu are still not clear. In this study, molecular dynamics (MD) simulations at different temperatures have been performed to investigate the fracture behaviour of a nanotwinned Cu specimen with a single-edge-notched crack whose surface coincides with a twin boundary. Three temperature ranges are identified, indicative of distinct fracture regimes, under tensile straining perpendicular to the twin boundary. Below 1.1 K, the crack propagates in a brittle fashion. Between 2 K and 30 K a dynamic brittle-to-ductile transition is observed. Above 40 K the crack propagates in a ductile mode. A detailed analysis has been carried out to understand the atomic fracture mechanism in each fracture regime

  4. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  5. Elastic-Brittle-Plastic Behaviour of Shale Reservoirs and Its Implications on Fracture Permeability Variation: An Analytical Approach

    Science.gov (United States)

    Masoudian, Mohsen S.; Hashemi, Mir Amid; Tasalloti, Ali; Marshall, Alec M.

    2018-05-01

    Shale gas has recently gained significant attention as one of the most important unconventional gas resources. Shales are fine-grained rocks formed from the compaction of silt- and clay-sized particles and are characterised by their fissured texture and very low permeability. Gas exists in an adsorbed state on the surface of the organic content of the rock and is freely available within the primary and secondary porosity. Geomechanical studies have indicated that, depending on the clay content of the rock, shales can exhibit a brittle failure mechanism. Brittle failure leads to the reduced strength of the plastic zone around a wellbore, which can potentially result in wellbore instability problems. Desorption of gas during production can cause shrinkage of the organic content of the rock. This becomes more important when considering the use of shales for CO2 sequestration purposes, where CO2 adsorption-induced swelling can play an important role. These phenomena lead to changes in the stress state within the rock mass, which then influence the permeability of the reservoir. Thus, rigorous simulation of material failure within coupled hydro-mechanical analyses is needed to achieve a more systematic and accurate representation of the wellbore. Despite numerous modelling efforts related to permeability, an adequate representation of the geomechanical behaviour of shale and its impact on permeability and gas production has not been achieved. In order to achieve this aim, novel coupled poro-elastoplastic analytical solutions are developed in this paper which take into account the sorption-induced swelling and the brittle failure mechanism. These models employ linear elasticity and a Mohr-Coulomb failure criterion in a plane-strain condition with boundary conditions corresponding to both open-hole and cased-hole completions. The post-failure brittle behaviour of the rock is defined using residual strength parameters and a non-associated flow rule. Swelling and shrinkage

  6. Tensile behavior and tension stiffening of reinforced concrete

    International Nuclear Information System (INIS)

    Choun, Young Sun; Seo, Jeong Moon

    2001-03-01

    For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building

  7. Tensile properties of the modified 13Cr martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mabruri, Efendi, E-mail: effe004@lipi.go.id; Anwar, Moch Syaiful, E-mail: moch.syaiful.anwar@lipi.go.id; Prifiharni, Siska, E-mail: siska.prifiharni@lipi.go.id; Romijarso, Toni B.; Adjiantoro, Bintang [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI) Kawasan Puspiptek Gd. 470 Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  8. Tensile properties of the modified 13Cr martensitic stainless steels

    International Nuclear Information System (INIS)

    Mabruri, Efendi; Anwar, Moch Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-01-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  9. Structural dynamics and fracture mechanics calculations of the behaviour of a DN 425 test piping system subjected to transient loading by water hammer

    International Nuclear Information System (INIS)

    Kussmaul, K.; Kobes, E.; Diem, H.; Schrammel, D.; Brosi, S.

    1994-01-01

    Within the scope of the German HDR safety programme, several tests were carried out to investigate transient pipe loading initiated by a simulated double-ended guillotine break event, and subsequent closure of a feedwater check valve (water hammer, blow-down). Numerical analyses by means of finite element programmes were performed in parallel to the experiments. Using water hammer tests of a DN 425 piping system with predamaged components, the procedure of such analyses will be demonstrated. The results are presented, beginning with structural dynamic calculations of the undamaged piping; followed by coupling of structural dynamics and fracture mechanics computations with simple flaw elements (line spring); and finishing with costly three-dimensional fracture mechanics analyses. A good description of the real piping behaviour can be made by the numerical methods, even in the case of high plastification processes. ((orig.))

  10. Contribution to the characterization of 222-radon concentrations variability in water to the understanding of an aquifer behaviour in fractured medium: example of the Ploemeur site, Morbihan

    International Nuclear Information System (INIS)

    Le Druillennec, Th.

    2007-06-01

    Heterogeneous fractured aquifers which developed in crystalline rocks, such as schist or granite, supply 20% of tap water production of Brittany. These fractured media present a large range of permeability. In these aquifers, fluid flow and transport of elements dissolved in water are strongly related on the geometry of the fractured network. Increasing the knowledge of the hydrogeological behaviour of the aquifer is fundamental for the management and the protection of the groundwater resources. Radon-222 is a radioactive noble gas produced from radium-226 further to the radioactive decay of uranium-238; it occurs naturally in ground waters and derives primarily from U-rich rocks and minerals that have been in contact with water. Radon-222 concentrations in waters are liable to provide significant and relevant information on both the geometry of a fracture network and the flow distribution. Furthermore, radon may also be used as a tracer in the aquifer of water exchanges between zones of variable permeability. Three main results were obtained in this study: 1. An accurate characterisation of the radon concentrations in water was carried out in the Ploemeur aquifer (Brittany, France). These results highlight the variability in the spatial and vertical distributions of 222 Rn activity in groundwater together with a wide range of concentrations extending from 0 to 1 500 Bq.L -1 . 2. The influence of fracture aperture on radon content in groundwater has been demonstrated with the modelling of radon concentration. Indeed, the satisfactory results obtained with a simple crack model highlight that the geometry of the fracture network controls the radon activity in groundwater. 3. Thus, the results of pumping tests performed in the boreholes improved our understanding of the system. After the pumping test, an increase of the radon content in groundwater occurred and evidenced a contribution of a radon-rich water to supply the flow rate that seems to come from the low

  11. The Influence of Corrosion Attack on Grey Cast Iron Brittle‑Fracture Behaviour and Its Impact on the Material Life Cycle

    Directory of Open Access Journals (Sweden)

    Jiří Švarc

    2017-01-01

    Full Text Available The paper is concerned with brittle‑fracture behaviour of grey cast iron attacked by corrosion and its impact on the life cycle of a spare part made of grey cast iron. In a corrosion chamber, outdoor climatic conditions (temperature and relative air humidity were simulated in which degradation processes, induced by material corrosion, degrading mechanical properties of a material and possibly leading to irreversible damage of a machine component, occur in the material of maintenance vehicles that are out of operation for the period of one year. The corrosion degradation of grey cast iron, which the spare parts constituting functional parts of an engine are made of grey cast iron, is described with regard to brittle‑fracture behaviour of the material. For the description of corrosion impact on grey cast iron, an instrumented impact test was employed. A corrosion degradation effect on grey cast iron was identified based on measured values of total energy, macro plastic deformation limit, initiation force of unstable crack propagation and force exerted on unstable crack arrest. In the first part of the experiment, a corrosion test of the material concerned was simulated in a condensation chamber; in the second part of the experiment, research results are provided for the measured quantities describing the material brittle‑fracture behaviour; this part is supplemented with a table of results and figures showing the changes in the values of the measured quantities in relation to test temperatures. In the discussion part, the influence of corrosion on the values of unstable crack initiation and arrest forces is interpreted. In the conclusion, an overview of the most significant research findings concerning the impact of corrosion on the life cycle of grey cast iron material is provided.

  12. Early age fracture properties of microstructurally-designed mortars

    DEFF Research Database (Denmark)

    Di Bella, Carmelo; Michel, Alexander; Stang, Henrik

    2017-01-01

    This paper compares the fracture properties as well as crack initiation and propagation of real and equivalent mortars. The development of the elastic modulus, tensile strength, and fracture energy at different hydration stages were determined by inverse analysis of load-displacement curves...... the two mortars. At early age, the moisture content has a considerable influence on the tensile strength and the fracture energy....

  13. Post-cracking tensile behaviour of steel-fibre-reinforced roller-compacted-concrete for FE modelling and design purposes; Comportamiento a tracción posterior a la fisuración del hormigón reforzado con fibras de acero compactado con rodillo para el diseño y modelado EF.

    Energy Technology Data Exchange (ETDEWEB)

    Jafarifar, N.; Pilakoutas, K.; Angelakopoulos, H.; Bennett, T.

    2017-07-01

    Fracture of steel-fibre-reinforced-concrete occurs mostly in the form of a smeared crack band undergoing progressive microcracking. For FE modelling and design purposes, this crack band could be characterised by a stress-strain (σ-ε) relationship. For industrially-produced steel fibres, existing methodologies such as RILEM TC 162-TDF (2003) propose empirical equations to predict a trilinear σ-ε relationship directly from bending test results. This paper evaluates the accuracy of these methodologies and their applicability for roller-compacted-concrete and concrete incorporating steel fibres recycled from post-consumer tyres. It is shown that the energy absorption capacity is generally overestimated by these methodologies, sometimes up to 60%, for both conventional and roller-compacted concrete. Tensile behaviour of fibre-reinforced-concrete is estimated in this paper by inverse analysis of bending test results, examining a variety of concrete mixes and steel fibres. A multilinear relationship is proposed which largely eliminates the overestimation problem and can lead to safer designs. [Spanish] La rotura del hormigón reforzado con fibra de acero se produce principalmente en forma de una banda de fisuración que sufre progresiva microfracturación. Para el diseño y modelado EF, esta banda se puede caracterizar por una relación tensión-deformación (σ-ε). Para fibras de acero industriales, existen metodologías (RILEM TC 162-TDF 2003) que proponen ecuaciones empíricas para predecir una relación σ-ε trilinear a partir de resultados de pruebas de flexión. En este artículo se evalúa la precisión de estas metodologías y su aplicación para hormigón compactado con rodillo y hormigón reforzado con fibras de acero recicladas provenientes de neumáticos usados. Se demuestra que estas metodologías generalmente sobreestiman la capacidad de absorción de (hasta un 60%) tanto para el hormigón convencional como para el compactado con rodillo. En este art

  14. A Microstructure-Based Model to Characterize Micromechanical Parameters Controlling Compressive and Tensile Failure in Crystallized Rock

    Science.gov (United States)

    Kazerani, T.; Zhao, J.

    2014-03-01

    A discrete element model is proposed to examine rock strength and failure. The model is implemented by UDEC which is developed for this purpose. The material is represented as a collection of irregular-sized deformable particles interacting at their cohesive boundaries. The interface between two adjacent particles is viewed as a flexible contact whose stress-displacement law is assumed to control the material fracture and fragmentation process. To reproduce rock anisotropy, an innovative orthotropic cohesive law is developed for contact which allows the interfacial shear and tensile behaviours to be different from each other. The model is applied to a crystallized igneous rock and the individual and interactional effects of the microstructural parameters on the material compressive and tensile failure response are examined. A new methodical calibration process is also established. It is shown that the model successfully reproduces the rock mechanical behaviour quantitatively and qualitatively. Ultimately, the model is used to understand how and under what circumstances micro-tensile and micro-shear cracking mechanisms control the material failure at different loading paths.

  15. An Assessment of the Ductile Fracture Behaviour of Hot Isostatically Pressed and Forged 304L Stainless Steel

    OpenAIRE

    Cooper, Adam; Smith, R. J.; Sherry, Andrew

    2017-01-01

    Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix....

  16. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  17. Mechanical behaviour of Nd:YAG laser welded superelastic NiTi

    International Nuclear Information System (INIS)

    Vieira, L. Alberty; Fernandes, F.M. Braz; Miranda, R.M.; Silva, R.J.C.; Quintino, L.; Cuesta, A.; Ocana, J.L.

    2011-01-01

    Highlights: → The main innovations claimed are: understand rolling direction effect on mechanical cycling of laser welded NiTi. → Functionality confirmed by stabilization of hysteretic response up to 8% strain. → Welds tensile cycled exhibited superior functional mechanical behaviour. → For applied stresses of 50 MPa below UTS the joints showed superelastic behaviour. - Abstract: Joining techniques for shape memory alloys (SMA) has become of great interest, as their functional properties, namely shape memory effect (SME) and superelasticity (SE), present unique solutions for state-of-the-art applications, although limited results concerning mechanical properties are reported. This paper reports experimental work performed with Nd:YAG continuous wave laser welding of superelastic cold-rolled plates of NiTi 1 mm thick. The mechanical behaviour was evaluated by means of tensile tests performed both to failure and to cycling. The superelastic behaviour of the welded joints was observed for applied stresses close to about 50 MPa below the ultimate tensile strength of the welds. The functionality was confirmed by analyzing the stabilization of the mechanical hysteretic response to strain levels up to 8%. For tensile cycling involving strain levels larger than 6%, welded specimens were found to exhibit superior functional mechanical behaviour presenting larger recoverable strain levels. The fracture surfaces were observed by scanning electron microscopy (SEM) and the effect of the rolling direction on mechanical properties was evaluated and discussed, reinforcing the importance of joint design when laser welding these alloys.

  18. Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials.

    Science.gov (United States)

    Enfedaque, A.; Alberti, M. G.; Gálvez, J. C.

    2017-09-01

    The relevance of fibre reinforced cementitious materials (FRC) has increased due to the appearance of regulations that establish the requirements needed to take into account the contribution of the fibres in the structural design. However, in order to exploit the properties of such materials it is a key aspect being able to simulate their behaviour under fracture conditions. Considering a cohesive crack approach, several authors have studied the suitability of using several softening functions. However, none of these functions can be directly applied to FRC. The present contribution analyses the suitability of multilinear softening functions in order to obtain simulation results of fracture tests of a wide variety of FRC. The implementation of multilinear softening functions has been successfully performed by means of a material user subroutine in a commercial finite element code obtaining accurate results in a wide variety of FRC. Such softening functions were capable of simulating a ductile unloading behaviour as well as a rapid unloading followed by a reloading and afterwards a slow unloading. Moreover, the implementation performed has been proven as versatile, robust and efficient from a numerical point of view.

  19. [Mechanics analysis of fracture of orthodontic wires].

    Science.gov (United States)

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  20. Tensile deformation and failure of North American porcupine quills

    Energy Technology Data Exchange (ETDEWEB)

    Chou, S.F.; Overfelt, R.A., E-mail: overfra@auburn.edu

    2011-12-01

    Although the mechanical properties of some keratin-based biological materials have been extensively studied (i.e., wool) and others are beginning to be studied (e.g., horn, hooves and avian quills), data on the properties of porcupine quill are less common. Porcupine quill is a keratin-based biological material composed of a cylindrical outer shell with an inner foam core. The present paper reports on the physical characteristics, tensile properties and fracture behavior of North American porcupine quills conditioned at relative humidities of 65% and 100%. Increasing the water content decreased the tensile stiffness and strength and increased the strain at fracture of the porcupine quills. The tensile fracture strength of porcupine quill was found to be 146 MPa at 65% RH and 60 MPa at 100% RH. Although these values compare favorably with reported values for African porcupine quill, reported values of the tensile strengths of wool with similar moisture contents are considerably higher. The initial moduli of porcupine quill (2700 MPa at 65% RH and 1000 MPa at 100% RH) compare favorably to those reported for wool but are considerably less than previous reports for African porcupine quill. The engineering strains at fracture were measured as 25% at 65% RH and 49% at 100% RH and these values are also comparable to other keratin-based mammalian materials. Scanning electron microscopy of the fracture surfaces of porcupine quills revealed that the cylindrical outer shells of quills are composed of 2-3 layers with distinctly different fracture characteristics, especially when the samples contain 100% RH. The outer layer of the porcupine quill shell appears to resist the plasticizing effects of moisture and appears to exhibit considerably less ductility than the inner layers, perhaps due to the presence of hydrophobic lipids in the outer layer. Highlights: {yields} We characterize the tensile properties of north American porcupine quill. {yields} Elastic modulus, tensile

  1. Molecular Dynamics Simulations of Tensile Behavior of Copper

    OpenAIRE

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-01-01

    Molecular dynamics simulations on tensile deformation of initially defect free single crystal copper nanowire oriented in {100} has been carried out at 10 K under adiabatic and isothermal loading conditions. The tensile behaviour was characterized by sharp rise in stress in elastic regime followed by sudden drop at the point of dislocation nucleation. The important finding is that the variation in dislocation density is correlated with the observed stress-strain response. Several interesting ...

  2. Microstructural evolution during tensile deformation of polypropylenes

    International Nuclear Information System (INIS)

    Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2003-01-01

    Tensile deformation processes occurring at varying strain rates in high and low crystallinity polypropylenes and ethylene-propylene di-block copolymers have been investigated by scanning electron microscopy. This is examined for both long and short chain polymeric materials. The deformation processes in different polymeric materials show striking dissimilarities in spite of the common propylene matrix. Additionally, the deformation behavior of long and their respective short chain polymers was different. Deformation mechanisms include crazing/tearing, wedging, ductile ploughing, fibrillation, and brittle fracture. The different modes of deformation are depicted in the form of strain rate-strain diagrams. At a constant strain rate, the strain to fracture follows the sequence: high crystallinity polypropylenes< low crystallinity polypropylenes< ethylene-propylene di-block copolymers, indicative of the trend in resistance to plastic deformation

  3. Torsion fracture of carbon nanocoils

    Science.gov (United States)

    Yonemura, Taiichiro; Suda, Yoshiyuki; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki; Umeda, Yoshito

    2012-10-01

    We fix a carbon nanocoil (CNC) on a substrate in a focused ion beam instrument and then fracture the CNC with a tensile load. Using the CNC spring index, we estimate the maximum to average stress ratio on the fractured surface to range from 1.3 to 1.7, indicating stress concentration on the coil wire inner edge. Scanning electron microscopy confirms a hollow region on the inner edge of all fractured surfaces.

  4. The rheological behaviour of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Ledevin, M.; Arndt, N.; Davaille, A.; Ledevin, R.; Simionovici, A.

    2015-02-01

    In the Barberton Greenstone Belt, South Africa, a 100-250 m thick complex of carbonaceous chert dikes marks the transition from the Mendon Formation to the Mapepe Formation (3260 Ma). The sub-vertical- to vertical position of the fractures, the abundance of highly shattered zones with poorly rotated angular fragments and common jigsaw fit, radial structures, and multiple injection features point to repetitive hydraulic fracturing that released overpressured fluids trapped within the shallow crust. The chemical and isotopic compositions of the chert favour a model whereby seawater-derived fluids circulated at low temperature (clay-sized, rounded particles of silica, carbonaceous matter and minor clay minerals, all suspended in a siliceous colloidal solution. The dike geometry and characteristics of the slurry concur on that the chert was viscoelastic, and most probably thixotropic at the time of injection: the penetration of black chert into extremely fine fractures is evidence for low viscosity at the time of injection and the suspension of large country rock fragments in the chert matrix provides evidence of high viscosity soon thereafter. We explain the rheology by the particulate and colloidal structure of the slurry, and by the characteristic of silica suspensions to form cohesive 3-D networks through gelation. Our results provide valuable information about the compositions, physical characteristics and rheological properties of the fluids that circulated through Archean volcano-sedimentary sequences, which is an additional step to understand conditions on the floor of Archean oceans, the habitat of early life.

  5. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions

    International Nuclear Information System (INIS)

    Pedersen, Ketill O.; Borvik, Tore; Hopperstad, Odd Sture

    2011-01-01

    The fracture behaviour of the aluminium alloy AA7075-T651 is investigated for quasi-static and dynamic loading conditions and different stress states. The fracture surfaces obtained in tensile tests on smooth and notched axisymmetric specimens and compression tests on cylindrical specimens are compared to the fracture surfaces that occur when a projectile, having either a blunt or an ogival nose shape, strikes a 20 mm thick plate of the aluminium alloy. The stress state in the impact tests is much more complex and the strain rate significantly higher than in the tensile and compression tests. Optical and scanning electron microscopes are used in the investigation. The fracture surface obtained in tests with smooth axisymmetric specimens indicates that the crack growth is partly intergranular along the grain boundaries or precipitation free zones and partly transgranular by void formation around fine and coarse intermetallic particles. When the stress triaxiality is increased through the introduction of a notch in the tensile specimen, delamination along the grain boundaries in the rolling plane is observed perpendicular to the primary crack. In through-thickness compression tests, the crack propagates within an intense shear band that has orientation about 45 o with respect to the load axis. The primary failure modes of the target plate during impact were adiabatic shear banding when struck by a blunt projectile and ductile hole-enlargement when struck by an ogival projectile. Delamination and fragmentation of the plates occurred for both loading cases, but was stronger for the ogival projectile. The delamination in the rolling plane was attributed to intergranular fracture caused by tensile stresses occurring during the penetration event.

  6. Dynamic tensile stress–strain characteristics of carbon/epoxy laminated composites in through-thickness direction

    Directory of Open Access Journals (Sweden)

    Nakai Kenji

    2015-01-01

    Full Text Available The effect of strain rate up to approximately ε̇ = 102/s on the tensile stress–strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress–strain curves up to fracture are determined using the split Hopkinson bar (SHB. The low and intermediate strain-rate tensile stress–strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.

  7. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  8. Discrete analysis of clay layer tensile strength

    International Nuclear Information System (INIS)

    Le, T.N.H.; Ple, O.; Villard, P.; Gourc, J.P.

    2010-01-01

    The Discrete Element Method is used to investigate the tensile behaviour and cracks mechanisms of a clay material submitted to bending loading. It is the case of compacted clay liners in landfill cap cover application. Such as the soil tested in this study is plastic clay, the distinct elements model was calibrated with previous data results by taking into account cohesive properties. Various contact and cohesion laws are tested to show that the numerical model is able to reproduce the failure mechanism. Numerical results are extending to simulate a landfill cap cover and comparing to experimental large scale field bending tests achieved in a real site of storage. (authors)

  9. Development of Tensile Softening Model for Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    Large-scale direct tensile softenng tests using plate concrete specimens(4000, 5000psi) with notch were performed under uniaxial stress. There were presented the basic physical properties and the complete load-CMOD(Crack Mouth Opening Displacement) curves for them And them the fracture energy was evaluated using the complete load-CMOD curves respectively, and there was presents optimal tensile softening model which is modified by a little revision of an existing one. Therefore, here provided the real verification data through the tests for developing other nonlinear concrete finite element models. (author). 32 refs., 38 figs., 4 tabs.

  10. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  11. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalate – PBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  12. Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components

    Science.gov (United States)

    Bhushan, Awani; Panda, S. K.

    2018-05-01

    The influence of bimodularity (different stress ∼ strain behaviour in tension and compression) on fracture behaviour of graphite specimens has been studied with fracture toughness (KIc), critical J-integral (JIc) and critical strain energy release rate (GIc) as the characterizing parameter. Bimodularity index (ratio of tensile Young's modulus to compression Young's modulus) of graphite specimens has been obtained from the normalized test data of tensile and compression experimentation. Single edge notch bend (SENB) testing of pre-cracked specimens from the same lot have been carried out as per ASTM standard D7779-11 to determine the peak load and critical fracture parameters KIc, GIc and JIc using digital image correlation technology of crack opening displacements. Weibull weakest link theory has been used to evaluate the mean peak load, Weibull modulus and goodness of fit employing two parameter least square method (LIN2), biased (MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator. The stress dependent elasticity problem of three-dimensional crack progression behaviour for the bimodular graphite components has been solved as an iterative finite element procedure. The crack characterizing parameters critical stress intensity factor and critical strain energy release rate have been estimated with the help of Weibull distribution plot between peak loads versus cumulative probability of failure. Experimental and Computational fracture parameters have been compared qualitatively to describe the significance of bimodularity. The bimodular influence on fracture behaviour of SENB graphite has been reflected on the experimental evaluation of GIc values only, which has been found to be different from the calculated JIc values. Numerical evaluation of bimodular 3D J-integral value is found to be close to the GIc value whereas the unimodular 3D J-value is nearer to the JIc value. The significant difference between the unimodular JIc and bimodular GIc indicates that

  13. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  14. Fracture toughness of ultra high performance concrete by flexural performance

    Directory of Open Access Journals (Sweden)

    Manolova Emanuela

    2016-01-01

    Full Text Available This paper describes the fracture toughness of the innovative structural material - Ultra High Performance Concrete (UHPC, evaluated by flexural performance. For determination the material behaviour by static loading are used adapted standard test methods for flexural performance of fiber-reinforced concrete (ASTM C 1609 and ASTM C 1018. Fracture toughness is estimated by various deformation parameters derived from the load-deflection curve, obtained by testing simple supported beam under third-point loading, using servo-controlled testing system. This method is used to be estimated the contribution of the embedded fiber-reinforcement into improvement of the fractural behaviour of UHPC by changing the crack-resistant capacity, fracture toughness and energy absorption capacity with various mechanisms. The position of the first crack has been formulated based on P-δ (load- deflection response and P-ε (load - longitudinal deformation in the tensile zone response, which are used for calculation of the two toughness indices I5 and I10. The combination of steel fibres with different dimensions leads to a composite, having at the same time increased crack resistance, first crack formation, ductility and post-peak residual strength.

  15. Elastic characteristics and fracture behaviour of materials in the system Al2O3+TiC at elevated temperatures

    International Nuclear Information System (INIS)

    Grellner, W.

    1978-01-01

    In the region between room temperature and 1400 0 C the elastic constants, fracture values and flow-stress values of different compositions of the Al 2 O 3 +TiC system were determined. It was found that: 1. The elasticity modulus and shear modulus increase linearly with the TiC content. 2. Up to approximately 1050 0 C the elastic constants decrease linearly with increasing temperature. 3. Additions of dispersed TiC lead to a uniform grain size distribution. 4. In the low temperature region the faults leading to cracks are about 50 times as large as the average grain size; this suggests the effect of thermal stresses on the occurrence of microcracks. 5. At temperatures above 900 0 C TiC deforms macroscopically. In the case of a high proportion of the 2nd phase the latter contributes, as a plastic substance, to stress reduction and thus to an increase of fracture stress in comparison to the single-phase material. (orig.) [de

  16. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  17. The effect of post-weld heat treatment on the microstructure and notched tensile fracture of Ti–15V–3Cr–3Al–3Sn to Ti–6Al–4V dissimilar laser welds

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, C.T.; Shiue, R.K. [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Huang, R.-T. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, ROC (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, ROC (China)

    2016-01-20

    A CO{sub 2} laser was applied for dissimilar welding of Ti–15V–3Cr–3Al–3Sn (Ti–15–3) to Ti–6Al–4V (Ti–6–4) alloys. The microstructures and notched tensile strength (NTS) of the dissimilar welds were investigated in the as-welded and post-weld heat treatment (PWHT) conditions, and the results were compared with Ti–6–4 and Ti–15–3 homogeneous laser welds with the same PWHT. The results indicated that predominant α″ with a few α and β phases was formed in the as-welded fusion zone (FZ). Furthermore, the FZ hardness was susceptible to the PWHT and showed a plateau for the specimens aged in the temperature range from 426 to 482 °C/4 h. In comparison with the homogeneous Ti–15–3 weld under the same PWHT conditions, the dilution of Ti–15–3 with Ti–6–4 caused a slight increase in the Al equivalent (Al{sub EQ}) of the FZ, resulting in a further rise in FZ hardness. With the PWHT at/below 538 °C, the dissimilar welds were associated with low NTS or high notch brittleness.

  18. Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei-Chen

    2017-01-01

    Cellulose nanopaper consists of a dense fibrous self-binding network composed of cellulose nanofibres connected by physical entanglements, hydrogen bonding, etc. Compared with conventional printing paper, cellulose nanopaper has higher strength and modulus because of stronger fibres and inter......-fibre bonding. The aim of this paper is to investigate the fracture properties of cellulose nanopaper using double edge notch tensile tests on samples with different notch lengths. It was found that strength is insensitive to notch length. A cohesive zone model was used to describe the fracture behaviour...... of notched cellulose nanopaper. Fracture energy was extracted from the cohesive zone model and divided into an energy component consumed by damage in the material and a component related to pull-out or bridging of nanofibres between crack surfaces which was not facilitated due to the limited fibre lengths...

  19. Status of automated tensile machine

    International Nuclear Information System (INIS)

    Satou, M.; Hamilton, M.L.; Sato, S.; Kohyama, A.

    1992-01-01

    The objective of this work is to develop the Monbusho Automated Tensile machine (MATRON) and install and operate it at the Pacific Northwest Laboratory (PNL). The machine is designed to provide rapid, automated testing of irradiated miniature tensile specimen in a vacuum at elevated temperatures. The MATRON was successfully developed and shipped to PNL for installation in a hot facility. The original installation plan was modified to simplify the current and subsequent installations, and the installation was completed. Detailed procedures governing the operation of the system were written. Testing on irradiated miniature tensile specimen should begin in the near future

  20. Porosity Defect Remodeling and Tensile Analysis of Cast Steel

    Directory of Open Access Journals (Sweden)

    Linfeng Sun

    2016-02-01

    Full Text Available Tensile properties on ASTM A216 WCB cast steel with centerline porosity defect were studied with radiographic mapping and finite element remodeling technique. Non-linear elastic and plastic behaviors dependent on porosity were mathematically described by relevant equation sets. According to the ASTM E8 tensile test standard, matrix and defect specimens were machined into two categories by two types of height. After applying radiographic inspection, defect morphologies were mapped to the mid-sections of the finite element models and the porosity fraction fields had been generated with interpolation method. ABAQUS input parameters were confirmed by trial simulations to the matrix specimen and comparison with experimental outcomes. Fine agreements of the result curves between simulations and experiments could be observed, and predicted positions of the tensile fracture were found to be in accordance with the tests. Chord modulus was used to obtain the equivalent elastic stiffness because of the non-linear features. The results showed that elongation was the most influenced term to the defect cast steel, compared with elastic stiffness and yield stress. Additional visual explanations on the tensile fracture caused by void propagation were also given by the result contours at different mechanical stages, including distributions of Mises stress and plastic strain.

  1. Research on Design and Simulation of Biaxial Tensile-Bending Complex Mechanical Performance Test Apparatus

    Directory of Open Access Journals (Sweden)

    Hailian Li

    2017-09-01

    Full Text Available In order to realize a micro-mechanic performance test of biaxial tensile-bending-combined loading and solve the problem of incompatibility of test apparatus and observation apparatus, novel biaxial-combined tensile-bending micro-mechanical performance test apparatus was designed. The working principle and major functions of key constituent parts of test apparatus, including the servo drive unit, clamping unit and test system, were introduced. Based on the finite element method, biaxial tensile and tension-bending-combined mechanical performances of the test-piece were studied as guidance to learn the distribution of elastic deformation and plastic deformation of all sites of the test-piece and to better plan test regions. Finally, this test apparatus was used to conduct a biaxial tensile test under different pre-bending loading and a tensile test at different rates; the image of the fracture of the test-piece was acquired by a scanning electron microscope and analyzed. It was indicated that as the pre-bending force rises, the elastic deformation phase would gradually shorten and the slope of the elastic deformation phase curve would slightly rise so that a yield limit would appear ahead of time. Bending speed could exert a positive and beneficial influence on tensile strength but weaken fracture elongation. If bending speed is appropriately raised, more ideal anti-tensile strength could be obtained, but fracture elongation would decline.

  2. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    Science.gov (United States)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  3. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles

    Energy Technology Data Exchange (ETDEWEB)

    Tuo, Wanyong [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); School of Civil & Architectural Engineering, Anyang Institute of Technology, Anyang 455000 (China); Chen, Jinxiang, E-mail: chenjpaper@yahoo.co.jp [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); Wu, Zhishen; Xie, Juan [School of Civil Engineering & International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096 (China); Wang, Yong [Nantong Vocational University, Nantong, Jiangsu 226007 (China)

    2016-08-01

    Based on a tensile experiment and observations by scanning electron microscopy (SEM), this study demonstrated the characteristics of the tensile mechanical properties of the fresh and dry forewings of two types of beetles. The results revealed obvious differences in the tensile fracture morphologies and characteristics of the tensile mechanical properties of fresh and dry forewings of Cybister tripunctatus Olivier and Allomyrina dichotoma. For fresh forewings of these two types of beetles, a viscous, flow-like, polymer matrix plastic deformation was observed on the fracture surfaces, with soft morphologies and many fibers being pulled out, whereas on the dry forewings, the tensile fracture surfaces were straightforward, and there were no features resembling those found on the fresh forewings. The fresh forewings exhibited a greater fracture strain than the dry forewings, which was caused by the relative slippage of hydroxyl inter-chain bonds due to the presence of water in the fibers and proteins in the fresh forewings. Our study is the first to demonstrate the phenomenon of sudden stress drops caused by the fracturing of the lower skin because the lower skin fractured before the forewings of A. dichotoma reached their ultimate tensile strength. We also investigated the reasons underlying this phenomenon. This research provides a much better understanding of the mechanical properties of beetle forewings and facilitates the correct selection of study objects for biomimetic materials and development of the corresponding applications. - Highlights: • There is a phenomenon of sudden stress drop on the tensile stress-train curve of forewing. • The causes of the differences of mechanical properties of fresh and dry forewings are explained. • The hypothesis raised in a previous review paper is verified. • This study brings better ideas into correct understanding of the mechanical properties that the biomimetic object exhibits.

  4. Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China); Wang, F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, H.; Yu, B.D. [China Railway Shanhaiguan Bridge Group Co. LTD, Qinhuangdao 066205 (China)

    2017-01-02

    The microstructures and tensile behaviors of traditional Hadfield steel, named Mn12 steel, and Hadfield steel alloyed with N+Cr, named Mn12CrN steel were studied through optical microscopy, transmission electron microscopy, and scanning electron microscopy, among others. Three different tensile strain rates of 5×10{sup −4}, 5×10{sup −3}, and 5×10{sup −2} s{sup −1} were selected in the tensile test. The deformation microstructures and fracture morphologies of the two steels after fracture in the tensile test were observed to analyze the tensile deformation response to different tensile strain rates. Results showed that the grain size of Mn12CrN steel was evidently refined after alloying with N+Cr. The grain would not become abnormally coarse even with increasing austenitizing temperature. During tensile deformation, the strength and plasticity of Mn12CrN steel were superior to those of Mn12 steel at the same strain rate. With increasing the strain rate, the changes in strength and plasticity of Mn12CrN steel were less sensitive to tensile strain rate compared with Mn12 steel. The effects of grain refinement and N+Cr alloying on dynamic strain aging and deformation twining behaviors were responsible for this lack of sensitivity to strain rate.

  5. Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel

    International Nuclear Information System (INIS)

    Chen, C.; Zhang, F.C.; Wang, F.; Liu, H.; Yu, B.D.

    2017-01-01

    The microstructures and tensile behaviors of traditional Hadfield steel, named Mn12 steel, and Hadfield steel alloyed with N+Cr, named Mn12CrN steel were studied through optical microscopy, transmission electron microscopy, and scanning electron microscopy, among others. Three different tensile strain rates of 5×10 −4 , 5×10 −3 , and 5×10 −2 s −1 were selected in the tensile test. The deformation microstructures and fracture morphologies of the two steels after fracture in the tensile test were observed to analyze the tensile deformation response to different tensile strain rates. Results showed that the grain size of Mn12CrN steel was evidently refined after alloying with N+Cr. The grain would not become abnormally coarse even with increasing austenitizing temperature. During tensile deformation, the strength and plasticity of Mn12CrN steel were superior to those of Mn12 steel at the same strain rate. With increasing the strain rate, the changes in strength and plasticity of Mn12CrN steel were less sensitive to tensile strain rate compared with Mn12 steel. The effects of grain refinement and N+Cr alloying on dynamic strain aging and deformation twining behaviors were responsible for this lack of sensitivity to strain rate.

  6. Fracture mechanics

    International Nuclear Information System (INIS)

    Miannay, D.P.

    1995-01-01

    This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped

  7. Tensile and bending fatigue of the adhesive interface to dentin.

    Science.gov (United States)

    Belli, Renan; Baratieri, Luiz Narciso; Braem, Marc; Petschelt, Anselm; Lohbauer, Ulrich

    2010-12-01

    The aim of this study was to evaluate the fatigue limits of the dentin-composite interfaces established either with an etch-and-rinse or an one-step self-etch adhesive systems under tensile and bending configurations. Flat specimens (1.2 mm×5 mm×35 mm) were prepared using a plexiglass mold where dentin sections from human third molars were bonded to a resin composite, exhibiting the interface centrally located. Syntac Classic and G-Bond were used as adhesives and applied according to the manufacturer's instructions. The fluorochrome Rhodamine B was added to the adhesives to allow for fractographic evaluation. Tensile strength was measured in an universal testing machine and the bending strength (n=15) in a Flex machine (Flex, University of Antwerp, Belgium), respectively. Tensile (TFL) and bending fatigue limits (BFL) (n=25) were determined under wet conditions for 10(4) cycles following a staircase approach. Interface morphology and fracture mechanisms were observed using light, confocal laser scanning and scanning electron microscopy. Statistical analysis was performed using three-way ANOVA (mod LSD test, pTensile and bending characteristic strengths at 63.2% failure probability for Syntac were 23.8 MPa and 71.5 MPa, and 24.7 MPa and 72.3 MPa for G-Bond, respectively. Regarding the applied methods, no significant differences were detected between adhesives. However, fatigue limits for G-Bond (TFL=5.9 MPa; BFL=36.2 MPa) were significantly reduced when compared to Syntac (TFL=12.6 MPa; BFL=49.7 MPa). Fracture modes of Syntac were generally of adhesive nature, between the adhesive resin and dentin, while G-Bond showed fracture planes involving the adhesive-dentin interface and the adhesive resin. Cyclic loading under tensile and bending configurations led to a significant strength degradation, with a more pronounced fatigue limit decrease for G-Bond. The greater decrease in fracture strength was observed in the tensile configuration. Copyright © 2010 Academy of

  8. Tensile properties and temperature-dependent yield strength prediction of GH4033 wrought superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jianzuo [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Li, Weiguo, E-mail: wgli@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xianhe; Kou, Haibo; Shao, Jiaxing; Geng, Peiji; Deng, Yong [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Fang, Daining [LTCS and College of Engineering, Peking University, Beijing 100871 (China)

    2016-10-31

    The tensile properties of superalloy GH4033 have been evaluated at temperatures ranging from room temperature to 1000 °C. Fracture surfaces and precipitation were observed using a field-emission scanning electron microscope (FE-SEM). The alloy mainly consisted of γ’ precipitate particles homogeneously dispersed in the γ matrix interior. The effects of dynamic strain aging and precipitation on the strength were verified. A temperature-dependent yield strength model was developed to describe the temperature and precipitation effects on the alloy's yield behaviour. The model is able to consider the effect of precipitation strengthening on the yield strength. The yield behaviour of the precipitation-strengthened superalloy was demonstrated to be adequately predictable over a wide range of temperatures. Note that this model reflects the quantitative relationship between the yield strength of the precipitation-strengthened superalloy and the temperature, the elastic modulus, the specific heat capacity at constant pressure, Poisson's ratio, the precipitate particle size and the volume fraction of the particles.

  9. The Effects of Fe-Particles on the Tensile Properties of Al-Si-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Anton Bjurenstedt

    2016-12-01

    Full Text Available The effect of Fe-rich particles has been a topic for discussion in the aluminum casting industry because of the negative impact they exert on the mechanical properties. However, there are still contradictions on the effects of various morphologies of Fe-particles. In this study, microstructural characterization of tensile tested samples has been performed to reveal how unmodified and modified Fe-rich particles impact on the tensile behavior. Analysis of additions of Fe modifiers such as Mn and Cr, showed higher amounts of primary Fe-rich particles (sludge with increased porosity and, as result, degraded tensile properties. From the fracture analysis of tensile tested hot isostatic pressed (HIPed samples it could be concluded that the mechanical properties were mainly governed by the Fe-rich particles, which were fracturing through cleavage, not by the porosity.

  10. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  11. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-01

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867

  12. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens.

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-16

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified.

  13. Dynamic tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Chen Xuan; Li Yulong

    2011-01-01

    Graphical abstract: The dynamic tensile behavior of 2D C/SiC composites was experimentally investigated by means of SHTB. Both the fracture surface and bundle fracture surfaces of composites were observed. The strain rate sensitivity of in-bundle interface was concluded as the dominant contributor to the strain rate sensitivity of the tensile strength. Highlights: → The tensile strength increases with strain rate. → The tensile failure strain remains independent of strain rate. → Macro-structural morphology reveals rough fracture surface under dynamic loading. → SEM morphology reveals integrated bundle pull-out under dynamic loading. → Strain rate sensitivity of in-bundle interface leads to that of the tensile strength. - Abstract: An investigation has been undertaken to determine the dynamic and quasi-static tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix (2D-C/SiC) composites by means of the split Hopkinson tension bar and an electronic universal test machine respectively. The results indicate that the tensile strength of 2D C/SiC composites is increased at high strain rate. Furthermore, coated specimens show not only a 15% improvement in tensile strength but heightened strain rate sensitivity compared with uncoated ones. It is also shown that the tensile failure strain is strain rate insensitive and remains around 0.4%. Optical macrograph of failed specimens under dynamic loading revealed jagged fracture surfaces characterized by delamination and crack deviation, together with obvious fiber pull-out/splitting, in contrast with the smooth fracture surfaces under quasi-static loading. Scanning electron microscopy micrograph of fracture surface under dynamic loading clearly displayed integrated bundle pull-out which implies suppressed in-bundle debonding and enhanced in-bundle interfacial strengthening, in contrast with extensive in-bundle debonding under quasi-static loading. Thus we conclude that, with 2D C

  14. Tensile, swelling and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites

    Science.gov (United States)

    Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras

    2017-10-01

    Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.

  15. Strain rate effects on fracture behavior of Austempered Ductile Irons

    Science.gov (United States)

    Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico

    2017-06-01

    Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.

  16. Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites

    International Nuclear Information System (INIS)

    Balasubramanian, I.; Maheswaran, R.

    2015-01-01

    Highlights: • AA6063/SiC composites with different weight percent are stir cast. • Resistance properties against indentation, stretching force and sliding force are studied. • Increase in initiation of cleavage facets and reduces the tensile strength for 15% SiC. • Transition from micro ploughing to micro cutting wear mechanism is less due to SiC inclusion. - Abstract: This study investigates the mechanical resistance behaviour of AA6063 particulate composites with the inclusion of micron-sized silicon carbide (SiC) particles with different weight percentages in an AA6063 aluminium matrix. AA6063/SiC particulate composites containing 0, 5, 10, and 15 weight percent of SiC particles were produced by stir casting. Standard mechanical tests were conducted on the composite plates, and the mechanical resistance to indentation, tensile force and sliding force are evaluated. It has been observed that upon addition of SiC particles, the resistance against indentation is increased and the resistance against tensile force is initially increased and then decreased. Furthermore, using scanning electron microscopy (SEM), the fracture appearance of the broken specimen subjected to tensile force and morphological changes in the surface subjected to sliding force are analysed. The SEM images reveal that the addition of SiC particles in the AA6063 aluminium matrix initiates more cleavage facets. This leads to brittle fracture in the specimen subjected to tensile forces and less transition from material displacement to material removal in the specimen subjected to sliding forces

  17. Tensile properties of neutron irradiated solid HIP 316L(N). ITER Task T214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Van Osch, E.V.; Tjoa, G.L.; Boskeljon, J.; Van Hoepen, J.

    1998-05-01

    The tensile properties of neutron irradiated Hot Isostatically Pressed (HIP) joints of type 316L(N) stainless steel (heat PM-130) have been measured. Cylindrical tensile test specimens of 4 mm diameter were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the first wall conditions by a combination of high displacement damage with proportional amounts of helium. The solid HIP specimens were irradiated up to a target dose level of 5 dpa at a temperature of 550K. The damage levels realized range from 3.0 to 4.1 dpa, with helium contents up to 38 appm. Post irradiation testing temperatures ranged from 300 to 700K. The report contains the experimental conditions and summarises the results, which are given in terms of engineering stresses and strains and reduction of area. The main conclusions are that the unirradiated solid-HIP material is very soft, assumingly due to the relatively large grain size. Neutron irradiation induces both hardening and reduction of ductility, similar to the behaviour of 316L(N) plate. No failures related to debonding were observed for the tests of the unirradiated samples, however one of eight tested irradiated specimens fractured in the HIP joint, showing a flat fracture surface and a low reduction of area. 6 refs

  18. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.

    Science.gov (United States)

    Kieser, Jules A; Weller, Sarah; Swain, Michael V; Neil Waddell, J; Das, Raj

    2013-07-01

    Despite numerous studies on high impact fractures of ribs, little is known about compressive rib injuries. We studied rib fractures from a biomechanical and morphological perspective using 15, 5th ribs of domestic pigs Sus scrofa, divided into two groups, desiccated (representing post-mortem trauma) and fresh ribs with intact periosteum (representing peri-mortem trauma). Ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and scanning electron microscopy (SEM). During axial compression, fresh ribs had slightly higher strength because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by relatively short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening, visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. In contrast, fresh bone showed buckling-like damage features on the compressive surface and cracking parallel to the axis of the bone. Morphologically, all dry ribs fractured precipitously, whereas all but one of the fresh ribs showed incomplete fracture. The mode of fracture, however, was remarkably similar for both groups, with butterfly fractures predominating (7/15, 46.6% dry and wet). Our study highlights the fact that under controlled loading, despite seemingly similar butterfly fracture morphology, fresh ribs (representing perimortem trauma) show a non-catastrophic response. While extensive strain softening observed for the fresh bone does show some additional micro-cracking damage, it appears that the periosteum may play a key role in imparting the observed pseudo-ductility to the ribs

  19. Tensile Property of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion Based on Treatment of Laser Shock Processing.

    Science.gov (United States)

    Zhang, Lei; Liu, Yue-Hua; Luo, Kai-Yu; Zhang, Yong-Kang; Zhao, Yong; Huang, Jian-Yun; Wu, Xu-Dong; Zhou, Chuang

    2018-05-16

    Tensile property was one important index of mechanical properties of ANSI 304 stainless steel laser weldments subjected to cavitation erosion (CE). Laser shock processing (LSP) was utilized to strengthen the CE resistance, and the tensile property and fracture morphology were analyzed through three replicated experiment times. Results showed tensile process of treated weldments was composed of elastic deformation, plastic deformation, and fracture. The elastic limit, elastic modulus, elongation, area reduction, and ultimate tensile strength of tensile sample after CE were higher in view of LSP. In the fracture surface, the fiber zone, radiation zone and shear lip zone were generated, and those were more obvious through LSP. The number and size of pores in the fracture surface were smaller, and the fracture surface was smoother and more uniform. The dimples were elongated along the unified direction due to effects of LSP, and the elongated direction was in agreement with the crack propagation direction. Their distribution and shape were uniform with deeper depth. It could be reflected that the tensile property was improved by LSP and the CE resistance was also enhanced.

  20. Irradiation effects on tensile ductility and dynamic toughness of ferritic-martensitic 7-12 Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2006-01-01

    The superimposed effect of irradiation-induced hardening by small defects (clusters, dislocation loops) and chromium-rich - precipitate formations on tensile ductility and Charpy-impact behaviour of various ferritic-martensitic (7-13)CrWVTa(Ti)-RAFM steels have been examined by micro-mechanical deformation and ductile/dynamic fracture models. Analytical relations have been deduced describing irradiation-induced changes of uniform ductility and fracture strain as well as ductile-to-brittle transition temperature DBTT and ductile upper shelf energy USE observed from impact tests. The models apply work-hardening with competitive action of relevant dislocation multiplication and annihilation reactions. The impact model takes into account stress intensity with local plasticity and fracture within the damage zone of main crack. Especially, the influences of radiation-induced changes in ductile and dynamic fracture stresses have been considered together with effects from strain rate sensitivity of strength, precipitate morphology as mean size dp and volume fraction fv as well as deformation temperature and strain rate. For these, particularly the correlation between tensile ductility and impact properties have been examined. Strengthening by clusters and loops generally reduces uniform ductility, and more stronger fracture strain as well as ductile upper shelf energy USE and additionally increases DBTT for constant fracture stresses. A superimposed precipitation hardening by formation of 3-6 nm, f v 6 nm, which clear above the sharable limit of coherent precipitates increases with increasing fraction fv and but strongly reduces with increasing matrix strength due to full martensitic structure, higher C, N alloying contents and pronounced hardening by irradiation-induced cluster and loop formations. A combined increase of fracture stresses due to irradiation-induced changes of the grain boundary structure diminishes the strength-induced increase in DBTT and more stronger

  1. Effect of sized and specimen geometry on the initiation and propagation of the ductile fracture

    International Nuclear Information System (INIS)

    Frund, J.M.; Marini, B.; Bethmont, M.

    1994-02-01

    Strength to the fracture of the pipe in PWR has to be justified with mechanical analyses. These tests are based on the strength to ductile fracture of steels which are tested in lab. The values of resistance to fracture are obtained through tensile tests on CT specimens (determination of J-R curves). The purpose of this study is to justify the sizes of the specimens which have to be used to characterize the strength to ductile fracture of steel in secondary pipes. Tests were conducted on 0,5T-CT, 1T-CT and 2T-CT specimens. Two materials with different suffer contents were studied. The test results show that the JO,2 values gotten from the different specimens are similar. But the strength to ductile fracture in 2T-CT specimens in lower than the one measured in 0,5t-CT and 1T-CT specimens. The surface of fracture of the different specimens displays splits perpendicular to the notch and parallel to the sheet surface. These splits are produced by the separation of the manganese sulfur inclusions. The effect notes on the J-R curves seems to be relevant to these splits. The reason why these splits might be responsible for a decrease of the tearing modulus are not clearly defined up to this point. The results which have been published show the importance of the geometry effects (presence or not of lateral notches...) and the loading mode on the strength to ductile fracture. We note that the curves determined from tests on CT specimens are conservative. A few preliminary studies showed that the geometry effects on resistance to fracture can be studied and explained by using local approach methods. The Rousselier modeling is useful to explain the behaviour of ferritic steels in ductile fracture. (authors). 20 refs., 7 figs., 5 tabs

  2. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  3. Tensile and impact properties of TZM and Mo-5% Re

    International Nuclear Information System (INIS)

    Filacchioni, G.; Casagrande, E.; Angelis, U. de; Santis, G. de; Ferrara, D.

    1994-01-01

    Some aspects of the mechanical behaviour of two molybdenum alloys, one belonging to the precipitation hardened sub-family (TZM) and the other is a solid solution Mo 5% rhenium-bearing alloy, have been investigated. Experimental data (tensile mechanical strength, ductility and impact properties of unirradiated materials) show that a difference in behaviour exists between the precipitation hardened and the solid solution strengthened alloy, but at the same time a serious discrepancy has been found between the present results and previously reported ductile to brittle transition temperature values for Mo alloys. ((orig.))

  4. Fractography evaluation of impact and tensile specimens from the HFBR [High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1989-10-01

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) has performed a fractographic examination of neutron irradiated and unirradiated tensile and Charpy ''V'' notch specimens. The evaluation was carried out using a scanning electron microscope (SEM) to evaluate the fracture mode. Photomicrographs were then evaluated to determine the extent of ductility present on the fracture surfaces of the unirradiated specimens. Ductility area measurements ranged from 4.6--9.5% on typical photomicrographs examined. 12 figs

  5. A new tensile impact test for the toughness characterization of sheet material

    Science.gov (United States)

    Könemann, Markus; Lenz, David; Brinnel, Victoria; Münstermann, Sebastian

    2018-05-01

    In the past, the selection of suitable steels has been carried out primarily based on the mechanical properties of different steels. One of these properties is the resistance against crack propagation. For many constructions, this value plays an important role, because it can compare the impact toughness of different steel grades easily and gives information about the loading capacity of the specific materials. For thin sheets, impact toughness properties were usually not considered. One of the reasons for this is that the Charpy-impact test is not applicable for sheets with thicknesses below 2 mm. For a long time, this was not relevant because conventional steels had a sufficient impact toughness in a wide temperature range. However, since new multiphase steel grades with improved mechanical property exploitations are available, it turned out that impact toughness properties need to be considered during the component design phase, as the activation of the cleavage fracture mechanism is observed under challenging loading conditions. Therefore, this work aims to provide a new and practical testing procedure for sheet material or thin walled structures. The new testing procedure is based on tensile tests conducted in an impact pendulum similar to the Charpy impact hammer. A new standard geometry is provided, which enables a comparison between different steels or steel grades. A connection to the conventional Charpy test is presented using a damage mechanics model, which predicts material failure with consideration of to the stress state at various temperatures. Different specimen geometries are analysed to cover manifold stress states. A special advantage of the damage mechanics model is also the possibility to predict the materials behaviour in the transition area. To verify the method a conventional steel was tested in Charpy tests as well as in the new tensile impact test.

  6. Fracture propagation in sandstone and slate – Laboratory experiments, acoustic emissions and fracture mechanics

    Directory of Open Access Journals (Sweden)

    Ferdinand Stoeckhert

    2015-06-01

    Full Text Available Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.

  7. Evaluation of tensile strength and fracture behavior of friction welded ...

    Indian Academy of Sciences (India)

    In the present study an attempt was made to join austenitic stainless steel ... Experimental details ... This test was carried out on the friction welded samples of .... phenomenon was observed to be true if the rotational speed was increased up to ...

  8. Performance of Grouted Splice Sleeve Connector under Tensile Load

    Directory of Open Access Journals (Sweden)

    A. Alias

    2016-05-01

    Full Text Available The grouted splice sleeve connector system takes advantage of the bond-slip resistance of the grout and the mechanical gripping of reinforcement bars to provide resistance to tensile force. In this system, grout acts as a load-transferring medium and bonding material between the bars and sleeve. This study adopted the end-to-end rebars connection method to investigate the effect of development length and sleeve diameter on the bonding performance of the sleeve connector. The end-to-end method refers to the condition where reinforcement bars are inserted into the sleeve from both ends and meet at the centre before grout is filled. Eight specimens of grouted splice sleeve connector were tested under tensile load to determine their performance. The sleeve connector was designed using 5 mm thick circular hollow section (CHS steel pipe and consisted of one external and two internal sleeves. The tensile test results show that connectors with a smaller external and internal sleeve diameter appear to provide better bonding performance. Three types of failure were observed in this research, which are bar fracture (outside the sleeve, bar pullout, and internal sleeve pullout. With reference to these failure types, the development length of 200 mm is the optimum value due to its bar fracture type, which indicates that the tensile capacity of the connector is higher than the reinforcement bar. It is found that the performance of the grouted splice sleeve connector is influenced by the development length of the reinforcement bar and the diameter of the sleeve.

  9. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  10. Assessing Impact Direction in 3-point Bending of Human Femora: Incomplete Butterfly Fractures and Fracture Surfaces,.

    Science.gov (United States)

    Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C

    2018-01-01

    Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.

  11. SOLID BURNT BRICKS’ TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    Aneta Maroušková

    2017-11-01

    Full Text Available This paper deals with experimental testing of solid burnt bricks and mortar in pure (axial tension. The obtained working diagrams will be further use for a detailed numerical analysis of whole brick masonry column under concentric compressive load. Failure mechanism of compressed brick masonry column is characterized by the appearance and development of vertical tensile cracks in masonry units (bricks passing in the direction of principal stresses and is accompanied by progressive growth of horizontal deformations. These cracks are caused by contraction and interaction between two materials with different mechanical characteristics (brick and mortar. The aim of this paper is more precisely describe the response of quasi-brittle materials to uniaxial loading in tension (for now only the results from three point bending test are available. For these reasons, bricks and mortar tensile behavior is experimentally tested and the obtained results are discussed.

  12. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  13. Exploring the tensile strain energy absorption of hybrid modified epoxies containing soft particles

    International Nuclear Information System (INIS)

    Abadyan, M.; Bagheri, R.; Kouchakzadeh, M.A.; Hosseini Kordkheili, S.A.

    2011-01-01

    Research highlights: → Two epoxy systems have been modified by combination of fine and coarse modifiers. → While both hybrid systems reveal synergistic K IC , no synergism is observed in tensile test. → It is found that coarse particles induce stress concentration in hybrid samples. → Stress concentration leads to fracture of samples at lower energy absorption levels. -- Abstract: In this paper, tensile strain energy absorption of two different hybrid modified epoxies has been systematically investigated. In one system, epoxy has been modified by amine-terminated butadiene acrylonitrile (ATBN) and hollow glass spheres as fine and coarse modifiers, respectively. The other hybrid epoxy has been modified by the combination of ATBN and recycled Tire particles. The results of fracture toughness measurement of blends revealed synergistic toughening for both hybrid systems in some formulations. However, no evidence of synergism is observed in tensile test of hybrid samples. Scanning electron microscope (SEM), transmission optical microscope (TOM) and finite element (FEM) simulation were utilized to study deformation mechanisms of hybrid systems in tensile test. It is found that coarse particles induce stress concentration in hybrid samples. This produces non-uniform strain localized regions which lead to fracture of hybrid samples at lower tensile loading and energy absorption levels.

  14. Experimental and numerical analysis concerning the behaviour of OL50 steel grade specimens coated with polyurea layer under dynamics loadings

    Directory of Open Access Journals (Sweden)

    Bucur Florina

    2015-01-01

    Full Text Available This study refers to an experimental and numerical evaluation of a polyurea coating layer influence on the dynamic behaviour of OL50 specimens. Mechanical quasi-static and dynamic tensile tests were performed in axial loading conditions, for 2 mm steel plate specimens. Several metallic specimens have been previously coated with 1.5 mm and 3 mm respectively thickness polyurea layer and tested in traction. The findings results indicate that the presence of polyurea changes the loading pattern of metallic material in the necking area. In terms of polyurea coated metal specimens fracture, there was clearly observed a change of fracture limit. One possible explanation of this phenomenon is the modification of triaxiality state in the necking zone, fact proven by the numerical simulations. Test results indicate that the presence of polyurea layer delays the necking onset phenomenon which precedes the OL50 metallic specimen fracture.

  15. Tensile properties of irradiated TZM and tungsten

    International Nuclear Information System (INIS)

    Steichen, J.M.

    1975-04-01

    The effect of neutron irradiation on the elevated temperature tensile properties of TZM and tungsten has been experimentally determined. Specimens were irradiated at a temperature of approximately 720 0 F to fluences of 0.4 and 0.9 x 10 22 n/cm 2 (E greater than 0.1 MeV). Test parameters for both control and irradiated specimens included strain rates from 3 x 10 -4 to 1 s -1 and temperatures from 72 to 1700 0 F. The results of these tests were correlated with a rate-temperature parameter (T ln A/epsilon) to provide a concise description of material behavior over the range of deformation conditions of this study. The yield strength of the subject materials was significantly increased by decreasing temperature, increasing strain rate, and increasing fluence. Ductility was significantly reduced at any temperature or strain rate by increasing fluence. Cleavage fractures occurred in both unirradiated and irradiated specimens when the yield strength was elevated to the effective cleavage stress by temperature and/or strain rate. Neutron irradiation for the conditions of this study increased the ductile-to-brittle transition temperature of tungsten by approximately 300 0 F and TZM by approximately 420 0 F. (U.S.)

  16. Low temperature tensile properties and stress corrosion cracking resistance in the super duplex stainless steels weldments

    International Nuclear Information System (INIS)

    Lee, Jeung Woo; Sung, Jang Hyun; Lee, Sung Keun

    1998-01-01

    Low temperature tensile properties and SCC resistances of super duplex stainless steels and their weldments are investigated. Tensile strengths increase remarkably with decreasing test temperature, while elongations decrease steeply at -196 .deg. C after showing peak or constant value down to -100 .deg. C. Owing to the low tensile deformation of weld region, elongations of welded specimen decrease in comparison to those of unwelded specimen. The welded tensile specimen is fractured through weld region at -196 .deg. C due to the fact that the finely dispersed ferrite phase in the austenite matrix increases an opportunity to supply the crack propagation path through the brittle ferrite phase at low temperature. The stress corrosion cracking initiates preferentially at the surface ferrite phase of base metal region and propagates through ferrite phase. When the corrosion crack meets with the fibrously aligned austenite phase to the tensile direction, the ferrite phase around austenite continues to corrode. Eventually, fracture of the austenite phase begins without enduring the tensile load. The addition of Cu+W to the super duplex stainless steel deteriorates the SCC resistance in boiling MgCl 2 solution, possibly due to the increment of pits in the ferrite phase and reduction of N content in the austenite phase

  17. Tensile behavior of orthorhombic alpha ''-titanium alloy studied by in situ X-ray diffraction

    DEFF Research Database (Denmark)

    Wang, X.D.; Lou, H.B.; Ståhl, Kenny

    2010-01-01

    are indeed due to a low stress yielding (similar to 400 MPa) followed with a significant work-hardening before necking and fracture. In this process, the [0 2 2] orientation of grains more approaches the tensile direction and the [2 0 0] moves to the transverse, causing the lattice parameter a to be shrunk...

  18. Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests

    International Nuclear Information System (INIS)

    Abbassi, Fethi; Mistou, Sebastien; Zghal, Ali

    2013-01-01

    Highlights: ► Cruciform specimen designed and biaxial tensile test carried out. ► Stereo Correlation Image technique is used for 3D full-filed measurements. ► SEM fractography analysis is used to explain the fracture mechanism. ► Constitutive modeling of the necking phenomenon was developed using GTN model. - Abstract: The aim of the presented investigations is to perform an analysis of fracture and instability during simple and complex load testing by addressing the influence of ductile damage evolution in necking processes. In this context, an improved experimental methodology was developed and successfully used to evaluate localization of deformation during uniaxial and biaxial tensile tests. The biaxial tensile tests are carried out using cruciform specimen loaded using a biaxial testing machine. In this experimental investigation, Stereo-Image Correlation technique has is used to produce the heterogeneous deformations map within the specimen surface. Scanning electron microscope is used to evaluate the fracture mechanism and the micro-voids growth. A finite element model of uniaxial and biaxial tensile tests are developed, where a ductile damage model Gurson–Tvergaard–Needleman (GTN) is used to describe material deformation involving damage evolution. Comparison between the experimental and the simulation results show the accuracy of the finite element model to predict the instability phenomenon. The advanced measurement techniques contribute to understand better the ductile fracture mechanism

  19. Tensile strength of hydrated cement paste phases assessed by microbending tests and nanoindentation

    Czech Academy of Sciences Publication Activity Database

    Němeček, J.; Králík, V.; Šmilauer, V.; Polívka, Leoš; Jäger, Aleš

    2016-01-01

    Roč. 73, Oct (2016), 164-173 ISSN 0958-9465 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : cement * hydration products * micro-beam * tensile strength * fracture energy * nanoindentation * focused ion beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.265, year: 2016

  20. Development of tools and models for computational fracture assessment

    International Nuclear Information System (INIS)

    Talja, H.; Santaoja, K.

    1998-01-01

    The aim of the work presented in this paper has been to develop and test new computational tools and theoretically more sound methods for fracture mechanical analysis. The applicability of the engineering integrity assessment system MASI for evaluation of piping components has been extended. The most important motivation for the theoretical development have been the well-known fundamental limitations in the validity of J-integral, which limits its applicability in many important practical safety assessment cases. Examples are extensive plastic deformation, multimaterial structures and ascending loading paths (especially warm prestress, WPS). Further, the micromechanical Gurson model has been applied to several reactor pressure vessel materials. Special attention is paid to the transferability of Gurson model parameters from tensile test results to prediction of ductile failure behaviour of cracked structures. (author)

  1. Effect of implanted helium on tensile properties and hardness of 9% Cr martensitic stainless steels

    Science.gov (United States)

    Jung, P.; Henry, J.; Chen, J.; Brachet, J.-C.

    2003-05-01

    Hundred micrometer thick specimens of 9% Cr martensitic steels EM10 and T91 were homogeneously implanted with He 4 to concentrations up to 0.5 at.% at temperatures from 150 to 550 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. Subsequently the fracture surfaces were analysed by scanning electron microscopy and some of the specimens were examined in an instrumented hardness tester. The implanted helium caused hardening and embrittlement which both increased with increasing helium content and with decreasing implantation temperature. Fracture surfaces showed intergranular brittle appearance with virtually no necking at the highest implantation doses, when implanted below 250 °C. The present tensile results can be scaled to tensile data after irradiation in spallation sources on the basis of helium content but not on displacement damage. An interpretation of this finding by microstructural examination is given in a companion paper [J. Nucl. Mater., these Proceedings].

  2. A ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum sheet in thermal forming

    Directory of Open Access Journals (Sweden)

    Wang Chu

    2015-01-01

    Full Text Available Formability of pure molybdenum in thermal forming process has been greatly improved, but it is still hard to avoid the generation of rupture and other quality defects. In this paper, a ductile fracture criterion of pure molybdenum sheet in thermal forming was established by considering the plastic deformation capacity of material and stress states, which can be used to describe fracture behaviour and critical rupture prediction of pure molybdenum sheet during hot forming process. Based on the isothermal uniaxial tensile tests which performed at 993 to 1143 K with strain rate range from 0.0005 to 0.2 s−1, the material parameters are calculated by the combination method of experiment with FEsimulation. Based on the observation, new fracture criteria can be expressed as a function of Zener-Hollomon parameter. The critical fracture value that calculated by Oyane-Sato criterion increases with increasing temperature and decreasing strain rate. The ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum in thermal forming is proposed.

  3. Tensile rock mass strength estimated using InSAR

    KAUST Repository

    Jonsson, Sigurjon

    2012-11-01

    The large-scale strength of rock is known to be lower than the strength determined from small-scale samples in the laboratory. However, it is not well known how strength scales with sample size. I estimate kilometer-scale tensional rock mass strength by measuring offsets across new tensional fractures (joints), formed above a shallow magmatic dike intrusion in western Arabia in 2009. I use satellite radar observations to derive 3D ground displacements and by quantifying the extension accommodated by the joints and the maximum extension that did not result in a fracture, I put bounds on the joint initiation threshold of the surface rocks. The results indicate that the kilometer-scale tensile strength of the granitic rock mass is 1–3 MPa, almost an order of magnitude lower than typical laboratory values.

  4. Tensile rock mass strength estimated using InSAR

    KAUST Repository

    Jonsson, Sigurjon

    2012-01-01

    The large-scale strength of rock is known to be lower than the strength determined from small-scale samples in the laboratory. However, it is not well known how strength scales with sample size. I estimate kilometer-scale tensional rock mass strength by measuring offsets across new tensional fractures (joints), formed above a shallow magmatic dike intrusion in western Arabia in 2009. I use satellite radar observations to derive 3D ground displacements and by quantifying the extension accommodated by the joints and the maximum extension that did not result in a fracture, I put bounds on the joint initiation threshold of the surface rocks. The results indicate that the kilometer-scale tensile strength of the granitic rock mass is 1–3 MPa, almost an order of magnitude lower than typical laboratory values.

  5. Effect of Stress State on Fracture Features

    Science.gov (United States)

    Das, Arpan

    2018-02-01

    Present article comprehensively explores the influence of specimen thickness on the quantitative estimates of different ductile fractographic features in two dimensions, correlating tensile properties of a reactor pressure vessel steel tested under ambient temperature where the initial crystallographic texture, inclusion content, and their distribution are kept unaltered. It has been investigated that the changes in tensile fracture morphology of these steels are directly attributable to the resulting stress-state history under tension for given specimen dimensions.

  6. Analysis of the competition between brittle and ductile fracture: application for the mechanical behaviour of C-Mn and theirs welds; Etude de la competition dechirure ductile/rupture fragile: application de la tenue mecanique des tubes en acier C-Mn et de leurs joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Le Corre, V

    2006-09-15

    This study deals with the fracture behaviour of welded thin structures in the ductile to brittle transition range. It aims to propose a criterion to define the conditions for which the risk of fracture by cleavage does not exist on a cracked structure. The literature review shows that the difficulties of prediction of the fracture behaviour of a structure are related to the dependence of the fracture probability to the mechanical fields at the crack tip. The ductile to brittle transition range thus depends on the studied geometry of the structure. A threshold stress, below which cleavage cannot take place, is defined using fracture tests on notched specimens broken at very low temperature. The finite element numerical simulation of fracture tests onspecimens in the transition range shows a linear relationship between the fracture probability and the volume exceeding the threshold stress, thus showing the relevance of the proposed criterion. Moreover, several relations are established allowing to simplify the identification of the criterion parameters. The criterion is applied to a nuclear structural C-Mn steel, by focusing more particularly on the higher boundary of the transition range. A fracture test on a full-scale pipe is designed, developed, carried out and analysed using its numerical simulation. The results show firstly that, on the structure, the transition range is shifted in temperature, compared to laboratory specimens, due to the low plasticity constraint achieved in thin structures, and secondly that the threshold stress criterion allows to estimate simply this shift. (author)

  7. Monitoring tensile damage evolution in Nextel 312/BlackglasTM composites

    International Nuclear Information System (INIS)

    Kim, Jeongguk; Liaw, Peter K.

    2005-01-01

    Tensile damage evolution was monitored with the aid of nondestructive evaluation (NDE) techniques. Several NDE methods, such as ultrasonic testing (UT), infrared (IR) thermography, and acoustic emission (AE) techniques, were employed to analyze damage evolution during tensile testing of Nextel 312/Blackglas TM composites. Prior to tensile testing, UT was used to characterize the initial defect distribution of the samples. During tensile testing, AE sensors and an IR camera were used for in situ monitoring of the progressive damage of the samples. AE provided the amounts of damage evolution in terms of the AE intensity and/or energy, and the IR camera was used to obtain the temperature changes during the test. Microstructural characterization using scanning electron microscopy (SEM) was performed to investigate the fracture mechanisms and modes of Nextel 312/Blackglas TM samples. Moreover, SEM characterization was used to document failure behavior, and to show comparable results with NDE signatures

  8. Evaluation of a miniature magnetostrictive actuator using Galfenol under tensile stress

    International Nuclear Information System (INIS)

    Ueno, Toshiyuki; Miura, Hidemitsu; Yamada, Sotoshi

    2011-01-01

    We are, at present, developing miniature actuators using an iron-gallium alloy (Galfenol). Galfenol is an iron-based magnetostrictive material with magnetostriction exceeding 200 ppm, Young's modulus of 70 GPa and a high relative permeability (>100). The advantages of an actuator using this material are capability of miniaturization, stability against external force, low voltage driving and high power. In this study, a miniature vibrator using an E core of Galfenol under tensile stress up to 20 MPa was investigated. The vibrator did not fracture and maintained the magnetostriction even under a high tensile stress. In addition, the resonance frequency, unchanged under the tensile stress, was lower than the cutoff frequency, hence the vibrator can be driven with a low voltage even in resonance driving. The temperature rise in resonance driving was low and creep was not observed in resonance driving under tensile stress. The vibrator will be applicable in flat panel or bone conductive speakers.

  9. Evaluation of a miniature magnetostrictive actuator using Galfenol under tensile stress

    Science.gov (United States)

    Ueno, Toshiyuki; Miura, Hidemitsu; Yamada, Sotoshi

    2011-02-01

    We are, at present, developing miniature actuators using an iron-gallium alloy (Galfenol). Galfenol is an iron-based magnetostrictive material with magnetostriction exceeding 200 ppm, Young's modulus of 70 GPa and a high relative permeability (>100). The advantages of an actuator using this material are capability of miniaturization, stability against external force, low voltage driving and high power. In this study, a miniature vibrator using an E core of Galfenol under tensile stress up to 20 MPa was investigated. The vibrator did not fracture and maintained the magnetostriction even under a high tensile stress. In addition, the resonance frequency, unchanged under the tensile stress, was lower than the cutoff frequency, hence the vibrator can be driven with a low voltage even in resonance driving. The temperature rise in resonance driving was low and creep was not observed in resonance driving under tensile stress. The vibrator will be applicable in flat panel or bone conductive speakers.

  10. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    Science.gov (United States)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  11. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Bachtiar, D.; Sapuan, S.M.; Hamdan, M.M.

    2008-01-01

    A study on the effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites is presented in this paper. The treatment was carried out using sodium hydroxide (NaOH) solutions at two different concentrations and three different soaking times. The hydrophilic nature of sugar palm fibre makes it difficult to adhere to hydrophobic epoxy and therefore posed the problem of interfacial bonding between fibre and matrix and such treatment was needed to alleviate such problem. The composite specimens were tested for tensile property determination. Some fractured specimens were examined under scanning electron microscope (SEM) to study the microstructure of the materials. Inconsistent results were obtained for tensile strengths, which indicate that the treatment is not very effective yet to improve the interfacial bonding. However, for tensile modulus, the results are much higher than untreated fibre composite specimens, which proved the effectiveness of the treatment

  12. Effect of strain rate on the tensile properties of α- and delta-stabilized plutonium

    International Nuclear Information System (INIS)

    Hecker, S.S.; Morgan, J.R.

    1975-01-01

    The tensile properties of unalloyed α-Pu and 3.4 at. percent Ga-stabilized delta-Pu were determined at strain rates from 10 -5 to 100/s. Tests at strain rates less than 10 -2 /s were conducted on an Instron Testing Machine; those at strain rates between 10 -2 and 3/s on a closed-loop electrohydraulic MTS system; and those at strain rates greater than 3/s on a specially modified Charpy Impact Tester. Three lots of delta-Pu, one rolled and annealed and the other two cast and homogenized, were tested. The 0.2 percent yield strengths and ultimate tensile strengths increased by an average of 5.2 and 6.0 MPa per factor of 10 increase in strain rate. This increase was achieved without penalty in tensile ductility as measured by total elongation to fracture and by reduction in area. The isostatically pressed α-Pu specimens also showed a large increase in fracture stress with strain rate (34.3 MPa per factor to 10 increase in strain rate). The fracture was macroscopically brittle (plastic strains less than 0.3 percent) although we observed extensive evidence of microscopic flow in the ductile dimple-type appearance of the fracture surfaces. The strain to fracture appeared to exhibit a minimum at a strain rate of 10 -2 /s. (U.S.)

  13. Modelling coupled to behaviour and damage; rupture criteria in the field of the PVDF transition; Modelisation couplee comportement endommagement et criteres de rupture dans le domaine de la transition du PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Lafarge, M.

    2004-12-15

    Pipeline structures are used for the transport of crude oil in offshore fields. Flexible pipelines are made of an inner metallic layer, which accommodates flexural and tensile strains and of a PVDF layer, which guarantees watertightness. The aim of the study is to determine which conditions can lead to a risk of brittle fracture of the polymer material. The PVDF of interest was extruded without plasticizer and therefore it differs considerably from the standard industrial grade. The lack of plasticizer leads to a difficult extrusion, which creates significant porosity (10%). Several specimens with various geometries were tested in order to analyse the detrimental effect of a defect regarding damage evolution and fracture mechanisms. During the deformation process, the material is characterized by whitening due to void growth and material elongation. Ductile fracture of PVDF is promoted by high temperatures, low strain rates, low stress triaxiality ratios and flexural loading, whereas brittle fracture is favoured by low temperatures (T{<=}Tg = -42 C), high strain rates, high stress triaxiality ratios and tensile loading. The Gurson-Tvergaard-Needleman model, usually used for metallic materials, was employed to model behaviour and damage of PVDF material at various temperatures. Damage is essentially due to void growth and is described by using q1 and q2 parameters. The constitutive model has been successfully applied to account for all aspects of the mechanical behaviour of the material. Crazing is the failure mode and final fracture is assumed to occur when either, the maximum principal plastic strain at low stress triaxiality or the porosity at high stress triaxiality reaches respectively a critical value. Furthermore, the ductile to brittle transition criterion is found to be the maximum principal stress. This latter allows to explain both fracture mechanisms modes in flexural and tensile loading. (author)

  14. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  15. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Ptensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of fracture toughness of ductile cast iron for casks

    International Nuclear Information System (INIS)

    Hide, Koh-ichiro; Arai, Taku; Takaku, Hiroshi; Shimazaki, Katsunori; Kusanagi, Hideo

    1988-01-01

    We studied the fracture toughness and tensile properties of ductile cast iron for casks, and tried to introduce a fatigue crack into partial cask model. Main results were shown as follows. (1) Fracture toughness were in the upper shelf area above -25deg C, and were in the transition area at -40 and -70deg C. (2) Increasing the value of K I , the fracture toughness decreased. (3) Increasing the specimen thickness, fracture toughness decreased. (4) Fracture toughness of an artificial flaw (ρ=0.1 mm) was the same as that of a fatigue crack at -40deg C. (5) Tensil properties were inferior at -196 and about 400deg C because of low temperature brittleness and blue brittleness. (6) Tensile properties in the middle of cask wall were inferior. (7) It seems to be possible to introduce a fatigue crack into a full size cask. (author)

  17. Orientation dependent fracture behavior of nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Kobler, Aaron, E-mail: aaron.kobler@kit.edu; Hahn, Horst, E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [Technische Universität Darmstadt (TUD), KIT-TUD Joint Research Laboratory Nanomaterials, 64287 Darmstadt (Germany); Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hodge, Andrea M., E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [University of Southern California (USC), Department of Aerospace and Mechanical Engineering, Los Angeles, California 90089-1453 (United States); Kübel, Christian, E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-06-29

    Columnar grown nanotwinned Cu was tensile tested in-situ inside the TEM in combination with automated crystal orientation mapping scanning transmission electron microscopy to investigate the active deformation mechanisms present in this material. Two tensile directions were applied, one parallel to the twin boundaries and the other perpendicular to the twin boundaries. In case of tensile testing perpendicular to the twin boundaries, the material deformed by detwinning and the formation of new grains, whereas in the parallel case, no new grains were formed and the fracture happened along the twin boundaries and a boundary that has formed during the deformation.

  18. Orientation dependent fracture behavior of nanotwinned copper

    International Nuclear Information System (INIS)

    Kobler, Aaron; Hahn, Horst; Hodge, Andrea M.; Kübel, Christian

    2015-01-01

    Columnar grown nanotwinned Cu was tensile tested in-situ inside the TEM in combination with automated crystal orientation mapping scanning transmission electron microscopy to investigate the active deformation mechanisms present in this material. Two tensile directions were applied, one parallel to the twin boundaries and the other perpendicular to the twin boundaries. In case of tensile testing perpendicular to the twin boundaries, the material deformed by detwinning and the formation of new grains, whereas in the parallel case, no new grains were formed and the fracture happened along the twin boundaries and a boundary that has formed during the deformation

  19. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  20. Investigation and microstructural analyses of massive LSP impacts with coverage area on crack initiation location and tensile properties of AM50 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.Y.; Wang, C.Y. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Sun, G.F. [School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Cui, C.Y.; Sheng, J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Lu, J.Z., E-mail: blueesky2005@163.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-01-05

    The influence of massive laser shock peening (LSP) impacts with coverage area on tensile properties of AM50 magnesium alloy was investigated using MTS880-10 servo-hydraulic material testing machine system. Microstructure in the surface layer and fracture morphologies of as-machined and LSPed tensile specimens were also characterized and analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cross-sectional optical microscopy (OM). Special attention is paid to the crack initiation location as a function of LSPed coverage area in the gauge part of tensile specimen. Experimental results and analysis indicate that coverage area significantly influenced tensile properties of the tensile specimen. In addition, the grain refinement process in the top surface layer of AM50 magnesium alloy caused by massive LSP impacts is presented. Furthermore, the underlying influence mechanism of LSPed coverage area on tensile properties and crack initiation location of tensile specimen was clearly revealed.

  1. Investigation and microstructural analyses of massive LSP impacts with coverage area on crack initiation location and tensile properties of AM50 magnesium alloy

    International Nuclear Information System (INIS)

    Luo, K.Y.; Wang, C.Y.; Sun, G.F.; Cui, C.Y.; Sheng, J.; Lu, J.Z.

    2016-01-01

    The influence of massive laser shock peening (LSP) impacts with coverage area on tensile properties of AM50 magnesium alloy was investigated using MTS880-10 servo-hydraulic material testing machine system. Microstructure in the surface layer and fracture morphologies of as-machined and LSPed tensile specimens were also characterized and analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cross-sectional optical microscopy (OM). Special attention is paid to the crack initiation location as a function of LSPed coverage area in the gauge part of tensile specimen. Experimental results and analysis indicate that coverage area significantly influenced tensile properties of the tensile specimen. In addition, the grain refinement process in the top surface layer of AM50 magnesium alloy caused by massive LSP impacts is presented. Furthermore, the underlying influence mechanism of LSPed coverage area on tensile properties and crack initiation location of tensile specimen was clearly revealed.

  2. Experimental and numerical approach on fracture behaviour of four inches diameter carbon-manganese cracked welded pipes in four point bending

    International Nuclear Information System (INIS)

    Semete, P.; Faidy, C.; Lautier, J.L.

    2001-01-01

    EDF has conducted a research programme to demonstrate the fracture resistance of carbon-manganese welded pipes. The main task of this programme consisted of testing three four inches diameter (114.3 mm O.D.) thin welded pipes (8.56 mm thick) which are representative of those of the sites. The three pipes were loaded under four point bending at a quasi-static rate at -20 C till their maximum bending moment was reached. This paper presents the experimental results, finite element calculations and their comparison with the simplified fracture assessment method of the RSE-M Code. (author)

  3. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures

    International Nuclear Information System (INIS)

    Chung, Jing-Yang; Sorkin, Viacheslav; Pei, Qing-Xiang; Zhang, Yong-Wei; Chiu, Cheng-Hsin

    2017-01-01

    Van der Waals heterostructures based on graphene and other 2D materials have attracted great attention recently. In this study, the mechanical properties and failure behaviour of a graphene/silicene/graphene heterostructure are investigated using molecular dynamics simulations. We find that by sandwiching silicene in-between two graphene layers, both ultimate tensile strength and Young’s modulus of the heterostructure increase approximately by a factor of 10 compared with those of stand-alone silicene. By examining the fracture process of the heterostructure, we find that graphene and silicene exhibit quite different fracture behaviour. While graphene undergoes cleavage through its zigzag edge only, silicene can cleave through both its zigzag and armchair edges. In addition, we study the effects of temperature and strain rate on the mechanical properties of the heterostructure and find that an increase in temperature results in a decrease in its mechanical strength and stiffness, while an increase in strain rate leads to an increase in its mechanical strength without significant changes in its stiffness. We further explore the failure mechanism and show that the temperature and strain-rate dependent fracture stress can be accurately described by the kinetic theory of fracture. Our findings provide a deep insight into the mechanical properties and failure mechanism of graphene/silicene heterostructures. (paper)

  4. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  5. The influence of gamma radiation on the ESC behaviour of a toughened PMMA through stress relaxation

    International Nuclear Information System (INIS)

    Sousa, Alexandre R.; Araujo, Elmo S.; Rabello, Marcelo S.

    2009-01-01

    On this work we studied the ESC degradation behaviour of a toughened PMMA irradiated with different gamma radiation doses. Tensile samples were obtained by injection moulding, and then irradiated using a 60 Co source. The samples irradiated on several doses were submitted to relaxation tests under air, ethanol and ethylene glycol. The results showed that the ESC action was intensified with the rising radiation doses when the relaxation tests were done under ethanol. On the tests under ethylene glycol the ESC effect was observed only to the irradiated polymer through the higher dose and under the higher relaxation load. The fracture surface analysis of tested relaxation samples, under ethanol, showed a dendritic pattern formed on fracture surfaces. (author)

  6. Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures

    International Nuclear Information System (INIS)

    Li, Peifeng

    2015-01-01

    The emerging selective laser melting (SLM) technology makes possible the manufacturing of metallic microlattice structures with better tailorability of properties. This work investigated the constitutive formulation of the parent material and the failure mechanism in the SLM stainless steel microlattice structure. The constitutive behaviour of SLM stainless steel was quantitatively formulated using the Johnson–Cook hardening model. A finite element model incorporating the constitutive formula was developed and experimentally validated to predict the localised stress evolution in an SLM stainless steel microlattice structure subjected to uniaxial compression. The predicted stresses were then linked to the fracture process in the SLM steel observed by scanning electron microscope. It was found that the tensile and compressive stress state is localised in the strut members of the microlattice, and determines the macroscopic cracking mode. The tensile opening and shear cracking dominate the tension and compression zones, respectively. However, the microscopic examination on the fracture surfaces reveals the formation of substantial slip bands in both the tension and compression zones, implying that the ductile fracture in the SLM stainless steel is transgranular

  7. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    International Nuclear Information System (INIS)

    Shibata, K.; Fujii, H.

    2004-01-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  8. Insights into the effects of tensile and compressive loadings on human femur bone.

    Science.gov (United States)

    Havaldar, Raviraj; Pilli, S C; Putti, B B

    2014-01-01

    Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.

  9. Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17

    International Nuclear Information System (INIS)

    Bensely, A.; Senthilkumar, D.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.

    2007-01-01

    The crown wheel and pinion represent the most highly stressed parts of a heavy vehicle; these are typically made of 815M17 steel. The reasons for the frequent failure of these components are due to tooth bending impact, wear and fatigue. The modern processes employed to produce these as high, durable components include cryogenic treatment as well as conventional heat treatment. It helps to convert retained austenite into martensite as well as promote carbide precipitation. This paper deals with the influence of cryogenic treatment on the tensile behavior of case carburized steel 815M17. The impetus for studying the tensile properties of gear steels is to ensure that steels used in gears have sufficient tensile strength to prevent failure when gears are subjected to tensile or fatigue loads, and to provide basic design information on the strength of 815M17 steel. A comparative study on the effects of deep cryogenic treatment (DCT), shallow cryogenic treatment (SCT) and conventional heat treatment (CHT) was made by means of tension testing. This test was conducted as per ASTM standard designation E 8M. The present results confirm that the tensile behavior is marginally reduced after cryogenic treatment (i.e. both shallow and deep cryogenic treatment) for 815M17 when compared with conventional heat treatment. Scanning electron microscopic (SEM) analysis of the fracture surface indicates the presence of dimples and flat fracture regions are more common in SCT specimens than for CHT and DCT-processed material

  10. An investigation of microstructure, hardness, tensile behaviour of a ...

    Indian Academy of Sciences (India)

    2Division of Research, The TIMKEN Company, Canton, Ohio 44706 0930, USA ... metal because of its performance at elevated temperatures coupled with good formability. .... 0·3 inch by 0·125 inch with a gage length measuring 0·6 inches. ... is a solution mixture of 5ml of nitric acid (HNO3), 10ml of hydrofluoric acid (HF) ...

  11. Hot tensile behaviour in silicon-killed boron microalloyed steels

    Science.gov (United States)

    Chown, Lesley H.; Cornish, Lesley A.

    2017-10-01

    Low carbon steel for drawing and cold heading applications should have low strength, high ductility and low strain ageing rates. To achieve this, nitrogen must be removed from solid solution, which can be done by low additions of boron. A wire producer had been experiencing occasional problems with severe cracking on silicon-killed, boron steel billets during continuous casting, but the solution was not obvious. Samples from four billets, each from different casts, were removed for analysis and testing. The tested steel compositions were within the specification limits, with boron to nitrogen ratios of 0.40-1.19. Hot ductility testing was performed on a Gleeble 1500 using parameters approximating the capabilities of this particular billet caster. The steel specimens were subjected to in situ melting, then cooled at a rate of 2 C.s-1 to temperatures in the range 750-1250°C, where they were then pulled to failure at a strain rate of 8x10-4 s-1. In this work, it was found that both the boron to nitrogen ratio and the manganese to sulphur ratio influenced the hot ductility and hence the crack susceptibility. Excellent hot ductility was found for B:N ratios above 1.0, which confirmed that the B:N ratio should be above a stoichiometric value of 0.8 to remove all nitrogen from solid solution. TEM analysis showed that coarse BN precipitates nucleated on other precipitates, such as (Fe,Mn)S, which have relatively low melting points, and are detrimental to hot ductility. Low Mn:S ratios of 10 - 12 were shown to promote precipitation of FeS, so a Mn:S > 14 was recommended. A narrower billet surface temperature range for straightening was recommended to prevent transverse surface cracking. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly for Mn:S < 14. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was derived as a simple tool to predict, and hence mitigate, scrap levels in the casting plant.

  12. Tensile properties of orthodontic elastomeric ligatures.

    Science.gov (United States)

    Ahrari, F; Jalaly, T; Zebarjad, M

    2010-01-01

    Tensile properties of elastomeric ligatures become important when efficiency of orthodontic appliances is considered. The aim of this study was to compare tensile strength, extension to tensile strength, toughness and modulus of elasticity of elastomeric ligatures in both the as--received condition and after 28 days of immersion in the simulated oral environment. Furthermore, the changes that occurred in tensile properties of each brand of ligatures after 28 days were evaluated. Experimental-laboratory based. Elastomeric ligatures were obtained from different companies and their tensile properties were measured using Zwick testing machine in both the as-received condition and after 28 days of immersion in the simulated oral environment. The data were analyzed using independent sample t-tests, analysis of variance and Tukey tests. After 28 days, all the ligatures experienced a significant decrease in tensile strength, extension to tensile strength and toughness ( P tensile properties of different brands of ligatures in both conditions ( P tensile properties of different brands of ligatures, which should be considered during selection of these products.

  13. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    , 31-A2) and intertrochanteric (31-A3) fractures is considered an important approach because of their different behaviour at reduction. Pertrochanteric fractures occurred more frequently (81.5%); the patients' age was higher (80 years on the average) and women outnumbered men at a ratio of 3:1. Intertrochanteric fractures were found in significantly younger patients (average, 72 years), with a women-to-men ratio of 1.3:1. Stable pertrochanteric fractures (31-A1) were preferably indicated for DHS surgery. Unstable pertrochanteric (31-A2) and intertrochanteric (31- A3) fractures were treated with a nail. The patients underwent surgery on the day of injury or the next day. In the case of contraindications to an urgent intervention, surgery was performed after the patient's medical condition had stabilised. The number of complications was largely related to technical errors, such as insufficient reduction or an incorrectly inserted implant. Intertrochanteric fractures were associated with a higher occurrence of complications. No implant can compensate for errors due to surgery. Serious complications can be reduced by the correct assessment of fracture type, the use of an appropriate operative technique and early treatment of potential complications. The necessity of restoring continuity in the medial cortex of the femoral neck (Adams' arch) is the requirement that should be observed. Pseudoarthrosis or varus malalignment in a healed hip should be managed by valgus osteotomy. When the femoral head or the acetabulum is damaged, total hip arthroplasty is indicated. A prerequisite for successful surgical outcome is urgently and correctly performed osteosynthesis allowing for early rehabilitation and mobilisation of the patient.

  14. An investigation of the dynamic separation of spot welds under plane tensile pulses

    International Nuclear Information System (INIS)

    Ma, Bohan; Fan, Chunlei; Chen, Danian; Wang, Huanran; Zhou, Fenghua

    2014-01-01

    We performed ultra-high-speed tests for purely opening spot welds using plane tensile pulses. A gun system generated a parallel impact of a projectile plate onto a welded plate. Induced by the interactions of the release waves, the welded plate opened purely under the plane tensile pulses. We used the laser velocity interferometer system for any reflector to measure the velocity histories of the free surfaces of the free part and the spot weld of the welded plate. We then used a scanning electron microscope to investigate the recovered welded plates. We found that the interfacial failure mode was mainly a brittle fracture and the cracks propagated through the spot nugget, while the partial interfacial failure mode was a mixed fracture comprised ductile fracture and brittle fracture. We used the measured velocity histories to evaluate the tension stresses in the free part and the spot weld of the welded plate by applying the characteristic theory. We also discussed the different constitutive behaviors of the metals under plane shock loading and under uniaxial split Hopkinson pressure bar tests. We then compared the numerically simulated velocity histories of the free surfaces of the free part and the spot weld of the welded plate with the measured results. The numerical simulations made use of the fracture stress criteria, and then the computed fracture modes of the tests were compared with the recovered results

  15. Tensile capacity of loop connections grouted with concrete or mortar

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes

    2017-01-01

    This paper presents a study of grout failure in symmetric U-bar loop connections loaded in tension, with focus on the performance of two grouting materials – concrete and mortar. The study contains an experimental investigation as well as a rigid-plastic modelling of the tensile capacity. The test...... to allow yielding of the U-bars. The experimental work showed that connections grouted with concrete performed better than the connections grouted with mortar. In the theoretical models, the difference in tested capacity is explained by the difference in the internal angle of friction and in the softening...... behaviour of concrete as compared with mortar....

  16. The temperature dependence of the tensile properties of thermally treated Alloy 690 tubing

    International Nuclear Information System (INIS)

    Harrod, D.L.; Gold, R.E.; Larsson, B.; Bjoerkman, G.

    1992-01-01

    Tensile tests were run in air on full tube cross-sections of 22.23 mm OD by 1.27 mm wall thickness Alloy 690 steam generator production tubes from ten (10) heats of material at eight (8) temperatures between room temperature and 760 degrees C. The tubing was manufactured to specification requirements consistent with the EPRI guidelines for Alloy 690 tubing. The room temperature stress-strain curves are described quite well by the Voce equation. Ductile fracture by dimpled rupture was observed at all test temperatures. The elevated temperature tensile properties are compared with design data given in the ASME Code

  17. LPTR irradiation of LLL vanadium tensile specimens and LLL Nb--1Zr tensile specimens

    International Nuclear Information System (INIS)

    MacLean, S.C.; Rowe, C.L.

    1977-01-01

    The LPTR irradiation of 14 LLL vanadium tensile specimens and 14 LLL Nb-1Zr tensile specimens is described. Sample packaging, the irradiation schedule and neutron fluences for three energy ranges are given

  18. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  19. Study of the hoop fracture behaviour of nuclear fuel cladding from ring compression tests by means of non-linear optimization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, AMS, Bilbao (Spain); Martin Rengel, M.A., E-mail: mamartin.rengel@upm.es [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Professor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J.; Puerta, M.A. [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Professor Aranguren SN, E-28040 Madrid (Spain)

    2017-06-15

    In this work, the hoop fracture toughness of ZIRLO{sup ®} fuel cladding is calculated as a function of three parameters: hydrogen concentration, temperature and displacement rate. To this end, pre-hydrided samples with nominal hydrogen concentrations of 0 (as-received), 150, 250, 500, 1200 and 2000 ppm were prepared. Hydrogen was precipitated as zirconium hydrides in the shape of platelets oriented along the hoop direction. Ring Compression Tests (RCTs) were conducted at three temperatures (20, 135 and 300 °C) and two displacement rates (0.5 and 100 mm/min). A new method has been proposed in this paper which allows the determination of fracture toughness from ring compression tests. The proposed method combines the experimental results, the cohesive crack model, finite elements simulations, numerical calculations and non-linear optimization techniques. The parameters of the cohesive crack model were calculated by minimizing the difference between the experimental data and the numerical results. An almost perfect fitting of the experimental results is achieved by this method. In addition, an estimation of the error in the calculated fracture toughness is also provided.

  20. Evolution of tensile design stresses for lumber

    Science.gov (United States)

    William L. Galligan; C. C. Gerhards; R. L. Ethington

    1979-01-01

    Until approximately 1965, allowable design stresses for lumber in tension were taken as equal to those assigned for bending. As interest in tensile properties increased, testing machines were designed specifically to stress lumber in tension. Research results that accumulated on tensile tests of full-size lumber suggested lower design stresses for tension than for...

  1. Dilatometer for use in tensile tests

    NARCIS (Netherlands)

    Coumans, W.J.; Heikens, D.

    1980-01-01

    An accurate dilatometer is described which permits simultaneous and automatic recording of sample vol. change during tensile tests on a com. tester. Liq. displacements in the dilatometer capillary, which correspond to vol. changes of the sample, are detected by a cond. meter. Tensile load is

  2. On modelling of lateral buckling failure in flexible pipe tensile armour layers

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    In the present paper, a mathematical model which is capable of representing the physics of lateral buckling failure in the tensile armour layers of flexible pipes is introduced. Flexible pipes are unbounded composite steel–polymer structures, which are known to be prone to lateral wire buckling...... when exposed to repeated bending cycles and longitudinal compression, which mainly occurs during pipe laying in ultra-deep waters. On the basis of multiple single wire analyses, the mechanical behaviour of both layers of tensile armour wires can be determined. Since failure in one layer destabilises...... the torsional equilibrium which is usually maintained between the layers, lateral wire buckling is often associated with a severe pipe twist. This behaviour is discussed and modelled. Results are compared to a pipe model, in which failure is assumed not to cause twist. The buckling modes of the tensile armour...

  3. Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights

    Directory of Open Access Journals (Sweden)

    Tianshou Ma

    2018-01-01

    Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.

  4. High strain rate tensile curves of hyperquenched Z03 CN18-10 stainless steel

    International Nuclear Information System (INIS)

    Vrillon, B.

    1978-01-01

    Tensile tests are presented at constant decreasing speeds, made at room temperature. This type of test can give a better evaluation of the structure behaviour in shock or burst loadings, because in that case the elongation speeds varies from high values to zero [fr

  5. Evaluation of fatigue crack growth and fracture resistance of SA350 LF2 material

    International Nuclear Information System (INIS)

    Singh, P.K.; Dubey, J.S.; Chakrabarty, J.K.; Vaze, K.K.; Kushwaha, H.S.

    2003-01-01

    The aim of the present paper is to evaluate the tensile and fracture mechanics properties of the SA350 LF2 carbon steel material used as the Header material in the primary heat transport (PHT) system piping of the Indian pressurized heavy water reactors (PHWR). Tensile, fatigue crack growth rate and fracture toughness tests have been carried out on specimens machined from the Header of the actual PHT pipes. The effect of temperature on tensile properties has been discussed. The effect of temperature and notch orientation on fracture resistance behavior of the material and fatigue crack growth rate dependence on the notch orientation and stress ratio has also been discussed. (author)

  6. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  7. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  8. Effect of the temperature, strain rate and microstructure on flow and fracture characteristics of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD alloy

    Science.gov (United States)

    Erice, B.; Pérez-Martín, M. J.; Cendón, D. A.; Gálvez, F.

    2012-05-01

    A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.

  9. Quality assurance of the reactor pressure vessel of nuclear power plants. Determination of the fracture toughness KIC above the ductile-brittle transition region on small test specimens by means of a conformal mapping

    International Nuclear Information System (INIS)

    Ullrich, G.; Krompholz, K.

    1994-01-01

    The ''surveillance-programs'' for the determination of the mechanical properties of reactor pressure vessel (RPV) materials, as a function of the neutron dose, include impact and tensile tests for the boiling water reactor; while for pressurized water reactors additional wedge opening load specimens (WOL), for the measurement of the fracture toughness K IC at low temperatures, are utilized. While the Charpy impact toughness gives the total magnitude of energy, which indicates the change of the material state, e.g. the state of embrittlement, the fracture toughness, I IC , gives a base for mechanical calculations. This is of importance for components in which cracks or flaws are assumed. The mechanical analysis, and its relevance to safety assessments, depends on the knowledge of different parameters such as geometry of the structure and flaws, and load history of the structure. Fracture mechanical methods play an important role, if the leak-before-fracture problem is considered. Within the frame work of fracture mechanical methods, only the influence of assumed macroscopic cracks on the structural behaviour can be handled. Flaw formation processes in flaw-free structures, as well as the treatment of short flaws, can not currently be included. In the regime of low and intermediate temperatures (for ferritic and austenitic materials, normally below 400 o C), the rules of linear elastic fracture mechanics (LEFM) and elasto-plastic fracture mechanics (EPFM) are applied, some of which are already part of the code cases. (author) 5 figs., 32 refs

  10. Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature

    International Nuclear Information System (INIS)

    Geng Ke; Lu Weijie; Zhang Di

    2003-01-01

    A novel titanium matrix composites reinforced with TiB and rare earth oxides (Y 2 O 3 ) were prepared by a non-consumable arc-melting technology. Microstructures of the composites were observed by means of optical microscope (OM) and transmission electron microscope (TEM). X-ray diffraction (XRD) was used to identify the phases in the composites. There are three phases: TiB, Y 2 O 3 and titanium matrix alloy. TiB grows in needle shape, whereas Y 2 O 3 grows from near-equiaxed shape to dendritic shape with increase of yttrium content in the composite. The interfaces between reinforcements and titanium matrix are very clear. There is no interfacial reaction. Tensile properties of the composites were tested at 773, 823 and 873 K. Both the fracture surfaces and longitudinal sections of the fractured tensile specimens were comprehensively examined by scanning electron microscope (SEM). The fracture mode and fracture process at different temperatures were analyzed and explained. The results show that the tensile strength of the composites has a significant improvement at elevated temperatures. The predominant fracture mode of composites is cleavaged at 773 and 823 K. Fracture occurs by ductile failure at 873 K

  11. Tensile Properties of Unsaturated Polyester and Epoxy Resin Reinforced with Recycled Carbon-Fiber-Reinforced Plastic

    Science.gov (United States)

    Okayasu, Mitsuhiro; Kondo, Yuta

    2018-06-01

    To better understand the mechanical properties of recycled carbon-fiber-reinforced plastic (rCFRP), CFRP crushed into small pieces was mixed randomly in different proportions (0-30 wt%) with two different resins: unsaturated polyester and epoxy resin. Two different sizes of crushed CFRP were used: 0.1 mm × 0.007 mm (milled CFRP) and 30 mm × 2 mm (chopped CFRP). The tensile strength of rCFRP was found to depend on both the proportion and the size of the CFRP pieces. It increased with increasing proportion of chopped CFRP, but decreased with increasing proportion of milled CFRP. There was no clear dependence of the tensile strength on the resin that was used. A low fracture strain was found for rCFRP samples made with chopped CFRP, in contrast to those made with milled CFRP. The fracture strain was found to increase with increasing content of milled CFRP up to 20 wt%, at which point, coalescence of existing microvoids occurred. However, there was a reduction in fracture strain for rCFRP with 30 wt% of milled CFRP, owing to the formation of defects (blow holes). Overall, the fracture strain was higher for rCFRPs based on epoxy resin than for those based on unsaturated polyester with the same CFRP content, because of the high ductility of the epoxy resin. The different tensile properties reflected different failure characteristics, with the use of chopped CFRP leading to a complicated rough fracture surface and with milled CFRP causing ductile failure through the presence of tiny dimple-like fractures. However, for a high content of milled CFRP (30 wt%), large blow holes were observed, leading to low ductility.

  12. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  13. An investigation of the influence of strength mis-matching and HAZ width on the fracture behaviour of welds with cracks in the WM/HAZ interface

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, D.M.; Menezes, L.F.; Loureiro, A. [Dept of Mechanical Eng., FCTUC, Coimbra (Portugal)

    2004-07-01

    In this paper a numerical study concerning the influence of the mis-match in mechanical properties and of the heat affected zone width on the crack driving force of welds with cracks in the weld metal / heat affected zone interface is described. This work was performed through the numerical simulation of three-point bending tests, using finite element meshes of weld samples with various HAZ widths and two different crack length sizes. The numerical calculation of the J integral and of the stress fields ahead the notch tip was used to evaluate the fracture strength variation in the welds. (orig.)

  14. Tensile properties of V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-04-01

    Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake behavior of the alloy as a function of temperature and exposure time. The oxidation rates, calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analysis of cross sections of exposed specimens, were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial tensile tests were conducted at room temperature and at 500{degrees}C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Correlations were developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.

  15. Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing

    International Nuclear Information System (INIS)

    Kim, J.G.; Hong, S.; Anjabin, N.; Park, B.H.; Kim, S.K.; Chin, K.-G.; Lee, S.; Kim, H.S.

    2015-01-01

    The dynamic strain aging (DSA) of metallic materials due to solute atom diffusion to mobile dislocations induce deformation instability with load fluctuations and deformation localizations, hence reducing their sheet formability. In this paper, DSA behaviors of twinning induced plasticity (TWIP) steel with and without Al during tensile testing and deep drawing are investigated in terms of strain localization and the Portevin-Le Chatelier (PLC) band. A theoretical DSA model with internal variables of dislocation density and twin volume fraction is presented for an estimation of strain localization and strain hardening behavior of TWIP steels. The simulation results of the load history and PLC bands during tensile testing and deep drawing are in good agreement with the experimental values. A serration behavior is observed in high-Mn TWIP steels and its tensile residual stress is higher than that in the Al-added TWIP steels, which results in a deformation crack or delayed fracture of deep drawn specimens

  16. Tensile mechanical properties of U3Si2-Al fuel plate

    International Nuclear Information System (INIS)

    Xu Yong; Hu Huawei; Zhuang Hongquan; Wang Xishu

    2003-01-01

    The fuel plate made of fuel meat, with the U 3 Si 2 -Al dispersion fuel center, and 6061 Al alloy cladding, is a new kind of fuel used in research reactors. The mechanical property data of the fuel meat is the basic data in the design of fuel group, but the mechanical property of this fuel meat has not been studied all over the world till now. In this paper, the mechanical properties of U 3 Si 2 -Al fuel meats of different sizes used in research reactors are investigated and analyzed, and at the same time the carrying capacity of tensile in different directions are also compared. In order to get more knowledge about the mechanical properties of the fuel meat, the tensile experiment has been carried out repeatedly. Considering the lower ratio of elongation and the brittleness, the microscope has been used to examine the zone of fracture after tensile test. (authors)

  17. Tensile and superelastic fatigue characterization of NiTi shape memory cables

    Science.gov (United States)

    Sherif, Muhammad M.; Ozbulut, Osman E.

    2018-01-01

    This paper discusses the tensile response and functional fatigue characteristics of a NiTi shape memory alloy (SMA) cable with an outer diameter of 5.5 mm. The cable composed of multiple strands arranged as one inner core and two outer layers. The results of the tensile tests revealed that the SMA cable exhibits good superelastic behavior up to 10% strain. Fatigue characteristics were investigated under strain amplitudes ranging from 3% to 7% and a minimum of 2500 loading cycles. The evolutions of maximum tensile stress, residual strains, energy dissipation, and equivalent viscous damping under a number of loading cycles were analyzed. The fracture surface of a specimen subjected to 5000 loading cycles and 7% strain was discussed. Functional fatigue test results indicated a very high superelastic fatigue life cycle for the tested NiTi SMA cable.

  18. Tensile behavior of nickel-base single-crystal superalloy DD6

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xinhong, E-mail: xiongxh@whut.edu.cn [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Quan, Dunmiao; Dai, Pengdan; Wang, Zhiping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Zhang, Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070 (China); Yue, Zhufeng [School of Mechanics Civil Engineering and Architecture, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-06-11

    Tensile behavior of the nickel-base single-crystal superalloy DD6 was studied from room temperature to 1020 °C. The plate specimens were along [001] orientation parallel to the loading axis in tension. The microstructures on the surface and fracture morphology were investigated after tensile test to rupture by scanning electron microscopy (SEM). The results of the present investigation indicate that the yield strength at 650 °C is superior to that at room temperature, 850 °C and 1020 °C. Low ductility and serrated flow in stress–strain curves were also observed at 650 °C. The microstructures on the surface of the plate specimens and fracture morphology observation indicated that localized slip which resulted in glide plane decohesion caused the low ductility of DD6 alloy.

  19. The influences of deformation velocity and temperature on localized deformation of zircaloy-4 in tensile tests

    International Nuclear Information System (INIS)

    Boratto, F.J.M.

    1973-01-01

    A new parameter to describe the necking stability in zircaloy-4 during tensile tests is introduced. The parameter is defined as: s = ∂Ln (dσ/dε)/∂Ln ((1/L)dL/dt) for constant temperature, deformation and history. Measures of stress strain rate sensitivity n, reduction of the area at fracture, and deformation profiles of tensile fracture, are done. A complete description of the curve of non-uniform deformation variation with the temperature, is presented. The results are compared with existing data for pure commercially titanium. The influence of strain rate and history on s and n parameters, in the temperature range from 100-700 0 C). (author) [pt

  20. STUDY OF THE MECHANICAL PROPERTIES OF INCONEL 718 SUPERALLOY AFTER HOT TENSILE TESTS

    Directory of Open Access Journals (Sweden)

    Tarcila Sugahara

    2014-10-01

    Full Text Available This research work investigated some important mechanical properties of Inconel 718 superalloy using hot tensile tests like conventional yield strength to 0.2% strain (σe , ultimate strength (σr , and specific elongation (εu . Samples were strained to failure at temperatures of 600°C, 650°C, 700°C, 750°C, 800°C and 850°C and strain rate of 0.5 mm/min (2 × 10–4 s–1 according to ASTM E-8. The results showed higher values σe of yield strength at 700°C, this anomalous behavior can be attributed to the presence of hardening precipitates as observed in the TTT diagram of superalloy Inconel 718. Examination of the sample’s surfaces tensile fracture showed that with increasing temperature test the actuating mechanism changes from intergranular fracture to coalescence of the microcavities.

  1. Effects of hydrogen on the tensile strength characteristics of stainless steels

    International Nuclear Information System (INIS)

    Blanchard, R.; Pelissier, J.; Pluchery, M.; Commissariat a l'Energie Atomique, Saclay

    1961-01-01

    This paper deals with the effects of hydrogen on stainless steel, that might possibly be used as a canning material in hydrogen-cooled reactors. Apparent ultimate-tensile strength is only 80 per cent of initial value for hydrogen content about 50 cc NTP/ 100 g, and reduction in area decreases from 80 to 55 per cent. A special two-stage replica technique has been developed which allows fracture surface of small tensile specimens (about 0.1 mm diam.) to be examined in an electron microscope. All the specimens showed evidence of ductile character throughout the range of hydrogen contents investigated, but the aspect of the fracture surfaces gradually changes with increasing amounts. (author) [fr

  2. Tensile properties of strip casting 6.5 wt% Si steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn

    2015-07-15

    Tensile behaviors of strip casting 6.5 wt% Si steel are tested at elevated temperatures ranging from 300 °C to 800 °C. A detailed study of the morphology of the fracture surface and the ordered phase at each deforming temperature is carried out by a scanning electron microscope and a transmission electron microscope. The results show that the deforming temperature rather than the ordered degree determines the tensile properties. As the deforming temperature increases, the stress level in the whole deforming stage continually decreases, whereas the elongation gradually increases. The ductile–brittle transition occurs around 350 °C. The elongation of 2% at 300 °C rapidly increases up to 16.4% at 350 °C and the corresponding fracture mode transforms from the complete cleavage fracture to the mixture of the very limited cleavage fracture, intergranular dimple fracture and the dimple fracture. Serrated flow is observed at 350 °C and 400 °C probably due to the occurrence of dynamic strain aging. Due to the gradually weakened grain boundary cohesion with the deforming temperature increasing, intergranular dimple pattern dominates the fracture surface at 600 °C and the elongation slowly increases from 16.4% at 350 °C to 22.8% at 600 °C. At 700 °C and 800 °C, the much more enhanced dynamic recovery, the substantially decreased stress levels which contribute to the inhibition of the intergranular dimple fracture, the much lower content of the B2 ordered phase at 700 °C, and the completely disordered state at 800 °C give rise to the dramatically improved elongations of 88.8% and 130.8%, respectively.

  3. Critical fatigue behaviour in brittle glasses

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The dynamic fatigue fracture behaviour in different glasses under various sub-threshold loading conditions are analysed here employing an anomalous diffusion model. Critical dynamical behaviour in the time-to-fracture and the growth of the micro-crack sizes, similar to that observed in such materials in the case.

  4. Tensile damage and its influence on the critical current of Bi2223/Ag superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Nagai, T; Okuda, H; Oh, S S; Hojo, M; Tanaka, M; Sugano, M; Osamura, K

    2003-01-01

    We have studied the tensile behaviour of Bi2223 superconducting composite tapes at room temperature, and the influence of the tensile damages introduced at room temperature on the critical current I c and the n values at 77 K. In the measurement of the I c and n values, the overall composite with a gauge length 60 mm was divided into six elements with a gauge length of 10 mm in order to find the correlation of the I c and n values of the overall composite to those of the local elements which constitute the composite. From the measured stress-strain curve of the composite and the calculated residual strain of the Bi2223 filaments, the intrinsic fracture strain of Bi2223 filaments was estimated to be 0.09-0.12%. When the applied strain was lower than the onset strain of the filament damage, the original I c and n values were retained both in the overall composite and the elements. In this situation, while the overall voltage at the transition from superconductivity to normal conductivity of the composite was the sum of the voltages of the constituent elements, among all elements the overall voltage was affected more by the element with the lower I c (higher voltage). The damage of the filaments arose first locally, resulting in a reduction of the I c and n values in the corresponding local element, even though the other elements retained the original I c and n values. In this situation, the voltage of the overall composite stemmed dominantly from that of the firstly damaged weakest element, and the overall I c and n values were almost determined by the values of such an element. After the local element was fully damaged, the damage arose also in other elements, resulting in segmentation of the filaments. Thus, the I c and n values were reduced in all elements. The correlation of I c between the overall composite and the elements could be described comprehensively for non-damaged and damaged states from the voltage-current relation

  5. Fracture toughness of manet II steel

    International Nuclear Information System (INIS)

    Gboneim, M.M.; Munz, D.

    1997-01-01

    High fracture toughness was evaluated according to the astm and chromium (9-12) martensitic steels combine high strength and toughness with good corrosion and oxidation resistance in a range of environments, and also show relatively high creep strength at intermediate temperatures. They therefore find applications in, for example, the offshore oil and gas production and chemical industries i pipe work and reaction vessels, and in high temperature steam plant in power generation systems. Recently, the use of these materials in the nuclear field was considered. They are candidates as tubing materials for breeder reactor steam generators and as structural materials for the first wall and blanket in fusion reactors. The effect of ageing on the tensile properties and fracture toughness of a 12 Cr-1 Mo-Nb-v steel, MANET II, was investigated in the present work. Tensile specimens and compact tension (CT) specimens were aged at 550 degree C for 1000 h. The japanese standards. Both microstructure and fracture surface were examined using optical and scanning electron microscopy (SEM). The results showed that ageing did not affect the tensile properties. However, the fracture toughness K Ic and the tearing modules T were reduced due to the ageing treatment. The results were discussed in the light of the chemical composition and the fracture surface morphology. 9 figs., 3 tabs

  6. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  7. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    Science.gov (United States)

    Sanchez Perez, Jose Roberto

    Silicon, germanium, and their alloys, which provide the leading materials platform of microelectronics, are extremely inefficient light emitters because of their indirect fundamental energy band gap. This basic materials property has so far hindered the development of group-IV photonic-active devices, including light emitters and diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy band gap relative to the indirect one, and that, with sufficient strain, Ge becomes direct-band gap, thus enabling facile interband light emission and the fabrication of Group IV lasers. It has, however, not been possible to impart sufficient strain to Ge to reach the direct-band gap goal, because bulk Ge fractures at much lower strains. Here it is shown that very thin sheets of Ge(001), called nanomembranes (NMs), can be used to overcome this materials limitation. Germanium nanomembranes (NMs) in the range of thicknesses from 20nm to 100nm were fabricated and then transferred and mounted to a flexible substrate [a polyimide (PI) sheet]. An apparatus was developed to stress the PI/NM combination and provide for in-situ Raman measurements of the strain as a function of applied stress. This arrangement allowed for the introduction of sufficient biaxial tensile strain (>1.7%) to transform Ge to a direct-band gap material, as determined by photoluminescence (PL) measurements and theory. Appropriate shifts in the emission spectrum and increases in PL intensities were observed. The advance in this work was nanomembrane fabrication technology; i.e., making thin enough Ge sheets to accept sufficiently high levels of strain without fracture. It was of interest to determine if the strain at which fracture ultimately does occur can be raised, by evaluating factors that initiate fracture. Attempts to assess the effect of free edges (enchant

  8. Relationship between micro-porosity and tensile properties of 6063 alloy

    Directory of Open Access Journals (Sweden)

    Li Xiehua

    2013-01-01

    Full Text Available The micro-porosity is usually present in the as-cast microstructure, which decreases the tensile strength and ductility and therefore limit the application of cast aluminum parts. Although much work has been done to investigate the effects of various casting parameters on the formation of porosity in various aluminum alloys, up to now, little information has been available for the relationship between micro-porosity and tensile properties of 6063 alloy. In this study, the influences of size and area fraction of micro-porosity on the tensile properties and fracture behavior of 6063 aluminum alloy were investigated by means of tensile testing, optical microscopy (OM, and scanning electron microscopy (SEM. The tensile tests were conducted in air at 100 ℃, 200 ℃ and 300 ℃, respectively. Results show that the large micro-porosity with sizes between 100 μm and 800 μm located at the center and top of the ingot, while the small micro-porosity with size between 2 μm and 60 μm distributed at the edge and bottom of the ingot. The area fraction of micro-porosity at the center of the ingot is much bigger than that at the edge of the ingot. When tested at 100 ℃, with the decrease in the area fraction of micro-porosity from the top of the ingot to the bottom of the ingot, the ultimate tensile strength, yield strength and the elongation are increased from 82 to 99 MPa, 32 to 66 MPa and 7% to 11%, respectively. When the temperature is no more than 200 ℃, the strain hardening exponent decreases with an increase in the area fraction of micro-porosity; while the deviation disappears when the temperature reaches 300 ℃. The fracture mode of the alloy is greatly influenced by the size and area fraction of the micro-porosity.

  9. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid Green Composites during Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Hideaki Katogi

    2016-07-01

    Full Text Available This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid (PLA during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  10. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid) Green Composites during Thermal Cycling.

    Science.gov (United States)

    Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki

    2016-07-14

    This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35-45 °C and 35-55 °C. The maximum number of cycles was 10³ cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35-45 °C, tensile strength of composite at 10³ cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35-55 °C, tensile strength and Young's modulus of composite at 10³ cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 10³ cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  11. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  12. Size Effect Studies on Tensile Tests for Hot Stamping Steel

    Science.gov (United States)

    Chen, Xiaodu; Li, Yuanyuan; Han, Xianhong; Zhang, Junbo

    2018-02-01

    Tensile tests have been widely used to determine basic mechanical properties of materials. However, the properties measured may be related to geometrical factors of the tested samples especially for high-strength steels; this makes the properties' definitions and comparisons difficult. In this study, a series of tensile tests of ultra-high-strength hot-stamped steel were performed; the geometric shapes and sizes as well as the cutting direction were modified. The results demonstrate that the hot-stamped parts were isotropic and the cutting direction had no effect; the measured strengths were practically unrelated to the specimen geometries, including both size and shape. The elongations were slightly related to sample sizes within the studied range but highly depended on the sample shape, represented by the coefficient K. Such phenomena were analyzed and discussed based on microstructural observations and fracture morphologies. Moreover, two widely used elongation conversion equations, the Oliver formula and Barba's law, were introduced to verify their applicability, and a new interpolating function was developed and compared.

  13. Tensile and compressive properties of fresh human carotid atherosclerotic plaques.

    LENUS (Irish Health Repository)

    Maher, Eoghan

    2009-12-11

    Accurate characterisation of the mechanical properties of human atherosclerotic plaque is important for our understanding of the role of vascular mechanics in the development and treatment of atherosclerosis. The majority of previous studies investigating the mechanical properties of human plaque are based on tests of plaque tissue removed following autopsy. This study aims to characterise the mechanical behaviour of fresh human carotid plaques removed during endarterectomy and tested within 2h. A total of 50 radial compressive and 17 circumferential tensile uniaxial tests were performed on samples taken from 14 carotid plaques. The clinical classification of each plaque, as determined by duplex ultrasound is also reported. Plaques were classified as calcified, mixed or echolucent. Experimental data indicated that plaques were highly inhomogeneous; with variations seen in the mechanical properties of plaque obtained from individual donors and between donors. The mean behaviour of samples for each classification indicated that calcified plaques had the stiffest response, while echolucent plaques were the least stiff. Results also indicated that there may be a difference in behaviour of samples taken from different anatomical locations (common, internal and external carotid), however the large variability indicates that more testing is needed to reach significant conclusions. This work represents a step towards a better understanding of the in vivo mechanical behaviour of human atherosclerotic plaque.

  14. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  15. High Temperature Tensile Properties of Unirradiated and Neutron Irradiated 20 Cr-35 Ni Austenitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R B; Solly, B

    1966-12-15

    The tensile properties of an unirradiated and neutron irradiated (at 40 deg C) 20 % Cr, 35 % Ni austenitic steel have been studied at 650 deg C, 750 deg C and 820 deg C. The tensile elongation and mode of fracture (transgranular) of unirradiated specimens tested at room temperature and 650 deg C are almost identical. At 750 deg C and 820 deg C the elongation decreases considerably and a large part of the total elongation is non-uniform. Furthermore, the mode of fracture at these temperatures is intergranular and microscopic evidence suggests that fracture is caused by formation and linkup of grain boundary cavities. YS and UTS decrease monotonically with temperature. Irradiated specimens show a further decrease in ductility and an increase in the tendency to grain boundary cracking. Irradiation has no significant effect on the YS, but the UTS are reduced. The embrittlement of the irradiated specimens is attributed to the presence of He and Li atoms produced during irradiation and the possible mechanisms are discussed. Prolonged annealing of irradiated and unirradiated specimens at 650 deg C appears to have no significant effect on tensile properties.

  16. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    International Nuclear Information System (INIS)

    Bobbili, Ravindranadh; Paman, Ashish; Madhu, V.

    2016-01-01

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  17. Effect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites

    Science.gov (United States)

    Ridzuan, M. J. M.; Majid, M. S. Abdul; Afendi, M.; Firdaus, A. Z. Ahmad; Azduwin, K.

    2017-11-01

    The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.

  18. Finite Element Simulation of Aluminium/GFRP Fibre Metal Laminate under Tensile Loading

    Science.gov (United States)

    Merzuki, M. N. M.; Rejab, M. R. M.; Romli, N. K.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd

    2018-03-01

    The response of a fibre metal laminate (FML) model to the tensile loading is predicted through a computational approach. The FML consisted with layers of aluminum alloy and embedded with one layer of composite material, Glass fibre Reinforced Plastic (GFRP). The glass fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy. A compression moulding technique was used in the process of a FML fabrication. The aluminium has been roughen by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure behaviour of the FML under the tensile loading. The responses on the FML under the tensile loading were numerically performed. The FML was modelled and analysed by using Abaqus/CAE 6.13 version. Based on the experimental and FE data of the tensile, the ultimate tensile stress is 120 MPa where delamination and fibre breakage happened. A numerical model was developed and agreed well with the experimental results. The laminate has an inelastic respond to increase the tensile loads which due to the plasticity of the aluminium layers.

  19. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  20. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  1. Tensile properties of unirradiated path A PCA

    International Nuclear Information System (INIS)

    Braski, D.N.; Maziasz, P.J.

    1983-01-01

    The tensile properties of PCA in the Al (solution annealed), A3 (25%-cold worked), and B2 (aged, cold worked, and reaged) conditions were determined from room temperature to 600 0 C. The tensile behavior of PCA-A1 and -A3 was generally similar to that of titanium-modified type 316 stainless steel with similar microstructures. The PCA-B2 was weaker than PCA-A3, especially above 500 0 C, but demonstrated slightly better ducility

  2. Application of Gurson–Tvergaard–Needleman Constitutive Model to the Tensile Behavior of Reinforcing Bars with Corrosion Pits

    Science.gov (United States)

    Xu, Yidong; Qian, Chunxiang

    2013-01-01

    Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140

  3. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2012-12-01

    Full Text Available In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI chemical treatment on kenaf (Hibiscus cannabinus reinforced thermoplastic polyurethane (TPU/KF was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively. FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability.

  4. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  5. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  6. Investigation of the brittle fracture behavior of intermetallic Ti-Al-Si-Nd-alloys

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.

    1995-01-01

    The object of this paper is the fracture behaviour of three Ti-Al-Si-Nb alloys. Fracture mechanical data are experimentally determined and their statistical properties are investigated. To describe the fracture process of disordered heterogeneous brittle materials a statistical model was developed, based on damage mechanics. With the aid of this model it was possible to attribute the fracture behaviour, the fracture mechanical data and their statistical properties to the microstructure of the materials studied. (orig.) [de

  7. Tensile properties of ADI material in water and gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Balos, Sebastian; Sidjanin, Leposava [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Eric Cekic, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade (Serbia); Grbovic Novakovic, Jasmina [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  8. Mechanical behaviour of nickel foams: three-dimensional morphology, non-linear models and fracture; Caracterisation et simulation numerique du comportement mecanique des mousses de nickel: morphologie tridimensionnelle, reponse elastoplastique et rupture

    Energy Technology Data Exchange (ETDEWEB)

    Dillard, Th.

    2004-03-15

    The deformation behaviour and failure of nickel foams were studied during loading by using X-ray microtomography. Strut alignment and stretching are observed in tension whereas strut bending followed by strut buckling are observed in compression. Strain localisation, that occurs during compression tests, depends on nickel weight distribution in the foam. Fracture in tension first takes place at cell nodes and the crack propagates cell by cell. The damaged area in front of a crack is about five cells wide. A detailed description of the three-dimensional morphology is also presented. One third of the cells are dodecahedral and 57 % of the faces are pentagonal. The most frequent cell is composed of two quadrilaterals, two hexagons and eight pentagons. The dimensions of the equivalent ellipsoid of each cell are identified and cell orientation are determined. The geometrical aspect ratio is linked to the mechanical anisotropy of the foam. In tension, a uniaxial analytical model, based on elastoplastic strut bending, is developed. The whole stress-strain curve of the foam is predicted according to its specific weight and its anisotropy. It is found that the non-linear regime of the macroscopic curve of the foam is not only due to the elastoplastic bending of the struts. The model is also extended to two-phase foams and the influence of the hollow struts is analysed. The two-phase foams model is finally applied to oxidized nickel foams and compared with experimental data. The strong increase in the rigidity of nickel foams with an increasing rate of oxidation, is well described by the model. However, a fracture criterion must also be introduced to take into account the oxide layer cracking. A phenomenological compressible continuum plasticity model is also proposed and identified in tension. The identification of the model is carried out using experimental strain maps obtained by a photo-mechanical technique. A validation of the model is provided by investigating the

  9. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  10. Corrosion behaviour of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies

    International Nuclear Information System (INIS)

    Lu, J.Z.; Qi, H.; Luo, K.Y.; Luo, M.; Cheng, X.N.

    2014-01-01

    Highlights: •Laser shock peening caused an obvious increase of corrosion resistance of 304 steel. •Corrosion resistance of stainless steel increased with increasing pulse energy. •Mechanism of laser shock peening on corrosion behaviour was also entirely determined. -- Abstract: Effects of massive laser shock peening (LSP) impacts with different pulse energies on ultimate tensile strength (UTS), stress corrosion cracking (SCC) susceptibility, fracture appearance and electrochemical corrosion resistance of AISI 304 stainless steel were investigated by slow strain rate test, potentiodynamic polarisation test and scanning electron microscope observation. The influence mechanism of massive LSP impacts with different pulse energies on corrosion behaviour was also determined. Results showed that massive LSP impacts effectively caused a significant improvement on UTS, SCC resistance, and electrochemical corrosion resistance of AISI 304 stainless steel. Increased pulse energy can also gradually improve its corrosion resistance

  11. Failure Mode of the Water-filled Fractures under Hydraulic Pressure in Karst Tunnels

    Directory of Open Access Journals (Sweden)

    Dong Xin

    2017-06-01

    Full Text Available Water-filled fractures continue to grow after the excavation of karst tunnels, and the hydraulic pressure in these fractures changes along with such growth. This paper simplifies the fractures in the surrounding rock as flat ellipses and then identifies the critical hydraulic pressure values required for the occurrence of tensile-shear and compression-shear failures in water-filled fractures in the case of plane stress. The occurrence of tensile-shear fracture requires a larger critical hydraulic pressure than compression-shear failure in the same fracture. This paper examines the effects of fracture strike and lateral pressure coefficient on critical hydraulic pressure, and identifies compression-shear failure as the main failure mode of water-filled fractures. This paper also analyses the hydraulic pressure distribution in fractures with different extensions, and reveals that hydraulic pressure decreases along with the continuous growth of fractures and cannot completely fill a newly formed fracture with water. Fracture growth may be interrupted under the effect of hydraulic tensile shear.

  12. Fracture of metal foams : In-situ testing and numerical modeling

    NARCIS (Netherlands)

    Onck, P.R.; van Merkerk, R.; de Hosson, J.T.M.; Schmidt, I

    This paper is on a combined experimental/modeling study on the tensile fracture of open-cell foams. In-situ tensile tests show that individual struts can fail in a brittle or ductile mode, presumably depending on the presence of casting defects. In-situ single strut tests were performed, enabling

  13. Fracture of Fe--Cr--Mn austenitic steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1979-01-01

    Tensile tests of Tenelon (U.S. Steel), a nitrogen-strengthened iron-base alloy containing 18% chromium and 15% manganese, demonsterated that cleavage fracture can occur in some austenitic steels and is promoted by the presence of hydrogen. Tensile failure of Tenelon at 78 0 K occurred with no detectable necking at low strain levels. The fracture surface contained cleavage facets that lay along coherent twin boundaries oriented transversely to the tensile axis. Charging gaseous hydrogen at 679 MPa pressure and 650 0 K had no significant effect on the mechanical behavior or fracture mode at 78 0 K, but raised the ductile-to-brittle transition temperature from less than 200 0 K to about 250 0 K

  14. 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    The influence of interface strength and loading conditions on the mechanical behavior of the metal-matrix composites is investigated in this paper. A program is developed to generate automatically 2D micromechanical Finite element (FE) models including interface, in which both the locations...... and dimensions of Silicon-Carbide (SiC) particles are randomly distributed. Finite element simulations of the deformation and damage evolution of SiC particle reinforced Aluminum (Al) alloy composite are carried out for different microstructures and interphase strengths under tensile, shear and combined tensile....../shear loads. 2D cohesive element is applied to describe the fracture and failure process of interphase, while the damage models based on maximum principal stress criterion and the stress triaxial indicator are developed within Abaqus/Standard Subroutine USDFLD to simulate the failure process of SiC particles...

  15. Prediction of non-brittle fracture in the welded joint of C-Mn steel in the brittle-ductile transition domain

    International Nuclear Information System (INIS)

    Nguyen, Thai Ha

    2009-11-01

    This work concerns the nuclear safety, specifically the secondary circuit integrity of pressurized water reactors (PWR). The problem is that of the fracture of a thin tubular structure in ferritic steel with many welded joints. The ferritic steel and weld present a brittle/ductile tenacity transition. Moreover, the welds present geometry propitious to the appearance of fatigue cracks, due to vibrations and expansions. These cracks may cause the complete fracture of the structure. The objectives of this work are to establish a criterion of non-fracture by cleavage of thin welded structures in ferritic steel, applicable to actual structures. Therefore, the present study focuses on the fracture behaviour of welded thin structures in brittle/ductile transition. It aims at developing the threshold stress model initially proposed by Chapuliot, to predict the non-brittle-fracture of this welded structure. The model is identified for the welded joint in C-Mn steel for nuclear construction, specifically in the upper part of the transition. A threshold stress, below which the cleavage cannot take place, is identified using tensile tests at low temperature on axis-symmetrical notched specimens taken in welded joint. This threshold stress is used to define the threshold volume where the maximum principal stress exceeds the threshold stress during the test. The analysis by SEM of specimen fracture surfaces shows that the gross solidification molten zone in the weld is the most likely to cleave. The relation between the brittle fracture probability and the threshold volume in the gross solidification molten zone is established via a sensitivity function, using multi-materials simulations. The model thus identified is tested for the prediction of non-brittle-fracture of SENT specimens taken in the welded joint and tested in tension. The results obtained are encouraging with regards to the transferability of the model to the actual structure. (author)

  16. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  17. Derivation of tensile flow characteristics for austenitic materials from instrumented indentation technique

    International Nuclear Information System (INIS)

    Lee, K-W; Kim, K-H; Kim, J-Y; Kwon, D

    2008-01-01

    In this study, a method for deriving the tensile flow characteristics of austenitic materials from an instrumented indentation technique is presented along with its experimental verification. We proposed a modified algorithm for austenitic materials that takes their hardening behaviour into account. First, the true strain based on sine function instead of tangent function was adapted. It was proved that the sine function shows constant degrees of hardening which is a main characteristic of the hardening of austenitic materials. Second, a simple and linear constitutive equation was newly suggested to optimize indentation flow curves. The modified approach was experimentally verified by comparing tensile properties of five austenitic materials from uniaxial tensile test and instrumented indentation tests

  18. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  19. Two new tensile devices for X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Freri, N.; Tintori, A.; Depero, L.E.; Sangaletti, L.; Cernuschi, F.; Ghia, S.

    1995-12-01

    Two tensile devices were designed to be used with parallel beam and parafocusing-geometry diffractometers. In the first case the device was designed to be attached to a strainflex diffractometer by Rigaku Inc., dedicated to stress analysis and commonly used in metallurgical industry. Since the sample does not move during the measurement, the tensile device can be kept fixed on the experimental table. The device design takes into account the steric hindrance by moving parts of diffractometer. The maximun load that can be applied to the sample is 60.000 N. An attachement to a Siemens D5000 diffractometer with Eulerian cradle has also benn designed for applying a load up tp 6000 N to a sample in the parafocusing-geometry. The installation does not require a re-alignment of the diffractometer. In both cases strain gages were applied to both sides of the specimen for the simultaneous determination of the macroscopic strains. Experiments based on the use of these devices are planned to determine the crystallographic elastic constants and study the influence of the microstructure on the mechanical behaviour of residual stresses in the zone of almost static stresses as well as the influence of residual stresses on uniaxially loaded samples. In addition, by using these devices, it is possible to measure the unstressed d-0 spacings providing useful information in the neutron diffraction study fo stress fields in steel samples

  20. Two new tensile devices for X-ray diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Freri, N.; Tintori, A.; Depero, L.E.; Sangaletti, L. [Brescia Univ. (Italy); Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-12-01

    Two tensile devices were designed to be used with parallel beam and parafocusing-geometry diffractometers. In thefirst case the device was designed to be attached to a strainflex diffractometer by Rigaku Inc., dedicated to stress analysis and commonly used in metallurgical industry. Since the sample does not move during the measurement, the tensile device can be kept fixed on the experimental table. The device design takes into account the steric hindrance by moving parts of diffractometer. The maximun load that can be applied to the sample is 60.000 N. An attachement to a Siemens D5000 diffractometer with Eulerian cradle has also benn designed for applying a load up tp 6000 N to a sample in the parafocusing-geometry. The installation does not require a re-alignment of the diffractometer. In both cases strain gages were applied to both sides of the specimen for the simultaneous determination of the macroscopic strains. Experiments based on the use of these devices are planned to determine the crystallographic elastic constants and study the influence of the microstructure on the mechanical behaviour of residual stresses in the zone of almost static stresses as well as the influence of residual stresses on uniaxially loaded samples. In addition, by using these devices, it is possible to measure the unstressed d-0 spacings providing useful information in the neutron diffraction study fo stress fields in steel samples.

  1. Microstructure evolution of titanium after tensile and recrystallisation

    Energy Technology Data Exchange (ETDEWEB)

    Wronski, S., E-mail: wronski@ftj.agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Jedrychowski, M., E-mail: jedrychowski@agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Tarasiuk, J., E-mail: tarasiuk@ftj.agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Bacroix, B., E-mail: brigitte.bacroix@univ-paris13.fr [LSPM, CNRS, Université Paris XIII, 99, av. J.B. Clement, 93 430 Villetaneuse (France)

    2017-04-24

    The qualitative and quantitative behaviour of titanium Ti40 during tensile deformation was investigated along with the effect of deformation and twins on the subsequent recrystallisation process. For this purpose, the examined material was subjected to stretching in mutually perpendicular directions. Tensile tests were performed up to 8% and 16% deformation. Subsequently, the material was examined using the electron backscatter diffraction technique. Analysis of microstructure and misorientation profiles showed that the material stretched in the transverse direction was characterised by the creation of numerous twin structures. A large number of twins {1 0 1 2}<‒1 0 1 1> was observed, whereas in the sample stretched in the rolling direction {1 1 ‒2 2}<‒1 ‒1 2 3> twin structures were rarely observed. Twin structures obtained during deformation have an impact on the process of recrystallisation, mainly on recrystallisation kinetics. This phenomenon was confirmed by the analysis of parameters such as grain orientation spread and grain sizes as a function of recrystallisation time.

  2. Phase characterisation and mechanical behaviour of Fe–B modified Cu–Zn–Al shape memory alloys

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructures, phase characteristics and mechanical behaviour of Cu–Zn–Al alloys modified with Fe, B, and Fe–B mixed micro-alloying additions has been investigated. Cu–Zn–Al alloys were produced by casting with and without the addition of the microelements (Fe, B and Fe–B. The alloys were subjected to a homogenisation – cold rolling – annealing treatment schedule, before the alloys were machined to specifications for tensile test, fracture toughness, and hardness measurement. Optical, scanning electron microscopy and X-ray diffraction analysis were utilised for microstructural and phase characterisation of the alloys. A distinct difference in grain morphology was observed in the alloys produced – the unmodified alloy had predominantly needle-like lath martensite structure with sharp grain edges while significantly larger transverse grain size and curve edged/near elliptical grain shape was observed for the modified Cu–Zn–Al alloys. Cu–Zn with fcc structure was the predominant phase identified in the alloys while Cu–Al with bcc structure was the secondary phase observed. The hardness of the unmodified Cu–Zn–Al alloy was higher than that of the modified alloys with reductions in hardness ranging between 32.4 and 51.5%. However, the tensile strength was significantly lower than that of the modified alloy grades (28.37–52.74% increase in tensile strength was achieved with the addition of micro-alloying elements. Similarly, the percent elongation and fracture toughness (10–23% increase of the modified alloy was higher than that of the unmodified alloy grade. The modified alloy compositions mostly exhibited fracture features indicative of a fibrous micro-mechanism to crack initiation and propagation, characterised by the prevalence of dimpled rupture.

  3. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  4. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  5. Influence of Tensile Stresses on α+β – Titanium Alloy VT22 Corrosion Resistance in Marine Environment

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2015-01-01

    Full Text Available Tensile stresses and hydrogen render strong influence on the titanic alloys propensity for delayed fracture. The protective film serves аs a barrier for penetration in hydrogen alloy. Therefore to study the stress effect on its structure and protective properties is of significant interest.The aim of this work is to research the tensile stress influence on the passivation, indexes of corrosion, protective film structure and reveal reasons for promoting hydrogenation and emerging propensity for delayed fracture of titanium alloy VТ22 in the marine air atmosphere.The fulfillеd research has shown that:- there is а tendency to reduce the passivation abilities of the alloy VТ22 in synthetic marine water (3 % solution of NaCl with increasing tensile stresses up to 1170 МPа, namely to reduce the potential of free corrosion and the rate of its сhange, thus the alloy remains absolutely (rather resistant;- the protective film consists of a titanium hydroxide layer under which there is the titanium oxide layer adjoining to the alloy, basically providing the corrosion protection.- the factors providing hydrogenation of titanium alloys and formation in their surface zone fragile hydrides, causing the appearing propensity for delayed fracture, alongside with tensile stresses are:- substances promoting chemisorbtion of hydrogen available in the alloy and on its surface;- the cathodic polarization caused by the coupling;- the presence of the structural defects promoting the formation of pitting and local аcidifying of the environment surrounding the alloy.

  6. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-12-01

    Full Text Available The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been found to play an important role for this HSSS due to load transfer and strain partitioning between two phases, and a higher strain rate could cause even higher strain partitioning in the softer austenite grains, delaying the deformation instability. Deformation twins are observed in the austenite grains at all strain rates to facilitate the uniform tensile deformation. The B2 phase (FeAl intermetallic compound is less deformable at higher strain rates, resulting in easier brittle fracture in B2 particles, smaller dimple size and a higher density of phase interfaces in final fracture surfaces. Thus, more energy need be consumed during the final fracture for the experiments conducted at higher strain rates, resulting in better tensile toughness.

  7. Microstructure evolution of titanium after tensile test

    International Nuclear Information System (INIS)

    Wronski, S.; Wierzbanowski, K.; Jędrychowski, M.; Tarasiuk, J; Wronski, M.; Baczmanski, A.; Bacroix, B.

    2016-01-01

    The qualitative and quantitative behavior of titanium T40 during tensile loading with a special emphasis on the presence of deformation twins in the observed microstructures is described. The samples for tensile tests were cut out from the rolled titanium sheet along the rolling and transverse directions. Several microstructure maps were determined using Electron Backscatter Diffraction technique (EBSD). These data were used to obtain crystallographic textures, misorientation distributions, grain size, twin boundary length, grain orientation spread, low and high angle boundary fractions and Schmid and Taylor factors. The deformation mechanisms and microstructure characteristics are different in the samples stretched along rolling and transverse directions. A strong appearance of tensile twins was observed in the samples deformed along transverse direction. On the other hand, more frequent subgrain formation and higher orientation spread was observed in the sample deformed along rolling direction, which caused’‘orientation blurring’ leading to an increase of grain size with deformation, as determined from OIM analysis.

  8. Effect of curing and silanizing on composite repair bond strength using an improved micro-tensile test method.

    Science.gov (United States)

    Eliasson, Sigfus Thor; Dahl, Jon E

    2017-01-01

    Objectives: To evaluate the micro-tensile repair bond strength between aged and new composite, using silane and adhesives that were cured or left uncured when new composite was placed. Methods: Eighty Filtek Supreme XLT composite blocks and four control blocks were stored in water for two weeks and thermo-cycled. Sandpaper ground, etched and rinsed specimens were divided into two experimental groups: A, no further treatment and B, the surface was coated with bis-silane. Each group was divided into subgroups: (1) Adper Scotchbond Multi-Purpose, (2) Adper Scotchbond Multi-Purpose adhesive, (3) Adper Scotchbond Universal, (4) Clearfil SE Bond and (5) One Step Plus. For each adhesive group, the adhesive was (a) cured according to manufacturer's instructions or (b) not cured before repair. The substrate blocks were repaired with Filtek Supreme XLT. After aging, they were serially sectioned, producing 1.1 × 1.1 mm square test rods. The rods were prepared for tensile testing and tensile strength calculated at fracture. Type of fracture was examined under microscope. Results: Leaving the adhesive uncured prior to composite repair placement increased the mean tensile values statistically significant for all adhesives tested, with or without silane pretreatment. Silane surface treatment improved significantly ( p strength values for all adhesives, both for the cured and uncured groups. The mean strength of the control composite was higher than the strongest repair strength ( p strength. Not curing the adhesive before composite placement increased the tensile bond strength.

  9. Developing of tensile property database system

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, D. H.; Jeon, J.; Ryu, W. S.

    2002-01-01

    The data base construction using the data produced from tensile experiment can increase the application of test results. Also, we can get the basic data ease from database when we prepare the new experiment and can produce high quality result by compare the previous data. The development part must be analysis and design more specific to construct the database and after that, we can offer the best quality to customers various requirements. In this thesis, the tensile database system was developed by internet method using JSP(Java Server pages) tool

  10. Fracture mechanics and microstructures

    International Nuclear Information System (INIS)

    Gee, M.G.; Morrell, R.

    1986-01-01

    The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness

  11. Influence of thermo-mechanical treatment on the tensile properties of a modified 14Cr–15Ni stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Vijayanand, V.D., E-mail: vdvijayanand@igcar.gov.in; Laha, K.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.

    2014-10-15

    The titanium modified 14Cr–15Ni austenitic stainless steel is used as clad and wrapper material for fast breeder nuclear reactor. Thermo-mechanical treatments consisting of solution annealing at two different temperatures of 1273 and 1373 K followed by cold-work and thermal ageing have been imparted to the steel to tailor its microstructure for enhancing strength. Tensile tests have been carried out on the thermo-mechanically treated steel at nominal strain rate of 1.6 × 10{sup −4} s{sup −1} over a temperature range of 298–1073 K. The yield stress and the ultimate tensile strength of the steel increased with increase in solution treatment temperature and this has been attributed to the fine and higher density of Ti(C,N) precipitate. Tensile flow behaviour of the steel has been analysed using Ludwigson and Voce constitutive equations. The steel heat treated at higher solution temperature exhibited earlier onset of cross slip during tensile deformation. The rate of recovery at higher test temperatures was also influenced by variations in solution heat treatment temperature. In addition, dynamic recrystallization during tensile deformation at higher temperatures was profound for steel solution heat-treated at lower temperature. The differences in flow behaviour and softening mechanisms during tensile testing of the steel after different heat treated conditions have been attributed to the nature of Ti(C,N) precipitation.

  12. Influence of thermo-mechanical treatment on the tensile properties of a modified 14Cr–15Ni stainless steel

    International Nuclear Information System (INIS)

    Vijayanand, V.D.; Laha, K.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.

    2014-01-01

    The titanium modified 14Cr–15Ni austenitic stainless steel is used as clad and wrapper material for fast breeder nuclear reactor. Thermo-mechanical treatments consisting of solution annealing at two different temperatures of 1273 and 1373 K followed by cold-work and thermal ageing have been imparted to the steel to tailor its microstructure for enhancing strength. Tensile tests have been carried out on the thermo-mechanically treated steel at nominal strain rate of 1.6 × 10 −4 s −1 over a temperature range of 298–1073 K. The yield stress and the ultimate tensile strength of the steel increased with increase in solution treatment temperature and this has been attributed to the fine and higher density of Ti(C,N) precipitate. Tensile flow behaviour of the steel has been analysed using Ludwigson and Voce constitutive equations. The steel heat treated at higher solution temperature exhibited earlier onset of cross slip during tensile deformation. The rate of recovery at higher test temperatures was also influenced by variations in solution heat treatment temperature. In addition, dynamic recrystallization during tensile deformation at higher temperatures was profound for steel solution heat-treated at lower temperature. The differences in flow behaviour and softening mechanisms during tensile testing of the steel after different heat treated conditions have been attributed to the nature of Ti(C,N) precipitation

  13. Study of the concrete tensile creep: application for the containment vessel of the nuclear power plants (PWR)

    International Nuclear Information System (INIS)

    Reviron, Nanthilde

    2009-01-01

    The aim of this work is to study experimentally and to conduct numerical simulations on the creep of concrete subjected to tensile stresses. The main purpose is to predict the behaviour of containment vessels of nuclear power plants (PWR) in the case of decennial test or accident. In order to satisfy to these industrial needs, it is necessary to characterize the behaviour of concrete under uniaxial tension. Thus, an important experimental study of tensile creep in concrete has been performed for different loading levels (50%, 70% and 90% of the tensile strength). In these tests, load was kept constant during 3 days. Several tests were performed: measurements of elastic properties and strength (in tension and in compression), monitoring of drying, shrinkage, basic creep and drying creep strains. Moreover, compressive creep tests were also performed and showed a difference with tensile creep. Furthermore, decrease of tensile strength and failure under tensile creep for large loading levels were observed. A numerical model has been proposed and developed in Cast3m finite element code. (author)

  14. Fracture mechanism of a dispersion-hardened molybdenum alloy with strong structural interfaces

    International Nuclear Information System (INIS)

    Vasil'ev, A.D.; Malashenko, I.S.; Moiseev, V.F.; Pechkovskij, Eh.P.; Sul'zhenko, V.K.; Trefilov, V.I.; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1978-01-01

    Fracture mechanism in the two-phase Mo-15wt.%Nb-3.5 vol.% TiN alloy known to be of ''brittle matrix-strong interfaces'' type has been investigated depending on tensile test temperature. Several temperature intervals of fracture have been found, each of them having its own peculiarities. A scheme is suggested for fracture mechanism changes in dispersion-hardened alloys with strong interfaces. At low test temperatures brittle cleavage fracture takes place. With temperature increase fracture mechanisms change in the following way: brittle intergranular fracture; fracture of ''microvoid coalescence'' type; fracture typical for reinforced materials with ductile matrix; intergran laru fracture. Particles of strengthening phase have been shown to play different roles depending on the test temperature in the fracture of the alloys studied

  15. Experimental Investigations on the effect of Additive on the Tensile Properties of Fiber Glass Fabric Lamina

    Science.gov (United States)

    Nava Sai Divya, A.; Raghu Kumar, B., Dr; Lakshmi Narayana, G., Dr

    2017-09-01

    The main objective of this work is to investigate the effect of additives on tensile behaviour of fiber glass fabric at lamina level to explore an alternative skin material for the outer body of aerospace applications and machines. This experimental work investigates the effect of silica concentration in epoxy resin lapox L-12 on the tensile properties of glass fabric lamina of 4H-satin weave having 3.6 mm thickness. The lamina was prepared by using hand lay-up method and tests were conducted on it. Various tensile properties values obtained from experimentation were compared for four glass fiber lamina composites fabricated by adding the silica powder to resin bath. The effect of variations in silica concentration (0% SiO2, 5% SiO2, 10% SiO2 and 15% SiO2) on the tensile properties of prepared material revealed that maximum stiffness was obtained at 15% and yield strength at 10% SiO2 concentration in glass fiber lamina. Increasing the silica concentration beyond 10% had led to deterioration in the material properties. The experimentation that was carried out on test specimen was reasonably successful as the effect of silica powder as an additive in glass fiber lamina enhanced the mechanical properties up to certain limit. The underpinning microscopic behaviour at the source of these observations will be investigated in a follow up work.

  16. Contribution to the characterization of 222-radon concentrations variability in water to the understanding of an aquifer behaviour in fractured medium: example of the Ploemeur site, Morbihan; Apport de la caracterisation de la variabilite des concentrations en radon-222 dans l'eau a la comprehension du fonctionnement d'un aquifere en milieu fracture de socle: exemple du site de Ploemeur, Morbihan

    Energy Technology Data Exchange (ETDEWEB)

    Le Druillennec, Th

    2007-06-15

    Heterogeneous fractured aquifers which developed in crystalline rocks, such as schist or granite, supply 20% of tap water production of Brittany. These fractured media present a large range of permeability. In these aquifers, fluid flow and transport of elements dissolved in water are strongly related on the geometry of the fractured network. Increasing the knowledge of the hydrogeological behaviour of the aquifer is fundamental for the management and the protection of the groundwater resources. Radon-222 is a radioactive noble gas produced from radium-226 further to the radioactive decay of uranium-238; it occurs naturally in ground waters and derives primarily from U-rich rocks and minerals that have been in contact with water. Radon-222 concentrations in waters are liable to provide significant and relevant information on both the geometry of a fracture network and the flow distribution. Furthermore, radon may also be used as a tracer in the aquifer of water exchanges between zones of variable permeability. Three main results were obtained in this study: 1. An accurate characterisation of the radon concentrations in water was carried out in the Ploemeur aquifer (Brittany, France). These results highlight the variability in the spatial and vertical distributions of {sup 222}Rn activity in groundwater together with a wide range of concentrations extending from 0 to 1 500 Bq.L{sup -1}. 2. The influence of fracture aperture on radon content in groundwater has been demonstrated with the modelling of radon concentration. Indeed, the satisfactory results obtained with a simple crack model highlight that the geometry of the fracture network controls the radon activity in groundwater. 3. Thus, the results of pumping tests performed in the boreholes improved our understanding of the system. After the pumping test, an increase of the radon content in groundwater occurred and evidenced a contribution of a radon-rich water to supply the flow rate that seems to come from the

  17. Use of miniature tensile specimen and video extensometer for measurement of mechanical properties

    International Nuclear Information System (INIS)

    Kumar, Kundan; Pooleery, Arun; Madhusoodanan, K.

    2014-08-01

    Miniaturisation of the tensile test specimen below the sub-size level poses various challenges, such as conformity of specimen to various acceptance criteria as per standard test specimen, aspect ratio, minimum number of grains required in a gauge cross-section, fabrication for uniformity in metrological values, etc. Apart from these, measurement of strain over a very limited available space on the test specimen is another practical challenge. Despite these limitations, miniature specimen testing is increasingly being used worldwide these days. The driving forces behind increasing use of miniature test techniques are new material development, assuring fitness of component after in-service-inspection, low dose of radiation exposure due to smaller dimensions of test specimens etc. However, the evaluation of mechanical properties from a miniature tensile test has a greater advantage over the other miniature novel test techniques, such as small punch test, ABI, miniature fatigue and impact tests etc., as it is a direct method of measurement of mechanical properties. This report covers various aspects of miniature tensile test methodologies, which include geometrical design of specimen having gauge length of 3-5 mm, fabrication, development of special fixtures for gripping the test specimens, and use of optical method for strain measurement. The geometrical design of the specimen and its behaviour over application of tensile load has been established using FEM analysis. A good agreement between conventional and miniature test results exemplifies the potential of the miniature tensile test technique. (author)

  18. Tensile strength of solution-spun, ultradrawn ultrahigh-molecular-weight polyethylene fibers. 1. Influence of fiber diameter

    OpenAIRE

    Bastiaansen, C.W.M.

    1992-01-01

    The influence of fiber diam. on the tensile strength of soln.-spun, ultradrawn, ultrahigh-mol.-wt. polyethylene (UHMWPE, mol. wt. >103 kg/mol) fibers was studied. Fibers with a wide range of diams. were produced by varying the polymer concn. in soln. and by applying a drawdown to the fibers. The tensile strength of drawn fibers was compared at a const. Young's modulus in order to eliminate the influence of morphol. parameters, such as degree of chain orientation and extension, on the fracture...

  19. Squeeze casting of aluminum alloy A380: Microstructure and tensile behavior

    Directory of Open Access Journals (Sweden)

    Li Fang

    2015-09-01

    Full Text Available A380 alloy with a relatively thick cross-section of 25 mm was squeeze cast using a hydraulic press with an applied pressure of 90 MPa. Microstructure and tensile properties of the squeeze cast A380 were characterized and evaluated in comparison with the die cast counterpart. Results show that the squeeze cast A380 possesses a porosity level much lower than the die cast alloy, which is disclosed by both optical microscopy and the density measurement technique. The results of tensile testing indicate the improved tensile properties, specifically ultimate tensile strength (UTS: 215.9 MPa and elongation (Ef: 5.4%, for the squeeze cast samples over those of the conventional high-pressure die cast part (UTS: 173.7 MPa, Ef: 1.0%. The analysis of tensile behavior shows that the squeeze cast A380 exhibits a high tensile toughness (8.5 MJ·m-3 and resilience (179.3 kJ·m-3 compared with the die cast alloy (toughness: 1.4 MJ·m-3, resilience: 140.6 kJ·m-3, despite that, during the onset of plastic deformation, the strain-hardening rate of the die cast specimen is higher than that of the squeeze cast specimens. The microstructure analyzed by the scanning electron microscopy (SEM shows that both the squeeze and die cast specimens contain the primary α-Al, Al2Cu, Al5FeSi phase and the eutectic Si phase. But, the Al2Cu phase present in the squeeze cast alloy is relatively large in size and quantity. The SEM fractography evidently reveals the ductile fracture features of the squeeze cast A380 alloy.

  20. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  1. Characterization of the failure behavior of zinc coating on dual phase steel under tensile deformation

    International Nuclear Information System (INIS)

    Song Guiming; Sloof, Willem G.

    2011-01-01

    Highlights: → The microcracks and voids at the zinc grain boundaries are the initial sites for the coating cracking. → The crack spacing of the fragmentally fractured zinc coating is mainly determined by the zinc grain size. → Small zinc grain size and the c-axis direction of zinc grain parallel to the zinc surface are beneficial to the mitigation of the zinc coating delamination. - Abstract: The failure behavior of hot-dip galvanized zinc coatings on dual phase steels under tensile deformation is characterized with in situ scanning electron microscopy (SEM). Under tension, the pre-existed microcracks and voids at the zinc grain boundaries propagate along the zinc grain boundaries to form crack nets within the coating, leading to a segmented fracture of the zinc coating with the crack spacing approximately equal to the zinc grain size. With further loading, the coating segments partially delaminated along the interface between the top zinc layer and the inhibition layer instead of the interface between the inhibition layer and steel substrate. As the c-axis of zinc grains trends to be normal to the tensile loading direction, the twinning deformation became more noticeable, and meanwhile the coating delamination was diminished. The transverse and incline tunneling cracks occurred in the inhibition layer with tensile deformation. The existence of the brittle FeZn 13 particles on top of the inhibition layer was unfavorable to the coating adhesion.

  2. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

    Directory of Open Access Journals (Sweden)

    Gerrit M. Ter Haar

    2018-01-01

    Full Text Available Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α’/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  3. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties.

    Science.gov (United States)

    Ter Haar, Gerrit M; Becker, Thorsten H

    2018-01-17

    Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α'/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  4. Mode II brittle fracture: recent developments

    Directory of Open Access Journals (Sweden)

    A. Campagnolo

    2017-10-01

    Full Text Available Fracture behaviour of V-notched specimens is assessed using two energy based criteria namely the averaged strain energy density (SED and Finite Fracture Mechanics (FFM. Two different formulations of FFM criterion are considered for fracture analysis. A new formulation for calculation of the control radius Rc under pure Mode II loading is presented and used for prediction of fracture behaviour. The critical Notch Stress Intensity Factor (NSIF at failure under Mode II loading condition can be expressed as a function of notch opening angle. Different formulations of NSIFs are derived using the three criteria and the results are compared in the case of sharp V-notched brittle components under in-plane shear loading, in order to investigate the ability of each method for the fracture assessment. For this purpose, a bulk of experimental data taken from the literature is employed for the comparison among the mentioned criteria

  5. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  6. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    Directory of Open Access Journals (Sweden)

    Liuyang Duan

    2018-01-01

    Full Text Available There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures. The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The

  7. Examining the influence of injection speed and mould temperature on the tensile strength of polypropylene and ABS

    DEFF Research Database (Denmark)

    Aarøe, Esben Raahede; Blaimschein, Karl Stephan; Deker, Lasse

    This report is the final task of course “41738 Experimental Plastics Technology” in the three weeks period of June 2009 at DTU, IPL. The aim of this project has been to investigate the ultimate tensile strength behaviour of two different polymers, with different structural composition, by varying...... the injection speed and the mold temperature independently while keeping all other process parameters fixed. In addition the scaling from production of large to small geometries has been investigated by doing two parallel productions and test setups of respectively injection moulded and micro injection moulded...... specimens. After production and tensile testing the specimens were examined with a microscope to underpin conclusions from the tensile test data. It was experienced that the injection speed in general increased the the tensile strength by orienting the polymeric-chains lengthwise in the specimens and thus...

  8. Tensile and shear strength of adhesives

    Science.gov (United States)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  9. 7 CFR 29.3061 - Strength (tensile).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.3061 Section 29.3061 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Official...

  10. 7 CFR 29.6040 - Strength (tensile).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Definitions §...

  11. Evaluation of ring tensile test results

    International Nuclear Information System (INIS)

    Chatterjee, S.; Anantharaman, S.; Balakrishnan, K.S.; Sivaramakrish, K.S.

    1990-01-01

    Ring specimens of 5-mm width cut from Zircaloy-2 cladding of reactor operated fuel elements that had experienced 5000 to 15,000 MWD/T of fuel burnup were subjected to ring tensile testing. The true stress-true strain data points up to the onset of necking from the individual load-elongation curves of these specimens were used as input data in Voce's equation. The results reveal that the uniform elongation (UE) values generated using Voce's equation were within (UE-2)% of the experimental percent uniform elongation (UE%). The corresponding ultimate tensile strength values were within ±1%. The uncertainty inherently associated in the determination of gauge length introduces extraneous deformation in the rings tested. Previous results had shown that a 14% increase in cladding diameter caused the gauge length to increase by 40%. To simulate the contribution of extraneous deformation due to an increase in cladding diameter, an analysis of the variation of the tensile parameters (uniform elongation and ultimate tensile strength) due to increase in the gauge length in the range of 10 to 40% was carried out. The results are discussed

  12. Thermal properties of graphene under tensile stress

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2018-05-01

    Thermal properties of graphene display peculiar characteristics associated to the two-dimensional nature of this crystalline membrane. These properties can be changed and tuned in the presence of applied stresses, both tensile and compressive. Here, we study graphene monolayers under tensile stress by using path-integral molecular dynamics (PIMD) simulations, which allows one to take into account quantization of vibrational modes and analyze the effect of anharmonicity on physical observables. The influence of the elastic energy due to strain in the crystalline membrane is studied for increasing tensile stress and for rising temperature (thermal expansion). We analyze the internal energy, enthalpy, and specific heat of graphene, and compare the results obtained from PIMD simulations with those given by a harmonic approximation for the vibrational modes. This approximation turns out to be precise at low temperatures, and deteriorates as temperature and pressure are increased. At low temperature, the specific heat changes as cp˜T for stress-free graphene, and evolves to a dependence cp˜T2 as the tensile stress is increased. Structural and thermodynamic properties display non-negligible quantum effects, even at temperatures higher than 300 K. Moreover, differences in the behavior of the in-plane and real areas of graphene are discussed, along with their associated properties. These differences show up clearly in the corresponding compressibility and thermal expansion coefficient.

  13. Fracture Characteristics of Structural Steels and Weldments

    Science.gov (United States)

    1975-11-01

    CARACTERISTICS 0F.$ýTRUCTURAL TEL/ - "AD E NTSA .INAL 1 A7 sk S. CONTRACT OR GRANT NUMBER(&) Y.2G. im 9. PERFORMING ORGANIZATION NAME AND ADDRESS -017...36, T- 1,and HY-Y130 Steel and AX. Il 30 15 I Tensile F~racture Surface of A-36 Steel, 12x 31 16 Dimple Rupture in A-6Sel 0X 31 17 Plastic ...sites and the relative plasticity of thle The objective of this study was to use a scanning metal. If many fracture icleation sites initiate mticro

  14. Experimental models of Elastic Structures: Tensile Buckling and Eshelby-like Forces

    OpenAIRE

    Misseroni, Diego

    2013-01-01

    Mechanical models have been invented, designed and realized to experimentally confirm unexpected behaviours theoretically predicted in elasticity: - instabilities and bifurcations occurring in structures under ‘tensile dead load’ and the influence of the constraint’s curvature; - the presence of an ‘Eshelby-like’ or ‘configurational’ force in structures with movable constraints. Furthermore, ‘classical’ features in elasticity have been substantied by testing small-scale models and ob...

  15. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  16. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  17. Facial Fractures.

    Science.gov (United States)

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  18. Toughness-Dominated Regime of Hydraulic Fracturing in Cohesionless Materials

    Science.gov (United States)

    Germanovich, L. N.; Hurt, R. S.; Ayoub, J.; Norman, W. D.

    2011-12-01

    This work examines the mechanisms of hydraulic fracturing in cohesionless particulate materials with geotechnical, geological, and petroleum applications. For this purpose, experimental techniques have been developed, and used to quantify the initiation and propagation of hydraulic fractures in saturated particulate materials. The fracturing liquid is injected into particulate materials, which are practically cohesionless. The liquid flow is localized in thin self-propagating crack-like conduits. By analogy we call them 'cracks' or 'hydraulic fractures.' When a fracture propagates in a solid, new surfaces are created by breaking material bonds. Consequently, the material is in tension at the fracture tip. Because the particulate material is already 'fractured,' no new surface is created and no fracturing process per se is involved. Therefore, the conventional fracture mechanics principles cannot be directly applied. Based on the laboratory observations, performed on three particulate materials (Georgia Red Clay, silica flour, and fine sand, and their mixtures), this work offers physical concepts to explain the observed phenomena. The goal is to determine the controlling parameters of fracture behavior and to quantify their effects. An important conclusion of our work is that all parts of the cohesionless particulate material (including the tip zone of hydraulic fracture) are likely to be in compression. The compressive stress state is an important characteristic of hydraulic fracturing in particulate materials with low, or no, cohesion (such as were used in our experiments). At present, two kinematic mechanisms of fracture propagation, consistent with the compressive stress regime, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the tensile strain ahead of the fracture tip and reduction of the effective stresses to zero within the leak-off zone. Scaling indicates that in our

  19. Comparison of polymer-based temporary crown and fixed partial denture materials by diametral tensile strength.

    Science.gov (United States)

    Ha, Seung-Ryong; Yang, Jae-Ho; Lee, Jai-Bong; Han, Jung-Suk; Kim, Sung-Hun

    2010-03-01

    The purpose of this study was to investigate the diametral tensile strength of polymer-based temporary crown and fixed partial denture (FPD) materials, and the change of the diametral tensile strength with time. One monomethacrylate-based temporary crown and FPD material (Trim) and three dimethacrylate-based ones (Protemp 3 Garant, Temphase, Luxtemp) were investigated. 20 specimens (ø 4 mm × 6 mm) were fabricated and randomly divided into two groups (Group I: Immediately, Group II: 1 hour) according to the measurement time after completion of mixing. Universal Testing Machine was used to load the specimens at a cross-head speed of 0.5 mm/min. The data were analyzed using one-way ANOVA, the multiple comparison Scheffe test and independent sample t test (α = 0.05). Trim showed severe permanent deformation without an obvious fracture during loading at both times. There were statistically significant differences among the dimethacrylate-based materials. The dimethacrylate-based materials presented an increase in strength from 5 minutes to 1 hour and were as follows: Protemp 3 Garant (23.16 - 37.6 MPa), Temphase (22.27 - 28.08 MPa), Luxatemp (14.46 - 20.59 MPa). Protemp 3 Garant showed the highest value. The dimethacrylate-based temporary materials tested were stronger in diametral tensile strength than the monomethacrylate-based one. The diametral tensile strength of the materials investigated increased with time.

  20. Validatin of miniaturised tensile testing on DMLS TI6AL4V (ELI specimens

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is a relatively new technology that is developing rapidly. Since DMLS material is created by melting/solidifying tracks and layers from powder, even building geometry can influence the mechanical properties. To certify a material, the testing specimens must be designed and manufactured according to the appropriate standards. Miniaturised tensile DMLS samples could be a good alternative for express quality control, and could reduce the cost of DMLS-specific testing. In this study, as-built and stress-relieved miniaturised tensile DMLS Ti6Al4V (ELI specimens with different surface qualities were investigated. The fracture surfaces and mechanical properties of the mini-tensile specimens were analysed and compared with standard full-sized specimens also manufactured by DMLS. The obtained data showed the applicability of mini-tensile tests for the express analysis of DMLS objects if a correction factor is applied for the calculation of the load-bearing cross-section of the specimen.

  1. Pisiform fractures

    International Nuclear Information System (INIS)

    Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.

    1991-01-01

    Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)

  2. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  3. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites

    International Nuclear Information System (INIS)

    Venkateshwaran, N.; ElayaPerumal, A.; Alavudeen, A.; Thiruchitrambalam, M.

    2011-01-01

    Highlights: → It explores the utilization of waste banana fiber. → Improving the mechanical property by hybridization. → Results show its usefulness to low cost application. -- Abstract: The tensile, flexural, impact and water absorption tests were carried out using banana/epoxy composite material. Initially, optimum fiber length and weight percentage were determined. To improve the mechanical properties, banana fiber was hybridised with sisal fiber. This study showed that addition of sisal fiber in banana/epoxy composites of up to 50% by weight results in increasing the mechanical properties and decreasing the moisture absorption property. Morphological analysis was carried out to observe fracture behaviour and fiber pull-out of the samples using scanning electron microscope.

  4. Fracture toughness of dentin/resin-composite adhesive interfaces.

    Science.gov (United States)

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  5. In-situ tensile test of high strength nanocrystalline bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Mike, E-mail: mike.haddad@uni-ulm.de [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany); Ivanisenko, Yulia; Courtois-Manara, Eglantine [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fecht, Hans-Jörg [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany)

    2015-01-03

    Because of its great importance in modern engineering and technology applications, steel continues to be highly relevant in the modern research field of nanocrystalline materials. Innovative processing methods and procedures are required for the production of such materials, which possess superior properties compared to their conventional counter parts. In this research, the original microstructure of a commercial C45 steel (Fe, 0.42–0.5 wt% C, 0.5–0.8 wt% Mn) was modified from ferritic–pearlitic to bainitic. Warm high pressure torsion for 5 rotations at 6 GPa and 350 °C was used to process the bainitic sample leading to an ultrafine/nano-scale grain size. A unique nano-crystalline microstructure consisting of equiaxed and elongated ferrite grains with a mean size smaller than 150 nm appeared in images taken by Transmission Electron Microscopy. Results of in-situ tensile testing in a scanning electron microscope showed very high tensile strength, on the order of 2100 MPa with a total elongation of 4.5% in comparison with 800 MPa and around 16% in the original state. Fracture occurred abruptly, without any sign of necking, and was typically caused by the stress concentration at a surface flaw. Also, stress concentrations near all surface defects were observed on the sample, visualized by the formation of shear bands. The fracture surface was covered with dimples, indicating ductile fracture. These properties are fully comparable with high strength, high alloyed steels.

  6. Tensile properties of candidate structural materials for high power spallation sources at high helium contents

    Science.gov (United States)

    Jung, P.; Henry, J.; Chen, J.

    2005-08-01

    Low activation 9%Cr martensitic steels EUROFER97, pure tantalum, and low carbon austenitic stainless steel 316L were homogeneously implanted with helium to concentrations up to 5000 appm at temperatures from 70 °C to 400 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. In all materials the helium caused an increased in strength and reduction in ductility, with both changes being generally larger at lower implantation and testing temperatures. After implantation some work hardening was retained in 316L and in tantalum, while it almost completely disappeared in EUROFER97. After tensile testing, fracture surfaces were analysed by scanning electron microscopy (SEM). Implantation caused reduction of necking, but up to concentrations of 2500 appm He fracture surface still showed transgranular ductile appearance. Completely brittle intergranular fracture was observed in tantalum at 9000 appm He and is also expected for EUROFER97 at this concentration, according to previous results on similar 9%Cr steels.

  7. Application of slip-band visualization technique to tensile analysis of laser-welded aluminum alloy

    Science.gov (United States)

    Muchiar, -; Yoshida, Sanichiro J.; Widiastuti, Rini; Kusnowo, A.; Takahashi, Kunimitsu; Sato, Shunichi

    1997-03-01

    Recently we have developed a new optical interferometric technique capable of visualizing slip band occurring in a deforming solid-state object. In this work we applied this technique to a tensile analysis of laser-welded aluminum plate samples, and successfully revealed stress concentration that shows strong relationships with the tensile strength and the fracture mechanism. We believe that this method is a new, convenient way to analyze the deformation characteristics of welded objects and evaluate the quality of welding. The analysis has been made for several types of aluminum alloys under various welding conditions, and has shown the following general results. When the penetration is deep, a slip band starts appearing at the fusion zone in an early stage of the elastic region of the strain-stress curve and stays there till the sample fractures at that point. When the penetration is shallow, a slip band appears only after the yield point and moves vigorously over the whole surface of the sample till a late stage of plastic deformation when the slip band stays at the fusion zone where the sample eventually fractures. When the penetration depth is medium, some intermediate situation of the above two extreme cases is observed.

  8. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  9. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions

    International Nuclear Information System (INIS)

    Karamouz, Mostafa; Azarbarmas, Mortaza; Emamy, Masoud; Alipour, Mohammad

    2013-01-01

    In this work, the effects of lithium (Li) on the microstructure, hardness and mechanical properties of A380 aluminum alloy have been investigated. The alloy was produced by conventional casting. Microstructures of the samples were investigated using the optical and scanning electron microscopy. The results showed that with increase of Li content up to 0.1%, the morphology of β-Al 5 FeSi and eutectic Si phases changed from intersected and branched coarse platelets into fine and independent ones. Li decreased hardness values of the alloy. Also, it was revealed from tensile tests that with addition of 0.6% Li, the ultimate tensile strength (UTS) and elongation values increased from 274 to 300 MPa and 3.8% to 6%, respectively. Fractographic examination of the fracture surfaces indicated that the alloys with Li addition had more ductile dimple and fewer brittle cleavage surfaces

  10. Enhancement of J estimation for typical nuclear pipes with a circumferential surface crack under tensile load

    International Nuclear Information System (INIS)

    Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin; Chang, Yoon Suk; Jhung, Myung Jo; Choi, Young Hwan

    2010-01-01

    This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H 1 values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading

  11. Enhancement of J estimation for typical nuclear pipes with a circumferential surface crack under tensile load

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of); Chang, Yoon Suk [Kyung Hee University, Yongin (Korea, Republic of); Jhung, Myung Jo; Choi, Young Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-03-15

    This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H{sub 1} values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading

  12. An Investigation on Tensile Properties of Glass Fiber/Aluminium Laminates

    Directory of Open Access Journals (Sweden)

    M. Sadighi

    2009-12-01

    Full Text Available The idea of combining low weight and good mechanical properties has led to efforts to develop a new light fiber/metal laminate (FML in the last decade. FMLs are hybrid composites consisting of alternating thin layers of metal sheets and fiber-reinforced epoxy prepregs. In this study, the effect of fiber orientation on tensile properties of this material is investigated both analytically and experimentally. An analytical constitutive model based on classical lamination theory by using Kirchhoff-Love assumption, which incorporates the elastic-plastic behavior of the aluminium alloy was applied. Test results show that fiber sheet, with zero angle in laminates, improve the tensile strength. The composite layers with different fiber orientation change specimens' mode of fracture. Good agreement is obtained between the model predictions and experimental results.

  13. Effect of heat treatment on microstructures and tensile properties of Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    The effect of solution treatment (ST) on tensile properties of M963 Ni-base superalloy tested at 800 deg. C has been investigated. The detailed microstructures, fracture surfaces and dislocation structures are examined through energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). With increasing solution treated temperature, the yield strength (YS) and ultimate tensile strength (UTS) increase, however, the elongation decreases. Microstructural observations show that the morphologies of carbide, primary γ' and re-precipitated γ' change significantly with increasing solution treated temperature. The main deformation mode is γ' by-pass when solution treated temperature is lower than 1220 deg. C, and changes to γ' shearing at 1230 deg. C. The interface of carbide with matrix is the main site of crack initiation and propagation under all testing conditions

  14. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions

    Energy Technology Data Exchange (ETDEWEB)

    Karamouz, Mostafa [Research Center of Materials engineering, University of Kerman Industrial Graduate, Kerman (Iran, Islamic Republic of); Research Center of Materials engineering, University of Kerman Industrial Graduate, Kerman (Iran, Islamic Republic of); Azarbarmas, Mortaza, E-mail: mazarbarmas@ut.ac.ir [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Emamy, Masoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Alipour, Mohammad [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-10-10

    In this work, the effects of lithium (Li) on the microstructure, hardness and mechanical properties of A380 aluminum alloy have been investigated. The alloy was produced by conventional casting. Microstructures of the samples were investigated using the optical and scanning electron microscopy. The results showed that with increase of Li content up to 0.1%, the morphology of β-Al{sub 5}FeSi and eutectic Si phases changed from intersected and branched coarse platelets into fine and independent ones. Li decreased hardness values of the alloy. Also, it was revealed from tensile tests that with addition of 0.6% Li, the ultimate tensile strength (UTS) and elongation values increased from 274 to 300 MPa and 3.8% to 6%, respectively. Fractographic examination of the fracture surfaces indicated that the alloys with Li addition had more ductile dimple and fewer brittle cleavage surfaces.

  15. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  16. Impact of ductility on hydraulic fracturing in shales

    Science.gov (United States)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  17. Optimization of tensile method and specimen geometry in modified ring tensile test

    International Nuclear Information System (INIS)

    Kitano, Koji; Fuketa, Toyoshi; Sasajima, Hideo; Uetsuka, Hiroshi

    2001-03-01

    Several techniques in ring tensile test are proposed in order to evaluate mechanical properties of cladding under hoop loading condition caused by pellet/cladding mechanical interaction (PCMI). In the modified techniques, variety of tensile methods and specimen geometry are being proposed in order to limit deformation within the gauge section. However, the tensile method and the specimen geometry were not determined in the modified techniques. In the present study, we have investigated the tensile method and the specimen geometry through finite element method (FEM) analysis of specimen deformation and tensile test on specimens with various gauge section geometries. In using two-piece tensile tooling, the mechanical properties under hoop loading condition can be correctly evaluated when deformation part (gauge section) is put on the top of a half-mandrel, and friction between the specimen and the half-mandrel is reduced with Teflon tape. In addition, we have shown the optimum specimen geometry for PWR 17 by 17 type cladding. (author)

  18. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    Science.gov (United States)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  19. Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sk, Mobbassar Hassan, E-mail: Skmobba@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha (Qatar); Overfelt, Ruel A. [Materials Research and Education Center, Materials Engineer, Auburn University, Auburn, AL (United States); Abdullah, Aboubakr M. [Center for Advanced Materials, Qatar University, Doha (Qatar)

    2016-04-06

    Quantitative fractographic characteristics of 4340 steel is demonstrated for a grain size range of 10−100 µm and hardness range of 41–52 HRC. Double-notched tensile samples were electrochemically charged in-situ with hydrogen in 0.5 m H{sub 2}SO{sub 4}+5 mg/l As{sub 2}O{sub 3} solution for 0–40 min charging time. Hydrogen induced fracture initiations were analyzed by novel metallographic investigation of the “unbroken” notch while the overall fractographic behaviors were examined by the scanning electron microscopic imaging of the fracture surfaces of the actually broken notch. Effect of hydrogen was predominantly manifested as intergranular fracture for the harder samples and quasi-cleavage fracture for the softer counterparts. 10–40 µm samples showed the maximum intensity of the hydrogen induced fracture features (intergranular and/or quasi-cleavage) close to the notch which gradually reduced with increasing distance from the notch. The largest grained samples (100 µm) however showed brittle behavior even in absence of hydrogen with similar intensity of percent fracture features at all distance from the notch, while presence of hydrogen intensified the overall percent brittle fractures with their intensities being highest close to the notch. Finally, the brittle fracture characteristics of the hydrogen embrittled samples were shown to be distinguishably different from that of the liquid nitrogen treated samples of same grain sizes and hardnesses.

  20. Mechanical behavior and essential work of fracture of starch-based blown films

    Science.gov (United States)

    Nottez, M.; Chaki, S.; Soulestin, J.; Lacrampe, M. F.; Krawczak, P.

    2015-05-01

    A fracture mechanics approach (Essential Work of Fracture, EWF) was applied to assess the toughness of novel partly starch-grafted polyolefin blown films, compared to that of a neat polyethylene reference. Tests were performed on double-end notched samples. The digital image correlation method was used to monitor the deformation field around the notch. Regular tensile and tear tests were also carried out. The specific essential work of fracture is a characteristic which is much more sensitive to materials structural modifications than the tensile or tear properties.

  1. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    Science.gov (United States)

    Kumar, Pankaj; Singh, Akhilendra

    2017-10-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  2. Investigating the effects of a Ga layer on an Al grain boundary by a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Zhang Ying; Lu Guanghong; Wang Tianmin; Kohyama, Masanori

    2009-01-01

    We have performed a first-principles computational tensile test on an Al grain boundary (GB) with a Ga layer. The tensile strength, the toughness and the Griffith energy for the Ga-layer segregated GB are, respectively, 17%, 19% and 23% lower than those of the clean GB, which indicates that the GB is weakened. A closely-packed Ga cluster is formed following the breaking of some Ga–Ga bonds at a certain tensile strain, leading to the formation of a void-like structure in the GB. It is suggested that the GB weakening is directly associated with the formed void-like structure, which makes the applied stress concentrate mainly on the Ga cluster. The final fracture occurs inside the Ga layer. The weakened GB may contribute to the Ga-induced Al GB embrittlement

  3. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    Science.gov (United States)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  4. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Khalil, H.P.S. Abdul; Bakar, A. Abu; Khanam, P. Noorunnisa

    2011-01-01

    Tri layer hybrid composites of oil palm empty fruit bunches (EFB) and jute fibres was prepared by keeping oil palm EFB as skin material and jute as the core material and vice versa. The chemical resistance, void content and tensile properties of oil palm EFB/Jute composites was investigated with reference to the relative weight of oil palm EFB/Jute, i.e. 4:1, the fibre loading was optimized and different layering pattern were investigated. It is found from the chemical resistance test that all the composites are resistant to various chemicals. It was observed that marked reduction in void content of hybrid composites in different layering pattern. From the different layering pattern, the tensile properties were slightly higher for the composite having jute as skin and oil palm EFB as core material. Scanning electron microscopy (SEM) was used to study tensile fracture surfaces of different composites.

  5. Deformation features of aluminium in tensile tests

    International Nuclear Information System (INIS)

    Quadros, N.F. de.

    1984-01-01

    It is presented a method to analyse stress-strain curves. Plastic and elastic strains were studied. The strains were done by tensile tests in four types of materials: highly pure aluminium, pure aluminium, commercially pure aluminium and aluminium - uranium. The chemical compositions were obtained by spectroscopy analysis and neutron activation analysis. Tensile tests were carried out at three strain rates, at room temperature, 100,200, 300 and 400 0 C, with knives extensometer and strain-gages to studied the elastic strain region. A multiple spring model based on two springs model to analyse elastic strain caused by tests without extensometers, taking in account moduli of elasticity and, an interactive analysis system with graphic capability were developed. It was suggested a qualitative model to explain the quantized multielasticity of Bell. (M.C.K.) [pt

  6. Impaired Fracture Healing after Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    Philipp Lichte

    2015-01-01

    Full Text Available Impaired fracture healing can occur in severely injured patients with hemorrhagic shock due to decreased soft tissue perfusion after trauma. We investigated the effects of fracture healing in a standardized pressure controlled hemorrhagic shock model in mice, to test the hypothesis that bleeding is relevant in the bone healing response. Male C57/BL6 mice were subjected to a closed femoral shaft fracture stabilized by intramedullary nailing. One group was additionally subjected to pressure controlled hemorrhagic shock (HS, mean arterial pressure (MAP of 35 mmHg for 90 minutes. Serum cytokines (IL-6, KC, MCP-1, and TNF-α were analyzed 6 hours after shock. Fracture healing was assessed 21 days after fracture. Hemorrhagic shock is associated with a significant increase in serum inflammatory cytokines in the early phase. Histologic analysis demonstrated a significantly decreased number of osteoclasts, a decrease in bone quality, and more cartilage islands after hemorrhagic shock. μCT analysis showed a trend towards decreased bone tissue mineral density in the HS group. Mechanical testing revealed no difference in tensile failure. Our results suggest a delay in fracture healing after hemorrhagic shock. This may be due to significantly diminished osteoclast recruitment. The exact mechanisms should be studied further, particularly during earlier stages of fracture healing.

  7. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  8. On the constitutive criteria for the fault: influence of size and tensile cracks generation during rupture

    International Nuclear Information System (INIS)

    Riera, J.D.; Miguel, L.F.F.; Gudiel, L.A.D.

    2005-01-01

    In recent studies the authors consider the possibility of occurrence of tensile crack generation near the free surface during faulting. The main assumption is that the dynamic tensile stress created during the shear rupture process would be dominant over the background stress near the free-surface. The proposed model was able to simulate the mechanism of cracks developed as a flower like-structure surrounding the shear fault in the vicinity of the free surface and explain some aspects of the fracture zones found after the 2000 Tottori earthquake. The applicability of various constitutive laws for the fault employed in numerical analysis of the near source motion, such as the slip-weakening, velocity-weakening or rate- and state-dependent friction laws, were also recently discussed by the authors in connection with results of laboratory experiments on friction. In this paper, the most important conclusions of the studies outlined above are summarized by way of introduction to the numerical modeling of the region adjacent to the fault surface, which includes material nonhomogeneities as well as the possibility of generation of new tensile cracks. In the presence of fracture, both factors exert important influence on the macro constitutive laws for the fault, which relate the static (mean normal and shear stresses) with kinetic (displacements) variables, as well as with their time derivatives. By means of simulation, it is shown that the coefficients in the equation that relate the relevant variables depend on size, that is, they vary with the contact area over which stresses, displacements and velocities are averaged. Any variability in Young's modulus or mass density of the surround rock may however be neglected, the only significant random fields being those that describe friction at the interface and the specific fracture energy. (authors)

  9. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  10. Tensile creep of beta phase zircaloy-2

    International Nuclear Information System (INIS)

    Burton, B.; Reynolds, G.L.; Barnes, J.P.

    1977-08-01

    The tensile creep and creep rupture properties of beta-phase zircaloy-2 are studied under vacuum in the temperature and stress range 1300-1550 K and 0.5-2 MN/m 2 . The new results are compared with previously reported uniaxial and biaxial data. A small but systematic difference is noted between the uniaxial and biaxial creep data and reasons for this discrepancy are discussed. (author)

  11. MISSE 6 Polymer Film Tensile Experiment

    Science.gov (United States)

    Miller, Sharon K. R.; Dever, Joyce A.; Banks, Bruce A.; Waters, Deborah L.; Sechkar, Edward; Kline, Sara

    2010-01-01

    The Polymer Film Tensile Experiment (PFTE) was flown as part of Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. The polymers selected are those commonly used for spacecraft thermal control and those under consideration for use in spacecraft applications such as sunshields, solar sails, and inflatable and deployable structures. The dog-bone shaped samples of polymers that were flown were exposed on both the side of the MISSE 6 Passive Experiment Container (PEC) that was facing into the ram direction (receiving atomic oxygen, ultraviolet (UV) radiation, ionizing radiation, and thermal cycling) and the wake facing side (which was supposed to have experienced predominantly the same environmental effects except for atomic oxygen which was present due to reorientation of the International Space Station). A few of the tensile samples were coated with vapor deposited aluminum on the back and wired to determine the point in the flight when the tensile sample broke as recorded by a change in voltage that was stored on battery powered data loggers for post flight retrieval and analysis. The data returned on the data loggers was not usable. However, post retrieval observation and analysis of the samples was performed. This paper describes the preliminary analysis and observations of the polymers exposed on the MISSE 6 PFTE.

  12. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Hu, Huanhuan; Asif, Muhammad; Hussain, Shahid; She, Jia

    2015-01-01

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area

  13. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Hu, Huanhuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Hussain, Shahid [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); She, Jia [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-04-10

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area.

  14. In situ observations of oxide fracture on austenitic stainless steels relevant to IASCC

    International Nuclear Information System (INIS)

    Duff, J.; Burke, M.G.; Scenini, F.

    2015-01-01

    Stress Corrosion Cracking (SCC) and Irradiation-Assisted Stress Corrosion Cracking (IASCC) are important failure modes in the nuclear industry, yet the exact mechanism(s) responsible for these complex failure phenomena are not fully understood. In particular, considerable attention is being focused on SCC and IASCC initiation and the behaviour of the oxidised metal surface during straining in a relevant environment. Experimental observations and data for oxide fracture at the grain boundary are limited, but are also required for the development of crack growth models. In this work, the role of strain localization on surface oxide fracture has been examined via: 1) in situ straining experiments using a state-of-the-art imaging autoclave; and 2) ex situ studies using pre-oxidised samples in a FEG-SEM with a micro-tensile stage. The work was conducted using three materials: 1) a non-irradiated archive Type 316 Stainless Steel, 2) a 1 dpa proton-irradiated Type 316 Stainless Steel, and 3) a model alloy designed to simulate the grain boundary composition resulting from radiation induced segregation. The observations were performed on samples pre-oxidized at 320 C. degrees in high purity, water containing 30 cm 3 /kg of dissolved H 2 and 2 ppm Li additions. The samples were strained in tension and the surface deformation measured via Digital Image Correlation. This technique provided quantitative data regarding the intergranular strains associated with oxide fracture. Oxide fracture and strain development were also related to the local irradiation-induced microstructure and grain boundary character. The results from this work contribute to the mechanistic information on the role of strain localization and composition on the incubation stages of IASCC. (authors)

  15. Quantitative in situ TEM tensile testing of an individual nickel nanowire

    International Nuclear Information System (INIS)

    Lu Yang; Peng Cheng; Ganesan, Yogeeswaran; Lou Jun; Huang Jianyu

    2011-01-01

    In this paper, we have demonstrated the usage of a novel micro-mechanical device (MMD) to perform quantitative in situ tensile tests on individual metallic nanowires inside a transmission electron microscope (TEM). Our preliminary experiment on a 360 nm diameter nickel nanowire showed that the sample fractured at an engineering stress of ∼ 1.2 GPa and an engineering strain of ∼ 4%, which is consistent with earlier experiments performed inside a scanning electron microscope (SEM). With in situ high resolution TEM imaging and diffraction capabilities, this novel experimental set-up could provide unique opportunities to reveal the underlying deformation and damage mechanisms for metals at the nanoscale.

  16. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    International Nuclear Information System (INIS)

    Rodriguez, O.L.; Allison, P.G.; Whittington, W.R.; Francis, D.K.; Rivera, O.G.; Chou, K.; Gong, X.; Butler, T.M.; Burroughs, J.F.

    2015-01-01

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase

  17. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, O.L. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Allison, P.G., E-mail: pallison@eng.ua.edu [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Whittington, W.R.; Francis, D.K. [Department of Mechanical Engineering, Mississippi State University, Starkville, MS 35759 (United States); Rivera, O.G.; Chou, K.; Gong, X. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Butler, T.M. [Department of Metallurgical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Burroughs, J.F. [Geotechnical & Structures Laboratory, US Army ERDC, Vicksburg, MS 39180 (United States)

    2015-08-12

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase.

  18. Development of micro tensile testing method in an FIB system for evaluating grain boundary strength

    International Nuclear Information System (INIS)

    Fujii, Katsuhiko; Fukuya, Koji

    2010-01-01

    A micro tensile testing method for evaluating grain boundary strength was developed. Specimens of 2 x 2 x 10μm having one grain boundary were made by focused ion beam (FIB) micro-processing and tensioned in an FIB system in situ. The load was measured from the deflection of the silicon cantilever. The method was applied to aged and unaged Fe-Mn-P alloy specimens with different level of grain boundary phosphorus segregation. The load at intergranular fracture decreased with increasing phosphorus segregation. (author)

  19. Fracture criteria of reactor graphite under multiaxial stresses

    International Nuclear Information System (INIS)

    Sato, S.; Kawamata, K.; Kurumada, A.; Oku, T.

    1987-01-01

    New fracture criteria for graphite under multiaxial stresses are presented for designing core and support materials of a high temperature gas cooled reactor. Different kinds of fracture strength tests are carried out for a near isotropic graphite IG-11. Results show that, under the stress state in which tensile stresses are predominant, the maximum principal stress theory is seen as applicable for brittle fracture. Under the stress state in which compressive stresses are predominant there may be two fracture modes for brittle fracture, namely, slipping fracture and mode II fracture. For the former fracture mode the maximum shear stress criterion is suitable, but for the latter fracture mode a new mode II fracture criterion including a restraint effect for cracks is verified to be applicable. Also a statistical correction for brittle fracture criteria under multiaxial stresses is discussed. By considering the allowable stress values for safe design, the specified minimum ultimate strengths corresponding to a survival probability of 99% at the 95% confidence level are presented. (orig./HP)

  20. Modelling of Local Necking and Fracture in Aluminium Alloys

    International Nuclear Information System (INIS)

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-01-01

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests