WorldWideScience

Sample records for tensile deformation behaviors

  1. The tensile deformation behavior of nuclear-grade isotropic graphite posterior to hydrostatic loading

    International Nuclear Information System (INIS)

    Yoda, S.; Eto, M.

    1983-01-01

    The effects of prehydrostatic loading on microstructural changes and tensile deformation behavior of nuclear-grade isotropic graphite have been examined. Scanning electron micrographs show that formation of microcracks associated with delamination between basal planes occurs under hydrostatic loading. Hydrostatic loading on specimens results in the decrease in tensile strength and increase in residual strain generated by the applied tensile stress at various levels, indicating that the graphite material is weakened by hydrostatic loading. A relationship between residual strain and applied tensile stress for graphite hydrostatically-loaded at several pressure levels can be approximately expressed as element of= (AP + B) sigmasup(n) over a wide range hydrostatic pressure, where element of, P and sigma denote residual strain, hydrostatic pressure and applied tensile stress, respectively; A, B and n are constant. The effects of prehydrostatic loading on the tensile stress-strain behavior of the graphite were examined in more detail. The ratio of stress after hydrostatic loading to that before hydrostatic loading on the stress-strain relationship remains almost unchanged irrespective of strain. (orig.)

  2. Characterization of the failure behavior of zinc coating on dual phase steel under tensile deformation

    International Nuclear Information System (INIS)

    Song Guiming; Sloof, Willem G.

    2011-01-01

    Highlights: → The microcracks and voids at the zinc grain boundaries are the initial sites for the coating cracking. → The crack spacing of the fragmentally fractured zinc coating is mainly determined by the zinc grain size. → Small zinc grain size and the c-axis direction of zinc grain parallel to the zinc surface are beneficial to the mitigation of the zinc coating delamination. - Abstract: The failure behavior of hot-dip galvanized zinc coatings on dual phase steels under tensile deformation is characterized with in situ scanning electron microscopy (SEM). Under tension, the pre-existed microcracks and voids at the zinc grain boundaries propagate along the zinc grain boundaries to form crack nets within the coating, leading to a segmented fracture of the zinc coating with the crack spacing approximately equal to the zinc grain size. With further loading, the coating segments partially delaminated along the interface between the top zinc layer and the inhibition layer instead of the interface between the inhibition layer and steel substrate. As the c-axis of zinc grains trends to be normal to the tensile loading direction, the twinning deformation became more noticeable, and meanwhile the coating delamination was diminished. The transverse and incline tunneling cracks occurred in the inhibition layer with tensile deformation. The existence of the brittle FeZn 13 particles on top of the inhibition layer was unfavorable to the coating adhesion.

  3. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation

    International Nuclear Information System (INIS)

    Michiuchi, M.; Nambu, S.; Ishimoto, Y.; Inoue, J.; Koseki, T.

    2009-01-01

    Electron backscattering diffraction patterns were used to investigate the relationship between local deformation behavior and the crystallographic features of as-quenched lath martensite of low-carbon steel during uniform elongation in tensile tests. The slip system operating during the deformation up to a strain of 20% was estimated by comparing the crystal rotation of each martensite block after deformation of 20% strain with predictions by the Taylor and Sachs models. The results indicate that the in-lath-plane slip system was preferentially activated compared to the out-of-lath-plane system up to this strain level. Further detailed analysis of crystal rotation at intervals of approximately 5% strain confirmed that the constraint on the operative slip system by the lath structure begins at a strain of 8% and that the local strain hardening of the primary slip systems occurred at approximately 15% strain.

  4. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.-H.; Kato, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Jang, M.J.; Moon, J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Tsai, C.W.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Center for High Entropy Alloys, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of)

    2017-03-24

    The tensile deformation and strain hardening behaviors of an equimolar CoCrFeMnNi high-entropy alloy (HEA) were investigated and compared with low and medium entropy equiatomic alloys (LEA and MEA). The HEA had a lower yield strength than the MEA because the addition of Mn weakens solid solution hardening in the HEA. However, deformation twinning induced the multiple stage strain hardening behavior of the HEA and enhanced strength and elongation. Using tensile-interrupted electron backscatter diffraction analysis, geometrically necessary dislocations were observed as plume-shaped features in grain interior, and a considerable texture was characterized, which is typical of face centered cubic metals. Moreover, the relationship between favorably oriented grains and twinning in the HEA bore a clear resemblance to the same tendency in TWIP steels. The thickness of the twin bundles was less than 100 nm. A high density of stacking defects was found in the nanotwins. Nano twinning and stacking faults were found to contribute to the remarkable mechanical properties. Deformation induced twinning not only demonstrated the dynamic Hall-Petch effect but also changed dislocation cell substructures into microband structures.

  5. Analysis of Deformation and Failure Behaviors of TIG Welded Dissimilar Metal Joints Using Miniature Tensile Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji-Hwan; Jahanzeb, Nabeel; Kim, Min-Seong; Hwang, Ji-Hyun; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of)

    2017-02-15

    The deformation and failure behaviors of dissimilar metal joints between SS400 steel and STS316L steel were investigated. The dissimilar metal joints were fabricated using the tungsten inert gas (TIG) welding process with STS309 steel as a filler metal. The microstructures of the dissimilar metal joints were investigated using an optical microscope and EBSD technique. The mechanical properties of the base metal (BM), heat affected zone (HAZ) and weld metal (WM) were measured using a micro-hardness and micro-tension tester combined with the digital image correlation (DIC) technique. The HAZ of the STS316L steel exhibited the highest micro-hardness value, and yield/tensile strengths, while the BM of the SS440 steel exhibited the lowest micro-hardness value and yield /tensile strengths. The grain size refinement in the HAZ of SS400 steel induced an enhancement of micro-hardness value and yield/tensile strengths compared to the BM of the SS400 steel. The WM, which consists of primary δ-ferrite and a matrix of austenite phase, exhibited relatively a high micro-hardness value, yield /tensile strengths and elongation compared to the BM and HAZ of the SS400 steel.

  6. Vacancy clustering behavior in hydrogen-charged martensitic steel AISI 410 under tensile deformation

    International Nuclear Information System (INIS)

    Sugita, K; Mutou, Y; Shirai, Y

    2016-01-01

    The formation and accumulation of defects under tensile deformation of hydrogen- charged AISI 410 martensitic steels were investigated by using positron lifetime spectroscopy. During the deformation process, dislocations and vacancy-clusters were introduced and increased with increasing strains. Between hydrogen-charged and uncharged samples with the same tensile strains there was no significant difference in the dislocation density and monovacancy equivalent vacancy density. (paper)

  7. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy

    International Nuclear Information System (INIS)

    Lu, G.X.; Liu, J.D.; Qiao, H.C.; Zhou, Y.Z.; Jin, T.; Zhao, J.B.; Sun, X.F.; Hu, Z.Q.

    2017-01-01

    This investigation focused on the tensile deformation behavior of a single crystal nickel-base superalloy, both in virgin condition and after laser shock processing (LSP) with varied technology parameters. Nanoindention tests were carried out on the sectioned specimens after LSP treatment to characterize the surface strengthening effect. Stress strain curves of tensile specimens were analyzed, and microstructural observations of the fracture surface and the longitudinal cross-sections of ruptured specimens were performed via scanning electron microscope (SEM), in an effort to clarify the fracture mechanisms. The results show that a surface hardening layer with the thickness of about 0.3–0.6 mm was gained by the experimental alloys after LSP treatment, but the formation of surface hardening layer had not affected the yield strength. Furthermore, fundamental differences in the plastic responses at different temperatures due to LSP treatment had been discovered. At 700 °C, the slip deformation was held back when it extended to the surface hardening layer and the ensuing slip steps improved the plasticity; however, at 1000 °C, surface hardening layer hindered the macro necking, which resulted in the relatively lower plasticity.

  8. Effect of laser shock on tensile deformation behavior of a single crystal nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, G.X. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Liu, J.D., E-mail: jdliu@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiao, H.C. [Shenyang Institute of Automation, Chinese Academy of Sciences, 114 Nanta Road, Shenyang 110016 (China); Zhou, Y.Z. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Jin, T., E-mail: tjin@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhao, J.B. [Shenyang Institute of Automation, Chinese Academy of Sciences, 114 Nanta Road, Shenyang 110016 (China); Sun, X.F.; Hu, Z.Q. [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2017-02-16

    This investigation focused on the tensile deformation behavior of a single crystal nickel-base superalloy, both in virgin condition and after laser shock processing (LSP) with varied technology parameters. Nanoindention tests were carried out on the sectioned specimens after LSP treatment to characterize the surface strengthening effect. Stress strain curves of tensile specimens were analyzed, and microstructural observations of the fracture surface and the longitudinal cross-sections of ruptured specimens were performed via scanning electron microscope (SEM), in an effort to clarify the fracture mechanisms. The results show that a surface hardening layer with the thickness of about 0.3–0.6 mm was gained by the experimental alloys after LSP treatment, but the formation of surface hardening layer had not affected the yield strength. Furthermore, fundamental differences in the plastic responses at different temperatures due to LSP treatment had been discovered. At 700 °C, the slip deformation was held back when it extended to the surface hardening layer and the ensuing slip steps improved the plasticity; however, at 1000 °C, surface hardening layer hindered the macro necking, which resulted in the relatively lower plasticity.

  9. Tensile deformation behavior of AA5083-H111 at cold and warm temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahrettin; Toros, Serkan; Kilic, Suleyman [Nidge Univ. (Turkey). Dept. of Mechanical Engineering

    2010-09-15

    The effects of strain rate and temperature on the deformation behavior of hardened 5083-H111 aluminum magnesium alloy sheet were investigated by performing uniaxial tensile tests at various strain rates from 0.0083 to 0.16 s{sup -1} and temperatures from -100 to 300 C. Results from the prescribed test ranges indicate that the formability of this material at cold and warm temperatures is better than at room temperature. The improvement in formability at cold temperatures is principally due to the strain hardening of the material. However, the improvement at warm temperature and low strain rate is specifically due to the high strain rate sensitivity characteristic of the material. Results indicate that this alloy should be formed at temperatures higher than 200 C and at low strain rates. (orig.)

  10. Influence of dynamic strain aging on tensile deformation behavior of alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Ekaputra, I. M. W. [Pukyong National University, Busan (Korea, Republic of); Kim, Woo Gon; Park, Jae Young; Kim, Seon Jin; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of 10{sup -}3{sup /}s, 10{sup -4}/s, and 10{sup -5}/s from 24°C to 950°C. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress–strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from 200°C to 700°C. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above 700°C was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

  11. Influence of dynamic strain aging on tensile deformation behavior of alloy 617

    International Nuclear Information System (INIS)

    Ekaputra, I. M. W.; Kim, Woo Gon; Park, Jae Young; Kim, Seon Jin; Kim, Eung Seon

    2016-01-01

    To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of 10"-3"/s, 10"-"4/s, and 10"-"5/s from 24°C to 950°C. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress–strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from 200°C to 700°C. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above 700°C was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates

  12. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    International Nuclear Information System (INIS)

    Liu, Yang; Dong, Danyang; Wang, Lei; Chu, Xi; Wang, Pengfei; Jin, Mengmeng

    2015-01-01

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s −1 ). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains occurs

  13. Strain rate dependent deformation and failure behavior of laser welded DP780 steel joint under dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Lei, E-mail: wanglei@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Chu, Xi, E-mail: chuxi.ok@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Wang, Pengfei, E-mail: wpf1963871400@163.com [College of Science, Northeastern University, Shenyang 110819 (China); Jin, Mengmeng, E-mail: 24401878@163.com [College of Science, Northeastern University, Shenyang 110819 (China)

    2015-03-11

    Laser welded DP steel joints are used widely in the automotive industry for weight reduction. Understanding the deformation and fracture behavior of the base metal (BM) and its welded joint (WJ), especially at high strain rates, is critical for the design of vehicle structures. This paper is concerned with the effects of strain rate on the tensile properties, deformation and fracture behavior of the laser welded DP780 steel joint. Quasi-static and dynamic tensile tests were performed on the WJ and BM of the DP780 steel using an electromechanical universal testing machine and a high-speed tensile testing machine over a wide range of strain rate (0.0001–1142 s{sup −1}). The microstructure change and microhardness distribution of the DP780 steel after laser welding were examined. Digital image correlation (DIC) and high-speed photography were employed for the strain measurement of the DP780 WJ during dynamic tensile tests. The DP780 WJ is a heterogeneous structure with hardening in fusion zone (FZ) and inner heat-affected zone (HAZ), and softening in outer HAZ. The DP780 BM and WJ exhibit positive strain rate dependence on the YS and UTS, which is smaller at lower strain rates and becomes larger with increasing strain rate, while ductility in terms of total elongation (TE) tends to increase under dynamic loading. Laser welding leads to an overall reduction in the ductility of the DP780 steel. However, the WJ exhibits a similar changing trend of the ductility to that of the BM with respect to the strain rate over the whole strain rate range. As for the DP780 WJ, the distance of tensile failure location from the weld centerline decreases with increasing strain rate. The typical ductile failure characteristics of the DP780 BM and WJ do not change with increasing strain rate. DIC measurements reveal that the strain localization starts even before the maximum load is attained in the DP780 WJ and gradual transition from uniform strains to severely localized strains

  14. Construction of cryogenic testing system and tensile deformation behavior of AISI 300 series stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Lee, H.M.; Nahm, S.H.; Huh, Y.H.; Lee, J.J.; Bahng, G.W.

    1990-01-01

    For practical application of cryogenic engineering, development and characterization of structural materials for use at low temperatures are essential. For these purposes, a system for mechanical testing at liquid helium temperatures was developed and it was shown that the precision and accuracy of the system met the requirements of standards for materials testing machines. Using this system, tensile deformation behavior of AISI 304,316 and 310S austenitic stainless steels at cryogenic temperatures was investigated. Tests were conducted on round, tensile specimens having a 6.25mm diameter at 4,77, and 295 K and loading rate was 0.5mm/min. Serrations were observed in all alloys at 4 K. The stress-displacement curves at 77 and 4 K showed different tendency from those at 298 K. As the testing temperature decreased, ultimate strengths of 304 and 316 were largely increased compared to the increase of yield strengths, but the increase of ultimate strength of 310S was almost the same to that of yield strength. Type 310S had the highest yield strength and the lowest tensile strength at all temperatutes. These tensile characteristics were considered to be strongly affected by austenite stability.(Author)

  15. Microstructural evolution during tensile deformation of polypropylenes

    International Nuclear Information System (INIS)

    Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2003-01-01

    Tensile deformation processes occurring at varying strain rates in high and low crystallinity polypropylenes and ethylene-propylene di-block copolymers have been investigated by scanning electron microscopy. This is examined for both long and short chain polymeric materials. The deformation processes in different polymeric materials show striking dissimilarities in spite of the common propylene matrix. Additionally, the deformation behavior of long and their respective short chain polymers was different. Deformation mechanisms include crazing/tearing, wedging, ductile ploughing, fibrillation, and brittle fracture. The different modes of deformation are depicted in the form of strain rate-strain diagrams. At a constant strain rate, the strain to fracture follows the sequence: high crystallinity polypropylenes< low crystallinity polypropylenes< ethylene-propylene di-block copolymers, indicative of the trend in resistance to plastic deformation

  16. The ideal tensile strength and deformation behavior of a tungsten single crystal

    International Nuclear Information System (INIS)

    Liu Yuelin; Zhou Hongbo; Zhang Ying; Jin Shuo; Lu Guanghong

    2009-01-01

    We employ first-principles total energy method based on the density functional theory with the generalized gradient approximation to investigate the ideal tensile strengths of a bcc tungsten (W) single crystal systemically. The ideal tensile strengths are shown to be 29.1, 49.2 and 37.6 GPa for bcc W in the [0 0 1], [1 1 0] and [1 1 1] directions, respectively. The [0 0 1] direction is shown to be the weakest direction due to the occurrence of structure transition at the lower strain and the [1 1 0] direction is strongest. The results can provide a useful reference for W as a PFM in the nuclear fusion Tokamak.

  17. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  18. Static tensile deformation behavior of a lean duplex stainless steel studied by in situ neutron diffraction and synchrotron radiation white x-rays

    International Nuclear Information System (INIS)

    Tsuchida, Noriyuki; Kawahata, Taiji; Ishimaru, Eiichiro; Takahashi, Akihiko; Suzuki, Hiroshi; Shobu, Takahisa

    2013-01-01

    To investigate the tensile deformation behavior of a lean duplex stainless steel (S32101) from the viewpoints of plastic deformability among phases or grains, we performed static tensile tests, in situ neutron diffraction, and white x-ray diffraction experiments at room temperature. In the static tensile tests, the S32101 steel displayed a larger uniform elongation and a better tensile strength-uniform elongation balance than a commercial SUS329J4L duplex stainless steel. A larger uniform elongation of S32101 is associated with the macroscopic work hardening behavior that a work hardening rate higher than the flow stress can maintain up until high true strains. From the experimental results of synchrotron radiation white x-ray diffraction experiments, the hard phase of S32101 was changed from the ferrite (α) phase to austenite (γ) one during tensile deformation. This led to a larger stress partitioning between the phases at the latter stage of deformation. From the experimental results of in situ neutron diffraction, it was found that the stress partitioning of the γ phase in the S32101 was the largest among the present results. Therefore, the larger work hardening rate of S32101 can be explained by the large stress partitioning of the γ phase, that between γ and α phases and γ volume fraction. (author)

  19. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    International Nuclear Information System (INIS)

    Shibata, K.; Fujii, H.

    2004-01-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  20. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    Science.gov (United States)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-05-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  1. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    Science.gov (United States)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-04-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  2. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    Science.gov (United States)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  3. Influence of Aging Products on Tensile Deformation Behavior of Al-0.62 mass%Mg-0.32 mass%Si Alloy

    DEFF Research Database (Denmark)

    Akiyoshi, Ryutaro; Ikeda, Ken-ichi; Hata, Satoshi

    2015-01-01

    mechanism, by estimating the Orowan stress and considering crystal structure of beta '' precipitates. In contrast, the aged alloys with Mg-Si clusters showed excellent performance of uniform elongation due to large work hardening compared to those of the alloy with beta '' precipitates. Dislocations......Tensile tests and microstructural observations were carried out to investigate the influence of aging products on tensile deformation behavior of Al-0.62 mass. Mg-0.32 mass-Si alloy. Solution-treated alloys were aged to form needle-like beta ''. precipitates or Mg-Si clusters. The aged alloy...... with beta '' precipitates showed higher yield stress than that with Mg-Si clusters. Transmission electron microscopy observations revealed that the beta '' precipitates pinned dislocations. It was suggested that the strengthening types of the alloy with beta '' precipitates were both Orowan and cutting...

  4. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com; Ashrafizadeh, F.; Niroumand, B.

    2014-04-01

    Ultrafine grained dual phase (DP) steels are among the newest grades of DP steels that incorporate the uniform distribution of fine martensite particles (in the order of 1–2 μm) within a ferrite matrix. These new grades of steels have been developed in response to the world's demand for decreasing the fuel consumption in automobiles by increasing the strength to weight ratio. In the present research, a new kind of ultrafine grained DP (UFG-DP) steel with an average grain size of about 2 μm as well as a coarse grained DP (CG-DP) steel with an average grain size of about 5.4 μm was produced by consecutive intercritical annealing and cold rolling of low carbon AISI 8620 steel. The martensite volume fraction for both microstructures was the same and about 50 percent. Scanning electron microscopy (SEM) microstructural examination and room temperature tensile deformation analyses were performed on both UFG-DP and CG-DP steels and their deformation behavior in terms of strength, elongation and strain hardening was studied and compared. Room-temperature uniaxial tensile tests revealed that for a given martensite volume fraction, yield and tensile strengths were not very sensitive to martensite morphology. However, uniform and total elongation values were noticeably affected by refining martensite particles. The higher plasticity of fine martensite particles as well as the more uniform strain distribution within the UFG-DP microstructure resulted in higher strain hardenability and, finally, the higher ductility of the UFG-DP steel.

  5. Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests

    International Nuclear Information System (INIS)

    Ding, Ying; Wang, Chunqing; Tian, Yanhong; Li, Mingyu

    2007-01-01

    This study investigates the influence of aging treatment on deformation behavior of 96.5Sn3.5Ag eutectic solder alloys with lower strain rate ( -3 s -1 ) during tensile tests under the scanning electron microscope. Results showed that because of the existence of Ag 3 Sn intermetallic particles and the special microstructure of β-Sn phases in Sn3.5Ag solder, grain boundary sliding was not the dominant mechanism any longer for this Pb-free solder. While the interaction of dislocations with the relatively rigid Ag 3 Sn particles began to dominate. For the as-cast specimen, accompanied by partial intragranular cracks, intergranular fracture along the grain boundaries in Sn-Ag eutectic structure or the interphase boundaries between Sn-rich dendrites and Sn-Ag eutectic phases occurred primarily in early tensile stage. However, the boundary behavior was limited by the large Ag 3 Sn particles presented along the Sn-rich dendrites boundaries after aging. Plastic flow was observed in large area, and cracks propagated in a transgranular manner across the Sn-dendrites and Sn-Ag eutectic structure

  6. Bending and tensile deformation of metallic nanowires

    International Nuclear Information System (INIS)

    McDowell, Matthew T; Leach, Austin M; Gall, Ken

    2008-01-01

    Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects

  7. In-situ electron microscopy studies on the tensile deformation mechanisms in aluminium 5083 alloy

    CSIR Research Space (South Africa)

    Motsi, G

    2014-10-01

    Full Text Available In this study tensile deformation mechanisms of aluminium alloy 5083 were investigated under observations made from SEM equipped with a tensile stage. Observations during tensile testing revealed a sequence of surface deformation events...

  8. Deformation features of aluminium in tensile tests

    International Nuclear Information System (INIS)

    Quadros, N.F. de.

    1984-01-01

    It is presented a method to analyse stress-strain curves. Plastic and elastic strains were studied. The strains were done by tensile tests in four types of materials: highly pure aluminium, pure aluminium, commercially pure aluminium and aluminium - uranium. The chemical compositions were obtained by spectroscopy analysis and neutron activation analysis. Tensile tests were carried out at three strain rates, at room temperature, 100,200, 300 and 400 0 C, with knives extensometer and strain-gages to studied the elastic strain region. A multiple spring model based on two springs model to analyse elastic strain caused by tests without extensometers, taking in account moduli of elasticity and, an interactive analysis system with graphic capability were developed. It was suggested a qualitative model to explain the quantized multielasticity of Bell. (M.C.K.) [pt

  9. Texture development during tensile deformation in Al-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, S.; Inagaki, H. [Shonan Inst. of Tech., Fujisawashi (Japan)

    2002-07-01

    Tensile tests were made on commercial A1050 pure Al, A5182 Al-4.4% Mg alloy and A2017 Al-4% Cu alloy by varying the test temperature and the strain rate. Textures developed at various stages of the tensile deformation were investigated with the orientation distribution function analysis. It was found that, during the tensile test of the 1050 pure Al with the strain rate of 3 x 10{sup -4}S{sup -1} at 20 C, tensile axis readily rotated toward left angle 111 right angle stable end orientation. However, such rotation occurred only at the latest stage of the tensile deformation near the ultimate tensile stress, where stress strain curve was almost flattened and work hardening was almost saturated. It was strongly suggested that, since fine and complex dislocation cell structures were developed in such a work-hardened state, smooth and long range dislocation glide such as assumed in the classical Taylor theory would not be possible. To explain the observed texture development, cooperative movement of the dislocations in the cell walls might be necessary. In fact, addition of Mg and Cu, which suppressed strongly the development of well defined cell structures due to P-L effect or dynamic strain ageing, significantly retarded the rotation of tensile axes toward left angle 111 right angle. Interesting enough, textures developed in all these materials investigated were not affected by the strain rate and the temperature of the tensile test. (orig.)

  10. The study on the threshold strain of microvoid formation in TRIP steels during tensile deformation

    International Nuclear Information System (INIS)

    Wang Wurong; Guo Bimeng; Ji Yurong; He Changwei; Wei Xicheng

    2012-01-01

    Highlights: ► The tensile mechanical behaviors of TRIP steels were studied under high rate deformation conditions. ► The threshold strain of microvoid formation was examined quantitatively. ► The effects of retained austenite of TRIP on suppressing microvoid formed during tensile process have been discussed. - Abstract: Transformation Induced Plasticity (TRIP) steels exhibit a better combination of strength and ductility properties than conventional high strength low alloy (HSLA) steels, and therefore receive considerable attention in the automotive industry. In this work, the tensile mechanical behaviors of TRIP-aided steels were studied under the condition of the quasi-static and high deformed rates. The deformed specimens were observed by scanning electron microscope (SEM) along the tensile axis. The threshold strain of microvoid formation was examined quantitatively according to the evolution of deformation. The results showed that: the yield and tensile strengths of TRIP steels increase with the strain rate, whereas their elongations decrease. However, the threshold strain for TRIP steels at high strain rate is larger than that at low strain rate. Comparing with the deformed microstructure and microvoids formed in the necking zone of dual phase (DP) steel, the progressive deformation-induced transformation of retained austenite in TRIP steels remarkably increases the threshold strain of microvoid formation and furthermore postpones its growth and coalescence.

  11. Strain distribution during tensile deformation of nanostructured aluminum samples

    DEFF Research Database (Denmark)

    Kidmose, Jacob; Lu, L.; Winther, Grethe

    2012-01-01

    To optimize the mechanical properties, especially formability, post-process deformation by cold rolling in the range 5–50 % reduction was applied to aluminum sheets produced by accumulative roll bonding to an equivalent strain of 4.8. During tensile testing high resolution maps of the strain...

  12. Cracking and Deformation Modelling of Tensile RC Members Using Stress Transfer Approach

    Directory of Open Access Journals (Sweden)

    Ronaldas Jakubovskis

    2016-12-01

    Full Text Available The paper presents a modeling technique for bond, cracking and deformation analysis of RC members. The proposed mod-eling technique is not restricted by the geometrical dimensions of the analyzed member and may be applied for various load-ing conditions. Tensile as well as bending RC members may be analyzed using the proposed technique. Adequacy of the modeling strategy was evaluated by the developed numerical discrete crack algorithm, which allows modeling deformation and cracking behavior of tensile RC members. Comparison of experimental and numerical results proved the applicability of the proposed modeling strategy.

  13. Fracture behavior of nuclear graphites under tensile impact loading

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni

    1994-01-01

    Impact tensile strength test was performed with two kinds of HTTR graphites, fine grained isotropic graphite, IG-11 and coarse grained near isotropic graphite, PGX and deformation and fracture behavior under the strain rate of over 100s -1 was measured and the following results were derived: (1) Tensile strength for IG-11 graphite does not depend on the strain rate less than 1 s -1 , but over 1 s -1 , tensile strength for IG-11 graphite increase larger than that measured under 1 s -1 . At the strain rate more than 100 s -1 , remarkable decrease of tensile strength for IG-11 graphite was found. Tensile strength of PGX graphite does not depend on the strain rate less than 1 s -1 , but beyond this value, the sharp tensile strength decrease occurs. (2) Under 100 s -1 , fracture strain for both graphites increase with increase of strain rate and over 100 s -1 , drastic increase of fracture strain for IG-11 graphite was found. (3) At the part of gage length, volume of specimen increase with increase of tensile loading level and strain rate. (4) Poisson's ratio for both graphites decrease with increase of tensile loading level and strain rate. (5) Remarkable change of stress-strain curve for both graphites under 100 s -1 was not found, but over 100 s -1 , the slope of these curve for IG-11 graphite decrease drastically. (author)

  14. Direct assessment of tensile stress-crack opening behavior of Strain Hardening Cementitious Composites (SHCC)

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    -deformation behavior of these materials is therefore of great importance and is frequently carried out by characterizing the material tensile stress–strain behavior. In this paper an alternative approach to evaluate the tensile performance of SHCC is investigated. The behavior of the material in tension is studied...

  15. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  16. The influences of deformation velocity and temperature on localized deformation of zircaloy-4 in tensile tests

    International Nuclear Information System (INIS)

    Boratto, F.J.M.

    1973-01-01

    A new parameter to describe the necking stability in zircaloy-4 during tensile tests is introduced. The parameter is defined as: s = ∂Ln (dσ/dε)/∂Ln ((1/L)dL/dt) for constant temperature, deformation and history. Measures of stress strain rate sensitivity n, reduction of the area at fracture, and deformation profiles of tensile fracture, are done. A complete description of the curve of non-uniform deformation variation with the temperature, is presented. The results are compared with existing data for pure commercially titanium. The influence of strain rate and history on s and n parameters, in the temperature range from 100-700 0 C). (author) [pt

  17. Tensile deformation and failure of North American porcupine quills

    Energy Technology Data Exchange (ETDEWEB)

    Chou, S.F.; Overfelt, R.A., E-mail: overfra@auburn.edu

    2011-12-01

    Although the mechanical properties of some keratin-based biological materials have been extensively studied (i.e., wool) and others are beginning to be studied (e.g., horn, hooves and avian quills), data on the properties of porcupine quill are less common. Porcupine quill is a keratin-based biological material composed of a cylindrical outer shell with an inner foam core. The present paper reports on the physical characteristics, tensile properties and fracture behavior of North American porcupine quills conditioned at relative humidities of 65% and 100%. Increasing the water content decreased the tensile stiffness and strength and increased the strain at fracture of the porcupine quills. The tensile fracture strength of porcupine quill was found to be 146 MPa at 65% RH and 60 MPa at 100% RH. Although these values compare favorably with reported values for African porcupine quill, reported values of the tensile strengths of wool with similar moisture contents are considerably higher. The initial moduli of porcupine quill (2700 MPa at 65% RH and 1000 MPa at 100% RH) compare favorably to those reported for wool but are considerably less than previous reports for African porcupine quill. The engineering strains at fracture were measured as 25% at 65% RH and 49% at 100% RH and these values are also comparable to other keratin-based mammalian materials. Scanning electron microscopy of the fracture surfaces of porcupine quills revealed that the cylindrical outer shells of quills are composed of 2-3 layers with distinctly different fracture characteristics, especially when the samples contain 100% RH. The outer layer of the porcupine quill shell appears to resist the plasticizing effects of moisture and appears to exhibit considerably less ductility than the inner layers, perhaps due to the presence of hydrophobic lipids in the outer layer. Highlights: {yields} We characterize the tensile properties of north American porcupine quill. {yields} Elastic modulus, tensile

  18. Deformation of a layered half-space due to a very long tensile fault

    Indian Academy of Sciences (India)

    The problem of the coseismic deformation of an earth model consisting of an elastic layer of uniform thickness overlying an elastic half-space due to a very long tensile fault in the layer is solved analytically. Integral expressions for the surface displacements are obtained for a vertical tensile fault and a horizontal tensile fault.

  19. Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Wongyu; Jeong, Daeho; Sung, Hyokyung; Kim, Sangshik, E-mail: sang@gnu.ac.kr

    2017-02-15

    Tensile and high cycle fatigue behaviors of high-Mn austenitic steels, including 25Mn, 25Mn0.2Al, 25Mn0.5Cu, 24Mn4Cr, 22Mn3Cr and 16Mn2Al specimens, were investigated at 298 and 110 K. Depending on the alloying elements, tensile ductility of high-Mn steels either increased or decreased with decreasing temperature from 298 to 110 K. Reasonable correlation between the tendency for martensitic tranformation, the critical twinning stress and the percent change in tensile elongation suggested that tensile deformation of high-Mn steels was strongly influenced by SFE determining TRIP and TWIP effects. Tensile strength was the most important parameter in determining the resistance to high cycle fatigue of high-Mn steels with an exceptional work hardening capability at room and cryogenic temperatures. The fatigue crack nucleation mechanism in high-Mn steels did not vary with decreasing tempertature, except Cr-added specimens with grain boundary cracking at 298 K and slip band cracking at 110 K. The EBSD (electron backscatter diffraction) analyses suggested that the deformation mechanism under fatigue loading was significantly different from tensile deformation which could be affected by TRIP and TWIP effects. - Highlights: •The resistances to HCF of various high-Mn steels were measured. •The variables affecting tensile and HCF behaviors of high-Mn steels were assessed. •The relationship between tensile and the HCF behaviors of high-Mn steels was established.

  20. Quantitative analysis of tensile deformation behavior by in-situ neutron diffraction for ferrite-martensite type dual-phase steels

    International Nuclear Information System (INIS)

    Morooka, Satoshi; Umezawa, Osamu; Harjo, Stefanus; Hasegawa, Kohei; Toji, Yuki

    2012-01-01

    The yielding and work-hardening behavior of ferrite-martensite type dual-phase (DP) alloys were clearly analyzed using the in-situ neutron diffraction technique. We successfully established a new method to estimate the stress and strain partitioning between ferrite and martensite phase during loading. Although these phases exhibit the same lattice structure with similar lattice parameters, their lattice strains on (110), (200) and (211) are obviously different from each other under an applied stress. The misfit strains between those phases were clearly accompanied with the phase-scaled internal stream (phase stress). Thus, the martensite phase yielded by higher applied stress than macro-yield stress, which resulted in high work-hardening rate of the DP steel. We also demonstrated that ferrite phase fraction influenced work-hardening behavior. (author)

  1. Tensile and fracture behavior of polymer foams

    International Nuclear Information System (INIS)

    Kabir, Md. E.; Saha, M.C.; Jeelani, S.

    2006-01-01

    Tensile and mode-I fracture behavior of cross-linked polyvinyl chloride (PVC) and rigid polyurethane (PUR) foams are examined. Tension tests are performed using prismatic bar specimens and mode-I fracture tests are performed using single edge notched bend (SENB) specimens under three-point bending. Test specimens are prepared from PVC foams with three densities and two different levels of cross-linking, and PUR foam with one density. Tension and quasi-static fracture tests are performed using a Zwick/Rowell test machine. Dynamic fracture tests are performed using a DYNATUP model 8210 instrumented drop-tower test set up at three different impact energy levels. Various parameters such as specimen size, loading rate, foam density, cross-linking, crack length, cell orientation (flow and rise-direction) and solid polymer material are studied. It is found that foam density and solid polymer material have a significant effect on tensile strength, modulus, and fracture toughness of polymer foams. Level of polymer cross-linking is also found to have a significant effect on fracture toughness. The presence of cracks in the rise- and flow direction as well as loading rate has minimal effect. Dynamic fracture behavior is found to be different as compared to quasi-static fracture behavior. Dynamic fracture toughness (K d ) increases with impact energy. Examination of fracture surfaces reveals that the fracture occurs in fairly brittle manner for all foam materials

  2. The tensile behavior of GH3535 superalloy at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Han, F.F.; Zhou, B.M.; Huang, H.F.; Leng, B.; Lu, Y.L. [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Dong, J.S. [Superalloy Division, Institute of Metal Research, Chinese Academy of Sciences (China); Li, Z.J., E-mail: lizhijun@sinap.ac.cn [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Zhou, X.T. [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China)

    2016-10-01

    The tensile behavior of GH3535 alloy has been investigated at strain rates of 8.33 × 10{sup −5}/s{sup −1}–8.33 × 10{sup −3}/s{sup −1}, in the temperature range of 25–800 °C. The results showed that the ultimate tensile strength was decreased with increasing temperature and increased with rising strain rate, whereas the yield strength kept almost a constant value at the temperature range from 550 to 800 °C in all strain rates test. The formation of M{sub 12}C carbides at the grain boundary during the tension process played an important role in increasing the yield strength of the alloy at elevated temperatures. But inhomogeneous deformation at 650 °C resulted in the minimum ductility of the alloy. Additionally, various types of serrations were noticed on the stress-strain curves for the alloy tested in the temperature range of 500–800 °C. Normal Portevin-Le Chatelier (PLC) effect and positive strain rate sensitivity were observed in this alloy. Type A and A + B serrations were presented to stress-strain curves at temperatures below 650 °C, whereas type C serration was noticed when the temperature rose above 650 °C. The analysis suggested that the interactions between substitutional solutes migration and mobile dislocations were the main reason for the serrated flow behavior in this alloy. - Highlights: • The tensile behavior of GH3535 alloy at elevated temperature was studied. • The yield strength anomaly was observed in the temperature range from 550 to 800 °C. • The formation of M{sub 12}C improves the grain boundary strength to a certain extent. • Inhomogeneous deformation at 650 °C results in the ductility loss of the alloy. • The interaction between solute atoms and dislocations results in the PLC effect.

  3. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K.; Bar, H.N. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Mandal, D. [Material Processing and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Roy, H., E-mail: himadri9504@gmail.com [NDT and Metallurgy Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Sivaprasad, S.; Tarafder, S. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2014-03-01

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed.

  4. Direct observation of radial distribution change during tensile deformation of metallic glass by high energy X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Toshio, E-mail: nasu@kekexafs.kj.yamagata-u.ac.j [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Sasaki, Motokatsu [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Usuki, Takeshi; Sekine, Mai [Faculty of Science, Yamagata University, Yamagata 990-8560 (Japan); Takigawa, Yorinobu; Higashi, Kenji [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Harima Science Garden City, Sayo town, Hyogo 679-5198 (Japan); Sakurai, Masaki; Wei Zhang; Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2009-08-26

    The purpose of this research is to investigate the micro-mechanism of deformation behavior of metallic glasses. We report the results of direct observations of short-range and medium-range structural change during tensile deformation of metallic glasses by high energy X-ray diffraction method. Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass samples in the ribbon shape (1.5 mm width and 25 mum) were made by using rapid quenching method. Tensile deformation added to the sample was made by using special equipment adopted for measuring the high energy X-ray diffraction. The peaks in pair distribution function g(r) for Cu{sub 50}Zr{sub 50} and N{sub 30}iZr{sub 70} metallic glasses move zigzag into front and into rear during tensile deformation. These results of direct observation on atomic distribution change for Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass ribbons during tensile deformation suggest that the micro-relaxations occur.

  5. Tensile testing

    CERN Document Server

    2004-01-01

    A complete guide to the uniaxial tensile test, the cornerstone test for determining the mechanical properties of materials: Learn ways to predict material behavior through tensile testing. Learn how to test metals, alloys, composites, ceramics, and plastics to determine strength, ductility and elastic/plastic deformation. A must for laboratory managers, technicians, materials and design engineers, and students involved with uniaxial tensile testing. Tensile Testing , Second Edition begins with an introduction and overview of the test, with clear explanations of how materials properties are determined from test results. Subsequent sections illustrate how knowledge gained through tensile tests, such as tension properties to predict the behavior (including strength, ductility, elastic or plastic deformation, tensile and yield strengths) have resulted in improvements in materals applications. The Second Edition is completely revised and updated. It includes expanded coverage throughout the volume on a variety of ...

  6. Tensile creep behavior in an advanced silicon nitride

    International Nuclear Information System (INIS)

    Lofaj, F.

    2000-01-01

    Tensile creep behavior and changes in the microstructure of the advanced silicon nitride, SN 88M, were studied at temperatures from 1250 to 1400 C to reveal the creep resistance and lifetime-controlling processes. Assuming power law dependence of the minimum strain rate on stress, stress exponents from 6 to 8 and an apparent activation energy of 780 kJ/mol were obtained. Extensive electron microscopy observations revealed significant changes in the crystalline secondary phases and creep damage development. Creep damage was classified in two groups: 'inter-granular' defects in the amorphous boundary phases, and 'intra-granular' defects in silicon nitride grains. The inter-granular defects involved multigrain junction cavities, two-grain junction cavities, microcracks and cracks. The intra-granular defects included broken large grains, small symmetrical and asymmetrical cavities, and crack-like intragranular cavities. Cavities are generated continuously during the whole deformation starting from the threshold strain of ∝0.1%, and they contribute linearly to the tensile strain. Cavities produce more than 90% of the total tensile strain, and it is concluded that cavitation is the main creep mechanism in silicon nitride ceramics. The multigrain junction cavities are considered to be the most important for generating new volume and producing tensile strain. The Luecke and Wiederhorn (L and W) creep model, based on cavitation at multigrain junctions according to an exponential law, was proven to correspond to the stress dependence of the minimum strain rate. A qualitative model based on the L and W model was suggested and expanded to include intragranular cavitation. The basic mechanisms involve a repeating of the sequence grain boundary sliding (GBS) => cavitation at multigrain junctions => viscous flow and dissolution-precipitation. (orig.)

  7. Deformation behaviour of body centered cubic Fe nanowires under tensile and compressive loading

    OpenAIRE

    Sainath, G.; Choudhary, B. K.; Jayakumar, T.

    2014-01-01

    Molecular Dynamics (MD) simulations have been carried out to investigate the deformation behaviour of /{111} body centered cubic (BCC) Fe nanowires under tensile and compressive loading. An embedded atom method (EAM) potential was used to describe the interatomic interactions. The simulations were carried out at 10 K with a constant strain rate of $1\\times10^{8}$ $s^{-1}$. The results indicate a significant differences in deformation mechanisms under tensile and compressive loading. Under ten...

  8. Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium

    DEFF Research Database (Denmark)

    Becker, Hanka; Pantleon, Wolfgang

    2013-01-01

    Commercially pure titanium was tensile tested at different strain rates between 2.2×10−4s−1 and 6.7×10−1s−1 to characterize the strain rate dependence of plastic deformation and the dominating deformation mechanisms. From true stress-true plastic strain curves, three distinct work-hardening stages...... are identified. The work-hardening rate decreases linearly with increasing flow stress for all three stages and the work-hardening rate is the controlling factor for the transition between the different stages and mechanisms. During the initial stage (at lowest stresses) plastic deformation is carried mainly...... by dislocation slip, in the following stage (for moderate stresses), an abundance of 64.6∘〈1¯010〉 twin boundaries form indicating the dominance of {112¯2}〈1¯1¯23〉 compression twinning. During the last stage before the onset of necking, additional 84.8∘〈112¯0〉 twin boundaries are detected caused by {101...

  9. Tensile behavior and tension stiffening of reinforced concrete

    International Nuclear Information System (INIS)

    Choun, Young Sun; Seo, Jeong Moon

    2001-03-01

    For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building

  10. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  11. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  12. Acoustic emission during tensile deformation of M250 grade maraging steel

    Science.gov (United States)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  13. Microstructure Deformation and Fracture Mechanism of Highly Filled Polymer Composites under Large Tensile Deformation

    International Nuclear Information System (INIS)

    Tao Zhangjiang; Ping Songdan; Mei Zhang; Cheng Zhaipeng

    2013-01-01

    The microstructure deformation and fracture mechanisms of particulate-filled polymer composites were studied based on microstructure observations in this paper. By using in-situ tensile test system under scanning electron microscopy, three different composites composed of polymer binder filled by three different types of particles, namely Al particles, AP particles and HMX particles, with the same total filler content were tested. The roles of initial microstructure damage and particle type on the microstructure deformation and damage are highlighted. The results show that microstructure damage starts with the growth of the initial microvoids within the binders or along the binder/particle interfaces. With the increase of strain, the microstructure damages including debonding at the particle/binder interface and tearing of the binder lead to microvoid coalescence, and finally cause an abrupt fracture of the samples. Coarse particles lead to an increase of debonding at the particle/binder interface both in the initial state and during the loading process, and angular particles promote interface debonding during the loading process.

  14. Molecular Dynamics Simulations of Tensile Behavior of Copper

    OpenAIRE

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-01-01

    Molecular dynamics simulations on tensile deformation of initially defect free single crystal copper nanowire oriented in {100} has been carried out at 10 K under adiabatic and isothermal loading conditions. The tensile behaviour was characterized by sharp rise in stress in elastic regime followed by sudden drop at the point of dislocation nucleation. The important finding is that the variation in dislocation density is correlated with the observed stress-strain response. Several interesting ...

  15. Void nucleation in spheroidized steels during tensile deformation

    International Nuclear Information System (INIS)

    Fisher, J.R. Jr.

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy

  16. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M.E., E-mail: alam@engineering.ucsb.edu [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Pal, S.; Fields, K. [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoelzer, D.T. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Odette, G.R. [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2016-10-15

    A new larger heat of a 14YWT nanostructured ferritic alloy (NFA), FCRD NFA-1, was synthesized by ball milling FeO and argon atomized Fe-14Cr-3W-0.4Ti-0.2Y (wt%) powders, followed by hot extrusion, annealing and cross rolling to produce an ≈10 mm-thick plate. NFA-1 contains a bimodal size distribution of pancake-shaped, mostly very fine scale, grains. The as-processed plate also contains a large population of microcracks running parallel to its broad surfaces. The small grains and large concentration of Y–Ti–O nano-oxides (NOs) result in high strength up to 800 °C. The uniform and total elongations range from ≈1–8%, and ≈10–24%, respectively. The strength decreases more rapidly above ≈400 °C and deformation transitions to largely viscoplastic creep by ≈600 °C. While the local fracture mechanism is generally ductile-dimple microvoid nucleation, growth and coalescence, perhaps the most notable feature of tensile deformation behavior of NFA-1 is the occurrence of periodic delamination, manifested as fissures on the fracture surfaces.

  17. Tensile Flow Behavior of Tungsten Heavy Alloys Produced by CIPing and Gelcasting Routes

    Science.gov (United States)

    Panchal, Ashutosh; Ravi Kiran, U.; Nandy, T. K.; Singh, A. K.

    2018-06-01

    Present work describes the flow behavior of tungsten heavy alloys with nominal compositions 90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe, and 95W-3.5Ni-1.5Fe (wt pct) produced by CIPing and gelcasting routes. The overall microstructural features of gelcasting are finer than those of CIPing alloys. Both the grain size of W and corresponding contiguity values increase with increase in W content in the present alloys. The volume fraction of matrix phase decreases with increase in W content in both the alloys. The lattice parameter values of the matrix phase also increase with increase in W content. The yield strength ( σ YS) continuously increases with increase in W content in both the alloys. The σ YS values of CIPing alloys are marginally higher than those of gelcasting at constant W. The ultimate tensile strength ( σ UTS) and elongation values are maximum at intermediate W content. Present alloys exhibit two slopes in true stress-true plastic strain curves in low and high strain regimes and follow a characteristic Ludwigson relation. The two slopes are associated with two deformation mechanisms that are occurring during tensile deformation. The overall nature of differential curves of all the alloys is different and these curves contain three distinctive stages of work hardening (I, II, and III). This suggests varying deformation mechanisms during tensile testing due to different volume fractions of constituent phases. The slip is the predominant deformation mechanism of the present alloys during tensile testing.

  18. Tensile behavior of borated stainless steels

    International Nuclear Information System (INIS)

    Stephens, J.J. Jr.; Sorenson, K.B.

    1991-01-01

    Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section III. The adoption by ASME facilitates a material's qualification for structural use in transport cask applications. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. This can result in a decrease in net section thickness of the basket web (increased payload capacity) and eliminates the fabrication process and cost of attaching a discrete boron poison material to the basket web. In addition, adding borate stainless steel to the inventory of acceptable structural material provides the Department of Energy (DOE) and its cask contractors an alternative to current proposed materials which have not been qualified for structural service. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in A-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thicknesses using borated stainless steel would be comparable to or thinner tan an equivalent basket manufactured from a typical stainless steel without boron additions. General trends from test results indicate that ductilities decrease with increasing boron content

  19. Quantitative characterization of the orientation spread within individual grains in copper after tensile deformation

    DEFF Research Database (Denmark)

    Krog-Pedersen, Stine; Bowen, Jacob R.; Pantleon, Wolfgang

    2009-01-01

    By means of electron backscatter diffraction, orientations are determined on a regular grid on a polished section of a copper specimen after tensile deformation to 25%. Individual grains separated by boundaries with disorientation angles above 7° are identified and the microtexture in the form...

  20. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  1. Shape effect related to crystallographic orientation of deformation behavior in copper crystals

    International Nuclear Information System (INIS)

    Kim, K.H.; Chang, C.H.; Koo, Y.M.; MacDowell, A.A.

    1999-01-01

    The deformation behavior of pure copper single crystals has been investigated by scanning electron microscopy and synchrotron radiation using the in situ reflection Laue method. Two types of samples with the same orientation of tensile axes, but with different crystallographic orientations in the directions of the width and thickness of the samples, have been studied. They showed different characteristics of deformation behavior, such as the activated slip systems, the movement of the tensile axis, and the mode of fracture

  2. High-rate tensile behavior of steel fiber-reinforced concrete for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Jin; Park, Gi-Joon [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Moon, Jae Heum; Lee, Jang Hwa [Korea Institute of Construction Technology, 2311 Daewha-Dong, Ilsan-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea, Republic of)

    2014-01-15

    Highlights: • The final goal is to develop a fiber reinforced concrete for containment buildings. • High rate tensile behavior of FRC was investigated. • Strain energy frame impact machine was used for tensile impact tests. • Different rate sensitivity of FRC was found according to the type fiber. • Adding more fibers by increasing S/a is positive for higher impact resistance of FRC. -- Abstract: The direct tensile behavior of fiber-reinforced concrete (FRC) at high strain rates were investigated for their potential to enhance the resistance of the containment building of nuclear power plants (NPPs) against aircraft impact. Two types of deformed steel, hooked (H) and twisted (T) fibers were employed. To improve the tensile resistance of FRCs even at higher rates by adding more fibers, the mixture of concrete was modified by either increasing the sand-to-coarse aggregate ratio or decreasing the maximum size of coarse aggregate. All FRC specimens produced two to six times greater tensile strength and one to five times higher toughness at high strain rates (4–53 s{sup −1}) than those at a static rate (0.000167 s{sup −1}). T-fiber generally produced higher tensile strength and toughness than H-fiber at both static and high rates. Although both fibers showed favorable rate sensitivity, T-fiber produced much greater enhancement, at higher strain rates, in tensile strength and slightly lower enhancement in toughness than H-fiber. As the maximum size of coarse aggregate decreased from 19 to 5 mm, the tensile strength and toughness of FRCs with T-fibers noticeably increased at both static and high strain rates.

  3. Tempering response to different morphologies of martensite in tensile deformation of dual-phase steel

    International Nuclear Information System (INIS)

    Ahmad, E.; Manzoor, T.; Sarwar, M.; Arif, M.; Hussain, N.

    2011-01-01

    A low alloy steel containing 0.2% C was heat treated with three cycles of heat treatments with the aim to acquire different morphologies of martensite in dual phase microstructure. Microscopic examination revealed that the morphologies consisting of grain boundary growth, scattered laths and bulk form of martensite were obtained. These morphologies have their distinct patterns of distribution in the matrix (ferrite). In tensile properties observations the dual phase steel with bulk morphology of martensite showed minimum of ductility but high tensile strength as compared to other two morphologies. This may be due to poor alignments of bulk martensite particles along tensile axes during deformation. Tempering was employed with various holding times at 550 deg. C to induce ductility in the heat treated material. The tempering progressively increased the ductility by increasing holding time. However, tempering response to strengths and ductilities was different to all three morphologies of martensite. (author)

  4. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, M.N., E-mail: gussevmn@ornl.gov; Busby, J.T.; Byun, T.S.; Parish, C.M.

    2013-12-20

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of α- and ε-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at the twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both α- and ε-martensites were found in the microstructure, but at 1100 MPa only α-martensite presented in the specimen. Under indentation, α- and ε-martensite were observed in the material regardless of the stress level.

  5. Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, N.; Soboyejo, W.O.; Tarquinio, C.

    2008-01-01

    In situ scanning electron microscopy micro-tensile tests were conducted on freestanding LIGA nickel thin films of two thicknesses (70 and 270 μm). The deformation and fracture mechanisms were elucidated by in situ scanning electron microscopy imaging and ex situ fractographic analysis. Due to the film microstructural gradient, an apparent thickness effect on the film yield strengths was observed, which was then rationalized with a continuum micromechanics model

  6. Statistical behavior of the tensile property of heated cotton fiber

    Science.gov (United States)

    The temperature dependence of the tensile property of single cotton fiber was studied in the range of 160-300°C using Favimat test, and its statistical behavior was interpreted in terms of structural changes. The tenacity of control cotton fiber was well described by the single Weibull distribution,...

  7. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  8. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Danyang, E-mail: dongdanyang@mail.neu.edu.cn [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Liu, Yang, E-mail: liuyang@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Yang, Yuling, E-mail: yulingyang@mail.neu.edu.cn [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Li, Jinfeng, E-mail: lijinfengboda@163.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Ma, Min, E-mail: sharon6789@163.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Jiang, Tao, E-mail: tao.jiang906@yahoo.com [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China)

    2014-01-31

    Dual phase (DP) steels have been widely used in the automotive industry to reduce vehicle weight and improve car safety. In such applications welding and joining have to be involved, which would lead to a localized change of the microstructure and property, and create potential safety and reliable issues under dynamic loading. The aim of the present study is to examine the rate-dependent mechanical properties, deformation and fracture behavior of DP600 steel and its welded joint (WJ) produced by Nd:YAG laser welding over a wide range of strain rates (0.001–1133 s{sup −1}). Laser welding results in not only significant microhardness increase in the fusion zone (FZ) and inner heat-affected zone (HAZ), but also the formation of a softened zone in the outer HAZ. The yield strength (YS) of the DP600 steel increases and the ultimate tensile strength (UTS) remains almost unchanged, but the ductility decreases after welding. The DP600 base metal (BM) and WJ are of positive strain rate sensitivity and show similar stress–strain response at all studied strain rates. The enhanced ductility at strain rates ranging from 1 to 100 s{sup −1} is attributed to the retardation of the propagation of plastic strain localization due to the positive strain rate sensitivity and the thermal softening caused by deformation induced adiabatic temperature rise during dynamic tensile deformation. The tensile failure occurs in the inner HAZ of the joint and the distance of failure location from the weld centerline decreases with increasing strain rate. The mechanism for the changing failure location can be related to the different strain rate dependence of the plastic deformation behavior of the microstructures in various regions across the joint. The DP600 WJ absorbs more energy over the whole measured strain rates than that of the BM due to the higher strength at the same strain when the deformation only up to 10% is considered.

  9. An analysis of the effect of hydrostatic pressure on the tensile deformation of aluminum-matrix composites

    International Nuclear Information System (INIS)

    Gonzalez, C.; Llorca, J.

    2003-01-01

    The effect of superposed hydrostatic pressure on the tensile deformation of particle-reinforced Al-matrix composites was analyzed using a self-consistent approximation. The composite was represented in terms of an interpenetrating network of randomly distributed spheres, which stand for the intact and damaged regions in the composite. Each sphere contained an intact or broken ceramic particle at the center, and the model assumed that the fraction of damaged spheres increased during deformation. The load partitioning between intact and damaged regions in the composite as well as the stress redistribution due to damage was computed through a self-consistent scheme. It was shown that the tensile stresses in the ceramic particles, and thus the fraction of broken particles, were reduced as the hydrostatic pressure increased. This led to a moderate improvement in the composite flow stress but more significant gains were achieved in the strain at the onset of plastic instability. Both magnitudes increased with the hydrostatic pressure until a saturation stress was reached. Particle fracture was completely inhibited at this point, and higher pressures did not have any influence on the composite behavior, which was equivalent to that of the undamaged phase in the absence of hydrostatic pressure. Using reasonable values for the matrix and reinforcement properties, the model predictions for the composite strength and strain at the onset of plastic instability were in good agreement with the experimental data in the literature for high strength Al alloys reinforced with SiC and Al 2 O 3 particles

  10. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Nishimura, T.; Tsuchiya, K.; Tsuzaki, K.

    2010-01-01

    The microstructure, the tensile deformation mode at ambient temperature and the crevice corrosion resistance at a high temperature of 373 K were investigated in the Ti-10Mo-xFe (x = 0, 1, 3, 5) alloys. The stability of the β phase increased, and the formation of the α'' martensite and the athermal ω phase was suppressed by the increase in the Fe content. EPMA examinations indicated that the existence of the α'' martensite in the Ti-10Mo alloy was caused by the solidification segregation of Mo atoms. EBSD observations showed that the deformation mode changed from a {3 3 2} twinning to a slip by an increase in the Fe content, which coincided with the prediction by the electron/atom (e/a) ratio. The Ti-10Mo-3Fe alloy showed the highest yield strength of 935 MPa among all the alloys, while the Ti-10Mo-1Fe alloy showed the lowest value of 563 MPa due to the change in the deformation mode. On the other hand, all the alloys exhibited a high crevice corrosion resistance in a high chloride and high acidic solution at the high temperature, although the corrosion resistance decreased with an increase in the Fe content. The decrease in the corrosion resistance can be explained by the bond order (Bo). A good combination of tensile properties and crevice corrosion resistance may be obtainable through a further optimization of the Fe content by the e/a ratio and the Bo.

  11. Mechanical Behavior of Red Sandstone under Incremental Uniaxial Cyclical Compressive and Tensile Loading

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2017-01-01

    Full Text Available Uniaxial experiments were carried out on red sandstone specimens to investigate their short-term and creep mechanical behavior under incremental cyclic compressive and tensile loading. First, based on the results of short-term uniaxial incremental cyclic compressive and tensile loading experiments, deformation characteristics and energy dissipation were analyzed. The results show that the stress-strain curve of red sandstone has an obvious memory effect in the compressive and tensile loading stages. The strains at peak stresses and residual strains increase with the cycle number. Energy dissipation, defined as the area of the hysteresis loop in the stress-strain curves, increases nearly in a power function with the cycle number. Creep test of the red sandstone was also conducted. Results show that the creep curve under each compressive or tensile stress level can be divided into decay and steady stages, which cannot be described by the conventional Burgers model. Therefore, an improved Burgers creep model of rock material is constructed through viscoplastic mechanics, which agrees very well with the experimental results and can describe the creep behavior of red sandstone better than the Burgers creep model.

  12. In situ investigation of the tensile deformation of laser welded Ti{sub 2}AlNb joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kezhao; Ni, Longchang; Lei, Zhenglong, E-mail: leizhenglong@hit.edu.cn; Chen, Yanbin; Hu, Xue

    2017-01-15

    The tensile deformation behavior of laser welded Ti{sub 2}AlNb joints was investigated using in situ analysis methods. The fracture mode of the single-B2-phase fusion zone was quasi-cleavage at room temperature and intergranular at 650 °C, while that of base metal was microvoid coalescence at both room temperature and 650 °C. Tensile deformation at room temperature was observed using in situ SEM tensile testing. In base metal, microcracks nucleated and propagated mainly within the O phase or along O/B2 phase boundaries. While both the cross- and multi-slips were found in the single-B2-phase fusion zone, a confocal laser scanning microscopy was used to observe the crack initiation and propagation process in situ at 650 °C. Cracks mainly formed along the B2/O phase boundaries in base metal, along the fragile grain boundaries of B2 phase in the fusion zone. The thermal simulation experiment and following TEM analysis indicated that the precipitation of continuous O-phase films along the B2 grain boundaries resulted in the high temperature brittleness of laser welded Ti{sub 2}AlNb joints. - Highlights: •Cracks formed within O phase or along B2/O boundaries in the base metal. •Cross- and multi-slips relieved stress in the fusion zone at room temperature. •Cracks mainly formed along the B2/O boundaries at 650 °C. •In the fusion zone, intergranular cracks were in situ observed at 650 °C. •O-phase films along B2 grain boundaries caused the high temperature brittleness.

  13. In situ diffraction profile analysis during tensile deformation motivated by molecular dynamics

    International Nuclear Information System (INIS)

    Van Swygenhoven, H.; Budrovic, Z.; Derlet, P.M.; Froseth, A.G.; Van Petegem, S.

    2005-01-01

    Molecular dynamics simulations can provide insight into the slip mechanism at the atomic scale and suggest that in nanocrystalline metals dislocations are nucleated and absorbed by the grain boundaries. However, this technique is limited by very short simulation times. Using suggestions from molecular dynamics, we have developed a new in situ X-ray diffraction technique wherein the profile analysis of several Bragg diffraction peaks during tensile deformation is possible. Combining experiment and careful structural analysis the results confirm the suggestions from atomistic simulations

  14. Higher harmonic imaging of tensile plastic deformation in loading and reloading processes by local resonance method

    International Nuclear Information System (INIS)

    Kawashima, Koichiro; Yasui, Hajime

    2015-01-01

    We have imaged plastically deformed region in a 5052 aluminum plate under tensile loading, unloading and reloading processes by using an immersion local resonance method. By transmitting large-amplitude burst wave of which frequency is a through-thickness resonant frequency of the plate, dislocation loops in plastic zone are forced to vibrate. The higher harmonic amplitude excited by the dislocation movement is mapped for the transducer position. The extension of plastic zone under monotonically increased loading, decrease in harmonic amplitude under unloading process and marked extension of plastic zone in reloading up to 0.4% plastic strain are clearly imaged. (author)

  15. Characterization and modeling of tensile behavior of ceramic woven fabric composites

    Science.gov (United States)

    Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei

    1991-01-01

    This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.

  16. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam.

    Science.gov (United States)

    Kumar, B R Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E; Gupta, Nikhil; Ramakrishna, Seeram

    2016-03-01

    The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.

  17. Squeeze casting of aluminum alloy A380: Microstructure and tensile behavior

    Directory of Open Access Journals (Sweden)

    Li Fang

    2015-09-01

    Full Text Available A380 alloy with a relatively thick cross-section of 25 mm was squeeze cast using a hydraulic press with an applied pressure of 90 MPa. Microstructure and tensile properties of the squeeze cast A380 were characterized and evaluated in comparison with the die cast counterpart. Results show that the squeeze cast A380 possesses a porosity level much lower than the die cast alloy, which is disclosed by both optical microscopy and the density measurement technique. The results of tensile testing indicate the improved tensile properties, specifically ultimate tensile strength (UTS: 215.9 MPa and elongation (Ef: 5.4%, for the squeeze cast samples over those of the conventional high-pressure die cast part (UTS: 173.7 MPa, Ef: 1.0%. The analysis of tensile behavior shows that the squeeze cast A380 exhibits a high tensile toughness (8.5 MJ·m-3 and resilience (179.3 kJ·m-3 compared with the die cast alloy (toughness: 1.4 MJ·m-3, resilience: 140.6 kJ·m-3, despite that, during the onset of plastic deformation, the strain-hardening rate of the die cast specimen is higher than that of the squeeze cast specimens. The microstructure analyzed by the scanning electron microscopy (SEM shows that both the squeeze and die cast specimens contain the primary α-Al, Al2Cu, Al5FeSi phase and the eutectic Si phase. But, the Al2Cu phase present in the squeeze cast alloy is relatively large in size and quantity. The SEM fractography evidently reveals the ductile fracture features of the squeeze cast A380 alloy.

  18. Experimental study on uniaxial ratcheting deformation and failure behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Yang Xianjie; Gao Qing; Cai Lixun; Liu Yujie

    2004-01-01

    In the paper, the tests of cyclic strain ratcheting and low cycle fatigue for 304 stainless steel under uniaxial cyclic straining were carried out to systematically explore the deformation and failure behavior of the material. The experimental study shows that the cyclic strain ratcheting deformation behavior of the material is different from either the uniaxial monotonic tensile one or the cyclic deformation one under the symmetrical cyclic straining with the same strain amplitude, and the strain ratcheting deformation and failure behaviors depend on both the plastic strain amplitude and the strain increment at the cyclic maximum strain. Some significant results were observed

  19. Basic investigation of the laminated alginate impression technique: Setting time, permanent deformation, elastic deformation, consistency, and tensile bond strength tests.

    Science.gov (United States)

    Kitamura, Aya; Kawai, Yasuhiko

    2015-01-01

    Laminated alginate impression for edentulous is simple and time efficient compared to border molding technique. The purpose of this study was to examine clinical applicability of the laminated alginate impression, by measuring the effects of different Water/Powder (W/P) and mixing methods, and different bonding methods in the secondary impression of alginate impression. Three W/P: manufacturer-designated mixing water amount (standard), 1.5-fold (1.5×) and 1.75-fold (1.75×) water amount were mixed by manual and automatic mixing methods. Initial and complete setting time, permanent and elastic deformation, and consistency of the secondary impression were investigated (n=10). Additionally, tensile bond strength between the primary and secondary impression were measured in the following surface treatment; air blow only (A), surface baking (B), and alginate impression material bonding agent (ALGI-BOND: AB) (n=12). Initial setting times significantly shortened with automatic mixing for all W/P (p<0.05). The permanent deformation decreased and elastic deformation increased as high W/P, regardless of the mixing method. Elastic deformation significantly reduced in 1.5× and 1.75× with automatic mixing (p<0.05). All of these properties resulted within JIS standards. For all W/P, AB showed a significantly high bonding strength as compared to A and B (p<0.01). The increase of mixing water, 1.5× and 1.75×, resulted within JIS standards in setting time, suggesting its applicability in clinical setting. The use of automatic mixing device decreased elastic strain and shortening of the curing time. For the secondary impression application of adhesives on the primary impression gives secure adhesion. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-12-01

    Full Text Available The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been found to play an important role for this HSSS due to load transfer and strain partitioning between two phases, and a higher strain rate could cause even higher strain partitioning in the softer austenite grains, delaying the deformation instability. Deformation twins are observed in the austenite grains at all strain rates to facilitate the uniform tensile deformation. The B2 phase (FeAl intermetallic compound is less deformable at higher strain rates, resulting in easier brittle fracture in B2 particles, smaller dimple size and a higher density of phase interfaces in final fracture surfaces. Thus, more energy need be consumed during the final fracture for the experiments conducted at higher strain rates, resulting in better tensile toughness.

  1. The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Zheng, Y.F.; Cai, W.; Zhao, L.C.

    1999-01-01

    Recently, ternary Ti-Ni-Hf alloys have attracted great interest in the field of high temperature shape memory materials research and development. Extensive studies have been made on its manufacture process, constitutional phases, phase transformation behavior, the structure, substructure and interface structure of martensite and the precipitation behavior during ageing. Yet up to date there is no report about the fundamental mechanical properties of Ti-Ni-Hf alloys, such as the stress-strain data, the variation laws of the yield strength and elongation with the temperature. In the present study, tensile tests at various temperatures are employed to investigate the mechanical behavior of Ti-Ni-Hf alloy with different matrix structures, from full martensite to full parent phase structure, with the corresponding deformation mechanism discussed

  2. An atomistic study of the deformation behavior of tungsten nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shuozhi [University of California, California NanoSystems Institute, Santa Barbara, CA (United States); Su, Yanqing [University of California, Department of Mechanical Engineering, Santa Barbara, CA (United States); Chen, Dengke [Georgia Institute of Technology, GWW School of Mechanical Engineering, Atlanta, GA (United States); Li, Longlei [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States)

    2017-12-15

    Large-scale atomistic simulations are performed to study tensile and compressive left angle 112 right angle loading of single-crystalline nanowires in body-centered cubic tungsten (W). Effects of loading mode, wire cross-sectional shape, wire size, strain rate, and crystallographic orientations of the lateral surfaces are explored. Uniaxial deformation of a W bulk single crystal is also investigated for reference. Our results reveal a strong tension-compression asymmetry in both the stress-strain response and the deformation behavior due to different yielding/failure modes: while the nanowires fail by brittle fracture under tensile loading, they yield by nucleation of dislocations from the wire surface under compressive loading. It is found that (1) nanowires have a higher strength than the bulk single crystal; (2) with a cross-sectional size larger than 10 nm, there exists a weak dependence of strength on wire size; (3) when the wire size is equal to or smaller than 10 nm, nanowires buckle under compressive loading; (4) the cross-sectional shape, strain rate, and crystallographic orientations of the lateral surfaces affect the strength and the site of defect initiation but not the overall deformation behavior. (orig.)

  3. Characterization of the deformation texture after tensile test and cold rolling of a Ti-6Al-4V sheet alloy

    International Nuclear Information System (INIS)

    Mehdi, B; Badji, R; Azzeddine, H; Alili, B; Bradai, D; Ji, V

    2015-01-01

    The deformation texture after cold rolling and tensile test of an industrial Ti-6Al-4V sheet alloy was studied using X-ray diffraction. The alloy was subjected to a cold rolling to different thickness reductions (from 20% to 60%) and then tensile tests have been carried out along three directions relatively to the rolling direction (0°, 45° and 90°). The experimental results were compared to the existing literature and discussed in terms of active plastic deformation mechanisms. (paper)

  4. Orientation correlation in tensile deformed [0 1 1] Cu single crystals

    International Nuclear Information System (INIS)

    Borbely, Andras; Szabo, Peter J.; Groma, Istvan

    2005-01-01

    Local crystallographic orientation of tensile deformed copper single crystals was investigated by the electron backscattering technique. Statistical evaluation of the data reveals the presence of an increased crystallographic correlation at the transition point between stages II and III of work-hardening. The transition state has the lowest probability of finding geometrically necessary dislocations in circular regions of radius smaller than 8 μm. According to the present results and other data showing that the relative fluctuation of the dislocation density has a maximum at the transition point, we conclude that the transition from stages II to III of work-hardening is similar to a second-order phase transformation of the statistical dislocation system

  5. Anisotropic Deformation Behavior of Al2024T351 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    R Khan

    2013-06-01

    Full Text Available The objective of this work was to investigate the effects of material anisotropy on the yielding and hardening behavior of 2024T351 aluminum alloy using isotropic and anisotropic yield criteria. Anisotropy may be induced in a material during the manufacturing through processes like rolling or forging. This induced anisotropy gives rise to the concept of orientation-dependent material properties such as yield strength, ductility, strain hardening, fracture strength, or fatigue resistance. Inclusion of the effects of anisotropy is essential in correctly predicting the deformation behavior of a material. In this study, uniaxial tensile tests were first performed in all three rolling directions, L , T  and S , for smooth bar specimens made from hot rolled plate of Al2024 alloy. The experimental results showed that the L - and T -directions yielded higher yield strengths and a greater percentage of elongation before fracture than the S -direction. Subsequently, finite element analysis of tensile specimens was performed using isotropic (von Mises and anisotropic (Hill yield criteria to predict the onset of yielding and hardening behaviors during the course of deformation. Hill's criterion perfectly fitted with the test data in the S -direction, but slightly underestimated the yield strength in L -direction. The results indicated that the Hill yield criterion is the most suitable one to predict the onset of yielding and hardening behaviors for 2024T351 aluminum alloy in all directions.

  6. Hot Tensile and Fracture Behavior of 35CrMo Steel at Elevated Temperature and Strain Rate

    Directory of Open Access Journals (Sweden)

    Zhengbing Xiao

    2016-08-01

    Full Text Available To better understand the tensile deformation and fracture behavior of 35CrMo steel during hot processing, uniaxial tensile tests at elevated temperatures and strain rates were performed. Effects of deformation condition on the flow behavior, strain rate sensitivity, microstructure transformation, and fracture characteristic were characterized and discussed. The results indicated that the flow stress was sensitive to the deformation condition, and fracture occurs immediately after the peak stress level is reached, especially when the temperature is low or the strain rate is high. The strain rate sensitivity increases with the deformation temperature, which indicates that formability could improve at high temperatures. Photographs showing both the fracture surfaces and the matrix near the fracture section indicated the ductile nature of the material. However, the fracture mechanisms varied according to the deformation condition, which influences the dynamic recrystallization (DRX condition, and the DRX was accompanied by the formation of voids. For samples deformed at high temperatures or low strain rates, coalescence of numerous voids formed in the recrystallized grains is responsible for fracture, while at high strain rates or low temperatures, the grains rupture mainly by splitting because of cracks formed around the inclusions.

  7. Postirradiation deformation behavior in ferritic Fe-Cr alloys

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Gelles, D.S.; Gardner, P.L.

    1992-06-01

    It has been demonstrated that fast-neutron irradiation produces significant hardening in simple Fe-(3-18)Cr binary alloys irradiated to about 35 dpa in the temperature range 365 to 420 degrees C, whereas irradiation at 574 degrees C produces hardening only for 15% or more chromium. The irradiation-induced changes in tensile properties are discussed in terms of changes in the power law work-hardening exponent. The work-hardening exponent of the lower chromium alloys decreased significantly after low-temperature irradiation (≤ 420 degrees C) but increased after irradiation at 574 degrees C. The higher chromium alloys failed either in cleavage or in a mixed ductile/brittle fashion. Deformation microstructures are presented to support the tensile behavior

  8. A study on fatigue crack growth behavior subjected to a single tensile overload

    International Nuclear Information System (INIS)

    Lee, S.Y.; Liaw, P.K.; Choo, H.; Rogge, R.B.

    2011-01-01

    Neutron diffraction and electric potential experiments were carried out to investigate the growth behavior of a fatigue crack subjected to a single tensile overload. The specific objectives were to (i) probe the crack tip deformation and fracture behaviors under applied loads; (ii) examine the overload-induced transient crack growth micromechanism; (iii) validate the effective stress intensity factor range based on the crack closure approach as the fatigue crack tip driving force; and (iv) establish a quantitative relationship between the crack tip driving force and crack growth behavior. Immediately after a single tensile overload was introduced and then unloaded, the crack tip became blunt and enlarged compressive residual stresses in both magnitude and zone size were observed around the crack tip. The results show that the combined contributions of the overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are responsible for the observed changes in the crack opening load and the resultant post-overload transient crack growth behavior.

  9. Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    Directory of Open Access Journals (Sweden)

    Levan Japaridze

    2015-10-01

    Full Text Available In this study, the interaction between cylindrical specimen made of homogeneous, isotropic, and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses. The frictional contact stresses between the specimen and platens are neglected. The analytical solution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen. The contact width, corresponding loading angle (2θ0, and elliptical stresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili's method. In this method, the displacements and stresses are represented in terms of two analytical functions of a complex variable. In the main approaches, the nonlinear interaction between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account. Numerical examples are solved using MATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter. Derived equations also allow calculating the modulus of elasticity, total deformation modulus and creep parameters of the specimen material based on the experimental data of radial contraction of the specimen.

  10. Coarse-grained molecular dynamics simulations of the tensile behavior of a thermosetting polymer

    Science.gov (United States)

    Yang, Shaorui; Qu, Jianmin

    2014-07-01

    Using a previously developed coarse-grained model, we conducted large-scale (˜85×85×85nm3) molecular dynamics simulations of uniaxial-strain deformation to study the tensile behavior of an epoxy molding compound, epoxy phenol novolacs (EPN) bisphenol A (BPA). Under the uniaxial-strain deformation, the material is found to exhibit cavity nucleation and growth, followed by stretching of the ligaments separated by the cavities, until the ultimate failure through ligament scissions. The nucleation sites of cavities are rather random and the subsequent cavity growth accounts for much (87%) of the volumetric change during the uniaxial-strain deformation. Ultimate failure of the materials occurs when the cavity volume fraction reaches ˜60%. During the entire deformation process, polymer strands in the network are continuously extended to their linear states and broken in the postyielding strain hardening stage. When most of the strands are stretched to their taut configurations, rapid scission of a large number of strands occurs within a small strain increment, which eventually leads to fracture. Finally, through extensive numerical simulations of various loading conditions in addition to uniaxial strain, we find that yielding of the EPN-BPA can be described by the pressure-modified von Mises yield criterion.

  11. Coarse-grained molecular dynamics simulations of the tensile behavior of a thermosetting polymer.

    Science.gov (United States)

    Yang, Shaorui; Qu, Jianmin

    2014-07-01

    Using a previously developed coarse-grained model, we conducted large-scale (∼ 85 × 85 × 85 nm(3)) molecular dynamics simulations of uniaxial-strain deformation to study the tensile behavior of an epoxy molding compound, epoxy phenol novolacs (EPN) bisphenol A (BPA). Under the uniaxial-strain deformation, the material is found to exhibit cavity nucleation and growth, followed by stretching of the ligaments separated by the cavities, until the ultimate failure through ligament scissions. The nucleation sites of cavities are rather random and the subsequent cavity growth accounts for much (87%) of the volumetric change during the uniaxial-strain deformation. Ultimate failure of the materials occurs when the cavity volume fraction reaches ∼ 60%. During the entire deformation process, polymer strands in the network are continuously extended to their linear states and broken in the postyielding strain hardening stage. When most of the strands are stretched to their taut configurations, rapid scission of a large number of strands occurs within a small strain increment, which eventually leads to fracture. Finally, through extensive numerical simulations of various loading conditions in addition to uniaxial strain, we find that yielding of the EPN-BPA can be described by the pressure-modified von Mises yield criterion.

  12. Tensile Fracture Behavior of Progressively-Drawn Pearlitic Steels

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2016-05-01

    Full Text Available In this paper a study is presented of the tensile fracture behavior of progressively-drawn pearlitic steels obtained from five different cold-drawing chains, including each drawing step from the initial hot-rolled bar (not cold-drawn at all to the final commercial product (pre-stressing steel wire. To this end, samples of the different wires were tested up to fracture by means of standard tension tests, and later, all of the fracture surfaces were analyzed by scanning electron microscopy (SEM. Micro-fracture maps (MFMs were assembled to characterize the different fractographic modes and to study their evolution with the level of cumulative plastic strain during cold drawing.

  13. Calculation of the deformation limits for failure affected wide plate tensile specimens

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G T.M.; Meijers, P [TNO-IWECO, Delft (Netherlands); Lorenz, H [INTERATOM, Bergisch Gladbach (Germany)

    1977-07-01

    In 1972 the German reactor safety commission recommended, with respect to the safety concept of the SNR 300 concerning an hypothetical core disruptive accident (HCDA), to design the complete plant against an mechanical energy release of 370 MWs and the reactor vessel against 150 MWs. In 1976 it has been decided to design the reactor vessel system against the defined energy release of 370 MWs. This change greatly increased the extent of design activities with regard to HCDA questions. The integrity proof will be given by deformation analysis of the reactor vessel using continuous mechanical computer codes and by comparison of the maximum deformations to verified design limits. The deformation behavior of the vessel system during the HCDA has been analysed by computer codes which describe the pulse and pressure distribution for all elements by which the geometry has been modelled. Simultaneously the codes calculate the hydrodynamic processes and the time and position dependent stress and strain distributions. The accuracy of these complicated computer codes describing pressure and deformation behavior will be evaluated by an experimental series of explosion tests on vessels.

  14. Calculation of the deformation limits for failure affected wide plate tensile specimens

    International Nuclear Information System (INIS)

    Janssen, G.T.M.; Meijers, P.; Lorenz, H.

    1977-01-01

    In 1972 the German reactor safety commission recommended, with respect to the safety concept of the SNR 300 concerning an hypothetical core disruptive accident (HCDA), to design the complete plant against an mechanical energy release of 370 MWs and the reactor vessel against 150 MWs. In 1976 it has been decided to design the reactor vessel system against the defined energy release of 370 MWs. This change greatly increased the extent of design activities with regard to HCDA questions. The integrity proof will be given by deformation analysis of the reactor vessel using continuous mechanical computer codes and by comparison of the maximum deformations to verified design limits. The deformation behavior of the vessel system during the HCDA has been analysed by computer codes which describe the pulse and pressure distribution for all elements by which the geometry has been modelled. Simultaneously the codes calculate the hydrodynamic processes and the time and position dependent stress and strain distributions. The accuracy of these complicated computer codes describing pressure and deformation behavior will be evaluated by an experimental series of explosion tests on vessels

  15. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    Science.gov (United States)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  16. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  17. Microstructure-based modeling of tensile deformation of a friction stir welded AZ31 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Weijun, E-mail: weijun.he@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Zheng, Li [College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Xin, Renlong, E-mail: rlxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-02-27

    The deformation and fracture behaviors of friction stir welded (FSWed) Mg alloys are topics under investigation. The microstructure and texture of a FSWed Mg alloy were characterized by electron back scattered diffraction. Four characteristic sub-zones with different orientations in the FSWed Mg alloy joint were identified. The texture distribution across the stir zones and transition zone were obviously inhomogeneous. For comparison, four sub-regions in the base material were also characterized. Based on the experimental microstructure and texture, a crystal plasticity finite element model was developed to represent the friction stir welded Mg alloy. Simulations were carried out to study the effect of texture variation on the deformation behaviors during transverse tension. Compared with the base material case, strong macroscopic strain localization was observed for the FSWed joint case after transverse tension. Strain localization may have contributed to the decayed elongation of the FSWed joint in the transverse tension. Texture variation in the thermal-mechanical affected zone did not change the deformation mechanism in the stir zones, while it did decrease the strain localization, thus assuming to improve the elongation of the friction stir welded Mg alloy.

  18. Microstructure-based modeling of tensile deformation of a friction stir welded AZ31 Mg alloy

    International Nuclear Information System (INIS)

    He, Weijun; Zheng, Li; Xin, Renlong; Liu, Qing

    2017-01-01

    The deformation and fracture behaviors of friction stir welded (FSWed) Mg alloys are topics under investigation. The microstructure and texture of a FSWed Mg alloy were characterized by electron back scattered diffraction. Four characteristic sub-zones with different orientations in the FSWed Mg alloy joint were identified. The texture distribution across the stir zones and transition zone were obviously inhomogeneous. For comparison, four sub-regions in the base material were also characterized. Based on the experimental microstructure and texture, a crystal plasticity finite element model was developed to represent the friction stir welded Mg alloy. Simulations were carried out to study the effect of texture variation on the deformation behaviors during transverse tension. Compared with the base material case, strong macroscopic strain localization was observed for the FSWed joint case after transverse tension. Strain localization may have contributed to the decayed elongation of the FSWed joint in the transverse tension. Texture variation in the thermal-mechanical affected zone did not change the deformation mechanism in the stir zones, while it did decrease the strain localization, thus assuming to improve the elongation of the friction stir welded Mg alloy.

  19. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    Science.gov (United States)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  20. Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts

    Science.gov (United States)

    Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying

    2017-10-01

    The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.

  1. In situ room temperature tensile deformation of a 1% CrMoV bainitic steel using synchrotron and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weisser, M.A. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Materials (IMX), CH-1012 Lausanne (Switzerland); Evans, A.D.; Van Petegem, S. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Holdsworth, S.R. [EMPA Materials Science and Technology, CH-8600 Duebendorf (Switzerland); Van Swygenhoven, H., E-mail: helena.vs@psi.ch [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Materials (IMX), CH-1012 Lausanne (Switzerland)

    2011-06-15

    Neutron and synchrotron X-ray diffraction spectra have been acquired during room temperature tensile deformation of a creep-resistant bainitic 1% CrMoV steel, in order to study the evolution of internal microstresses and load-sharing mechanisms between the ferrite matrix and the various carbides. Cementite takes load from the plastifying matrix at the onset of macroscopic plasticity resulting in residual interphase stresses. Single peak fitting indicates an elastic anisotropic behaviour of cementite.

  2. Acoustic emission during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches

    International Nuclear Information System (INIS)

    Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission generated during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches has been studied. The extent of acoustic activity generated depends on notch tip severity, notch tip blunting and tearing of the notches. The equation N=AK m applied to the acoustic emission data of the notched specimens has shown good correlation. Acoustic emission technique can be used to estimate the size of an unknown notch. (author)

  3. Large deformation behavior of fat crystal networks

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Walstra, P.

    2005-01-01

    Compression and wire-cutting experiments on dispersions of fully hydrogenated palm oil in sunflower oil with varying fraction solid fat were carried out to establish which parameters are important for the large deformation behavior of fat crystal networks. Compression experiments showed that the

  4. Deformation behavior of sintered nanocrystalline silver layers

    International Nuclear Information System (INIS)

    Zabihzadeh, S.; Van Petegem, S.; Duarte, L.I.; Mokso, R.; Cervellino, A.; Van Swygenhoven, H.

    2015-01-01

    The microstructure of porous silver layers produced under different low temperature pressure-assisted sintering conditions is characterized and linked with the mechanical behavior studied in situ during X-ray diffraction. Peak profile analysis reveals important strain recovery and hardening mechanism during cyclic deformation. The competition between both mechanisms is discussed in terms of porosity and grain size

  5. The influence of void and porosity on deformation behaviour of nanocrystalline Ni under tensile followed by compressive loading

    Science.gov (United States)

    Meraj, Md.; Nayak, Shradha; Krishanjeet, Kumar; Pal, Snehanshu

    2018-03-01

    In this paper, we present a lucid understanding about the deformation behaviour of nanocrystalline (NC) Ni with and without defects subjected to tensile followed by compressive loading using molecular dynamic (MD) simulations. The embedded atom method (EAM) potential have been incorporated in the simulation for three kinds of samples-i.e. for NC Ni (without any defect), porous NC Ni and NC Ni containing a centrally located void. All the three samples, which have been prepared by implementing the Voronoi method and using Atom Eye software, consist of 16 uniform grains. The total number of atoms present in NC Ni, porous NC Ni and NC Ni containing a void are 107021, 105968 and 107012 respectively. The stress-strain response of NC Ni under tensile followed by compressive loading are simulated at a high strain rate of 107 s-1 and at a constant temperature of 300K. The stress-strain curves for the NC Ni with and without defects have been plotted for three different types of loading: (a) tensile loading (b) compressive loading (c) forward tensile loading followed by reverse compressive loading. Prominent change in yield strength of the NC Ni is observed due to the introduction of defects. For tensile followed by compressive loading (during forward loading), the yield point for NC Ni with void is lesser than the yield point of NC Ni and porous NC Ni. The saw tooth shape or serration portion of the stress-strain curve is mainly due to three characteristic phenomena, dislocation generation and its movement, dislocation pile-up at the junctions, and dislocation annihilation. Both twins and stacking faults are observed due to plastic deformation as the deformation mechanism progresses. The dislocation density, number of clusters and number of vacancy of the NC sample with and without defects are plotted against the strain developed in the sample. It is seen that introduction of defects brings about change in mechanical properties of the NC Ni. The crystalline nature of NC Ni

  6. Effect of Thermal Cycling on the Tensile Behavior of CF/AL Fiber Metal Laminates

    Directory of Open Access Journals (Sweden)

    Muhammad Farhan Noor

    2017-09-01

    Full Text Available The objective of this research work was to estimate the effect of thermal cycling on the tensile behavior of CARALL composites. Fiber metal laminates (FMLs, based on 2D woven carbon fabric and 2024-T3 Alclad aluminum alloy sheet, was manufactured by pressure molding technique followed by hand layup method. Before fabrication, aluminum sheets were anodized with phosphoric acid to produce micro porous alumina layer on surface. This micro-porous layer is beneficial to produce strong bonding between metal and fiber surfaces in FMLs. The effect of thermal cycling (-65 to +70ºC on the tensile behavior of Cf/Al based FML was studied. Tensile strength was increased after 10 thermal cycles, but it was slightly decreased to some extent after 30, and 50 thermal cycles. Tensile modulus also shown the similar behavior as that of tensile strength.

  7. Evaluation of impacts of stress triaxiality on plastic deformability of RAFM steel using various types of tensile specimen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Taichiro, E-mail: kato.taichiro@jaea.go.jp [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan); Ohata, Mitsuru [Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Nogami, Shuhei [Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • The fracture ductility is lower as the stress triaxiality is higher. • Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. • Voids of interrupted R0.2 specimen were rounded shape than those of RB1. • The fracture surface of specimens were observed the elongated and the equiaxed dimples. • The decrease of plastic deformability of the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch. - Abstract: A case study on a fusion blanket design such as DEMO indicated that there could be some sections with high stress triaxiality, a parameter to evaluate the magnitude of plastic constraint, in the case of plasma disruption or coolant loss accident. Therefore, it is necessary to accurately understand the ductility loss limit of structural material in order to conduct the structural design assessment of the irradiated and embrittled fusion reactor blanket. Tensile tests were conducted by using three kinds of tensile specimen shapes to investigate of the plastic deformability of F82H. From the results, the fracture ductility is lower as the stress triaxiality is higher. Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. That of interrupted R0.2 specimen was rounded shape compared with those of RB1. The fracture surface of RB1 and R0.2 specimens were observed the elongated dimples and the equiaxed dimples without so much elongation, respectively. It is considered that the decrease of plastic deformability for the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch.

  8. Understanding thermally activated plastic deformation behavior of Zircaloy-4

    Science.gov (United States)

    Kumar, N.; Alomari, A.; Murty, K. L.

    2018-06-01

    Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.

  9. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    Science.gov (United States)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-03-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} f ), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}} 1}-{10{\\bar{1}} 2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} f value. A combination of basal, prismatic, and pyramidal slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal slip, and the improved {ɛ} f values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  10. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    Science.gov (United States)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-06-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} _{ {f}}), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}}1}-{10{\\bar{1}}2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} _{ {f}} value. A combination of basal, prismatic, and pyramidal slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal slip, and the improved {ɛ} _{ {f}} values at elevated temperatures were attributed to the vanishing activity of contraction twinning.

  11. Fracture and flaking off behavior of coated layer of DyBCO coated conductor under applied tensile strain

    International Nuclear Information System (INIS)

    Arai, T.; Shin, J.K.; Matsubayashi, H.; Ochiai, S.; Okuda, H.; Osamura, K.; Prusseit, W.

    2009-01-01

    The tensile behavior of the DyBa 2 Cu 3 O 7-δ (DyBCO) coated conductor with MgO buffer layer deposited on the Hastelloy C-276 substrate by inclined substrate deposition (ISD) was studied. The tensile stress-strain curve showed a flat region, characterized by the discontinuous yielding of the substrate due to the Lueders band extension from the gripped portions of the sample. In the area where the Lueders band had passed, the coating layer showed severe multiple transverse cracking due to the localized plastic deformation of the substrate. The flaking off of the coating layers took place at high applied strain, due to the buckling fracture of the coated layers in the sample width direction, accompanied by the interfacial debonding.

  12. Unstable propagation behavior of a ductile crack in SUS-304 stainless steel under high compliance tensile loading

    International Nuclear Information System (INIS)

    Tomoda, Yoshio

    1981-01-01

    In relation to the safe maintenance of nuclear power plants, it is necessary to prevent reactor coolant pipings from burst type failure caused by the unstable propagation of defects and cracks, such as stress corrosion cracking and fatigue cracks. In ductile materials, crack propagation is stable in tensile loading under fixed grip condition, when a specimen is controlled to deform in proportion to the increase of tensile load. However, it has been known that the instability of ductile cracks occurs after tensile load reached the maximum, especially under constant loading condition arising in the loading devices with high compliance or low tensile rigidity. In order to confirm the reliability of SUS 304 stainless pipes subjected to SCC, the crack propagation behavior was examined with the specimens having center cracks, using both testing machines with high compliance and low compliance. The instability of ductile cracks and the propagation velocity of unstable cracks were analyzed, and the calculated results were compated with the experimental results. Not only the compliance of testing machines but also the conditions of specimens affected the propagation of cracks. (Kako, I.)

  13. Local deformation behavior of surface porous polyether-ether-ketone.

    Science.gov (United States)

    Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken

    2017-01-01

    Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  15. Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

    OpenAIRE

    Jung-Ho Moon; Tae Kwon Ha

    2014-01-01

    High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreas...

  16. Analysis of surface roughening behavior of 6063 aluminum alloy by tensile testing of a trapezoidal uniaxial specimen

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang, Xiaosong, E-mail: hitxswang@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Yuan, Shijian [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-30

    To determine the quantitative relationship between surface roughness and strain, the surface roughening behavior of a 6063 aluminum alloy tube was examined by tensile testing of a trapezoidal uniaxial specimen, that can provide a continuous strain distribution after tensile deformation. The surface roughness was measured using a laser scanning confocal microscope to reflect the degree of roughening. The microstructure and surface morphology were examined using electron back-scattered diffraction and in-situ scanning electron microscopy to determine the grain orientation and surface topography evolution. The surface roughness increased with strain when the strain was less than 0.067 and then decreased slightly, with a maximum surface roughness of 23.73 µm. Inhomogeneous deformation at the grain boundaries and inside the grains was enhanced with increasing strain, resulting in an increase of surface roughness when the strain was below a critical value. As the strain increased, a greater number of slip systems contributed to the further deformation. Thus, the strain became more homogeneous, and accordingly, the surface roughness slightly decreased.

  17. Tensile behavior of irradiated manganese-stabilized stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  18. Aging effects on fracture behavior of 63Sn37Pb eutectic solder during tensile tests under the SEM

    International Nuclear Information System (INIS)

    Ding Ying; Wang Chunqing; Li Mingyu; Bang Hansur

    2004-01-01

    This study investigates the influence of aging treatment on fracture behavior of Sn-Pb eutectic solder alloys at different loading rate regime during tensile tests under the scanning electron microscope. In high homologous temperature, the solder exhibit the creep behavior that could be confirmed through the phenomena of grain boundary sliding (GBS) to both as-cast and aged specimens. Owing to the large grain scale after high temperature storage, boundary behavior was limited to some extent for the difficulty in grain rotation and boundary migration. Instead, drastic intragranular deformation occurred. Also, the phase coarsening weakened the combination between lead-rich phase and tin matrix. Consequently, surface fragmentation was detected for the aged specimens. Furthermore, the fracture mechanism changed from intergranular dominated to transgranular dominated with increasing loading rate to both specimens during early stage

  19. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    International Nuclear Information System (INIS)

    Singh, B.N.; Xiaoxu Huang; Taehtinen, S.; Moilamen, P.; Jacquet, P.; Dekeyser, J.

    2007-11-01

    Traditionally, the effect of irradiation on mechanical properties of metals and alloys is determined using post-irradiation tests carried out on pre-irradiated specimens and in the absence of irradiation environment. The results of these tests may not be representative of deformation behaviour of materials used in the structural components of a fission or fusion reactor where the materials will be exposed concurrently to displacement damage and external and/or internal stresses. In an effort to evaluate and understand the dynamic response of materials under these conditions, we have recently performed a series of uniaxial tensile tests on Fe-Cr and pure iron specimens in the BR-2 reactor at Mol (Belgium). The present report first provides a brief description of the test facilities and the procedure used for performing the in-reactor tests. The results on the mechanical response of materials during these tests are presented in the form of stress-displacement dose and the conventional stress-strain curves. For comparison, the results of post-irradiation tests and tests carried out on unirradiated specimens are also presented. Results of microstructural investigations on the unirradiated and deformed, irradiated and undeformed, post-irradiation deformed and the in-reactor deformed specimens are also described. During the in-reactor tests the specimens of both Fe-Cr alloy and pure iron deform in a homogeneous manner and do not exhibit the phenomenon of yield drop. An increase in the pre-yield dose increases the yield stress but not the level of maximum flow stress during the in-reactor deformation of Fe-Cr alloy. Neither the in-reactor nor the post-irradiation deformed specimens of Fe-Cr alloy and pure iron showed any evidence of cleared channel formation. Both in Fe-Cr and pure iron, the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post

  20. Effect of tensile holds on the deformation behaviour of a nickel base superalloy subjected to low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Zrnik, J.; Semenak, J.; Wangyao, P.; Vrchovinsky, V.; Hornak, P. [Dept. of Materials Science, Technical Univ. of Kosice, Kosice (Slovakia)

    2002-07-01

    The deformation behaviour of the wrought nickel base superalloy EI698 VD has been investigated in conditions of low cycle fatigue. The tensile hold periods, imposing a constant stress into the fatigue loading, have been introduced at the maximum stress value. The individual hold periods were in the range of 1 minute to 10 hours. The fatigue tests were of tension-tension type defined by a stress ratio R = 0.027 and were conducted at temperature of 650 C. The tests were performed until fracture. The time to failure, the time to failure corresponding to total load at peak amplitude and the number of cycles to failure have been criteria to evaluate the deformation behaviour of the alloy subjected to complex cyclic creep loading. In order to predict lifetime of alloy, regarding the respective types cyclic test, the Kitagawa's modified the linear cumulative damage criterion has been considered. The two regression functions for applied hold period interval were proposed time to calculate the time to failure. The formulae can be used to predict the life of nickel base superalloy considering the specific conditions of low cycle fatigue with tensile hold period introduced at stress amplitude peaks. The failure analysis of fracture surfaces contributed to evaluation of the role of repeatedly reduced stress in damage process. (orig.)

  1. Mechanical properties and deformation behavior of Al/Al7075, two-phase material

    International Nuclear Information System (INIS)

    Sherafat, Z.; Paydar, M.H.; Ebrahimi, R.; Sohrabi, S.

    2010-01-01

    In the present study, mechanical properties and deformation behavior of Al/Al7075, two-phase material were investigated. The two-phase materials were fabricated by mixing commercially pure Al powder with Al7075 chips and consolidating the mixture through hot extrusion process at 500 o C. Mechanical properties and deformation behavior of the fabricated samples were evaluated using tensile and compression tests. A scanning electron microscope was used to study the fracture surface of the samples including different amount of Al powder, after they were fractured in tensile test. The results of the tensile and compression tests showed that with decreasing the amount of Al powder, the strength increases and ductility decreases. Calculation of work hardening exponent (n) indicated that deformation behavior does not follow a regular trend. In a way that the n value was approved to be variable and a strong function of strain and Al powder wt% of the sample. The results of the fractography studies indicate that the type of fracture happened changes from completely ductile to nearly brittle by decreasing the wt% of Al powder from 90% to 40%.

  2. Effect of Dislocation Density on Deformation Behavior of Super Strong Bainitic Steel

    Directory of Open Access Journals (Sweden)

    B. Avishan

    2017-02-01

    Full Text Available Presence of nanoscale bainitic ferrites and high carbon retained austenites that are stable at ambient temperature within the microstructures of super strong bainitic steels makes it possible to achieve exceptional strengths and ductility properties in these groups of nanostructured steels. This article aims to study the effect of the dislocation density variations during tensile testing in ambient temperature on deformation behavior of nanostructured low temperature bainitic steels. Results indicate that dislocation absorption from bainitic ferrite subunits by surrounding retained austenite reduces the work hardening and therefore increases the formability of bainitic ferrite during deformation, which in turn results in a suitable combination of strength and ductility.

  3. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  4. The characteristics of ultra-high performance concrete and cracking behavior of reinforced concrete tensile specimens

    Directory of Open Access Journals (Sweden)

    H.A. Rahdar

    2016-09-01

    Full Text Available The tensile behavior of concrete depends on some factors such as member dimensions, reinforcement ratio, diameter of rebar, strength and elasticity modulus of material. In this research the experimental method is used to examine the characteristics and the behavior of ultra-high performance concrete on the tensile behavior of concrete members reinforced by steel rebar. The results show that increasing the rebar cover on diameter rebar ratio (C/d increases the initial stiffening before the cracking stage in concrete. Also, by increasing of reinforcement ratio the cracking space decreased.

  5. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    International Nuclear Information System (INIS)

    Rodriguez, O.L.; Allison, P.G.; Whittington, W.R.; Francis, D.K.; Rivera, O.G.; Chou, K.; Gong, X.; Butler, T.M.; Burroughs, J.F.

    2015-01-01

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase

  6. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, O.L. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Allison, P.G., E-mail: pallison@eng.ua.edu [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Whittington, W.R.; Francis, D.K. [Department of Mechanical Engineering, Mississippi State University, Starkville, MS 35759 (United States); Rivera, O.G.; Chou, K.; Gong, X. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Butler, T.M. [Department of Metallurgical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Burroughs, J.F. [Geotechnical & Structures Laboratory, US Army ERDC, Vicksburg, MS 39180 (United States)

    2015-08-12

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase.

  7. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F.; Niroumand, B. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Forouzan, M.R.; Mohseni mofidi, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Barlat, F. [Materials Mechanics Laboratory (MML), Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology POSTECH, San 31 Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2015-09-17

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models.

  8. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    International Nuclear Information System (INIS)

    Saeidi, N.; Ashrafizadeh, F.; Niroumand, B.; Forouzan, M.R.; Mohseni mofidi, S.; Barlat, F.

    2015-01-01

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models

  9. Influence of sodium evnironment on the uniaxial tensile behavior of titanium modified type 316 stainless steel

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, O.K.; Kassner, T.F.

    1978-01-01

    True stress-true strain tensile data have been obtained for titanium modified type 316 stainless steel in the solution annealed condition and after exposure to a flowing sodium environment at temperature of 700, 650, 600 and 550 0 C. The specimens were exposed to sodium for times between 120 and 5012 h to produce carbon penetration depths in the range 0.05-0.30 mm. The Voce equation was used to describe tensile flow curves for plastic strains above 0.005. The results showed that, when compared with solution annealed specimens, the tensile flow behavior of the sodium exposed specimens is characterized by a higher strain hardening rate, which decreases rapidly as the flow stress increases. The loss in tensile ductility of the material due to carburization in sodium environment was found to be minimal. (Auth.)

  10. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Steckmeyer, A., E-mail: antonin.steckmeyer@cea.f [Service de Recherches Metallurgiques Appliquees, CEA Saclay, Gif-sur-Yvette (France); Praud, M.; Fournier, B.; Malaplate, J.; Garnier, J.; Bechade, J.L.; Tournie, I.; Tancray, A.; Bougault, A. [Service de Recherches Metallurgiques Appliquees, CEA Saclay, Gif-sur-Yvette (France); Bonnaillie, P. [Service de Recherche en Metallurgie Physique, CEA Saclay, Gif-sur-Yvette (France)

    2010-10-15

    The search for a new cladding material is part of the research studies carried out at CEA to develop a sodium-cooled fast reactor meeting the expectations of the Generation IV International Forum. In this study, the tensile properties of a ferritic oxide dispersion strengthened steel produced by hot extrusion at CEA have been evaluated. They prove the studied alloy to be as resistant as and more ductile than the other nano-reinforced alloys of literature. The effects of the strain rate and temperature on the total plastic strain of the material remind of diffusion phenomena. Intergranular damage and intergranular decohesion are clearly highlighted.

  11. Elastic interaction between twins during tensile deformation of austenitic stainless steel

    DEFF Research Database (Denmark)

    Juul, Nicolai Ytterdal; Winther, Grethe; Dale, Darren

    2016-01-01

    . However, the components of the Type II stress normal to the twin boundary plane exhibit the same large variations as for the grain boundaries. Elastic grain interactions are therefore complex and must involve the entire set of neighbouring grains. The elastic-regime stress along the tensile direction......In austenite, the twin boundary normal is a common elastically stiff direction shared by the two twins, which may induce special interactions. By means of three-dimensional X-ray diffraction this elastic interaction has been analysed and compared to grains separated by conventional grain boundaries...

  12. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  13. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties

    International Nuclear Information System (INIS)

    Regle, H.

    1994-01-01

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. Technologically, cold-drawing is the only way

  14. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load.

    Science.gov (United States)

    Sedmák, P; Pilch, J; Heller, L; Kopeček, J; Wright, J; Sedlák, P; Frost, M; Šittner, P

    2016-08-05

    The stress-induced martensitic transformation in tensioned nickel-titanium shape-memory alloys proceeds by propagation of macroscopic fronts of localized deformation. We used three-dimensional synchrotron x-ray diffraction to image at micrometer-scale resolution the grain-resolved elastic strains and stresses in austenite around one such front in a prestrained nickel-titanium wire. We found that the local stresses in austenite grains are modified ahead of the nose cone-shaped buried interface where the martensitic transformation begins. Elevated shear stresses at the cone interface explain why the martensitic transformation proceeds in a localized manner. We established the crossover from stresses in individual grains to a continuum macroscopic internal stress field in the wire and rationalized the experimentally observed internal stress field and the topology of the macroscopic front by means of finite element simulations of the localized deformation. Copyright © 2016, American Association for the Advancement of Science.

  15. Tensile behavior of laser treated Fe-Si-B metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman; Katakam, Shravana; Collins, Peter C.; Dahotre, Narendra B., E-mail: narendra.dahotre@unt.edu [Department of Materials Science and Engineering, University of North Texas, 1150 Union Circle 305310, Denton, Texas 76203-5017 (United States)

    2015-10-28

    Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treated metallic glass foils.

  16. Dynamic tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Chen Xuan; Li Yulong

    2011-01-01

    Graphical abstract: The dynamic tensile behavior of 2D C/SiC composites was experimentally investigated by means of SHTB. Both the fracture surface and bundle fracture surfaces of composites were observed. The strain rate sensitivity of in-bundle interface was concluded as the dominant contributor to the strain rate sensitivity of the tensile strength. Highlights: → The tensile strength increases with strain rate. → The tensile failure strain remains independent of strain rate. → Macro-structural morphology reveals rough fracture surface under dynamic loading. → SEM morphology reveals integrated bundle pull-out under dynamic loading. → Strain rate sensitivity of in-bundle interface leads to that of the tensile strength. - Abstract: An investigation has been undertaken to determine the dynamic and quasi-static tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix (2D-C/SiC) composites by means of the split Hopkinson tension bar and an electronic universal test machine respectively. The results indicate that the tensile strength of 2D C/SiC composites is increased at high strain rate. Furthermore, coated specimens show not only a 15% improvement in tensile strength but heightened strain rate sensitivity compared with uncoated ones. It is also shown that the tensile failure strain is strain rate insensitive and remains around 0.4%. Optical macrograph of failed specimens under dynamic loading revealed jagged fracture surfaces characterized by delamination and crack deviation, together with obvious fiber pull-out/splitting, in contrast with the smooth fracture surfaces under quasi-static loading. Scanning electron microscopy micrograph of fracture surface under dynamic loading clearly displayed integrated bundle pull-out which implies suppressed in-bundle debonding and enhanced in-bundle interfacial strengthening, in contrast with extensive in-bundle debonding under quasi-static loading. Thus we conclude that, with 2D C

  17. Tensile and compressive behavior of Borsic/aluminum

    Science.gov (United States)

    Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.

    1977-01-01

    The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.

  18. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ding-Ni, E-mail: siping4840@126.com [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Shangguan, Qian-Qian [The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234 (China); Xie, Can-Jun [Commercial Aircraft Corporation of China, Ltd., Shanghai 200120 (China); Liu, Fu [Shanghai Aircraft Design and Research Institute of COMAC, Shanghai 201210 (China)

    2015-01-15

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved.

  19. Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17

    International Nuclear Information System (INIS)

    Bensely, A.; Senthilkumar, D.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.

    2007-01-01

    The crown wheel and pinion represent the most highly stressed parts of a heavy vehicle; these are typically made of 815M17 steel. The reasons for the frequent failure of these components are due to tooth bending impact, wear and fatigue. The modern processes employed to produce these as high, durable components include cryogenic treatment as well as conventional heat treatment. It helps to convert retained austenite into martensite as well as promote carbide precipitation. This paper deals with the influence of cryogenic treatment on the tensile behavior of case carburized steel 815M17. The impetus for studying the tensile properties of gear steels is to ensure that steels used in gears have sufficient tensile strength to prevent failure when gears are subjected to tensile or fatigue loads, and to provide basic design information on the strength of 815M17 steel. A comparative study on the effects of deep cryogenic treatment (DCT), shallow cryogenic treatment (SCT) and conventional heat treatment (CHT) was made by means of tension testing. This test was conducted as per ASTM standard designation E 8M. The present results confirm that the tensile behavior is marginally reduced after cryogenic treatment (i.e. both shallow and deep cryogenic treatment) for 815M17 when compared with conventional heat treatment. Scanning electron microscopic (SEM) analysis of the fracture surface indicates the presence of dimples and flat fracture regions are more common in SCT specimens than for CHT and DCT-processed material

  20. A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Zhang, Ding-Ni; Shangguan, Qian-Qian; Xie, Can-Jun; Liu, Fu

    2015-01-01

    Highlights: • The dynamic mechanical behaviors at various strain rates were measured. • The strain rate hardening effect of 7075-T6 aluminum alloy is significant. • A new Johnson–Cook constitutive model of 7075-T6 aluminum alloy was obtained. • Numerical simulations of tensile tests at different rates were conducted. • Accuracy of the modified Johnson–Cook constitutive equation was proved. - Abstract: The dynamic mechanical behaviors of 7075-T6 aluminum alloy at various strain rates were measured by dynamic tensile tests using the electronic universal testing machine, high velocity testing system and split Hopkinson tensile bar (SHTB). Stress–strain curves at different rates were obtained. The results show that the strain rate hardening effect of 7075-T6 aluminum alloy is significant. By modifying the strain rate hardening term in the Johnson–Cook constitutive model, a new Johnson–Cook (JC) constitutive model of 7075-T6 aluminum alloy was obtained. The improved Johnson–Cook model matched the experiment results very well. With the Johnson–Cook constitutive model, numerical simulations of tensile tests at different rates for 7075-T6 aluminum alloy were conducted. According to tensile loading and stress–strain relation of 7075-T6 aluminum alloy, calculation results were compared with experimental results. Accuracy of the modified Johnson–Cook constitutive equation was further proved

  1. In-Plane Anisotropy in Mechanical Behavior and Microstructural Evolution of Commercially Pure Titanium in Tensile and Cyclic Loading

    Science.gov (United States)

    Sinha, Subhasis; Gurao, N. P.

    2017-12-01

    Tensile and cyclic deformation behavior of three samples oriented at 0, 45, and 90 deg to the rolling direction in the rolling direction-transverse direction (RD-TD) plane of cold-rolled and annealed plate of commercially pure titanium is studied in the present investigation. The sample along the RD (R0) shows the highest strength but lowest ductility in monotonic tension. Although ultimate tensile strength (UTS) and elongation of samples along 45 and 90 deg to the RD (R45 and R90, respectively) are similar, the former has significantly higher yield strength than the latter, indicating different strain-hardening behavior. It is found that the R90 sample exhibits the highest monotonic ductility as well as fatigue life. This is attributed to a higher propensity for twinning in this sample with the presence of multiple variants and twin intersections. Cyclic life is also influenced by the high tendency for detwinning of contraction twins in this orientation. Elastoplastic self-consistent (EPSC) simulations of one-cycle tension-compression load reversal indicate that the activity of pyramidal 〈 c + a〉 slip and extension twinning oscillates during cyclic loading that builds up damage in a cumulative manner, leading to failure in fatigue.

  2. Effects of niobium addition on microstructure and tensile behavior of as-cast ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangru, E-mail: cxr16@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Xu, Jie, E-mail: shuxujie@163.com [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Hu, Henry, E-mail: huh@uwindsor.ca [Department of Mechanical, Automotive and Materials Engineering University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4 (Canada); Mohrbacher, Hardy, E-mail: hm@niobelcon.net [NiobelCon bvba, Swaenebeecklaan, 2970 Schilde (Belgium); Kang, Ming, E-mail: kangming@dfcv.com.cn [Dongfeng Commercial Vehicle Co., Ltd., Wuhan 430056 (China); Zhang, Wei, E-mail: zhangwei3@citic.com [CITIC Metal Co., Ltd., Beijing 100004 (China); Guo, Aimin, E-mail: guoam@citic.com [CITIC Metal Co., Ltd., Beijing 100004 (China); Zhai, Qijie, E-mail: qjzhai@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2017-03-14

    The effects of niobium addition up to 0.11 wt% on the microstructure and tensile properties of as-cast ductile iron (ACDI) were investigated. Metallographic analyses by both optical microscopy (OM) and scanning electron microscopy (SEM) indicated that niobium (Nb) promoted the formation of pearlite, reduced pearlite lamellar spacing and decreased the extent of graphitization taking place in the Nb-alloyed ACDI. The nodularity and nodule counts of graphite changed insignificantly when the Nb content was less than 0.08 wt% in the ACDI. The analysis of precipitates by transmission electron microscopy (TEM) revealed that nano and micro sized (Nb, Ti)C carbides acted as nucleation site for graphites, and promoted the formation of large graphite nodules with low roundnesses as Nb content rose above 0.08 wt%. The results of tensile testing showed that the yield strength, ultimate tensile strength and elongation of the ACDI with 0.08 wt% Nb increased by 12.1%, 11.2% and 14.3% over those of the Nb-free ACDI, respectively. The optimum values of the yield strength, tensile strength and elongation of the Nb-alloyed ACDI were found to be 418 MPa, 746.0 MPa and 8.0%, respectively, at the Nb content of 0.08 wt%. The high strain hardening rates of the Nb-containing ACDIs implied that they were capable of spontaneously strengthening itself increasingly to a large extent, in response to a slight plastic deformation after yielding.

  3. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load

    Czech Academy of Sciences Publication Activity Database

    Sedmák, P.; Pilch, Jan; Heller, Luděk; Kopeček, Jaromír; Wright, J.; Sedlák, Petr; Frost, Miroslav; Šittner, Petr

    2016-01-01

    Roč. 353, č. 6299 (2016), 559-562 ISSN 0036-8075 R&D Projects: GA MŠk LM2015088; GA ČR GA14-15264S; GA ČR GAP107/12/0800; GA ČR GPP108/12/P111 Institutional support: RVO:68378271 ; RVO:61388998 Keywords : martensitic transformation * 3D x-ray diffraction * shape memory alloys * internal stress * NiTi wire * localized deformation * tension Subject RIV: BM - Solid Matter Physics ; Magnetism; BI - Acoustics (UT-L) Impact factor: 37.205, year: 2016

  4. Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Requena, Guillermo, E-mail: guillermo.requena@tuwien.ac.at [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Maire, Eric; Leguen, Claire [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Thuillier, Sandrine [LIMATB, Université de Bretagne-Sud, rue de Saint Maudé, BP 92116, 56321 Lorient Cedex (France)

    2014-01-01

    The damage evolution in a DP980 dual phase steel is followed in situ by synchrotron microtomography during tensile deformation focusing on the effect that the triaxiality, induced by different sample geometries, exerts on damage formation and damage evolution. The growth of existing voids is separated from the voids nucleated between consecutive deformation steps using three-dimensional image analysis. The experimental results are correlated with those obtained by finite element analysis using a Gurson–Tvergaard–Needleman framework with a Chu and Needleman formulation to introduce the effect of nucleation of cavities. A relatively simple way to determine the nucleation parameters is proposed based on the volume of nucleated voids obtained from the tomographies. The evolution of the total volume fraction of cavities obtained from the calculations shows a good agreement with the experiments for the notched samples and reflects the effect of triaxiality on damage. Contrarily to experiments, the calculated accumulated volume fraction of nucleated voids does not reflect the effect of triaxiality suggesting the necessity to implement this parameter in the nucleation model.

  5. Hot deformation behavior of AA5383 alloy

    Science.gov (United States)

    Du, Rou; Giraud, Eliane; Mareau, Charles; Ayed, Yessine; Santo, Philippe Dal

    2018-05-01

    Hot forming processes are widely used in deep drawing applications due to the ability of metallic materials to sustain large deformations. The optimization of such forming processes often requires the mechanical behavior to be accurately described. In this study, the hot temperature behavior of a 5383 aluminum alloy is investigated. In this perspective, different uniaxial tension tests have been carried out on dog-bone shaped specimens using a specific experimental device. The temperature and strain rate ranges of interest are 623˜723 K and 0.0001˜0.1 s-1, respectively. An inverse method has been used to determine the flow curves from the experimental force-displacement data. The material exhibits a slight flow stress increase beyond the yield point for most configurations. Softening phenomenon exists at high strain rates and high temperatures. A new model based on the modification of a modified Zerilli-Armstrong model is proposed to describe the stress-strain responses. Genetic algorithm optimization method is used for the identification of parameters for the new model. It is found that the new model has a good predictability under the experimental conditions. The application of this model is validated by shear and notched tension tests.

  6. Tensile Behavior Analysis on Different Structures of 3D Glass Woven Perform for Fibre Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Mazhar Hussain Peerzada

    2013-01-01

    Full Text Available Three common 3D (Three Dimensional Glass woven structures were studied to analyze the tensile behavior. Each type of strand (Warp, weft and binder of 3D woven structure was studied in detail. Crimp percentage of those strands was measured by crimp meter. Standard size samples of each 3D woven structure were cut in warp and weft direction and were stretched by Instron Tensile testing computerized machine. Results reveal that hybrid possesses lowest crimp in core strands and higher strength in warp as well as weft direction. Layer to layer woven structure appeared with lower strength and higher strain value due to highest crimp percentage in core strands.

  7. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Science.gov (United States)

    Hossain, Mohammad Shojib

    Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), composites containing ceramic, glass and metal fillers, and even metals which depict the diversified materials and possibility of new material options using FDM technology. The understanding of the behavior and mechanical properties of the finished FDM-fabricated parts is of utmost importance in the advancement of this technology. The processing parameters, e.g., build orientation, raster width (RW), contour width (CW), raster angle (RA), and raster to raster air gap (RRAG) are important factors in determining the mechanical properties of FDM fabricated parts. The work presented here focused on the mechanical properties improvement by modifying those build parameters. The main concentration is on how modifying those parameters can improve ultimate tensile stress (UTS), Young's modulus, and tensile strain of the final product. In this research, PC parts were fabricated using three build methods: 1) default method, 2) Insight revision method, and 3) visual feedback method. By modifying build parameters, the highest average UTS obtained for PC was 63.96 MPa which was 7% higher than that of 59.73 MPa obtained using the default build parameters. The parameter modification

  8. Effects of annealing on tensile property and corrosion behavior of Ti-Al-Zr alloy

    International Nuclear Information System (INIS)

    Kim, Tae-Kyu; Choi, Byung-Seon; Jeong, Yong-Hwan; Lee, Doo-Jeong; Chang, Moon-Hee

    2002-01-01

    The effects of annealing on the tensile property and corrosion behavior of Ti-Al-Zr alloy were evaluated. The annealing in the temperature range from 500 to 800 deg. C for 1 h induced the growth of the grain and the precipitate sizes. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. However, the results of corrosion test in an ammonia aqueous solution of pH 9.98 at 360 deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 220 days also increased with the annealing temperature. It could be attributed to the growth of Fe-rich precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  9. The Plastic Deformation of RFSSW Joints During Tensile Tests / Deformacja Plastyczna Wybranych Połączeń RFSSW Podczas Rozciągania

    Directory of Open Access Journals (Sweden)

    Lacki P.

    2015-12-01

    Full Text Available The dynamic development of the friction stir welding (FSW technology is the basis for the design of durabe joints inter alia in the aviation industry. This technology has a prospective application, especially for the aluminum alloys. It is suitable for a broad spectrum of permanent joints. The joints obtained by FSW technology are characterized by good mechanical properties. In this paper, the friction stir spot welding joints were analysed. The example of a structure made using this technology were presented. The lap joints made of 2mm Al 6061-T6 sheets were the investigation subject. The different spot welds arrangements were analysed. The tensile test were performed with optical deformation measurement system, which allow to obtain the plastic deformation field on the sample surface. The plastic strain graphs for the characteristic line passing through the maximum deformation were registered and presented. The experimental results were compared to the FEM numerical analysis. The numerical models were built with 3D-solid elements. The boundary conditions, material properties and geometry of the joints were identical as during experimental investigation. The mechanism of deformation of welded joints during tensile test was described and explained. It has been found that the arrangement of the spot welds with respect to the tensile direction has an important influence on the behaviour and deformation of lap joint.

  10. Microstructure evolution of titanium after tensile test

    International Nuclear Information System (INIS)

    Wronski, S.; Wierzbanowski, K.; Jędrychowski, M.; Tarasiuk, J; Wronski, M.; Baczmanski, A.; Bacroix, B.

    2016-01-01

    The qualitative and quantitative behavior of titanium T40 during tensile loading with a special emphasis on the presence of deformation twins in the observed microstructures is described. The samples for tensile tests were cut out from the rolled titanium sheet along the rolling and transverse directions. Several microstructure maps were determined using Electron Backscatter Diffraction technique (EBSD). These data were used to obtain crystallographic textures, misorientation distributions, grain size, twin boundary length, grain orientation spread, low and high angle boundary fractions and Schmid and Taylor factors. The deformation mechanisms and microstructure characteristics are different in the samples stretched along rolling and transverse directions. A strong appearance of tensile twins was observed in the samples deformed along transverse direction. On the other hand, more frequent subgrain formation and higher orientation spread was observed in the sample deformed along rolling direction, which caused’‘orientation blurring’ leading to an increase of grain size with deformation, as determined from OIM analysis.

  11. A Study on Mechanical behavior of Tensile Specimen Fabricated by Laser Cutting

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Kim, G. S.; Baik, S. J.; Baek, S. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The mechanical testing data are required for the assessment of dry storage of the spent nuclear fuel. Laser cutting system could be useful tools for material processing such as cutting in radioactive environment due to non-contact nature, ease in handling and the laser cutting process is most advantageous, offering the narrow kerf width and heat affected zone by using small beam spot diameter. The feasibility of the laser cutting system was demonstrated for the fabrication of various types of the unirradiated cladding with and without oxide layer on the specimens. In the present study, the dimensional measurement and tensile test were conducted to investigate the mechanical behavior of the axial tensile test specimens depending on the material processing methods in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. Laser cutting system was used to fabricate the tensile test specimens, and the mechanical behavior was investigated using the dimensional measurement and tensile test. It was shown that the laser beam machining could be a useful tool to fabricate the specimens and this technique will be developed for the fabrication of various types of irradiated specimens in a hotcell.

  12. A Study on Mechanical behavior of Tensile Specimen Fabricated by Laser Cutting

    International Nuclear Information System (INIS)

    Jin, Y. G.; Kim, G. S.; Baik, S. J.; Baek, S. Y.

    2016-01-01

    The mechanical testing data are required for the assessment of dry storage of the spent nuclear fuel. Laser cutting system could be useful tools for material processing such as cutting in radioactive environment due to non-contact nature, ease in handling and the laser cutting process is most advantageous, offering the narrow kerf width and heat affected zone by using small beam spot diameter. The feasibility of the laser cutting system was demonstrated for the fabrication of various types of the unirradiated cladding with and without oxide layer on the specimens. In the present study, the dimensional measurement and tensile test were conducted to investigate the mechanical behavior of the axial tensile test specimens depending on the material processing methods in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. Laser cutting system was used to fabricate the tensile test specimens, and the mechanical behavior was investigated using the dimensional measurement and tensile test. It was shown that the laser beam machining could be a useful tool to fabricate the specimens and this technique will be developed for the fabrication of various types of irradiated specimens in a hotcell

  13. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy

    Science.gov (United States)

    Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.

    2018-05-01

    The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.

  14. Nucleation and growth characteristics of cavities during the early stages of tensile creep deformation in a superplastic zirconia-20 wt% alumina composite

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.; Nutt, S.R.

    1997-01-01

    Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions

  15. Influence of cold working on deformation behavior and shape memory effect of Ti-Ni-Nb

    International Nuclear Information System (INIS)

    Okita, K.; Semba, H.; Okabe, N.; Sakuma, T.; Mihara, Y.

    2005-01-01

    In this study, the influence of cold working on the deformation behavior and the transformation characteristics was investigated on the Ti-Ni-Nb shape memory alloy (SMA). Both the tensile test and the shape recovery test were performed for the wire specimens of 1mm in the diameter with some different rates of cold working. The shape recovery tests were performed for the wire specimens of different cold working rates until the various levels of maximum applied strain, and the reverse-transformation characteristics on the process of heating after unloading were studied. It is clarified that the higher cold-working rate improves the shape memory properties of the alloy. (orig.)

  16. Deformation behavior of two continuously cooled vanadium microalloyed steels at liquid nitrogen temperature

    Directory of Open Access Journals (Sweden)

    Glišić Dragomir M.

    2013-01-01

    Full Text Available The aim of this work was to establish deformation behaviour of two vanadium microalloyed medium carbon steels with different contents of carbon and titanium by tensile testing at 77 K. Samples were reheated at 1250°C/30 min and continuously cooled at still air. Beside acicular ferrite as dominant morphology in both microstructures, the steel with lower content of carbon and negligible amount of titanium contains considerable fraction of grain boundary ferrite and pearlite. It was found that Ti-free steel exhibits higher strain hardening rate and significantly lower elongation at 77 K than the fully acicular ferrite steel. The difference in tensile behavior at 77 K of the two steels has been associated with the influence of the pearlite, together with higher dislocation density of acicular ferrite. [Projekat Ministarstva nauke Republike Srbije, br. OI174004

  17. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  18. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet

    Directory of Open Access Journals (Sweden)

    Azizah Intan Pangesty

    2016-06-01

    Full Text Available A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone (PLCL sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.

  19. Tensile fracture behaviors of T-ZnOw/polyamide 6 composites

    International Nuclear Information System (INIS)

    Shi Jing; Wang Yong; Liu Li; Bai Hongwei; Wu Jun; Jiang Chongxi; Zhou, Zuowan

    2009-01-01

    As a part of serial work about the application of tetra-needle-shaped zinc oxide whisker (T-ZnOw) in polymer composites, this work is focused on the crystallization and tensile fracture behaviors of T-ZnOw/polyamide 6 (T-ZnOw/PA6) composites. Our results show that the addition of T-ZnOw improves the composites tensile strength greatly. For virgin PA6, the stress-strain curve exhibits double-yielding phenomenon. Surface modified T-ZnOw reinforced PA6 composites exhibit higher yield stress and smaller strain-to-fracture compared with virgin PA6. The morphologies of tensile-fractured surfaces show that, addition of T-ZnOw changes the fracture mode from crazing-tearing/brittle fracture mode of virgin PA6 into fibrillation/brittle fracture mode of PA6 composites. Especially, the fracture process of T-ZnOw in composites during the tensile test has been characterized by scanning electronic microscope (SEM) and the corresponding reinforcement mechanism has been discussed.

  20. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.M.A., E-mail: madel@uqac.ca [Center for Advanced Materials, Qatar University, Doha (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Samuel, F.H. [Université du Québec à Chicoutimi, Chicoutimi, QC, Canada G7H 2B1 (Canada); Al Kahtani, Saleh [Industrial Engineering Program, Mechanical Engineering Department, College of Engineering, Salman bin Abdulaziz University, Al Kharj (Saudi Arabia)

    2013-08-10

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si){sub 3}(Zr, Ti), Al{sub 3}CuNi and Al{sub 9}NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied.

  1. Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys

    International Nuclear Information System (INIS)

    Mohamed, A.M.A.; Samuel, F.H.; Al Kahtani, Saleh

    2013-01-01

    The high temperature tensile behavior of 354 aluminum cast alloy was investigated in the presence of Zr and Ni. The cast alloys were given a solutionizing treatment followed by artificial aging at 190 °C for 2 h. High temperature tensile tests were conducted at various temperatures from 25 °C to 300 °C. Optical microscopy and electron probe micro-analyzer were used to study the microstructure of different intermetallic phases formed. The fractographic observations of fracture surface were analyzed by scanning electron microscopy to understand the fracture mechanism. The results revealed that the intermetallics phases of (Al, Si) 3 (Zr, Ti), Al 3 CuNi and Al 9 NiFe are the main feature in the microstructures of alloys with Zr and Ni additions. The results also indicated that the tensile strength of alloy decreases with an increase in temperature. The combined addition of 0.2 wt% Zr and 0.2 wt% Ni leads to a 30% increase in the tensile properties at 300 °C compared to the base alloy. Zr and Ni bearing phases played a vital role in the fracture mechanism of the alloys studied

  2. Tensile properties and flow behavior analysis of modified 9Cr–1Mo steel clad tube material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kanwarjeet, E-mail: kanwar722@yahoo.com; Latha, S.; Nandagopal, M.; Mathew, M.D.; Laha, K.; Jayakumar, T.

    2014-11-15

    The tensile properties and flow behavior of modified 9Cr–1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300–923 K) and strain rates (3 × 10{sup −3} s{sup −1}, 3 × 10{sup −4} s{sup −1} and 3 × 10{sup −5} s{sup −1}). The tensile flow behavior of modified 9Cr–1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  3. Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material

    Science.gov (United States)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.

    2014-11-01

    The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  4. Tensile properties and flow behavior analysis of modified 9Cr–1Mo steel clad tube material

    International Nuclear Information System (INIS)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M.D.; Laha, K.; Jayakumar, T.

    2014-01-01

    The tensile properties and flow behavior of modified 9Cr–1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300–923 K) and strain rates (3 × 10 −3 s −1 , 3 × 10 −4 s −1 and 3 × 10 −5 s −1 ). The tensile flow behavior of modified 9Cr–1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation

  5. Study of twinning behavior of powder metallurgy Ti-Si alloy by interrupted in-situ tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.X., E-mail: ye-xiaoxin@jwri.osaka-u.ac.jp [Joining and Welding Institute (JWRI), Osaka University (Japan); Imai, H.; Shen, J.H.; Chen, B. [Joining and Welding Institute (JWRI), Osaka University (Japan); Han, G.Q. [College of Materials Science and Engineering, Beijing University of Technology (China); Umeda, J.; Kondoh, K. [Joining and Welding Institute (JWRI), Osaka University (Japan)

    2017-01-02

    Twinning mechanism of powder metallurgy Ti-Si alloy was investigated by interrupted in-situ tensile tests. Extension twins {10−12}<10-1-1> in the fine-grained Ti-Si alloy were found in the uniform deformation period, but no twinning in the coarse pure Ti. Three deformation twinning nucleation mechanisms were proposed: i) local stress concentration by neighboured slip incompatibility, ii) slip/twin oriented relationship in the parent grain and iii) slip/twin transfer by high Luster-Morris oriented relationship. The interior back-stress state, grains rotation and dislocations pile-up drove the occurrence of detwinning phenomenon. Silicon-facilitation twinning verified the hypothesis that the substitutional Si solutes affected the core structures and thus the mobility of screw dislocations. Enhanced driving force and decreased energy barrier of nucleation in the micro/atomic scale were further proposed in the twinning activation. It was expected to deepen the understanding of twinning/detwinning behaviors and supply direct evidences building immature twinning mechanism. In-depth understanding about the relationship among the processing, mechanical properties and microstructure of Ti alloy was facilitated in the present work.

  6. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Wang Songtao; Yang Ke; Shan Yiyin; Li Laifeng

    2008-01-01

    The plastic deformation and fracture behaviors of two nitrogen-alloyed austenitic stainless steels, 316LN and a high nitrogen steel (Fe-Cr-Mn-0.66% N), were investigated by tensile test and Charpy impact test in a temperature range from 77 to 293 K. The Fe-Cr-Mn-N steel showed ductile-to-brittle transition (DBT) behavior, but not for the 316LN steel. X-ray diffraction (XRD) confirmed that the strain-induced martensite occurred in the 316LN steel, but no such transformation in the Fe-Cr-Mn-N steel. Tensile tests showed that the temperature dependences of the yield strength for the two steels were almost the same. The ultimate tensile strength of the Fe-Cr-Mn-N steel displayed less significant temperature dependence than that of the 316LN steel. The strain-hardening exponent increased for the 316LN steel, but decreased for the Fe-Cr-Mn-N steel, with decreasing temperature. Based on the experimental results and the analyses, a modified scheme was proposed to explain the fracture behaviors of austenitic stainless steels

  7. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  8. A Study of Tensile Flow and Work-Hardening Behavior of Alloy 617

    Science.gov (United States)

    Singh, Aditya Narayan; Moitra, A.; Bhaskar, Pragna; Dasgupta, Arup; Sasikala, G.; Bhaduri, A. K.

    2018-04-01

    The simple power relationship σ = Κɛ p n satisfactorily expresses the tensile flow behavior of many metals and alloys in their uniform plastic strain regime. However, many FCC materials with low stacking fault energy have opposed such power law relationship. Alloy 617, an age-hardenable Ni-based superalloy is also observed not to obey the simple power law relationship neither in its solution-treated nor in its aged conditions. Various flow relationships were used to obtain the best fit for the tensile data, and different relationships were identified for the different aged conditions. The work-hardening rate (θ) demonstrates three distinct regions for all aged conditions, and there is an obvious change in the trend of θ versus σ. In the initial portion, θ decreases rapidly followed by a gradual increase in the second stage and again a decrease in its third stage is perceived in the Alloy 617. These three-stage characteristics are attributed to a commonly known precipitate, γ': Ni3(Ti, Al) which evolves during aging treatment and well recognized under transmission electron microscopy (TEM) observation. TEM results also reveal a slight degree of coarsening in γ' over aging. The tensile flow and the work-hardening behavior are well correlated with other microstructural evolution during the aging treatments.

  9. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  10. The effect of strain rate and temperature on the elevated temperature tensile flow behavior of service-exposed 2.25Cr-1Mo steel

    International Nuclear Information System (INIS)

    Girish Shastry, C.; Parameswaran, P.; Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2007-01-01

    The elevated temperature tensile flow behavior of service-exposed 2.25Cr-1Mo steel has been critically examined with respect to strain rate sensitivity (m) and apparent activation energy (Q) for tensile deformation. The predominant role of forest dislocations in determining the relative flow response at true plastic strains greater than 0.01 is inferred from the profile of 'm' against flow stress. The variation of 'm' with temperature and strain is discussed based on the kinetics of dislocation generation and recovery. The decrease in Q with the increase in strain rate or temperature is attributed to the increase in recovery processes like dislocation annihilation and subcell/subgrain formation. This suggestion has been supported by transmission electron microscopy

  11. Study on the β to α transformation of PP/POE blends with β-phase nucleating agent during the tensile deformation process

    International Nuclear Information System (INIS)

    Li Xiaoxi; Wu Haiyan; Wang Yong; Bai Hongwei; Liu Li; Huang Ting

    2010-01-01

    As a part of serial work about the toughening effect of elastomer and nucleating agent on polypropylene (PP), this work is focused on the microstructure changes of PP matrix in PP/elastomer blends with β-phase nucleating agent (β-NA) during the uniaxial tensile deformation process. The microstructure changes have been investigated through differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) measurements. The results show that there is a transformation of β-PP to α-PP, which is dependent on the local strain of the tensile-deformed specimen during the deformation process. The bigger the local strain, the high the degree of the β → α transformation is. At the later stage, β-PP is completely changed into α-PP. The presence of elastomer, especially at high load, prevents such transformation, possibly leading to more β-PP participating in the later deformation process of the fracture, which most likely results in the great improvement of fracture toughness of PP/elastomer/β-NA. Further results show that the β → α transformation occurs mainly in the necking region of the specimen during the deformation process.

  12. Effect of tensile deformation on micromagnetic parameters in 0.2% carbon steel and 2.25Cr-1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Moorthy, V.; Vaidyanathan, S.; Jayakumar, T.; Raj, B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group; Kashyap, B.P. [Indian Inst. of Tech., Bombay (India). Dept. of Metallurgical Engineering and Materials Science

    1999-04-23

    The influence of prior tensile deformation on the magnetic Barkhausen emission (MBE) and the hysteresis (B-H) curve has been studied in 0.2% carbon steel and 2.25Cr-1Mo steel under different tempered conditions. This study shows that the micromagnetic parameters can be used to identify the four stages of deformation, namely (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding and (4) progressive plastic deformation. However, it is observed that the MBE profile shows more distinct changes at different stages of tensile deformation than the hysteresis curve. It has been established that the beginning of microplastic yielding and macroyielding can be identified from the MBE profile which is not possible from the stress-strain plot. The onset of microplastic yielding can be identified from the decrease in the MBE peak height. The macroyielding can be identified from the merging of the initially present two-peak MBE profile into a single central peak with relatively higher peak height and narrow profile width. The difference between the variation of MBE and hysteresis curve parameters with strain beyond macroyielding indicates the difference in the deformation state of the surface and bulk of the sample.

  13. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P. Nageswara [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Singh, Dharmendra [Department of Mechanical Engineering, Government Engineering College, Bikaner 304001 (India); Brokmeier, Heinz-Günter [Helmholtz Zentrum Geesthacht, Max Planck Straße 1, Geb 33, D-21502 Geesthacht (Germany); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India)

    2015-08-12

    In the present investigation, the ageing behavior of ultrafine grained (UFG) Al 6061 alloy, processed through multi-directional forging (MDF) at cryogenic temperature was investigated. The evolution of microstructure was investigated through transmission electron microscopy and electron back scattered diffraction technique. The results indicate that homogeneous microstructure with an ultrafine grain morphology (average size 250 nm) was achieved through cryogenic forging of the alloy subjected to prior solutionising treatment. Tensile testing at room temperature revealed that MDFed material after ageing led to significant improvement in work hardening and its tensile ductility. Strengthening of the matrix through various mechanisms has been quantified with the existing models to estimate the yield strength of the as forged and peak aged material. The precipitation hardening response in UFG material is found to be 35% lower than that of the coarse grained material as observed in the present work.

  14. Tensile behavior of nickel-base single-crystal superalloy DD6

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xinhong, E-mail: xiongxh@whut.edu.cn [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Quan, Dunmiao; Dai, Pengdan; Wang, Zhiping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Zhang, Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070 (China); Yue, Zhufeng [School of Mechanics Civil Engineering and Architecture, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-06-11

    Tensile behavior of the nickel-base single-crystal superalloy DD6 was studied from room temperature to 1020 °C. The plate specimens were along [001] orientation parallel to the loading axis in tension. The microstructures on the surface and fracture morphology were investigated after tensile test to rupture by scanning electron microscopy (SEM). The results of the present investigation indicate that the yield strength at 650 °C is superior to that at room temperature, 850 °C and 1020 °C. Low ductility and serrated flow in stress–strain curves were also observed at 650 °C. The microstructures on the surface of the plate specimens and fracture morphology observation indicated that localized slip which resulted in glide plane decohesion caused the low ductility of DD6 alloy.

  15. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jliu12b@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Yan, Wei [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast, BT9 5AG (United Kingdom); Wang, Wei; Shan, Yiyin [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China)

    2016-05-15

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  16. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    International Nuclear Information System (INIS)

    Liu, Jian; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2016-01-01

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  17. Examination and modeling of void growth kinetics in modern high strength dual phase steels during uniaxial tensile deformation

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F.; Niroumand, B. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Forouzan, M.R.; Mohseni mofidi, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Barlat, F. [Materials Mechanics Laboratory (MML), Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology - POSTECH, San 31 Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2016-04-01

    Ductile fracture mechanisms during uniaxial tensile testing of two different modern high strength dual phase steels, i.e. DP780 and DP980, were studied. Detailed microstructural characterization of the strained and sectioned samples was performed by scanning electron microscopy as well as EBSD examination. The results revealed that interface decohesion, especially at martensite particles located at ferrite grain boundaries, was the most probable mechanism for void nucleation. It was also revealed that the creation of cellular substructure can reduce stored strain energy and thereby, higher true fracture strain was obtained in DP980 than DP780 steel. Prediction of void growth behavior based on some previously proposed models showed unreliable results. Therefore, a modified model based on Rice-Tracey family models was proposed which showed a very lower prediction error compared with other models. - Highlights: • Damage mechanism in two modern high strength dual phase steels was studied. • Creation of cellular substructures can reduce the stored strain energy within the ferrite grains. • The experimental values were examined by Agrawal as well as RT family models. • A modified model was proposed for prediction of void growth behavior of DP steels.

  18. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  19. Tensile behavior of Inconel alloy X-750 in air and vacuum at elevated temperatures

    International Nuclear Information System (INIS)

    Taplin, D.M.R.; Mukherjee, A.K.; Pandey, M.C.

    1984-01-01

    The hot tensile properties of Inconel alloy X-750 have been investigated experimentally at 700 C in air and vacuum at strain rates varying from 10 to the -7th to 1.2 x 10 to the -6th per s. The strength and ductile characteristics of the specimens tested in vacuum are found to be better than those tested in air. In air, a ductility minimum is observed at 625 C, whereas in vacuum, significant improvements in creep ductility are observed at 575 and 625 C, with the ductility minimum shifting from 625 to 700 C. It is shown that the creep ductility of the specimens tested in air is largely determined by the following two competing processes: (1) deformation-assisted oxygen diffusion and (2) grain boundary migration. 20 references

  20. In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Boehlert, C.J., E-mail: boehlert@egr.msu.edu [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Yin, D.D. [Key Laboratory of Advanced Materials Technology under Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Ding, W.J. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-06-15

    The slip activity and slip interaction in tensile deformation of peak-aged cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C was investigated using in-situ scanning electron microscopy. Basal slip was the most likely system to be activated during the tensile deformation, while prismatic < a > and pyramidal < c + a > slip also contributed to the deformation. No twinning was observed. The number of non-basal slip systems accounted for ~ 36% of the total active slip systems for the cast alloy, while non-basal slip accounted for 12–17% of the total deformation observations in the extruded alloy. Multiple-slip was observed within grains, and the basal/prismatic pairing type dominated the multiple-slip observations. Slip transfer occurred across grain boundaries and most of the slip transfer observations showed basal-basal type. The involved slip systems of slip transfer pairs were always associated with the same < a > direction. The slip transfer occurred more easily at low angle boundaries (LABs) and boundaries with misorientations greater than 75°. - Highlights: • Slip deformation of a Mg-RE alloy at 250 °C was investigated using in-situ SEM. • The extruded-T5 GW103 alloy did not exhibit a high anisotropic behavior. • Multiple-slip was observed within grains, and basal/prismatic type dominated. • Slip transfer occurred and most of the observations showed basal-basal type. • Slip transfer occurred more easily at LABs and boundaries with misorientations > 75°.

  1. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  2. Microstructural evolution and tensile behavior of Ti{sub 2}AlNb alloys based α{sub 2}-phase decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: gackmol@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Zeng, Weidong, E-mail: zengwd@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Dong; Zhu, Bin; Zheng, Youping [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Liang, Xiaobo [Beijing Iron & Steel Research Institute, Beijing 100081 (China)

    2016-04-26

    The formation mechanism of the fine plate-like O-phases within α{sub 2}-phases and tensile behavior of an isothermally forged Ti–22Al–25Nb (at%) orthorhombic alloy at 1040 °C during heat treatment were investigated. The investigation indicated that the alloys were heat-treated in O+B2 phase region after α{sub 2}+B2 phase region isothermally forging, the equiaxed α{sub 2}-phase was not stable and decomposed into O+α{sub 2} phases. The α{sub 2} phases formed during isothermal forging process have higher concentration of Nb and begun to decompose during O+B2 phase region heat treatment. And then the α{sub 2} phases separated into Niobium-lean and Niobium-rich regions through the Niobium diffusion: α{sub 2}→α{sub 2} (Nb-lean)+O (Nb-rich). Nb-rich regions with composition similar to Ti{sub 2}AlNb transformed to the O-phase, while the Nb-lean regions remained untransformed and retained the α{sub 2}-phase. The deformation behavior and fracture mechanism of Ti–22Al–25Nb alloy at room temperature were discussed. The deformation behavior and microstructural evolution of this alloy at different temperatures and stain rates were also investigated using uniaxial tensile test.

  3. Mechanical Deformation Behavior of Lean Duplex 329LA Steel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Byung-Jun [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of); Choi, Jeom-Yong [POSCO Technical Research Lab., Pohang (Korea, Republic of); Park, Kyung-Tae [Hanvat National University, Daejeon (Korea, Republic of); Lee, Ho Seong [Kyungpook National University, Daegu (Korea, Republic of)

    2015-09-15

    The tensile response of Lean Duplex 329LA stainless steel was investigated over various strain rates. It was observed that the mechanical response, including in particular the total elongation of the tested alloy, was strongly affected by the strain rate. As the strain rate decreased from 10-1 s-1 to 10-4 s-1, the elongation increased. As the strain rate increased, the deformation mode in an austenite phase was dominated by dislocation glide, resulting in deterioration of the elongation. The substructure of the ferritic phase showed a dislocation cell structure, independent of the applied strain rate. The optimum mechanical properties of lean duplex stainless steel thus can be obtained by controlling the deformation mode in the austenitic phase.

  4. Mechanical Deformation Behavior of Lean Duplex 329LA Steel

    International Nuclear Information System (INIS)

    Yoon, Byung-Jun; Choi, Jeom-Yong; Park, Kyung-Tae; Lee, Ho Seong

    2015-01-01

    The tensile response of Lean Duplex 329LA stainless steel was investigated over various strain rates. It was observed that the mechanical response, including in particular the total elongation of the tested alloy, was strongly affected by the strain rate. As the strain rate decreased from 10-1 s-1 to 10-4 s-1, the elongation increased. As the strain rate increased, the deformation mode in an austenite phase was dominated by dislocation glide, resulting in deterioration of the elongation. The substructure of the ferritic phase showed a dislocation cell structure, independent of the applied strain rate. The optimum mechanical properties of lean duplex stainless steel thus can be obtained by controlling the deformation mode in the austenitic phase.

  5. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes.

    Science.gov (United States)

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-11-21

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites.

  6. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating – A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Badjian, H.; Setoodeh, A.R., E-mail: setoodeh@sutech.ac.ir

    2017-02-15

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  7. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy

    International Nuclear Information System (INIS)

    Bobbili, Ravindranadh; Paman, Ashish; Madhu, V.

    2016-01-01

    The purpose of the current study is to perform quasi static and high strain rate tensile tests on Al-4.8Cu-1.2Mg alloy under different strain rates ranging from 0.01–3500/s and also at temperatures of 25,100, 200 and 300 °C. The combined effect of strain rate, temperature and stress triaxiality on the material behavior is studied by testing both smooth and notched specimens. Johnson–Cook (J–C) constitutive and fracture models are established based on high strain rate tensile data obtained from Split hopkinson tension bar (SHTB) and quasi-static tests. By modifying the strain hardening and strain rate hardening terms in the Johnson–Cook (J–C) constitutive model, a new J–C constitutive model of Al-4.8Cu-1.2Mg alloy was obtained. The improved Johnson–Cook constitutive model matched the experiment results very well. With the Johnson–Cook constitutive and fracture models, numerical simulations of tensile tests at different conditions for Al-4.8Cu-1.2Mg alloy were conducted. Numerical simulations are performed using a non-linear explicit finite element code autodyn. Good agreement is obtained between the numerical simulation results and the experiment results. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  8. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    Directory of Open Access Journals (Sweden)

    Edith eMäder

    2015-07-01

    Full Text Available An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test.In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis.The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this

  9. Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minju; Park, Jaeyeong; Sohn, Seok Su; Kim, Hyoung Seop [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Nack J. [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2017-05-02

    In this study, dynamic tensile tests were conducted on TWinning Induced Plasticity (TWIP) and low-carbon (LC) steel sheets at a strain rate of 1500–2000/s by using a split Hopkinson tensile bar, and deformation mechanisms related with improvement of dynamic tensile properties were investigated by a digital image correlation (DIC) technique. The dynamic tensile strength was higher than the quasi-static tensile strength in both TWIP and LC sheets, while the dynamic elongation was same to the quasi-static elongation in the TWIP sheet and was much lower than the quasi-static elongation in the LC sheet. According to the DIC results of the dynamically tensioned TWIP sheet, the homogeneous deformation occurred before the necking at the strain of 47.4%. This indicated that the dynamic deformation processes were almost similar to the quasi-static ones as the TWIP sheet was homogeneously deformed in the initial and intermediate deformation stages. This could be explained by deformation mechanisms including twinning, in consideration of favorable effect of increased twinning on tensile properties under the dynamic loading. On the other hand, the dynamically tensioned LC sheet was rapidly deformed and fractured as the necking was intensified in a narrow strain-concentrated region. The present DIC technique is an outstanding method for detailed dynamic deformation analyses, and provides an important idea for practical safety analyses of automotive steel sheets.

  10. The creep deformation behavior of a single-crystal Co–Al–W-base superalloy at 900 °C

    International Nuclear Information System (INIS)

    Shi, L.; Yu, J.J.; Cui, C.Y.; Sun, X.F.

    2015-01-01

    The creep deformation behavior of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content has been studied at stresses between 275 and 310 MPa at 900 °C. The alloy exhibits comparable creep strength with that of Co–Al–W-base alloys containing more tungsten. The creep deformation consists of three stages, the primary stage, the steady-state stage and the tertiary stage, when described by the creep strain rate versus time curve. At 900 °C, γ′ precipitates tend to raft along the direction of applied tensile stress in the steady-state creep stage and a topologically inverted and rafting γ/γ′ microstructure is formed in the tertiary stage. The main deformation mechanism in the primary creep stage is dislocation shearing of γ′ precipitates, and in the following creep stages, the dominant deformation mechanism is dislocations bypassing γ′ precipitates

  11. Deformation behavior of curling strips on tearing tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Kwon, Tae Soo; Jung, Hyun Seung; Kim, Jin Sung [Dept. of Robotics and Virtual Engineering, Korea University of Science and Technology, Seoul (Korea, Republic of)

    2015-10-15

    This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

  12. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  13. Deformation Behavior of Human Dentin under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Dmitry Zaytsev

    2012-01-01

    Full Text Available Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate.

  14. The effect of sheet processing on the microstructure, tensile, and creep behavior of INCONEL alloy 718

    Science.gov (United States)

    Boehlert, C. J.; Dickmann, D. S.; Eisinger, Ny. N. C.

    2006-01-01

    The grain size, grain boundary character distribution (GBCD), creep, and tensile behavior of INCONEL alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer grain size and the corresponding microstructure and mechanical behavior were evaluated. The creep behavior was evaluated in the applied stress (σ a ) range of 300 to 758 MPa and the temperature range of 638 °C to 670 °C. Constant-load tensile creep experiments were used to measure the values of the steady-state creep rate and the consecutive load reduction method was used to determine the values of backstress (σ0). The values for the effective stress exponent and activation energy suggested that the transition between the rate-controlling creep mechanisms was dependent on effective stresses (σ e =σ a σ0) and the transition occurred at σ e ≅ 135 MPa. The 10 to 40 pct CR samples exhibited the greatest 650 °C strength, while IN 718SPF exhibited the greatest room-temperature (RT) tensile strength (>1550 MPa) and ductility (ɛ f >16 pct). After the 954 °C annealing treatment, the 20 pct CR and 30 pct CR microstructures exhibited the most attractive combination of elevated-temperature tensile and creep strength, while the most severely cold-rolled materials exhibited the poorest elevated-temperature properties. After the 1050 °C annealing treatment, the IN 718SPF material exhibited the greatest backstress and best creep resistance. Electron backscattered diffraction was performed to identify the GBCD as a function of CR and annealing. The data indicated that annealing above 1010 °C increased the grain size and resulted in a greater fraction of twin boundaries, which in

  15. Effect of High Temperature on the Tensile Behavior of CFRP and Cementitious Composites

    Science.gov (United States)

    Toutanji, Houssam A.

    1999-01-01

    Concrete and other composite manufacturing processes are continuing to evolve and become more and more suited for use in non-Earth settings such as the Moon and Mars. The fact that structures built in lunar environments would experience a range of effects from temperature extremes to bombardment by micrometeorites and that all the materials for concrete production exist on the Moon means that concrete appears to be the most feasible building material. it can provide adequate shelter from the harshness of the lunar environment and at the same time be a cost effective building material. With a return to the Moon planned by NASA to occur after the turn of the century, it will be necessary to include concrete manufacturing as one of the experiments to be conducted in one of the coming missions. Concrete's many possible uses and possibilities for manufacturing make it ideal for lunar construction. The objectives of this research are summarized as follows: i) study the possibility of concrete production on the Moon or other planets, ii) study the effect of high temperature on the tensile behavior of concrete, and iii) study the effect of high temperature on the tensile behavior of carbon fiber reinforced with inorganic polymer composites. Literature review indicates that production of concrete on the Moon or other planets is feasible using the indigenous materials. Results of this study has shown that both the tensile strength and static elastic modulus of concrete decreased with a rise in temperature from 200 to 500 C. The addition of silica fume to concrete showed higher resistance to high temperatures. Carbon fiber reinforced inorganic polymer (CFRIP) composites seemed to perform well up to 300 C. However, a significant reduction in strength was observed of about 40% at 400 C and up to 80% when the specimens were exposed to 700 C.

  16. Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress

    International Nuclear Information System (INIS)

    Larrinaga, Pello; Chastre, Carlos; Biscaia, Hugo C.; San-José, José T.

    2014-01-01

    Highlights: • Making more deepen the knowledge of textile reinforced mortar in tensile stress. • Analyzing the effect of the reinforcing ratio of the composite. • To compare results with Aveston–Cooper–Kelly theory. • To develop a numerical model based on a finite element code. • Considering the importance of the bond-slip law of the mortar-to-textile-interface. - Abstract: During the last years several projects and studies have improved the knowledge about textile reinforced mortar (TRM) technology. TRM has already been used in strengthening masonry and reinforced concrete structural elements such as walls, arches, columns and beams. This material is presented as a real alternative to the use of fiber-reinforced polymers (FRP) in situations where these composites have presented some drawbacks or their use is banned. Textile reinforced mortar show a complex mechanical behavior derived from the heterogeneity of the constituent materials. This paper aims to deepen the knowledge of this composite material in terms of tensile behavior. Following this scope, this paper presents an experimental campaign focused on thirty-one TRM specimens reinforced with four different reinforcing ratios. The results are analyzed and contrasted with two distinct models. (i) The Aveston–Cooper–Kelly theory (ACK) which is based on a tri-linear analytical approach; and (ii) a non-linear numerical simulation with a 3D finite element code. The finite element analysis (FEA) of the TRM tensile tests also showed no significant dependence on the basalt-to-mortar interface, i.e., the choice of a bond-slip curve in order to reproduce the bond stresses and slippages along the interface is irrelevant and it can be simply considered as rigid interface

  17. Deformation behavior of irradiated Zr-2.5Nb pressure tube material

    International Nuclear Information System (INIS)

    Himbeault, D.D.; Chow, C.K.; Puls, M.P.

    1994-01-01

    A study of the deformation behavior of irradiated highly textured Zr-2.5Nb pressure tube material in the temperature range of 30 degree C to 300 degree C was undertaken to understand better the mechanism for the deterioration of the fracture toughness with neutron irradiation. Strain localization behavior, believed to be a main contributor to reduced toughness, was observed in irradiated transverse tensile specimens at temperature greater than 100 degree C. The strain localization behavior was found to occur by the cooperative twinning of the highly textured grains of the material, resulting in a local softening of the material, where the flow than localizes. It is believed that the effect of the irradiation is to favor twinning at the expense of slip in the early stages of deformation. This effect becomes more pronounced at higher temperature, thus leading to the high-temperature strain localization behavior of the material. A limited amount of dislocation channeling was also observed; however, it is not considered to have a major role in the strain localization behavior of the material. Contrary to previous reports on irradiated zirconium alloys, static strain aging is observed in the irradiated material in the temperature range of 150 degree C to 300 degree C

  18. Enhanced Hot Tensile Ductility of Mg-3Al-1Zn Alloy Thin-Walled Tubes Processed Via a Combined Severe Plastic Deformation

    Science.gov (United States)

    Fata, A.; Eftekhari, M.; Faraji, G.; Mosavi Mashhadi, M.

    2018-05-01

    In the current study, combined parallel tubular channel angular pressing (PTCAP) and tube backward extrusion (TBE), as a recently developed severe plastic deformation (SPD) method, were applied at 300 °C on a commercial Mg-3Al-1Zn alloy tubes to achieve an ultrafine grained structure. Then, the microstructure, hardness, tensile properties, and fractography evaluations were done at room temperature on the SPD-processed samples. Also, to study the hot tensile ductility of the SPD-processed samples, tensile testing was performed at an elevated temperature of 400 °C, and then, the fractured surface of the tensile samples was studied. It was observed that a bimodal microstructure, with large gains surrounded by many tiny ones, was created in the sample processed by PTCAP followed by TBE. This microstructure led to reach higher hardness and higher strength at room temperature and also led to reach very high elongation to failure ( 181%) at 400 °C. Also, the value of elongation to failure for this sample was 14.1% at room temperature. The fractographic SEM images showed the occurrence of predominately ductile fracture in the samples pulled at 400 °C. This was mostly due to the nucleation of microvoids and their subsequent growth and coalescence with each other.

  19. Tensile and fracture behavior of AA6061-T6 aluminum alloys: micro-mechanical approach

    International Nuclear Information System (INIS)

    Shen, Y.

    2012-01-01

    The AA6061-T6 aluminum alloy was chosen as the material for the core vessel of the future Jules Horowitz testing reactor (JHR). The objective of this thesis is to understand and model the tensile and fracture behavior of the material, as well as the origin of damage anisotropy. A micro-mechanical approach was used to link the microstructure and mechanical behavior. The microstructure of the alloy was characterized on the surface via Scanning Electron Microscopy and in the 3D volume via synchrotron X-ray tomography and laminography. The damage mechanism was identified by in-situ SEM tensile testing, ex-situ X-ray tomography and in-situ laminography on different levels of triaxiality. The observations have shown that damage nucleated at lower strains on Mg 2 Si coarse precipitates than on iron rich intermetallics. The identified scenario and the in-situ measurements were then used to develop a coupled GTN damage model incorporating nucleation, growth and coalescence of cavities formed by coarse precipitates. The relationship between the damage and the microstructure anisotropies was explained and simulated. (author)

  20. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  1. Tensile Fracture Behavior of 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-02-01

    Herein we investigate how the oxygen content in hot isostatically pressed (HIP'd) 316L stainless steel affects the mechanical properties and tensile fracture behavior. This work follows on from previous studies, which aimed to understand the effect of oxygen content on the Charpy impact toughness of HIP'd steel. We expand on the work by performing room-temperature tensile testing on different heats of 316L stainless steel, which contain different levels of interstitial elements (carbon and nitrogen) as well as oxygen in the bulk material. Throughout the work we repeat the experiments on conventionally forged 316L steel as a reference material. The analysis of the work indicates that oxygen does not contribute to a measureable solution strengthening mechanism, as is the case with carbon and nitrogen in austenitic stainless steels (Werner in Mater Sci Eng A 101:93-98, 1988). Neither does oxygen, in the form of oxide inclusions, contribute to precipitation hardening due to the size and spacing of particles. However, the oxide particles do influence fracture behavior; fractography of the failed tension test specimens indicates that the average ductile dimple size is related to the oxygen content in the bulk material, the results of which support an on-going hypothesis relating oxygen content in HIP'd steels to their fracture mechanisms by providing additional sites for the initiation of ductile damage in the form of voids.

  2. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

    Science.gov (United States)

    Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza

    2017-01-01

    The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

  3. Application of Gurson–Tvergaard–Needleman Constitutive Model to the Tensile Behavior of Reinforcing Bars with Corrosion Pits

    Science.gov (United States)

    Xu, Yidong; Qian, Chunxiang

    2013-01-01

    Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140

  4. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  5. Effects of aging and sheet thickness on the room temperature deformation behavior and in-plane anisotropy of cold rolled and solution treated Nimonic C-263 alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ankamma, Kandula; Chandra Mohan Reddy, Gangireddy [Mahatma Ghandi Institute of Technology, Hyderabad (India). Mechanical Engineering Dept.; Singh, Ashok Kumar; Prasad, Konduri Satya [Defence Research and Development Organisation (DRDO), Hyderabad (India). Defence Metallurgical Research Lab.; Komaraiah, Methuku [Malla Reddy College of Engineering and Technology, Secunderabad (India); Eswara Prasad, Namburi [Regional Centre for Military Airworthiness (Materials), Hyderabad (India)

    2011-10-15

    The deformation behavior under uni-axial tensile loading is investigated and reported in the case of cold rolled Nimonic C-263 alloy sheet products of different thicknesses (0.5 mm and 1 mm) in the solution treated and aged conditions. The studies conducted include (i) Microstructure, (ii) X-ray diffraction, (iii) Texture and (iv) Tensile properties and inplane anisotropy in the yield behavior (both tensile yield strength and ultimate tensile strength as well as ductility). The results of the present study showed that despite the presence of weak crystallographic texture in this crystal symmetric material, the degrees of in-plane anisotropy in strength as well as plastic deformation properties are found to be significant in both solution treated and aged conditions, thus having significant technological relevance for both further processing and design purposes. Further, the influence of aging and sheet thickness on the tensile deformation behaviour is also found to be considerable. A brief discussion on the technological implications of these results is also included. (orig.)

  6. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    Science.gov (United States)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  7. High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Sukumaran, Arjun; Kumar, Vinod

    2018-05-01

    Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s-1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent `n' of the base metal and weldment was 0.519. Activation energy `Q' of base metal and EB weldments were 420 to 535 kJ mol-1 determined through isothermal tensile tests and 625 to 662 kJ mol-1 through jump-temperature tensile tests. Strain rate sensitivity `m' was low ( 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.

  8. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Huang, X.; Tähtinen, S.

    , the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post-irradiation deformation of Fe-Cr and pure iron. Furthermore, in both cases, the slip systems even in the planes with Schmid...... factor value of almost zero get activated during the in-reactor as well as post-irradiation deformation. The main implications of these results are briefly discussed....

  9. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

    Science.gov (United States)

    Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.

    2018-06-01

    The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy ( r) and normal anisotropy ( r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

  10. Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands

    Science.gov (United States)

    Daghash, Sherif M.; Ozbulut, Osman E.

    2018-06-01

    This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.

  11. Tensile and Creep Behavior of Extruded AA6063/SiCp Al MMCs

    International Nuclear Information System (INIS)

    Khalifa, Tarek A.; Mahmoud, Tamer S.

    2010-01-01

    Composites of AA6063 Al alloy reinforced with SiC particles (SiC p ) were prepared by the vortex method. Hot extrusion was carried out for the as cast composites with a reduction in area of 25%. Tensile and creep behavior of as-cast and extruded composites were studied at elevated temperatures. Tensile tests carried out at room temperature showed that for the as-cast composites, the addition of SiC p up to 10% by weight improves the strength but reduces ductility. Further addition of SiC p reduces the strength and ductility of the composites. At 150 and 300 deg. C the matrix alloy exhibits higher strength than the composites. Extrusion generally raised the strength of the composites at both room and elevated temperatures. Time rupture creep tests carried out at 300 deg. C showed that the composites exhibit higher creep resistance as compared to the matrix alloy except at relatively low stresses where the matrix has a better creep resistance. Extrusion improved the resistance of composites to creep rupture.

  12. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

    Science.gov (United States)

    Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.

    2018-04-01

    The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy (r) and normal anisotropy (r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

  13. Evaluation of local deformation behavior accompanying fatigue damage in F82H welded joint specimens by using digital image correlation

    International Nuclear Information System (INIS)

    Nakata, Toshiya; Tanigawa, Hiroyasu

    2012-01-01

    Highlights: ► In tensile, the TIG welded joint material was concentrated in the THAZ. ► In tensile, fracture occurred at the point where the axial strain converged. ► In fatigue, fracture occurred at the point where the Max. shear strain converged. ► Many macrocracks and cavities formed in the FGHAZ and THAZ of the cross section. - Abstract: By using digital image correlation, the deformation behaviors of local domains of F82H joint specimens welded using tungsten inert gas (TIG) and electron beam (EB) welding were evaluated during tensile and fatigue testing. In the tensile test specimens, the tensile strength decreased in the TIG-welded joints, and ductility decreased in both the EB- and TIG-welded joints. Because axial strain increased in the tempered heat-affected zone (HAZ) and led to the fracture of the TIG-welded joint, the strength was considered to have decreased because of welding. In fatigue testing, the number of cycles to fracture for the welded joint decreased to less than 40–60% of that for the base metal. For both fracture specimens, the largest value of shear strain was observed in the region approximately between the fine-grained HAZ and tempered HAZ; this shear strain ultimately led to fracture. Cavities and macrocracks were observed in the fine-grained HAZ and tempered HAZ in the cross sections of the fracture specimens, and geometrical damage possibly resulted in the reduction of fatigue lifetime.

  14. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  15. Deformation behavior of multilayered NiFe with bimodal grain size distribution at room and elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, Jochen, E-mail: jmfiebig@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); Jian, Jie [Department of Electrical and Computer Engineering, Texas A& M University, College Station, TX 77843-3128 (United States); Kurmanaeva, Lilia [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); McCrea, Jon [Integran Technologies Inc., Toronto (Canada); Wang, Haiyan [Department of Electrical and Computer Engineering, Texas A& M University, College Station, TX 77843-3128 (United States); Lavernia, Enrique [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697 (United States); Mukherjee, Amiya [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95817 (United States)

    2016-02-22

    We describe a study of the temperature dependent deformation behavior of a multilayered NiFe-60 wt%Fe alloy with a layer thickness of 5 μm fabricated by electrodeposition. The structure of adjacent layers alternates between a nanocrystalline and a coarse grained. Uniaxial tensile tests at temperature between 20 °C and 400 °C and strain rate of 10{sup −4}–10{sup −2} were used to determine the mechanical behavior. Microstructure observations via transmission electron microscopy and fractography were performed to provide insight into the underlying deformation mechanism. The mechanical behavior is discussed in the context of the bimodal microstructure of multilayered samples and the contribution of each sub-layer to strength and ductility. The results reveal that even at higher temperatures the nanocrystalline layer determines the mechanical performance of multilayered materials.

  16. Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes

    International Nuclear Information System (INIS)

    Palanivel, R.; Dinaharan, I.; Laubscher, R.F.

    2017-01-01

    Friction welding process has been applied to join Grade 2 titanium alloy tubes of outer diameter 60 mm and wall thickness 3.9 mm. In this research work, five different friction times (24, 28, 32, 36 and 40 s) were used to evaluate the ultimate tensile strength (UTS) and microstructure of welded tubes. Recording of the process parameters during welding was done. Optical microscopy, electron back scattered diffraction and transmission electron microscopy were used to study the microstructure. The results showed that the friction time had a significant influence on the microstructure and UTS. The rate of deformation increased with friction time and refined the grains in the weld zone. Coarse grain structure was observed from the center of the weld zone towards the flash. Identical grain structure was observed in the heat affected zone (HAZ) and the parent metal. It was found that a maximum joint efficiency of 98.3% was achieved at a friction time of 32 s.The details of microhardness, failure location and fracture surface of the welded tubes were reported.

  17. Assessment of microstructure and tensile behavior of continuous drive friction welded titanium tubes

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, R., E-mail: rpalanivelme@gmail.com; Dinaharan, I., E-mail: dinaweld2009@gmail.com; Laubscher, R.F., E-mail: rflaubscher@uj.ac.za

    2017-02-27

    Friction welding process has been applied to join Grade 2 titanium alloy tubes of outer diameter 60 mm and wall thickness 3.9 mm. In this research work, five different friction times (24, 28, 32, 36 and 40 s) were used to evaluate the ultimate tensile strength (UTS) and microstructure of welded tubes. Recording of the process parameters during welding was done. Optical microscopy, electron back scattered diffraction and transmission electron microscopy were used to study the microstructure. The results showed that the friction time had a significant influence on the microstructure and UTS. The rate of deformation increased with friction time and refined the grains in the weld zone. Coarse grain structure was observed from the center of the weld zone towards the flash. Identical grain structure was observed in the heat affected zone (HAZ) and the parent metal. It was found that a maximum joint efficiency of 98.3% was achieved at a friction time of 32 s.The details of microhardness, failure location and fracture surface of the welded tubes were reported.

  18. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  19. Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy

    International Nuclear Information System (INIS)

    Bahmanpour, Hamed; Youssef, Khaled M.; Horky, Jelena; Setman, Daria; Atwater, Mark A.; Zehetbauer, Michael J.; Scattergood, Ronald O.; Koch, Carl C.

    2012-01-01

    Nanocrystalline Cu–30% Zn samples were produced by high energy ball milling at 77 K and room temperature. Cryomilled flakes were further processed by ultrahigh strain high pressure torsion (HPT) or room temperature milling to produce bulk artifact-free samples. Deformation-induced grain growth and a reduction in twin probability were observed in HPT consolidated samples. Investigations of the mechanical properties by hardness measurements and tensile tests revealed that at small grain sizes of less than ∼35 nm Cu–30% Zn deviates from the classical Hall–Petch relation and the strength of nanocrsytalline Cu–30% Zn is comparable with that of nanocrystalline pure copper. High resolution transmission electron microscopy studies show a high density of finely spaced deformation nanotwins, formed due to the low stacking fault energy of 14 mJ m –2 and low temperature severe plastic deformation. Possible softening mechanisms proposed in the literature for nanotwin copper are addressed and the twin-related softening behavior in nanotwinned Cu is extended to the Cu–30% Zn alloy based on detwinning mechanisms.

  20. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  1. Deformation behavior of large, high-pressure vessel flanges

    International Nuclear Information System (INIS)

    Spaas, H.A.C.M.; Latzko, D.G.H.

    1975-01-01

    The analysis of the deformation behavior of large high-pressure vessel flanges poses a much more difficult problem than for low-pressure flanges due to their particular geometry. For a particularly narrow flange geometry (typical of PWR flanges) a finite-element analysis (MARC-IBM-program, eight-node, isoparametric ring elements) was used to predict the behavior of the flange rings. The nonlinear elastic problem resulting from the local closing and/or opening of the partial gap between the gasket faces was solved by an incremental technique using gap elements. The resulting deformation behavior of the flange system has been compared to that obtained from an analysis using the refined rigid ring concept for both bolt-tightening and hydro-testing conditions. The elasto-plastic analysis was solved by the same finite element program system as mentioned above. The incremental steps describing the nonlinear material behavior are allowed to be larger than those for the gap-closure mechanism. Besides a comparison with the former elastic analyses an interpretation will be given of the local plasticity effects, which result in a shift in location of the gasket reaction. Experimental data on local gasket face deformation was obtained by a specially developed laser beam apparatus, with the leak detection channel of the flange serving as a beam hole. Additionally strain gauges were used on flanges and bolts, in combination with special sensing pins for the determination of relative flange rotations. Results obtained so far indicate that for high-pressure flanges of the narrow design investigated here the deformation behavior is best described by an elasto-plastic finite element analysis

  2. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming

    International Nuclear Information System (INIS)

    Ren, Y.M.; Lin, X.; Fu, X.; Tan, H.; Chen, J.; Huang, W.D.

    2017-01-01

    This work investigated the microstructure and tensile deformation behavior of Ti-6Al-4V alloy fabricated using a high-power laser solid forming (LSF) additive manufacturing. The results show that the post-fabricated heat-treated microstructure consists of coarse columnar prior-β grains (630–1000 μm wide) and α-laths (5–9 μm) under different scanning velocities (900 and 1500 mm/min), which caused large elongation (∼18%) superior to the conventional laser additive manufacturing Ti-6Al-4V alloy. The deformation behavior of the LSF Ti-6Al-4V alloy was investigated using in situ tensile test scanning electron microscopy. The results show that shear-bands appeared along the α/β interface and slip-bands occurred within the α-laths, which lead to cracks decaying in a zigzag-pattern in the LSF Ti-6Al-4V alloy with basket-weave microstructure. These results demonstrate that the small columnar prior-β grains and fine basket-weave microstructure exhibiting more α/β interfaces and α-laths can disperse the load and resist the deformation in the LSF Ti-6Al-4V components. In addition, a modified microstructure selection map of the LSF Ti-6Al-4V alloy was established, which can reasonably predict the microstructure evolution and relative grain size in the LSF process.

  3. Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load

    Science.gov (United States)

    Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu

    2018-04-01

    Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.

  4. Effect of Plastic Deformation on the Corrosion Behavior of a Super-Duplex Stainless Steel

    Science.gov (United States)

    Renton, Neill C.; Elhoud, Abdu M.; Deans, William F.

    2011-04-01

    The role of plastic deformation on the corrosion behavior of a 25Cr-7Ni super-duplex stainless steel (SDSS) in a 3.5 wt.% sodium chloride solution at 90 °C was investigated. Different levels of plastic strain between 4 and 16% were applied to solution annealed tensile specimens and the effect on the pitting potential measured using potentiodynamic electrochemical techniques. A nonlinear relationship between the pitting potential and the plastic strain was recorded, with 8 and 16% causing a significant reduction in average E p, but 4 and 12% causing no significant change when compared with the solution-annealed specimens. The corrosion morphology revealed galvanic interaction between the anodic ferrite and the cathodic austenite causing preferential dissolution of the ferrite. Mixed potential theory and the changing surface areas of the two phases caused by the plastic deformation structures explain the reductions in pitting potential at certain critical plastic strain levels. End-users and manufacturers should evaluate the corrosion behavior of specific cold-worked duplex and SDSSs using their as-produced surface finishes assessing in-service corrosion performance.

  5. Anisotropy in tensile and ductile-brittle transition behavior of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, R., E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan); Lee, S.G.; Isselin, J.; Lee, J.H.; Omura, T.; Kimura, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan); Okuda, T. [KOBELCO Research Institute, 1-5-5, Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan); Inoue, M. [Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Ukai, S.; Ohnuki, S. [Materials Science and Engineering, Hokkaido University, N14 W8, Kita ku, Sapporo 060-8626 (Japan); Fujisawa, T. [Nagoya University, Furocho, Chikusa, Nagoya 464-8603 (Japan); Abe, F. [National Institute of Materials Science, Tsukuba, (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2011-10-01

    Anisotropic fracture behavior of SOC-1 oxide dispersion strengthened (ODS) ferritic steel has been investigated for a hot-extruded bar by tensile tests and Charpy impact tests. These mechanical properties are better in the longitudinal direction than in the transverse directions against extrusion direction (ED). Fracture surface observations by scanning electron microscopy and auger electron spectroscopy indicated bundle-like morphology with existence of segregation/precipitation/inclusions along ED. Pole figures of the hot-extruded bar characterized using electron back scattering diffraction (EBSD) technique and X-ray diffraction exhibited <1 1 0> fiber texture formation along ED. The EBSD orientation map showed a complex bundle-like grain morphology which consists of elongated grains having a specific orientation <1 1 0>// ED and relatively isotropic and small grains having other orientation. The results conclude that the combined effects of observed elongated grain morphology and these small grains with segregation/precipitation/inclusions along ED can explain the anisotropic fracture behavior of the hot-extruded ODS ferritic steel.

  6. Evaluation of deformation behavior of in grains and grain boundaries of L-grade austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Nagashima, Nobuo; Hayakawa, Masao; Tsukada, Takashi; Kaji, Yoshiyuki; Miwa, Yukio; Ando, Masami; Nakata, Kiyotomo

    2009-01-01

    In this study, micro-hardness tests and AFM observations were performed on SUS 316L low-carbon austenitic stainless steel pre-strained by cold rolling to investigate its deformation behavior. The following results were obtained. Despite the fact that the same plastic strain was applied, post-tensile test AFM showed narrower slip-band spacing in a reduction in area of 30% cold-rolled specimen than the unrolled specimen. Concentrated slip bands were observed near grain boundaries. These were presumably due to slip blocking at grain boundaries. SCC sensitivity increased at a hardness of 300 or higher, the frequency occurrence of a hardness of 300 or higher in the micro-hardness measurements was compared. The micro-hardness did not exceed 300 both within grains and at grain boundaries in the unrolled and up to a reduction in area of 20% cold-rolled specimens of before and after the tensile tests. Micro-hardness exceeding 300 was found to occur frequently in after tensile test specimens with a reduction in area of 30% or more, particularly at grain boundaries. It is suggested that the nonuniformity of deformation at grain boundaries plays an important role of IGSCC crack propagation mechanism of low-carbon austenitic stainless steel. (author)

  7. Tensile behavior of humid aged advanced composites for helicopter external fuel tank development

    Directory of Open Access Journals (Sweden)

    Condruz Mihaela

    2018-01-01

    Full Text Available Influence of humid aging on tensile properties of two polymeric composites was studied. The purpose of the study was to evaluate the suitability of the materials for a naval helicopter external fuel tank. Due to the application, the humid environment was kerosene and saline solution to evaluate the sea water effect on the composite tensile strength. The composite samples were immersed in kerosene for 168 hours, respective 1752 hours and in saline solution for 168 hours. Tensile tests were performed after the immersion. The composite sample tensile tests showed that kerosene and saline solution had no influence on the elastic modulus of the materials, but it was observed a slight improvement of the tensile strength of the two polymeric composites.

  8. A combined experimental and FE analysis procedure to evaluate tensile behavior of zircaloy pressure tubes

    International Nuclear Information System (INIS)

    Samal, M.K.; Vaze, K.K.; Balakrishnan, K.S.; Anantharaman, S.

    2012-01-01

    Determination of transverse mechanical properties from the ring type of specimens directly machined from the nuclear reactor pressure tubes is not straightforward because of the presence of combined membrane as well as bending stresses arising in the loaded condition. In this work, we have performed ring-tensile tests on the un-irradiated ring tensile specimen using two split semi-cylindrical mandrels as the loading device. A 3-D finite element (FE) analysis was performed in order to determine the material true stress-strain curve by comparing experimental load-displacement data with those predicted by FE analysis. In order to validate the methodology, miniaturized tensile specimens were machined from these tubes and tested. It was observed that the stress-strain data as obtained from ring tensile specimen could describe the load displacement curve of the miniaturized flat tensile specimen very well. (author)

  9. Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study

    Science.gov (United States)

    Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.

    2014-04-01

    Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of /{100} and /{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of /{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in /{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in /{111} shows higher strength and elastic modulus than /{100} oriented nanowire.

  10. Effects of surface cracks and strain rate on the tensile behavior of Balmoral Red granite

    Directory of Open Access Journals (Sweden)

    Mardoukhi Ahmad

    2015-01-01

    Full Text Available This paper presents an experimental procedure for studying the effects of surface cracks on the mechanical behavior of Balmoral Red granite under dynamic and quasi-static loading. Three different thermal shocks were applied on the surface of the Brazilian Disc test samples by keeping a flame torch at a fixed distance from the sample surface for 10, 30, and 60 seconds. Microscopy clearly shows that the number of the surface cracks increases with the duration of the thermal shock. After the thermal shock, the Brazilian Disc tests were performed using a servohydraulic materials testing machine and a compression Split Hopkinson Pressure Bar (SHPB device. The results show that the tensile strength of the rock decreases and the rate sensitivity of the rock increases as more cracks are introduced to the structure. The DIC analysis of the Brazilian disc tests shows that the fracture of the sample initiates at the center of the samples or slightly closer to the incident bar contact point. This is followed by crushing of the samples at both contact points with the stress bars.

  11. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  12. Size-dependent deformation behavior of nanocrystalline graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.

  13. Hot deformation behavior of TC18 titanium alloy

    Directory of Open Access Journals (Sweden)

    Jia Bao-Hua

    2013-01-01

    Full Text Available Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25°C to 800°C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.

  14. Cyclic deformation behaviour of quenched and tempered AISI 4140 at two-step tensile-compressive-loading

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V.; Lang, K.-H.; Voehringer, O.; Macherauch, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    1997-08-30

    The cyclic deformation behaviour in stress-controlled two-step experiments with one or more changes between two blocks of certain lengths and amplitudes was investigated at the technically important steel AISI 4140 (German grade 42 CrMo 4). In all two-step experiments cyclic worksoftening behaviour is found. The degree of work softening is discussed in comparison to single-step experiments. In several cases effects of static strain-ageing can be found. (orig.) 10 refs.

  15. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys

    International Nuclear Information System (INIS)

    Shanmuga Sundaram, N.; Murugan, N.

    2010-01-01

    The heat treatable aluminium alloy AA2024 is used extensively in the aircraft industry because of its high strength to weight ratio and good ductility. The non-heat treatable aluminium alloy AA5083 possesses medium strength and high ductility and used typically in structural applications, marine, and automotive industries. When compared to fusion welding processes, friction stir welding (FSW) process is an emerging solid state joining process which is best suitable for joining these alloys. The friction stir welding parameters such as tool pin profile, tool rotational speed, welding speed, and tool axial force influence the mechanical properties of the FS welded joints significantly. Dissimilar FS welded joints are fabricated using five different tool pin profiles. Central composite design with four parameters, five levels, and 31 runs is used to conduct the experiments and response surface method (RSM) is employed to develop the model. Mathematical regression models are developed to predict the ultimate tensile strength (UTS) and tensile elongation (TE) of the dissimilar friction stir welded joints of aluminium alloys 2024-T6 and 5083-H321, and they are validated. The effects of the above process parameters and tool pin profile on tensile strength and tensile elongation of dissimilar friction stir welded joints are analysed in detail. Joints fabricated using Tapered Hexagon tool pin profile have the highest tensile strength and tensile elongation, whereas the Straight Cylinder tool pin profile have the lowest tensile strength and tensile elongation. The results are useful to have a better understanding of the effects of process parameters, to fabricate the joints with desired tensile properties, and to automate the FS welding process.

  16. Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure

    International Nuclear Information System (INIS)

    Foulds, J.R.; Moteff, J.; Sikka, V.K.; McEnerney, J.W.

    1983-01-01

    Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25 0 C and 649 0 C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructure in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior

  17. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Inamura, Tomonari; Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); School of Materials Science and Engineering and ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-11-15

    Highlights: ► {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉{sub β}* rel rods and {1 1 1}{sub β}* rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation.

  18. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Inamura, Tomonari; Hosoda, Hideki; Miyazaki, Shuichi

    2013-01-01

    Highlights: ► {110} β 〈11 ¯ 0〉 β transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉 β * rel rods and {1 1 1} β * rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110} β 〈11 ¯ 0〉 β transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation

  19. A bioactive coating with submicron-sized titania crystallites fabricated by induction heating of titanium after tensile deformations.

    Science.gov (United States)

    Li, Ning-Bo; Xu, Wen-Hua; Xiao, Gui-Yong; Zhao, Jun-Han; Lu, Yu-Peng

    2017-11-01

    Thermal oxidation technology was widely investigated as one of effective surface modification method for improving the bioactivity and biocompatibility of titanium and its alloys. In this work, the induction heat oxidization method, a fast, efficient, economical and environmental protective technology, was applied to prepare the submicron-morphological oxide coating with variable rutile TiO 2 equiaxed crystallites on the surface of pure Ti substrates after cold-drawing with 10-20% deformations. The results showed the plastic-deformed Ti cylinders recrystallized during induction heating treatment (IHT) for 10-20s which resulted in evolution of microstructures as well as slight improvement of microhardness. The surface characteristics of TiO 2 crystallites in oxidation layers were determined by the microstructural evolutions of Ti substrate in terms of the nucleation and growth of TiO 2 crystallites. Specially, the oxidized surface with 50-75nm roughness and more uniform and finer equiaxed oxide grains remarkablely improved the apatite deposition after bioactive evaluation in 1.5 × SBF for 7 days. This work provided a potential method to create controlled bioactive oxide coatings with submicro-/nano-scaled TiO 2 crystallites on titanium substrate in terms of the role of metallographic microstructure in the formation process of titanium oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  1. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  2. Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Chunlei, E-mail: c.qiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Wu, Xinhua; Mei, Junfa [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Andrews, Paul; Voice, Wayne [Rolls-Royce Plc, Derby DE24 8BJ (United Kingdom)

    2013-11-25

    Highlights: •Post-HIP heat treatment led to refined microstructure and improved tensile properties. •Deformation occurred mainly by forming stacking faults in γ′ at RT and elevated temperature. •Net-shape HIPed RR1000 failed in a transgranular fracture mode. -- Abstract: A nickel-based superalloy powder RR1000 has been hot isostatically pressed (HIPed) and heat treated to produce different microstructures. Microstructures were investigated using a scanning electron microscope (SEM). Tensile testing was performed at room temperature and 700 °C and the deformed samples were examined using SEM and transmission electron microscope (TEM). It was found that in the as-HIPed condition the microstructure consisted of coarse and irregular-shaped primary and secondary γ′ together with a low volume fraction of fine γ′ (<50 nm in diameter). Solution treatment below the γ′ solvus followed by air cooling resulted in the formation of finer cuboidal secondary γ′ (350–750 nm) and medium-sized spherical tertiary γ′ (100–200 nm). This led to an improvement of both the 0.2% yield strength and ultimate tensile strength. Ageing of the solution-treated or of the as-HIPed samples at 760 °C resulted in the precipitation of a high population of fine γ′ (around 50 nm) which further increased the strength. Within the resolution limit of the current TEM analysis, deformation at room temperature seemed to occur mainly by dislocations cutting through secondary γ′ and very fine γ′, accompanied by the formation of stacking faults within these precipitates; most of the medium-sized tertiary γ′ precipitates in solution-treated and aged samples were not cut through but were surrounded by dislocations. Deformation at 700 °C happened by dislocations cutting through γ′ precipitates and γ matrix, leading to the formation of extended stacking faults across both γ and γ′. It is suggested that the optimum treatment of the current powder superalloy is to

  3. Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Wu, Xinhua; Mei, Junfa; Andrews, Paul; Voice, Wayne

    2013-01-01

    Highlights: •Post-HIP heat treatment led to refined microstructure and improved tensile properties. •Deformation occurred mainly by forming stacking faults in γ′ at RT and elevated temperature. •Net-shape HIPed RR1000 failed in a transgranular fracture mode. -- Abstract: A nickel-based superalloy powder RR1000 has been hot isostatically pressed (HIPed) and heat treated to produce different microstructures. Microstructures were investigated using a scanning electron microscope (SEM). Tensile testing was performed at room temperature and 700 °C and the deformed samples were examined using SEM and transmission electron microscope (TEM). It was found that in the as-HIPed condition the microstructure consisted of coarse and irregular-shaped primary and secondary γ′ together with a low volume fraction of fine γ′ (<50 nm in diameter). Solution treatment below the γ′ solvus followed by air cooling resulted in the formation of finer cuboidal secondary γ′ (350–750 nm) and medium-sized spherical tertiary γ′ (100–200 nm). This led to an improvement of both the 0.2% yield strength and ultimate tensile strength. Ageing of the solution-treated or of the as-HIPed samples at 760 °C resulted in the precipitation of a high population of fine γ′ (around 50 nm) which further increased the strength. Within the resolution limit of the current TEM analysis, deformation at room temperature seemed to occur mainly by dislocations cutting through secondary γ′ and very fine γ′, accompanied by the formation of stacking faults within these precipitates; most of the medium-sized tertiary γ′ precipitates in solution-treated and aged samples were not cut through but were surrounded by dislocations. Deformation at 700 °C happened by dislocations cutting through γ′ precipitates and γ matrix, leading to the formation of extended stacking faults across both γ and γ′. It is suggested that the optimum treatment of the current powder superalloy is to

  4. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing

    International Nuclear Information System (INIS)

    Chen Zhitong; Li Guang; Wu Zhenqiang; Xia Yuan

    2011-01-01

    Research highlights: → Composite coatings on the aluminized steel were prepared by the plasma electrolytic oxidation (PEO) technique, which comprised of Fe-Al layer, Al layer and Al 2 O 3 layer. → The evaluation method of the crack critical opening displacement δ c was introduced to describe quantitatively the resistance of Al layer to the propagation behavior of cracks and evaluate the fracture behavior of composite coatings. → The crack propagating model was established. - Abstract: This paper investigates the in situ tensile cracks propagating behavior of composite coatings on the aluminized steel generated using the plasma electrolytic oxidation (PEO) technique. Cross-sectional micrographs and elemental compositions were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The composite coatings were shown to consist of Fe-Al, Al and Al 2 O 3 layers. The cracks propagating behavior was observed in real-time in situ SEM tensile test. In tensile process, the cracks were temporarily stopped when cracks propagated from Fe-Al layer to Al layer. The critical crack opening displacement δ c was introduced to quantitatively describe the resistance of the Al layer. There was a functional relation among the thickness ratio t Al /t Al 2 O 3 , the δ c of composite coatings and tensile cracks' spacing. The δ c increased with the increasing of the thickness ratio (t Al /t Al 2 O 3 ). The high δ c value means high fracture resistance. Therefore, a control of the thickness ratio t Al /t Al 2 O 3 was concerned as a key to improve the toughness and strength of the aluminized steel.

  5. Grain interaction mechanisms leading to intragranular orientation spread in tensile deformed bulk grains of interstitial-free steel

    DEFF Research Database (Denmark)

    Winther, Grethe; Wright, Jonathan P.; Schmidt, Søren

    2017-01-01

    environments representing the bulk texture, yet their deformation-induced rotations are very different. The ALAMEL model is employed to analyse the grain interaction mechanisms. Predictions of this model qualitatively agree with the directionality and magnitude of the experimental orientation spread. However......, quantitative agreement requires fine-tuning of the boundary conditions. The majority of the modelled slip is accounted for by four slip systems also predicted to be active by the classical Taylor model in uniaxial tension, and most of the orientation spread along the grain boundaries is caused by relative...... variations in the activities of these. Although limited to two grains, the findings prove that shear at the grain boundaries as accounted for by the ALAMEL model is a dominant grain interaction mechanism....

  6. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    Science.gov (United States)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  7. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    Directory of Open Access Journals (Sweden)

    Md. Arman Chowdhury

    2016-01-01

    Full Text Available Plain concrete and steel fiber reinforced concrete (SFRC cylinder specimens are modeled in the finite element (FE platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A total of 8 numbers of cylinder specimens are cast and tested in 1000 kN capacity digital universal testing machine (UTM and also modeled in ANSYS. The enhancement of compressive strength and splitting tensile strength of SFRC specimen is achieved up to 17% and 146%, respectively, compared to respective plain concrete specimen. Results gathered from finite element analyses are validated with the experimental test results by identifying as well as optimizing the controlling parameters to make FE models. Modulus of elasticity, Poisson’s ratio, stress-strain behavior, tensile strength, density, and shear transfer coefficients for open and closed cracks are found to be the main governing parameters for successful model of plain concrete and SFRC in FE platform. After proper evaluation and logical optimization of these parameters by extensive analyses, finite element (FE models showed a good correlation with the experimental results.

  8. SOLID BURNT BRICKS’ TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    Aneta Maroušková

    2017-11-01

    Full Text Available This paper deals with experimental testing of solid burnt bricks and mortar in pure (axial tension. The obtained working diagrams will be further use for a detailed numerical analysis of whole brick masonry column under concentric compressive load. Failure mechanism of compressed brick masonry column is characterized by the appearance and development of vertical tensile cracks in masonry units (bricks passing in the direction of principal stresses and is accompanied by progressive growth of horizontal deformations. These cracks are caused by contraction and interaction between two materials with different mechanical characteristics (brick and mortar. The aim of this paper is more precisely describe the response of quasi-brittle materials to uniaxial loading in tension (for now only the results from three point bending test are available. For these reasons, bricks and mortar tensile behavior is experimentally tested and the obtained results are discussed.

  9. Prediction of Tensile Behavior of UHSFRC Considering the Flow Field in the Placing Dominated by Shear Flow

    Directory of Open Access Journals (Sweden)

    Joon-Shik Moon

    2018-01-01

    Full Text Available Considering the case of fabricating a UHSFRC (ultra-high strength fiber-reinforced concrete beam with the method of one end placing and self-flowing to the other end, it was intended to simulate the variation of the fiber orientation distribution according to the flow distance and the variation of the resultant tensile behaviors. Then the validity of the simulation approach was shown by comparing the simulated results with experimental ones. A three-point bending test with a notched beam was adopted for the experiment and a finite element analysis was performed to obtain the simulated results for the bending test considering the flow-dependent tensile behavior of the UHSFRC. From the simulation for the fiber orientation distribution according to the flow distance, it could be found that the major change in the fiber orientation distribution took place within a short flow distance and most of the fibers became nearly aligned to the flow direction. After some flow distance, there was a not-so-remarkable variation in the fiber orientation distribution that could influence the tensile behavior of the composite. For this flow region, the consistent flexural test results, regardless of flow distance, demonstrate the reliability of the simulation.

  10. Prediction of Tensile Behavior of UHSFRC Considering the Flow Field in the Placing Dominated by Shear Flow.

    Science.gov (United States)

    Moon, Joon-Shik; Kang, Su-Tae

    2018-01-26

    Considering the case of fabricating a UHSFRC (ultra-high strength fiber-reinforced concrete) beam with the method of one end placing and self-flowing to the other end, it was intended to simulate the variation of the fiber orientation distribution according to the flow distance and the variation of the resultant tensile behaviors. Then the validity of the simulation approach was shown by comparing the simulated results with experimental ones. A three-point bending test with a notched beam was adopted for the experiment and a finite element analysis was performed to obtain the simulated results for the bending test considering the flow-dependent tensile behavior of the UHSFRC. From the simulation for the fiber orientation distribution according to the flow distance, it could be found that the major change in the fiber orientation distribution took place within a short flow distance and most of the fibers became nearly aligned to the flow direction. After some flow distance, there was a not-so-remarkable variation in the fiber orientation distribution that could influence the tensile behavior of the composite. For this flow region, the consistent flexural test results, regardless of flow distance, demonstrate the reliability of the simulation.

  11. Local cyclic deformation behavior and microstructure of railway wheel materials

    International Nuclear Information System (INIS)

    Walther, F.; Eifler, D.

    2004-01-01

    The current investigations concentrate on the relation between the loading and environmental conditions, the local microstructure and the fatigue behavior of highly stressed railway wheel and tire steels. Experiments under stress control and total strain control were performed at ambient temperature with servohydraulic testing systems. Superimposed mean loadings allow an evaluation of cyclic creep and mean stress relaxation effects. Strain, temperature and electrical measuring techniques were used to characterize the cyclic deformation behavior of specimens from different depth positions of the cross-sections of UIC-specified wheel components (UIC: International Railway Union). The measured values show a strong interrelation. The microstructural characterization of the different material conditions was done by light and scanning electron microscopy together with digital image processing

  12. Tensile behavior of unnotched and notched tungsten--copper laminar composites

    International Nuclear Information System (INIS)

    Hoffman, C.A.

    1976-06-01

    Relations were studied between the tensile strengths of unnotched and of notched, and elastic moduli of unnotched laminar sheet or foil composites and the amounts of reinforcement. Tungsten was used as the reinforcement and copper as the matrix, and the tests were run at room temperature. Three thicknesses of tungsten (i.e., 0.00254, 0.0127, and 0.0254 cm (0.001, 0.005, and 0.010 in) were used, and the nominal volume fraction of tungsten was varied from about 0.05 to 0.95. It was found that the tensile strength of the unnotched specimens could be related to the amount of reinforcement, as could the elastic moduli, and that these values could be predicted by use of the rule of mixtures. The tensile strengths of the notched laminar composites could be predicted by use of the rule of mixtures using strengths for notched constituents, provided notch effects did not predominate. (Author)

  13. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    Science.gov (United States)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  14. Constitutive Behavior and Deep Drawability of Three Aluminum Alloys Under Different Temperatures and Deformation Speeds

    Science.gov (United States)

    Panicker, Sudhy S.; Prasad, K. Sajun; Basak, Shamik; Panda, Sushanta Kumar

    2017-08-01

    In the present work, uniaxial tensile tests were carried out to evaluate the stress-strain response of AA2014, AA5052 and AA6082 aluminum alloys at four temperatures: 303, 423, 523 and 623 K, and three strain rates: 0.0022, 0.022 and 0.22 s-1. It was found that the Cowper-Symonds model was not a robust constitutive model, and it failed to predict the flow behavior, particularly the thermal softening at higher temperatures. Subsequently, a comparative study was made on the capability of Johnson-Cook (JC), modified Zerilli-Armstrong (m-ZA), modified Arrhenius (m-ARR) and artificial neural network (ANN) for modeling the constitutive behavior of all the three aluminum alloys under the mentioned strain rates and temperatures. Also, the improvement in formability of the materials was evaluated at an elevated temperature of 623 K in terms of cup height and maximum safe strains by conducting cylindrical cup deep drawing experiments under two different punch speeds of 4 and 400 mm/min. The cup heights increased during warm deep drawing due to thermal softening and increase in failure strains. Also, a small reduction in cup height was observed when the punch speed increased from 4 to 400 mm/min at 623 K. Hence, it was suggested to use high-speed deformation at elevated temperature to reduce both punch load and cycle time during the deep drawing process.

  15. Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kurmanaeva, Lilia, E-mail: lkurmanaeva@ucdavis.com [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Topping, Troy D. [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); California State University, Sacramento, 6000 J Street, Sacramento, CA 95819 (United States); Wen, Haiming; Sugahara, Haruka; Yang, Hanry; Zhang, Dalong; Schoenung, Julie M.; Lavernia, Enrique J. [Department of Chemical Engineering & Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2015-05-25

    Highlights: • Ultra-fine and coarse grained Al–Cu–Mg–Ag alloy samples were processed by methods of powder metallurgy. • Despite thermal exposure during consolidation,cryomilled materials retain an ultra-fine grained structure due to the presence of nano-dispersoids at grain boundaries. • Cryomilling results in a change in precipitation kinetics, due to the depletion of Mg atoms at the grain interiors and segregation of Mg, Cu and Ag atoms at grain boundaries. • Dominant deformation mechanisms in cryomilled samples were grain boundary strengthening and dispersion strengthening from oxides and nitrides. - Abstract: In the last decade, the commercially available heat-treatable aluminum alloy (AA) 2139 (Al–Cu–Mg–Ag) has generated interest within the aerospace and defense communities because of its high strength and damage tolerance as compared to those of other AA 2XXX alloys. In this work we investigate the possibility of enhancing the performance of AA 2139 via a nanostructuring approach involving the consolidation of cryomilled powders. For comparison purposes, two types of feedstock powders (cryomilled and unmilled, gas-atomized powder), were consolidated via dual mode dynamic forging. Our results show that, following heat treatment (HT), the strength of the cryomilled material increases in the range of ∼25% to ∼200% relative to that of the unmilled counterparts, depending on specific processing parameters. We present microstructural data, including grain size and precipitate chemistry, to provide insight into the underlying strengthening mechanisms. Vickers microhardess tests are used to evaluate peak heat treatments, and tensile testing is performed to characterize mechanical behavior. The kinetics of precipitation, strengthening mechanisms and deformation behavior are discussed. It is proposed that the combination of elemental segregation with the presence of oxides along grain boundaries, both facilitated by enhanced diffusion paths, are

  16. Tensile behavior of orthorhombic alpha ''-titanium alloy studied by in situ X-ray diffraction

    DEFF Research Database (Denmark)

    Wang, X.D.; Lou, H.B.; Ståhl, Kenny

    2010-01-01

    are indeed due to a low stress yielding (similar to 400 MPa) followed with a significant work-hardening before necking and fracture. In this process, the [0 2 2] orientation of grains more approaches the tensile direction and the [2 0 0] moves to the transverse, causing the lattice parameter a to be shrunk...

  17. Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints

    International Nuclear Information System (INIS)

    Heidarzadeh, A.; Khodaverdizadeh, H.; Mahmoudi, A.; Nazari, E.

    2012-01-01

    Highlights: ► Range of parameters for defect-free friction stir welded AA 6061-T4 was reached. ► A model was developed for predicting UTS and EL of friction stir welded AA 6061-T4. ► The maximum values of UTS and EL of joints were estimated by developed model. ► The optimum values of FSW process parameters were determined. -- Abstract: In this investigation response surface methodology based on a central composite rotatable design with three parameters, five levels and 20 runs, was used to develop a mathematical model predicting the tensile properties of friction stir welded AA 6061-T4 aluminum alloy joints at 95% confidence level. The three welding parameters considered were tool rotational speed, welding speed and axial force. Analysis of variance was applied to validate the predicted model. Microstructural characterization and fractography of joints were examined using optical and scanning electron microscopes. Also, the effects of the welding parameters on tensile properties of friction stir welded joints were analyzed in detail. The results showed that the optimum parameters to get a maximum of tensile strength were 920 rev/min, 78 mm/min and 7.2 kN, where the maximum of tensile elongation was obtained at 1300 rev/min, 60 mm/min and 8 kN.

  18. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping

    Directory of Open Access Journals (Sweden)

    Hoyeol Kim

    2017-11-01

    Full Text Available AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM and energy disperse X-ray spectrometry (EDS. Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.

  19. Stored energy and annealing behavior of heavily deformed aluminium

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Kondo, Yuka

    2012-01-01

    It has been demonstrated in previous work that a two-step annealing treatment, including a low-temperature, long-time annealing and a subsequent high-temperature annealing, is a promising route to control the microstructure of a heavily deformed metal. In the present study, structural parameters...... are quantified such as boundary spacing, misorientation angle and dislocation density for 99.99% aluminium deformed by accumulative roll-bonding to a strain of 4.8. Two different annealing processes have been applied; (i) one-step annealing for 0.5 h at 100-400°C and (ii) two-step annealing for 6 h at 175°C...... followed by 0.5 h annealing at 200-600°C, where the former treatment leads to discontinuous recrystallization and the latter to uniform structural coarsening. This behavior has been analyzed in terms of the relative change during annealing of energy stored as elastic energy in the dislocation structure...

  20. Cyclic deformation behavior of steels and light-metal alloys

    International Nuclear Information System (INIS)

    Walther, Frank; Eifler, Dietmar

    2007-01-01

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy

  1. Cyclic deformation behavior of steels and light-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Frank [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)], E-mail: walther@mv.uni-kl.de; Eifler, Dietmar [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)

    2007-11-15

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy.

  2. Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China); Wang, F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, H.; Yu, B.D. [China Railway Shanhaiguan Bridge Group Co. LTD, Qinhuangdao 066205 (China)

    2017-01-02

    The microstructures and tensile behaviors of traditional Hadfield steel, named Mn12 steel, and Hadfield steel alloyed with N+Cr, named Mn12CrN steel were studied through optical microscopy, transmission electron microscopy, and scanning electron microscopy, among others. Three different tensile strain rates of 5×10{sup −4}, 5×10{sup −3}, and 5×10{sup −2} s{sup −1} were selected in the tensile test. The deformation microstructures and fracture morphologies of the two steels after fracture in the tensile test were observed to analyze the tensile deformation response to different tensile strain rates. Results showed that the grain size of Mn12CrN steel was evidently refined after alloying with N+Cr. The grain would not become abnormally coarse even with increasing austenitizing temperature. During tensile deformation, the strength and plasticity of Mn12CrN steel were superior to those of Mn12 steel at the same strain rate. With increasing the strain rate, the changes in strength and plasticity of Mn12CrN steel were less sensitive to tensile strain rate compared with Mn12 steel. The effects of grain refinement and N+Cr alloying on dynamic strain aging and deformation twining behaviors were responsible for this lack of sensitivity to strain rate.

  3. Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel

    International Nuclear Information System (INIS)

    Chen, C.; Zhang, F.C.; Wang, F.; Liu, H.; Yu, B.D.

    2017-01-01

    The microstructures and tensile behaviors of traditional Hadfield steel, named Mn12 steel, and Hadfield steel alloyed with N+Cr, named Mn12CrN steel were studied through optical microscopy, transmission electron microscopy, and scanning electron microscopy, among others. Three different tensile strain rates of 5×10 −4 , 5×10 −3 , and 5×10 −2 s −1 were selected in the tensile test. The deformation microstructures and fracture morphologies of the two steels after fracture in the tensile test were observed to analyze the tensile deformation response to different tensile strain rates. Results showed that the grain size of Mn12CrN steel was evidently refined after alloying with N+Cr. The grain would not become abnormally coarse even with increasing austenitizing temperature. During tensile deformation, the strength and plasticity of Mn12CrN steel were superior to those of Mn12 steel at the same strain rate. With increasing the strain rate, the changes in strength and plasticity of Mn12CrN steel were less sensitive to tensile strain rate compared with Mn12 steel. The effects of grain refinement and N+Cr alloying on dynamic strain aging and deformation twining behaviors were responsible for this lack of sensitivity to strain rate.

  4. Deformation behavior of UO2 at temperatures above 24000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1978-08-01

    An experimental system was developed for measuring the high-temperature creep rates of ceramic nuclear fuels to temperatures near their melting points. The results of a series of experiments carried out on UO 2 at temperatures above 2400 0 C are reported. The strain rate was found to be proportional to the 5.7 power of the stress while activation energies ranged from 250 to 340 Kcal/mole. An expression for describing the primary creep was derived from the initial time dependence of the deformation after stress application. A technique for studying the hot pressing behavior at 2580 0 C was devised but no definitive results were obtained from the first series of experiments. An empirical relationship is proposed for calculating the creep rates at very high temperatures

  5. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  6. Modeling and simulation of deformation and fracture behavior of components made of fully lamellar {gamma}TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Mohammad Rizviul [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-07-01

    The present work deals with the modeling and simulation of deformation and fracture behavior of fully lamellar {gamma}TiAl alloy; focusing on understanding the variability of local material properties and their influences on translamellar fracture. Afracture model has been presented that takes the inhomogeneity of the local deformation behavior of the lamellar colonies as well as the variability in fracture strength and toughness into consideration. To obtain the necessary model parameters, a hybrid methodology of experiments and simulations has been adopted. The experiments were performed at room temperature that demonstrates quasi-brittle response of the TiAl polycrystal. Aremarkable variation in stress-strain curves has been found in the tensile tests. Additional fracture tests showed significant variations in crack initiation and propagation during translamellar fracture. Analyzing the fracture surfaces, the micromechanical causes of these macroscopic scatter have been explained. The investigation shows that the global scatter in deformation and fracture response is highly influenced by the colony orientation and tilting angle with respect to the loading axis. The deformation and fracture behavior have been simulated by a finite element model including the material decohesion process described by a cohesive model. In order to capture the scatter of the macroscopic behavior, a stochastic approach is chosen. The local variability of stressstrain in the polycrystal and the variability of fracture parameters of the colonies are implemented in the stochastic approach of the cohesive model. It has been shown that the proposed approach is able to predict the stochastic nature of crack initiation and propagation as observed from the experiments. The global specimen failure with stable or unstable crack propagation can be explained in terms of the local variation of material properties. (orig.)

  7. Effect of hydrogen on transformation characteristics and deformation behavior in a Ti-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Ando, Hiroei; Den, Shoji; Katsuta, Hiroshi.

    1992-01-01

    Transformation characteristics and deformation behavior of hydrogenated Ti-50.5 at% Ni alloys, which were occluded in a low pressure range of hydrogen between 1.1 and 78.5 kPa, have been studied by electrical resistivity measurement, tensile test, X-ray diffraction analysis and microstructural observation. M S temperature of the Ti-Ni alloys decreased with an increase in hydrogen content. This corresponds to the stabilization of the parent phase during cooling, which was confirmed by X-ray diffraction: The suppression effect of hydrogen takes place on the martensitic transformation. Critical stress for slip deformation of hydrogenated Ti-Ni alloys changed with hydrogen content and thus hydrogen had a major influence on deformation behavior of those alloys. With hydrogen contents above 0.032 mol%, hardening was distinguished from softening which was pronounced in the contents from 0 to 0.032 mol% H. Hydrides were formed in hydrogen contents over 1.9 mol%. The hydride formation results in the reorientation in variants of the R phase and increase in the lattice strains of the parent phase. (author)

  8. Effect of cold work on tensile behavior of irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1986-01-01

    Tensile specimens were irradiated in ORR at 250, 290, 450, and 500 0 C to produce a displacement damage of approx.5 dpa and 40 at. ppM He. Irradiation at 250 and 290 0 C caused an increase in yield stress and ultimate tensile strength and a decrease in ductility relative to unaged and thermally aged controls. The changes were greatest for the 20%-cold-worked steel and lowest for the 50%-cold-worked steel. Irradiation at 450 0 C caused a slight relative decrease in strength for all cold-worked conditions. A large decrease was observed at 500 0 C, with the largest decrease occurring for the 50%-cold-worked specimen. No bubble, void, or precipitate formation was observed for specimens examined by transmission electron microscopy (TEM). The irradiation hardening was correlated with Frank-loop and ''black-dot'' loop damage. A strength decrease at 500 0 C was correlated with dislocation network recovery. Comparison of tensile and TEM results from ORR-irradiated steel with those from steels irradiated in the High Flux Isotope Reactor and the Experimental Breeder Reactor indicated consistent strength and microstructure changes

  9. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    Science.gov (United States)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2018-01-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  10. Tensile Properties and Fracture Behavior of a Powder-Thixoformed 2024Al/SiCp Composite at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Pubo Li

    2017-10-01

    Full Text Available In the present work, the tensile properties and fracture behavior of a 2024Al composite reinforced with 10 vol % SiCp and fabricated via powder thixoforming (PT were studied at temperatures ranging from 25 °C to 300 °C with a strain rate of 0.05 s−1, as well as the PT 2024 alloy. The results indicated that the tensile strengths of both the PT materials were all decreased with increasing the temperature, but the decrease rate of the composite was smaller than that of the 2024 alloy, and the composite exhibited higher tensile strength than that of the 2024 alloy at all of the employed testing temperatures due to the strengthening role of SiCp. Increasing temperature was beneficial for enhancing the ductility of materials, and the maximum elongation was reached at 250 °C. The elongation decrease over 250 °C was attributed to the cavity formation due to the debonding of the SiCp/Al interface and the fracturing of the matrix between SiCp. The fracture of the composite at room temperature initiated from the fracture of SiCp and the debonding of the SiCp/Al interface, but that at high temperatures was dominated by void nucleation and growth in the matrix besides the interface debonding.

  11. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Chowdhury, S.M.; Chen, D.L.; Bhole, S.D.; Cao, X.; Powidajko, E.; Weckman, D.C.; Zhou, Y.

    2010-01-01

    Microstructures, tensile properties and work hardening behavior of double-sided arc welded (DSAWed) and friction stir welded (FSWed) AZ31B-H24 magnesium alloy sheet were studied at different strain rates. While the yield strength was higher, both the ultimate tensile strength and ductility were lower in the FSWed samples than in the DSAWed samples due to welding defects present at the bottom surface in the FSWed samples. Strain-hardening exponents were evaluated using the Hollomon relationship, the Ludwik equation and a modified equation. After welding, the strain-hardening exponents were nearly twice that of the base metal. The DSAWed samples exhibited stronger strain-hardening capacity due to the larger grain size coupled with the divorced eutectic structure containing β-Mg 17 Al 12 particles in the fusion zone, compared to the FSWed samples and base metal. Kocks-Mecking type plots were used to show strain-hardening stages. Stage III hardening occurred after yielding in both the base metal and the welded samples. At lower strains a higher strain-hardening rate was observed in the base metal, but it decreased rapidly with increasing net flow stress. At higher strains the strain-hardening rate of the welded samples became higher, because the recrystallized grains in the FSWed and the larger re-solidified grains coupled with β particles in the DSAWed provided more space to accommodate dislocation multiplication during plastic deformation. The strain-rate sensitivity evaluated via Lindholm's approach was observed to be higher in the base metal than in the welded samples.

  12. Deformation behavior of cell spring of an irradiated spacer grid

    International Nuclear Information System (INIS)

    Jin, Y. G.; Baek, S. J.; Ryu, W. S.; Kim, G. S.; Yoo, B. O.; Kim, D. S.; Ahn, S. B.; Chun, Y. B.; Choo, Y. S.

    2012-01-01

    Mechanical properties of a space grid of a fuel assembly are of great importance for fuel operation reliability in extended fuel burnup and duration of fuel life. The spacer grid with inner and outer straps has cell spring and dimples, which are in contact with the fuel rod. The spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow and also grid spring force is decreasing under irradiation. This reduction of contact force might cause the grid to rod fretting wear. The fretting failure of the fuel rod is one of the significant issues recently in the nuclear industry from an economical as well as a safety concern. Thus, it is important to understand the characteristics of cell spring behavior for an irradiated spacer grid. In the present study, the stiffness test and dimensional measurement of cell springs were conducted to investigate the deformation behavior of cell springs of an irradiated spacer grid in a hot cell at IMEF (irradiated materials examination facility) of KAERI

  13. Experimental studies on the dynamic tensile behavior of Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy with Widmanstatten microstructure at elevated temperatures

    International Nuclear Information System (INIS)

    Gong Xuhui; Wang Yu; Xia Yuanming; Ge Peng; Zhao Yongqing

    2009-01-01

    The tensile behavior of a newly developed Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy, referred as TC21, is investigated at temperatures ranging from 298 to 1023 K and under constant strain rate loadings ranging from 0.001 to 1270 s -1 . The results show that temperature and strain rate have significant effects on the tensile behavior of the material. At low strain rates of 0.001 and 0.05 s -1 , a discontinuity is found in the yield stress-temperature curve. And the discontinuity temperature increases with increasing strain rate. The analysis of temperature and strain rate dependence of unstable strain indicates a high-velocity-ductility phenomenon at elevated temperatures. Scanning electron microscope (SEM) analysis shows that the material is broken in a mixture manner of ductile fracture and intergranular fracture under low strain rates at room temperature, while the fracture manner changes to totally ductile fracture under other testing conditions. The width and depth of ductile dimples increase with increasing temperature. No adiabatic shear band is found in the tensile deformation of the material.

  14. Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure

    Science.gov (United States)

    Xu, C.; Fan, G. H.; Nakata, T.; Liang, X.; Chi, Y. Q.; Qiao, X. G.; Cao, G. J.; Zhang, T. T.; Huang, M.; Miao, K. S.; Zheng, M. Y.; Kamado, S.; Xie, H. L.

    2018-02-01

    An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via forced-air cooling and an artificial aging treatment. A superior strength-ductility balance was obtained that had a tensile yield strength of 466 MPa and an elongation to failure of 14.5 pct. The local strain evolution during the in situ testing of the ultra-strong and ductile alloy was quantitatively analyzed with high-resolution electron backscattered diffraction and digital image correlation. The fracture behavior during the tensile test was characterized by synchrotron X-ray tomography along with SEM and STEM observations. The alloy showed a bimodal microstructure, consisting of dynamically recrystallized (DRXed) grains with random orientations and elongated hot-worked grains with parallel to the extrusion direction. The DRXed grains were deformed by the basal slip and the hot-worked grains were deformed by the prismatic slip dominantly. The strain evolution analysis indicated that the multilayered structure relaxed the strain localization via strain transfer from the DRXed to the hot-worked regions, which led to the high ductility of the alloy. Precipitation of the γ' on basal planes and the β' phases on the prismatic planes of the α-Mg generated closed volumes, which enhanced the strength by pinning dislocations effectively, and contributed to the high ductility by impeding the propagation of micro-cracks inside the grains. The deformation incompatibility between the hot-worked grains and the arched block-shaped long-period stacking ordered (LPSO) phases induced the crack initiation and propagation, which fractured the alloy.

  15. Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gadaud, Pascal; Caccuri, Vincenzo; Bertheau, Denis [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France); Carr, James [HMXIF, Materials Science Centre, The University of Manchester, M13 9PL (United Kingdom); Milhet, Xavier, E-mail: xavier.milhet@ensma.fr [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France)

    2016-07-04

    Silver pastes sintering is a potential candidate for die bonding in power electronic modules. The joints, obtained by sintering, exhibit a significant pore fraction thus reducing the density of the material compared to bulk silver. This was shown to alter drastically the mechanical properties (Young's modulus, yield strength and ultimate tensile stress) at room temperature. While careful analysis of the microstructure has been reported for the as-sintered material, little is known about its quantitative evolution (pores and grains) during thermal ageing. To address this issue, sintered bulk specimens and sintered joints were aged either under isothermal conditions (125 °C up to 1500 h) or under thermal cycling (between −40 °C/+125 °C with 30 min dwell time at each temperature for 2400 cycles). Under these conditions, it is shown that the density of the material does not change but the sub-micron porosity evolves towards a broader size distribution, consistent with Oswald ripening. It is also shown that only the step at 125 °C during the non-isothermal ageing is responsible for the microstructure evolution: isothermal ageing at high temperature can be regarded as a useful tool to perform accelerated ageing tests. Tensile properties are investigated as both a function of ageing time and a function of density. It is shown that the elastic properties do not evolve with the ageing time unlike the plastic properties. This is discussed as a function of the material microstructure evolution.

  16. Tensile behavior of Cu50Zr50 metallic glass nanowire with a B2 crystalline precipitate

    Science.gov (United States)

    Sepulveda-Macias, Matias; Amigo, Nicolas; Gutierrez, Gonzalo

    2018-02-01

    A molecular dynamics study of the effect of a single B2-CuZr precipitate on the mechanical properties of Cu50Zr50 metallic glass nanowires is presented. Four different samples are considered: three with a 2, 4 and 6 nm radii precipitate and a precipitate-free sample. These systems are submitted to uniaxial tensile test up to 25% of strain. The interface region between the precipitate and the glass matrix has high local atomic shear strain, activating shear transformation zones, which concentrates in the neighborhood of the precipitate. The plastic regime is dominated by necking, and no localized shear band is observed for the samples with a 4 and 6 nm radii precipitate. In addition, the yield stress decreases as the size of the precipitate increases. Regarding the precipitate structure, no martensitic phase transformation is observed, since neither the shear band hit the precipitate nor the stress provided by the tensile test is enough to initiate the transformation. It is concluded that, in contrast to the case when multiple precipitates are present in the sample, a single precipitate concentrates the shear strain around its surface, eventually causing the failure of the nanowire.

  17. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction

    International Nuclear Information System (INIS)

    Oddershede, Jette; Camin, Bettina; Schmidt, Søren; Mikkelsen, Lars P.; Sørensen, Henning Osholm; Lienert, Ulrich; Poulsen, Henning Friis; Reimers, Walter

    2012-01-01

    The stress field around a notch in a coarse grained Mg AZ31 sample has been measured under tensile load using the individual grains as probes in an in situ high energy synchrotron diffraction experiment. The experimental set-up, a variant of three-dimensional X-ray diffraction microscopy, allows the position, orientation and full stress tensor of each illuminated grain to be determined and, hence, enables the study of evolving stress fields in coarse grained materials with a spatial resolution equal to the grain size. Grain resolved information like this is vital for understanding what happens when the traditional continuum mechanics approach breaks down and fracture is governed by local heterogeneities (e.g. phase or stress differences) between grains. As a first approximation the results obtained were averaged through the thickness of the sample and compared with an elastic–plastic continuum finite element simulation. It was found that a full three-dimensional simulation was required to account for the measured transition from the overall plane stress case away from the notch to the essentially plane strain case observed near the notch tip. The measured and simulated stress contours were shown to be in good agreement except at the highest applied load, at which stress relaxation at the notch tip was observed in the experimental data. This stress relaxation is attributed to the initiation and propagation of a crack. Finally, it was demonstrated that the measured lattice rotations could be used as a qualitative measure of the shape and extent of the plastic deformation zone.

  18. The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites

    International Nuclear Information System (INIS)

    Shadlou, Shahin; Ahmadi-Moghadam, Babak; Taheri, Farid

    2014-01-01

    Highlights: • The epoxy/graphene nanocomposites were studied at various strain rates. • The variations in constitutive stress–strain response were scrutinized. • Positive reinforcing attributes of graphene diminished at higher strain rates. • Graphene particles have higher efficiency under compression loading than tension. • A new modification factor for Halpin–Tsai model was proposed. - Abstract: The effect of strain rate on the mechanical behavior of epoxy reinforced with graphene nanoplatelets (GNPs) is investigated. Nanocomposites containing various amounts of GNP are prepared and tested at four different strain rates (0.01, 0.1, 1 and 10/s) under compressive and tensile loading regimes. The results show that incorporation of GNP highly affects the behavior of epoxy. The fracture surfaces of tensile specimens are also investigated using scanning electron microscopy (SEM) to discern the surface features and dispersion state of GNP. Finally, the predictive capability of some of the available models for evaluating the strength of nanocomposites are assessed and compared against the experimental results. Moreover, a modification factor to the widely used Halpin–Tsai model is proposed to improve the accuracy of the model when evaluating the Young’s modulus of nanocomposites at various strain rates

  19. Quantitative research on microscopic deformation behavior of Ti-6Al-4V two-phase titanium alloy based on finite element method

    Science.gov (United States)

    Peng, Yan; Chen, Guoxing; Sun, Jianliang; Shi, Baodong

    2018-04-01

    The microscopic deformation of Ti-6Al-4V titanium alloy shows great inhomogeneity due to its duplex-microstructure that consists of two phases. In order to study the deformation behaviors of the constituent phases, the 2D FE model based on the realistic microstructure is established by MSC.Marc nonlinear FE software, and the tensile simulation is carried out. The simulated global stress-strain response is confirmed by the tensile testing result. Then the strain and stress distribution in the constituent phases and their evolution with the increase of the global strain are analyzed. The results show that the strain and stress partitioning between the two phases are considerable, most of the strain is concentrated in soft primary α phase, while hard transformed β matrix undertakes most of the stress. Under the global strain of 0.05, the deformation bands in the direction of 45° to the stretch direction and the local stress in primary α phase near to the interface between the two phases are observed, and they become more significant when the global strain increases to 0.1. The strain and stress concentration factors of the two phases are obviously different at different macroscopic deformation stages, but they almost tend to be stable finally.

  20. The deformation behavior of the cervical spine segment

    Science.gov (United States)

    Kolmakova, T. V.; Rikun, Yu. A.

    2017-09-01

    The paper describes the model of the cervical spine segment (C3-C4) and the calculation results of its deformation behavior at flexion. The segment model was built based on the experimental literature data taking into account the presence of the cortical and cancellous bone tissue of vertebral bodies. Degenerative changes of the intervertebral disk (IVD) were simulated through a reduction of the disc height and an increase of Young's modulus. The construction of the geometric model of the cervical spine segment and the calculations of the stress-strain state were carried out in the ANSYS software complex. The calculation results show that the biggest protrusion of the IVD in bending direction of segment is observed when IVD height is reduced. The disc protrusion is reduced with an increase of Young's modulus. The largest protrusion in the direction of flexion of the segment is the intervertebral disk with height of 4.3 mm and elastic modulus of 2.5 MPa. The results of the study can be useful to specialists in the field of biomechanics, medical materials science and prosthetics.

  1. Effect of heat treatment on the elevated temperature tensile and fracture toughness behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1980-05-01

    The effect of heat treatment on the tensile and fracture toughness properties of Alloy 718 weldments was characterized at room temperature and elevated temperatures. The two heat treatments employed during this investigation were the convectional (ASTM A637) precipitation treatment and a modified treatment designed to improve the toughness of Alloy 718 welds. Weldments were also examined in the as-welded condition. The fracture toughness behavior of the Alloy 718 weldments was determined at 24, 427 and 538 degree C using both linear-elastic (K Ic ) and elastic-plastic (J Ic ) fracture mechanics concepts. Metallographic and electron fractographic examination of Alloy 718 weld fracture surfaces revealed that differences in fracture toughness behavior for the as-welded, conventional and modified conditions were associated with variations in the weld microstructure. 28 refs., 16 figs., 4 tabs

  2. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  3. Facile Synthesis and Tensile Behavior of TiO2 One-Dimensional Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Shu-you

    2009-01-01

    Full Text Available Abstract High-yield synthesis of TiO2 one-dimensional (1D nanostructures was realized by a simple annealing of Ni-coated Ti grids in an argon atmosphere at 950 °C and 760 torr. The as-synthesized 1D nanostructures were single crystalline rutile TiO2 with the preferred growth direction close to [210]. The growth of these nanostructures was enhanced by using catalytic materials, higher reaction temperature, and longer reaction time. Nanoscale tensile testing performed on individual 1D nanostructures showed that the nanostructures appeared to fracture in a brittle manner. The measured Young’s modulus and fracture strength are ~56.3 and 1.4 GPa, respectively.

  4. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    International Nuclear Information System (INIS)

    Bang, Hyejin; Cho, Chongdu

    2017-01-01

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  5. Failure behavior / characteristics of fabric reinforced polymer matrix composite and aluminum6061 on dynamic tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyejin; Cho, Chongdu [Inha University, Incheon (Korea, Republic of)

    2017-08-15

    Composite materials are composed of multiple types of materials as reinforcement and matrix. Among them, CFRP (Carbon fiber reinforced polymer) is widely used materials in automotive and defense industry. Carbon fibers are used as a reinforcement, of which Young's modulus is in a prepreg form. In automotive industry, especially, high strain rate test is needed to measure dynamic properties, used in dynamic analysis like high inertia included simulation as a car crash. In this paper, a SHTB (Split Hopkinson tensile bar) machine is employed for estimating stress-strain curve under dynamic load condition on aluminum 6061 and CFRP. The strain rate range is about from 100 /s to 1000 /s and the number of prepreg layers of composite specimen is total eight plies which are stacked symmetrically to structure CFRP. As a result, stress / strain point data are obtained and used for simulation into stacked composites.

  6. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  7. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    International Nuclear Information System (INIS)

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-01-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ X-ray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 °C, while the screw type dislocations dominate at 600 °C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 °C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 °C may be explained by the activated cross slip of screw segments. - Highlights: • The tensile deformation of 9Cr ODS steel was studied by synchrotron irradiation. • The evolution of internal mean stress was calculated. • The evolution of dislocation character was determined by best-fit method. • Edge type dominates plasticity at RT and 300 °C, while screw type dominates at 600 °C.

  8. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing, Beijing 100083 (China); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Miao, Yinbin; Liu, Xiang [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States)

    2015-12-15

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ X-ray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 °C, while the screw type dislocations dominate at 600 °C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 °C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 °C may be explained by the activated cross slip of screw segments. - Highlights: • The tensile deformation of 9Cr ODS steel was studied by synchrotron irradiation. • The evolution of internal mean stress was calculated. • The evolution of dislocation character was determined by best-fit method. • Edge type dominates plasticity at RT and 300 °C, while screw type dominates at 600 °C.

  9. Nano-deformation behavior of silicon (100) film studied by depth sensing indentation and nanoscratch technique

    Science.gov (United States)

    Geetha, D.; Pratyank, R.; Kiran, P.

    2018-04-01

    Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.

  10. Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing

    International Nuclear Information System (INIS)

    Kim, J.G.; Hong, S.; Anjabin, N.; Park, B.H.; Kim, S.K.; Chin, K.-G.; Lee, S.; Kim, H.S.

    2015-01-01

    The dynamic strain aging (DSA) of metallic materials due to solute atom diffusion to mobile dislocations induce deformation instability with load fluctuations and deformation localizations, hence reducing their sheet formability. In this paper, DSA behaviors of twinning induced plasticity (TWIP) steel with and without Al during tensile testing and deep drawing are investigated in terms of strain localization and the Portevin-Le Chatelier (PLC) band. A theoretical DSA model with internal variables of dislocation density and twin volume fraction is presented for an estimation of strain localization and strain hardening behavior of TWIP steels. The simulation results of the load history and PLC bands during tensile testing and deep drawing are in good agreement with the experimental values. A serration behavior is observed in high-Mn TWIP steels and its tensile residual stress is higher than that in the Al-added TWIP steels, which results in a deformation crack or delayed fracture of deep drawn specimens

  11. Load transfer issues in the tensile and compressive behavior of multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Shen, G.A.; Namilae, S.; Chandra, N.

    2006-01-01

    Carbon nanotubes (CNT) are considered to be ultra strong and stiff reinforcements for structural composite applications. The load transfer between the inner and outer nanotubes in multiwall carbon nanotubes (MWCNT) has to be clearly understood to realize their potential in not only composites, but also other applications such as nano-springs and nano-bearings. In this paper, we study the load transfer between the walls of multiwall nanotubes both in tension and compression using molecular dynamics simulations. It is found that very minimal load is transferred to the inner nanotube during tension. The load transfer in compression of capped nanotubes is much greater than that in tension. In the case of uncapped nanotubes, the inner nanotube is deformed in bending, only after the outer nanotube is extensively deformed by buckling. It is found that the presence of a few interstitial atoms between the walls of multiwall nanotube can improve the stiffness and enhance the load transfer to the inner nanotubes both in tension and compression

  12. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    Science.gov (United States)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  13. Tensile behavior of porous scaffolds made from poly(para phenylene) - biomed 2013.

    Science.gov (United States)

    Dirienzo, Amy L; Yakacki, Christopher M; Safranski, David L; Frick, Carl P

    2013-01-01

    The goal of this study was to fabricate and mechanically characterize a high-strength porous polymer scaffold for potential use as an orthopedic device. Poly(para-phenylene) (PPP) is an excellent candidate due to its exceptional strength and stiffness and relative inertness, but has never been explicitly investigated for use as a biomedical device. PPP has strength values 3 to 10 times higher and an elastic modulus nearly an order of magnitude higher than traditional polymers such as poly(methyl methacrylate) (PMMA), polycaprolactone (PCL), ultra-high molecular weight polyethylene (UHMWPE), and polyurethane (PU) and is significantly stronger and stiffer than polyetheretherketone (PEEK). By utilizing PPP we can overcome the mechanical limitations of traditional porous polymeric scaffolds since the outstanding stiffness of PPP allows for a highly porous structure appropriate for osteointegration that can match the stiffness of bone (100-250 MPa), while maintaining suitable mechanical properties for soft-tissue fixation. Porous samples were manufactured by powder sintering followed by particle leaching. The pore volume fraction was systematically varied from 50–80 vol% for a pore sizes from150-500 µm, as indicated by previous studies for optimal osteointegration. The tensile modulus of the porous samples was compared to the rule of mixtures, and closely matches foam theory up to 70 vol%. The experimental modulus for 70 vol% porous samples matches the stiffness of bone and contains pore sizes optimal for osteointegration.

  14. Characterizing volumetric deformation behavior of naturally occuring bituminous sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2009-05-01

    Full Text Available newly proposed hydrostatic compression test procedure. The test procedure applies field loading conditions of off-road construction and mining equipment to closely simulate the volumetric deformation and stiffness behaviour of oil sand materials. Based...

  15. Fracture behavior and deformation mechanisms under fast neutron irradiation

    International Nuclear Information System (INIS)

    Boutard, J.L.; Dupouy, J.M.

    1980-09-01

    We have established the out-of-pile and in-pile deformation mechanism maps of a 316 stainless steel irradiated in a fast reactor. The knowledge of the dominating deformation mechanism either in post irradiation creep experiments or during the in-pile steady state operating conditions allows to rationalize the apparent discrepancy between the very low out-of-pile ductility and the rather high plastic diametral strains which are obtained in the fast reactor environment without fracture

  16. Tensile deformations in mono- and polycrystalline uranium between 20 deg. C and -196 deg. C; Deformation par traction de l'uranium mono- et polycristallin entre 20 deg. C et -196 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Lemogne, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    Tensile stress tests been carried out at low temperatures (between 20 C and -196 C) on monocrystalline and polycrystalline uranium of various purities. The mechanical properties of the monocrystals have been related, at all temperatures, to plastic flow mechanisms. Below -100 C brittle fracture occurs on the planes making up the twins. A detailed study of the plastic behaviour at -196 C has made it possible to show that all the twin planes except the [176] plane were liable to become privileged planes for brittle fracture. The mechanical properties of the polycrystals, the breaking stress and the elongation at breaking point, decrease as the temperature decreases from 20 to -196 C; they undergo a transition however - not to be confused with the ductile-brittle transition - whose position and strength depend on the grain size and on the purity. It has been verified also that Petch's law is approximately applicable to the plastic flow and rupture stresses; a study has also been made of the influence of temperature and purity on the constants occurring in this equation. Finally, experiments at -196 C on the deformation up to breaking point of polycrystalline samples cold-worked at 20 C have shown the importance of the role played by intergranular cracks in the plastic behaviour of uranium. (author) [French] Des essais de traction ont ete realises a basse temperature (entre 20 C et -196 C, sur des monocristaux et des polycristaux d'uranium de differentes puretes. Les proprietes mecaniques des monocristaux ont ete reliees, a toutes temperatures, aux mecanismes d'ecoulement plastique. Une rupture fragile intervient a partir de -100 C sur les plans de composition de macle. L'etude detaillee du comportement plastique a -196 C a permis de preciser que tous les plans de macle, sauf [176], etaient susceptibles de devenir des plans de rupture fragile privilegies. Les proprietes mecaniques des polycristaux, contrainte de rupture et allongement a la rupture, decroissent quand on

  17. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  18. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.

    Science.gov (United States)

    Ching, W Y; Rulis, Paul; Misra, A

    2009-10-01

    We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.

  19. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  20. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel

    International Nuclear Information System (INIS)

    Li, Dejun; Feng, Yaorong; Song, Shengyin; Liu, Qiang; Bai, Qiang; Ren, Fengzhang; Shangguan, Fengshou

    2015-01-01

    Highlights: • Influence of Si on work hardening behavior of Fe–25 wt%Mn TWIP steel was investigated. • Influence of Si on hot deformation behavior of Fe–25 wt%Mn TWIP steel was studied. • Si blocks dislocation glide and favors mechanical twinning in Fe–25 wt%Mn TWIP steel. • The addition of Si increases the hot deformation activation energy of Fe–25 wt%Mn TWIP steel. • The addition of Si retards the nucleation and growth of DRX grains of Fe–25 wt%Mn TWIP steel. - Abstract: The influence of silicon on mechanical properties and hot deformation behavior of austenitic Fe–25 wt%Mn TWIP steel was investigated by means of the comparison research between 25Mn3Al and 25Mn3Si3Al steel. The results show that the 25Mn3Si3Al steel has higher yield strength and higher hardness than that of 25Mn3Al steel because of the solution strengthening caused by Si atoms and possesses higher uniform deformation ability and tensile strength than that of 25Mn3Al steel due to the higher work hardening ability of 25Mn3Si3Al steel. 25Mn3Si3Al steel presents a clear four-stage curve of work hardening rate in course of cold compression. Quite the opposite, the 25Mn3Al steel presents a monotonic decline curve of work hardening rate. The difference of the work hardening behavior between 25Mn3Al and 25Mn3Si3Al steel can be attributed to the decline of stacking fault energy (SFE) caused by the addition of 3 wt% Si. The dislocation glide plays an important role in the plastic deformation of 25Mn3Al steel even though the mechanical twinning is still one of the main deformation mechanisms. The 3 wt% Si added into the 25Mn3Al steel blocks the dislocation glide and promotes the mechanical twinning, and then the dislocation glide characteristics cannot be observed in cold deformed microstructure of 25Mn3Si3Al steel. The hot compression tests reveal that the hot deformation resistance of the 25Mn3Si3Al steel is significantly higher than that of the 25Mn3Al steel due to the solid

  1. Hot deformation behavior of austenite in HSLA-100 microalloyed steel

    International Nuclear Information System (INIS)

    Momeni, A.; Arabi, H.; Rezaei, A.; Badri, H.; Abbasi, S.M.

    2011-01-01

    Research highlights: → The flow stress is well fitted by the exponential constitutive equation. → The average value of apparent activation energy for hot deformation is 377 kJ mol -1 . → A yield point phenomenon is observed on flow curves at high temperatures. → The Avrami exponent is determined around unity for dynamic recrystallization. - Abstract: Dynamic recrystallization of austenite in the Cu-bearing HSLA-100 steel was investigated by hot compression testing at a temperature range of 850-1150 deg. C and a strain rate of 0.001-1 s -1 . The obtained flow curves at temperatures higher than 950 deg. C were typical of DRX while at lower temperatures the flow curves were associated with work hardening without any indication of DRX. At high temperatures, flow stress exhibited a linear relation with temperature while at temperatures below 950 deg. C the behavior changed to non-linear. Hence, the temperature of 950 deg. C was introduced as the T nr of the alloy. All the flow curves showed a yield point elongation like phenomenon which was attributed to the interaction of solute atoms, notably carbon, and moving dislocations. The maximum elongation associated with the yield point phenomenon was observed at about 950 deg. C. Since the maximum yield point elongation was observed about the calculated T nr , it was concluded that carbon atoms were responsible for it. It was also concluded that the temperature at which the yield point elongation reaches the maximum value increases as strain rate rises. The stress and strain of the characteristic points of DRX flow curves were successfully correlated to the Zener-Hollomon parameter, Z, by power-law equations. The constitutive exponential equation was found more precise than the hyperbolic sine equation for modeling the dependence of flow stress on Z. The apparent activation energy for DRX was determined as 377 kJ mol -1 . The kinetics of DRX was modeled by an Avrami-type equation and the Avrami's exponent was

  2. Deformation behavior of austenitic stainless steel at deep cryogenic temperatures

    Science.gov (United States)

    Han, Wentuo; Liu, Yuchen; Wan, Farong; Liu, Pingping; Yi, Xiaoou; Zhan, Qian; Morrall, Daniel; Ohnuki, Somei

    2018-06-01

    The nonmagnetic austenite steels are the jacket materials for low-temperature superconductors of fusion reactors. The present work provides evidences that austenites transform to magnetic martensite when deformation with a high-strain is imposed at 77 K and 4.2 K. The 4.2 K test is characterized by serrated yielding that is related to the specific motion of dislocations and phase transformations. The in-situ transmission electron microscope (TEM) observations in nanoscale reveal that austenites achieve deformation by twinning under low-strain conditions at deep cryogenic temperatures. The generations of twins, martensitic transformations, and serrated yielding are in order of increasing difficulty.

  3. Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bobbili, Ravindranadh, E-mail: ravindranadh@dmrl.drdo.in; Madhu, Vemuri

    2016-06-14

    In this study, Split hopkinson tension bar (SHTB) has been employed to investigate the dynamic tensile flow behavior of Ti-10-2-3 alloy at high strain rates and elevated temperatures. The combined effect of stress triaxiality, strain rate and temperature and on the tensile behavior of the alloy was evaluated. Johnson-Cook (J-C) constitutive and fracture models were developed based on high strain rate tensile data. A modified Johnson–Cook model was established and proved to have high accuracy. A comparative assessment has been done to confirm the accuracy of modified J–C model based on finite element method (FEM). The improved model provides better description on the influence of equivalent plastic strain rate and temperature on the plastic flow. The simulation results proved to be in good agreement with the experimental data. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  4. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    Science.gov (United States)

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  5. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  6. Ratchetting deformation behavior of modified 9Cr-1Mo steel and applicability of existing constitutive models

    International Nuclear Information System (INIS)

    Yaguchi, Masatsugu; Takahashi, Yukio

    2001-01-01

    A series of ratchetting deformation tests was conducted on modified 9Cr-1Mo steel at 550degC under uniaxial and multiaxial stress conditions. Ratchetting behavior depended on various parameters such as mean stress, stress/strain rate and those range, hold time and prior cyclic deformation. Under uniaxial conditions, untraditional ratchetting behavior was observed; the ratchetting deformation rate was the fastest when the stress ratio was equal to -1, while no ratchetting deformation was predicted by conventional constitutive models. In order to discuss the reason for this untraditional ratchetting behavior, a lot of monotonic compression tests were conducted and compared with tension data. The material showed a difference of deformation resistance of about 30 MPa between tension and compression at high strain rates. Furthermore, the authors' previous model and Ohno-Wang model were applied to the test conditions to evaluate their description capability for ratchetting behavior of the material. It was shown that the authors' model has a tendency to overestimate the ratchetting deformation and that the Ohno-Wang model has a tendency to underestimate the uniaxial ratchetting deformation at small stress rates. (author)

  7. Tensile properties of neutron irradiated 316Ti and 15-15Ti steels

    International Nuclear Information System (INIS)

    Fissolo, A.; Levy, V.; Seran, J.L.; Maillard, A.; Royer, J.; Rabouille, O.

    1992-01-01

    This paper deals with the tensile behavior of CW316Ti and CW15-15Ti Phenix fuel pin cladding. The tensile tests were conducted on defueled tubes irradiated up to 115 dpa 3 in the 400-640 deg C temperature range. Test temperature corresponds essentially to irradiation temperature. The results emphasize that although irradiation induces a reduction of ductility, failure always occurs with significant plastic deformation even for the most irradiated clads. (author). 15 refs., 12 figs., 1 tab

  8. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, N.R.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level...... in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength....

  9. Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior

    NARCIS (Netherlands)

    Sagis, L.M.C.; Linden, van der E.

    2001-01-01

    In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly

  10. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    Science.gov (United States)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  11. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    Science.gov (United States)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  12. Tensile and fracture behavior of boron and carbon modified Ti-15-3 alloys in aged conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R., E-mail: rajdeepsarkar@dmrl.drdo.in [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Ghosal, P.; Nandy, T.K. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Ray, K.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2016-02-22

    This work illustrates the effect of boron and carbon addition on the mechanical behavior of a beta Ti alloy, Ti–15V–3Cr–3Al–3Sn (Ti-15-3), in differently aged conditions. The alloys were prepared by consumable vacuum arc melting followed by forging and hot rolling. These were subsequently solution treated and aged at different temperatures above 500 °C for 8 h. Standard tensile and plane strain fracture toughness tests were carried out to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. Both the boron- and the carbon-containing alloys exhibit improved strength with comparable elongation to failure values as compared to the base Ti-15-3 alloy. The presence of TiB and TiC precipitates in a matrix of fine α with β results in lower fracture toughness (K{sub IC}) in the boron- and carbon-containing alloys as compared to the base alloy. However, at higher aging temperatures K{sub IC} improves due to more tortuous crack path because of the presence of coarse α-phase. An empirical relationship has been proposed correlating K{sub IC} with the volume fraction, size and interspacing of α in these alloys.

  13. Floating liquid bridge tensile behavior: Electric-field-induced Young's modulus measurements

    Science.gov (United States)

    Teschke, Omar; Mendez Soares, David; Valente Filho, Juracyr Ferraz

    2013-12-01

    A floating bridge is formed spontaneously when high voltage is applied to polar fluids in two capillary tubes that were in contact and then separated. This bridge bends under its own weight, and its bending profile was used to calculate its Young's modulus. For electric field intensities of ˜106 V/m, water bridges exhibit viscoelastic behavior, with Young's moduli of ˜24 MPa; dimethylsulfoxide (DMSO) bridges exhibited Young's moduli of ˜60 kPa. The scheme devised to measure the voltage drop across the water bridge for high voltages applied between the electrodes shows that the bulk water resistance decreases with increasing voltage.

  14. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    International Nuclear Information System (INIS)

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-01-01

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  15. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    Science.gov (United States)

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-11-01

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  16. Mesoscopic Modeling and Simulation of the Dynamic Tensile Behavior of Concrete

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Simone, A.; Sluys, L. J.

    2013-01-01

    of the most significant constitutive model parameters on global and local response. Different distributions and shapes of the aggregate grains are tested. Three model parameter sets, corresponding to different moisture conditions, are employed in the analysis of two specimens in which the applied loading rate......We present a two-dimensional mesoscopic finite element model for simulating the rate- and moisture-dependent material behavior of concrete. The idealized mesostructure consists of aggregate grains surrounded by an interfacial transition zone embedded in the bulk material. We examine the influence...

  17. Tensile flow and work-hardening behavior of a Ti-modified austenitic stainless steel

    International Nuclear Information System (INIS)

    Sivaprasad, P.V.; Venugopal, S.; Venkadesan, S.

    1997-01-01

    The flow-stress data of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel in the temperature range 300 to 1,023 K was analyzed in terms of Ludwigson and Voce equations. The parameters of these equations were critically examined with respect to the effect of Ti/C ratio and test temperature. It was found that the Ludwigson equation described the flow behavior adequately up to the test temperature of 923 K, whereas the Voce equation could be employed in the full temperature range. The peaks/plateaus observed in the variation of these parameters as a function of temperature in the intermediate temperature range have been identified as one of the manifestations of dynamic strain aging (DSA). Also, the variation of these parameters with temperature clearly could bring out the different domains of DSA observed in this alloy. The work-hardening analysis of the flow-stress data revealed that in the DSA regime, the onset of stage III hardening is athermal

  18. Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A.; Völkl, R.; Wanderka, N.; Glatzel, U.

    2013-12-01

    Microstructure evolution and tensile behavior of the high-entropy alloy Al8Co17Cr17Cu8Fe17Ni33 (at.%) are investigated at room temperature and at 500°C in the as-cast state and under different heat-treatment conditions. Detailed microstructural characterizations are carried out using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The equilibrium phase evolution as a function of temperature was calculated using the Thermo-Calc software (Thermo-Calc Software, Stockholm, Sweden) integrated with TTNi-7 database. The observed majority phase is a face-centered cubic solid solution for all tested specimens. Tensile ductility at room temperature and at elevated temperature is enhanced by heat treatment at 1150°C. An embrittlement phenomenon has been observed after a heat treatment at 700°C resulting in significant degradation in tensile properties.

  19. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    Science.gov (United States)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  20. Tensile behavior of RAFM alloys after neutron irradiation of up to 16.3 dpa between 250 and 450 °C

    Energy Technology Data Exchange (ETDEWEB)

    Materna-Morris, E., E-mail: edeltraud.materna-morris@kit.edu; Schneider, H.-C., E-mail: hans-christian.schneider@kit.edu; Möslang, A., E-mail: anton.moeslang@kit.edu

    2014-12-15

    Tensile specimen of steel EUROFER97 and other alloys on the basis of RAFM steels such, as OPTIFER and F82H alloys, and Ga3X were irradiated and post-examined during a neutron irradiation program of up to 16.3 dpa between 250 and 450 °C in the HFR (High Flux Reactor) in the Netherlands. These tensile results were compared with former irradiation programs, with lower neutron doses of up to 0.8 and 2.4 dpa to quantify the difference in tensile strengthening. The average increase of tensile strength was in a range of 300 MPa between 0.8 and 16.3 dpa at temperatures of 250–300 °C. This behavior can be correlated with irradiation-induced changes in the microstructure. Most of the hardening can be attributed to dislocation loops, point defects or small precipitates as observed in boron-free alloys as F82H mod. and EUROFER97. Whereas the hardening in boron-containing alloys OPTIFER alloys and Ga3X can be correlated in addition with the combination of helium bubbles. At the highest irradiation and test temperature at 450 °C, all tensile data of all investigated materials were in the range of those of non-irradiated and irradiated material due to thermal aging effects.

  1. Tensile behavior of RAFM alloys after neutron irradiation of up to 16.3 dpa between 250 and 450 °C

    International Nuclear Information System (INIS)

    Materna-Morris, E.; Schneider, H.-C.; Möslang, A.

    2014-01-01

    Tensile specimen of steel EUROFER97 and other alloys on the basis of RAFM steels such, as OPTIFER and F82H alloys, and Ga3X were irradiated and post-examined during a neutron irradiation program of up to 16.3 dpa between 250 and 450 °C in the HFR (High Flux Reactor) in the Netherlands. These tensile results were compared with former irradiation programs, with lower neutron doses of up to 0.8 and 2.4 dpa to quantify the difference in tensile strengthening. The average increase of tensile strength was in a range of 300 MPa between 0.8 and 16.3 dpa at temperatures of 250–300 °C. This behavior can be correlated with irradiation-induced changes in the microstructure. Most of the hardening can be attributed to dislocation loops, point defects or small precipitates as observed in boron-free alloys as F82H mod. and EUROFER97. Whereas the hardening in boron-containing alloys OPTIFER alloys and Ga3X can be correlated in addition with the combination of helium bubbles. At the highest irradiation and test temperature at 450 °C, all tensile data of all investigated materials were in the range of those of non-irradiated and irradiated material due to thermal aging effects

  2. High-temperature behavior of a deformed Fermi gas obeying interpolating statistics.

    Science.gov (United States)

    Algin, Abdullah; Senay, Mustafa

    2012-04-01

    An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also, a model to be studied for addressing such an idea could possibly provide us some new consequences about the interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics. Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the third virial coefficient of the model that the deformation parameter q interpolates completely between attractive and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we conclude that such a model could provide much physical insight into some interacting theories of fermions, and could be useful to further study the particle systems with intermediate statistics.

  3. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  4. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong-Ho, E-mail: jongho.shin@doosan.com [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Jeong, JaeSuk [Materials and Manufacturing Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Lee, Jong-Wook [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of)

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  5. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    International Nuclear Information System (INIS)

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-01

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni 3 Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni 3 Al precipitates and ellipsoidal M 23 C 6 carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni 3 Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni 3 Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage

  6. Precipitation behaviors, texture and tensile properties of an extruded Mg-7Y-1Nd-0.5Zr (wt%) alloy bar with large cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Guoliang, E-mail: shigl@grinm.com; Zhang, Kui; Li, Xinggang; Li, Yongjun; Ma, Minglong; Yuan, Jiawei

    2017-02-08

    Precipitation behaviors, texture and tensile properties of an extruded Mg-7Y-1Nd-0.5Zr (wt%) (WE71) alloy bar with large cross-section of 230 mm×140 mm were investigated by hardness test, tensile test, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) macro-texture measurement. The bar was manufactured industrially through a procedure of “multi-direction forging (MDF)+extrusion+on-line quenching+T5 aging”. Totally different age-hardening behaviors are shown during T5 aging at 200 and 235 °C. In the first 100 h, T5 aging at 235 °C brings about 13% increases in hardness, while T5 aging at 200 °C results in 47% increase. During T5 aging at 200 °C, β′ precipitates homogeneously nucleate within the matrix with high number density; however, during T5 aging at 235 °C, β′ precipitates heterogeneously nucleate on discrete and sparse dislocations, resulting in chain-like arrangement of β′ precipitates with broad precipitate free zones in matrix. XRD macro-texture measurement illustrates that basal texture intensity of WE71 bar is much weaker than Mg-8Al-0.5Zn-0.15Mn (wt%) (AZ80) bar; the maximum basal texture intensities in the outer (O) and center (C) of WE71 bar are all about 3, while those of AZ80 bar are 17 and 14, respectively. EBSD micro-texture measurement demonstrates that the maximum texture intensities of C and O are 5.3 and 3.5, respectively. O has higher tensile properties than C because there are more un-dynamic-recrystallization (un-DRX) grains and thus larger average grain size in C. While stretching at room temperature (RT), extrusion direction (ED) in O has the best tensile properties, i.e. ultimate tensile strength (R{sub m})=368 MPa, elongation (A)=5%, and normal direction (ND) in C has the lowest tensile properties, i.e. R{sub m}=255 MPa, A=2%. While stretching at 200 °C, strength does not degrade much; ED in O still has

  7. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-05-01

    Full Text Available The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  8. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  9. Multi-scale analysis of deformation behavior at SCC crack tip (2). (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2007-03-01

    This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with Japan Nuclear Energy Safety Organization (JNES) that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of stress corrosion cracking (SCC). The research was carried out to evaluate the validity of the SCC growth data acquired in the intergranular SCC (IGSCC) project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary to understand the SCC propagation behavior were acquired and analyzed that are mainly a size of plastic deformation region and a microstructural information in the region, e.g. data of crystallografy, microscopic deformation and dislocations at the inside of grains and grain boundaries. In this year, we analyzed the state of plastic deformation region at the crack tip of IGSCC under various conditions and investigated relationship between crack growth behavior and stress intensity factor. Especially, we investigated in detail about two different hardened specimens used in the SCC growth tests in the IGSCC project. (J.P.N.)

  10. Deformation Behavior during Processing in Carbon Fiber Reinforced Plastics

    Science.gov (United States)

    Ogihara, Shinji; Kobayashi, Satoshi

    In this study, we manufacture the device for measuring the friction between the prepreg curing process and subjected to pull-out tests with it The prepreg used in this study is a unidirectional carbon/epoxy, produced by TORAY designation of T700SC/2592.When creating specimens 4-ply prepregs are prepared and laminated. The 2-ply prepregs in the middle are shifted 50mm. In order to measure the friction between the prepreg during the cure process, we simulate the environment in the autoclave in the device, and we experiment in pull-out test. Test environment simulating temperature and pressure. The speed of displacement should be calculated by coefficient of thermal expansions (CTE). By calculation, 0.05mm/min gives the order of magnitude of displacement speed. In this study, 3 pull-out speeds are used: 0.01, 0.05 and 0.1mm/min. The specimen was heated by a couple of heaters, and we controlled the heaters with a temperature controller along the curing conditions of the prepreg. We put pressure using 4 bolts. Two strain gages were put on the bolt. We can understand the load applied to the specimen from the strain of the bolt. Pressure was adjusted the tightness of the bolt according to curing conditions. By using such a device, the pull-out test performed by tensile testing machine while adding temperature and pressure. During the 5 hours, we perform experiments while recording the load and stroke. The shear stress determined from the load and the stroke, and evaluated.

  11. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    OpenAIRE

    Chowdhury, Md. Arman; Islam, Md. Mashfiqul; Ibna Zahid, Zubayer

    2016-01-01

    Plain concrete and steel fiber reinforced concrete (SFRC) cylinder specimens are modeled in the finite element (FE) platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A tot...

  12. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y., E-mail: yano.yasuhide@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T. [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Ukai, S.; Oono, N. [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, S. [Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Torimaru, T. [Nippon Nuclear Fuel Development Co., Ltd., 2163, Narita-cho, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2017-04-15

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900–1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  13. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Science.gov (United States)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  14. Effects of torsional oscillation on tensile behavior of Sn–3.5 wt% Ag alloy with and without adding ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sobhy, M., E-mail: miladsobhym@yahoo.com

    2014-07-29

    Stress–strain characteristics of both Sn–3.5 wt% Ag and Sn–3.5 wt% Ag–0.3 wt% ZnO alloys were investigated using tensile testing machine. Different superimposed torsional oscillation frequencies ranging from 0 to 1.3 Hz at different deformation temperatures ranging from 303 to 363 K were performed. X-ray diffraction (XRD), transition electron microscopy (TEM) and optical microscopy were used to investigate the microstructures of both alloys. The mechanical parameters such as Young's modulus Y, yield stress σ{sub y}, fracture stress σ{sub f}, work hardening coefficient χ{sub p} and fracture strain ε{sub f} were calculated. The fracture stress of both alloys decreases with increasing the superimposed frequency of torsional oscillations as well as deformation temperatures. The fracture strain behaves in a different manner i.e. it increases with increasing the deformation temperature in the alloy containing ZnO nanoparticles while decreases in the alloy free from ZnO nanoparticles. With respect to the effect of the frequency of the superimposed torsional deformation, the fracture strain increases in both alloys.

  15. The deformation behavior of soil mass in the subsidence region of Beijing, China

    Directory of Open Access Journals (Sweden)

    F. Tian

    2015-11-01

    Full Text Available Land subsidence induced by excessive groundwater withdrawal has been a major environmental and geological problem in the Beijing plain area. The monitoring network of land subsidence in Beijing has been established since 2002 and has covered the entire plain area by the end of 2008. Based on data from extensometers and groundwater observation wells, this paper establishes curves of variations over time for both soil mass deformation and water levels and the relationship between soil mass deformation and water level. In addition, an analysis of deformation behavior is carried out for soil mass with various lithologies at different depths depending on the corresponding water level. Finally, the deformation behavior of soil mass is generalized into five categories. The conclusions include: (i the current rate of deformation of the shallow soil mass is slowing, and most of the mid-deep and deep soil mass continue to compress at a more rapid speed; (ii the sand strata behaves elastically, while the clay soil mass at different depths is usually characterized by elastic-plastic and creep deformation, which can be considered as visco-elastoplastic.

  16. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    International Nuclear Information System (INIS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-01-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution. (paper)

  17. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  18. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  19. Numerical investigation of room-temperature deformation behavior of a duplex type γTiAl alloy using a multi-scale modeling approach

    International Nuclear Information System (INIS)

    Kabir, M.R.; Chernova, L.; Bartsch, M.

    2010-01-01

    Room-temperature deformation of a niobium-rich TiAl alloy with duplex microstructure has been numerically investigated. The model links the microstructural features at micro- and meso-scale by the two-level (FE 2 ) multi-scale approach. The deformation mechanisms of the considered phases were described in the micro-mechanical crystal-plasticity model. Initial material parameters for the model were taken from the literature and validated using tensile experiments at macro-scale. For the niobium-rich TiAl alloy further adaptation of the crystal plasticity parameters is proposed. Based on these model parameters, the influences of the grain orientation, grain size, and texture on the global mechanical behavior have been investigated. The contributions of crystal deformation modes (slips and dislocations in the phases) to the mechanical response are also analyzed. The results enable a quantitative prediction of relationships between microstructure and mechanical behavior on global and local scale, including an assessment of possible crack initiation sites. The model can be used for microstructure optimization to obtain better material properties.

  20. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    International Nuclear Information System (INIS)

    Lohmiller, Jochen; Spolenak, Ralph; Gruber, Patric A.

    2014-01-01

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility

  1. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  2. Experimental and finite element analyses of plastic deformation behavior in vortex extrusion

    International Nuclear Information System (INIS)

    Shahbaz, M.; Pardis, N.; Kim, J.G.; Ebrahimi, R.; Kim, H.S.

    2016-01-01

    Vortex extrusion (VE) is a single pass severe plastic deformation (SPD) technique which can impose high strain values with almost uniform distribution within cross section of the processed material. This technique needs no additional facilities for installation on any conventional extrusion equipment. In this study the deformation behavior of material during VE is investigated and the results are compared with those of conventional extrusion (CE). These investigations include finite element analysis, visioplasticity, and microstructural characterization of the processed samples. The results indicate that the VE process can accumulate a higher strain value by applying an additional torsional deformation. The role of this additional deformation mode on the microstructural evolution of the VE sample is discussed and compared with the results obtained on the CE samples.

  3. The influence of hydrogen on the deformation behavior of zircaloy 4

    International Nuclear Information System (INIS)

    Flanagan, M. E.; Koss, D. A.; Motta, A. T.

    2008-01-01

    The deformation behavior of Zr based cladding forms a basis for fuel behavior codes and affects failure criteria; as such, it is critical to reactor safety. The present study examines the influence of hydrogen on the uniaxial deformation behavior of hydrided cold worked and stress relieved Zircaloy 4 plate material. Specimens of various orientations (i.e., stress axis aligned with the rolling direction, the transverse direction, or normal to the plate surface direction) were tested in compression at a range of temperatures (25 .deg. , 300 .deg. , and 400 .deg. C), and strain rates (from 10-4/s to 10-1/s). Contrasting the deformation behavior of the material containing ∼45 wt ppm H with that of the material containing ∼420 wt. ppm H shows that increasing H content (a) causes a small decrease in the 0.2% yield stress that is eliminated at 1.0% flow stress, (b) increases the strain hardening in the rolling direction but not in the other orientations, (c) has no effect on the temperature dependence of the strain hardening, and (d) does not affect the strain rate hardening behavior. Increasing H content also has no observable effect on the high degree of plastic anisotropy of this plate material which is manifested in difficult through thickness deformation, resulting in high flow stresses for specimens oriented in the normal to plate surface direction

  4. Deformation behavior of human enamel and dentin-enamel junction under compression.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  5. The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model

    International Nuclear Information System (INIS)

    Marx, Vera M.; Toth, Florian; Wiesinger, Andreas; Berger, Julia; Kirchlechner, Christoph; Cordill, Megan J.; Fischer, Franz D.; Rammerstorfer, Franz G.; Dehm, Gerhard

    2015-01-01

    Thin metal films deposited on polymer substrates are used in flexible electronic devices such as flexible displays or printed memories. They are often fabricated as complicated multilayer structures. Understanding the mechanical behavior of the interface between the metal film and the substrate as well as the process of crack formation under global tension is important for producing reliable devices. In the present work, the deformation behavior of copper films (50–200 nm thick), bonded to polyimide directly or via a 10 nm chromium interlayer, is investigated by experimental analysis and computational simulations. The influence of the various copper film thicknesses and the usage of a brittle interlayer on the crack density as well as on the stress magnitude in the copper after saturation of the cracking process are studied with in situ tensile tests in a synchrotron and under an atomic force microscope. From the computational point of view, the evolution of the crack pattern is modeled as a stochastic process via finite element based cohesive zone simulations. Both, experiments and simulations show that the chromium interlayer dominates the deformation behavior. The interlayer forms cracks that induce a stress concentration in the overlying copper film. This behavior is more pronounced in the 50 nm than in the 200 nm copper films

  6. Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation

    International Nuclear Information System (INIS)

    Toda, H.; Minami, K.; Koyama, K.; Ichitani, K.; Kobayashi, M.; Uesugi, K.; Suzuki, Y.

    2009-01-01

    Synchrotron X-ray microtomography was used to observe the shrinkage and annihilation behaviors of hydrogen micropores in three dimensions during hot and cold plastic deformation of an Al-Mg alloy. Whether complete healing of micropores is achieved after plastic deformation was examined by exposing the material to a high temperature after plastic deformation. Although micropores generally show a pattern of shrinking and closing, closer inspection of a single specimen revealed a variety of geometrically variable behaviors. It is noteworthy that some of the micropores are reinitiated in positions identical to those before their annihilation, even after an 8-22% macroscopic strain has been further applied after annihilation. We attribute local variations such as these to significant local strain variation, which we measured in a series of tomographic volumes by tracking the microstructural features.

  7. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Science.gov (United States)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  8. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2015-01-15

    Highlights: • Dislocation loops were the prominent defect, but neutron irradiation caused higher loop density. • Grain boundaries had similar amounts of radiation-induced segregation. • The increment in hardness and yield stress due to irradiation were very similar. • Relative IASCC susceptibility was nearly identical. • The effect of dislocation channel step height on IASCC was similar. - Abstract: The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni–Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed

  9. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Min, Xiaohua, E-mail: minxiaohua@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Bai, Pengfei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Emura, Satoshi; Ji, Xin [Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cheng, Congqian; Jiang, Beibei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Tsuchiya, Koichi [Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-01-27

    This study examined microstructural characteristics and mechanical properties in a β-type Ti-15Mo alloy (mass%) with different oxygen contents, and their corrosion behavior in simulated physiological media. With increasing oxygen content from 0.1–0.5%, lattice parameter of parent β-phase increased from X-ray diffraction profiles, and spots of athermal ω-phase became weak and diffuse through transmission electron microscopy observations. {332}<113> twin density decreased with an increase in oxygen content from 0.1–0.3% based on electron backscattered diffraction analyses, and it became almost zero when further increased oxygen content up to 0.5%. The solute oxygen atoms led to both a transition of {332}<113> twinning to dislocation slip and a suppression of β-phase to ω-phase transformation. Room-temperature tensile testing of this alloy with oxygen content ranging from 0.1–0.5%, revealed that yield strength ranged from 420 MPa to 1180 MPa and that uniform elongation ranged from 47–0.2%. The oxygen-added alloys kept a low elastic modulus obtained from stress-strain curves, and exhibited good corrosion resistance in Ringer's solution from open-circuit potential and potentiodynamic polarization measurements. A desirable balance between mechanical properties and corrosion resistance is obtainable in this alloy as biomaterials through utilizing oxygen to control the deformation mode.

  10. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  11. Temperature Effects on Tensile and Compressive Mechanical Behaviors of C-S-H Structure via Atomic Simulation

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2017-01-01

    Full Text Available An atomic scale model of amorphous calcium silicate hydrate (C-S-H with Ca/Si ratio of 1.67 is constructed. Effects of temperature on mechanical properties of C-S-H structure under tensile and compressive loading in the layered direction are investigated via molecular dynamics simulations. Results from present simulations show that (1 the tensile strength and Young’s modulus of C-S-H structure significantly decrease with the increase of the temperature; (2 the water layer plays an important role in the mechanical properties of C-S-H structure; (3 the compressive strength is stronger than tensile strength, which corresponds with the characteristic of cement paste.

  12. Compression deformation behaviors of sheet metals at various clearances and side forces

    OpenAIRE

    Zhan Mei; Wang Xianxian; Cao Jian; Yang He

    2015-01-01

    Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. I...

  13. Superplastic Deformation of TC6 Alloy

    Directory of Open Access Journals (Sweden)

    DING Ling

    2016-12-01

    Full Text Available The superplastic tensile tests of TC6 alloy were conducted in the temperature range of 800-900℃ by using the maximum m value superplasticity deformation (Max m SPD method and the constant strain rate deformation method at the strain rate range of 0.0001-0.1 s-1. The stress-strain curve of the tensile tests was obtained and the microstructure near the fracture were analyzed by metallographic microscope. The result shows that the superplasticity of TC6 alloy is excellent, and the elongation increases first and then decreases with the increase of strain rate or temperature. When the temperature is 850℃ and strain rate is 0.001 s-1 at constant stain rate tensile tests, the elongation reaches up to 993%. However, the elongation using Max m SPD method at 850℃ is 1353%. It is shown that the material can achieve better superplasticity by using Max m SPD tensile compared to constant stain rate tensile under the same temperature. The superplastic deformation of TC6 alloy can enhance the dynamic recrystallization behavior significantly, the dynamic recrystallization behavior is promoted when strain rate and temperature are increased.

  14. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    International Nuclear Information System (INIS)

    Sakai, Tetsuo; Takahashi, Yasuo; Utsunomiya, Hiroshi

    2014-01-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle

  15. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    Science.gov (United States)

    Sakai, Tetsuo; Utsunomiya, Hiroshi; Takahashi, Yasuo

    2014-08-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle.

  16. Scratch deformation behavior of thermoplastic materials with significant differences in ductility

    International Nuclear Information System (INIS)

    Hadal, R.S.; Misra, R.D.K.

    2005-01-01

    A comparative study of the scratch deformation behavior of neat ethylene-propylene copolymers and polypropylene with significant differences in ductility is made by combining morphological examination by electron microscopy and scratch deformation parameters by atomic force microscopy. Also, the deformation behavior during scratch tests is examined for their respective long and short chain polymers. The ability of polymeric materials to resist scratch deformation under identical scratch test conditions follows the sequence (from maximum resistance to minimum resistance): short chain polypropylene > long chain polypropylene > short chain ethylene-propylene > long chain ethylene-propylene. The scratch tracks in ethylene-propylene copolymers were characterized by a consecutive parabolic pattern containing voids, while polypropylenes exhibited zig-zag periodic scratch tracks. The greater plastic flow in ethylene-propylene copolymers is encouraged by the high ductility of the copolymer and the ability to nucleate microvoids. The quasi-static periodic scratch tracks are a consequence of sequential accumulation and release of tangential force and represents the stick-slip process. The susceptibility to scratch deformation is discussed in terms of modulus, elastic recovery, scratch hardness, and entanglement density of polymeric materials. A higher effective entanglement density and percentage crystallinity of short chain polymers is helpful in enhancing scratch resistance as compared to their respective long chain polymers

  17. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov [Pacific Northwest National Laboratory (United States); Tomé, Carlos, E-mail: tome@lanl.gov [Los Alamos National Laboratory (United States); Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com [ANATECH Corporation (United States); Alankar, Alankar, E-mail: alankar.alankar@iitb.ac.in [Indian Institute of Technology Bombay (India); Subramanian, Gopinath, E-mail: gopinath.subramanian@usm.edu [University of Southern Mississippi (United States); Stanek, Christopher, E-mail: stanek@lanl.gov [Los Alamos National Laboratory (United States)

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  18. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Camin, Bettina; Schmidt, Søren

    2012-01-01

    The stress field around a notch in a coarse grained Mg AZ31 sample has been measured under tensile load using the individual grains as probes in an in situ high energy synchrotron diffraction experiment. The experimental set-up, a variant of three-dimensional X-ray diffraction microscopy, allows...... the position, orientation and full stress tensor of each illuminated grain to be determined and, hence, enables the study of evolving stress fields in coarse grained materials with a spatial resolution equal to the grain size. Grain resolved information like this is vital for understanding what happens when...... the traditional continuum mechanics approach breaks down and fracture is governed by local heterogeneities (e.g. phase or stress differences) between grains. As a first approximation the results obtained were averaged through the thickness of the sample and compared with an elastic–plastic continuum finite...

  19. Acoustic emission behavior under bending deformation of YBCO bulk superconductor

    International Nuclear Information System (INIS)

    Yoneda, K.; Ye, J.; Tomita, M.

    2005-01-01

    Bending tests were conducted on U-notched specimens cut from a YBCO bulk superconductor. Acoustic emission (AE) signals obtained under loading parallel or perpendicular to the c-axis were analyzed to investigate the correlation between crack growth behavior and the AE signals. As a result of analyzing log-log plots of strength (σ B ) versus total AE energy (ΣE AE ), a linear relationship was found between ΣE AE and σ B n . Cracks could be broadly divided into two types based on the value of n as an index of crack growth behavior. One type consisted of microcracks originating from cleavage planes and gas holes; these crack propagated parallel to the c-axis and had an n index value of approximately 0.7. The other type was a main crack that originated from the U-notch and had an n index value of approximately 6.5. A sample (A) loaded parallel to the c-axis showed mean bending strength of 74.8MPa. Cracks displaying two different growth patterns of n=0.7 and 6.5 were presented in this sample. Microcracks parallel to the c-axis occurred in the vicinity of 5-10MPa. This sample was characterized by mixed crack growth of a main crack and microcracks. A sample (B) loaded perpendicular to the c-axis displayed mean bending strength of 43MPa. A main crack occurred in the vicinity of 20MPa and displayed a single growth pattern of n=6.5. By analyzing AE signals in this way in the process of conducting a strength evaluation, it was possible to evaluate the failure process of the bulk superconductor in relation to the strength level induced by the applied load

  20. Theoretical analysis of deformation behavior of aluminum matrix composites in laser forming

    International Nuclear Information System (INIS)

    Liu, F.R.; Chan, K.C.; Tang, C.Y.

    2005-01-01

    In this paper, the deformation behavior of the SiC reinforced aluminum matrix composite in laser forming was investigated. A 2KW Nd:YAG laser was used to deform the composite at different laser powers, scanning speeds, numbers of irradiation passes and beam diameters. It was found that the bending angle increases with an increase in laser power, and a decrease in scanning speed and beam diameter. A relatively linear relationship between bending angle and number of irradiation passes was observed, and the effect of microstructural changes on the deformation behavior was discussed. An analytical model based on the Vollertsen's two-layer model was developed to predict the bending angle of the composite. The trends of the predictions are in good agreement with the experimental results. The effect of reinforcements on deformation behavior of the composite was further theoretically investigated. By modeling the changes of physical, thermal and mechanical properties including yield stress, elastic modulus, surface absorption coefficient and thermal conductivity of the material incorporated with SiC particles, the effect of reinforcement on laser bending angle was analyzed, and it was found that it would result in a larger bending angle. The significance of the findings will be discussed in the paper

  1. Emotional and behavioral reactions to facially deformed patients before and after craniofacial surgery.

    Science.gov (United States)

    Barden, R C; Ford, M E; Wilhelm, W M; Rogers-Salyer, M; Salyer, K E

    1988-09-01

    The present experiment investigated whether observers' emotional and behavioral reactions to facially deformed patients could be substantially improved by surgical procedures conducted by well-trained specialists in an experienced multidisciplinary team. Also investigated was the hypothesis that emotional states mediate the effects of physical attractiveness and facial deformity on social interaction. Twenty patients between the ages of 3 months and 17 years were randomly selected from over 2000 patients' files of Kenneth E. Salyer of Dallas, Texas. Patient diagnoses included facial clefts, hypertelorism, Treacher Collins syndrome, and craniofacial dysostoses (Crouzon's and Apert's syndromes). Rigorously standardized photographs of patients taken before and after surgery were shown to 22 "naive" raters ranging in age from 18 to 54 years. Raters were asked to predict their emotional and behavioral responses to the patients. These ratings indicated that observers' behavioral reactions to facially deformed children and adolescents would be more positive following craniofacial surgery. Similarly, the ratings indicated that observers' emotional reactions to these patients would be more positive following surgery. The results are discussed in terms of current sociopsychologic theoretical models for the effects of attractiveness on social interaction. A new model is presented that implicates induced emotional states as a mediating process in explaining the effects of attractiveness and facial deformity on the quality of social interactions. Limitations of the current investigation and directions for future research are also discussed.

  2. Deformation Behavior of Recycled Concrete Aggregate during Cyclic and Dynamic Loading Laboratory Tests

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2016-09-01

    Full Text Available Recycled concrete aggregate (RCA is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law.

  3. A new and unusual deformation behavior observed in 12Cr18Ni10Ti stainless steel irradiated at 307 deg. C to 55 dpa in BN-350

    International Nuclear Information System (INIS)

    Gusev, M.; Maksimkin, O.; Osipov, I.S.; Garner, F.

    2007-01-01

    Full text of publication follows: It is currently accepted that neutron irradiation of stainless steels in general leads to increased strength, reduction of ductility and inevitably to embrittlement. The microstructural origins of such changes in mechanical behavior are well understood. Occasionally, however, a new phenomenon is observed at higher fluences. Void-induced embrittlement is an example whereby the ductility loss is strongly accelerated when new microstructural conditions develop from voids that cause stress concentration, removal of nickel from the matrix and thereby induce a martensitic transformation. This process occurs at moderately high temperatures where high void swelling can occur. It now appears that there is another, previously unobserved phenomenon that develops in austenitic steel irradiated to relatively high dose and relatively low temperature. In this case, however, the loss of plasticity commonly developed at lower dose is reversed and is replaced by an unusually high deformation. The plastic deformation was studied of miniature flat tensile specimens of 12Cr18Ni10Ti austenitic steel cut from a fuel assembly wrapper irradiated in the BN-350 reactor to 55 dpa at 580 K (307 deg. C). A new optical extensometry technique was employed that uses a video camera and multiple tiny markers painted on the specimen, allowing visualization and recording of the strain distribution as it develops along the specimen. The total deformation derived from the engineering diagrams for these specimens was 35-40%, while 3-7% was expected from previous studies conducted at lower dpa levels. The video record showed that the material resists necking and involves a moving deformation wave that initiates near one of the tensile grippers and spreads along ∼3/4 of the gauge length before failure occurs. Such behavior, often called a 'moving neck' has been observed previously in pure iron and Al-Mg alloys but has not been observed in irradiated stainless steels

  4. Effect of initial grain size on inhomogeneous plastic deformation and twinning behavior in high manganese austenitic steel with a polycrystalline microstructure

    Science.gov (United States)

    Ueji, R.; Tsuchida, N.; Harada, K.; Takaki, K.; Fujii, H.

    2015-08-01

    The grain size effect on the deformation twinning in a high manganese austenitic steel which is so-called TWIP (twining induced plastic deformation) steel was studied in order to understand how to control deformation twinning. The 31wt%Mn-3%Al-3% Si steel was cold rolled and annealed at various temperatures to obtain fully recrystallized structures with different mean grain sizes. These annealed sheets were examined by room temperature tensile tests at a strain rate of 10-4/s. The coarse grained sample (grain size: 49.6μm) showed many deformation twins and the deformation twinning was preferentially found in the grains in which the tensile axis is parallel near to [111]. On the other hand, the sample with finer grains (1.8 μm) had few grains with twinning even after the tensile deformation. The electron back scattering diffraction (EB SD) measurements clarified the relationship between the anisotropy of deformation twinning and that of inhomogeneous plastic deformation. Based on the EBSD analysis, the mechanism of the suppression of deformation twinning by grain refinement was discussed with the concept of the slip pattern competition between the slip system governed by a grain boundary and that activated by the macroscopic load.

  5. Microstructures and recrystallization behavior of severely hot-deformed tungsten

    International Nuclear Information System (INIS)

    Mathaudhu, S.N.; De Rosset, A.J.; Hartwig, K.T.; Kecskes, L.J.

    2009-01-01

    When coarse-grained (CG) tungsten (W) is heavily worked by equal-channel angular extrusion (ECAE), the grain size is reduced to the ultrafine-grained/nanocrystalline regimes (UFG/NC) and the strength and ductility increase. Because of the brittle nature of CG W, the material must be hot-extruded, and, if the temperatures are near the recrystallization temperature (T rc ), gains in properties may not be maximized. In this study, the recrystallization behavior of ECAE-processed CG W is examined as a function of the imparted strain (i.e., number of extrusions) and the hot-working extrusion temperature. Up to four ECAE passes were performed in tooling with a 90 deg. channel intersection, and at temperatures of 1000 deg. C or 1200 deg. C. Subsequent 60 min annealing of the worked material to 1600 deg. C allowed for the determination of T rc . Vickers microhardness measurements and scanning electron microscopy, were used to characterize the microstructures in the as-worked and recrystallized states. The ECAE-processed W shows increased microstructural break-up and refinement with increasing strain and decreasing hot-working temperature in the fully worked state. T rc was determined to be ∼1400 deg. C, which is nearly independent of the number of extrusions and the working temperature. These results show that if ECAE is accomplished below 1400 deg. C (i.e., at 1000 deg. C or lower) the attractive properties of the UFG/NC-worked W may be retained. Specifically, below 1000 deg. C, with increasing strain imparted to the material, high hardness values with a concomitant grain size refinement (∼350 nm) could be expected

  6. Effect of Bi modification treatment on microstructure, tensile properties, and fracture behavior of cast Al-Mg2Si metal matrix composite

    Directory of Open Access Journals (Sweden)

    Wu Xiaofeng

    2013-01-01

    Full Text Available Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline structure and crystallization process, the present study investigated the effects of different concentrations of Bi on the microstructure, tensile properties, and fracture behavior of cast Al-15wt.%Mg2Si in-situ metal matrix composite. The results show that the addition of the proper amount of Bi has a significant modification effect on both primary and eutectic Mg2Si in the Al-15wt.%Mg2Si composite. With an increase in Bi content from 0 to 1wt.%, the morphology of the primary Mg2Si is changed from irregular or dendritic to polyhedral shape; and its average particle size is significantly decreased from 70 to 6 μm. Moreover, the morphology of the eutectic Mg2Si phase is altered from flake-like to very short fibrous or dot-like. When the Bi addition exceeds 4.0wt.%, the primary Mg2Si becomes coarse again. However, the eutectic Mg2Si still exhibits the modified morphology. Tensile tests reveal that the Bi addition can improve the tensile strength and ductility of the material. Compared with those of the unmodified composite, the ultimate tensile strength and percentage elongation after fracture with 1.0wt.% Bi increase 51.2% and 100%, respectively. At the same time, the Bi addition changes the fracture behavior from brittle to ductile.

  7. Co-planar deformation and thermal propagation behavior in a bundle burst test

    International Nuclear Information System (INIS)

    Uetsuka, Hiroshi; Koizumi, Yasuo; Kawasaki, Satoru

    1980-07-01

    The probability of the suggested feedback mechanism which could lead to co-planar deformation in a bundle burst test was assessed by the data of test and the calculation based on simplified model. Following four points were evaluated. (1) The probability of local deformation during early heat up stage. (2) The relation between the characteristic of heater and the feedback mechanism. (3) Thermal propagation behavior between two adjacent rods during heat up stage. (4) The propagation of ballooning in a bundle. The probability of suggested feedback mechanism was denied in all the evaluation. The feedback mechanism suggested by Burman could not be a controlling mechanism in co-planar deformation in a bundle burst test. (author)

  8. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-09-01

    Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  10. The behavior of plastic deformation in a duplex Cu-Zn alloy, in the temperature range 24-3000C

    International Nuclear Information System (INIS)

    Andrade, A.H.P. de.

    1978-01-01

    The mechanical behavior of Muntz Metal (Cu-40%Zn) containing duplex microstructure with a coarse grain size approximately 40μm) has been investigated at the temperature range 2 0 -300 0 C, and at strain rat e of epsilon=2.6x10 -4 S -1 , as a function of the second phase volume fraction(v(subβ)). Whereas at room temperature yielding increases with v(subβ) for v(subβ)>0.35, it remains virtually independent of v(subβ in the range 0.26 0 C. At low temperature (RT) and strains (epsilon approximately 0.01 the work hardening rate increases strongly with v subβ up to v subβ approximately 0.45. At higher temperatures and strains work hardening rate decreases for all volume fractions due to the thermal and dynamic recovery respectively. Then ultimate tensile strength (UTS) at room temperature increases with v subβ up to v subβ = 0.45, thus resulting in overall increase in U.T.S. The Portevin - Le Chatelier Effect (PLE)in Muntz Metal, at the temperature range 24 0 -300 0 C manifests itself in essentially two different forms. At RT, irregular serrations are observed, where amplitude decreases with increases in v subβ. At higher temperatures (100 0 C), serrations become regular, with increase in amplitude. At 200 0 C or over the serrations amplitude decrease at almost disappearing completely. These observations have been explained on the basis of collective behavior of mobile dislocations, influenced by the internal stress fields created during deformation by the presence of phase β. The Voce equation fits well with the experimental stress-strain data for temperatures up to 200 0 C. The method of Hollomon requires the use of stages in sigma-epsilon curve, curve, which does not have a physical significance. (Author) [pt

  11. Investigation into diffusion induced plastic deformation behavior in hollow lithium ion battery electrode revealed by analytical model and atomistic simulation

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Wu, Hong; Liu, Youwen; Wen, Pihua

    2015-01-01

    Highlights: • Diffusion induced stress is established. • Yield stress is dependent upon concentration. • Plastic deformation induced stress lowers tensile stress. • Plastic deformation suppresses crack nucleation. • Plastic deformation occurs not only at lithiated phase but also at electrode interior. - Abstract: This paper is theoretically suggested to describe diffusion induced stress in the elastoplastic hollow spherical silicon electrode for plastic deformation using both analytical model and molecular simulation. Based on the plastic deformation and the yield criterion, we develop this model accounting for the lithium-ion diffusion effect in hollow electrode, focusing on the concentration and stress distributions undergoing lithium-ion insertion. The results show that the two ways, applied compressive stress to inner surface or limited inner surface with higher concentration using biological membranes maintaining concentration difference, lead to the compressive stress induced by the lithium-ion diffusion effect. Hollow spherical electrode reduces effectively diffusion induced stress through controlling and tuning electrode parameters to obtain the reasonably low yield strength. According to MD simulations, plastic deformation phenomenon not only occurs at interface layer of lithiated phase, but also penetrates at electrode interior owning to confinement imposed by lithiated phase. These criteria that radial and hoop stresses reduce dramatically when plastic deformation occurs near the end faces of hollow electrode, may help guide development of new materials for lithium-ion batteries with enhanced mechanical durability, by means of reasonable designing yield strength to maintain mechanical stress below fracture strength, thereby increasing battery life.

  12. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  13. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei; Zhan, Mei, E-mail: zhanmei@nwpu.edu.cn; Fan, Xiaoguang; Lei, Zhenni; Cai, Yang

    2017-03-24

    The flow behavior and microstructure evolution of a near α titanium alloy with nonuniform microstructure during hot deformation were studied by isothermal compression test and electron backscatter diffraction technique. It is found that the nonuniform microstructure prior to deformation consists of equiaxed α, lamellar α in the colony form and β phase, and the α colony keeps the Burgers orientation relationship with β phase. The flow stress of nonuniform microstructure exhibits significant flow softening after reaching the peak stress at a low strain, which is similar to the lamellar microstructure. Nevertheless, the existence of equiaxed α in nonuniform microstructure makes its flow stress and softening rate be lower than the lamellar microstructure. During deformation, the lamellar α undertakes most of the deformation and turns to be rotated, bended and globularized. Moreover, these phenomena exhibit significant heterogeneity due to the orientation dependence of the deformation of lamellar α. The continuous dynamic recrystallization and bending of lamellar α lead to the “fragmentation” during globularization of lamellar α. The bending of lamellar α is speculated as a form of plastic buckling, because the bending of lamellar α almost proceed in the manner of “rigid rotation” and presents opposite bending directions for the adjacent colonies.

  14. Effect of Sn addition on the microstructure and deformation behavior of Mg-3Al alloy

    International Nuclear Information System (INIS)

    Suh, Byeong-Chan; Kim, Jae H.; Bae, Jun Ho; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2017-01-01

    Mg alloys generally suffer from their poor formability at low temperatures due to their strong basal texture and a lack of adequate deformation systems. In the present study, a small amount of Sn was added instead of Zn to Mg-3Al alloy to modify its deformation behavior and improve the stretch formability. Microstructural examinations of the deformed Mg-3Al-1Sn (AT31) alloy by electron backscatter diffraction and transmission electron microscopy show that prismatic slip is quite active during deformation, resulting in much lower r-values and planar anisotropy than the counterpart Mg-3Al-1Zn (AZ31) alloy. Polycrystal plasticity simulation based on visco-plasticity self-consistent (VPSC) model also shows that prismatic slip is the dominant deformation mode in AT31 alloy besides basal slip. As a consequence, AT31 alloy shows a much higher stretch formability than AZ31 alloy. On the other hand, AZ31 alloy shows the development of intense shear bands during stretch forming, and these shear bands act as crack propagating paths, limiting the stretch formability of AZ31 alloy.

  15. Hot Deformation Behavior of SiCP/A1-Cu Composite

    Directory of Open Access Journals (Sweden)

    CHENG Ming-yang

    2017-02-01

    Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of SiCp/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10s-1. The true stress-strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the softening mechanism of dynamic recrystallization is a feature of high-temperature flow stress-strain curves of SiCp/A1-Cu composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate.The flow stress behavior of the composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 320.79kJ/mol. The stable regions and the instability regions in the processing map were identified and the microstructures in different regions of processing map were studied.There are particle breakage and void in the instability regions.

  16. Tensile behavior of EUROFER ODS steel after neutron irradiation up to 16.3 dpa between 250 and 450 °C

    International Nuclear Information System (INIS)

    Materna-Morris, Edeltraud; Lindau, Rainer; Schneider, Hans-Christian; Möslang, Anton

    2015-01-01

    Highlights: • The first 9%CrWVTa steel (0.5% Y_2O_3), EUROFER ODS HIP, have been neutron irradiated up to 16.3 dpa, between 250 and 450 °C, in the High Flux Reactor (HFR). • After post-irradiation tensile tests, there was not any increase of the upper yield strength or strain localization after irradiation which is typical of RAFM steels. • Initially higher yield strength, R_p_0_._2, and distinctive tensile strength, R_m, of EUROFER ODS HIP compared to EUROFER97 steel. • These values increased due to the neutron irradiation at lower irradiation temperatures. - Abstract: During the development of structural material for future fusion reactors, a 50 kg heat of reduced-activation ferritic-martensitic 9%CrWVTa steel with nanoscaled Y_2O_3-particles, EUROFER97 ODS HIP, was produced using powder metallurgy fabrication technology. This first batch of EUROFER97 ODS HIP and, for comparison, the steel EUROFER97 were prepared for a post-irradiation tensile test program. During neutron irradiation in the HFR (High Flux Reactor, The Netherlands), an accumulated dose of up to 16.3 dpa was reached for 771 days at full power, with the irradiation temperature ranging between 250 and 450 °C. During the post-examinations, all specimens showed the highest tensile strength at lower irradiation temperatures between 250 and 350 °C. However, ODS-alloy and steel were found to clearly differ in the mechanical behavior, which could be documented by fully instrumented tensile tests. In the un-irradiated state, tensile strength of the ODS-alloy already was increased considerably by about 60% compared to the steel. Strengthening was further increased by another 20% after neutron irradiation, but with a much better ductility than observed in the steel. The typical irradiation-induced strain localization of EUROFER97 or RAFM steels could not be observed in the EUROFER97 ODS HIP alloy.

  17. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: ningke521@163.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Yao, Zekun; Guo, Hongzhen [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2014-01-25

    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s{sup −1}. The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s{sup −1}) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s{sup −1}), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s{sup −1} and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T{sub opi}: 1140 °C, ε{sub opi}: 1.0 s{sup −1}) with

  18. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    International Nuclear Information System (INIS)

    Ning, Yongquan; Yao, Zekun; Guo, Hongzhen; Fu, M.W.

    2014-01-01

    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s −1 . The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s −1 ) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s −1 ), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s −1 and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T opi : 1140 °C, ε opi : 1.0 s −1 ) with the peak efficiency of 0

  19. Constitutive Behavior and Processing Map of T2 Pure Copper Deformed from 293 to 1073 K

    Science.gov (United States)

    Liu, Ying; Xiong, Wei; Yang, Qing; Zeng, Ji-Wei; Zhu, Wen; Sunkulp, Goel

    2018-02-01

    The deformation behavior of T2 pure copper compressed from 293 to 1073 K with strain rates from 0.01 to 10 s-1 was investigated. The constitutive equations were established by the Arrhenius constitutive model, which can be expressed as a piecewise function of temperature with two sections, in the ranges 293-723 K and 723-1073 K. The processing maps were established according to the dynamic material model for strains of 0.2, 0.4, 0.6, and 0.8, and the optimal processing parameters of T2 copper were determined accordingly. In order to obtain a better understanding of the deformation behavior, the microstructures of the compressed samples were studied by electron back-scattered diffraction. The grains tend to be more refined with decreases in temperature and increases in strain rate.

  20. EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLEXIBLE BURIED PIPE DEFORMATION BEHAVIOR UNDER VARIOUS BACKFILL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Niyazi Uğur TERZİ

    2009-01-01

    Full Text Available Deformation characteristics of polyethylene based flexible pipes are different than rigid pipes such as concrete and iron pipes. Deflection patterns and stress-strain behaviors of flexible pipes have strict relation between the engineering properties of backfill and its settlement method. In this study, deformation behavior of a 100 mm HDPE flexible pipe under vertical loads is investigated in laboratory conditions. Steel test box, pressurized membrane, raining system, linear position transducers and strain gauge rosettes are used in the laboratory tests. In order to analyze the buried pipe performance; Masada Derivation Formula which is mostly used by designers is employed. According to the test and mathematical studies, it is understood that relative density of backfill and its settlement method is a considerable effect on buried pipe performance and Masada Derivation method is very efficient for predicting the pipe performance.

  1. Effect of Strain Rate on Microscopic Deformation Behavior of High-density Polyethylene under Uniaxial Stretching

    Directory of Open Access Journals (Sweden)

    Kida Takumitsu

    2017-01-01

    Full Text Available The microscopic deformation behaviors such as the load sharing and the molecular orientation of high-density polyethylene under uniaxial stretching at various strain rates were investigated by using in-situ Raman spectroscopy. The chains within crystalline phase began to orient toward the stretching direction beyond the yielding region and the orientation behavior was not affected by the strain rate. While the stretching stress along the crystalline chains was also not affected by the strain rate, the peak shifts of the Raman bands at 1130, 1418, 1440 and 1460 cm-1, which are sensitive to the interchain interactions obviously, depended on the strain rate; the higher strain rates lead to the stronger stretching stress or negative pressure on the crystalline and amorphous chains. These effects of the strain rate on the microscopic deformation was associated with the cavitation and the void formation leading to the release of the internal pressure.

  2. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression

    Science.gov (United States)

    Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie

    2017-10-01

    The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.

  3. Creep deformation and rupture behavior of type 304/308 stainless steel structural weldments

    International Nuclear Information System (INIS)

    McAfee, W.J.; Richardson, M.; Sartory, W.K.

    1977-01-01

    The creep deformation and rupture of type 304/308 stainless steel structural weldments at 593 0 C (1100 0 F) was experimentally investigated to study the comparative behavior of the base metal and weld metal constituents. The tests were conducted in support of ORNL's program to develop high-temperature structural design methods applicable to liquid-metal fast breeder reactor (LMFBR) system components that operate in the creep range. The specimens used were thin-walled, right circular cylinders capped with either flat or hemispherical heads and tested under internal gas pressure. Circumferential welds were located in different regions of the cylinder or head and, with one exception, were geometrically duplicated by all base metal regions in companion specimens. Results are presented on the comparative deformation and rupture behavior of selected points in the base metal and weldment regions of the different specimens and on the overall surface strains for selected specimens

  4. Corrosion behavior of HPT-deformed TiNi alloys in cell culture medium

    Science.gov (United States)

    Shri, D. N. Awang; Tsuchiya, K.; Yamamoto, A.

    2017-09-01

    In recent years there are growing interest in fabrication of bulk nanostructured metals and alloys by using severe plastic deformation (SPD) techniques as new alternative in producing bulk nanocrystalline materials. These techniques allows for processing of bulk, fully dense workpiece with ultrafine grains. Metal undergoes SPD processing in certain techniques such as high pressure torsion (HPT), equal-channel angular pressing (ECAP) or multi-directional forging (MDF) are subjected to extensive hydrostatic pressure that may be used to impart a very high strain to the bulk solid without the introduction of any significant change in overall dimension of the sample. The change in the structure (small grain size and high-volume fraction of grain boundaries) of the material may result in the corrosion behavior different from that of the coarse-grained material. Electrochemical measurements were done to understand the corrosion behavior of TiNi alloys before and after HPT deformation. The experiment was carried out using standard three electrode setup (a sample as working electrode; a platinum wire as a counter electrode and a saturated calomel electrode in saturated KCl as a reference electrode) with the surface area of 26.42 mm2 exposed to the EMEM+10% FBS cell culture medium. The measurements were performed in an incubator with controlled environment at 37 °C and 5% CO2, simulating the cell culture condition. The potential of the specimen was monitored over 1 hour, and the stabilized potential was used as the open-circuit potential (EOCP). Potentiodynamic curves were scanned in the potential range from -0.5 V to 1.5 V relative to the EOCP, at a rate of 0.5 mV/s. The result of OCP-time measurement done in the cell culture medium shows that the OCP of HPT-deformed samples shifts towards to the more positive rather than that of BHPT samples. The OCP of deformed samples were ennobled to more than +70 mV for Ti-50mol%. The shift of OCP towards the nobler direction

  5. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    Science.gov (United States)

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  6. In-situ white beam microdiffraction study of the deformation behavior in polycrystalline magnesium alloy during uniaxial loading

    International Nuclear Information System (INIS)

    Advanced Light Source; Tamura, Nobumichi; Lynch, P.A.; Stevenson, A.W.; Liang, D.; Parry, D.; Wilkins, S.; Madsen, I.C.; Bettles, C.; Tamura, N.; Geandier, G.

    2007-01-01

    Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situ measurements a light weight (∼0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip

  7. Forecasting of mechanical - and structural behavior of 316 austenitic stainless steels by deformation charts

    International Nuclear Information System (INIS)

    Monteiro, S.N.

    1980-01-01

    The utilization of deformation charts applied to AISI 316 austenitic stainless steel with the purpose of foreseeing its behavior associated with structural and mechanical phenomena, is evaluated. The ocurrence of phenomena such as dynamic aging, martensite transformation, static aging, failure at creep curve, cells, subgrains and boundary slips is discussed in the different regions of the chart. A practical example of the charts' utilization for components of fast reactors is finally presented. (Author) [pt

  8. Anisotropic behavior studies of aluminum alloy 5083-H0 using a micro-tensile test stage in a FEG-SEM

    CSIR Research Space (South Africa)

    Motsi, GT

    2016-02-01

    Full Text Available stream_source_info Motsi_18197_2016.pdf.txt stream_content_type text/plain stream_size 1246 Content-Encoding UTF-8 stream_name Motsi_18197_2016.pdf.txt Content-Type text/plain; charset=UTF-8 Materials Science... & Engineering A, vol. 656: 266-274 Anisotropic behavior studies of aluminum alloy 5083-H0 using a micro-tensile test stage in a FEG-SEM Motsi GT Shongwe MB Sono TJ Olubambi PA ABSTRACT: The plastic anisotropic characteristics of aluminum alloy 5083-H...

  9. Plastic deformation behavior and bonding strength of an EBW joint between 9Cr-ODS and JLF-1 estimated by symmetric four-point bend tests combined with FEM analysis

    International Nuclear Information System (INIS)

    Fu, Haiying; Nagasaka, Takuya; Muroga, Takeo; Guan, Wenhai; Nogami, Shuhei; Serizawa, Hisashi; Geng, Shaofei; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2016-01-01

    The joint between 9Cr-ODS and JLF-1 made by electron beam welding (EBW) fractured at the JLF-1 base metal (BM) during uniaxial tensile tests. Thus, the bonding strength of the joint was not determined and was estimated as more than the ultimate tensile strength of the BM in this case. Symmetric four-point bend tests which concentrate the stress inside the inner span including the weld metal (WM) were carried out at room temperature (RT) and 550 °C to investigate how the bonding strength is more than the ultimate tensile strength of the BM. The normal stress at the center of the weld bead can be calculated with elastic theory up to only 0.25% in strain, though the joint showed more than 10% in strain due to plastic deformation. Thus, finite element method (FEM) was utilized to simulate the plastic deformation behavior of the joint during bend tests. According to the fitting of the FEM output, such as load and displacement of the upper jig contacting the specimens, to the experimental results, the bonding strength of the joint at RT and 550 °C were estimated as 854 MPa and 505 MPa, respectively.

  10. Plastic deformation behavior and bonding strength of an EBW joint between 9Cr-ODS and JLF-1 estimated by symmetric four-point bend tests combined with FEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Haiying [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagasaka, Takuya; Muroga, Takeo [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Guan, Wenhai; Nogami, Shuhei [Tohoku University, 6-6-01-2 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki 567-0047 (Japan); Geng, Shaofei [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Yabuuchi, Kiyohiro; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Uji 611-0011 (Japan)

    2016-01-15

    The joint between 9Cr-ODS and JLF-1 made by electron beam welding (EBW) fractured at the JLF-1 base metal (BM) during uniaxial tensile tests. Thus, the bonding strength of the joint was not determined and was estimated as more than the ultimate tensile strength of the BM in this case. Symmetric four-point bend tests which concentrate the stress inside the inner span including the weld metal (WM) were carried out at room temperature (RT) and 550 °C to investigate how the bonding strength is more than the ultimate tensile strength of the BM. The normal stress at the center of the weld bead can be calculated with elastic theory up to only 0.25% in strain, though the joint showed more than 10% in strain due to plastic deformation. Thus, finite element method (FEM) was utilized to simulate the plastic deformation behavior of the joint during bend tests. According to the fitting of the FEM output, such as load and displacement of the upper jig contacting the specimens, to the experimental results, the bonding strength of the joint at RT and 550 °C were estimated as 854 MPa and 505 MPa, respectively.

  11. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    Science.gov (United States)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  12. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  13. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asqardoust, Sh.; Zarei-Hanzaki, A. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Fatemi, S.M., E-mail: mfatemi@ut.ac.ir [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Moradjoy-Hamedani, M. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-06-05

    Magnesium alloys containing RE elements (WE grade) are considered as potential materials for high temperature structural applications. To this end, it is crucial to study the flow behavior and the microstructural evolution of these alloys at high temperatures. In present work, the hot compression testing was employed to investigate the deformation behavior of a rolled WE54 magnesium alloy at elevated temperatures. The experimental material failed to deform to target strain of 0.6 at 250 and 300 °C, while the straining was successfully performed at 350 °C. A flow softening was observed at 350 °C, which was related to the depletion of RE strengthener elements, particularly Y atoms, from the solid solution and dynamic precipitation of β phases. It was suggested that the Zener pinning effect of the latter precipitates might retard the occurrence of dynamic recrystallization. As the temperature increased to 450 and 500 °C, the RE elements dissolved in the matrix and thus dynamic recrystallization could considerably progress in the microstructure. The comparative study of specimens cut along transverse ad normal direction (TD and ND specimens) implied that the presence of RE elements might effectively reduce the yield anisotropy in WE54 rolled alloy. Microstructural observations indicated a higher fraction of dynamically-recrystallized grains for the ND specimens. This was discussed relying on the different shares of deformation mechanism during compressing the TD and ND specimens. - Highlights: • Deformation behavior of a high Zr WE alloy was addressed at low strain rate. • Dynamic precipitation was realized at 350 °C. • The occurrence of DRX was retarded due to Zener pinning effect. • A higher DRX fraction was obtained in ND specimens comparing with TD ones.

  14. Grain growth behavior and high-temperature high-strain-rate tensile ductility of iridium alloy DOP-26

    International Nuclear Information System (INIS)

    McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.

    1998-04-01

    This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980's and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data

  15. Anisotropic deformation behavior of as-extruded 6063-T4 alloy under dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Tuo [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Li, Luoxing, E-mail: luoxing_li@yahoo.com [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China); Joint Center for Intelligent New Energy Vehicle, Tongji University, Shanghai 200092 (China); Liu, Xiao; Liu, Wenhui [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201 (China); Guo, Pengcheng; Tang, Xu [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082 (China)

    2016-06-01

    The deformation behavior of 6063-T4 aluminum alloy bar was investigated by compression tests conducted at a wide strain rate range of 10{sup −4} to 9×10{sup 3} s{sup −1} with loading directions at 0°, 45° and 90° to the axis of the extruded bar. It is found that the flow stresses of 0° specimens are always the highest and those of the 45° specimens are the lowest at the same conditions. The flow stress exhibits obvious strain rate sensitivity (SRS), which differs from static to dynamic deformation. The Schmid factors (SFs) for each type of texture components were calculated. For the {112}<111> texture component, the max Schmid factors are 0.27, 0.49 and 0.41 for 0°, 45° and 90° specimens. For the {110}<111> texture component, they are 0.27, 0.43 and 0.41 for the three directions. The initial texture changes significantly with increasing strain, the strain rate has slight influence on the texture evolution. The transmission electron microscope (TEM) observations indicate that as the strain rate increases, the density of the dislocation increases and its distribution becomes more homogeneous. It is necessary to consider the anisotropic deformation behavior and microstructure evolution in material selection and structure design for the impact components.

  16. Deformation Behavior of Press Formed Shell by Indentation and Its Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Minoru Yamashita

    2015-01-01

    Full Text Available Deformation behavior and energy absorbing performance of the press formed aluminum alloy A5052 shells were investigated to obtain the basic information regarding the mutual effect of the shell shape and the indentor. Flat top and hemispherical shells were indented by the flat- or hemispherical-headed indentor. Indentation force in the rising stage was sharper for both shell shapes when the flat indentor was used. Remarkable force increase due to high in-plane compressive stress arisen by the appropriate tool constraint was observed in the early indentation stage, where the hemispherical shell was deformed with the flat-headed indentor. This aspect is preferable for energy absorption performance per unit mass. Less fluctuation in indentation force was achieved in the combination of the hemispherical shell and similar shaped indentor. The consumed energy in the travel length of the indentor equal to the shell height was evaluated. The increase ratio of the energy is prominent when the hemispherical indentor is replaced by a flat-headed one in both shell shapes. Finite element simulation was also conducted. Deformation behaviors were successfully predicted when the kinematic hardening plasticity was introduced in the material model.

  17. Multi-scale analysis of deformation behavior at SCC crack tip (3) (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2008-08-01

    In recent years, incidents of the stress corrosion cracking (SCC) were frequently reported that occurred to the various components of domestic boiling water reactors (BWR), and the cause investigation and measure become the present important issue. By the Japan nuclear energy safety organization (JNES), a research project on the intergranular SCC (IGSCC) in nuclear grade stainless steels (henceforth, IGSCC project) is under enforcement from a point of view to secure safety and reliability of BWR, and SCC growth data of low carbon stainless steels are being accumulated for the weld part or the work-hardened region adjacent to the weld metal. In the project, it has been an important subject to guarantee the validity of accumulated SCC data. At a crack tip of SCC in compact tension (CT) type specimen used for the SCC propagation test, a macroscopic plastic region is formed where heterogeneity of microstructure developed by microscopic sliding and dislocations is observed. However, there is little quantitative information on the plastic region, and therefore, to assess the data of macroscopic SCC growth rate and the validity of propagation test method, it is essentially required to investigate the plastic region at the crack tip in detail from a microscopic viewpoint. This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with JNES that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of SCC. The research was carried out to evaluate the validity of the SCC growth data acquired in the IGSCC project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary

  18. Hot compressive deformation behavior of the as-quenched A357 aluminum alloy

    International Nuclear Information System (INIS)

    Yang, X.W.; Lai, Z.H.; Zhu, J.C.; Liu, Y.; He, D.

    2012-01-01

    Highlights: ► We create a thermal history curve which was applied to carry out compression tests. ► We make an analysis of deformation performance for as-quenched A357 alloy. ► We create a constitutive equation which has good accuracy. - Abstract: The objective of the present work was to establish an accurate thermal-stress mathematical model of the quenching operation for A357 (Al–7Si–0.6Mg) alloy and to investigate the deformation behavior of this alloy. Isothermal compression tests of as-quenched A357 alloy were performed in the temperature range of 350–500 °C and at the strain rate range of 0.001–1 s −1 . Experimental results show that the flow stress of as-quenched A357 alloy decreases with the increase of temperature and the decrease of strain rate. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched A357 alloy is 252.095 kJ/mol. Under the different small strains (≤0.01), the constitutive equation parameters of as-quenched A357 alloy were calculated. Values of flow stress calculated by constitutive equation were in a very good agreement with experimental results. Therefore, it can be used as an accurate thermal-stress model to solve the problems of quench distortion of parts.

  19. Effect of dynamic strain aging on cyclic stress response and deformation behavior of Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Mahobia, G.S.; Santhi Srinivasa, N.C.; Singh, Vakil; Chakravartty, J.K.; Nudurupatic, Saibaba

    2016-01-01

    The effect of strain rate and temperature was studied on cyclic stress response and deformation behavior of annealed Zircaloy-2. Dynamic strain aging was exhibited under some test conditions. The cyclic stress response was found to be dependent on temperature and strain rate. At 300 °C, with decrease in strain rate, there was decrease in the rate as well as the degree of cyclic hardening. However, at 400°C, there was opposite trend and with decrease in strain rate both the rate as well as the degree of hardening increased. The deformation substructure showed dislocation bands, dislocation vein structure, PSB wall structure at both the temperatures. Irrespective of the temperature, there was dislocation loop structure, known as corduroy structure, at both the test temperatures. Based on the dislocation structure, the initial linear hardening is attributed to development of veins and PSB wall structure and the secondary hardening to the Corduroy structure. (author)

  20. Dynamic Deformation Behavior of Soft Material Using Shpb Technique and Pulse Shaper

    Science.gov (United States)

    Lee, Ouk Sub; Cho, Kyu Sang; Kim, Sung Hyun; Han, Yong Hwan

    This paper presents a modified Split Hopkinson Pressure Bar (SHPB) technique to obtain compressive stress strain data for NBR rubber materials. An experimental technique with a modified the conventional SHPB has been developed for measuring the compressive stress strain responses of materials with low mechanical impedance and low compressive strengths, such as the rubber and the polymeric material. This paper uses an aluminum pressure bar to achieve a closer impedance match between the pressure bar and the specimen materials. In addition, a pulse shaper is utilized to lengthen the rising time of the incident pulse to ensure dynamic stress equilibrium and homogeneous deformation of NBR rubber materials. It is found that the modified technique can determine the dynamic deformation behavior of rubbers more accurately.

  1. Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Gergely [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Máthis, Kristian [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Pilch, Ján [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Minárik, Peter [Department of Metal Physics, Charles University, Ke Karlovu, 5, CZ-121 16 Prague (Czech Republic); Lukáš, Petr [Nuclear Physics Institute, v. v. i., 250 68 Řež (Czech Republic); Vinogradov, Alexei, E-mail: alexei.vinogradov@ntnu.no [Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology - NTNU, Trondheim N-7491 (Norway); Institute of Advanced Technologies, Togliatti State University, 445020 (Russian Federation)

    2017-02-08

    The influence of the reinforcement short Saffil fibers on the deformation behavior of Mg-Al-Ca alloy-based composite with two different fiber plane orientations is investigated and clarified using in-situ neutron diffraction at room and elevated temperatures. The measured lattice strain evolution points to a more efficient reinforcing effect of fibers at parallel fiber plane orientation, which decreases at elevated temperature. A significant decrement of compressive lattice strain was incidentally observed in the matrix in the direction of load axis when deformation due to the elevated temperature occurred. Electron microscopy revealed the influence of the temperature and fiber orientation on fiber cracking. The EBSD observations corroborated neutron diffraction results highlighting significant twin growth at elevated testing temperatures.

  2. Modelling the viscoplastic behavior and the heterogeneous intracrystalline deformation of columnar ice polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lebensohn, Ricardo A [Los Alamos National Laboratory; Montagnat, Maurine [LGGE (FRANCE); Mansuy, Philippe [MICHELIN (FRANCE); Duval, Paul [LGGE (FRANCE); Philip, A [LGGE (FRANCE)

    2008-01-01

    A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals. The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.

  3. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  4. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  5. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  6. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Tschegg, E.K.; Gerstenberg, H.

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and 6O Co γ-rays up to 1.8 x 1 0 8 Gy as well as with different reactor spectra up to a fast neutron fluence of 5 x lO 22 m -2 (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed

  7. Tensile and shear fracture behavior of fiber reinforced plastics at 77K irradiated by various radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Humer, K.; Weber, H.W. [Atominstitut der Oesterreichischen Hochschulen, Vienna (Austria); Tschegg, E.K. [Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik; Egusa, Shigenori [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Birtcher, R.C. [Argonne National Lab., IL (United States); Gerstenberg, H. [Technische Univ. Muenchen, Garching (Germany). Fakultaet fuer Physik

    1993-08-01

    Influence of radiation damage (gamma, electron, neutron) on mechanical properties of fiber reinforced plastics (FRPs) has been investigated. Different types of FRPs (two or three dimensional E-, S- or T-glass fiber reinforcement, epoxy or bismaleimide resin) have been irradiated at room temperature with 2 MeV electrons and {sup 6O}Co {gamma}-rays up to 1.8 {times} 1 0{sup 8} Gy as well as with different reactor spectra up to a fast neutron fluence of 5 {times} lO{sup 22} m{sup {minus}2} (E > 0.1 MeV). Tensile and intralaminar shear tests were carried out on the irradiated samples at 77 K. Some samples were irradiated at 5 K and tested at 77 K with and without an annealing cycle to room temperature. Results on the influence of these radiation conditions and of warm-up cycles on the mechanical properties of FRPs are compared and discussed.

  8. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    Science.gov (United States)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  9. High-Temperature Tensile and Tribological Behavior of Hybrid (ZrB2+Al3Zr)/AA5052 In Situ Composite

    Science.gov (United States)

    Gautam, G.; Kumar, N.; Mohan, A.; Gautam, R. K.; Mohan, S.

    2016-09-01

    During service life, components such as piston, cylinder blocks, brakes, and discs/drums, have to work under high-temperature conditions. In order to have appropriate material for such applications high-temperature studies are important. Hybrid (ZrB2+Al3Zr)/AA5052 in situ composite has been investigated from ambient to 523 K (250 °C) at an interval of 50 deg. (ZrB2+Al3Zr)/AA5052 in situ composite has been fabricated by the direct melt reaction of AA5052 alloy with zirconium and boron salts. Microstructure studies show refinement in the grain size of base alloy on in situ formation of reinforcement particles. Al3Zr particles are observed in rectangular and polyhedron shapes. It is observed from the tensile studies that ultimate tensile strength, yield strength, and percentage elongation decrease with increase in test temperature. Similar kind of behavior is also observed for flow curve properties. The tensile results have also been correlated with fractography. Wear and friction results indicate that the wear rate increases with increase in normal load, whereas coefficient of friction shows decreasing trend. With increasing test temperature, wear rate exhibits a typical phenomenon. After an initial increase, wear rate follows a decreasing trend up to 423 K (150 °C), and finally a rapid increase is observed, whereas coefficient of friction increases continuously with increase in test temperature. The mechanisms responsible for the variation of wear and friction with different temperatures have been discussed in detail with the help of worn surfaces studies under scanning electron microscope (SEM) & 3D-profilometer and debris analysis by XRD.

  10. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  11. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    Science.gov (United States)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  12. Understanding compressive deformation behavior of porous Ti using finite element analysis

    International Nuclear Information System (INIS)

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-01-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces

  13. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties; Alliages ferritiques 14/20% de chrome renforces par dispersion d`oxydes. Effets des procedes de mise en forme sur les textures de deformation, la recristallisation et les proprietes de traction

    Energy Technology Data Exchange (ETDEWEB)

    Regle, H

    1994-12-31

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. (Abstract Truncated)

  14. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  15. An Explicit Approach Toward Modeling Thermo-Coupled Deformation Behaviors of SMPs

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-03-01

    Full Text Available A new elastoplastic J 2 -flow models with thermal effects is proposed toward simulating thermo-coupled finite deformation behaviors of shape memory polymers. In this new model, an elastic potential evolving with development of plastic flow is incorporated to characterize the stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to represent the strain recovery effect at heating. It is shown that any given test data for both effects may be accurately simulated by means of direct and explicit procedures. Numerical examples for model predictions compare well with test data in literature.

  16. Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B4C cast composites

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Zangeneh, Sh.; Shahmir, H.; Saghafi, M.; Emamy, M.

    2010-01-01

    In present paper, an attempt was made to examine the influence of T6 heat treatment (solution treatment at 540 o C for 5 h, quenching in hot water and artificial aging at 170 o C for 8 h) on the microstructure, tensile properties and dry sliding wear behavior of A356-10%B 4 C cast composites. The composite ingots were made by stir casting process. In this work, the matrix alloy and composite were characterized by optical microscope, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, tensile tests and conventional pin-on-disk experiment. The obtained results showed that in Al-B 4 C composite, T6 treatment was a dominant factor on the hardness improvement in comparison with hardness increasing due to the addition of B 4 C hard particles. In addition, T6 treatment can contribute to the strong bonding between B 4 C and matrix alloy and also it can change eutectic silicon morphology from acicular to near spherical. This case can lead to higher strength and wear properties of heat treated metal matrix composites in comparison with unheat treated state. Observation of worn surfaces indicated detachment of mechanically mixed layer which can primarily due to the delamination wear mechanism under higher applied load.

  17. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2014-01-01

    Timber is normally dried by kiln drying, in the course of which moisture-induced stresses and fractures can occur. Cracks occur primarily in the radial direction due to tangential tensile strength (TSt) that exceeds the strength of the material. The present article reports on experiments and nume......Timber is normally dried by kiln drying, in the course of which moisture-induced stresses and fractures can occur. Cracks occur primarily in the radial direction due to tangential tensile strength (TSt) that exceeds the strength of the material. The present article reports on experiments...... and numerical simulations by finite element modeling (FEM) concerning the TSt and fracture behavior of Norway spruce under various climatic conditions. Thin log disc specimens were studied to simplify the description of the moisture flow in the samples. The specimens designed for TS were acclimatized...... to a moisture content (MC) of 18% before TSt tests at 20°C, 60°C, and 90°C were carried out. The maximum stress results of the disc simulations by FEM were compared with the experimental strength results at the same temperature levels. There is a rather good agreement between the results of modeling...

  18. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    Science.gov (United States)

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  19. Hot Deformation Behavior of 1Cr12Ni3Mo2VN Martensitic Stainless Steel

    Science.gov (United States)

    He, Xiaomao; Jiang, Peng; Zhou, Leyu; Chen, Chao; Deng, Xiaochun

    2017-08-01

    1Cr12Ni3Mo2VN is a new type of martensitic stainless steel for the last-stage blades of large-capacity nuclear and thermal power turbines. The deformation behavior of this steel was studied by thermal compression experiments that performed on a Gleeble-3500 thermal simulator at a temperature range of 850°C to 1200°C and a strain rate of 0.01s-1 to 20s-1. When the deformation was performed at high temperature and low strain rate, a necklace type of microstructures was observed, the plastic deformation mechanism is grain boundary slip and migration, when at low temperature and lower strain rate, the slip bands were observed, the mechanism is intracrystalline slips, and when at strain rate of 20s-1, twins were observed, the mechanism are slips and twins. The Arrhenius equation was applied to describe the constitutive equation of the flow stress. The accuracy of the equation was verified by using the experimental data and the correlation coefficient R2 = 0.9786, and the equation can provide reasonable data for the design and numerical simulation of the forging process.

  20. Observation of Compressive Deformation Behavior of Nuclear Graphite by Digital Image Correlation

    International Nuclear Information System (INIS)

    Kim, Hyunju; Kim, Eungseon; Kim, Minhwan; Kim, Yongwan

    2014-01-01

    Polycrystalline nuclear graphite has been proposed as a fuel element, moderator and reflector blocks, and core support structures in a very high temperature gas-cooled reactor. During reactor operation, graphite core components and core support structures are subjected to various stresses. It is therefore important to understand the mechanism of deformation and fracture of nuclear graphites, and their significance to structural integrity assessment methods. Digital image correlation (DIC) is a powerful tool to measure the full field displacement distribution on the surface of the specimens. In this study, to gain an understanding of compressive deformation characteristic, the formation of strain field during a compression test was examined using a commercial DIC system. An examination was made to characterize the compressive deformation behavior of nuclear graphite by a digital image correlation. The non-linear load-displacement characteristic prior to the peak load was shown to be mainly dominated by the presence of localized strains, which resulted in a permanent displacement. Young's modulus was properly calculated from the measured strain

  1. Analyzing the Mechanical Behavior of Polymer and Composite Materials by Means of Unique Method of Deformation Calorimetry

    Science.gov (United States)

    Bessonova, N. P.; Chvalun, S. N.

    2018-06-01

    Results are presented from long-term investigations of a wide range of polymer systems, varying from elastomers and thermoplastic elastomers to plastics and fibers. The thermophysical properties of both initial and modifying additive-containing polysiloxanes, block copolymers, and poleolefins that differ in chemical nature, structure, and composition are analyzed. It is shown that deformation calorimetry allows the simultaneous registration of mechanical (from 5 × 10-3 kg) and thermal effects (at a sensitivity of 2 × 10‒7 J/s), and the determination of changes in enthalpy, internal energy, and intra- and intermolecular contributions to the formation of the tensile stress response. In other words, it provides a unique opportunity to analyze the deformation mechanism of investigated systems and its dependence on the changing parameters.

  2. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    Science.gov (United States)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  3. Elevated temperature tensile and creep behavior of a SiC fiber-reinforced titanium metal matrix composite. Final Report, 22 Dec. 1994 M.S. Thesis, 7 May 1993

    Science.gov (United States)

    Thurston, Rita J.

    1995-01-01

    In this research program, the tensile properties and creep behavior in air of (0)(sub 4), (0/90)(sub s) and (90)(sub 4) SCS-9/Beta 21S composite layups with 0.24 volume fraction fiber were evaluated. Monotonic tensile tests at 23, 482, 650 and 815 C yielded the temperature dependence of the elastic modulus, proportional limit, ultimate tensile strength and total strain at failure. At 650 C, the UTS of the (0)(sub 4) and (0/90)(sub s) layups decreases by almost 50 percent from the room temperature values, indicating that operating temperatures should be less than 650 C to take advantage of the specific tensile properties of these composites.

  4. Influence of interstitials elements (O, C, N) on the plastic behavior in tensile stress of polycrystalline niobium between -2530C and 8500C

    International Nuclear Information System (INIS)

    Fries, J.-F.

    1972-01-01

    The fundamental mechanism of plastic deformation of polycrystalline niobium was studied with 4 samples of different purity. At low temperatures (-253 0 C, +25 0 C) there is a linear relationship between the activation energy and the temperature for the four samples. The two models of Peierls-Nabarro and Escaig-Hirsh used are complementary. Ductile-brittle transition result of a competition between relaxation by fast propagation of a defect or by local plastic deformation. At intermediate temperatures (25 0 C - 850 0 C) on the contrary interstitial impurities play an important role in the plastic behavior of niobium. Mechanical characteristics temperature are modified by aging and can lead to a Portevin-Le Chatelier effect if dislocations are saturated by impurities [fr

  5. Strain-softening behavior of an Fe-6.5 wt%Si alloy during warm deformation and its applications

    International Nuclear Information System (INIS)

    Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin

    2011-01-01

    Research highlights: → An Fe-6.5 wt%Si alloy exhibits strain-softening behavior after large deformation. → The decrease of the order degree is responsible for the strain-softening behavior. → The strain-softening behavior of Fe-6.5 wt%Si alloy can be applied in cold rolling. → An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm is fabricated by cold rolling. - Abstract: An Fe-6.5 wt%Si alloy with columnar grains was compressed at a temperature below its recrystallization temperature. The Vickers hardness and structure of the alloy before and after deformation were investigated. The results showed that with an increase in the degree of deformation, Vickers hardness of the alloy initially increased rapidly and then decreased slowly, indicating that the alloy had a strain-softening behavior after a large deformation. Meanwhile, the work-hardening exponent of the alloy decreased significantly. Transmission electron microscopy confirmed that the decrease of the order degree was responsible for the strain-softening behavior of the deformed alloy. Applying its softening behavior, the Fe-6.5 wt%Si alloy with columnar grains was rolled at 400 deg. C and then at room temperature. An Fe-6.5 wt%Si thin strip with thickness of 0.20 mm was fabricated. The surface of the strip was bright and had no obvious edge cracks.

  6. Prediction of hot deformation behavior of high phosphorus steel using artificial neural network

    Science.gov (United States)

    Singh, Kanchan; Rajput, S. K.; Soota, T.; Verma, Vijay; Singh, Dharmendra

    2018-03-01

    To predict the hot deformation behavior of high phosphorus steel, the hot compression experiments were performed with the help of thermo-mechanical simulator Gleeble® 3800 in the temperatures ranging from 750 °C to 1050 °C and strain rates of 0.001 s-1, 0.01 s-1, 0.1 s-1, 0.5 s-1, 1.0 s-1 and 10 s-1. The experimental stress-strain data are employed to develop artificial neural network (ANN) model and their predictability. Using different combination of temperature, strain and strain rate as a input parameter and obtained experimental stress as a target, a multi-layer ANN model based on feed-forward back-propagation algorithm is trained, to predict the flow stress for a given processing condition. The relative error between predicted and experimental stress are in the range of ±3.5%, whereas the correlation coefficient (R2) of training and testing data are 0.99986 and 0.99999 respectively. This shows that a well-trained ANN model has excellent capability to predict the hot deformation behavior of materials. Comparative study shows quite good agreement of predicted and experimental values.

  7. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  8. High temperature deformation behavior, thermal stability and irradiation performance in Grade 92 steel

    Science.gov (United States)

    Alsagabi, Sultan

    The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally

  9. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  10. Non-localized deformation in Cu−Zr multi-layer amorphous films under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-05

    In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.

  11. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  12. High Temperature Deformation Behavior and Microstructure Evolution of Ti-4Al-4Fe-0.25Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Woo; Lee, Yongmoon; Lee, Chong Soo [Pohang University of Science and Technology, Pohang (Korea, Republic of); Yeom, Jong-Taek [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lee, Gi Yeong [KPCM Incorporated, Gyeongsan (Korea, Republic of)

    2016-05-15

    Hot deformation behavior of Ti-4Al-4Fe-0.25Si alloy with martensite microstructure was investigated by compression tests at temperatures of 1023 – 1173 K (α+β phase region) and strain rates of 10{sup -3} – 1 s{sup -1}. By analyzing the deformation behavior, plastic deformation instability parameters including strain rate sensitivity, deformation temperature sensitivity, efficiency of power dissipation, and Ziegler’s instability were evaluated as a function of deformation temperature and strain rate, and they were further examined by drawing deformation processing maps. The microstructure evolution was also studied to determine the deformation conditions under which equiaxed α phase was formed in the microstructure without remnants or kinked α phase platelets and shear bands, these last two of which cause severe cracks during post-forming process. Based on the combined results of the processing maps and the microstructure analysis, the optimum α+β forging conditions for Ti-4Al-4Fe-0.25Si alloy were determined.

  13. Understanding the different rotational behaviors of $^{252}$No and $^{254}$No in terms of high-order deformation

    CERN Document Server

    Liu, H L; Walker, P M

    2012-01-01

    Total Routhian surface calculations have been performed to investigate rapidly rotating transfermium nuclei, the heaviest nuclei accessible by detailed spectroscopy experiments. The observed fast alignment in $^{252}$No and slow alignment in $^{254}$No are well reproduced by the calculations incorporating high-order deformations. The different rotational behaviors of $^{252}$No and $^{254}$No can be understood for the first time in terms of $\\beta_6$ deformation that decreases the energies of the $\

  14. A Modified Constitutive Model for Tensile Flow Behaviors of BR1500HS Ultra-High-Strength Steel at Medium and Low Temperature Regions

    Science.gov (United States)

    Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng

    2018-01-01

    Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.

  15. Characterization of strengthening mechanism and hot deformation behavior of powder metallurgy molybdenum

    International Nuclear Information System (INIS)

    Xiao, Meili; Li, Fuguo; Xie, Hangfang; Wang, Yufeng

    2012-01-01

    Highlights: → Dynamic recrystallization of powder metallurgy molybdenum occurs in the temperature region (1200-1450 o C). → The value of strain hardening index n decreases along with the temperature rising. → The value of strain-rate sensitivity exponent m increases slowly at first and achieves a peak value at 1350 o C. → Deformation strengthening is the main strengthening mechanism at low temperature. → Rheological strengthening becomes the primary strengthening mechanism at high temperature. -- Abstract: The high-temperature deformation behavior of powder metallurgy molybdenum has been investigated based on a series of isothermal hot compression tests, which were carried out on a Gleeble-1500 thermal mechanical simulator in a wide range of temperatures (900-1450 o C) and strain rates (0.01-10 s -1 ). Through the research on the experimental stress-strain curves, it reveals that dynamic recrystallization softening effect of powder metallurgy molybdenum occurs in the temperature range from 1200 o C to 1450 o C, in which the flow stress is significantly sensitive to temperature. In comparison with the value of strain hardening index n which decreases along with the temperature rising, the value of strain-rate sensitivity exponent m does not change obviously; however, it increases slowly with the increasing of temperature at first and achieves a peak value at 1350 o C. Furthermore, relying on the comparison of mean value of n and m, it is suggested that deformation strengthening is the main strengthening mechanism at low temperature while the rheological strengthening changes into the primary strengthening mechanism at high temperature.

  16. Hot Deformation Behavior and Processing Maps of Diamond/Cu Composites

    Science.gov (United States)

    Zhang, Hongdi; Liu, Yue; Zhang, Fan; Zhang, Di; Zhu, Hanxing; Fan, Tongxiang

    2018-06-01

    The hot deformation behaviors of 50 vol pct uncoated and Cr-coated diamond/Cu composites were investigated using hot isothermal compression tests under the temperature and strain rate ranging from 1073 K to 1273 K (800 °C to 1000 °C) and from 0.001 to 5 s-1, respectively. Dynamic recrystallization was determined to be the primary restoration mechanism during deformation. The Cr3C2 coating enhanced the interfacial bonding and resulted in a larger flow stress for the Cr-coated diamond/Cu composites. Moreover, the enhanced interfacial affinity led to a higher activation energy for the Cr-coated diamond/Cu composites (238 kJ/mol) than for their uncoated counterparts (205 kJ/mol). The strain-rate-dependent constitutive equations of the diamond/Cu composites were derived based on the Arrhenius model, and a high correlation ( R = 0.99) was observed between the calculated flow stresses and experimental data. With the help of processing maps, hot extrusions were realized at 1123 K/0.01 s-1 and 1153 K/0.01 s-1 (850 °C/0.01 s-1 and 880 °C/0.01 s-1) for the uncoated and coated diamond/Cu composites, respectively. The combination of interface optimization and hot extrusion led to increases of the density and thermal conductivity, thereby providing a promising route for the fabrication of diamond/Cu composites.

  17. Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel

    Science.gov (United States)

    Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.

    2017-12-01

    Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.

  18. Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep.

    Science.gov (United States)

    Reddy, K Vijay; Pal, Snehanshu

    2018-03-07

    The dependence of creep deformation behavior of nickel bicrystal specimens on grain boundary (GB) complexion was investigated by performing a simulated bending creep test using molecular dynamics methods. Strain burst phenomena were observed during the low temperature [500 K, i.e., creep process. Atomic strain and dislocation analyses showed that the time of occurrence of strain burst depends on how easily GB migration happens in bicrystal specimens. Specimens with kite monolayer segregation GB complexion were found to be stable at low temperature (500 K), whereas specimens with split-kite GB complexion were stable at a comparatively higher temperature (900 K). In case of further elevated creep temperatures, e.g., 1100 K and 1300 K, split-kite GB complexion becomes unstable and leads to early failure of the specimen at those temperatures. Additionally, it was observed that split-kite bilayer segregation and normal kite GB complexions exhibit localized increases in elastic modulus during bending creep process, occurring at temperatures of 1100 K and 1300 K, respectively, due to the formation of interpenetrating icosahedral clusters. Graphical abstract Representative creep curves during bending creep deformation of various grain boundary complexions at 900 K.

  19. Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

    Science.gov (United States)

    Ganesh Kumar, J.; Laha, K.; Ganesan, V.; Prasad Reddy, G. V.

    2018-04-01

    The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δT (1 - e^{ - κ t} ) + \\dot{δ }s t + δ3 e^[ φ( t - tr ) ]. The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\\dot{δ }s ) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \\dot{δ }s and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.

  20. High temperature tensile properties and deep drawing of fully green composites

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available In recent years, research and development of materials using biomass sources are much expected to construct a sustainable society. The so-called green composite consisting of natural fibers and biodegradable resin, is one of the most promising materials in developing biomass products. In this study, especially, we focus on the tensile deformation behavior of the green composites reinforced with ramie woven fabrics at high temperature. The results show that the fracture strain at high temperatures increases larger than that of room temperature, and initial deformation resistance of the composites seen at room temperature does not appear at high temperatures. Thus, several conditions to cause more deformability of the green composites were found. Finally, in order to utilize such deformability, Lankford-values of the green composites were clarified, and deep drawing was carried out for sheet materials made of the green composites.

  1. Microstructure and annealing behavior of a modified 9Cr−1Mo steel after dynamic plastic deformation to different strains

    International Nuclear Information System (INIS)

    Zhang, Z.B.; Mishin, O.V.; Tao, N.R.; Pantleon, W.

    2015-01-01

    The microstructure, hardness and tensile properties of a modified 9Cr−1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength

  2. Cyclic Deformation and Fatigue Behaviors of Alloy 617 Base Metal and Weldments at 900℃ for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Kim, Byung Tak; Dewa, Rando T.; Hwang, Jeong Jun; Kim, Tae Su [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An analysis of cyclic deformation can contribute to a deeper understanding of the fatigue fracture mechanisms as well as to improvements in the design and application of VHTR system. However, the studies associated with cyclic deformation and low cycle fatigue (LCF) properties of Alloy 617 have focused mainly on the base metal, with little attention given to the weldments. Totemeier studied on high-temperature creep-fatigue of Alloy 617 base metal and weldments. Current research activities at PKNU and KAERI focus on the study of cyclic deformation and LCF behaviors of Alloy 617 base metal (BM) and weldments (WM) specimens were machined from GTAW buttwelded plates at very high-temperature of 900℃. In this work, the cyclic deformation characteristics and fatigue behaviors of Alloy 617 BM and WM are studied and discussed with respect to LCF. In this paper, cyclic deformation and low cycle fatigue behaviors of Alloy 617 base metal and weldments was evaluated using strain-controlled LCF tests at 900℃for 0.6% total strain range. Results of the current experiments can be concluded; The WM specimen has shown a higher cyclic stress response than the BM specimen. The fatigue life of WM specimen was reduced relative to that of BM specimen.

  3. Effect of nitrogen in austenitic stainless steel on deformation behavior and stress corrosion cracking susceptibility in BWR simulated environment

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Kain, V.; Dey, G.K.

    2012-01-01

    Intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) components in boiling water reactor (BWR has been a serious issue and is generic in nature. Initial cracking incidences were attributed to weld induced sensitisation and low temperature sensitisation which was mitigated by the use of low carbon grade of SS and molybdenum and nitrogen containing nuclear grade SS. However, IGSCC has occurred in these SS in the non-sensitised condition which was attributed to residual weld induced strain. Strain hardening in SS has been identified as a major cause for enhanced IGSCC susceptibility in BWR environment. Nitrogen in SS has a significant effect on the strain hardening characteristics and has potential to affect the IGSCC susceptibility in BWR environment. Type 304LN stainless steel is a candidate material for use in future reactors with long design life like the Advanced Heavy Water Reactor (AHWR), in which the operating conditions are similar to BWR. This study reports the effect of nitrogen in type 304LN stainless steel on the strain hardening behaviour and deformation characteristics and its effect on the IGSCC susceptibility in BWR/AHWR environment. Two heats of type 304LN stainless steel were used containing different levels of nitrogen, 0.08 and 0.16 wt % (SS alloys A and B, respectively). Both the SS was strain hardened by cross rolling at 200℃ to simulate the strain hardened regions having higher IGSCC susceptibility in BWRs. Tensile testing was done at both room temperature and 288℃(temperature simulating operating BWR conditions) and the effect of nitrogen on the tensile properties were established. Tensile testing was done at strain rates similar to the crack tip strain rates associated with a growing IGSCC in SS. Detailed transmission electron microscopic (TEM) studies were done to establish the effect of nitrogen on the deformation modes. Results indicated twinning was the major mode of deformation during cross rolling while

  4. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    Science.gov (United States)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  5. Optimization of tensile method and specimen geometry in modified ring tensile test

    International Nuclear Information System (INIS)

    Kitano, Koji; Fuketa, Toyoshi; Sasajima, Hideo; Uetsuka, Hiroshi

    2001-03-01

    Several techniques in ring tensile test are proposed in order to evaluate mechanical properties of cladding under hoop loading condition caused by pellet/cladding mechanical interaction (PCMI). In the modified techniques, variety of tensile methods and specimen geometry are being proposed in order to limit deformation within the gauge section. However, the tensile method and the specimen geometry were not determined in the modified techniques. In the present study, we have investigated the tensile method and the specimen geometry through finite element method (FEM) analysis of specimen deformation and tensile test on specimens with various gauge section geometries. In using two-piece tensile tooling, the mechanical properties under hoop loading condition can be correctly evaluated when deformation part (gauge section) is put on the top of a half-mandrel, and friction between the specimen and the half-mandrel is reduced with Teflon tape. In addition, we have shown the optimum specimen geometry for PWR 17 by 17 type cladding. (author)

  6. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  7. Predictions of creep behavior of some stainless steels on the basis of short-term tensile properties

    International Nuclear Information System (INIS)

    Bui-Quoc, T.; Biron, A.

    1979-01-01

    A concept of cumulative damage has recently been developed for evaluating the amount of damage incurred by the material under the creep process. The damage accumulation is stress-dependent and is a non-linear function of time. This new approach allows one to establish the creep curve in the sigma-T diagram (sigma:applied stress, T:time at rupture) as well as to evaluate the remaining time to rupture when the material is subjected to several specified conditions of creep loading. The method takes into account the order effect of creep loading which has been observed experimentally and reported recently in the literature. Only the procedure related to the determination of the creep curve is discussed in the present paper. The isothermal creep behavior is represented by a single equation in which two material constants must be known in order to describe the complete creep curve. A good fit with experimental results for some materials is observed when these constants are evaluated by means of two reference data points chosen in the sigma/T diagram. (orig.)

  8. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior

    Science.gov (United States)

    Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.

    2014-12-01

    Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth

  9. Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory

    International Nuclear Information System (INIS)

    Song, F.; Huang, G.L.

    2009-01-01

    The surface stress effects on bending behavior of nanowires have recently attracted a lot of attention. In this letter, the incremental deformation theory is first applied to study the surface stress effects upon the bending behavior of the nanowires. Different from other linear continuum approaches, the local geometrical nonlinearity of the Lagrangian strain is considered, therefore, the contribution of the surface stresses is naturally derived by applying the Hamilton's principle, and influence of the surface stresses along all surfaces of the nanowires is captured. It is first shown that the surface stresses along all surfaces have contribution not only on the effective Young's modulus of the nanowires but also on the loading term in the governing equation. The predictions of the effective Young's modulus and the resonance shift of the nanowires from the current method are compared with those from the experimental measurement and other existing approaches. The difference with other models is discussed. Finally, based on the current theory, the resonant shift predictions by using both the modified Euler-Bernoulli beam and the modified Timoshenko beam theories of the nanowires are investigated and compared. It is noticed that the higher vibration modes are less sensitive to the surface stresses than the lower vibration modes.

  10. Liquid Segregation Phenomenological Behaviors of Ti14 Alloy during Semisolid Deformation

    Directory of Open Access Journals (Sweden)

    Y. N. Chen

    2014-05-01

    Full Text Available The liquid segregation phenomenon and its effect on deformation mechanism of Ti14 alloy in semisolid metal processing were investigated by thermal simulation test. Microstructure of depth profile was determined by cross-section quantitative metallography, and liquid segregation phenomenon was described by Darcy's law. The results show that segregation phenomenon was affected by solid fraction, strain rate, and deformation rate. More liquid segregated from center to edge portion with high strain rate and/or deformation ratio as well as low solid fraction, which caused different distribution of dominating deformation mechanism. The relationship between liquid segregation and main deformation mechanism was also discussed by phenomenological model.

  11. Synergistic enhancing effect of N+C alloying on cyclic deformation behaviors in austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Z.N. [National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2014-07-29

    Cyclic plastic and elastic strain controlled deformation behaviors of Mn18Cr7 austenitic steel with N0.6C0.3 synergistic enhancing alloying have been investigated using tension-compression low cycle fatigue and three-point bending high cycle fatigue testing. Results of cyclic deformation characteristic and fatigue damage mechanism have been compared to that in Mn12C1.2 steel. Mn18Cr7N0.6C0.3 steel always shows cyclic softening caused by enhanced planar sliding due to the interaction between N+C and the substitutional atoms as well as the dislocation, which is totally different from cyclic hardening in Mn12C1.2 steel caused by the interaction between C members of C–Mn couples with the dislocation. Enhanced effective stress is obtained due to the solid solution strengthening effect caused by the short range order at low strain amplitude while this effect does not work at high strain amplitude. Internal stress contributes most to the cyclic softening with the increase of strain amplitudes. Significant planar slip characteristic can be observed resulting from low stacking fault energy and high short range order effects in Mn18Cr7N0.6C0.3 steel and finally the parallel or intersecting thin sheets with dislocation tangles separated by dislocation free sheets are obtained with the prolonged cycles under cyclic elastic or plastic strain controlled fatigue testing. There exist amounts of small cracks on the surface of the Mn18Cr7N0.6C0.3 steel because fatigue crack initiation is promoted by the cyclic plastic strain localization. However, the zigzag configuration of the cracks reveals that the fatigue crack propagation is highly inhibited by the planar slip characteristic, which eventually improves the fatigue life.

  12. Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective

    Science.gov (United States)

    Adlakha, I.; Solanki, K. N.

    2018-01-01

    A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.

  13. Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe [Department of Physics, Beihang University, Beijing 100191 (China); Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Kecskes, Laszlo J. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005 (United States); Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China); Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191 (China); Wei, Qiuming, E-mail: qwei@uncc.edu [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States)

    2016-12-01

    Uniaxial tensile properties of monocrystalline tungsten (MC-W) and nanocrystalline tungsten (NC-W) with embedded hydrogen and helium atoms have been investigated using molecular dynamics (MD) simulations in the context of radiation damage evolution. Different strain rates have been imposed to investigate the strain rate sensitivity (SRS) of the samples. Results show that the plastic deformation processes of MC-W and NC-W are dominated by different mechanisms, namely dislocation-based for MC-W and grain boundary-based activities for NC-W, respectively. For MC-W, the SRS increases and a transition appears in the deformation mechanism with increasing embedded atom concentration. However, no obvious embedded atom concentration dependence of the SRS has been observed for NC-W. Instead, in the latter case, the embedded atoms facilitate GB sliding and intergranular fracture. Additionally, a strong strain enhanced He cluster growth has been observed. The corresponding underlying mechanisms are discussed. - Highlights: • Uniaxial tensile behavior of monocrystal tungsten (C-W) and nanocrystalline W (NC-W) have been investigated. • Dislocation-based activities dominate the plastic deformation of MC-W. • Grain boundary-based activities dominate the plastic deformation of NC-W. • H/He atoms have significant impacts on the tensile behavior of MC-W and NC-W. • Strong strain enhanced He cluster growth has been revealed.

  14. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  15. Effect of zinc crystals size on galvanized steel deformation and electrochemical behavior

    Directory of Open Access Journals (Sweden)

    José Daniel Culcasi

    2009-09-01

    Full Text Available Hot-dip galvanized steel sheets with different spangle sizes were deformed by means of rolling and tension. The change of preferential crystallographic orientation and of superficial characteristics due to the deformation was analyzed by means of both X-rays diffraction and optical and scanning electronic microscopy. A correlation between such changes and the involving deformation modes was intended to be done and the spangle size influence on these modes was studied. Coating reactivity change due to the deformation was investigated by means of quasi-steady DC electrochemical tests. The results allow to infer that, in great spangle samples, the main deformation mechanism is twinning whereas in small spangle ones, pyramidal slip systems happen as well. The increase of the reactivity with the deformation is greater in tension than in rolling and it is more important in small than in great spangle samples.

  16. Analysis of recrystallization behavior of hot-deformed austenite reconstructed from electron backscattering diffraction orientation maps of lath martensite

    International Nuclear Information System (INIS)

    Kubota, Manabu; Ushioda, Kohsaku; Miyamoto, Goro; Furuhara, Tadashi

    2016-01-01

    The recrystallization behavior of hot-deformed austenite of a 0.55% C steel at 800 °C was investigated by a method of reconstructing the parent austenite orientation map from an electron backscattering diffraction orientation map of lath martensite. Recrystallized austenite grains were clearly distinguished from un-recrystallized austenite grains. Very good correlation was confirmed between the static recrystallization behavior investigated mechanically by double-hit compression tests and the change in austenite microstructure evaluated by the reconstruction method. The recrystallization behavior of hot-deformed 0.55% C steel at 800 °C is directly revealed and it was observed that by addition of 0.1% V the recrystallization was significantly retarded.

  17. Effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory

    International Nuclear Information System (INIS)

    Spitzig, W.A.; Sober, R.J.; Richmond, O.

    1976-01-01

    Earlier results showed that the difference between the tensile and compressive strengths of tempered martensites is primarily a manifestation of the general pressure dependence of flow stress in these materials. However, the same results also showed that the volume expansion after deformation was much smaller than that predicted by the normality flow rule of plasticity theory for materials with such pressure dependence. Additional results now obtained on maraging and HY-80 steels support these conclusions. The results for all these materials exhibit a strong, but not perfect, correlation between pressure dependence, yield stress, and volume expansion. The volume expansion, however, which is believed to result primarily from the generation of new dislocations, is very small and does not appear to be essential to the pressure dependence. Most of the pressure dependence, the portion responsible for the discrepancy with the normality flow rule, may be an effect on dislocation motion. The results suggest that an appropriate plasticity model would be one in which the octahedral shear yield stress is linearly dependent on the mean pressure, but the volume change is negligible in violation of the normality flow rule. Such a model has been proposed previously for the plastic deformation of soils. However, unlike that model, the present theory includes strain hardening. 17 fig

  18. Coping behavior of women with breast cancer with visible postsurgery deformity

    Directory of Open Access Journals (Sweden)

    Sirota N. A.

    2013-01-01

    Full Text Available Research was carried out to explore coping strategies in cancer patients. In all, 70 women with breast cancer were studied: 35 of them had visible postsurgery deformity, and 35 did not have visible postsurgery deformity. The purpose of the research was to uncover their preferences for using various strategies and resources to cope with their illness. The results showed that both groups of women had a special set of strategies for coping with stress. The women with visible postsurgery deformity made significantly less use of resources for coping with their illness than did the subgroup of women without visible postsurgery deformity.

  19. Image-based numerical simulation of the local cyclic deformation behavior around cast pore in steel

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lihe, E-mail: dlhqian@yahoo.com [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Cui, Xiaona; Liu, Shuai [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Chen, Minan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); Ma, Penghui [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Xie, Honglan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics (China); Zhang, Fucheng [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University (China); Meng, Jiangying [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (China)

    2016-12-15

    The local cyclic stress/strain responses around an actual, irregular pore in cast Hadfield steel under fatigue loading are investigated numerically, and compared with those around a spherical and an ellipsoidal pore. The actual pore-containing model takes into account the real shape of the pore imaged via high-resolution synchrotron X-ray computed tomography and combines both isotropic hardening and Bauschinger effects by using the Chaboche's material model, which enables to realistically simulate the cyclic deformation behaviors around actual pore. The results show that the stress and strain energy density concentration factors (K{sub σ} and K{sub E}) around either an actual irregular pore or an idealized pore increase while the strain concentration factor (K{sub ε}) decreases slightly with increasing the number of fatigue cycles. However, all the three parameters, K{sub σ}, K{sub ε} and K{sub E}, around an actual pore are always several times larger than those around an idealized pore, whatever the number of fatigue cycles. It is suggested that the fatigue properties of cast pore-containing materials cannot be realistically evaluated with any idealized pore models. The feasibility of the methodology presented highlights the potential of its application in the micromechanical understanding of fatigue damage phenomena in cast pore-containing materials.

  20. Hurst exponent: A Brownian approach to characterize the nonlinear behavior of red blood cells deformability

    Science.gov (United States)

    Mancilla Canales, M. A.; Leguto, A. J.; Riquelme, B. D.; León, P. Ponce de; Bortolato, S. A.; Korol, A. M.

    2017-12-01

    Ektacytometry techniques quantifies red blood cells (RBCs) deformability by measuring the elongation of suspended RBCs subjected to shear stress. Raw shear stress elongation plots are difficult to understand, thus most research papers apply data reduction methods characterizing the relationship between curve fitting. Our approach works with the naturally generated photometrically recorded time series of the diffraction pattern of several million of RBCs subjected to shear stress, and applies nonlinear quantifiers to study the fluctuations of these elongations. The development of new quantitative methods is crucial for restricting the subjectivity in the study of the cells behavior, mainly if they are capable of analyze at the same time biological and mechanical aspects of the cells in flowing conditions and compare their dynamics. A patented optical system called Erythrocyte Rheometer was used to evaluate viscoelastic properties of erythrocytes by Ektacytometry. To analyze cell dynamics we used the technique of Time Delay Coordinates, False Nearest Neighbors, the forecasting procedure proposed by Sugihara and May, and Hurst exponent. The results have expressive meaning on comparing healthy samples with parasite treated samples, suggesting that apparent noise associated with deterministic chaos can be used not only to distinguish but also to characterize biological and mechanical aspects of cells at the same time in flowing conditions.

  1. The Difference of Structural State and Deformation Behavior between Teenage and Mature Human Dentin

    Directory of Open Access Journals (Sweden)

    Peter Panfilov

    2016-01-01

    Full Text Available Objective. The cause of considerable elasticity and plasticity of human dentin is discussed in the relationship with its microstructure. Methods. Structural state of teenage and mature human dentin is examined by using XRD and TEM techniques, and their deformation behavior under compression is studied as well. Result. XRD study has shown that crystallographic type of calcium hydroxyapatite in human dentin (calcium hydrogen phosphate hydroxide Ca9HPO4(PO45OH; Space Group P63/m (176; a = 9,441 A; c = 6,881 A; c/a = 0,729; Crystallite (Scherrer 200 A is the same for these age groups. In both cases, dentin matrix is X-ray amorphous. According to TEM examination, there are amorphous and ultrafine grain phases in teenage and mature dentin. Mature dentin is stronger on about 20% than teenage dentin, while teenage dentin is more elastic on about 20% but is less plastic on about 15% than mature dentin. Conclusion. The amorphous phase is dominant in teenage dentin, whereas the ultrafine grain phase becomes dominant in mature dentin. Mechanical properties of human dentin under compression depend on its structural state, too.

  2. Measurement and correlation of high frequency behaviors of a very flexible beam undergoing large deformation

    International Nuclear Information System (INIS)

    Lee, Jae Wook; Kim, Hyun Woo; Ku, Hi Chun; Yoo, Wan Suk

    2009-01-01

    A correlation method of high frequency behaviors of a very flexible beam undergoing large displacement is presented. The suggested method based on the experimental modal analysis leads to more accurate correlation results because it directly uses the modal parameters of each mode achieved from experiment. First, the modal testing and the parameter identification method are suggested for flexible multibody dynamics. Due to the flexibility of a very thin beam, traditional testing methods such as impact hammer or contact type accelerometer are not working well. The suggested measurement with high speed camera, even though the test beam is very flexible, is working well. Using measurements with a high speed camera, modal properties until the 5th mode are measured. And After measuring each damping ratio until the 5th mode, a generic damping model is constructed using inverse modal transformation technique. It's very interesting that the modal transformation technique can be also applied even in the ANCF simulation which uses the global displacement and finite slope as the nodal coordinates. The results of experiment and simulation are compared until the 5th mode frequency, respectively, by using ANCF forced vibration analysis. Through comparison between numerical simulation and experiment, this study showed that the proposed generic damping matrix, modal testing and parameter identification method is very proper in flexible multibody dynamic problems undergoing large deformation

  3. Behaviors of Deformation, Recrystallization and Textures Evolution of Columnar Grains in 3%Si Electrical Steel Slabs

    Directory of Open Access Journals (Sweden)

    SHAO Yuan-yuan

    2017-11-01

    Full Text Available The behaviors of deformation and recrystallization and textures evolution of 3% (mass fraction Si columnar-grained electrical steel slabs were investigated by electron backscatter diffractometer technique and X-ray diffraction. The results indicate that the three columnar-grained samples have different initial textures with the long axes arranged along rolling, transverse and normal directions. Three shear orientations can be obtained in surface layer after hot rolling, of which Goss orientation is formed easily. The α and γ fibre rolling orientations are obtained in RD sample, while strong γ fibre orientations in TD sample and sharp {100} orientations in ND sample are developed respectively. In addition, cube orientation can be found in all the three samples. The characteristics of hot rolled orientations in center region reveal distinct dependence on initial columnar-grained orientations. Strong {111}〈112〉 orientation in RD and TD samples separately comes from Goss orientation of hot rolled sheets, and sharp rotated cube orientation in ND sample originates from the initial {100} orientation of hot rolled sheets after cold rolling. Influenced by initial deviated orientations and coarse grain size, large orientation gradient of rotated cube oriented grain can be observed in ND sample. The coarse {100} orientated grains of center region in the annealed sheets show the heredity of the initial columnar-grained orientations.

  4. Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation

    International Nuclear Information System (INIS)

    Kim, J.T.; Hong, S.H.; Lee, C.H.; Park, J.M.; Kim, T.W.; Lee, W.H.; Yim, H.I.; Kim, K.B.

    2014-01-01

    Highlights: • Additional Cr modulation of atomic structure of Fe-Co-B-Si-Nb BMGs. • An amount of free volume characterized by a combination of nanoindentation and AFM. • Free volume determined by height measurement of AFM after nanoindentation. -- Abstract: In this work, we investigate the effect of Cr addition on thermal properties and indentation behavior of Fe 52 Co 20−x B 20 Si 4 Nb 4 Cr x alloys with x = 0, 1, 3 and 5 at.%, respectively. Among all studied alloys, the Fe 52 Co 17 B 20 Si 4 Nb 4 Cr 3 bulk metallic glass (BMG) exhibits the highest thermal stability with large supercooled liquid region of 40 K and the pronounced plastic deformation features which is serrated flow (pop-in event) and significant pile-up of materials around indents. This demonstrates that the appropriate addition of Cr in Fe-based BMG can induce the internal atomic structure modulation and promote the mechanical softening, which are discussed in terms of free volume concept

  5. Analysis of the overall structural behavior due to the impact of deformable missiles

    International Nuclear Information System (INIS)

    Ettouney, M.M.; Radini, R.R.; Hsueh, P.S.

    1979-01-01

    This paper presents a method of analysis to evaluate the overall behavior of reinforced concrete structures subjected to impact from deformable missiles. This method approaches the analysis in a very simple and practical way. The analysis is based on approximating the structure-missile system by a two-degree of freedom model. The two degrees of freedom model represents the missile and the structure, respectively. The hysteretic damping effects are considered implicitly through the nonlinearity of the two springs. Empirical formulas are presented for the evaluation of the dynamic properties of the nonlinear spring representing the concrete structure. The impact is simulated by applying an impulse on the two degrees of freedom system, then by the method of step by step numerical time integration (central difference formula is used) the time histories of the displacements and velocities of both the missile and structure are obtained. The numerical procedure is simple enough to be programmed by a hand or desk calculator which makes the method handy for most engineers and analysis. (orig.)

  6. Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.T.; Hong, S.H.; Lee, C.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, J.M., E-mail: jinman_park@hotmail.com [Materials Research Center, Samsung Advanced Institute of Technology (SAIT), San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of); Kim, T.W.; Lee, W.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Yim, H.I. [Department of Physics, Sookmyung Women’s University, Hyochangwongil 52, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Kim, K.B., E-mail: kbkim@sejong.ac.kr [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2014-02-25

    Highlights: • Additional Cr modulation of atomic structure of Fe-Co-B-Si-Nb BMGs. • An amount of free volume characterized by a combination of nanoindentation and AFM. • Free volume determined by height measurement of AFM after nanoindentation. -- Abstract: In this work, we investigate the effect of Cr addition on thermal properties and indentation behavior of Fe{sub 52}Co{sub 20−x}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub x} alloys with x = 0, 1, 3 and 5 at.%, respectively. Among all studied alloys, the Fe{sub 52}Co{sub 17}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub 3} bulk metallic glass (BMG) exhibits the highest thermal stability with large supercooled liquid region of 40 K and the pronounced plastic deformation features which is serrated flow (pop-in event) and significant pile-up of materials around indents. This demonstrates that the appropriate addition of Cr in Fe-based BMG can induce the internal atomic structure modulation and promote the mechanical softening, which are discussed in terms of free volume concept.

  7. The influence of swarm deformation on the velocity behavior of falling swarms of particles

    Science.gov (United States)

    Mitchell, C. A.; Pyrak-Nolte, L. J.; Nitsche, L.

    2017-12-01

    Cohesive particle swarms have been shown to exhibit enhanced sedimentation in fractures for an optimal range of fracture apertures. Within this range, swarms travel farther and faster than a disperse (particulate) solution. This study aims to uncover the physics underlying the enhanced sedimentation. Swarm behavior at low Reynolds number in a quiescent unbounded fluid and between smooth rigid planar boundaries is investigated numerically using direct-summation, particle-mesh (PM) and particle-particle particle-mesh (P3M) methods - based upon mutually interacting viscous point forces (Stokeslet fields). Wall effects are treated with a least-squares boundary singularity method. Sub-structural effects beyond pseudo-liquid behavior (i.e., particle-scale interactions) are approximated by the P3M method much more efficiently than with direct summation. The model parameters are selected from particle swarm experiments to enable comparison. From the simulations, if the initial swarm geometry at release is unaffected by the fracture aperture, no enhanced transport occurs. The swarm velocity as a function of apertures increases monotonically until it asymptotes to the swarm velocity in an open tank. However, if the fracture aperture affects the initial swarm geometry, the swarm velocity no longer exhibits a monotonic behavior. When swarms are released between two parallel smooth walls with very small apertures, the swarm is forced to reorganize and quickly deform, which results in dramatically reduced swarm velocities. At large apertures, the swarm evolution is similar to that of a swarm in open tank and quickly flattens into a slow speed torus. In the optimal aperture range, the swarm maintains a cohesive unit behaving similarly to a falling sphere. Swarms falling in apertures less than or greater than the optimal aperture range, experience a level of anisotropy that considerably decreases velocities. Unraveling the physics that drives swarm behavior in fractured porous

  8. High-pressure behavior of intermediate scapolite: compressibility, structure deformation and phase transition

    Science.gov (United States)

    Lotti, Paolo; Comboni, Davide; Merlini, Marco; Hanfland, Michael

    2018-05-01

    Scapolites are common volatile-bearing minerals in metamorphic rocks. In this study, the high-pressure behavior of an intermediate member of the scapolite solid solution series (Me47), chemical formula (Na1.86Ca1.86K0.23Fe0.01)(Al4.36Si7.64)O24[Cl0.48(CO3)0.48(SO4)0.01], has been investigated up to 17.79 GPa, by means of in situ single-crystal synchrotron X-ray diffraction. The isothermal elastic behavior of the studied scapolite has been described by a III-order Birch-Murnaghan equation of state, which provided the following refined parameters: V 0 = 1110.6(7) Å3, {K_{{V_0}}} = 70(2) GPa ({β _{{V_0}}} = 0.0143(4) GPa-1) and {K_{{V}}^' = 4.8(7). The refined bulk modulus is intermediate between those previously reported for Me17 and Me68 scapolite samples, confirming that the bulk compressibility among the solid solution increases with the Na content. A discussion on the P-induced structure deformation mechanisms of tetragonal scapolite at the atomic scale is provided, along with the implications of the reported results for the modeling of scapolite stability. In addition, a single-crystal to single-crystal phase transition, which is displacive in character, has been observed toward a triclinic polymorph at 9.87 GPa. The high-pressure triclinic polymorph was found to be stable up to the highest pressure investigated.

  9. Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites

    International Nuclear Information System (INIS)

    Ganss, Martin; Satapathy, Bhabani K.; Thunga, Mahendra; Weidisch, Roland; Poetschke, Petra; Jehnichen, Dieter

    2008-01-01

    The deformation and crack resistance behavior of polypropylene (PP) multi-walled carbon nanotube (MWNT) composites have been studied and their interrelation to the structural attributes studied by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning ele