WorldWideScience

Sample records for teniente porphyry copper

  1. 40Ar/39Ar geochronology of the El Teniente porphyry copper deposit

    International Nuclear Information System (INIS)

    Maksaev, V; Munizaga, F; McWilliams, M; Thiele, K; Arevalo, A; Zuniga, P; Floody, R

    2001-01-01

    Chile's El Teniente deposit is the largest known porphyry Cu-Mo orebody (>70 Mt Cu ), and is genetically related to Late Miocene-Early Pliocene igneous activity on the western slopes of the Andean Cordillera (cf. Howell and Molloy, 1960, Camus, 1975, Cuadra, 1986, Skewes and Stern, 1995). The deposit is 2700 m long by 1000 to 1700 m wide and is elongated in a N-S direction, with a recognized vertical extent of about 1800 m. Approximately 80% of the copper at El Teniente is distributed within a stockwork of mineralized veinlets and minor hydrothermal breccias within pervasively altered andesites, basalts and gabbros that are part of the Upper Miocene country rocks. Two intrusive bodies occur within the deposit, the Sewell Diorite (actually a tonalite) in the southeast part of the orebody and the dacitic Teniente Porphyry in its northern part. The Teniente Porphyry occurs as a north-south trending dike 1500 m long and 200 m wide. Minor quartz-diorite or tonalite intrusions known as the Central Diorite and the Northern Diorite occur along the eastern side of the deposit. Hydrothermal breccias commonly occur along the contacts of intrusive bodies with the country rocks. The Braden Breccia is a conspicuous diatreme in the center of the deposit that forms a pipe 1200 m in diameter at the surface, narrowing to 600 m at a depth of 1800 m. The Braden diatreme pipe is poorly mineralized (∼0.3% Cu), but it is surrounded by the copper-rich Marginal Breccia, a discontinuous rim of tourmaline-matrix hydrothermal breccia. Latite dikes intrude El Teniente, some forming altered ring dikes that encircle the Braden breccia pipe. After mineralization had ceased, the southern section of the deposit was cut by a 3.8 ± 0.3 Ma lamprophyre dyke, marking the end of igneous activity (Cuadra, 1986). Biotite-dominated K-silicate alteration is widespread within the orebody. In contrast, pervasive phyllic alteration is restricted to 'diorite' intrusions, and to the Braden and Marginal

  2. Sr-Nd-Pb isotope compositions of felsic intrusions in the El Teniente and Laguna La Huifa areas, Central Chile

    International Nuclear Information System (INIS)

    Rabbia, O.M.; Hernandez, L.B.; King, R.W.; Lopez Escobar, L

    2001-01-01

    The giant El Teniente porphyry Cu-Mo deposit is located in the Andes foothills of Central Chile (34 o S). In simplistic terms, the igneous rocks at the mine can be grouped in two major units: a felsic suite of silicic intrusives (the porphyries; SiO 2 ≥56wt%) with subvertical stock-like to dyke shapes, and a mafic volcanic to subvolcanic sequence (the Farellones formation; SiO 2 <≤56wt%) with a sub-horizontal nature. The felsic rocks intrude the volcanogenic Farellones formation, which is known at the mine site as 'Andesitas de la mina'. The major felsic intrusives are locally known as the 'Diorita Sewell' and 'Porfido Teniente' bodies, plus a series of minor plugs, apophyses and dikes. According to Cuadra (1986), the age of the main intrusive units spans from Late Miocene ('Diorita Sewell'; 7-8Ma) to Early Pliocene ('Porfido Teniente'; ∼4-5Ma). These felsic intrusives are closely related to copper mineralization ( ∼4-5Ma; Cuadra, 1986), particularly the younger 'Porfido Teniente' (Camus, 1975). Additionally, Skewes and Stern (1996) have suggested the existence of an even slightly younger porphyry pluton, not exposed at surface, but still linked to the ore genesis. Similar felsic intrusive bodies are also present in the Laguna La Huifa area (Reich, 2001), located less than 3 km to the NE from the main El Teniente body. The copper mineralization here, is interpreted to be almost contemporaneous with the El Teniente mineralization (Cuadra, 1986). Based on petrographic and geochemical information on the silicic intrusive suite, Rabbia et al. (2000) suggested that this magmatism could be considered as a Phanerozoic equivalent of an Archean high-Al TTG. Furthermore it may be classified as a modified (Na-rich) 'I' type granitoid, in the sense of Atherton and Petford (1993) and Petford and Atherton (1996). According to these authors, the younger (and hotter) lower Andean crust would be a better candidate than the older (and colder) subducted Nazca plate basalts

  3. The copper losses in the slags from the El Teniente process

    International Nuclear Information System (INIS)

    Imris, I.; Rebolledo, S.; Sanchez, M.; Castro, G.; Achurra, G.; Hernandez, F.

    2000-01-01

    The current El Teniente Pyrometallurgical Process for copper concentrate was commissioned at Caletones Smelter during the period 1988 - 1991 following an intensive research and development program that led to several improvements to the original process developed during the seventies. The Caletones Smelter production capacity is 370,000 tons of cast copper annually related to a concentrate smelting capacity of 1,250,000 tons per year. Several industrial applications of the process, in Chile and abroad, have shown its capability to treat copper concentrates in a wide range of chemical and mineralogical compositions. The main operational parameters that determine the performance of the process are oxygen enriched air flow rate, degree of oxygen enrichment, moisture content of the solid materials processed, molten material levels inside the vessel, frequency of molten materials tapping, bath temperature and copper losses in slags. The copper losses in the slags from the El Teniente Pyrometallurgical Process, predicted by calculation from thermodynamic data, have been compared with those determined by microscopic examination and quantitative electron microprobe analysis of the slag samples and by flotation tests of finely ground slag. (author)

  4. The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective

    Science.gov (United States)

    Rabbia, Osvaldo M.; Hernández, Laura B.; French, David H.; King, Robert W.; Ayers, John C.

    2009-11-01

    Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu-Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (˜400-550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (˜550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid-melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.

  5. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  6. Undiscovered porphyry copper resources in the Urals—A probabilistic mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Mihalasky, Mark J.; Ludington, Stephen; Phillips, Jeffrey; Berger, Byron R.; Denning, Paul; Dicken, Connie; Mars, John; Zientek, Michael L.; Herrington, Richard J.; Seltmann, Reimar

    2017-01-01

    A probabilistic mineral resource assessment of metal resources in undiscovered porphyry copper deposits of the Ural Mountains in Russia and Kazakhstan was done using a quantitative form of mineral resource assessment. Permissive tracts were delineated on the basis of mapped and inferred subsurface distributions of igneous rocks assigned to tectonic zones that include magmatic arcs where the occurrence of porphyry copper deposits within 1 km of the Earth's surface are possible. These permissive tracts outline four north-south trending volcano-plutonic belts in major structural zones of the Urals. From west to east, these include permissive lithologies for porphyry copper deposits associated with Paleozoic subduction-related island-arc complexes preserved in the Tagil and Magnitogorsk arcs, Paleozoic island-arc fragments and associated tonalite-granodiorite intrusions in the East Uralian zone, and Carboniferous continental-margin arcs developed on the Kazakh craton in the Transuralian zone. The tracts range from about 50,000 to 130,000 km2 in area. The Urals host 8 known porphyry copper deposits with total identified resources of about 6.4 million metric tons of copper, at least 20 additional porphyry copper prospect areas, and numerous copper-bearing skarns and copper occurrences.Probabilistic estimates predict a mean of 22 undiscovered porphyry copper deposits within the four permissive tracts delineated in the Urals. Combining estimates with established grade and tonnage models predicts a mean of 82 million metric tons of undiscovered copper. Application of an economic filter suggests that about half of that amount could be economically recoverable based on assumed depth distributions, availability of infrastructure, recovery rates, current metals prices, and investment environment.

  7. Tempo of magma degassing and the genesis of porphyry copper deposits.

    Science.gov (United States)

    Chelle-Michou, Cyril; Rottier, Bertrand; Caricchi, Luca; Simpson, Guy

    2017-01-12

    Porphyry deposits are copper-rich orebodies formed by precipitation of metal sulphides from hydrothermal fluids released from magmatic intrusions that cooled at depth within the Earth's crust. Finding new porphyry deposits is essential because they are our largest source of copper and they also contain other strategic metals including gold and molybdenum. However, the discovery of giant porphyry deposits is hindered by a lack of understanding of the factors governing their size. Here, we use thermal modelling and statistical simulations to quantify the tempo and the chemistry of fluids released from cooling magmatic systems. We confirm that typical arc magmas produce fluids similar in composition to those that form porphyry deposits and conclude that the volume and duration of magmatic activity exert a first order control on the endowment (total mass of deposited copper) of economic porphyry copper deposits. Therefore, initial magma enrichment in copper and sulphur, although adding to the metallogenic potential, is not necessary to form a giant deposit. Our results link the respective durations of magmatic and hydrothermal activity from well-known large to supergiant deposits to their metal endowment. This novel approach can readily be implemented as an additional exploration tool that can help assess the economic potential of magmatic-hydrothermal systems.

  8. Ring structures and copper mineralization in Kerman porphyry copper belt, SE Iran

    Directory of Open Access Journals (Sweden)

    Gholamreza Mirzababaei

    2012-10-01

    Full Text Available The role of some ring structures in the distribution of porphyry copper deposits in south Kerman porphyry copper belt is discussed. In the study area, ring structures are circular or elliptical shaped features which are partly recognized on satellite images. In this study, Landsat multispectral images were used to identify ring structures in the area. The rudimentary identification stages of the circles were mainly based on their circular characteristics on the images. These structures match with the regional tectonic features and can be seen mainly in two types; namely, large-magnitude and small scale circles. The associated mineralization in the study area is mainly porphyry Cu and vein type base metal sulfide deposits. There is a sensible relationship between the large circles and mineralization. These circles have encompassed almost entire Cu deposits and prospects in south part of Kerman porphyry copper belt. The small circles seem to be external traces of (porphyritic intrusive bodies that appear on surface as small circles. Formation of the large circular structures do not appear to be related to the external processes and there is no clear indication of how they came into existence but, their arrangement around the edges of a positive residual anomaly area shows the probable role of this anomaly in their formation. This matter is also recognized on the generalized crustal thickness map of the region in which an updoming of the upper mantle is observed. This study can improve our collective knowledge for copper exploration in this region.

  9. Late Cretaceous porphyry copper mineralization in Sonora, Mexico: Implications for the evolution of the Southwest North America porphyry copper province

    Science.gov (United States)

    Barra, Fernando; Valencia, Victor A.

    2014-10-01

    Two porphyry Cu-Mo prospects in northern Sonora, Mexico (Fortuna del Cobre and Los Humos) located within the southwestern North American porphyry province have been dated in order to constrain the timing of crystallization and mineralization of these ore deposits. In Fortuna del Cobre, the pre-mineralization granodiorite porphyry yielded an U-Pb zircon age of 76.5 ± 2.3 Ma, whereas two samples from the ore-bearing quartz feldespathic porphyry were dated at 74.6 ± 1.3 and 75.0 ± 1.4 Ma. Four molybdenite samples from Los Humos porphyry Cu prospect yielded a weighted average Re-Os age of 73.5 ± 0.2 Ma, whereas two samples from the ore-bearing quartz monzonite porphyry gave U-Pb zircon ages of 74.4 ± 1.1 and 74.5 ± 1.3 Ma, showing a Late Cretaceous age for the emplacement of this ore deposit. The results indicate that Laramide porphyry Cu mineralization of Late Cretaceous age is not restricted to northern Arizona as previously thought and provide evidence for the definition of NS trending metallogenic belts that are parallel to the paleo-trench. Porphyry copper mineralization follows the inland migration trend of the magmatic arc as a result of the Farallon slab flattening during the Laramide orogeny.

  10. A climate signal in exhumation patterns revealed by porphyry copper deposits

    Science.gov (United States)

    Yanites, Brian J.; Kesler, Stephen E.

    2015-06-01

    The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.

  11. Porphyry copper assessment of the Tibetan Plateau, China: Chapter F in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Hammarstrom, Jane M.; Robinson, Gilpin R.; Mars, John L.; Miller, Robert J.

    2012-01-01

    The U.S. Geological Survey collaborated with the China Geological Survey to conduct a mineral-resource assessment of resources in porphyry copper deposits on the Tibetan Plateau in western China. This area hosts several very large porphyry deposits, exemplified by the Yulong and Qulong deposits, each containing at least 7,000,000 metric tons (t) of copper. However, large parts of the area are underexplored and are likely to contain undiscovered porphyry copper deposits.

  12. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    Science.gov (United States)

    Berger, Byron R.; Mars, John L.; Denning, Paul; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The U.S. Geological Survey conducted an assessment of resources associated with porphyry copper deposits in the western Central Asia countries of Kyrgyzstan, Uzbekistan, Kazakhstan, and Tajikistan and the southern Urals of Kazakhstan and Russia as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits; (2) compile a database of known porphyry copper deposits and significant prospects; (3) where data permit, estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in those undiscovered deposits.

  13. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  14. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson, Gilpin R.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of Southeast Asia and Melanesia as part of a global mineral resource assessment. The region hosts world-class porphyry copper deposits and underexplored areas that are likely to contain undiscovered deposits. Examples of known porphyry copper deposits include Batu Hijau and Grasberg in Indonesia; Panguna, Frieda River, and Ok Tedi in Papua New Guinea; and Namosi in Fiji.

  15. Porphyry copper assessment of Europe, exclusive of the Fennoscandian Shield: Chapter K in Global mineral resource assessment

    Science.gov (United States)

    Sutphin, David M.; Hammarstrom, Jane M.; Drew, Lawrence J.; Large, Duncan E.; Berger, Byron R.; Dicken, Connie L.; DeMarr, Michael W.; with contributions from Billa, Mario; Briskey, Joseph A.; Cassard, Daniel; Lips, Andor; Pertold, Zdeněk; Roşu, Emilian

    2013-01-01

    The U.S. Geological Survey (USGS) collaborated with European geologists to assess resources in porphyry copper deposits in Europe, exclusive of Scandinavia (Sweden, Denmark, Norway, and Finland) and Russia. Porphyry copper deposits in Europe are Paleozoic and Late Cretaceous to Miocene in age. A number of the 31 known Phanerozoic deposits contain more than 1 million metric tons of contained copper, including the Majdanpek deposit, Serbia; Assarel, Bulgaria; Skouries, Greece; and Rosia Poeni, Romania. Five geographic areas were delineated as permissive tracts for post-Paleozoic porphyry copper deposits. Two additional tracts were delineated to show the extent of permissive igneous rocks associated with porphyry copper mineralization related to the Paleozoic Caledonian and Variscan orogenies. The tracts are based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges that define areas where the occurrence of porphyry copper deposits within 1 kilometer of the Earth’s surface is possible. These tracts range in area from about 4,000 to 93,000 square kilometers. Although maps at a variety of different scales were used in the assessment, the final tract boundaries are intended for use at a scale of 1:1,000,000.

  16. Os isotopes and cooper sources for stratiform (mantos) cooper deposits of Chile

    International Nuclear Information System (INIS)

    Munizaga, Francisco; Ruiz, Joaquin; Freydier, Claire

    1998-01-01

    The sources of copper have been determined by studying trace elements osmium and rhenium as well as osmium isotope ratio in copper-bearing porphyry of Chuquicamata, el Teniente and Andacollo and in the stratiform copper deposits of Mantos Blancos, El Soldado, Cerro Negro and Talcuna

  17. Experience of development of porphyry copper type deposits in the Urals

    Directory of Open Access Journals (Sweden)

    И. А. Алтушкин

    2017-12-01

    Full Text Available Russian copper company was the first in Russia to start developing porphyry copper deposits. In 2013 the Mikheevsky mining and processing plant with the annual production capacity of 18 mln t of ore was put into exploitation. The use of innovative approaches regarding choice of the technology, high-performance equipment and organization of construction allowed to bring the enterprise to a full capacity and to achieve expected results within three years. On the basis of the experience obtained during design, construction and exploitation of the Mikheevsky mining and processing plant in 2017 the company has started the construction of a new mining and processing plant in the Tominskoye deposit. The first stage anticipates the enterprise production capacity to be equal to 28 mln t with the possibility of its increase up to 56 mln t. The development of porphyry copper deposits in the Urals will allow to provide copper plants with the raw materials over the next 80-100 years.

  18. Quantitative Mineral Resource Assessment of Copper, Molybdenum, Gold, and Silver in Undiscovered Porphyry Copper Deposits in the Andes Mountains of South America

    Science.gov (United States)

    Cunningham, Charles G.; Zappettini, Eduardo O.; Vivallo S., Waldo; Celada, Carlos Mario; Quispe, Jorge; Singer, Donald A.; Briskey, Joseph A.; Sutphin, David M.; Gajardo M., Mariano; Diaz, Alejandro; Portigliati, Carlos; Berger, Vladimir I.; Carrasco, Rodrigo; Schulz, Klaus J.

    2008-01-01

    Quantitative information on the general locations and amounts of undiscovered porphyry copper resources of the world is important to exploration managers, land-use and environmental planners, economists, and policy makers. This publication contains the results of probabilistic estimates of the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) in undiscovered porphyry copper deposits in the Andes Mountains of South America. The methodology used to make these estimates is called the 'Three-Part Form'. It was developed to explicitly express estimates of undiscovered resources and associated uncertainty in a form that allows economic analysis and is useful to decisionmakers. The three-part form of assessment includes: (1) delineation of tracts of land where the geology is permissive for porphyry copper deposits to form; (2) selection of grade and tonnage models appropriate for estimating grades and tonnages of the undiscovered porphyry copper deposits in each tract; and (3) estimation of the number of undiscovered porphyry copper deposits in each tract consistent with the grade and tonnage model. A Monte Carlo simulation computer program (EMINERS) was used to combine the probability distributions of the estimated number of undiscovered deposits, the grades, and the tonnages of the selected model to obtain the probability distributions for undiscovered metals in each tract. These distributions of grades and tonnages then can be used to conduct economic evaluations of undiscovered resources in a format usable by decisionmakers. Economic evaluations are not part of this report. The results of this assessment are presented in two principal parts. The first part identifies 26 regional tracts of land where the geology is permissive for the occurrence of undiscovered porphyry copper deposits of Phanerozoic age to a depth of 1 km below the Earth's surface. These tracts are believed to contain most of South America's undiscovered resources of copper. The

  19. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  20. Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit

    OpenAIRE

    Arifudin Idrus

    2018-01-01

    Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas co...

  1. Porphyry copper assessment of the Mesozoic of East Asia: China, Vietnam, North Korea, Mongolia, and Russia: Chapter G in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Mihalasky, Mark J.; Hammarstrom, Jane M.; Robinson, Giplin R.; Frost, Thomas P.; Gans, Kathleen D.; Light, Thomas D.; Miller, Robert J.; Alexeiev, Dmitriy V.

    2012-01-01

    The U.S. Geological Survey (USGS) collaborated with the China Geological Survey (CGS) to conduct a mineral resource assessment of Mesozoic porphyry copper deposits in East Asia. This area hosts several very large porphyry deposits, exemplified by the Dexing deposit in eastern China that contains more than 8,000,000 metric tons of copper. In addition, large parts of the area are undergoing active exploration and are likely to contain undiscovered porphyry copper deposits.

  2. Zircon U-Pb dating of Maherabad porphyry copper-gold prospect area: evidence for a late Eocene porphyry-related metallogenic epoch in east of Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Malekzadeh Shafaroudi

    2011-04-01

    Full Text Available Eastern Iran has great potential for porphyry copper deposits, as a result of its past subduction zone tectonic setting that lead to extensive alkaline to calc-alkaline magmatic activity in Tertiary time. Maherabad is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. This is related to a succession o f monzonitic to dioritic porphyries stocks that were emplaced within volcanic rocks. Monzonitic porphyries have basic role in mineralization. Hydrothermal alteration zones are well developed including potassic, sericitic-potassic, quartz-sericite-carbonate-pyrite, quartz-carbonate-pyrite, silicified-propylitic, propylitic, carbonate and silicified zones. Mineralization occurs as Disseminated, stockwork and hydrothermal breccia. Based on early stage of exploration, Cu is between 179- 6830 ppm (ave. 3200 ppm and Au is up to 1000 ppb (ave. 570 ppb. This prospect is gold- rich porphyry copper deposit. Laser-ablation U-Pb dating of two samples from ore-related intrusive rocks indicate that these two monzonitic porphyries crystallized at 39.0 ± 0.8 Ma to 38.2 ± 0.8 Ma, within a short time span of less than ca. 1 Ma during the middle Eocene. This provides the first precise ages for metallogenic episode of porphyry-type mineralization. Also, the initial 87Sr/86Sr and (143Nd/144Ndi was recalculated to an age of 39 Ma. Initial 87Sr/86Sr ratios for monzonitic rocks are 0.7047-0.7048. The (143Nd/144Ndi isotope composition are 0.512694-0.512713. Initial ε Nd isotope values 1.45-1.81. Based on isotopic data the magma had originated beyond the continental crust. The study will be used for tectonic-magmatic setting and evolution of eastern Iran. Keywords: Lut block, Middle Eocene, Zircon, Geochronology, Laser ablation ICP-MS,

  3. Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan plateau and its implications

    Science.gov (United States)

    Wang, Yong; Zhou, Lian; Gao, Shan; Li, Jian-Wei; Hu, Zhi-Fang; Yang, Lu; Hu, Zhao-Chu

    2016-02-01

    We present Mo isotopic ratios of molybdenite from five porphyry molybdenum deposits (Chagele, Sharang, Jiru, Qulong, and Zhuonuo) and one quartz-molybdenite vein-type deposit (Jigongcun) along the Gangdese metallogenic belt in the Tibetan Plateau. These deposits represent a sequence of consecutive events of the India-Asia collision at different periods. Additional molybdenite samples from the Henderson Mo deposit (USA), the oceanic subduction-related El Teniente (Chile), and Bingham (USA) porphyry Cu-(Mo) deposits were analyzed for better understanding the controls on the Mo isotope systematics of molybdenite. The results show that molybdenite from Sharang, Jiru, Qulong, and Zhuonuo deposits have similar δ97Mo (˜0 ‰), in agreement with the values of the Henderson Mo deposit (-0.10 ‰). In contrast, samples from the Changle and Jigongcun deposit have δ97Mo of 0.85 ‰ to 0.88 ‰ and -0.48 %, respectively. Molybdenite from the El Teniente and Bingham deposits yields intermediate δ97Mo of 0.27 and 0.46 ‰, respectively. The Mo isotopes, combined with Nd isotope data of the ore-bearing porphyries, indicate that source of the ore-related magmas has fundamental effects on the Mo isotopic compositions of molybdenite. Our study indicates that molybdenite related to crustal-, and mantle-derived magmas has positive or negative δ97Mo values, respectively, whereas molybdenite from porphyries formed by crust-mantle mixing has δ97Mo close to 0 ‰. It is concluded that the Mo isotope composition in the porphyry system is a huge source signature, without relation to the tectonic setting under which the porphyry deposits formed.

  4. Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-03-01

    Full Text Available Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas contained by the rocks were analyzed petrographically and chemically. Mineral chemistry was detected by electron microprobe analyzer, whilst biotite is petrographically classified as either magmatic or hydrothermal types. Sericite replacing plagioclase occurred as fine-grained mineral and predominantly associated with argillic-related alteration types. Biotites in the Batu Hijau deposit are classified as phlogopite with a relatively low mole fraction magnesium (XMg (~0.75 compared to the “typical” copper porphyry deposit (~0.82. The relationship between the XMg and halogen contents are generally consistent with “Fe-F and Mg-Cl avoidance rules”.  F content in biotite and sericite decrease systematically from inner part of the deposit which is represented by early biotite (potassic zone where the main copper-gold hosted, to the outer part of the deposit. However, chlorine in both biotite and sericite from each of the alteration zones shows a relative similar concentration, which suggests that it is not suitable to be used in identification of the alteration zones associated with strong copper-gold mineralization. H2O content of the biotite and sericite also exhibits a systematic increase outward which may also provide a possible geochemical vector to ore for the copper porphyry deposits. This is well correlated with fluorine content of biotite in rocks and bulk concentration of copper from the corresponding rocks.

  5. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    Science.gov (United States)

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  6. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Robinson, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    Mineral resource assessments provide a synthesis of available information about distributions of mineral deposits in the Earth’s crust. A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in Mexico was done as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits within 1 km of the surface at a scale of 1:1,000,000; (2) provide a database of known porphyry copper deposits and significant prospects; (3) estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates of amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in undiscovered deposits for each permissive tract. The assessment was conducted using a three-part form of mineral resource assessment based on mineral deposit models (Singer, 1993). Delineation of permissive tracts primarily was based on distributions of mapped igneous rocks related to magmatic arcs that formed in tectonic settings associated with subduction boundary zones. Using a GIS, map units were selected from digital geologic maps based on lithology and age to delineate twelve permissive tracts associated with Jurassic, Laramide (~90 to 34 Ma), and younger Tertiary magmatic arcs. Stream-sediment geochemistry, mapped alteration, regional aeromagnetic data, and exploration history were considered in conjunction with descriptive deposit models and grade and tonnage models to guide estimates.

  7. Alteration zone Mapping in the Meiduk and Sar Cheshmeh Porphyry Copper Mining Districts of Iran using Advanced Land Imager (ALI Satellite Data

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This study evaluates the capability of Earth Observing-1 (EO1 Advanced Land Imager (ALI data for hydrothermal alteration mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF was tested to discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks using ALI data.

  8. Stable isotope evidence for formation from magmatic fluids of the mineralized breccias in the Los Bronces and El Teniente copper deposits, Central Chile

    International Nuclear Information System (INIS)

    Skewes, M.A; Arevalo, A; Holmgren, C.; Stern, C.R

    2001-01-01

    The giant Miocene and Pliocene Rio Blanco-Los Bronces (Warnaars et al., 1985; Serrano et al., 1996; Vargas et al., 1999) and El Teniente (Camus, 1975; Cuadra, 1986; Skewes and Arevalo, 2000) copper deposits of central Chile are among the largest copper deposits in the world. Hypogene copper ore is more significant than supergene ore in these deposits, and most of the hypogene copper occurs in the matrix of multiple clusters of breccias (Skewes and Stern, 1994; 1995). The origin of the large mineralized breccia pipes in these and other Andean copper deposits has been attributed to the explosive expansion of magmatic aqueous fluids derived from cooling plutons (Emmons, 1938; Kents, 1964; Warnaars et al., 1985; Sillitoe, 1985; Skewes and Stern, 1994, 1995). Warnaars et al. (1985) and Skewes and Stern (1996) suggested that mineral deposition in the matrix of these breccias took place by the rapid cooling of the same magmatic fluids that generated the brecciation. Highly saline, high-temperature magmatic fluid inclusions occur in quartz and tourmaline in the matrix of these breccias (Holmgren et al., 1988; Vargas et al., 1999; Skewes et al., 2001) (au)

  9. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits

    OpenAIRE

    Neal, LC; Wilkinson, JJ; Mason, PJ; Chang, Z

    2018-01-01

    publisher: Elsevier articletitle: Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits journaltitle: Journal of Geochemical Exploration articlelink: http://dx.doi.org/10.1016/j.gexplo.2017.10.019 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved.

  10. Magmatic fluid inclusions from the Zaldivar Deposits, Northern Chile: The role of early metal-bearing fluids in a Porphyry copper system

    NARCIS (Netherlands)

    drs Campos, E.; Touret, J.L.R.; Nikogosian, I.

    2006-01-01

    The occurrence of a distinct type of multi-solid, highly-saline fluid inclusions, hosted in igneous quartz phenocrysts from the Llamo porphyry, in the Zaldívar porphyry copper deposit of northern Chile is documented. Total homogenization of the multi-solid type inclusions occurs at magmatic

  11. "Magmatic fluid inclusions from the Zaldivar deposit, Northern Chile: The role of Early metal-bearing fluids in a porphyry copper system."

    NARCIS (Netherlands)

    drs Campos, E.; Touret, J.L.R.; Nikogosian, I.

    2006-01-01

    The occurrence of a distinct type of multi-solid, highly-saline fluid inclusions, hosted in igneous quartz phenocrysts from the Llamo porphyry, in the Zaldívar porphyry copper deposit of northern Chile is documented. Total homogenization of the multi-solid type inclusions occurs at magmatic

  12. Porphyry copper assessment of East and Southeast Asia: Philippines, Taiwan (Republic of China), Republic of Korea (South Korea), and Japan: Chapter P in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Demarr, Michael W.; Dicken, Connie L.; Ludington, Stephen; Robinson, Gilpin R.; Zientek, Michael L.

    2014-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of East and Southeast Asia as part of a global mineral resource assessment. The assessment covers the Philippines in Southeast Asia, and the Republic of Korea (South Korea), Taiwan (Province of China), and Japan in East Asia. The Philippines host world class porphyry copper deposits, such as the Tampakan and Atlas deposits. No porphyry copper deposits have been discovered in the Republic of Korea (South Korea), Taiwan (Province of China), or Japan.

  13. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  14. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet

    Science.gov (United States)

    Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua

    2017-02-01

    The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.

  15. Porphyry copper deposits distribution along the western Tethyan and Andean subductions: insights from a paleogeographic approach

    Science.gov (United States)

    Bertrand, G.

    2012-12-01

    The genesis of many types of mineral deposits is closely linked to tectonic and petrographic conditions resulting from specific geodynamic contexts. Porphyry deposits, for instance, are associated to calc-alkaline magmatism of subduction zones. In order to better understand the relationships between ore deposit distribution and their tectonic context, and help identifying geodynamic-related criteria of favorability that would, in turn, help mineral exploration, we propose a paleogeographic approach. Paleogeographic reconstructions, based on global or regional plate tectonic models, are crucial tools to assess tectonic and kinematic contexts of the past. We use this approach to study the distribution of porphyry copper deposits along the western Tethyan and Andean subductions since Lower Cretaceous and Paleocene, respectively. For both convergent contexts, databases of porphyry copper deposits, including, among other data, their age and location, were compiled. Spatial and temporal distribution of the deposits is not random and show that they were emplaced in distinct clusters. Five clusters are identified along the western Tethyan suture, from Lower Cretaceous to Pleistocene, and at least three along the Andes, from Paleocene to Miocene. Two clusters in the Aegean-Balkan-Carpathian area, that were emplaced in Upper Cretaceous and Oligo-Miocene, and two others in the Andes, that were emplaced in late Eocene and Miocene, are studied in details and correlated with the past kinematics of the Africa-Eurasia and Nazca-South America plate convergences, respectively. All these clusters are associated with a similar polyphased kinematic context that is closely related to the dynamics of the subductions. This context is characterized by 1) a relatively fast convergence rate, shortly followed by 2) a drastic decrease of this rate. To explain these results, we propose a polyphased genetic model for porphyry copper deposits with 1) a first stage of rapid subduction rate

  16. Late Carboniferous porphyry copper mineralization at La Voluntad, Neuquén, Argentina: Constraints from Re-Os molybdenite dating

    Science.gov (United States)

    Garrido, Mirta; Barra, Fernando; Domínguez, Eduardo; Ruiz, Joaquin; Valencia, Victor A.

    2008-07-01

    The La Voluntad porphyry Cu-Mo deposit in Neuquén, Argentina, is one of several poorly known porphyry-type deposits of Paleozoic to Early Jurassic age in the central and southern Andes. Mineralization at La Voluntad is related to a tonalite porphyry from the Chachil Plutonic Complex that intruded metasedimentary units of the Piedra Santa Complex. Five new Re-Os molybdenite ages from four samples representing three different vein types (i.e., quartz-molybdenite, quartz-sericite-molybdenite and quartz-sericite-molybdenite ± chalcopyrite-pyrite) are identical within error and were formed between ~312 to ~316 Ma. Rhenium and Os concentrations range between 34 to 183 ppm and 112 to 599 ppb, respectively. The new Re-Os ages indicate that the main mineralization event at La Voluntad, associated to sericitic alteration, was emplaced during a time span of 1.7 ± 3.2 Ma and that the deposit is Carboniferous in age, not Permian as previously thought. La Voluntad is the oldest porphyry copper deposit so far recognized in the Andes and indicates the presence of an active magmatic arc, with associated porphyry style mineralization, at the proto-Pacific margin of Gondwana during the Early Pennsylvanian.

  17. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    Science.gov (United States)

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    An analysis of the amount and location of undiscovered mineral resources that are likely to be economically recoverable is important for assessing the long-term adequacy and availability of mineral supplies. This requires an economic evaluation of estimates of undiscovered resources generated by traditional resource assessments (Singer and Menzie, 2010). In this study, simplified engineering cost models were used to estimate the economic fraction of resources contained in undiscovered porphyry copper deposits, predicted in a global assessment of copper resources. The cost models of Camm (1991) were updated with a cost index to reflect increases in mining and milling costs since 1989. The updated cost models were used to perform an economic analysis of undiscovered resources estimated in porphyry copper deposits in six tracts located in North America. The assessment estimated undiscovered porphyry copper deposits within 1 kilometer of the land surface in three depth intervals.

  18. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia

    Science.gov (United States)

    Li, Weiqiang; Jackson, Simon E.; Pearson, Norman J.; Graham, Stuart

    2010-07-01

    Significant, systematic Cu isotopic variations have been found in the Northparkes porphyry Cu-Au deposit, NSW, Australia, which is an orthomagmatic porphyry Cu deposit. Copper isotope ratios have been measured in sulfide minerals (chalcopyrite and bornite) by both solution and laser ablation multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The results from both methods show a variation in δ 65Cu of hypogene sulfide minerals of greater than 1‰ (relative to NIST976). Significantly, the results from four drill holes through two separate ore bodies show strikingly similar patterns of Cu isotope variation. The patterns are characterized by a sharp down-hole decrease from up to 0.8‰ (0.29 ± 0.56‰, 1 σ, n = 20) in the low-grade peripheral alteration zones (phyllic-propylitic alteration zone) to a low of ˜-0.4‰ (-0.25 ± 0.36‰, 1 σ, n = 30) at the margins of the most mineralized zones (Cu grade >1 wt%). In the high-grade cores of the systems, the compositions are more consistent at around 0.2‰ (0.19 ± 0.14‰, 1 σ, n = 40). The Cu isotopic zonation may be explained by isotope fractionation of Cu between vapor, solution and sulfides at high temperature, during boiling and sulfide precipitation processes. Sulfur isotopes also show an isotopically light shell at the margins of the high-grade ore zones, but these are displaced from the low δ 65Cu shells, such that there is no correlation between the Cu and S isotope signatures. Fe isotope data do not show any discernable variation along the drill core. This work demonstrates that Cu isotopes show a large response to high-temperature porphyry mineralizing processes, and that they may act as a vector to buried mineralization.

  19. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  20. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    OpenAIRE

    Arifudin Idrus

    2018-01-01

    DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, represent...

  1. Characterization of fluid inclusions and sulfur isotopes in the Iju porphyry copper deposit, North West of Shahr-e-Babak

    Directory of Open Access Journals (Sweden)

    Malihe Golestani

    2017-07-01

    Full Text Available Introduction The Iju porphyry copper deposit is located in the southern part of the Urumieh-Dokhtar magmatic arc (Dehaj-Sarduieh belt within the Kerman copper belt (Dimitrijevic, 1973. The Porphyry Copper mineralization in the Iranian plate occurs dominantly along the Urumieh-Dokhtar arc, which has resulted from the subduction of the Arabian plate beneath the central Iran and the closure of the Neo-Tethys Ocean during the Alpine orogeny (Hassanzadeh, 1993. The Iju porphyry copper deposit with 25 million tons of ore reserves is one of the main copper deposits within the Kerman copper belt. The mining area is composed of upper Miocene volcanic and subvolcanic rocks (mineralized and barren subvolcanic rocks and quaternary deposits. Two hydrothermal alteration zones of quartz-sericite-pyrite and propylitic zones can be identified in the Iju area. The copper mineralization in the Iju deposit occurs as disseminated, stockwork and hydrothermal breccia. In the hypogene zone, the mineral paragenesis include chalcopyrite, pyrite, with minor occurrences of bornite and magnetite. This paper reports geological, mineralogical, fluid inclusion and S isotope data from the Iju deposit in order to investigate ore-bearing fluids’ characteristics and the mechanisms of ore deposition. Materials and methods Fifteen samples of syngenetic quartz+pyrite bearing veinlets within the quartz-sericite-pyrite zone were selected from different depths across the seven boreholes. Quartz was used for double-polished thin sections and pyrite was used for sulfur isotope analysis. Fluid inclusion studies were performed using the Linkam cooling and heating stage, the THMSG 600 model. The syngenetic pyrite with thermometry quartz sample was used for the sulfur isotope experiments. Stable isotope analysis was performed at the Hatch Stable Isotope Laboratory in the University of Ottawa, Canada. Results The fluid inclusions of the Iju deposit represent a wide range in the

  2. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  3. Mineralogy of metasomatic rocks and geochronology of the Olhovka porphyry-copper deposit, Chukotka, Russia

    Science.gov (United States)

    Rogacheva, Lyuba; Baksheev, Ivan

    2010-05-01

    The Olkhovka porphyry-copper deposit located on the border of foreland of the Okhotsk-Chukotka volcanic belt (OCVB) and a ledge composed of the Late Jurassic-Early Cretaceous Uda-Murgal arc (J3-K1) rocks is hosted by monzonite stock attributed to the Upper Cretaceous Kavralyan complex - K2) We estimated age of the Olkhovka monzonite by Rb-Sr and U-Pb methods. Rb-Sr age was determine om the basis of isotopic analysis of 8 monomineralic samples (potassium feldspar, plagioclase, amphibole, and dark mica). Isochron constructed on the basis of Rb-Sr data corresponds to the age of 78 + 2.6 Ma (MSWD=0.23). The Rb-Sr age is supported by U-Pb data derived from zircon of the same rock. One hundred and three single crystals of zircon were analyzed. Uranium content ranges from 52.66 ppm to 579.64 ppm; U/Th isotopic ratio varies from 0.567 to 1.746; age is 78.02+0.65 Ma (MSWD = 2.8). Monzonite is propylitized in variable degree. Propylite is composed of actinolite, chlorite, albite, quartz, and calcite. Propylite are cut by quartz-tourmaline veins. In addition, quartz-tourmaline metasomatic rock was identified in rhyolite ignimbrite out of the stock. Microscopically, tourmaline crystals of both types are oscilatory zoned that is caused by variable Fe content. Tourmalines of both assemblages can be classified as intermediate member of the schorl ("oxy-schorl")-dravite ("oxy-dravite") series. The Fetot/ (Fetot+Mg) varies from 0.31 to 0.95 in propylitic tourmaline and from 0.11 to 0.49, in quartz-tourmaline altered rocks from ignimbrite. Despite similar composition of both tourmalines, the major isomorphic substitutions in them are different. In propylite tourmaline, it is Fe → Al, whereas in the second case, it is Fe → Mg with certain effect of the Fe → Al type. Fe → Al isomorphic substitution is typical of porphyry style deposits (Baksheev et al., 2009 [1]). Therefore, we can conclude that quartz-tourmaline alteration in ignimbrite does not related to the formation of

  4. The Jebel Ohier deposit—a newly discovered porphyry copper-gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan

    Science.gov (United States)

    Bierlein, F. P.; McKeag, S.; Reynolds, N.; Bargmann, C. J.; Bullen, W.; Murphy, F. C.; Al-Athbah, H.; Brauhart, C.; Potma, W.; Meffre, S.; McKnight, S.

    2016-08-01

    Ongoing exploration in the Red Sea Hills of NE Sudan has led to the identification of a large alteration-mineralization system within a relatively undeformed Neoproterozoic intrusive-extrusive succession centered on Jebel Ohier. The style of mineralization, presence of an extensive stockwork vein network within a zoned potassic-propylitic-argillic-advanced argillic-altered system, a mineralization assemblage comprising magnetite-pyrite-chalcopyrite-bornite (±gold, silver and tellurides), and the recurrence of fertile mafic to intermediate magmatism in a developing convergent plate setting all point to a porphyry copper-gold association, analogous to major porphyry Cu-Au-Mo deposits in Phanerozoic supra-subduction settings such as the SW Pacific. Preliminary U-Pb age dating yielded a maximum constraint of c. 730 Ma for the emplacement of the stockwork system into a significantly older ( c. 800 Ma) volcanic edifice. The mineralization formed prior to regional deformation and accretion of the host terrane to a stable continental margin at by c. 700 Ma, thus ensuring preservation of the deposit. The Jebel Ohier deposit is interpreted as a relatively well-preserved, rare example of a Neoproterozoic porphyry Cu-Au system and the first porphyry Cu-Au deposit to be identified in the Arabian-Nubian Shield.

  5. The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1981-01-01

    In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.

  6. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    Science.gov (United States)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  7. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    This report provides a descriptive model for arc-related porphyry molybdenum deposits. Presented within are geological, geochemical, and mineralogical characteristics that differentiate this deposit type from porphyry copper and alkali-feldspar rhyolite-granite porphyry molybdenum deposits. The U.S. Geological Survey's effort to update existing mineral deposit models spurred this research, which is intended to supplement previously published models for this deposit type that help guide mineral-resource and mineral-environmental assessments.

  8. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    Science.gov (United States)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu

    2012-10-01

    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies. The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U-Pb dating method, with results of 218.3 ± 1.6 Ma (MSWD = 0.31, N = 15) and 218.5 ± 1.6 Ma (MSWD = 0.91, N = 16), respectively. Meanwhile, the molybdenite Re-Os dating yields a Re-Os isochronal age of 221.4 ± 2.3 Ma (MSWD = 0.54, N = 5) and a weighted mean age of 219.9 ± 0.7 Ma (MSWD = 0.88). They are quite in accordance with the zircon U-Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting. There are negative ɛNd(t) values ranging from -3.8 to -2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive ɛHf(t) values ranging from -0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735 Ma to 871 Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and

  9. The investigation on physico-chemical conditions of sulfides and sulfates based on petrographic and sulfur - oxygen stable isotope studies from the Darreh-Zar porphyry copper deposit, Kerman

    Directory of Open Access Journals (Sweden)

    Anis Parsapoor

    2014-04-01

    Full Text Available The Darreh-Zar porphyry copper deposit, located in the Urumieh – Dokhtar magmatic belt, lies about 10 km southeast of Sar-Cheshmeh porphyry copper deposit. The ore body with hydrothermally altered zones including potassic, chlorite-sericite, sericite, argillic and propylitic all related to the Darreh-Zar porphyry stock intruded the Eocene volcanic rocks. Pyrite, chalcopyrite, molybdenite, with different textures as disseminated and veinlet, are the major sulfide minerals and chalcocite and covellite are considered as the secondary minerals. Sulfur isotopic composition of the sulfates and sulfides studied fall on the magmatic values. Two different origins may be suggested for the gypsums studied: 1- hydration of anhydrite and 2- oxidation of pyrite during supergene enrichment. The stable isotopic data calculated on couple minerals (pyrite-anhydrite point to the formation temperature of about 485-515οC for the fluids involved in mineralization. The fluid responsible for mineralization suggests magmatic sources for all sulfide phases and reduced aqueous sulfur species. Isotopic zoning, based on the δ34S pyrite values, divided the area into the east and the west parts with negative and positive correlation against the depth, respectively. Also, a negative correlation is observed between the Cu and the δ34S in the eastern portion of the area.

  10. Investigations of alteration zones based on fluid inclusion microthermometry at Sungun porphyry copper deposit, Iran

    Directory of Open Access Journals (Sweden)

    Omid ASGHARI

    2010-06-01

    Full Text Available The Sungun porphyry copper deposit is located in East Azerbaijan, NW of Iran. The porphyries occur as stocks and dikes ranging in composition from quartz monzodiorite to quartz monzonite. Four types of hypogene alteration are developed; potassic, phyllic, propylitic and argillic. Three types of fluid inclusions are typically observed at Sungun; (1 vapor-rich, (2 liquid-rich and (3 multi-phase. Halite is the principal solid phase in the latter. The primary multiphase inclusions within the quartz crystals were chosen for micro-thermometric analyses and considered to calculate the geological pressure and hydrothermal fluid density. In potassic zone, the average of homogenization temperature is 413.6 °C while in phyllic alteration, 375.9 °C. As expected in potassic alteration, the temperature of hydrothermal solutions is higher than that in the phyllic zone. The salinity of the hydrothermal fluids has a high coherency with homogenization temperature, so the average of salinity in potassic samples is 46.3 (wt% NaCl which is higher than phyllic samples. Based on the location of potassic alteration, as expected, the lithostatic pressure is much more than the phyllic one. Finally, the average density of hydrothermal fluids in the potassically altered samples is 1.124 (gr/cm3 which is higher than the ones in phyllic zone (1.083 gr/cm3 .

  11. The nature of hydrothermal fluids in the Kahang porphyry copper deposit (Northeast of Isfahan based on mineralography, fluid inclusion and stable isotopic data

    Directory of Open Access Journals (Sweden)

    Salimeh Sadat Komeili

    2017-02-01

    hypogene sulfide mineral and chalcopyrite is the predominant Cu- sulfide in the Kahang mineralized area. Primary magnetite grains having irregular boundaries formed in association with phyllic –potassic altered zones (Afshooni et al., 2014. Chalcocite and covellite as secondary copper minerals in the enriched supergene zone replaced the chalcopyrite. Thermometric studies on fluid inclusions conducted on quartz veins was related to the phyllic zone. Almost all studied fluid inclusions were homogenized to the liquid phase. Hydrothermal solutions with salinity over 26% wt equivalent NaCl, comparable with those of the other porphyry deposits (Morales Ruano et al., 2002; Hezarkhani, 2006; Hezarkhani, 2009 were responsible for the formation of the Kahang porphyry copper deposit. Homogenization temperatures of 200-450°C and 500-550°C were obtained from heating- cooling experiments on the two and multi phase fluid inclusions. The presence of gas riched fluid inclusions together with those of liquid riched and multiphase different salinities in the quartz veins as well as the occurrence of hydrothermal breccias are indicative of boiling fluids. Result In the Kahang porphyry Cu- deposit, the oxidation zone is characterized by hematite, goethite, jarosite, malachite, and azurite; the supergene zone is identified by chalcocite, chalcopyrite and coevllite; and chalcopyrite, pyrite and magnetite are the mineral assemblage of the hypogene zone. The volcanic as well as the plutonic rocks of the area have been hydrothermally altered which gave rise to the formation of propyllitic, intermediate argillic and mineralized phyllic zones. Fluid inclusion study on quartz veins revealed salinity over 26% wt equivalent NaCl and homogenization temperature of 200-450°C and 500-550°C. The presence of gas riched fluid inclusions together with those of liquid riched and multiphase different salinities in the quartz veins as well as the occurrence of hydrothermal breccias are indicative of boiling

  12. Main copper-porphyry systems of the Lesser Caucasus

    International Nuclear Information System (INIS)

    Melkonyan, R.L.; Tayan, P.N.; Goukassyan, R.Kh.; Hovakimyan, S.E.; Moritz, R.; Selbi, D.

    2013-01-01

    Two belts of porphyry-copper systems were identified the Late Jurassic Early Cretaceous Somkheto-Karabakh (S-K) island-arc belt within the same name terrain of the southern termination of the Eurasian Plate stretching for 230 km (the tonalitic model) and the Early Miocene Tsaghkounk-Zanghezour (Ts-Z) post-collision belt (Tz-Z) within the same name terrain of the northern margin of the Gondwana, stretching over 280 km (the monzonite-granodiorite model). The formation of the S-K and Ts-Z belts had proceeded in pulses and spanned intervals of 12 million years and 24 million years, respectively. The Rb-Sr isochrones and TIMS U-Pb estimations of the age of zircons from the Meghri pluton ( 1,500 km 2 ), the largest one in the Lesser Caucasus, it appeared possible to establish the three stages of its formation: the Late Eocene, Early Oligocene, and Early Miocene, each accompanied by development of deposits having similar ages. The PC deposits of the S-K and Ts-Z belts have distinct differences of age, geodynamic regime of formation, specificity of mineral composition, sources of water and sulfur of hydrothermal solutions, and formation models. The single, discrete Armenian-Iranian belt of PC deposits was identified; it has a Late Eocene-Middle Miocene age and a length of about 2,000 km, being related with intrusive complexes of the monzonite-granite-granodiorite series, the activity of which had been manifesting itself over 32 million years. This belt, including giant-deposits such as Kajaran and Sar-Cheshmeh, was identified as the special Armenian-Iranian PC province

  13. Ultra-deep oxidation and exotic copper formation at the late pliocene boyongan and bayugo porphyry copper-gold deposits, surigao, philippines: Geology, mineralogy, paleoaltimetry, and their implications for Geologic, physiographic, and tectonic controls

    Science.gov (United States)

    Braxton, D.P.; Cooke, D.R.; Ignacio, A.M.; Rye, R.O.; Waters, P.J.

    2009-01-01

    The Boyongan and Bayugo porphyry copper-gold deposits are part of an emerging belt of intrusion-centered gold-rich deposits in the Surigao district of northeast Mindanao, Philippines. Exhumation and weathering of these Late Pliocene-age deposits has led to the development of the world's deepest known porphyry oxidation profile at Boyongan (600 m), and yet only a modest (30-70 m) oxidation profile at adjacent Bayugo. Debris flows, volcanic rocks, and fluviolacustrine sediments accumulating in the actively extending Mainit graben subsequently covered the deposits and preserved the supergene profiles. At Boyongan and Bayugo, there is a vertical transition from shallower supergene copper oxide minerals (malachite + azurite + cuprite) to deeper sulfide-stable assemblages (chalcocite ?? hypogene sulfides). This transition provides a time-integrated proxy for the position of the water table at the base of the saturated zone during supergene oxidation. Contours of the elevation of the paleopotentiometric surface based on this min- eralogical transition show that the thickest portions of the unsaturated zone coincided with a silt-sand matrix diatreme breccia complex at Boyongan. Within the breccia complex, the thickness of the unsaturated zone approached 600 in, whereas outside the breccia complex (e.g., at Bayugo), the thickness averaged 50 m. Contours of the paleopotentiometric surface suggest that during weathering, groundwater flowed into the breccia complex from the north, south, and east, and exited along a high permeability zone to the west. The high relief (>550 m) on the elevation of the paleopotentiometric surface is consistent with an environment of high topographic relief, and the outflow zone to the west of the breccia complex probably reflects proximity to a steep scarp intersecting the western breccia complex margin. Stable isotope paleoaltimetry has enabled estimation of the elevation of the land surface, which further constrains the physiographic setting

  14. The mass balance calculation of hydrothermal alteration in Sarcheshmeh porphyry copper deposit

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2013-10-01

    Full Text Available Sarcheshmeh porphyry copper deposit is located 65 km southwest of Rafsanjan in Kerman province. The Sarcheshmeh deposit belongs to the southeastern part of Urumieh-Dokhtar magmatic assemblage (i.e., Dehaj-Sarduyeh zone. Intrusion of Sarcheshmeh granodiorite stock in faulted and thrusted early-Tertiary volcano-sedimentary deposits, led to mineralization in Miocene. In this research, the mass changes and element mobilities during hydrothermal process of potassic alteration were studied relative to fresh rock from the deeper parts of the plutonic body, phyllic relative to potassic, argillic relative to phyllic and propylitic alteration relative to fresh andesites surrounding the deposit. In the potassic zone, enrichment in Fe2O3 and K2O is so clear, because of increasing Fe coming from biotite alteration and presence of K-feldspar, respectively. Copper and molybdenum enrichments resulted from presence of chalcopyrite, bornite and molybdenite mineralization in this zone. Enrichment of SiO2 and depletion of CaO, MgO, Na2O and K2O in the phyllic zone resulted from leaching of sodium, calcium and magnesium from the aluminosilicate rocks and alteration of K-feldspar to sericite and quartz. In the argillic zone, Al2O3, CaO, MgO, Na2O and MnO have also been enriched in which increasing Al2O3 may be from kaolinite and illite formation. Also, enrichment in SiO2, Al2O3 and CaO in propylitic alteration zone can be attributed to the formation of chlorite, epidote and calcite as indicative minerals of this zone.

  15. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China

    International Nuclear Information System (INIS)

    Li, Q; Zhang, B; Lu, L; Lin, Q

    2014-01-01

    Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration

  16. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China

    Science.gov (United States)

    Li, Q.; Zhang, B.; Lu, L.; Lin, Q.

    2014-03-01

    Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration.

  17. Optimizing Performance of SABC Comminution Circuit of the Wushan Porphyry Copper Mine—A Practical Approach

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-12-01

    Full Text Available This research is focused on the Phase I SABC milling circuit of the Wushan porphyry copper mine. Improvements to the existing circuit were targeted without any significant alterations to existing equipment or the SABC circuit. JKSimMet simulations were used to test various operating and design conditions to improve the comminution process. Modifications to the SABC comminution circuit included an increase in the SAG mill ball charge from 8% to 10% v/v; an increase in the mill ball charge from 23% v/v to 27% v/v; an increase in the maximum operating power draw in the ball mill to 5800 kW; the replacement of the HP Series pebble crusher with a TC84 crusher; and the addition of a pebble bin. Following these improvements, an increase in circuit throughput, a reduction in energy consumption, and an increase in profitability were obtained.

  18. Presenting a mapping method based on fuzzy Logic and TOPSIS multi criteria decision-making methods to detect promising porphyry copper mineralization areas in the east of the Sarcheshmeh copper metallogenic district

    Directory of Open Access Journals (Sweden)

    Shokouh Riahi

    2017-11-01

    through applying the multi-criteria decision-making method. Finally, the selected favorable areas in the metallogenic strip located at the south to the south-east of the Sarcheshmeh porphyry copper deposit are prioritized and introduced for further follow up ground exploration operations. Methodology In order to solve complex decision-making problems like the problem of mapping favorable porphyry copper mineralization zones under great uncertainties, the TOPSIS method is considered as an appropriate approach offering significant simplicity, flexibility and capability (Ataei., 2010. The TOPSIS method is considered to be an efficient method due to having very high accuracy, speed, sensitivity as well as being easy to implement and interpret the outputted results (Hwang and Yoon, 1981. It has found many applications in important areas of mining industry where there is a need to make decisions under risky conditions and data uncertainties. One basic issue in applying decision-making methods in the field of mineral exploration is to rank and propose the best possible candidates among all potentially favorable areas for the next stage of mineral exploration. In this regard, the best favorable areas are selected based on exploratory data layers including favorable lithologies, alterations, structures plus geochemical and geophysical anomalies (Pazand et al., 2012. Results and discussion In the first step, the area located south to the southeast of one the largest porphyry copper deposits in Iran known as Sarcheshmeh was investigated for favorable areas using all available exploratory data as mentioned in the previous section using fuzzy logic integration approach in the GIS environment. Evaluating the highly favorable areas presented by the fuzzy logic approach showed great consistency with the already known copper mineralization prospects. Next, the first 20 priorities obtained from the fuzzy logic approach were chosen as the best candidates to be ranked using the TOPSIS multi

  19. COMPARING INDEPENDENT COMPONENT ANALYSIS WITH PRINCIPLE COMPONENT ANALYSIS IN DETECTING ALTERATIONS OF PORPHYRY COPPER DEPOSIT (CASE STUDY: ARDESTAN AREA, CENTRAL IRAN

    Directory of Open Access Journals (Sweden)

    S. Mahmoudishadi

    2017-09-01

    Full Text Available The image processing techniques in transform domain are employed as analysis tools for enhancing the detection of mineral deposits. The process of decomposing the image into important components increases the probability of mineral extraction. In this study, the performance of Principal Component Analysis (PCA and Independent Component Analysis (ICA has been evaluated for the visible and near-infrared (VNIR and Shortwave infrared (SWIR subsystems of ASTER data. Ardestan is located in part of Central Iranian Volcanic Belt that hosts many well-known porphyry copper deposits. This research investigated the propylitic and argillic alteration zones and outer mineralogy zone in part of Ardestan region. The two mentioned approaches were applied to discriminate alteration zones from igneous bedrock using the major absorption of indicator minerals from alteration and mineralogy zones in spectral rang of ASTER bands. Specialized PC components (PC2, PC3 and PC6 were used to identify pyrite and argillic and propylitic zones that distinguish from igneous bedrock in RGB color composite image. Due to the eigenvalues, the components 2, 3 and 6 account for 4.26% ,0.9% and 0.09% of the total variance of the data for Ardestan scene, respectively. For the purpose of discriminating the alteration and mineralogy zones of porphyry copper deposit from bedrocks, those mentioned percentages of data in ICA independent components of IC2, IC3 and IC6 are more accurately separated than noisy bands of PCA. The results of ICA method conform to location of lithological units of Ardestan region, as well.

  20. Comparing Independent Component Analysis with Principle Component Analysis in Detecting Alterations of Porphyry Copper Deposit (case Study: Ardestan Area, Central Iran)

    Science.gov (United States)

    Mahmoudishadi, S.; Malian, A.; Hosseinali, F.

    2017-09-01

    The image processing techniques in transform domain are employed as analysis tools for enhancing the detection of mineral deposits. The process of decomposing the image into important components increases the probability of mineral extraction. In this study, the performance of Principal Component Analysis (PCA) and Independent Component Analysis (ICA) has been evaluated for the visible and near-infrared (VNIR) and Shortwave infrared (SWIR) subsystems of ASTER data. Ardestan is located in part of Central Iranian Volcanic Belt that hosts many well-known porphyry copper deposits. This research investigated the propylitic and argillic alteration zones and outer mineralogy zone in part of Ardestan region. The two mentioned approaches were applied to discriminate alteration zones from igneous bedrock using the major absorption of indicator minerals from alteration and mineralogy zones in spectral rang of ASTER bands. Specialized PC components (PC2, PC3 and PC6) were used to identify pyrite and argillic and propylitic zones that distinguish from igneous bedrock in RGB color composite image. Due to the eigenvalues, the components 2, 3 and 6 account for 4.26% ,0.9% and 0.09% of the total variance of the data for Ardestan scene, respectively. For the purpose of discriminating the alteration and mineralogy zones of porphyry copper deposit from bedrocks, those mentioned percentages of data in ICA independent components of IC2, IC3 and IC6 are more accurately separated than noisy bands of PCA. The results of ICA method conform to location of lithological units of Ardestan region, as well.

  1. Micas at magmatic and hydrothermal stages in the environment of the Cerro Verde Santa Rosa porphyry copper type deposit

    Energy Technology Data Exchange (ETDEWEB)

    Le Bel, L

    1979-01-01

    The chemical composition of biotites and sericites from the Cerro Verde porphyry copper type deposit have been investigated in detail, using an electron microprobe. The main results of the study are: Al/sup vi/ and Ti contents of biotites of magmatic as well as hydrothermal origin may be related to the temperature of crystallization estimed by independent methods. On the other hand the Mg/Fe and Mg/(Mg + Fe) ratios are almost constant. This fact is interpreted in terms of fO/sub 2/; sericites have a phengitic composition in which the solubilities of the two end-members celadonite and paragonite are controlled by a fluid phase under P, T conditions that could be estimated.

  2. Comparative study on the passivation layers of copper sulphide minerals during bioleaching

    Science.gov (United States)

    Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long

    2012-10-01

    The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.

  3. Rb-Sr and Sm-Nd isotopic compositions and Petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (North of Hanich), east of Iran

    International Nuclear Information System (INIS)

    Malekzadeh Shafaroudi, A.; Karimpour, M. H.; Mazaheri, S. A.

    2010-01-01

    The Maherabad gold-rich porphyry copper prospect area is located in the eastern part of Lut block, east of Iran. This is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. Fifteen mineralization-related intrusive rocks range (Middle Eocene 39 Ma) in composition from diorite to monzonite have been distinguished. Monzonitic porphyries had major role in Cu-Au mineralization. The ore bearing porphyries are I-type, meta luminous, high-Kcalc-alkaline to shoshonite intrusive rocks which were formed in island arc setting. These rocks are characterized by average of SiO 2 > 59 wt %, Al 2 O 3 > 15 wt %, MgO 2 O> 3 wt %, Sr> 870 ppm, Y 55, moderate Light rare earth elements, relatively low heavy rare earth elements and enrichment LILE (Sr, Cs, Rb, K and Ba) relative to HFSE (Nb, Ta, Ti, Hf and Zr). They are chemically similar to some adakites, but their chemical signatures differ in some ways from normal adakites, including higher K 2 O contents and K 2 O/Na 2 O ratios and lower Mg, (La/Yb) N , (Ce/Yb) N and εNd in Maherabad rocks. Maherabad intrusive rocks are the first K-rich adakites that can be related with subduction zone. Partial melting of mantle hybridized by hydrous, silica-rich slab-derived melts or/and input of enriched mantle-derived ultra-potassic magmas during or prior to the formation and migration of adakitic melts could be explain their high K 2 O contents and K 2 O/Na 2r atios. Low Mg values and relatively low MgO, Cr and Ni contents imply limited interaction between adakite-like magma and mantle wedge peridotite. The initial 87 Sr/ 86 Sr and ( 143 Nd/ 144 Nd)i was recalculated to an age of 39 Ma (unpublished data). Initial 87 Sr/ 86 Sr ratios for hornblende monzonite porphyry are 0.7047-0.7048. The ( 143 Nd/ 144 Nd)i isotope composition are 0.512694-0.512713. Initial εNd isotope values 1.45-1.81. These values could be considered as representative of oceanic slab-derived magmas. Source modeling indicates that high-degree of

  4. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry

    Directory of Open Access Journals (Sweden)

    Houshang Pourkaseb

    2017-07-01

    Full Text Available Introduction The formation of porphyry copper deposits is attributed to the shallow emplacement, and subsequent cooling of the hydrothermal system of porphyritic intrusive rocks (Titley and Bean, 1981. These deposits have usually been developed along the chain of subduction-related volcanic and calc-alkalin batholiths (Sillitoe, 2010. Nevertheless, it is now confirmed that porphyry copper systems can also form in collisional and post collisional settings (Zarasvandi et al., 2015b. Detailed studies on the geochemical features of ore-hosting porphyry Cu-Mo-Au intrusions indicate that they are generally adakitic, water and sulfur- riched, and oxidized (Wang et al., 2014. For example, high oxygen fugacity of magma has decisive role in transmission of copper and gold to the porphyry systems as revealed in (Wang et al., 2014. In this regard, the present work deals with the mineral chemistry of amphibole and plagioclase in the Dalli porphyry Cu-Au deposit. The data is used to achieve the physical and chemical conditions of magma and its impact on mineralization. Moreover, the results of previous studies on the hydrothermal system of the Dalli deposit such as Raman laser spectroscopy and fluid inclusion studies are included for determination of the evolution from magmatic to hydrothermal conditions. Materials and methods In order to correctly characterize the physical and chemical conditions affecting the trend of mineralization, 20 least altered and fractured samples of diorite and quartz-diorite intrusions were chosen from boreholes. Subsequently, 20 thin-polished sections were prepared in the Shahid Chamran University of Ahvaz. Finally, mineral chemistry of amphibole and plagioclase were determined using electron micro probe analyses (EMPA in the central lab of the Leoben University. Results Amphibole that is one of the the main rock-forming minerals can form in a wide variety of igneous and metamorphic rocks. Accordingly, amphibole chemistry can be

  5. Remote sensing and Aeromagnetic investigations in porphyry copper deposits for identification of areas with high concentration of gold: a case study from the central part of Dehaj-Sarduiyeh belt, Kerman, Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh Hosseinjani Zadeh

    2018-04-01

    Full Text Available Introduction Remote sensing has shown tremendous potential in the identification of alteration zones. The importance of this science for mineral exploration and recognition of alteration zones with lower cost, time, and manpower is confirmed in many studies (Amer et al., 2012; Hosseinjani Zadeh et al., 2014; Tayebi and Tangestani, 2015; Shahriari et al., 2015. Gold is one of the byproducts in most of the porphyry copper deposits (PCDs. Although the gold assay is partly low and reaches between 0.012- 0.38 g/t in these deposits, the high tonnage of copper deposits provides a considerable source of gold which has an important economic value (Kerrich et al., 2000. Extension, intensity of alteration, assays and the type of mineralization vary in different deposits. For instance, many Au-poor porphyry copper deposits in southwest USA, Central Asia, and west of South America are associated with widespread phyllic alteration (Kesler et al., 2002. In addition, there is a positive correlation between gold and magnetite in PCDs (Kesler et al., 2002; Shafiei and Shahabpour, 2008; Sillitoe, 1979. Therefore, aeromagnetic investigation could be useful in identification of these deposits. The aim of this research is discrimination of alteration zones and investigation areas with high concentration of gold through processing of remote sensing and aeromagnetic data. Materials and methods A number of prone areas with different concentrations of gold in Dehaj-Sarduiyeh copper belt including Sar Kuh, Abdar, Meiduk, Sarcheshmeh, Darrehzar, Sara, Iju and Seridune were investigated using the processing of Advanced space borne thermal emission and reflection radiometer (ASTER, and aeromagnetic data. Pre-processing acts such as crosstalk correction and Internal Average Relative Reflection (IARR calibration were implemented on the ASTER data in order to remove noise and acquire surface reflectance. The alteration minerals were discriminated by implementation of

  6. Petrogenesis of the Pulang porphyry complex, southwestern China: Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys Oceanic lithosphere

    Science.gov (United States)

    Wang, Peng; Dong, Guo-Chen; Zhao, Guo-Chun; Han, Yi-Gui; Li, Yong-Ping

    2018-04-01

    The Pulang complex is located in the southern segment of the Yidun Arc in the Sanjiang Tethys belt, southwestern China. It is composed of quartz diorite, quartz monzonite and granodiorite porphyries, and hosts the super-large Pulang deposit. This study presents new U-Pb geochronological, major-trace elemental and Sr-Nd-Hf isotopic data to constrain the petrogenesis of the Pulang complex and to evaluate its significances for porphyric mineralization and tectonic evolution of the Paleo-Tethys Ocean. The zircon U-Pb dating yields ages ranging from 208 Ma to 214 Ma. Geochemically, the Pulang complex has high Sr and MgO contents, and high Sr/Y and La/Yb ratios, but low Yb and Y contents, displaying adakitic affinities. However, it has moderate Sr/Y and La/Yb ratios, and high Rb contents (32 to 202 ppm). The Pulang samples plot into the transitional field between adakites and normal arc rocks, differing from typical adakites. It is attributed to the assimilation of 10-15% crustal components. The zircon εHf(t) (-4.6 to -2.5), whole-rock (87Sr/86Sr)i (0.7052 to 0.7102), εNd(t) (-0.62 to 2.12) values and adakitic affinities suggest that the Pulang complex was derived from a basaltic slab-melt source and reacted with peridotite during ascending through an enriched asthenospheric mantle wedge. The basaltic slab-melts likely resulted from the westward subduction of the Ganzi-Litang oceanic plate (a branch of the Paleo-Tethys). As far as the metallogenesis concerned, three factors in mineralization are proposed in this paper. The country rock, quartz diorite porphyry, has higher Cu contents than the mantle (average 30 ppm), suggesting that ore-forming magma was derived from a Cu-enriched source, which is a crucial contribution to the late mineralization to form the super-large Pulang deposit. In addition, the barren quartz diorite, granodiorite, and ore-bearing quartz monzonite porphyries are all characterized by high oxygen fugacity, which is another important factor for the

  7. Hydrothermal Fluid evolution in the Dalli porphyry Cu-Au Deposit: Fluid Inclusion microthermometry studies

    Directory of Open Access Journals (Sweden)

    Alireza Zarasvandi

    2015-10-01

    Full Text Available Introduction A wide variety of world-class porphyry Cu deposits occur in the Urumieh-Dohktar magmatic arc (UDMA of Iran.The arc is composed of calc-alkaline granitoid rocks, and the ore-hosting porphyry intrusions are dominantly granodiorite to quartz-monzonite (Zarasvandi et al., 2015. It is believed that faults played an important role in the emplacement of intrusions and subsequentporphyry-copper type mineralization (Shahabpour, 1999. Three main centers host the porphyry copper mineralization in the UDMA: (1 Ardestan-SarCheshmeh-Kharestan zone, (2 Saveh-Ardestan district; in the central parts of the UDMA, hosting the Dalli porphyry Cu-Au deposit, and (3 Takab-Mianeh-Qharahdagh-Sabalan zone. Mineralized porphyry coppersystems in the UDMA are restricted to Oligocene to Mioceneintrusions and show potassic, sericitic, argillic, propylitic and locally skarn alteration (Zarasvandi et al., 2005; Zarasvandi et al., 2015. In the Dalli porphyry deposit, four hydrothermal alteration zones, includingpotassic, sericitic, propylitic, and argillic types have been described in the two discrete mineralized areas, namely, northern and southern stocks. Hypogenemineralization includes chalcopyrite, pyrite, and magnetite, with minor occurrences of bornite.Supergene activity has produced gossan, oxidized minerals and enrichment zones. The supergene enrichment zone contains chalcocite and covellite with a 10-20 m thickness. Mineralization in the northern stock is mainly composed of pyrite and chalcopyrite. The aim of this study is the investigation and classification of hydrothermal veins and the constraining of physicochemical compositions of ore-forming fluids using systematic investigation of fluid inclusions. Materials and methods Twenty samples were collected from drill holes. Thin and polished sections were prepared from hydrothermal veins of thepotassic, sericitic and propylitic alteration zones. Samples used for fluid inclusion measurements were collected

  8. Evidence for extreme partitioning of copper into a magmatic vapor phase

    International Nuclear Information System (INIS)

    Lowenstern, J.B.; Mahood, G.A.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits

  9. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    Science.gov (United States)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  10. Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran

    Science.gov (United States)

    Pour, Amin Beiranvand; Hashim, Mazlan

    2012-02-01

    This study investigates the application of spectral image processing methods to ASTER data for mapping hydrothermal alteration zones associated with porphyry copper mineralization and related host rock. The study area is located in the southeastern segment of the Urumieh-Dokhtar Volcanic Belt of Iran. This area has been selected because it is a potential zone for exploration of new porphyry copper deposits. Spectral transform approaches, namely principal component analysis, band ratio and minimum noise fraction were used for mapping hydrothermally altered rocks and lithological units at regional scale. Spectral mapping methods, including spectral angle mapper, linear spectral unmixing, matched filtering and mixture tuned matched filtering were applied to differentiate hydrothermal alteration zones associated with porphyry copper mineralization such as phyllic, argillic and propylitic mineral assemblages.Spectral transform methods enhanced hydrothermally altered rocks associated with the known porphyry copper deposits and new identified prospects using shortwave infrared (SWIR) bands of ASTER. These methods showed the discrimination of quartz rich igneous rocks from the magmatic background and the boundary between igneous and sedimentary rocks using the thermal infrared (TIR) bands of ASTER at regional scale. Spectral mapping methods distinguished the sericitically- and argillically-altered rocks (the phyllic and argillic alteration zones) that surrounded by discontinuous to extensive zones of propylitized rocks (the propylitic alteration zone) using SWIR bands of ASTER at both regional and district scales. Linear spectral unmixing method can be best suited for distinguishing specific high economic-potential hydrothermal alteration zone (the phyllic zone) and mineral assemblages using SWIR bands of ASTER. Results have proven to be effective, and in accordance with the results of field surveying, spectral reflectance measurements and X-ray diffraction (XRD) analysis

  11. Fluid Evolution of the Magmatic Hydrothermal Porphyry Copper Deposit Based on Fluid Inclusion and Stable Isotope Studies at Darrehzar, Iran

    OpenAIRE

    Alizadeh Sevari, B.; Hezarkhani, A.

    2014-01-01

    The Darrehzar porphyry Cu-Mo deposit is located in southwestern Iran (~70 km southwest of Kerman City). The porphyries occur as Tertiary quartz-monzonite stocks and dikes, ranging in composition from microdiorite to diorite and granodiorite. Hydrothermal alteration and mineralization at Darrehzar are centered on the stock and were broadly synchronous with its emplacement. Early hydrothermal alteration was dominantly potassic and propylitic and was followed by later phyllic and argillic altera...

  12. Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock?

    Science.gov (United States)

    Shen, Ping; Pan, Hongdi; Zhou, Taofa; Wang, Jingbin

    2014-08-01

    Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi'eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U-Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite-sericite-albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.

  13. Melt recharge, f O2-T conditions, and metal fertility of felsic magmas: zircon trace element chemistry of Cu-Au porphyries in the Sanjiang orogenic belt, southwest China

    Science.gov (United States)

    Meng, Xuyang; Mao, Jingwen; Zhang, Changqing; Zhang, Dongyang; Liu, Huan

    2018-06-01

    The magmatic hydrothermal Pulang Cu deposit (Triassic) and the Beiya Au-Cu deposits (Eocene) are located in the Sanjiang copper porphyry belt, southwest China. Zircon chemistry was used to constrain the magmatic evolution and oxidation state of the porphyries. The results show that porphyries of the Beiya district formed from an early oxidized melt and a later relatively reduced and more evolved magma, whereas Pulang experienced a normal Cu porphyry evolutionary trend. The Pulang porphyries crystallized from more oxidized magma (ΔFMQ + 2.9-4.6, average = 4.0 ± 1.0, n = 3) with an average temperature of 709 ± 6 °C compared to the Beiya porphyries (ΔFMQ + 0.6-3.5, average = 1.9 ± 1.3, n = 5) with a mean magmatic temperature of 780 ± 22 °C. These data, combined with data from other Cu- and Au-rich porphyries in the Sanjiang belt (i.e., Machangjing Cu, Yao'an Au), are consistent with previous experimental work showing that elevated Cu and Au solubilities in magma require oxidizing conditions. A compilation of existing geochemical data for magmatic zircons from fertile and barren porphyry systems worldwide establishes an optimal diagnostic interval on CeIV/CeIII-TTi-in-zircon and (Eu/Eu*)N plots for generating magmatic hydrothermal Cu-Au deposits.

  14. Bio-Remediation of Acid Mine Drainage in the Sarcheshmeh Porphyry Copper Mine by Fungi: Batch and Fixed Bed Process

    Directory of Open Access Journals (Sweden)

    Hanieh Soleimanifar

    2012-12-01

    Full Text Available Acid mine drainage (AMD containing high concentrations of iron and sulphate, low pH and variableconcentrations of heavy metals leads to many environmental problems. The concentrations of Cu and Mnare high in the AMD of the Sarcheshmeh porphyry copper mine, Kerman province, south of Iran. In thisstudy, the bio-remediation of Cu and Mn ions from acid mine drainage was investigated using two nativefungi called Aspergillus niger and Phanerochaete chrysosporium which were extracted from the soil andsediment samples of the Shour River at the Sarcheshmeh mine. The live fungi was first harvested andthen killed by boiling in 0.5 N NaOH solution. The biomass was finally dried at 60 C for 24 h andpowdered. The optimum biosorption parameters including pH, temperature, the amount of biosorbent andcontact time were determined in a batch system. The optimum pH varied between 5 and 6. It was foundthat the biosorption process increased with an increase in temperature and the amount of biosorbent.Biosorption data were attempted by Langmuir and Freundlich isotherm models and showed a good match.Kinetic studies were also carried out in the present study. The results show that the second-order kineticsmodel fits well the experimental data. The biosorption experiments were further investigated with acontinuous system to compare the biosorption capacities of two systems. The results show thatbiosorption process using a continuous system increases efficiency up to 99%. A desorption process waseventually performed in order to recover Copper and Manganese ions. This process was successful andfungi could be used again.

  15. Structural and numerical modeling of fluid flow and evolving stress fields at a transtensional stepover: A Miocene Andean porphyry copper system as a case study.

    Science.gov (United States)

    Nuñez, R. C.; Griffith, W. A.; Mitchell, T. M.; Marquardt, C.; Iturrieta, P. C.; Cembrano, J. M.

    2017-12-01

    Obliquely convergent subduction orogens show both margin-parallel and margin-oblique fault systems that are spatially and temporally associated with ore deposits and geothermal systems within the volcanic arc. Fault orientation and mechanical interaction among different fault systems influence the stress field in these arrangements, thus playing a first order control on the regional to local-scale fluid migration paths as documented by the spatial distribution of fault-vein arrays. Our selected case study is a Miocene porphyry copper-type system that crops out in the precordillera of the Maule region along the Teno river Valley (ca. 35°S). Several regional to local faults were recognized in the field: (1) Two first-order, N-striking subvertical dextral faults overlapping at a right stepover; (2) Second-order, N60°E-striking steeply-dipping, dextral-normal faults located at the stepover, and (3) N40°-60°W striking subvertical, sinistral faults crossing the stepover zone. The regional and local scale geology is characterized by volcano-sedimentary rocks (Upper Eocene- Lower Miocene), intruded by Miocene granodioritic plutons (U-Pb zircon age of 18.2 ± 0.11 Ma) and coeval dikes. We implement a 2D boundary element displacement discontinuity method (BEM) model to test the mechanical feasibility of kinematic model of the structural development of the porphyry copper-type system in the stepover between N-striking faults. The model yields the stress field within the stepover region and shows slip and potential opening distribution along the N-striking master faults under a regionally imposed stress field. The model shows that σ1 rotates clockwise where the main faults approach each other, becoming EW when they overlap. This, in turn leads to the generation of both NE- and NW-striking faults within the stepover area. Model results are consistent with the structural and kinematic data collected in the field attesting for enhanced permeability and fluid flow transport

  16. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, representing various rocks and alteration types. A JEOL JXA-8900R electron microprobe analyzer (EMPA was used for the chemistry analysis. The biotite is texturally divided into magmatic and hydrothermal types. Ti, Fe, and F contents can be used to distinguish the two biotite types chemically. Some oxide and halogen contents of biotite from various rocks and alteration types demonstrate a systematic variation in chemical composition. Biotite halogen chemistry shows a systematic increase in log (XCl/XOH and decrease in log (XF/XOH values from biotite (potassic through chlorite-sericite (intermediate argillic to actinolite (inner propylitic zones. The y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from potassic and intermediate argillic zones are similar or slightly different. In contrast, the y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from inner propylitic zone display different values in comparison to the two alteration zones. Halogen (F,Cl fugacity ratios in biotite show a similar pattern: in the potassic and intermediate argillic zones they show little variation, whereas in the inner propylitic zone they are distinctly different. These features suggest the hydrothermal fluid composition remained fairly constant in the inner part of the deposit during the potassic and intermediate argillic alteration events, but changed significantly towards the outer part affected by inner propylitic

  17. Investigation on the age of mineralization in the Sungun porphyry Cu-Mo deposit, NW Iran with a regional metallogenic perspective

    Science.gov (United States)

    Simmonds, Vartan; Moazzen, Mohssen; Mathur, Ryan

    2016-04-01

    The Sungun porphyry copper deposit (PCD) is located in NW Iran, neighbouring several other PCDs and prospects in the region and the Lesser Caucasus (south Armenia). It lies on the Urumieh-Dokhtar magmatic arc (UDMA), which formed through the northeast-ward subduction of the Neo-Tethyan oceanic crust beneath the Central Iranian plate during late-Mesozoic and early-Cenozoic [1], and hosts the porphyry copper metallogenic belt of Iran. The Sungun PCD is the second largest deposit in Iran with ore reserves of about 850 Mt at 0.62 wt% Cu and 0.01 wt% Mo and probable reserves over 1Gt. The monzonitic to quartz monzonitic porphyry stock intruded the upper Cretaceous carbonates and Eocene volcano-sedimentary rocks. It produced a skarn-type mineralization at its contact zone with the carbonate rocks, as well as vast hydrothermal alteration zones and porphyry-type Cu and Mo mineralization. The zircon U-Pb age of the host porphyry stock is about 22.5±0.4 to 20.1±0.4 Ma [2]. Re-Os dating of four molybdenite separates from this PCD shows ages ranging between 22.9±0.2 to 21.7±0.2 Ma, with an average of 22.57±0.2 Ma, corresponding to the early Miocene (Aquitanian). These ages indicate that both the porphyry stock and the Cu-Mo mineralization are post-collisional events, similar to many other deposits and prospects in NW and central Iran and south Armenia, and the mineralization occurred shortly after the emplacement of the host stock, corresponding better to the ages obtained from the marginal parts of the stock. Magmatism and mineralization in Sungun coincides with the third metallogenic epoch in the Lesser Caucasus (Eocene to Miocene; [3]), though it is considerably younger than all of the dated PCDs and prospects in the south Armenia. It also postdates Cu-Mo mineralizations in the Saheb Divan (35 Ma), Qaradagh batholith (31.22±0.28 to 25.19±0.19 Ma), as well as Haft Cheshmeh PCD (28.18±0.42 to 27.05±0.37 Ma) in NW Iran, while it seems to be coeval with the Kighal

  18. Re-Os dating of mineralization in Siah Kamar porphyry Mo deposit (NW Iran) and investigating on its temporal relationship with porphyry Cu-Mo deposits in the southern Lesser Caucasus, NW and central Iran

    Science.gov (United States)

    Simmonds, Vartan; Moazzen, Mohssen; Selby, David

    2017-04-01

    The Neo-Tethyan basin closure in Iran is characterized by the Urumieh-Dokhtar magmatic arc (UDMA), formed by north-eastward subduction of the Neo-Tethyan oceanic crust during the Alpine orogeny. This belt also coincides with the porphyry copper metallogenic belt of Iran, which hosts many porphyry Cu-Mo deposits (PCDs) and prospects, such as Sungun (NW Iran) and Sarcheshmeh (central Iran). The Siah Kamar porphyry Mo deposit (PMD) is the first discovered porphyry molybdenum deposit on this belt, which is located 10 km west of Mianeh (NW Iran), with 39.2 Mt proved reserves @ 539 ppm Mo and 66.4 Mt probable reserves @ 266 ppm Mo. The host porphyry stock has quartz-monzonitic composition, which intruded the volcanic and pyroclastic rocks of Eocene age. Re content of molybdenites is about 10.44-41.05 ppm which, considering the several tens of ppm concentration, is comparable with porphyry Mo deposits (e.g., Climax in USA), being clearly distinguished from porphyry Cu-Mo deposits. Re-Os dating of molybdenites from this PMD has given model ages between 28.1±0.15 to 29.06±0.2 Ma, and isochron age of 28.0±2.1 Ma, corresponding to the middle Oligocene (upper part of Rupelian). Comparing the ages determined for Siah Kamar PMD with porphyry Cu-Mo mineralizations in the Lesser Caucasus indicates that it is younger than most of the dated PCDs and prospects there, especially those of upper Eocene, while it is a little older than Paragachay and first-stage Kadjaran PCDs [1]. In a regional scale of NW Iran, it shows a narrow overlap with vein-type Cu-Mo-Au mineralizations in Qarachilar (Qaradagh batholith) and is nearly coeval with Haftcheshmeh PCD, indicating that mineralization in the Siah Kamar PMD corresponds to the second porphyry mineralization epoch in NW Iran, proposed by [2]. Meanwhile, mineralization in Siah Kamar is older than all the porphyry Cu-Mo mineralizations along the central and SE parts of the UDMA, except the Bondar Hanza PCD in Kerman zone, which nearly

  19. Porphyry of Russian Empires in Paris

    Science.gov (United States)

    Bulakh, Andrey

    2014-05-01

    Porphyry of Russian Empires in Paris A. G. Bulakh (St Petersburg State University, Russia) So called "Schokhan porphyry" from Lake Onega, Russia, belongs surely to stones of World cultural heritage. One can see this "porphyry" at facades of a lovely palace of Pavel I and in pedestal of the monument after Nicolas I in St Petersburg. There are many other cases of using this stone in Russia. In Paris, sarcophagus of Napoleon I Bonaparte is constructed of blocks of this stone. Really, it is Proterozoic quartzite. Geology situation, petrography and mineralogical characteristic will be reported too. Comparison with antique porphyre from the Egyptian Province of the Roma Empire is given. References: 1) A.G.Bulakh, N.B.Abakumova, J.V.Romanovsky. St Petersburg: a History in Stone. 2010. Print House of St Petersburg State University. 173 p.

  20. Lytological characterization and hydrothermal alteration Infiernillo porphyry, provincia Mendoza, Argentina

    International Nuclear Information System (INIS)

    Gomez, A.; Rubinstein, N.; Kleiman, L.. E.mail: kleiman@cae.cnea.gov.ar

    2007-01-01

    El Infiernillo porphyry copper and Mo deposit, in southern Mendoza, Argentina is hosted by ignimbrites of the Cochico Group (lower Permian). The alteration zone consists of a small central quartz neck with appreciable hematite surrounded by an intense quartz-injected zone with local pervasive potassic alteration. Outwards, there is a well-developed phyllic halo with intense bleaching which consists of pervasive and vein-type silicification, sericitization and pyritization. In the outer part of the alteration zone, small polymetallic veins with pyrite, arsenopyrite, galena and minor, chalcopyrite, sphalerite and electrum in quartz gangue crop out. New field, petro-mineralogic and geochemical data confirmed that the host rocks are equivalent to the dacitic and rhyodacitic ignimbrites of the Toba Vieja Gorda Member (Yacimiento Los Reyunos Formation, Cochico Group)

  1. Sensor virtual neuronal con variables instrumentales y su aplicación en un Convertidor Teniente

    Directory of Open Access Journals (Sweden)

    Suárez S. Alejandro

    2011-01-01

    Full Text Available Resumen: Se propone el diseño de un sensor virtual para medir la temperatura del baño de metal blanco en un Convertidor Teniente, utilizando redes neuronales a través de un nuevo método de entrenamiento que utiliza el concepto de variables instrumentales. Este nuevo tipo de entrenamiento será comparado con el método de gradiente descendente, el cual al estar basado en ajuste por mínimos cuadrados presenta sesgo en sus parámetros, producto del ruido de medición. La apuesta es que el método de variables instrumentales resuelva este problema, entregando una red con parámetros ajustados sin sesgo, lo que se verá reflejado en que la salida de esta red, se ajustará de mejor forma a la señal real que el método tradicional de gradiente descendente. Los resultados demuestran que la propuesta planteada entrega un sensor con mejor ajuste que el algoritmo tradicional cuando el instrumento real no se encuentra disponible. La aplicación específica del sensor virtual de temperatura para el Convertidor Teniente presenta gran interés para la industria debido al alto costo de los instrumentos que actualmente pueden cumplir dicha función. Palabras clave: sensores virtuales, redes neuronales, variables instrumentales, procesos de producción de cobre, instrumentación y mediciones virtuales

  2. Systematic sulfur stable isotope and fluid inclusion studies on veinlet groups in the Sarcheshmeh porphyry copper deposit: based on new data

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2012-10-01

    Full Text Available Mineralization occurred by intrusion of granodioritic stock of middle Miocene in volcano–sedimenrary rocks in Sarcheshmeh of early Tertiary age. This research is based on samples of new drilled boreholes and benches of 2500m elevation. Based on mineralogy and crosscutting relationships, at least four groups of veinlets pertaining to four stages of mineralization were recognized. Sulfur isotope studies in the Sarcheshmeh porphyry copper deposit were conducted on pyrite, chalcopyrite, molybdenite and anhydrites of four groups of veinlets. The δ34S values in the sulfides and sulfates range from -2.2 to 1.27‰ and from 10.2 to 14.5 ‰, respectively. The average δ34S value in the sulfides is 1‰ and that for the sulfates is about 13‰. Considering these results, it can be concluded that the sulfides made up of a fluid that its sulfur has a magmatic origin. Also, fluid inclusions of different veinlet groups were studied, showing high temperature, high salinity and the occurrence of boiling in the mineralizing fluids. Moreover, these studies indicate presence of three types of fluids including magmatic, meteoritic and mixture of these two fluids in alteration and mineralizion processes.

  3. Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data

    Science.gov (United States)

    Yousefi, Seyyed Jabber; Ranjbar, Hojjatollah; Alirezaei, Saeed; Dargahi, Sara; Lentz, David R.

    2018-06-01

    The southern section of the Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) of Iran, known as Kerman Magmatic Arc (KMA) or Kerman copper belt, is a major host to porphyry Cu ± Mo ± Au deposits, collectively known as PCDs. In this study, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and spectral angle mapper (SAM) method, combined with field data, mineralogical studies, and spectral analysis are used to determine hydrothermal alteration patterns related to PCDs in the KMA. Gossans developed over some of these porphyry type deposits were mapped using Landsat 8 data. In the NKMA gossans are more developed than in the SKMA due to comparatively lower rate of erosion. The hydrothermal alteration pattern mapped by ASTER data were evaluated using mineralogical and spectral data. ASTER data proved to be useful for mapping the hydrothermal alteration in this semi-arid type of climate. Also Landsat 8 was useful for mapping the iron oxide minerals in the gossans that are associated with the porphyry copper deposits. Our multidisciplinary approach indicates that unlike the PCDs in the northern KMA that are associated with distinct and widespread propylitic alteration, those in the granitoid country rocks lack propylitic alteration or the alteration is only weakly and irregularly developed. The porphyry systems in southern KMA are further distinguished by development of quartz-rich phyllic alteration zones in the outer parts of the PCDs that could be mapped using remote sensing data. Consideration of variations in alteration patterns and specific alteration assemblages are critical in regional exploration for PCDs.

  4. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    Science.gov (United States)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  5. Geochemical, microtextural and petrological studies of the Samba prospect in the Zambian Copperbelt basement: a metamorphosed Palaeoproterozoic porphyry Cu deposit.

    Science.gov (United States)

    Master, Sharad; Mirrander Ndhlovu, N.

    2015-04-01

    Ever since Wakefield (1978, IMM Trans., B87, 43-52) described a porphyry-type meta-morphosed Cu prospect, the ca 50 Mt, 0.5% Cu Samba deposit (12.717°S, 27.833°E), hosted by porphyry-associated quartz-sericite-biotite schists in northern Zambia, there has been controversy about its origin and significance. This is because it is situated in the basement to the world's largest stratabound sediment-hosted copper province, the Central African Copperbelt, which is hosted by rocks of the Neoproterozoic Katanga Supergroup. Mineralization in the pre-Katangan basement has long played a prominent role in ore genetic models, with some authors suggesting that basement Cu mineralization may have been recycled into the Katangan basin through erosion and redeposition, while others have suggested that the circulation of fluids through Cu-rich basement may have leached out the metals which are found concentrated in the Katangan orebodies. On the basis of ca 490-460 Ma Ar-Ar ages, Hitzman et al. (2012, Sillitoe Vol., SEG Spec. Publ., 16, 487-514) suggested that Samba represents late-stage impregnation of copper mineralization into the basement, and that it was one of the youngest copper deposits known in the Central African Copperbelt. If the Samba deposit really is that young, then it would have post-dated regional deformation and metamorphism (560-510 Ma), and it ought to be undeformed and unmetamorphosed. The Samba mineralization consists of chalcopyrite and bornite, occurring as disseminations, stringers and veinlets, found in a zone >1 km along strike, in steeply-dipping lenses up to 10m thick and >150m deep. Our new major and trace element XRF geochemical data (14 samples) show that the host rocks are mainly calc-alkaline metadacites. Cu is correlated with Ag (Cu/Ag ~10,000:1) with no Au or Mo. Our study focused on the microtextures and petrology of the Samba ores. We confirm that there is alteration of similar style to that accompanying classical porphyry Cu mineralization

  6. Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses

    Science.gov (United States)

    Aminroayaei Yamini, Maryam; Tutti, Faramarz; Aminoroayaei Yamini, Mohammad Reza; Ahmadian, Jamshid; Wan, Bo

    2017-10-01

    The chloritization of biotite and stable isotopes of silicate have been studied for the Zafarghand porphyry copper deposit, Ardestan, Iran. The studied area, in the central part of the Urumieh-Dokhtar magmatic belt, contains porphyry-style Cu mineralization and associated hydrothermal alteration within the Miocene (19-26 Ma, Zircon U-Pb age) granodioritc stock and adjacent andesitic to rhyodacitic volcanic rocks (ca. 56 Ma, zircon U-Pb age). The primary and secondary biotite that formed during potassic alteration in this porphyry and these volcanic host rocks are variably chloritized. Chloritization of biotite pseudomorphically is characterized by an increase in MgO, FeOt, and MnO, with decreasing in SiO2, K2O, and TiO2. Based on the Ti-in-biotite geothermometer of Henry et al. (Am Mineral 90:316-328, 2005) and Al-in-chlorite geothermometer of Cathelineau (Clay Miner 23:417-485, 1988), crystallization temperatures of primary biotite representative of magmatic conditions and later chloritization temperature range from 617° to 675 °C ± 24 °C and 177° to 346 °C, respectively. Calculated isotopic compositions of fluids that chloritized primary and secondary biotite display isotopic compositions of 1.1 to 1.7 per mil for δ18O and -19.9 to -20.5 per mil for δD consistent with meteoric water. Sericite, barren, and A-type-quartz veins from phyllic alteration were produced by mixed magmatic and meteoric water with δ18O values from -2.8 to 2.5 and δD values of ˜ -23 per mil; the narrow range of δD values of the propylitic epidote may be due to a meteoric water with δ18O values from 0.8 to 1.6 and δD values from -14.6 to -16.9 per mil.

  7. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    Science.gov (United States)

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  8. Heavy metals in the atmosphere coming from a copper smelter in Chile

    Science.gov (United States)

    Romo-Kröger, C. M.; Morales, J. R.; Dinator, M. I.; Llona, F.; Eaton, L. C.

    The Chilean mine El Teniente is the world's largest underground copper mine. It operates a giant smelter at Caletones (34° 7' S, 70° 27' W) and we have found it is the major source of air contamination in the region. In August 1991 a special circumstance occurred due to a labor strike, with total cessation of activities. A time series analysis of airborne particles collected at a site about 13 km from the smelter was performed in a period including the strike. The PIXE method and other techniques were used to analyse fine (Elemental characterization of soil samples by radioactive source analysis demonstrated that this group of elements did not come from airborne soil dust. Cluster analyses of the interelement correlation matrices, resulting from PIXE data, showed one group (Si, K, Ca, Fe) with main origin in soil and another group (S, Cu, Zn, As) coming from the copper smelter.

  9. Mineralogical and Geochemical Study of Titanite Associated With Copper Mineralization in the Hopper Property, Yukon Territory, Canada

    Science.gov (United States)

    Blumenthal, V. H.; Linnen, R. L.

    2009-05-01

    Copper mineralization in central Yukon is well known, but the metallogeny of the Ruby Range batholith, west of the copper belt, is poorly understood. The Hopper property, situated in the south western part of the Yukon in the Yukon-Tanana terrane, contains copper mineralization hosted by granodiorite and quartz feldspar porphyry of cal-alkaline affinity. These rock units, interpreted to be part of the Ruby Range batholith, intruded metasediments of the Ashihik Metamorphic Suite rocks. Mafic dykes cross cut the intrusion followed by aplite dykes. Small occurrences of skarn also occur in the area and some of these contain copper mineralization. The copper mineralization at the Hopper property appears to have a porphyry-type affinity. However, it is associated with a shear zone and propylitic alteration unlike other typical copper porphyry-type deposits. This raises the question whether or not the mineralization is orthomagmatic in origin, i.e., whether or not this is a true porphyry system. The main zone of mineralization is 1 kilometer long and 0.5 kilometer wide. It is characterized by disseminated chalcopyrite and pyrite, which also occur along fractures. Molybdenite mineralization was found to be associated with slickensides. Alteration minerals associated with the copper mineralization are chlorite, epidote-clinozoisite, carbonate and titanite. Chlorite and epidote-clinozoisite are concentrated in the mineralized zone, whereas an earlier potassic alteration shows a weaker spatial correlation with the mineralization. The association of the mineralization with propylitic alteration leads us to believe the mineralization is shear related, although a deeper porphyritic system may be present at depth. Two populations of titanite at the Hopper property are recognized based on their shape, size and association with other minerals. The first population, defined by a length of 100 micrometers to 1 centimeter, euhedral boundaries, and planar contacts with other magmatic

  10. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    Science.gov (United States)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  11. Spatial coincidence and similar geochemistry of Late Triassic and Eocene-Oligocene magmatism in the Andes of northern Chile: evidence from the MMH porphyry type Cu-Mo deposit, Chuquicamata District

    Science.gov (United States)

    Zentilli, Marcos; Maksaev, Victor; Boric, Ricardo; Wilson, Jessica

    2018-04-01

    The MMH porphyry type copper-molybdenum deposit in northern Chile is the newest mine in the Chuquicamata District, one of largest copper concentrations on Earth. Mineralized Eocene-Oligocene porphyry intrusions are hosted by essentially barren Triassic granodiorites. Despite a century of exploitation, geologists still have problems in the mine distinguishing the Triassic granodiorite from the most important ore-carrying Eocene porphyries in the district. To resolve the problem, internally consistent high-quality geochemical analyses of the Triassic and Tertiary intrusives were carried out: explaining the confusion, they show that the rock units in question are nearly identical in composition and thus respond equally to hydrothermal alteration. In detail, the only difference in terms of chemical composition is that the main Eocene-Oligocene porphyries carry relatively less Fe and Ni. Unexpectedly, the mineralized Eocene-Oligocene porphyries have consistently less U and Th than other Tertiary intrusions in the district, a characteristic that may be valuable in exploration. The supergiant copper-molybdenum deposits in the Central Andes were formed within a narrow interval between 45 and 31 Ma, close to 7% of the 200 My duration of "Andean" magmatism, which resulted from subduction of oceanic lithosphere under South America since the Jurassic. Although recent work has shown that subduction was active on the margin since Paleozoic times, pre-Andean (pre-Jurassic) "Gondwanan" magmatism is often described as being very different, having involved crustal melting and the generation of massive peraluminous rhyolites and granites. This study shows that the indistinguishable Late Triassic and Eocene-Oligocene intrusions occupy the same narrow NS geographic belt in northern Chile. If it is accepted that magma character may determine the potential to generate economic Cu-Mo deposits, then Late Triassic volcano-plutonic centres in the same location in the South American margin

  12. Imperial porphyry from Gebel Abu Dokhan, the Red Sea Mountains, Egypt

    DEFF Research Database (Denmark)

    Makovicky, Emil; Frei, Robert; Karup-Møller, Sven

    2016-01-01

    The prestigious red Imperial Porphyry was quarried from Mons Porphyrites in the Red Sea Mountains of Egypt. The porphyry, reserved for imperial use in Rome and Constantinople, was widely reused in Romanesque and Renaissance times, and in the Ottoman Empire. At the locality, the rocks vary from da...

  13. Chemical mining of primary copper ores by use of nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Chemical mining of primary copper ores, with nuclear explosives to break the ore and in-situ hydrostatic pressure to accelerate dissolution of primary ore minerals, may be feasible. A contained nuclear explosion well below the water table would be used to provide a mass of broken ore in a flooded 'chimney'. The hydrostatic pressure in the chimney should increase the solubility of oxygen in a water-sulfuric acid system enough to allow primary copper minerals such as chalcopyrite and bornite to be dissolved in an acceptably short time. Circulation and collection would be accomplished through drill holes. This method should be especially applicable to the deep portions of porphyry copper deposits that are not economical to mine by present techniques. (author)

  14. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    Science.gov (United States)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount

  15. Multiple and prolonged porphyry Cu–Au mineralization and alteration events in the Halasu deposit, Chinese Altai, Xinjiang, northwestern China

    Directory of Open Access Journals (Sweden)

    Chunji Xue

    2016-09-01

    Full Text Available The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cu–Mo–Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cu–Au deposit, which is currently under exploration. U–Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372–382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Re–Os dating of molybdenite from veinlet-dissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar–Ar dating of K-feldspar from K-feldspar–quartz–chalcopyrite veins produces ages of ca. 269 and ca. 198 Ma. The mineralization (and alteration ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the post-collisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to post-collisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.

  16. Chemical analysis of copper and gold ores from Papua New Guinea (PNG) by means of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Sugiyama, Kazumasa; Waseda, Yoshio; Pangum, L.S.; Witney, J.Y.

    1995-01-01

    X-ray fluorescence analysis (XRF) has been made for determining the contents of copper and gold in ores from PNG mines. An internal standard method of Cu Kα/Er Lβ 1 was used for the analysis of the common copper porphyry samples. The results clearly indicate that this technique is quite effective for analyzing any copper ores with complicated matrix elements. On the other hand, an addition method of the diluted Au solution was applied to gold ores. The results of the present XRF analysis were found to reasonably agree with those obtained by the inductively coupled plasma (ICP) technique. (author)

  17. PROMETHEE II: A knowledge-driven method for copper exploration

    Science.gov (United States)

    Abedi, Maysam; Ali Torabi, S.; Norouzi, Gholam-Hossain; Hamzeh, Mohammad; Elyasi, Gholam-Reza

    2012-09-01

    This paper describes the application of a well-known Multi Criteria Decision Making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits. Various raster-based evidential layers involving geological, geophysical, and geochemical geo-datasets are integrated to prepare a mineral prospectivity mapping (MPM). In a case study, thirteen layers of the Now Chun copper deposit located in the Kerman province of Iran are used to explore the region of interest. The PROMETHEE II technique is applied to produce the desired MPM, and the outputs are validated using twenty-one boreholes that have been classified into five classes. This proposed method shows a high performance when providing the MPM while reducing the cost of exploratory drilling in the study area.

  18. Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula

    Directory of Open Access Journals (Sweden)

    Demetrios G. Eliopoulos

    2014-03-01

    Full Text Available Porphyry Cu–Au–Pd±Pt deposits are significant Au resources, but their Pd and Pt potential is still unknown. Elevated Pd, Pt (hundreds of ppb and Au contents are associated with typical stockwork magnetite-bornite-chalcopyrite assemblages, at the central parts of certain porphyry deposits. Unexpected high grade Cu–(Pd+Pt (up to 6 ppm mineralization with high Pd/Pt ratios at the Elatsite porphyry deposit, which is found in a spatial association with the Chelopech epithermal deposit (Bulgaria and the Skouries porphyry deposit, may have formed during late stages of an evolved hydrothermal system. Estimated Pd, Pt and Au potential for porphyry deposits is consistent with literature model calculations demonstrating the capacity of aqueous vapor and brine to scavenge sufficient quantities of Pt and Pd, and could contribute to the global platinum-group element (PGE production. Critical requirements controlling potential of porphyry deposits may be from the metals contained in magma (metasomatized asthenospheric mantle wedge as indicated by significant Cr, Co, Ni and Re contents. The Cr content may be an indicator for the mantle input.

  19. Petrography and fluid inclusions study in Marbin porphyry Molybdenum (Sn) index (northeast of Isfahan)

    International Nuclear Information System (INIS)

    Mirzaei, M.; Bagheri, H.; Ayati, F.

    2016-01-01

    Marbin Tin and Molybdenum index is located in north of Zefreh Village the Isfahan Province and Uromieh-Dokhtar magmatic zone. The main rock units in this area are Eocene subvolcanic and volcanic rocks with rhyolite to dacite composition. Based on petrography studies the main minerals are plagioclase, quartz, sanidine and biotite and secondary minerals are chlorite, calcite, epidote and sericite. The main hydrothermal alterations are including sericitic, propylitic, intermediate argillic and silisification. Average grade of tin, molybdenum, copper and gold is about 4850, 157, 330 ppm and 82 ppb, respectively. Microthermometric studies on silica veins and veinlet indicate five different types of fluid inclusion, 1-three-phase type (L+V+S→L), 2- three-phase type (L+V+S→V), 3- two-phase type (L+V→L), 4- two-phase type (V+L→V), 5- vapor rich single phase type (V). Fluid inclusion studies in mineralized veins in phyllic and propylitic zones, show the wide range of homogenization temperature from 248 to 600 ºC and salinity from 28 to 65 wt% NaCl equivalent. The temperature, salinity and density of fluids decrease from phyllic to propylitic alteration zone. The wide range of homogenization temperatures for the studied fluid inclusions in index show dilution with surface water and fluid boiling, as the most important factor in ore deposition. According to field, mineralogical, geochemical and fluid inclusion studies Marbin index has been considered as a porphyry deposit type which show the most similarity with Mo porphyry systems in world wide.

  20. Exploration for porphyry copper deposits in Pakistan using digital processing of Landsat-1 data

    Science.gov (United States)

    Schmidt, R. G.

    1976-01-01

    Rock-type classification by digital-computer processing of Landsat-1 multispectral scanner data has been used to select 23 prospecting targets in the Chagai District, Pakistan, five of which have proved to be large areas of hydrothermally altered porphyry containing pyrite. Empirical maximum and minimum apparent reflectance limits were selected for each multispectral scanner band in each rock type classified, and a relatively unrefined classification table was prepared. Where the values for all four bands fitted within the limits designated for a particular class, a symbol for the presumed rock type was printed by the computer at the appropriate location. Drainage channels, areas of mineralized quartz diorite, areas of pyrite-rich rock, and the approximate limit of propylitic alteration were very well delineated on the computer-generated map of the test area. The classification method was used to evaluate 2,100 sq km in the Mashki Chah region. The results of the experiment show that outcrops of hydrothermally altered and mineralized rock can be identified from Landsat-1 data under favorable conditions.

  1. The Stypsi-Megala Therma porphyry-epithermal mineralization, Lesvos Island, Greece: new mineralogical and geochemical data

    Science.gov (United States)

    Periferakis, Argyrios; Voudouris, Panagiotis; Melfos, Vasilios; Mavrogonatos, Constantinos; Alfieris, Dimitrios

    2017-04-01

    Lesvos Island is located at the NE part of the Aegean Sea and mostly comprises post-collisional Miocene volcanic rocks of shoshonitic to calc-alkaline geochemical affinities. In the northern part of the Island, the Stypsi Cu-Mo±Au porphyry prospect, part of the Stypsi caldera, is hosted within hydrothermally altered intrusives and volcanics [1]. Porphyry-style mineralization is developed in a microgranite porphyry that has intruded basaltic trachyandesitic lavas. Propylitic alteration occurs distal to the mineralization, whereas sodic-calcic alteration related to quartz-actinolite veinlets, and a phyllic overprint associated with a dense stockwork of banded black quartz±carbonate veinlets, characterizes the core of the system. Alunite-kaolinite advanced argillic alteration occurs at higher topographic levels and represents a barren lithocap to the porphyry mineralization. Intermediate-sulfidation (IS) milky quartz-carbonate veins overprint the porphyry mineralization along a NNE-trending fault that extends further northwards to Megala Therma, where it hosts IS base metal-rich Ag-Au mineralization [2]. New mineralogical data from the Megala Therma deposit suggest Ag-famatinite, Te-polybasite and Ag-tetrahedrite as the main carriers of Ag in the mineralization. Porphyry-style ores at Stypsi consist of magnetite postdated by pyrite and then by chalcopyrite, molybdenite, sphalerite, galena and bismuthinite within the black quartz stockworks or disseminated in the wallrock [1]. The dark coloration of quartz in the veinlets is due to abundant vapor-rich fluid inclusions. Quartz is granular and fine-grained and locally elongated perpendicular to the vein walls. Botryoidal textures are continuous through quartz grains, suggesting quartz recrystallization from a silica gel, a feature already described by [3] from banded quartz veinlets in porphyry Au deposits at Maricunga, Chile. Bulk ore analyses from porphyry-style mineralization at Stypsi displayed similar geochemical

  2. Olivine-hornblende-lamprophyre dikes from Quebrada los Sapos, El Teniente, Central Chile (34°S: implications for the temporal geochemical evolution of the Andean subarc mantle Diques lamprofídicos de olivino-hornblenda de la quebrada los Sapos, El Teniente, Chile central (34°S: implicancias para la evolución temporal de la geoquímica del manto subarco Andino

    Directory of Open Access Journals (Sweden)

    Charles R Stern

    2011-01-01

    Full Text Available Mafic Mg-olivine (Fo884-hornblende lamprophyre dikes, with Ni -190 ppm and Cr -390 ppm, cut late Miocene lavas in the Quebrada los Sapos a few kilometers west of the El Teniente Cu-Mo mine. These dikes have petro-chemical affinities with other less primitive, Pliocene (2.9-3.9 Ma, olivine-free lamprophyres previously described from both within and in the vicinity of El Teniente. The mafic mantle-derived lamprophyre dikes from Quebrada los Sapos have La/Yb ratios of 10-13, higher than the ratios of 4-9 for older Late Miocene El Teniente Mafic Complex olivine basalts, suggesting a temporal decrease in the percent of partial mantle melting, consistent with the observed decrease in the volume of igneous rocks through time at this latitude, as well as the ultímate cessation of magmatism and >40 km eastward are migration by the Late Pliocene. Less primitive olivine-free lamprophyres have higher La and lower Yb, resulting in higher La/Yb ratios of 15-44, due to crystal-liquid fractionation involving hornblende, but not plagioclase, the crystallization of which is suppressed by the high H2O contents of the lamprophyres. The lamprophyre dikes, as well as younger (1.8-2.3 Ma olivine-bearing basaltic-andesite lava flows in the valley of the Cachapoal river, have 87Sr/86Sr=0.7041 to 0.7049, or = +1.2 to -1.1 and 206Pb/204Pb=18.60 to 18.68, while Middle to Late Miocene (6.5-13.9 Ma El Teniente Volcanic and Plutonic Complex igneous rocks have lower 87Sr/86Sr=0.7039 to 0.7041 and 206Pb/204Pb=18.56 to 18.59, and higher G =+1.9 to +3.8, and older Oligocene to Early Miocene (>15 Ma Abanico or Coya-Machalí Formation volcanic and plutonic rocks in the region have even lower 87Sr/86Sr=0.7033 to 0.7039 and 206Pb/204Pb=18.45 to 18.57, and higher G Nd=+3.8 to +6.2. The data indicate a significant progressive temporal evolution, between the Oligocene and the Pliocene, to higher 87Sr/86Sr and 206Pb/204Pb, and lower for mantle-derived mafic magmas, and by implication

  3. A new look on Imperial Porphyry: a famous ancient dimension stone from the Eastern Desert of Egypt—petrogenesis and cultural relevance

    Science.gov (United States)

    Abu El-Enen, Mahrous M.; Lorenz, Joachim; Ali, Kamal A.; von Seckendorff, Volker; Okrusch, Martin; Schüssler, Ulrich; Brätz, Helene; Schmitt, Ralf-Thomas

    2018-03-01

    Imperial Porphyry, a famous dimension stone of spectacular purple color, was quarried in the Mons Porphyrites area north of Jabal Dokhan in the Eastern Desert of Egypt, from the beginning of the first until the middle of the fifth century AD. During this period, the valuable material was processed as decorative stone and was used for objects of art, reserved exclusively for the Imperial court of the Roman Empire. Later on, only antique spoils of smaller or bigger size have been re-used for these purposes. The Imperial Porphyry is a porphyritic rock of trachyandesitic to dacitic composition that occurs in the uppermost levels of shallow subvolcanic sill-like intrusions, forming a member of the Dokhan Volcanic Suite. Its purple color is mainly due to dispersed flakes of hematite, resulting from hydrothermal alteration of a dark green Common Porphyry of similar composition, underlying the Imperial Porphyry. Both, the Common Porphyry and the purple Imperial Porphyry', are extensively exposed in the Roman quarries. Contacts between Common and Imperial Porphyry are irregular and gradational. In both rock types, intrusive breccias are frequent, indicating a complex intrusion history. U-Th-Pb zircon geochronology on two samples of Imperial Porphyry and one sample of the Common Porphyry yielded an age range of 609-600 Ma, thus confirming earlier results of radiometric dating. Geochemical evidence indicates that both the Imperial and the Common Porphyry are of medium- to high-K calc-alkaline affinity. The magmas have formed by partial melting of a subduction-modified upper mantle. The subsequent intrusion took place within a highly extended terrane (HET).

  4. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    Science.gov (United States)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at contamination are most evident in pre-ore magmas, whereas ore-forming intrusions at low temperatures are dominated by crystal

  5. Geochronological and thermochronological constraints on porphyry copper mineralization in the Domeyko alteration zone, northern Chile Determinaciones geocronológicas y termocronológicas para la mineralización de cobre porfídico en la zona de alteración de Domeyko, norte de Chile

    Directory of Open Access Journals (Sweden)

    Víctor Maksaev

    2010-01-01

    Full Text Available At Domeyko, 40 km south of Vallenar in northern Chile (28°57'S-70°53'W, the Dos Amigos and Tricolor porphyry copper centers are located within a north-south-elongated hydrothermal alteration zone 6x1.5 km of surface dimensions. The centers are related to tonalite to granodiorite porphyry stocks displaying potassic alteration, which are surrounded by Lower Cretaceous andesitic volcanic rocks with sericitic, kaolinite-illite and propylitic alteration zones. The western boundary of the alteration zone is marked by the post-mineralization Cachiyuyo Batholith of granodioritic to dioritic composition. U-Pb zircon ages for the Dos Amigos porphyry are of 106.Ü3.5 and 104.0±3.5 Ma; and 108.5±3.4 for the nearby Tricolor porphyry. The Cachiyuyo Batholith yielded U-Pb zircon ages of 99.6±1.8 and 99.1±1.9 Ma; and 40Ar/39Ar ages for biotite of 96.9±3.9 and 94.8±0.9 Ma. These dates indicate that batholith emplacement postdated the Dos Amigos and Tricolor porphyries, in agreement with geological relationships. Although copper mineralization is spatially and genetically related to the Lower Cretaceous (Albian porphyry stocks, most of the dated hydrothermal micas from the Dos Amigos and Tricolor porphyries yielded 40Ar/39Ar ages between 97.1±2.5 and 96.0±1.4 Ma, which overlap within error with the cooling ages obtained for the neighboring batholith. 40Ar/39Ar dating of micas revealed significant disturbance of their K-Ar isotopic systematics that complicates accurate determination of the timing of hydrothermal activity at Domeyko. Nevertheless, the 40Ar/39Ar data establish a minimum Late Cretaceous age for this activity. A fission track age of 59.8±9.8 Ma of apatite from the Dos Amigos porphyry indicates cooling through the temperature range of the apatite partial annealing zone (~125-60°C during the Paleocene; and an (U-Th/He age of 44.7±3.7 Ma of apatite from the same porphyry sample shows cooling through the temperature range of the apatite He

  6. Multidimensional study of the trace elements in the American south western prophyry copper type deposits: mineralogy of uranium

    International Nuclear Information System (INIS)

    Cesbron, Fabien; Drin, Nicolas.

    1981-09-01

    The use of the spark source masse spectrometry and data treatment methods (principal component analysis and discriminent analysis) allow to describe the trace elements comportments in the porphyry copper type deposits of Arizona (USA) and Sonora (Mexico). The chemical elements are studied in relationship with the alteration zones of these deposits. A electronic microprobe study specifies the uranium bearing minerals [fr

  7. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit.

    Science.gov (United States)

    Diaby, N; Dold, B; Rohrbach, E; Holliger, C; Rossi, P

    2015-11-15

    Mine tailings are a serious threat to the environment and public health. Remediation of these residues can be carried out effectively by the activation of specific microbial processes. This article presents detailed information about temporal changes in bacterial community composition during the remediation of a section of porphyry copper tailings deposited on the Bahía de Ite shoreline (Peru). An experimental remediation cell was flooded and transformed into a wetland in order to prevent oxidation processes, immobilizing metals. Initially, the top oxidation zone of the tailings deposit displayed a low pH (3.1) and high concentrations of metals, sulfate, and chloride, in a sandy grain size geological matrix. This habitat was dominated by sulfur- and iron-oxidizing bacteria, such as Leptospirillum spp., Acidithiobacillus spp., and Sulfobacillus spp., in a microbial community which structure resembled acid mine drainage environments. After wetland implementation, the cell was water-saturated, the acidity was consumed and metals dropped to a fraction of their initial respective concentrations. Bacterial communities analyzed by massive sequencing showed time-dependent changes both in composition and cell numbers. The final remediation stage was characterized by the highest bacterial diversity and evenness. Aside from classical sulfate reducers from the phyla δ-Proteobacteria and Firmicutes, community structure comprised taxa derived from very diverse habitats. The community was also characterized by an elevated proportion of rare phyla and unaffiliated sequences. Numerical ecology analysis confirmed that the temporal population evolution was driven by pH, redox, and K. Results of this study demonstrated the usefulness of a detailed follow-up of the remediation process, not only for the elucidation of the communities gradually switching from autotrophic, oxidizing to heterotrophic and reducing living conditions, but also for the long term management of the remediation

  8. Climax-Type Porphyry Molybdenum Deposits

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  9. The Nature and Use of Copper Reserve and Resource Data

    Science.gov (United States)

    Cox, Dennis P.; Wright, Nancy A.; Coakley, George J.

    1981-01-01

    Copper reserve, resource, and production data can be combined to produce disaggregated resource estimates and trends and, when combined with demand forecasts, can be used to predict future exploration and development requirements. Reserve estimates are subject to uncertainties due mainly to incomplete exploration and rapidly changing economic conditions. United States' reserve estimates in the past have been low mainly because knowledge of the magnitude of very large porphyry-copper deposits has been incomplete. Present estimates are considerably more reliable because mining firms tend to drill out deposits fully before mining and to release their reserve estimates to the public. The sum of reserves and past production yields an estimate of the total ore, total metal contained in ore, and average grade of ore originally in each of the deposits known in the United States. For most deposits, estimates of total copper in ore are low relative to the total copper in mineralized rock, and many estimates are strongly affected by the economic behavior of mining firms. A better estimate of the real distribution of copper contained in deposits can be obtained by combining past production data with resource estimates. Copper resource data are disaggregated into categories that include resources in undeveloped deposits similar to those mined in the past, resources in mines closed because of unfavorable economic conditions, resources in deep deposits requiring high-cost mining methods, arid resources in deposits located in areas where environmental restrictions have contributed to delays in development. The largest resource is located in the five largest porphyry deposits. These deposits are now being mined but the resources are not included in the present mining plan. Resources in this last category will not contribute to supply until some future time when ores presently being mined are depleted. A high correlation exists between total copper contained in deposits and annual

  10. Remote sensing applied to copper and uranium exploration

    International Nuclear Information System (INIS)

    Abrams, M.; Conel, J.

    1982-01-01

    A summary of some of the results of the Joint NASA/Geosat Test Case copper and uranium projects is presented. Two uranium deposits in Wyoming and Utah were investigated. These sites represented a Colorado Plateau sedimentary uranium deposit, and a deposit in fractured and crushed Precambrian granite. Each of the remote sensing data sets analyzed provided some important geologic information applicable to porphyry copper and uranium exploration. Landsat and Seasat data were best suited for regional reconnaissance of structural patterns, and some lithologic/alteration mapping. The higher spatial and spectral resolution provided by the aircraft scanners allowed improved separation of geologic units and delineation of more detailed fault patterns. Overall, th TMS provided the most useful data for lithologic and alteration mapping. The presence of the wavelength band in the 2.2 μm region was found to be invaluable for identifying areas with hydrous mineral-bearing rocks

  11. Using the concentration-volume (C-V) fractal model in the delineation of gold mineralized zones within the Tepeoba porphyry Cu-Mo-Au, Balikesir, NW Turkey

    Science.gov (United States)

    Kumral, Mustafa; Abdelnasser, Amr; Karaman, Muhittin; Budakoglu, Murat

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au mineralization that located at the Biga peninsula (W Turkey) developed around the Eybek pluton concentrated at its southern contact. This mineralization that hosted in the hornfels rocks of Karakaya Complex is associated with three main alteration zones; potassic, phyllic and propylitic alterations along the fault controlled margins of the Eybek pluton and quartz stockwork veining as well as brecciation zones. As well as two mineralized zones were occurred in the mine area; hypogene and oxidation/supergene zone. The hypogene zone has differentiated alteration types; high potassic and low phyllic alteration, while the oxidation/supergene zone has high phyllic and propylitic alterations. This work deals with the delineation of gold mineralized zone within this porphyry deposit using the concentration-volume (C-V) fractal model. Five zones of gold were calculated using its power-law C-V relationship that revealed that the main phase of gold mineralization stated at 5.3083 ppm Au concentration. In addition, the C-V log-log plot shows that the highly and moderately Au mineralization zone developed in western part of deposit correlated with oxidation zone related to propylitic alteration. On the other hand, its weakly mineralization zone has a widespread in the hypogene zone related to potassic alteration. This refers to the enrichment of gold and depletion of copper at the oxidation/supergene zone is due to the oxidation/supergene alteration processes that enrich the deposits by the meteoric water. Keywords: Concentration-volume (C-V) fractal model; gold mineralized zone; Tepeoba porphyry Cu-Mo-Au; Balikesir; NW Turkey.

  12. Geochronology and geochemistry of the Badaguan porphyry Cu-Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances

    Science.gov (United States)

    Gao, Bingyu; Zhang, Lianchang; Jin, Xindi; Li, Wenjun; Chen, Zhiguang; Zhu, Mingtian

    2016-03-01

    The Badaguan porphyry Cu-Mo deposit belongs to the Derbugan metallogenic belt, which is located in the Ergun block, NE China. In the mining area, the Cu-Mo mineralization mainly occurs in quartz diorite porphyry and is hosted within silicified-sericitized and sericite alteration zone. Geochemical results of the host porphyry is characterized by high SiO2, high Al2O3, low MgO, weak positive Eu anomalies and clearly HREE depletion, high Sr, low Y and low Yb, similar to those of adakite. The Sr-Nd isotopic composition of the host porphyry displays an initial (87Sr/86Sr)i ratio of 0.7036-0.7055 and positive Nd( t) values of +0.1 to +0.6, which are similar to the OIB, reflecting the source of the host porphyry may derive from subducted ocean slab, and the new lower crust also had some contribution to the magma sources. The SIMS zircon U-Pb age from the host porphyry is 229 ± 2 Ma. The Re-Os isochron age for the molybdenite in the deposit is 225 ± 2 Ma closed to zircon U-Pb age of the host porphyry, indicating that Cu-Mo mineralization event occurred in Triassic. Combining the geology-geochemistry of the host porphyry and the regional tectonic evolution, we infer that the subduction processes of Mongol-Okhotsk oceanic slab under the Ergun block led to the formation of the Badaguan porphyry Cu-Mo deposit during the Triassic.

  13. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran

    Science.gov (United States)

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.

    2014-01-01

    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  14. Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran

    Science.gov (United States)

    Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.

    2018-05-01

    This work presents the application of an integrated geophysical survey of magnetometry and frequency-domain electromagetic data (FDEM) to image a geological unit located in the Kalat-e-Reshm prospect area in Iran which has good potential for ore mineralization. The aim of this study is to concentrate on a 3D arc-shaped andesite unit, where it has been concealed by a sedimentary cover. This unit consists of two segments; the top one is a porphyritic andesite having potential for ore mineralization, especially copper, whereas the lower segment corresponds to an unaltered andesite rock. Airborne electromagnetic data were used to delineate the top segment as a resistive unit embedded in a sediment column of alluvial fan, while the lower andesite unit was detected by magnetic field data. In our research, the FDEM data were first inverted by a laterally-constrained 1D program to provide three pieces of information that facilitate full 3D inversion of EM data: (1) noise levels associated with the FDEM observations, (2) an estimate of the general conductivity structure in the prospect area, and (3) the location of the sought target. Then EM data inversion was extended to 3D using a parallelized OcTree-based code to better determine the boundaries of the porphyry unit, where a transition exists from surface sediment to the upper segment. Moreover, a mixed-norm inversion approach was taken into account for magnetic data to construct a compact and sharp susceptible andesite unit at depth, beneath the top resistive and non-susceptible segment. The blind geological unit was eventually interpreted based on a combined model of conductivity and magnetic susceptibility acquired from individually inverting these geophysical surveys, which were collected simultaneously.

  15. The Laramide Mesa formation and the Ojo de Agua caldera, southeast of the Cananea copper mining district, Sonora, Mexico

    Science.gov (United States)

    Cox, Dennis P.; Miller, Robert J.; Woodbourne, Keith L.

    2006-01-01

    The Mesa Formation extends from Cananea, Mexico, southeast to the Sonora River and is the main host rock of Laramide porphyry copper deposits in the Cananea District and at the Alacran porphyry prospect to the east. The Mesa consists of two members-a lower andesite and an upper dacite. The lowest part of the dacite member is a crystal tuff about 100 m thick. This tuff is the outfall of a caldera centered near the village of Ojo de Agua, dated by 40Ar/39Ar at 65.8 Ma ?0.4. The Ojo de Agua Caldera is about 9 km in diameter and is filled by a light gray biotite dacite tuff with abundant flattened pumice fragments. The volume of the caldera is estimated to be 24 km3.

  16. Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Dong, Ying-bo; Lin, Hai; Fu, Kai-bin; Xu, Xiao-fang; Zhou, Shan-shan

    2013-02-01

    Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with Acidithiobacillus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.

  17. The geology, structure and mineralisation of the Oyu Tolgoi porphyry copper-gold-molybdenum deposits, Mongolia: A review

    Directory of Open Access Journals (Sweden)

    T.M. (Mike Porter

    2016-05-01

    Mineralisation is characterised by varying, telescoped stages of intrusion and alteration. Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration, mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts. Downward reflux of cooled, late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions, and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks. Uplift, facilitated by syn-mineral longitudinal faulting, brought sections of the porphyry deposit to shallower depths, to be overprinted and upgraded by late stage, shallower, advanced argillic alteration and high sulphidation mineralisation. Key controls on the location, size and grade of the deposit cluster include (i a long-lived, narrow faulted corridor; (ii multiple pulses of overlapping intrusion within the same structure; and (iii enclosing reactive, mafic dominated wall rocks, focussing ore.

  18. Magma Fertility is the First-Order Factor for the Formation of Porphyry Cu±Au Deposits

    Science.gov (United States)

    Park, J. W.; Campbell, I. H.; Malaviarachchi, S. P. K.; Cocker, H.; Nakamura, E.; Kay, S. M.

    2017-12-01

    Magma fertility, the metal abundance in magma, has been considered to be one of the key factors for the formation of porphyry Cu±Au deposits. In this study we provide clear evidence to support the hypothesis that the platinum group element (PGE) can be used to distinguish barren from ore-bearing Cu±Au felsic suites. We determined the PGE contents of three barren volcanic and subvolcanic suites from Argentina and Japan, and compare the results with two porphyry Cu-bearing subvolcanic suites from Chile and two porphyry Cu-Au-bearing suites from Australia. The barren suites are significantly depleted in PGE abundances by the time of fluid exsolution, which is attributed to early sulfide saturation at mid to lower crust depths or assimilation of chalcophile element-poor crustal materials. Barren magma, produced by melting continental crust, may have been initially deficient in chalcophile elements. In contrast, the Cu±Au ore-bearing suites contain at least an order of magnitude higher PGE contents than those of the barren suites by the time of fluid saturation. They are characterized by late sulfide saturation in a shallow magma chamber, which allows the chalcophile elements to concentrate in the fractionating magma from which they are sequestered by ore-forming fluids. We suggest the Pd/MgO and Pd/Pt ratios of igneous rocks can be used as magma fertility indicators, and to distinguish between barren, porphyry Cu and porphyry Cu-Au magmatic systems.

  19. In situ recovery of copper from sulfide ore bodies following nuclear fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Joe B; McKinney, W A [Salt Lake City Metallurgy Research Center, Bureau of Mines, US Department of the Interior, Salt Lake City, UT (United States)

    1970-05-15

    Leaching now yields about 12 percent of the Nation's annual new copper production. About 200,000 tons of copper a year is being won by heap and vat leaching of ore, dump leaching of waste, and in-place leaching of caved underground workings. Although in-place leaching was practiced as long ago as the 15th century, it is little used and contributes only a few percent of the total leach copper production. Current technology in this area is exemplified by practice at the Miami, Ariz., mine of the Miami Copper Co. Despite its limited use, the concept of extracting copper by in-place leaching without physically mining and transporting the ore continues to present intriguing cost saving possibilities. Project SLOOP has been proposed as an experiment to test the feasibility of nuclear fracturing and acid leaching the oxidized portion of a deep ore body near Safford, Ariz. However, the bulk of the copper in deep ore deposits occurs as sulfide minerals that are not easily soluble in acid solutions. This paper explores the concept of in-place leaching of nuclear fractured, deeply buried copper sulfide deposits. On the assumption that fracturing of rock and solution injection and collection would be feasible, an assessment is made of solution systems that might be employed for the different copper sulfide minerals in porphyry ore bodies. These include the conventional ferric sulfate-sulfuric acid systems and combinations of sulfide mineral oxidants and different acids. (author)

  20. In situ recovery of copper from sulfide ore bodies following nuclear fracturing

    International Nuclear Information System (INIS)

    Rosenbaum, Joe B.; McKinney, W.A.

    1970-01-01

    Leaching now yields about 12 percent of the Nation's annual new copper production. About 200,000 tons of copper a year is being won by heap and vat leaching of ore, dump leaching of waste, and in-place leaching of caved underground workings. Although in-place leaching was practiced as long ago as the 15th century, it is little used and contributes only a few percent of the total leach copper production. Current technology in this area is exemplified by practice at the Miami, Ariz., mine of the Miami Copper Co. Despite its limited use, the concept of extracting copper by in-place leaching without physically mining and transporting the ore continues to present intriguing cost saving possibilities. Project SLOOP has been proposed as an experiment to test the feasibility of nuclear fracturing and acid leaching the oxidized portion of a deep ore body near Safford, Ariz. However, the bulk of the copper in deep ore deposits occurs as sulfide minerals that are not easily soluble in acid solutions. This paper explores the concept of in-place leaching of nuclear fractured, deeply buried copper sulfide deposits. On the assumption that fracturing of rock and solution injection and collection would be feasible, an assessment is made of solution systems that might be employed for the different copper sulfide minerals in porphyry ore bodies. These include the conventional ferric sulfate-sulfuric acid systems and combinations of sulfide mineral oxidants and different acids. (author)

  1. Late Triassic Porphyritic Intrusions And Associated Volcanic Rocks From The Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Implications For Adakitic Magmatism And Porphyry Copper Mineralization

    Science.gov (United States)

    Wang, B.; Zhou, M.; Li, J.; Yan, D.

    2011-12-01

    The Yidun terrane, located on the eastern margin of the Tibetan plateau, has been commonly considered to be a Triassic volcanic arc produced by subduction of the Ganzi-Litang oceanic lithosphere. The Yidun terrane is characterized by numerous arc-affinity granitic intrusions located along a 500-km-long, north-south-trending belt. Among these granitic bodies, several small porphyritic intrusions in the southern segment of the terrane (Shangri-La region) are associated with large porphyry copper deposits. These porphyritc intrusions are composed of diorite and quartz diorite, and spatially associated with andesites and dacites. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The andesites and dacites are intercalated with slates and sandstones and have ages of around 220 Ma. The intrusive and volcanic rocks have SiO2 contents from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from 1.9 to 4.2 wt.%. They show significant negative Nb-Ta anomalies on primitive mantle-normalized spidergrams. They have high La/Yb (13-49) ratios with no prominent Eu anomalies. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). The geochemical features indicate that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and ɛNd (-1.88 to -4.93) values, but can be further divided into two groups: high silica (HSA) and low silica adakitic rocks (LSA). The HSA, representing an early stage of magmatism (230 to 215 Ma), were derived from oceanic slab melts with limited interaction with the overlying mantle wedge. At 215 Ma, more extensive interaction resulted in the formation of LSA. We propose that HSA were produced by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the LSA. Compared with

  2. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    Science.gov (United States)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and

  3. Discrimination between mineralized and unmineralized alteration zones using primary geochemical haloes in the Darreh-Zar porphyry copper deposit in Kerman, southeastern Iran

    Science.gov (United States)

    Parsapoor, A.; Khalili, M.; Maghami, M.

    2017-08-01

    Primary geochemical haloes were studied at the Darreh-Zar porphyry Cu-deposit, southern Iran. In terms of geochemical signatures, high K2O/Na2O enrichment, HREEs and HFSE's depletion in the potassic alteration, high (La/Sm)cn, (La/Yb)cn and (Gd/Yb)cn ratios in mineralized sericitic and potassic zones and notable depletion in the REEs content in argillic alteration is recognized. Further, Mg, Li, Sc, P enrichment and W depletion can serve to separate potassic alteration from the other altered zones, while (Eu/Eu*)cn and (Ce/Ce*)cn don't show pronounced changes in different alteration zones. The coupled positive Tl, Se, S, Rb, Co, Cs, Mo, K and negative Te, Ta, Ti, Sr, Rb, As, Bi, Ga, Hf, In, Mn, Zn and Zr anomalies can be adequately used in discriminating between the mineralized zones (potassic, chlorite-sericite and sericite alterations) and the barren (propylitic zone). The behavior of the trace elements on isocon diagrams reveal that HFSEs are depleted in mineralized altered zones and display variations in the amounts in the barren facies. Zonality index in the axial direction from drill holes 146 to 124 estimates the zonality sequence as Pb-Zn-Ag-Cu-Pb-Zn in the surface horizons. The calculated zonality in five drill holes and six levels indicates that the level of 550 m at the DH 117 in the central part of the area has the highest value (0.76) for Cu. The zonality sequence from the surface to the depth is variable and can be demonstrated as follow: DH 146: Pb-Zn-Cu-Mo-Ag; DH 137: Zn-Cu-Mo-Pb-Ag; DH 117: Ag-Zn-Pb-Mo-Cu; DH: 121: Cu-Mo-Zn-Ag-Pb; DH 136: Pb-Ag-Zn-Cu-Mo; DH 124: Zn-Mo-Cu-Pb-Ag. Available data of the enrichment factors shows different enrichment for copper and molybdenum (i.e. EF > 10), selenium and silver (i.e. EF > 5), tin and LREEs (i.e. 1 < EF < 5).

  4. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    fugacities from stage A to stage B, while temperature and oxygen fugacities decrease from stage B to stage C. The Co/Ni ratio of pyrite depends discriminates between the different mineralizing stages in the Yuleken porphyry copper deposit: Py II, associated with the deformation stage B and Cu-enrichment, shows higher Co/Ni ratios and enrichments of Pb, Zn, Mo, Te and Sb than the pyrites formed during the other two stages. The Co/Ni ratio of pyrite can not only apply to discriminate the submarine exhalative, magmatic or sedimentary origins for ore deposits but also can distinguish different ore-forming stages in a single porphyry Cu deposit. Thus, Co/Ni ratio of pyrites may act as an important exploration tool to distinguish pyrites from Cu-rich versus barren area. Furthermore, the distribution of Cu, Mo, Pb, Au, Bi, Sb and Zn in the variably deformed pyrite is proportional to the extent of deformation of the pyrites, indicating in accordance with variable physicochemical conditions different element migration behavior during the different stages of deformation and, thus, mineralisation.

  5. Imperial porphyry from Gebel Abu Dokhan, the Red Sea Mountains, Egypt

    DEFF Research Database (Denmark)

    Makovicky, Emil; Frei, Robert; Karup-Møller, Sven

    2016-01-01

    were treated in Part I of this report. The rocks were moderately altered ; greenschist facies alteration took place under essentially isochemical conditions but relatively high oxygen fugacity. The rocks retain many magmatic textures. Whole-rock chemical analyses show that we deal with high-K to medium.......88 Ga and εNd from +5.1 to +5.7 were inferred. The magmas which led to formation of the Imperial Porphyry appear to be derived from a subduction-modified depleted mantle and underwent only minor contamination by older continental crust. Trace-element features, notably the high Th, U, K, Rb and Cs...... contents, are consistent with crust contamination. Imperial Porphyry erupted during the second Great Oxygenation Event of the Earth atmosphere. Mineralogical observations as well as rock colour and texture, particularly the pleochroic epidote – piemontite, should allow archaeologists to reliably assign...

  6. Energy Consumption in Copper Smelting: A New Asian Horse in the Race

    Science.gov (United States)

    Coursol, P.; Mackey, P. J.; Kapusta, J. P. T.; Valencia, N. Cardona

    2015-05-01

    After a marked improvement in energy consumption in copper smelting during the past few decades, technology development has been slowing down in the Americas and in Europe. Innovation, however, is still required to further reduce energy consumption while complying with stringent environmental regulations. The bottom blowing smelting technology being developed in China shows success and promise. The general configuration of the bath smelting vessel, the design of high-pressure injectors, and the concentrate addition system are described and discussed in this article with respect to those used in other technologies. The bottom blowing technology is shown to be operating at a temperature in the range of 1160-1180°C, which is the lowest reported temperature range for a modern copper smelting process. In this article, it is suggested that top feeding of filter cake concentrate, which is also used in other technologies, has a positive effect in reducing the oxidation potential of the slag ( p(O2)) while increasing the FeS solubility in slag. This reduction in p(O2) lowers the magnetite liquidus of the slag, while the increased solubility of FeS in slag helps toward reaching very low copper levels in flotation slag tailings. The application of high-pressure injectors allows for the use of high levels of oxygen enrichment with no requirements for punching. Using a standard modeling approach from the authors' previous studies, this article discusses these aspects and compares the energy consumption of the bottom blowing technology with that of other leading flash and bath smelting technologies, namely: flash smelting, Noranda/Teniente Converter, TSL (Isasmelt [Glencore Technology Pty. Ltd., Brisbane, Queensland, Australia]/Outotec), and the Mitsubishi Process (Mitsubishi Materials Corporation, Tokyo, Japan).

  7. Geochemistry and zircon U-Pb geochronology of the Pulang complex, Yunnan province, China

    International Nuclear Information System (INIS)

    Pang, Zhenshan; Du, Yangsong; Cao, Yi; Gao, Fuping; Wang, Gongwen; Dong, Qian

    2014-01-01

    The Pulang complex is located tectonically at the southern margin of the Yidun-Zhongdian island arc belt in Yunnan province, China, and is closely related to formation of the Pulang copper deposit, which is the largest copper deposit in Asia. The Pulang complex can be divided into three intrusion stages based on contact relationships and petrological characteristics: (1) a first stage of quartz dioritic porphyry; (2) a second stage of quartz monzonitic porphyry; and (3) a third stage of granodioritic porphyry. The crystallization ages of these intrusion stages were determined by single-zircon U-Pb dating, yielding ages of 221.0 ± 1.0, 211.8 ± 0.5, and 206.3 ± 0.7 Ma for the first, second, and third stages, respectively. These dates, integrated with previous geochronological data and field investigations, indicate that the second-stage quartz monzonitic porphyry has a close spatial and temporal relationship with the large Pulang porphyry copper deposit. These age data, geochemical and Sr-Nd isotopic results suggest that the Pulang complex formed in the Indo-Chinese epoch (257∼ 205 Ma) by multiphase intrusion of a mixture of mantle- and crust-derived magmas. (author)

  8. Rhenium

    Science.gov (United States)

    John, David A.; Seal, Robert R.; Polyak, Désirée E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Rhenium is one of the rarest elements in Earth’s continental crust; its estimated average crustal abundance is less than 1 part per billion. Rhenium is a metal that has an extremely high melting point and a heat-stable crystalline structure. More than 80 percent of the rhenium consumed in the world is used in high-temperature superalloys, especially those used to make turbine blades for jet aircraft engines. Rhenium’s other major application is in platinum-rhenium catalysts used in petroleum refining.Rhenium rarely occurs as a native element or as its own sulfide mineral; most rhenium is present as a substitute for molybdenum in molybdenite. Annual world mine production of rhenium is about 50 metric tons. Nearly all primary rhenium production (that is, rhenium produced by mining rather than through recycling) is as a byproduct of copper mining, and about 80 percent of the rhenium obtained through mining is recovered from the flue dust produced during the roasting of molybdenite concentrates from porphyry copper deposits. Molybdenite in porphyry copper deposits can contain hundreds to several thousand grams per metric ton of rhenium, although the estimated rhenium grades of these deposits range from less than 0.1 gram per metric ton to about 0.6 gram per metric ton.Continental-arc porphyry copper-(molybdenum-gold) deposits supply most of the world’s rhenium production and have large inferred rhenium resources. Porphyry copper mines in Chile account for about 55 percent of the world’s mine production of rhenium; rhenium is also recovered from porphyry copper deposits in the United States, Armenia, Kazakhstan, Mexico, Peru, Russia, and Uzbekistan. Sediment-hosted strata-bound copper deposits in Kazakhstan (of the sandstone type) and in Poland (of the reduced-facies, or Kupferschiefer, type) account for most other rhenium produced by mining. These types of deposits also have large amounts of identified rhenium resources. The future supply of rhenium is likely

  9. Integrating Data of ASTER and Landsat-8 OLI (AO for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Tingbin Zhang

    2016-10-01

    Full Text Available One of the most important characteristics of porphyry copper deposits (PCDs is the type and distribution pattern of alteration zones which can be used for screening and recognizing these deposits. Hydrothermal alteration minerals with diagnostic spectral absorption properties in the visible and near-infrared (VNIR through the shortwave infrared (SWIR regions can be identified by multispectral and hyperspectral remote sensing data. Six Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER bands in SWIR have been shown to be effective in the mapping of Al-OH, Fe-OH, Mg-OH group minerals. The five VNIR bands of Landsat-8 (L8 Operational Land Imager (OLI are useful for discriminating ferric iron alteration minerals. In the absence of complete hyperspectral coverage area, an opportunity, however, exists to integrate ASTER and L8-OLI (AO to compensate each other’s shortcomings in covering area for mineral mapping. This study examines the potential of AO data in mineral mapping in an arid area of the Duolong porphyry Cu-Au deposit(Tibetan Plateau in China by using spectral analysis techniques. Results show the following conclusions: (1 Combination of ASTER and L8-OLI data (AO has more mineral information content than either alone; (2 The Duolong PCD alteration zones of phyllic, argillic and propylitic zones are mapped using ASTER SWIR bands and the iron-bearing mineral information is best mapped using AO VNIR bands; (3 The multispectral integration data of AO can provide a compensatory data of ASTER VNIR bands for iron-bearing mineral mapping in the arid and semi-arid areas.

  10. Relationships between mineralization and silicic volcanism in the central Andes

    Science.gov (United States)

    Francis, P. W.; Halls, C.; Baker, M. C. W.

    1983-01-01

    Existing models for the genesis of porphyry copper deposits indicate that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. It is noted that sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit is thought to be an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile indicates that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano. The dome of La Soufriere, Guadeloupe is offered as a modern analog for the surface expression of subvolcanic mineralization processes, with the phreatic eruptions there indicating the formation of hydrothermal breccia bodies in depths. It is pointed out that the occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that tin intrusions and mineralization are not genetically related to the subcaldera pluton, but may be a consequence of the long thermal histories (1-10 million years) of the lowermost parts of large plutons.

  11. Accumulated phenocrysts and origin of feldspar porphyry in the Chanho area, western Yunnan, China

    Science.gov (United States)

    Xu, Xing-Wang; Jiang, Neng; Yang, Kai; Zhang, Bao-Lin; Liang, Guang-He; Mao, Qian; Li, Jin-Xiang; Du, Shi-Jun; Ma, Yu-Guang; Zhang, Yong; Qin, Ke-Zhang

    2009-12-01

    The No. 1 feldspar porphyry in the Chanho area, western Yunnan, China is characterized by the development of deformed glomeroporphyritic aggregates (GA) that contain diagnostic gravity settling textures. These textures include interlocking curved grain boundaries caused by compaction, bent twins, and arch-like structures. The GAs are accumulated phenocrysts (AP) and antecrysts. The unstable textural configurations such as extensive penetrative microfractures that are restricted within the AP and fractured cores of zircon grains, all suggest that the GAs are transported fragments of fractured cumulates that formed in a pre-emplacement magma chamber rather than form in situ at the current intrusion site. Compositions of minerals and melt as represented by different mineral aggregates formed at various stages of the magmatic process and their relations to the composition of porphyry bodies in the Chanho area indicate that the porphyritic melt for the No. 1 feldspar porphyry experienced two stages of melt mixing. Pulses of potassic melt flowed into a pre-emplacement magma chamber and mixed with crystallizing dioritic magma containing phenocrysts resulted in the first hybrid alkaline granitic melt. The mixing caused denser phenocrysts to settle and aggregate to form cumulates. Secondly, new dioritic melt was injected into the magma chamber and was mixed with the previously formed hybrid alkaline granitic melt to produce syenitic melt. Geochron data, including U-Pb age of zircon and 39Ar/ 40Ar age of hornblende and oligoclase phenocrysts, indicate that hornblende and oligoclase phenocrysts, as well as the core of zircon grains, were antecrysts that formed in a number of crystallization events between 36.3 and 32.78 Ma. Gravity settling of phenocrysts took place at about 33.1 to 32.78 Ma and melts with deformed GAs were transported upwards and emplaced into the current site at 32 Ma. Results of this research indicate that the No. 1 feldspar porphyry was a shallow

  12. Telescoped porphyry-style and epithermal veins and alteration at the central Maratoto valley prospect, Hauraki Goldfield, New Zealand

    International Nuclear Information System (INIS)

    Simpson, M.P.; Mauk, J.L.; Kendrick, R.G.

    2004-01-01

    At the central Maratoto valley prospect, southern Coromandel Peninsula, New Zealand, andesite flows and dacite breccias host rare porphyry-style quartz veins that are telescoped by widespread epithermal veins and alteration. Early porphyry-style quartz veins, which lack selvages of porphyry-style alteration, host hypersaline fluid inclusions that contain several translucent daughter crystals, including halite and sylvite. Overprinting epithermal veins and alteration are divided into two stages. Main-stage epithermal alteration and veins are characterised by the successive deposition of pyrite, quartz, and ankerite-dolomite veinlets coupled with intense alteration of the wall rock to quartz, illite, interlayer illite-smectite (≤ 10% smectite), chlorite, pyrite, ankerite, and dolomite. Late-stage epithermal veins and alteration are characterised by the formation of calcite and siderite veinlets, coupled with overprinting of the wall rocks by both these minerals. Multiphase fluid inclusions in a porphyry-style quartz vein formed at temperatures >400 degrees C and trapped hypersaline magmatic fluid. Lower temperature secondary liquid-rich inclusions in the porphyry-style quartz vein homogenise between 283 and 329 degrees C and trapped a dilute fluid with 18 O (VSMOW) values of 13.5-18.1 permille, whereas late-stage epithermal calcite has δ 18 O (VSMOW) values of 3.1-5.1 permille. Calculated isotopic compositions for the fluid in equilibrium with ankerite-dolomite and calcite at 260 degrees C, averages 6 and -3 permille, respectively. The enriched value for main-stage ankerite-dolomite suggests formation from waters that underwent significant water-rock exchange, whereas isotopically lighter water that formed late-stage calcite underwent little water-rock interaction. We propose a three-stage model to explain telescoped veins and alteration styles at the central Maratoto valley prospect area. Porphyry-style quartz veins were the first to form from hot hypersaline

  13. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    Science.gov (United States)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  14. Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc, eastern Tibet

    Science.gov (United States)

    Cao, Kang; Yang, Zhi-Ming; Xu, Ji-Feng; Fu, Bin; Li, Wei-Kai; Sun, Mao-Yu

    2018-04-01

    The giant Pulang porphyry Cu-Au deposit in the Yidun arc, eastern Tibet, formed due to westward subduction of the Garze-Litang oceanic plate in the Late Triassic. The deposit is hosted in an intrusive complex comprising primarily coarse-grained quartz diorite and cored quartz monzonite. Here, we investigate a suite of simultaneous (216.6 ± 1.9 Ma) diorite porphyries within the complex. The diorite porphyries are geochemically similar to mafic magmatic enclaves (MME) hosted in coarse-grained quartz diorite, and both are characterized by low SiO2 (59.4-63.0 wt%) and high total alkali (Na2O + K2O = 7.0-9.2 wt%), K2O (3.5-6.4 wt%), MgO (3.2-5.5 wt%), and compatible trace element (e.g., Cr = 72-149 ppm) concentrations. They are enriched in large-ion lithophile and light rare earth elements (LILE and LREE, respectively), but depleted in high field-strength and heavy rare earth elements (HFSE and HREE, respectively), and yield variably high (La/Yb)N ratios (17-126, average 65) with weak to negligible Eu anomalies. Furthermore, they yield low (87Sr/86Sr)i ratios (0.7054-0.7067), weakly negative εNd(t) (-2.8 to -0.8) values, and variable zircon εHf(t) (-5.4 to +0.8) and δ18O (6.0‰-6.7‰) values. These geochemical features indicate that the diorite porphyry and MME formed through crustal assimilation of a magma produced during low-degree partial melting of metasomatized phlogopite-rich subcontinental lithospheric mantle. In contrast, the coarse-grained quartz diorite and quartz monzonite have relatively high concentrations of SiO2 (61.1-65.3 wt%), K2O (4.1-5.4 wt%), and total alkali (Na2O + K2O = 7.1-8.1 wt%), and low concentrations of MgO (generally Y ratios (50-63) that indicate an adakitic affinity, and are enriched in LILE, depleted in HFSE, and yield lower (La/Yb)N values (13-20, average 17) than the diorite porphyry and MME. They yield low (87Sr/86Sr)i ratios (0.7046-0.7066), negative εNd(t) (-3.3 to -1.7) values, and zircon εHf(t) and δ18O values of -2.9 to

  15. Paleozoic–Mesozoic Porphyry Cu(Mo and Mo(Cu Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review

    Directory of Open Access Journals (Sweden)

    Anita N. Berzina

    2016-11-01

    Full Text Available The southern margin of the Siberian craton hosts numerous Cu(Mo and Mo(Cu porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo and Mo(Cu deposits within the southern margin of the Siberian craton and discusses the igneous processes that controlled the evolution of these magmatic systems related to mineralization. Geochronological data show that these porphyry deposits have an eastward-younging trend evolving from the Early Paleozoic to Middle Mesozoic. The western part of the area (Altay-Sayan segment hosts porphyry Cu and Mo–Cu deposits that generally formed in the Early Paleozoic time, whereas porphyry Cu–Mo deposits in the central part (Northern Mongolia formed in the Late Paleozoic–Early Mesozoic. The geodynamic setting of the region during these mineralizing events is consistent with Early Paleozoic subduction of Paleo-Asian Ocean plate with the continuous accretion of oceanic components to the Siberian continent and Late Paleozoic–Early Mesozoic subduction of the west gulf of the Mongol–Okhotsk Ocean under the Siberian continent. The eastern part of the study area (Eastern Transbaikalia hosts molybdenum-dominated Mo and Mo–Cu porphyry deposits that formed in the Jurassic. The regional geodynamic setting during this mineralizing process is related to the collision of the Siberian and North China–Mongolia continents during the closure of the central part of the Mongol–Okhotsk Ocean in the Jurassic. Available isotopic data show that the magmas related to porphyritic Cu–Mo and Mo–Cu mineralization during the Early Paleozoic and Late Paleozoic–Early Mesozoic were mainly derived from mantle materials. The generation of fertile melts, related to porphyritic Mo and Mo–Cu mineralization during the Jurassic involved variable amounts of metasomatized mantle source component, the

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    These dates, integrated with previous geochronological data and field investigations, indicate that the second-stage quartz monzonitic porphyry has a close spatial and temporal relationship with the large Pulang porphyry copper deposit. These age data, geochemical and Sr–Nd isotopic results suggest that the Pulang ...

  17. Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China

    Science.gov (United States)

    Li, Hongying; Ye, Huishou; Wang, Xiaoxia; Yang, Lei; Wang, Xiuyuan

    2014-01-01

    Jinduicheng deposit is a giant Mesozoic porphyry Mo system deposit in the East Qinling molybdenum belt, Shaanxi Province, China. The mineralization is associated with the I-type Jinduicheng granite porphyry. Both the porphyry stock and country rocks underwent intense hydrothermal alteration. The alteration, with increasing distance from the parent intrusion, changes from silicification, through potassic and phyllic assemblages, carbonation, to propylitic assemblages. Molybdenite, the dominant ore mineral, occurs in veinlets, most of which are hosted by the altered country rocks, with less than 25% of the ore in the porphyry body. The hydrothermal system comprises four stages, including pre-ore quartz and K-feldspar; two ore stages of quartz, K-feldspar, molybdenite, and Pb- And Zn-bearing sulfides; and post-ore quartz and carbonate. Six main types of primary fluid inclusions are present in hydrothermal quartz, including two-phase aqueous, one-phase aqueous, three-phase CO2-bearing, CO2-dominated fluid inclusions, gas inclusions, and melt inclusions. The homogenization temperatures of fluid inclusions range from 210 to 290 °C in the pre-ore stage, 150-310 °C in ore stage I, 150-360 °C in the ore stage II, and 195-325 °C in the post-ore stage quartz. Estimated salinities of the ore-forming fluids range from 6.9 to 13.5, 4.3 to 12.3, 6.2 to 12.4, and 3.4 to 9.9 wt.% NaCl equiv. in stages 1-4, respectively. The δ34S values of pyrite in the two ore stages range from 2.8‰ to 4.3‰, whereas the δ34S values of molybdenite range from 2.9‰ to 6.2‰. The data suggest both magmatic and crustal sources of sulfur. The δD and δ18O values for the hydrothermal fluids are -57.2‰ to -84.4‰ and 8.0‰ to -3.2‰, respectively. The fluid inclusion and stable data indicate that the pre-ore hydrothermal fluids were mostly of magmatic origin, but the fluids responsible for ore deposition were mixed magmatic and meteoric, and eventually meteoric water dominated the system

  18. Mineralized breccia clasts: a window into hidden porphyry-type mineralization underlying the epithermal polymetallic deposit of Cerro de Pasco (Peru)

    Science.gov (United States)

    Rottier, Bertrand; Kouzmanov, Kalin; Casanova, Vincent; Bouvier, Anne-Sophie; Baumgartner, Lukas P.; Wälle, Markus; Fontboté, Lluís

    2018-01-01

    Cerro de Pasco (Peru) is known for its large epithermal polymetallic (Zn-Pb-Ag-Cu-Bi) mineralization emplaced at shallow level, a few hundred meters below the paleo-surface, at the border of a large diatreme-dome complex. Porphyry-style veins crosscutting hornfels and magmatic rock clasts are found in the diatreme breccia and in quartz-monzonite porphyry dikes. Such mineralized veins in clasts allow investigation of high-temperature porphyry-style mineralization developed in the deep portions of magmatic-hydrothermal systems. Quartz in porphyry-style veins contains silicate melt inclusions as well as fluid and solid mineral inclusions. Two types of high-temperature (> 600 °C) quartz-molybdenite-(chalcopyrite)-(pyrite) veins are found in the clasts. Early, thin (1-2 mm), and sinuous HT1 veins are crosscut by slightly thicker (up to 2 cm) and more regular HT2 veins. The HT1 vein quartz hosts CO2- and sulfur-rich high-density vapor inclusions. Two subtypes of the HT1 veins have been defined, based on the nature of mineral inclusions hosted in quartz: (i) HT1bt veins with inclusions of K-feldspar, biotite, rutile, and minor titanite and (ii) HT1px veins with inclusions of actinolite, augite, titanite, apatite, and minor rutile. Using an emplacement depth of the veins of between 2 and 3 km (500 to 800 bar), derived from the diatreme breccia architecture and the supposed erosion preceding the diatreme formation, multiple mineral thermobarometers are applied. The data indicate that HT1 veins were formed at temperatures > 700 °C. HT2 veins host assemblages of polyphase brine inclusions, generally coexisting with low-density vapor-rich inclusions, trapped at temperatures around 600 °C. Rhyolitic silicate melt inclusions found in both HT1 and HT2 veins represent melt droplets transported by the ascending hydrothermal fluids. LA-ICP-MS analyses reveal a chemical evolution coherent with the crystallization of an evolved rhyolitic melt. Quartz from both HT1 and HT2 veins

  19. The preliminary result of the δ65Cu and δ34S values of major ore minerals in the Erdenetiin-Ovoo Cu-Mo porphyry deposit, Northern Mongolia

    Science.gov (United States)

    KIM, Y.; Lee, I.; Oyungerel, S.; Jargal, L.; Tsedenbal, T.; Ryu, J. S.

    2016-12-01

    The copper isotope (δ65Cu) and sulfur isotope (δ34S) compositions of major ore minerals from the Erdenetiin-Ovoo Cu-Mo porphyry deposit were measured to trace sources of copper and sulfur, and to evaluate the precipitation environment of ore minerals. The major ore minerals are pyrite, chalcopyrite, molybdenite and chalcocite developed in the QSP (Quartz-Sericite-Pyrite) alteration zone. The sulfide minerals such as sphalerite and covellite, and carbonate ore minerals like malachite, azurite are also identified. The copper isotope ratios (65Cu/63Cu) of copper ore minerals (chalcopyrite, chalcocite, malachite, azurite, covellite and chrysocolla) were analyzed by the MC-ICPMS in KBSI located in Ochang, South Korea. The measured δ65Cu values relative to NIST 976 range from -1.01 ‰ to 5.76 ‰. The average δ65Cu values of sulfide minerals such as chalcopyrite (1.03 ‰), chalcocite (0.62 ‰) and covellite (0.51 ‰) seem to be relatively lower than those of carbonate and silicate Cu minerals such as malachite (0.24 ‰), azurite (2.17 ‰) and chrysocolla (5.76 ‰). The sulfur isotope ratios (34S/32S) of major sulfide minerals were measured by EA-CF-IRMS (Elemental Analyzer - Continuous Flow - Isotope Ratio Mass Spectrometer) in NCIRF, Seoul National University. The average δ34SV-CDT value is -1.1 ‰ indicating the magmatic signature of sulfur. There is the difference of δ34S values between sulfide minerals. While the δ34S values of pyrite, chalcopyrite and molybdenite range from -0.9 to 0.8 ‰, the δ34S values of chalcocite range from -2.6 ‰ to -1.4 ‰. These lower values might be attributed to the sulfur isotope fractionation during its precipitation.

  20. Fault Control on Copper Depositsin the Sar Cheshmeh Area Indicated by Remote Sensing & Geographic Information Systems (GIS

    Directory of Open Access Journals (Sweden)

    Hojjat Ollah Safari

    2016-07-01

    Full Text Available Introduction The Sar Cheshmeh copper deposit and indications of other deposits are located in the Dehaj-Sarduieh belt in the Kerman region (Khadem and Nedimovic, 1973. This belt is one of the most important provinces of Cu mineralization in Iran, with approximately 300 Cu deposits and prospects, includingtwenty of the porphyry copper type (Ghorbani, 2013. This belt, 300 km in length and 30–45 km width, is situated in the southern part of the Uramia-Dokhtar volcanic belt in central Iran (Shafiei, 2010. Zarasvandi (2004 has proposed that faulting has played a role in the location of copper deposition in this area. Methods of Investigation In order to check Zarasvandi’s hypothesis, the spatial relationship between faults and Cu deposits was investigated using remote sensing and GIS techniques together with field investigations in the Sar Cheshmeh area. The the following steps were used in this research: 1. Review of available data 2. Surface geology field studies 3. Preparation of digital overlay of Copper occurrences 4. Analysis of the relationshipof faulting to Copper occurrences Using remote sensing techniques, a geometrically corrected satellite image was filtered with high pass and Sharpen Edge filters to detect possible lineaments (Lillesand and Keifer, 2008; Sabins, 1996. Directional filters (45º, 90º, 135º and 180º were then applied to the processed image to enhance the linear structures. Subsequently,the major lineaments were documented in the field as major and minor faults (Safari et al., 2011. Four main faults, designated as the Rafsanjan, Mani, Gaud-e-Ahmar and Sar Cheshmeh faultswere determined to be major. These faults were digitized and overlaid on other data layers in GIS environment. The strikes, dips, striae and directions of movementof the faultswere measured at 20 locations in the field. Structural analyses were done with Rose diagrams, calculation of P-axes and preparation of a structural map. Copper occurrences on the

  1. Lead sulfate nano- and microparticles in the acid plant blow-down generated at the sulfuric acid plant of the El Teniente mine, Chile.

    Science.gov (United States)

    Barassi, Giancarlo M; Klimsa, Martin; Borrmann, Thomas; Cairns, Mathew J; Kinkel, Joachim; Valenzuela, Fernando

    2014-12-01

    The acid plant 'blow-down' (also called weak acid) produced at El Teniente mine in Chile was characterized. This liquid waste (tailing) is generated during the cooling and cleaning of the smelter gas prior to the production of sulfuric acid. The weak acid was composed of a liquid and a solid phase (suspended solids). The liquid phase of the sample analyzed in this study mainly contained Cu (562 mg L(-1)), SO4(2-) (32 800 mg L(-1)), Ca (1449 mg L(-1)), Fe (185 mg L(-1)), As (6 mg L(-1)), K (467 mg L(-1)) and Al (113 mg L(-1)). Additionally, the sample had a pH-value and total acidity of 0.45 and 2970 mg L(-1) as CaCO3, respectively. Hence, this waste was classified as extremely acidic and with a high metal content following the Ficklin diagram classification. Elemental analysis using atomic absorption, inductively coupled plasma, X-ray diffraction and electron microscopy showed that the suspended solids were anglesite (PbSO4) nano- and microparticles ranging from 50 nm to 500 nm in diameter.

  2. Zircon U-Pb and molybdenite Re-Os geochronology and geological significance of the Baoshan porphyry Cu polymetallic deposit in Jiangxi province

    Science.gov (United States)

    Jia, Liqiong; Wang, Liang

    2017-10-01

    Baoshan porphyry Cu polymetallic deposit belongs to Jiujiang-Ruichang Cu-Au ore field, which is a component part of the Middle-Lower Yangtze River Cu-Au metallogenic belt. The U-Pb LA-MC-TCP MS dating of the zircons from Baoshan granodiorite porphyry yields an age of 147.81±0.48Ma (MSWD=1.07). Six molybdenite samples separated from Baoshan deposit are used for Re-Os dating and obtained the weighted average age of 147.42±0.84Ma and an isochron age of 147.7±1.2Ma. These ages suggest that the mineralization in the Baoshan deposit is genetically associated to the granodiorite porphyry, and the process of rock-and ore-forming is continuous. These data indicate that ages of intrusion and ore-body from Baoshan deposit are almost identical to other typical magmatic intrusion and deposits in Jiujiang-Ruichang metallogenic district. Tt is inferred that the Baoshan deposit was formed in the transition from EW-striking Tndosinian tectonic domain to NE-striking Paleo-Pacific tectonic domain.

  3. Mineralization and geophysical exploration by IP/RS and ground magnetic survey in MA-I and surrounding area, Maherabad porphyry Cu-Au prospect area, east of Iran

    OpenAIRE

    Azadeh Malekzadeh Shafaroudi; Mohammad Reza Hidarian Shahri; Mohammad Hassan Karimpour

    2009-01-01

    Maherabad prospect area, which is studied in detail, is the first porphyry Cu-Au mineralization in the east of Iran. Based on relation of mineralization with subvolcanic intrusive bodies mostly monzonitic with porphyry texture, extent and types of alteration including potassic, sericitic- potassic, quartz- sericite- carbonate- pyrite, quartz- carbonate- pyrite, silicification- propylitic, propylitic, stockwork mineralization, assemblages hypogene mineralization including pyrite, chalcopyrite,...

  4. Recirculation effect of Chilean copper smelting dust with high impurities contents on the impurity distributions during smelting process; Efecto de la recirculacion de polvo de fundicion de cobre de Chile con altos contenidos de impurezas en la distribucion de impurezas durante el proceso de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Montenegro, V.; Sano, H.; Fujisawa, T.

    2010-07-01

    Usually, dust generated during the copper smelting process by the Teniente Converter and the Flash Smelting Furnaces in Chile, contains high concentrations of copper, zinc, arsenic, antimony and other metals. In general, the dust is recirculated to the smelting process or it is directed to hydrometallurgical process for recovery and stabilization. However, in recent years the generation of dust has increased because of the degradation of the quality of the concentrate. In addition, the environmental regulations have become stricter. It is therefore desirable to understand the behavior of those elements, when the smelting process operates with recirculation of dust. In this study, the effect of dust recirculation to smelting process on the distribution among the matte, slag and gas phases was evaluated, as a function of matte grade, amount of recirculated dust, oxygen enrichment and temperature. It was found that the concentration in the matte of the impurities such as arsenic, antimony and bismuth, increased slightly with recirculation of dust. On the other hand, the concentration of lead and zinc depend of the direct recirculation of dust to the process. Additionally, it was found that high concentrations of arsenic and antimony in the dust may lead to the formation and precipitation of copper arsenates and other metals (speiss), which may generates important operational problems. (Author) 15 refs.

  5. Gold in primary high thermal transformations of the Au porphyry deposit Biely vrch

    International Nuclear Information System (INIS)

    Kozak, J.; Kodera, P.; Lexa, J.; Chovan, M.

    2014-01-01

    Porphyry gold deposit Biely vrch is situated in northern part of the Javorie stratovolcano in eastern part of Central Slovakia Volcanic Field. Intrusion of diorite to andesite porphyry with andesites is affected by hydrothermal alterations with dominant intermediate argillic alteration. Accumulations of gold are spatially associated with stockwork, formed by different types of quartz veinlets. Gold grains occur in altered rocks in the vicinity of quartz veinlets and rarely also as inclusions in vein. Analysed gold grains are chemically very homogenous and have fineness between 87 to 99.50 wt % Au while silver is the only significant element in addition to gold. In deeper parts of the deposit gold also occurs associated with K and Ca-Na silicate alteration which confirms precipitation of gold already in early stages of the hydrothermal system from high salinity Fe-K rich salt melt based on analyses of corresponding fluid inclusions. Difference in the fineness of gold is not significant between primary and secondary hydrothermal alterations. The highest fineness of gold (more than 99 wt %) in advanced argillic alteration is probably caused by remobilisation by acidic hydrothermal fluids. (authors)

  6. Hydrothermal Evolution of the Giant Cenozoic Kadjaran porphyry Cu-Mo deposit, Tethyan metallogenic belt, Armenia, Lesser Caucasus: mineral paragenetic, cathodoluminescence and fluid inclusion constraints

    Science.gov (United States)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik; Rezeau, Hervé

    2016-04-01

    The Lesser Caucasus belongs to the Central segment of the Tethyan metallogenic belt and it is a key area to understand the metallogenic evolution between the Western & Central parts of the Tethyan belt and its extension into Iran. Zangezur is the most important mineral district in the southernmost Lesser Caucasus. It is a component of the South Armenian block, and it was generated during the convergence and collision of the southern margin of the Eurasian plate and the northern margin of the Arabian plate, and terranes of Gondwana origin (Moritz et al., in press). The Zangezur ore district consists of the Tertiary Meghri-Ordubad composite pluton, which is characterized by a long-lasting Eocene to Pliocene magmatic, tectonic and metallogenic evolution. It hosts major porphyries Cu-Mo and epithermal Au - polymetallic deposits and occurrences, including the giant world class Kadjaran porphyry Cu-Mo deposit (2244 Mt reserves, 0.3% Cu, 0.05% Mo and 0.02 g/t Au). The Kadjaran deposit is hosted by a monzonite intrusion (31.83±0.02Ma; Moritz et al., in press). Detailed field studies of the porphyry stockwork and veins of the different mineralization stages, their crosscutting and displacement relationships and the age relationship between different paragenetic mineral associations were the criteria for distinction of the main stages of porphyry mineralization at the Kadjaran deposit. The economic stages being: quartz- molybdenite, quartz-molybdenite-chalcopyrite, and quartz-chalcopyrite. The main paragenetic association of the Kadjaran porphyry deposit includes pyrite, molybdenite, chalcopyrite, bornite, chalcocite, pyrrhotite, covellite, sphalerite, and galena. Recent field observations in the Kadjaran open pit revealed the presence of epithermal veins with late vuggy silica and advanced argillic alteration in the north-eastern and eastern parts of the deposit. They are distributed as separate veins and have also been recognized in re-opened porphyry veins and in

  7. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    Science.gov (United States)

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  8. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Mao, Qigui; Yu, Mingjie; Xiao, Wenjiao; Windley, Brian F.; Li, Yuechen; Wei, Xiaofeng; Zhu, Jiangjian; Lü, Xiaoqiang

    2018-03-01

    The geodynamic control of mineralization in the accretionary evolution of the Central Asian Orogenic Belt (CAOB) has long been controversial. Here we report new field, geochemical and geochronological data on recently defined porphyry and skarn-type ore deposits (Devonian-Early Carboniferous) in the Kalatage area in the middle of the Harlik-Dananhu arc, Eastern Tianshan, NW China in the southern CAOB, with the aim of better understanding the accretionary tectonics and genesis of porphyry and skarn-type mineralization. The Yudai porphyry Cu-(Au) deposits and the Xierqu skarn Cu-Fe-(Au) deposits are closely associated with Middle Devonian adakitic diorite porphyries (382-390 Ma), which are calc-alkaline and characterized by high Na2O/K2O ratios and Sr contents (310-1020 ppm), strong depletion of HREE (e.g., Yb = 0.80-1.44 ppm) and Y (7.68-14.50 ppm), and all enriched in Rb, Sr, Ba, K and depleted in Nb and Ti. They are characterized by distinctive Eu positive anomalies, high Na2O contents and MORB-like Sr and Nd isotope signatures (high εNd(t) = +6.1 to +7.0 and low (87Sr/86Sr)i = 0.70412-0.70462). These adakites most likely formed by melting of a young/hot subducted oceanic slab, and adakites in general are important carriers of porphyry Cu ± (Au) deposits. Early Carboniferous adakites in the Tuwu area south of Kalatage are known to have similar features. Therefore, skarn-mineralized porphyry adakites get younger from north to south, suggesting southward migration of the Harlik-Dananhu arc from 390 Ma to 322 Ma. These data indicate that partial melting of hot (and/or young) oceanic crustal slabs were an important mechanism of accretionary crustal growth and mineralization in the southern CAOB.

  9. Investigation of Regional Fractures and Cu Mineralization Relationships in the Khezrabad and Shahr-e-Babak Area: Using Fry and Fractal analysis

    Directory of Open Access Journals (Sweden)

    Alireza Zarasvandi

    2015-10-01

    Full Text Available Introduction Two main principal aspects for the genesis of porphyry copper deposits have been determined. The first genetic model concerns the petrologic and geochemical processes and the other relates the genesis to crustal deformation and geodynamic conditions (Kesler, 1997. Recent studies (e.g., Padilla Garza et al., 2001 show that the generation and emplacement of porphyry copper deposits may not only be dependent on magmatic and hydrothermal processes, but also that the regional and local tectonic setting plays an important role. Therefore in determining the suitable setting for emplacement of copper and other porphyry intrusions, determination of location of partial melting of the lower crust, generation of batholiths, and their volatile-rich derivative intrusions in the crust seems to be necessary (Carranza and Hale, 2002. Almost all porphyry copper deposits in Iran are located in the Urumieh-Dokhtar magmatic belt. These deposits show distinct spatial and temporal relationship with Miocene granodiorite plutonic rocks emplaced along strike slip faults (Mehrabi et al., 2005. Accordingly, the tectonic setting of ore deposits seem to be the most important factor for regional exploration of porphyry copper systems (Vearncombe and Vearncombe, 1999. There are several methods for analysis of distribution of ore deposits. In this research the role of structural control in the spatial distribution of porphyry deposits has been studied using Fry and Fractal methods. Here, the Fry method is used as a complementary method for Fractal analysis. Materials and methods Fry analysis is a self-adaptive method that is used for point objects. Fry analysis offers a visual approach to quantify the spatial trends in groups of point objects. Fry analysis can also be used to search for anisotropies in the distribution of point objects. More specifically it can be used to investigate whether a distribution of point objects occurs along linear trends, and whether

  10. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China

    Science.gov (United States)

    Kun-Feng Qiu,; Taylor, Ryan D.; Yao-Hui Song,; Hao-Cheng Yu,; Kai-Rui Song,; Nan Li,

    2016-01-01

    Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in

  11. Porphyry, To Gaurus, On how embryos are ensouled afonasin@gmail.com An introduction, translation from the Greek into Russian and notes

    Directory of Open Access Journals (Sweden)

    Eugene Afonasin

    2013-01-01

    Full Text Available In this small treatise the Neoplatonic philosopher Porphyry (c. 234–305 addresses the question, problematic to every Platonic philosopher, this of agency of the preexistent human soul. Are the embryos already in possession of the self-moving descended souls and thus already living beings? In order to answer the question Porphyry first tries to show that embryos are not actually animals and thus can more properly be compared with plants. The second set of arguments is aimed to show that they are not animals even potentially. Finally Porphyry argues that, regardless the time of its entry, the self-moving soul comes from outside, not from the parents. The final chapter of the treatise is unfortunately not preserved, but the answer given by the philosopher is clear: a particular soul enters an appropriate body immediately after its birth and harmonically attuned to it for the rest of the bodily life. The translation is prepared on the basis of a new commented edition by T. Dorandi (Brisson et al. 2012. An extensive commentary that accompanies the translation helps to situate the treatise in the context of ancient medical and philosophical literature.

  12. Molybdenum mineralization related to the Yangtze's lower crust and differentiation in the Dabie Orogen: Evidence from the geochemical features of the Yaochong porphyry Mo deposit

    Science.gov (United States)

    Liu, Qing-Quan; Li, Bin; Shao, Yong-Jun; Lu, An-Huai; Lai, Jian-Qing; Li, Yong-Feng; Luo, Zheng-Zhuan

    2017-06-01

    The Dabie Orogen is a world-class case for large amounts of Mo mineralization in that it contains at least 10 porphyry Mo deposits with Mo metal reserves over 3 Mt from the time period of 156-110 Ma. However, the principal mechanism for the Mo mineralization remains controversial due to the lack of a precise definition of its source and shallow ore-forming process, which is essential to understand these rare large Mo deposits. Detailed geochronology, geochemistry, and isotopic data for ore-related granites and minerals were analyzed in order to place constraints on the massive Mo mineralization in the Dabie Orogen in eastern China. The Yaochong molybdenum orebodies were hosted in the transition belt and alteration zone between the granitic stocks and the Dabie Complex and were characterized as numerous veinlets with potassic, phyllic and propylitic alterations. The buried Yaochong granitic intrusions and associated molybdenum mineralization yield Early Cretaceous ages of magmatic activities at ca. 138 Ma and extremely similar Re-Os isotope ages for the corresponding Mo metallogenic event at ca. 137 Ma. The Yaochong monzogranite and granite porphyry belong to the highly fractionated I-type granites, which are believed to be derived from the dominantly Yangtze's lower crust mixed with the Northern Dabie Complex due to their geochemical and isotope features. The elemental diversity and isotopic homogeneity suggest that the formation of the Yaochong monzogranite involved the fractionation of biotite, garnet and minor feldspar and accessory minerals combined with a weak crustal assimilation process. In contrast, the granite porphyry was possibly generated by the partial melting of the same mixed lower continental crust via the differentiation process involving the fractionation of feldspar, apatite, and/or titanite. Fractional crystallization processes can significantly elevate the molybdenum concentration in the residual melts. The biotite fractional crystallization

  13. Noble Gas Isotope Evidence for Mantle Volatiles in the Cu-Mo Porphyry and Main Stage Polymetallic Veins at Butte, Montana

    Science.gov (United States)

    Hofstra, A. H.; Rusk, B. G.; Manning, A. H.; Hunt, A. G.; Landis, G. P.

    2017-12-01

    Recent studies suggest that volatiles released from mafic intrusions may be important sources of heat, sulfur, and metals in porphyry Cu-Mo-Au and epithermal Au-Ag deposits associated with intermediate to silicic stocks. The huge Cu-Mo porphyry and Main Stage polymetallic vein deposits at Butte are well suited to test this hypothesis because there is no geologic or isotopic evidence of basaltic intrusions in the mine or drill holes. The Butte porphyry-vein system is associated with quartz monzonite stocks and dikes within the southwest part of the Late Cretaceous Boulder batholith. The Boulder batholith was emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and Late Cretaceous volcanic rocks. The Boulder batholith and Butte intrusions have Sri and eNd values indicative of crustal contamination. Eu and Ce anomalies in zircon from Butte intrusions provide evidence of oxidation due to magma degassing. To ascertain the source of volatiles in this system, 11 samples from the Cu-Mo porphyry and 16 from Main Stage veins were selected. The isotopic composition of Ar, Ne, and He extracted from fluid inclusions in quartz, magnetite, pyrite, chalcopyrite, sphalerite, galena, enargite, and covellite were determined. Helium isotopes exceed blank levels in all samples and Ne and Ar in some samples. On a 38Ar/36Ar vs. 40Ar/36Ar diagram, data plot near air. On a 20Ne/22Ne vs. 21Ne/22Ne diagram, data extend from air along the trajectories of OIB and MORB. On a 36Ar/4He vs. 3He/4He RA diagram, data extend from crust toward the air-mantle mixing line. The maximum 3He/4He RA values in the Cu-Mo porphyry (2.86) and Main Stage veins (3.46) are from pyrite and these values correspond to 36 and 43 % mantle helium. The Ne and He results show that fluid inclusions contain volatiles discharged from mantle magmas and that these volatiles were diluted by groundwater containing He derived from country rocks. Despite the lack of mafic intrusions in the Butte magmatic center, noble gas

  14. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting

    Science.gov (United States)

    Mao, Jingwen; Xiong, Bikang; Liu, Jun; Pirajno, Franco; Cheng, Yanbo; Ye, Huishou; Song, Shiwei; Dai, Pan

    2017-08-01

    The Yangchuling W-Mo deposit, located in the Jiangnan porphyry-skarn (JNB) tungsten ore belt, is the first recognized typical porphyry W-Mo deposit in China in the 1980's. Stockworks and disseminated W-Mo mineralization occur in the roof pendant of a 0.3 km2 monzogranitic porphyry stock that intruded into a granodiorite stock, hosted by Neoproterozoic phyllite and slate. LA-ICPMS zircon U-Pb analyses suggest that of the monzogranitic porphyry and granodiorite were formed at 143.8 ± 0.5 Ma and 149.8 ± 0.6 Ma, respectively. Six molybdenite samples yielded a Re-Os weighted mean age of 146.4 ± 1.0 Ma. Geochemical data show that both granodiorite and monzogranitic porphyry are characterized by enrichment of large ion lithophile elements (LILE) relative to high field strength elements (HFSE), indicating a peraluminous nature (A/CNK = 1.01-1.08). Two granitoids are characterized by a negative slope with significant light REE/heavy REE fractionation [(La/Yb)N = 8.38-23.20] and negative Eu anomalies (Eu/Eu* = 0.69-0.76). The P2O5 contents of the Yangchuling granitoids range from 0.12% to 0.17% and exhibit a negative correlation with SiO2, reflecting that they are highly fractionated I-type. They have high initial 87Sr/86Sr ratios (0.7104-0.7116), low negative εNd(t) (- 5.05 to - 5.67), and homogeneous εHf(t) between - 1.39 and - 2.17, indicating similar sources. Additionally, two-stage Nd model ages (TDM2) of 1.3-1.4 Ga and two-stage Hf model ages (TDM2) of 1.2-1.3 Ga are consistent, indicating that Neoproterozoic crustal rocks of the Shuangqiaoshan Group could have contributed to form the Yangchuling magmas. Considering the two groups of parallel Late Mesozoic ore belts, namely the Jiangnan porphyry-skarn tungsten belt (JNB) in the south and the Middle-Lower Yangtze River porphyry-skarn Cu-Au-Mo-Fe ore belt (YRB) in the north, the Nanling granite-related W-Sn ore belt (NLB) in the south, the neighboring Qin-Hang porphyry-skarn Cu-Mo-hydrothermal Pb-Zn-Ag ore belt (QHB

  15. Mineral and energy resource assessment maps of the Mount Katmai, Naknek, and western Afognak quadrangles, Alaska

    Science.gov (United States)

    Church, S.E.; Riehle, J.R.; Magoon, L.B.; Campbell, D.L.

    1992-01-01

    On the basis of new geologic mapping and exploration geochemical studies, we have provided a mineral and energy resource assessment of the Mount Katmai, Naknek, and western Afognak quadrangles, Alaska. We delineate four tracts of ground that have metallic mineral resources. The mineral deposit types considered in each tract are summarized in table 4. Estimates of the number of undiscovered mineral deposits have been made for porphyry copper and polymetallic vein deposits. We estimate that one undiscovered porphyry copper deposit is present in the Katmai study area at the ten percent probability level. Although the sampling density may be too low to give an accurate estimate of the number of undiscovered polymetallic vein deposits, we suggest that, at a minimum, there is a five percent probability for five or more undiscovered polymetallic vein deposits in the Katmai study area. In addition, several areas have potential for undiscovered porphyry molybdenum, massive sulfide, and epithermal gold and mercury deposits.

  16. Mineralogy of Copper-Gold Deposit, Masjid Daghi Area, Jolfa, IRAN

    Science.gov (United States)

    Zenoozi, Roya

    2010-05-01

    potassic, phillic, argillic and prophylitic in the area and silicious alteration near the mineralized veins, indicate probable existence of porphyry copper ore and imply epithermal gold in the Jolfa area, north west of Iran. Key words: Masjid Dagi, Alteration, Pyrite, Sulfide, Mineralography, Stock work.

  17. Isotopic clues to magmatic source regions for neogene Andean volcanic rocks in the El Teniente area near 38oS latitude

    International Nuclear Information System (INIS)

    Kay, Suzanne Mahlburg; Kurtz, A.C

    2001-01-01

    The origin of isotopic variations in Central Andean arc lavas is a long-standing problem that involves identifying mantle and crustal source regions. Advances have come from analyzing temporal and spatial variations in constrained tectonic settings. The purpose here is to highlight the similarities of temporal variations in an east-west transect of Neogene magmatic units near 34 O S latitude with those from a south-north transect along the modern Southern Volcanic Zone (SVZ, e.g. Hildreth and Moorbath 1988, Tormey et al. 1991). The comparison shows the importance of crustal thickening processes associated with compressional shortening and of lithospheric scale adjustments associated with eastward migration of the arc front on magma sources. Sr, Nd and Pb isotopic analyses of 27 Neogene volcanic and plutonic samples from the El Teniente area are presented in Table 1 and plotted along with some analyses from Skewes and Stern (1994) and Stern and Skewes (1995) in Figure 2. The data show a clear progression from older samples with more 'depleted' isotopic signatures (lower 87 Sr/ 86 Sr and Pb isotopic ratios, higher εNd) to younger samples with more 'enriched' signatures (higher 87 Sr/ 86 Sr and Pb isotopic ratios, lower εNd). In detail, four temporal and spatial groups marked by discontinuities in isotopic trends can be defined. Within each group, εNd tends to decrease and 87 Sr/ 86 Sr ratios to increase with SiO2 concentration (au)

  18. Re-Os dating on pyrite and metal sources tracing in porphyry-type and neutral epithermal deposits: example of the Bolcana, Troita and Magura deposits, Apuseni Mountains, Romania

    International Nuclear Information System (INIS)

    Cardon, Olivier

    2007-01-01

    Many porphyry-type (Cu-Au) and neutral epithermal (Pb-Zn and Au ± Ag) ore deposits are encountered in the region of the Apuseni Mountains, located at the foot of the Carpathian chain in the Western Romania. These deposits are related to a Neogene andesitic volcanism. In order to demonstrate possible genetic relationships between the porphyry-type and neutral epithermal deposits, the Bolcana porphyry has been investigated since it is surrounded by a number of epithermal low-sulfidation veins with a Pb-Zn ± Au mineralisation. These veins are currently mined at the Troita and Magura sites. A structural analysis and a 3D modelling pf these deposits indicate that the geometry and orientation of fractures and mineralized vein are consistent both with direction of regional extension and with a NW-SE progression of the different andesitic intrusions. In order to establish precisely the temporal relationship between the different ore deposits, a Re-Os dating method has been developed and applied on pyrite which is ubiquitous in all of the deposits. This method enabled us to assign an age of 10.9 ± 1.9 Ma for the porphyry-hosted mineralization. The ages obtained for the epithermal systems are somewhat approximative as perturbations of the Re-Os system are observed for these environments. A fractionation of rhenium responsible for a significant enrichment in this element for the apical zone of the porphyry has been demonstrated. This enrichment is most probably related to a maximum boiling event, which may also explain a similar enrichment in arsenic for the pyrite in the same zone. The sources for the metals have been characterized at the district scale by combining two isotopic systems (Re-Os and Pb-Pb) on both pyrite and galena. The osmium data indicate that the Troita deposit has composition which is similar to that of the Bolcana porphyry. In contrast the results obtained for the Magura deposits indicate the Re-OS system has in this case been perturbed due to a

  19. Determination of the resident time distribution (RTD) in copper concentrate drying plants using radioactive tracers

    International Nuclear Information System (INIS)

    Diaz V, Francisco J.; Duran P, Oscar U.; Hernandez A, Fernando A.

    1996-01-01

    This paper is a study on the drying process of copper concentrate, on two fluidized bed dryers at Fundicion Caletones, Division El Teniente, Codelco-Chile. The problem was investigated by experimental determination of the resident Time Distribution (RTD) for the material to be dry and by an analysis of the influence of the grain size in the drying process. The stimulus-response technique was used in the experiments, where the stimulation was a pulse of an adequate radioactive tracer injected at the dryer's input. Under these conditions, the response obtained at the dryer's outputs, i.e., the concentration variation curve as a function of time, represents directly the RTD of the system between the injection and measuring points. The tracer used was the same material to be dried, and it was irradiated with neutrons in the nuclear reactor at La Reina Nuclear Centre, thus producing a solid gamma radiation emitter tracer of identical behaviour as the material under study. The approximate activity of each sample was equivalent to 8 mCi of Cu-64 at the time of the injection and the measurement of the tracer was made on-line using NaI(Tl) gamma radiation detectors. The results obtained showed average times less than the estimated and would indicate a fast drying using minimum volume in the dryer. The drying of the fine particles was three times faster than the coarse ones. (author)

  20. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance

    Science.gov (United States)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Wu, Xin-Li; Ouyang, Hen-Gen

    2015-05-01

    The southern Great Xing'an Range (SGXR), located in the southeastern part of Inner Mongolia, China, shows intense Mesozoic tectono-magmatic activity and hosts economically important polymetallic (Cu-Pb-Zn-Sn-Fe-Ag-Au-Mo) mineralization. Here, we present new zircon U-Pb ages, whole-rock geochemical data, Nd-Sr-Hf isotopic data and Re-Os ages for the Taibudai deposit in the SGXR. The Taibudai granitoids show high SiO2 (70.62-72.13 wt.%) and alkali (Na2O + K2O = 7.04-8.60 wt.%) concentrations, low MgO (0.89-1.37 wt.%) and Al2O3 (∼14 wt.%), ASI ratios molybdenite from the deposit yield an ore-forming age of 137.1 ± 1.4 Ma. Re contents range from 4.37 to 41.77 ppm, implying ore material components have a mixed crust-mantle origin. SHRIMP analysis of zircons show that the monzogranitic porphyry and biotite granite in the Taibudai deposit were formed at 137.0 ± 0.9 Ma and 138.3 ± 0.9 Ma, respectively, indicating a temporal link between granitic magmatism and Cu mineralization. This result, combined with the regional geology, tectonic evolution, and age data from the literature, suggests that the Early Cretaceous (∼140 Ma) was the peak metallogenic epoch for the Great Xing'an Range, and the mineralization in this period generally takes the form of porphyry, skarn, or hydrothermal polymetallic ore deposits in an active extensional continental margin environment. The Taibudai porphyry and associated mineralization provides a typical example of magmatism and metallogeny associated with a Paleo-Pacific plate subduction, continental margin, back-arc extensional setting.

  1. Age and tectonomagmatic setting of the Eocene Çöpler-Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey

    Science.gov (United States)

    İmer, Ali; Richards, Jeremy P.; Creaser, Robert A.

    2013-06-01

    The Çöpler epithermal Au deposit and related subeconomic porphyry Cu-Au deposit is hosted by the middle Eocene Çöpler-Kabataş magmatic complex in central eastern Anatolia. The intrusive rocks of the complex were emplaced into Late Paleozoic-Mesozoic metamorphosed sedimentary basement rocks near the northeastern margin of the Tauride-Anatolide Block. Igneous biotite from two samples of the magmatic complex yielded 40Ar/39Ar plateau ages of 43.75 ± 0.26 Ma and 44.19 ± 0.23, whereas igneous hornblende from a third sample yielded a plateau age of 44.13 ± 0.38. These ages closely overlap with 40Ar/39Ar ages of hydrothermal sericite (44.44 ± 0.28 Ma) and biotite (43.84 ± 0.26 Ma), and Re-Os ages from two molybdenite samples (44.6 ± 0.2 and 43.9 ± 0.2 Ma) suggesting a short-lived (history at Çöpler. No suitable minerals were found that could be used to date the epithermal system, but it is inferred to be close in age to the precursor porphyry system. The Çöpler-Kabataş intrusive rocks show I-type calc-alkaline affinities. Their normalized trace element patterns show enrichments in large ion lithophile and light rare earth elements and relative depletions in middle and heavy rare earth elements, resembling magmas generated in convergent margins. However, given its distance from the coeval Eocene Maden-Helete volcanic arc, the complex is interpreted to be formed in a back-arc setting, in response to Paleocene slab roll-back and upper-plate extension. The tectonomagmatic environment of porphyry-epithermal mineralization at Çöpler is comparable to some other isolated back-arc porphyry systems such as Bajo de la Alumbrera (Argentina) or Bingham Canyon (USA).

  2. Application of plurigaussian simulation to delineate the layout of alteration domains in Sungun copper deposit

    Science.gov (United States)

    Talebi, Hassan; Asghari, Omid; Emery, Xavier

    2013-12-01

    An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.

  3. Magmatic-hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu-Mo porphyry system, SW Washington, USA

    Science.gov (United States)

    Iveson, Alexander A.; Webster, James D.; Rowe, Michael C.; Neill, Owen K.

    2016-03-01

    The halogen-bearing minerals tourmaline, amphibole, and biotite formed during magmatic-hydrothermal processes associated with the late-stage cooling of the Spirit Lake granitoid pluton (Mt. St. Helens, WA) and with the younger sulphide-mineralised rocks of the Margaret Cu-Mo porphyry deposit located entirely within the pluton. Major- and trace-element discrimination suggests that one tourmaline population crystallised from fractionated late-stage melt pockets in granodiorite-monzogranitic dykes of the pluton. These coarse, euhedral, oscillatory, and complexly sector-zoned uvite tourmalines span a limited range in Mg/(Mg + Fe) [Mg#] space (0.4-0.7 apfu) and show the highest Ti, Ca, F, Nb, and Ta contents, and low X-site vacancies (X-site vacancies (>0.6 apfu), lower Ca and F contents, and the highest Li, As, and HREE contents (>80 ppm Li, >1200 ppm As). This population appears to record direct, rapid crystallisation from magmatic ± meteoric fluid(s) bearing the signature of the breakdown of primary feldspars and pyroxenes, with fluid exsolution from fractionated melt patches likely triggered by the formation of the previous generation of tourmaline. Mineralised porphyry deposit tourmaline compositions from the stockwork span a much larger range in Mg# space (0.05-0.9 apfu) and are almost entirely Ca-free. X-sites of these schorl tourmalines are dominated by Na or vacancies, and the Y-sites are strongly Fe enriched. The highest Mn and Zn concentrations (>4000 and >1000 ppm, respectively) potentially reflect the composition of mineralising fluids during ore deposition. A number of boron isotopic analyses yield predominantly heavy boron, but δ11B values range from -5.2 to 6.2 ‰ and average 1.4 ‰. Whilst most plutonic tourmalines conform to reported a- and c-sector element partitioning models, those from the mineralised porphyry show large and variable sector fractionation differences, suggesting that external controls may also be important. Wider evidence for

  4. A new indicator mineral methodology based on a generic Bi-Pb-Te-S mineral inclusion signature in detrital gold from porphyry and low/intermediate sulfidation epithermal environments in Yukon Territory, Canada

    Science.gov (United States)

    Chapman, R. J.; Allan, M. M.; Mortensen, J. K.; Wrighton, T. M.; Grimshaw, M. R.

    2017-12-01

    Porphyry-epithermal and orogenic gold are two of the most important styles of gold-bearing mineralization within orogenic belts. Populations of detrital gold resulting from bulk erosion of such regions may exhibit a compositional continuum wherein Ag, Cu, and Hg in the gold alloy may vary across the full range exhibited by natural gold. This paper describes a new methodology whereby orogenic and porphyry-epithermal gold may be distinguished according to the mineralogy of microscopic inclusions observed within detrital gold particles. A total of 1459 gold grains from hypogene, eluvial, and placer environments around calc-alkaline porphyry deposits in Yukon (Nucleus-Revenue, Casino, Sonora Gulch, and Cyprus-Klaza) have been characterized in terms of their alloy compositions (Au, Ag, Cu, and Hg) and their inclusion mineralogy. Despite differences in the evolution of the different magmatic hydrothermal systems, the gold exhibits a clear Bi-Pb-Te-S mineralogy in the inclusion suite, a signature which is either extremely weak or (most commonly) absent in both Yukon orogenic gold and gold from orogenic settings worldwide. Generic systematic compositional changes in ore mineralogy previously identified across the porphyry-epithermal transition have been identified in the corresponding inclusion suites observed in samples from Yukon. However, the Bi-Te association repeatedly observed in gold from the porphyry mineralization persists into the epithermal environment. Ranges of P-T-X conditions are replicated in the geological environments which define generic styles of mineralization. These parameters influence both gold alloy composition and ore mineralogy, of which inclusion suites are a manifestation. Consequently, we propose that this methodology approach can underpin a widely applicable indicator methodology based on detrital gold.

  5. Isolation and characterization of lost copper and molybdenum particles in the flotation tailings of Kennecott copper porphyry ores

    Science.gov (United States)

    Tserendavga, Tsend-Ayush

    The importance of flotation separation has long been, and continues to be, an important technology for the mining industry, especially to metallurgical engineers. However, the flotation process is quite complex and expensive, in addition to being influenced by many variables. Understanding the variables affecting flotation efficiency and how valuable minerals are lost to the tailings gives metallurgists an advantage in their attempts to increase efficiency by designing operations to target the areas of greatest potential value. A successful, accurate evaluation of lost minerals in the tailings and appropriate solutions to improve flotation efficiency can save millions of dollars in the effective utilization of our mineral resources. In this dissertation research, an attempt has been made to understand the reasons for the loss of valuable mineral particles in the tailings from Kennecott Utah Copper ores. Possibilities include liberation, particle aggregation (slime coating) and surface chemistry issues associated with the flotation separation. This research generally consisted of three main aspects. The first part involved laboratory flotation experiments and factors, which affect the flotation efficiency. Results of flotation testing are reported that several factors such as mineral exposure/liberation and slime coating and surface oxidation strongly affect the flotation efficiency. The second part of this dissertation research was to develop a rapid scan dual energy (DE) methodology using 2D radiography to identify, isolate, and prepare lost sulfide mineral particles with the advantages of simple sample preparation, short analysis time, statistically reliable accuracy and confident identification. The third part of this dissertation research was concerned with detailed characterization of lost particles including such factors as liberation, slime coating, and surface chemistry characteristics using advanced analytical techniques and instruments. Based on the

  6. The Mesozoic Caosiyao giant porphyry Mo deposit in Inner Mongolia, North China and Paleo-Pacific subduction-related magmatism in the northern North China Craton

    Science.gov (United States)

    Wu, Huaying; Zhang, Lianchang; Pirajno, Franco; Shu, Qihai; Zhang, Min; Zhu, Mingtian; Xiang, Peng

    2016-09-01

    The Caosiyao giant porphyry Mo deposit is located in the Wulanchabu area of Inner Mongolia, within the northern North China Craton (NCC). It contains more than 2385 Mt of ore with an average grade of 0.075% Mo. In the Caosiyao mining district, Mo mineralization occurs mainly in a Mesozoic granite porphyry as disseminations and stockworks, with some Mo distributed in Archean metamorphic rocks and diabase as stockworks and veins. The host granite porphyry is composed of two different phases that can be distinguished based on mineral assemblages and textures: one phase contains large and abundant phenocrysts (coarse-grained), while the other phase is characterized by fewer and smaller phenocrysts (medium-grained). Zircon U-Pb-Hf analyses of the former phase yielded a concordant 206Pb/238U age of 149.8 ± 2.4 Ma with a 206Pb/238U weighted mean age of 149.9 ± 2.4 Ma and εHf(t) values ranging from -12.2 to 18.3, while the latter phase gave a concordant 206Pb/238U age of 149.0 ± 2.2 Ma with a 206Pb/238U weighted mean age of 149.0 ± 2.1 Ma and εHf(t) values ranging from -13.1 to 17.7. Five samples of disseminated molybdenite have a 187Re-187Os isochron age of 149.5 ± 5.3 Ma with a weighted average age of 149.0 ± 1.8 Ma, whereas six veinlet-type molybdenite samples have a well-constrained 187Re-187Os isochron age of 146.9 ± 3.1 Ma and a weighted average age of 146.5 ± 0.8 Ma. Thus, it is suggested that the Mo mineralization of the Caosiyao deposit occurred during the Late Jurassic (ca. 147-149 Ma), almost coeval with the emplacement of the host granite porphyry (ca. 149-150 Ma). The host granite porphyry is characterized by high silica (SiO2 = 71.52-74.10 wt%), relatively high levels of oxidation (Fe2O3/FeO = 0.32-0.94 wt%) and high alkali element concentrations (Na2O + K2O = 8.21-8.76 wt%). The host granite porphyry also shows enrichments in U and K, and depletion in Ba, Sr, P, Eu, and Ti, suggesting strong fractional crystallization of plagioclase, biotite, and

  7. Mineralogical, stable isotope, and fluid inclusion studies of spatially related porphyry Cu and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece

    Science.gov (United States)

    Fornadel, Andrew P.; Voudouris, Panagiotis Ch.; Spry, Paul G.; Melfos, Vasilios

    2012-05-01

    The Fakos porphyry Cu and epithermal Au-Te deposit, Limnos Island, Greece, is hosted in a ~20 Ma quartz monzonite and shoshonitic subvolcanic rocks that intruded middle Eocene to lower Miocene sedimentary basement rocks. Metallic mineralization formed in three stages in quartz and quartz-calcite veins. Early porphyry-style (Stage 1) metallic minerals consist of pyrite, chalcopyrite, galena, bornite, sphalerite, molybdenite, and iron oxides, which are surrounded by halos of potassic and propylitic alteration. Stage 2 mineralization is composed mostly of quartz-tourmaline veins associated with sericitic alteration and disseminated pyrite and molybdenite, whereas Stage 3, epithermal-style mineralization is characterized by polymetallic veins containing pyrite, chalcopyrite, sphalerite, galena, enargite, bournonite, tetrahedrite-tennantite, hessite, petzite, altaite, an unknown cervelleite-like Ag-telluride, native Au, and Au-Ag alloy. Stage 3 veins are spatially associated with sericitic and argillic alteration. Fluid inclusions in quartz from Stage 1 (porphyry-style) mineralization contain five types of inclusions. Type I, liquid-vapor inclusions, which homogenize at temperatures ranging from 189.5°C to 403.3°C have salinities of 14.8 to 19.9 wt. % NaCl equiv. Type II, liquid-vapor-NaCl, Type III liquid-vapor-NaCl-XCl2 (where XCl is an unknown chloride phase, likely CaCl2), and Type IV, liquid-vapor-hematite ± NaCl homogenize to the liquid phase by liquid-vapor homogenization or by daughter crystal dissolution at temperatures of 209.3 to 740.5 °C, 267.6 to 780.8 °C, and 357.9 to 684.2 °C, respectively, and, Type V, vapor-rich inclusions. Stage 2 veins are devoid of interpretable fluid inclusions. Quartz from Stage 3 (epithermal-style) veins contains two types of fluid inclusions, Type I, liquid-vapor inclusions that homogenize to the liquid phase (191.6 to 310.0 °C) with salinities of 1.40 to 9.73 wt. % NaCl equiv., and Type II, vapor-rich inclusions. Mixing

  8. Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit

    Science.gov (United States)

    Maleki, Mohammad; Emery, Xavier

    2017-12-01

    In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.

  9. Magmatism in the Shapinggou district of the Dabie orogen, China: Implications for the formation of porphyry Mo deposits in a collisional orogenic belt

    Science.gov (United States)

    Ren, Zhi; Zhou, Taofa; Hollings, Pete; White, Noel C.

    2018-05-01

    The Shapinggou molybdenum deposit is located in the Qinling-Dabie Orogen, which hosts the world's largest molybdenum belt. The igneous rocks at Shapinggou can be divided into two stages (136-127 Ma and 118-114 Ma), the early suite of felsic (136-127 Ma, SiO2 = 58.0 to 72.9 wt%) and mafic rocks (133-128 Ma, SiO2 = 45.2 to 57.0 wt%), and a later suite comprising syenite (117 Ma, SiO2 = 64.2 to 65.0 wt%), quartz syenite porphyry (116 Ma, 62.5 to 70.0 wt%), granite porphyry (112 Ma, SiO2 = 75.5 to 77.6 wt%) and diorite porphyry (111 Ma, SiO2 = 56.6 to 59.7 wt%). The early-stage felsic rocks display high SiO2, Al2O3, Na2O, K2O, Sr, LREE contents, and Sr/Y, (La/Yb)N ratios, initial Sr isotope ratios of 0.7076 to 0.7089, but low MgO, FeOT, Y, Yb contents and negative εNd(t) values, consistent with partial melting of the lower continental crust. The early-stage mafic rocks exhibit low SiO2, high MgO, Ni and Cr contents, consistent with an upper mantle source, but trace element and isotope data suggest a role for crustal contamination. The late-stage syenite and quartz syenite porphyry show high abundances of Na2O, K2O, Al2O3, HFSEs (e.g., Th, U, Zr, Hf) and significant negative Eu anomalies. The late-stage granite porphyry displays high SiO2 contents, and depletions in Ba, Sr, Eu and Ti. The geochemical features of the late-stage intrusions are similar to A-type granites. Crystal fractionation of plagioclase, K-feldspar, biotite/ muscovite, amphibole/ garnet and Fe-Ti oxides controlled the evolution of the magma. The geochemical and isotopic data suggest that the rocks at Shapinggou were likely derived from a mixed source of lithospheric mantle, subducted continental crust of the Yangtze Block (Kongling Group) and partial melts of the Dabie Complex. Early stage rocks represent melts of the source with a lower proportion of Dabie Complex materials, whereas late stage rocks were derived from a source with a higher proportion Dabie Complex component. The geochemical and

  10. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    Science.gov (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas

  11. Fission track thermochronology of Neogene plutons in the Principal Andean Cordillera of central Chile (33-35°S: Implications for tectonic evolution and porphyry Cu-Mo mineralization Termocronología mediante trazas de fision de plutones neógenos en la Cordillera Principal Andina de Chile central (33-35°S: Implicancias para la evolución tectónica y mineralización de pórfidos de Cu-Mo

    Directory of Open Access Journals (Sweden)

    Víctor Maksaev

    2009-07-01

    Full Text Available Apatite fission track data for Miocene plutons of the western slope of the Principal Andean Cordillera in central Chile (33-35°S define a distinct episode of enhanced crustal cooling through the temperature range of the apatite partial annealing zone (~125-60°C from about 6 to 3 Ma. This cooling episode is compatible with accelerated exhumation of the plutons at the time of Pliocene compressive tectonism, and mass wasting on the western slope of the Principal Andean Cordillera in central Chile. The timing coincides with the southward migration of the subducting Juan Fernández Ridge and the development of progressive subduction flattening northward of 33°S. It also corresponds to the time of active magmatic-hydrothermal processes and rapid unroofing of the world class Río Blanco-Los Bronces and El Teniente porphyry Cu-Mo deposits. Zircon fission track ages coincide with previous 40Ar/39Ar dates of the intrusions, and with some of the apatite fission track ages, being coherent with igneous-linked, rapid cooling following magmatic intrusion. The thermochronologic data are consistent with a maximum of about 8 km for Neogene exhumation of the plutons.Los datos de trazas de fision en apatita de plutones miocenos del flanco oeste de la Cordillera Principal de Chile central (33-35°S definen un episodio distintivo de enfriamiento acelerado a través del rango de temperatura de la zona de acortamiento parcial de trazas en apatita (~125-60°C entre los 6 a 3 Ma. Este episodio de enfriamiento es compatible con exhumación rápida de los plutones al tiempo del tectonismo compresivo plioceno y remociones en masa en el flanco oeste de la Cordillera Principal en Chile central. El período de tiempo coincide con la migración hacia el sur de la subducción de la Dorsal de Juan Fernández y con el desarrollo de un aplanamiento progresivo de la subducción hacia el norte de los 33°S. También corresponde al tiempo de actividad magmático-hidrotermal y r

  12. Origin of the subduction-related Carboniferous intrusions associated with the Yandong porphyry Cu deposit in eastern Tianshan, NW China: constraints from geology, geochronology, geochemistry, and Sr-Nd-Pb-Hf-O isotopes

    Science.gov (United States)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Zhang, Fang-Fang

    2018-06-01

    The Yandong porphyry Cu deposit is located at the south margin of the Dananhu-Tousuquan arc belt in eastern Tianshan, northwest China. The Cu ores comprise mainly disseminations and vein zones in the potassic and phyllic alteration zones, and are predominantly hosted in diorite porphyry, tonalite, and quartz porphyry, which intruded into Carboniferous Qi'eshan Group volcanic rocks. The U-Pb ages indicate that four intrusions were emplaced between 338.6 ± 2.9 and 326.1 ± 2.6 Ma. Five molybdenite samples yield Re-Os model ages of 333.8-329.5 Ma with a weighted average age of 331.8 ± 2.1 Ma. Fourteen pyrite samples have 206Pb/204Pb of 17.776-18.959, 207Pb/204Pb of 15.410-15.534, and 208Pb/204Pb of 37.323-38.127, similar to the age-corrected data of the Yandong tonalite. The tonalite shows adakite-like characteristics (e.g., high Sr/Y ratios and low Y contents), and has positive ɛNd(t) and ɛHf(t) values, and low zircon O isotopes (3.7-4.6 ‰), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The diorite porphyry exhibits high Mg# and low Sr/Y values, slightly negative Eu anomalies, and positive ɛHf(t) values, indicating a lithospheric mantle source. The quartz porphyry, with stronger negative Eu anomalies, less evolved ɛHf(t) values, and low δ18O values (4.7-5.5 ‰), was probably derived from mantle melts that experienced mixing with lower crustal materials (melts or assimilation). The new data suggest that the Yandong intrusions formed in an arc setting. As the tonalite is genetically linked to the Cu mineralization, subduction-related slab melts must have played a key role in the formation of the Yandong deposit.

  13. Origin of the subduction-related Carboniferous intrusions associated with the Yandong porphyry Cu deposit in eastern Tianshan, NW China: constraints from geology, geochronology, geochemistry, and Sr-Nd-Pb-Hf-O isotopes

    Science.gov (United States)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Zhang, Fang-Fang

    2017-10-01

    The Yandong porphyry Cu deposit is located at the south margin of the Dananhu-Tousuquan arc belt in eastern Tianshan, northwest China. The Cu ores comprise mainly disseminations and vein zones in the potassic and phyllic alteration zones, and are predominantly hosted in diorite porphyry, tonalite, and quartz porphyry, which intruded into Carboniferous Qi'eshan Group volcanic rocks. The U-Pb ages indicate that four intrusions were emplaced between 338.6 ± 2.9 and 326.1 ± 2.6 Ma. Five molybdenite samples yield Re-Os model ages of 333.8-329.5 Ma with a weighted average age of 331.8 ± 2.1 Ma. Fourteen pyrite samples have 206Pb/204Pb of 17.776-18.959, 207Pb/204Pb of 15.410-15.534, and 208Pb/204Pb of 37.323-38.127, similar to the age-corrected data of the Yandong tonalite. The tonalite shows adakite-like characteristics (e.g., high Sr/Y ratios and low Y contents), and has positive ɛNd(t) and ɛHf(t) values, and low zircon O isotopes (3.7-4.6 ‰), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The diorite porphyry exhibits high Mg# and low Sr/Y values, slightly negative Eu anomalies, and positive ɛHf(t) values, indicating a lithospheric mantle source. The quartz porphyry, with stronger negative Eu anomalies, less evolved ɛHf(t) values, and low δ18O values (4.7-5.5 ‰), was probably derived from mantle melts that experienced mixing with lower crustal materials (melts or assimilation). The new data suggest that the Yandong intrusions formed in an arc setting. As the tonalite is genetically linked to the Cu mineralization, subduction-related slab melts must have played a key role in the formation of the Yandong deposit.

  14. Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Lexa, Jaroslav; Fallick, Anthony E.

    2010-12-01

    The central zone of the Miocene Štiavnica stratovolcano hosts several occurrences of Cu-Au skarn-porphyry mineralisation, related to granodiorite/quartz-diorite porphyry dyke clusters and stocks. Vysoká-Zlatno is the largest deposit (13.4 Mt at 0.52% Cu), with mineralised Mg-Ca exo- and endoskarns, developed at the prevolcanic basement level. The alteration pattern includes an internal K- and Na-Ca silicate zone, surrounded by phyllic and argillic zones, laterally grading into a propylitic zone. Fluid inclusions in quartz veinlets in the internal zone contain mostly saline brines with 31-70 wt.% NaCl eq. and temperatures of liquid-vapour homogenization (Th) of 186-575°C, indicating fluid heterogenisation. Garnet contains inclusions of variable salinity with 1-31 wt.% NaCl eq. and Th of 320-360°C. Quartz-chalcopyrite veinlets host mostly low-salinity fluid inclusions with 0-3 wt.% NaCl eq. and Th of 323-364°C. Data from sphalerite from the margin of the system indicate mixing with dilute and cooler fluids. The isotopic composition of fluids in equilibrium with K-alteration and most skarn minerals (both prograde and retrograde) indicates predominantly a magmatic origin (δ18Ofluid 2.5-12.3‰) with a minor meteoric component. Corresponding low δDfluid values are probably related to isotopic fractionation during exsolution of the fluid from crystallising magma in an open system. The data suggest the general pattern of a distant source of magmatic fluids that ascended above a zone of hydraulic fracturing below the temperature of ductile-brittle transition. The magma chamber at ˜5-6 km depth exsolved single-phase fluids, whose properties were controlled by changing PT conditions along their fluid paths. During early stages, ascending fluids display liquid-vapour immiscibility, followed by physical separation of both phases. Low-salinity liquid associated with ore veinlets probably represents a single-phase magmatic fluid/magmatic vapour which contracted into

  15. Role of Mineral Deposits in Global Geochemical Cycles

    Science.gov (United States)

    Kesler, S.; Wilkinson, B.

    2009-12-01

    Mineral deposits represent the most extreme degree of natural concentration for most elements and their formation and destruction are important parts of global geochemical cycles. Quantitative estimates of the role that mineral deposits play in these geochemical cycles has been limited, however, by the lack of information on actual amounts of elements that are concentrated in these deposits, and their rates of formation and destruction at geologic time scales. Recent use of a “tectonic diffusion” model for porphyry copper deposits, the most important source of world copper, in conjunction with estimates of their copper content (Kesler and Wilkinson, 2008), allows an assessment of the role of copper deposits in Earth’s global copper cycles. These results indicate that ~4.5*10^8 Gg of Cu have been concentrated in porphyry copper deposits through Phanerozoic time, that deposits containing ~2.8*10^8 Gg of Cu have been removed by uplift and erosion over the same time period, and that deposits containing ~1.7*10^8 Gg remain in Earth’s crust. If styles of formation and destruction of other copper-bearing mineral deposits are similar, then all crustal deposits contain ~3*10^8 Gg of copper. This constitutes about 0.03% of the copper that resides in crustal rocks and provides a first-ever estimate of the rate at which natural geochemical cycles produce the extreme concentrations that constitute mineral deposits. Another ~8*10^8 Gg of copper have been destroyed during the uplift and erosion of mineral deposits over Phanerozoic time, a flux amounting to an annual contribution of about 1.5 Gg of copper to the near-surface environment. This amount is similar in magnitude to copper released by volcanic outgassing, but only ~2.5% of the 56 Gg of copper estimated to be released annually by weathering of average crustal rocks (Rauch and Graedel, 2007). The amount of copper removed from mineral deposits by mining, 1.1*10^4 Gg/year, is much larger than any natural

  16. Geochronology and magnetic fabrics of the Altenberg-Teplice granite porphyry: implications for emplacement style of a caldera ring dike

    Czech Academy of Sciences Publication Activity Database

    Tomek, Filip; Žák, J.; Svojtka, Martin

    2016-01-01

    Roč. 46 (2016), s. 39-40 E-ISSN 1434-7512. [Late Paleozoic magmatism in the Erzgebirge / Krušné hory: Magma genesis, tectonics, geophysics, and mineral deposits : abstracts. 11.11.2016-12.11.2016, Freiberg] Institutional support: RVO:67985831 Keywords : porphyry * magnetic fabrics * geochronology * Altenberg-Teplice Subject RIV: DB - Geology ; Mineralogy http://tu-freiberg.de/sites/default/files/media/institut-fuer-geologie-718/pdf/fog_volume_46.pdf

  17. The La Unión Au ± Cu prospect, Camagüey District, Cuba: fluid inclusion and stable isotope evidence for ore-forming processes

    Science.gov (United States)

    Santana, Miriela María Ulloa; Moura, Márcia Abrahão; Olivo, Gema R.; Botelho, Nilson Francisquini; Kyser, T. Kurtis; Bühn, Bernhard

    2011-01-01

    The Camagüey district, Cuba, is known for its epithermal precious metal deposits in a Cretaceous volcanic arc setting. Recently, the La Unión prospect was discovered in the southern part of the district, containing gold and minor copper mineralization interpreted as porphyry type. Mineralization is hosted in a 73.0 ± 1.5 Ma calc-alkaline I-type oxidized porphyry quartz diorite intrusive within volcanic and volcaniclastic rocks of the early Cretaceous Guáimaro Formation. The porphyry is affected by propylitic alteration and crosscut by a network of quartz and carbonate veinlets and veins. Chlorite, epidote, sericite, quartz, and pyrite are the main minerals in the early veins which are cut by late carbonate and zeolite veins. Late barite pseudomorphously replaces pyrite. Gold is associated with pyrite as disseminations in the altered quartz diorite and in the veins, occurring as inclusions or filling fractures in pyrite with 4 g/t Au in bulk samples, and up to 900 ppm Au in in pyrite. Fluid inclusion and oxygen isotope data are consistent with a H2O-NaCl-(KCl) mineralizing fluid, derived from the quartz diorite magma, and trapped at least at 425°C and 1.2 kbar. This primary fluid unmixed into two fluid phases, a hypersaline aqueous fluid and a low-salinity vapor-rich fluid. Boiling during cooling may have played an important role in metal precipitation. Pyrite δ34S values for the La Unión prospect range between 0.71‰ and 1.31‰, consistent with a homogeneous magmatic sulfur source. The fluids in equilibrium with the mineralized rocks have estimated δ18O values from 8‰ to 11.8‰, calculated for a temperature range of 480-505°C. The tectonic environment of the La Unión prospect, its high gold and low copper contents, the physical-chemical characteristics of the mineralizing fluids and the isotopic signature of the alteration minerals and fluids indicate that the La Unión gold mineralization is similar to the porphyry gold type, even though the ore

  18. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  19. Mineralization and geophysical exploration by IP/RS and ground magnetic survey in MA-I and surrounding area, Maherabad porphyry Cu-Au prospect area, east of Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Malekzadeh Shafaroudi

    2009-10-01

    Full Text Available Maherabad prospect area, which is studied in detail, is the first porphyry Cu-Au mineralization in the east of Iran. Based on relation of mineralization with subvolcanic intrusive bodies mostly monzonitic with porphyry texture, extent and types of alteration including potassic, sericitic- potassic, quartz- sericite- carbonate- pyrite, quartz- carbonate- pyrite, silicification- propylitic, propylitic, stockwork mineralization, assemblages hypogene mineralization including pyrite, chalcopyrite, bornite and magnetite and high anomalies of Cu and Au, Mineralization is porphyry Cu-Au-type. MA-I area, which is covered by regolith from its surrounding is the most important section of mineralization in the region because of intensive of quartz-sericite-carbonate-pyrite alteration and very high dense quartz-sulfide veinlets. IP/RS and ground magnetic surveys were conducted in the MA-I prospect area and its surrounding plain. Drilling on the IP suede section anomaly resulted to the recognition of sulfide mineralization in on extensive area under the regolith. Surface and underground detailed studies of geology, alteration, mineralization and geochemistry confirm the extension of covered mineralization to the south and west of the area. Based on the ground magnetic anomaly, the center of mineralization system, potassic zone, to the southwest of the area was recognized. Quartz0sericite-carbonate-pyrite alteration zone, which is located around the potassic zone, has very low magnetic response. IP/RS and ground magnetic surveys in a broader area than before are strongly recommended.

  20. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  1. U-Pb ages for two tonalitic gneisses, pegmatitic granites, and K-feldspar porphyries, Olkiluoto study site, Eurajoki, SW Finland

    International Nuclear Information System (INIS)

    Maenttaeri, I.; Lindberg, A.; Aaltonen, I.

    2007-08-01

    Secondary ion microprobe zircon U-Pb ages have been determined for two tonalitic gneisses, two pegmatitic granites, and two potassium feldspar porphyry samples from the Olkiluoto study site, Eurajoki, S-W Finland. Moreover, monazites from the Kfeldspar porphyries were dated using TIMS U-Pb method. The tonalitic gneiss A1879 TTG 1 reveals bimodal zircon population and for A1880 TTG it is homogeneous. The samples yield similar overlapping concordia ages of 1851 ± 5 Ma and 1856 ± 5 Ma, respectively. The pegmatitic granite samples A1881 PGR 1 and A1883 PGR 2 have mostly zircons resembling those of the TTG's. The supposed pegmatitic zircons with high U and low Th are strongly altered. The zircon U-Pb data of A1881 PGR 1 plot roughly in two separate lines on a concordia diagram. The apparently younger ∼1.79 Ga data are all from the high U and low Th/U zircons and therefore certainly set the minimum age for the A1881 PGR 1. It is suggested, that the ∼1.85 Ga data comprise analyses from inherited zircons as it include both lower and higher Th/U zircons and 1.85 Ga coevals with age of the tonalitic gneisses. Thus, the apparent age for the A1881 PGR 1 is ∼1.79 Ga. The U-Pb data of sample A1883 PGR 2 also divide into two groups. The higher Th/U, inherited zircons determine an age of 1852 ± 9 Ma which is the same as that of the TTG's. The low Th/U zircon data scatter and the age of 1.83 Ga for A1883 PGR 2 is only poorly determined. The both potassium feldspar porphyry samples A1882 KFP 1 and A1884 KFP 2 reveal heterogeneous zircon populations. The A1882 KFP 1 zircons showing magmatic zoning in BSE images conceivably determine a concordia age of 1842± 6 Ma for the rock. In addition to that a few ∼1.9 Ga inherited zircon and metamorphic low Th/U rims with ages between 1.88 Ga and 1.83 Ga were detected. The age for the youngest metamorphic zircon rims overlaps with that of the magmatic zircons. The zircons in the other KFP sample A1884 show a wide range of ages

  2. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  3. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    Science.gov (United States)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  4. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    Science.gov (United States)

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  5. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  6. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  7. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    Directory of Open Access Journals (Sweden)

    Radmard Kaikhosrov

    2017-12-01

    Full Text Available Situated about 130 km northeast of Tabriz (northwest Iran, the Mazra’eh Shadi deposit is in the Arasbaran metallogenic belt (AAB. Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb, Pb (21100 ppm, Ag (9.43ppm, Cu (611ppm and Zn (333 ppm. Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra’eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra’eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb. In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  8. Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran

    Directory of Open Access Journals (Sweden)

    L. Daneshvar Saein

    2012-08-01

    Full Text Available The aim of this study is the utilization of the concentration-volume (C-V fractal method based on geoelectrical data including induced polarization (IP and resistivity (RS in targeting areas hosting different sulfidic mineralization zones in Nowchun Cu-Mo porphyry deposit, SE Iran. The C-V fractal model employed in this research in order to separate high and moderate sulfidic zones from low sulfidic zone and barren wall rocks in the deposit is corresponding to chargeability and resistivity. Results obtained from the C-V method indicate that there is a positive correlation between subsurface mineralization and sulfide mineralized zones; additionally, use of the C-V method based on geophysical data is recognized as an accurate approach for delineation of various mineralization zones in the depth for optimization of mineral exploration operation, particularly in porphyry deposits.

  9. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  10. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    Science.gov (United States)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare

  11. Variations in magnetic anisotropy and opaque mineralogy along a kilometer deep profile within a vertical dyke of the syenogranite porphyry at Cínovec (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chlupáčová, M.; Novák, Jiří Karel

    2002-01-01

    Roč. 113, 1/2 (2002), s. 37-47 ISSN 0377-0273 R&D Projects: GA ČR GA205/95/0149; GA ČR GA205/96/0272; GA AV ČR IAA3013903 Keywords : magnetic anisotropy * syenogranite porphyry * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.974, year: 2002

  12. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  13. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  14. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  15. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  16. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  17. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  18. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  19. Chlorine isotope fractionation during supergene enrichment of copper

    Science.gov (United States)

    Reich, M.; Barnes, J.; Barra, F.; Milojevic, C.; Drew, D.

    2017-12-01

    Atacama. References [1] Arcuri T, Brimhall G (2003) The chloride source for atacamite mineralization at the Radomiro Tomic porphyry copper deposit, Northern Chile. Econ Geol 98:1667-1681 [2] Reich M et al. (2009) Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Miner Deposita 44: 497-504

  20. Low-fluorine Stockwork Molybdenite Deposits

    Science.gov (United States)

    Ludington, Steve; Hammarstrom, Jane; Piatak, Nadine M.

    2009-01-01

    Low-fluorine stockwork molybdenite deposits are closely related to porphyry copper deposits, being similar in their tectonic setting (continental volcanic arc) and the petrology (calc-alkaline) of associated igneous rock types. They are mainly restricted to the Cordillera of western Canada and the northwest United States, and their distribution elsewhere in the world may be limited. The deposits consist of stockwork bodies of molybdenite-bearing quartz veinlets that are present in and around the upper parts of intermediate to felsic intrusions. The deposits are relatively low grade (0.05 to 0.2 percent Mo), but relatively large, commonly >50 million tons. The source plutons for these deposits range from granodiorite to granite in composition; the deposits primarily form in continental margin subduction-related magmatic arcs, often concurrent with formation of nearby porphyry copper deposits. Oxidation of pyrite in unmined deposits or in tailings and waste rock during weathering can lead to development of acid-rock drainage and limonite-rich gossans. Waters associated with low-fluorine stockwork molybdenite deposits tend to be nearly neutral in pH; variable in concentrations of molybdenum (10,000 ug/L); below regulatory guidelines for copper, iron, lead, zinc, and mercury; and locally may exceed guidelines for arsenic, cadmium, and selenium.

  1. Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration

    Directory of Open Access Journals (Sweden)

    Tamara Kartal

    2013-05-01

    Full Text Available Extremely Re-rich molybdenite occurs with pyrite in sodic–calcic, sodic–sericitic and sericitic-altered porphyritic stocks of granodioritic–tonalitic and granitic composition in the Sapes–Kirki–Esymi, Melitena and Maronia areas, northeastern Greece. Molybdenite in the Pagoni Rachi and Sapes deposits is spatially associated with rheniite, as well as with intermediate (Mo,ReS2 and (Re,MoS2 phases, with up to 46 wt % Re. Nanodomains and/or microinclusions of rheniite may produce the observed Re enrichment in the intermediate molybdenite–rheniite phases. The extreme Re content in molybdenite and the unique presence of rheniite in porphyry-type mineralization, combined with preliminary geochemical data (Cu/Mo ratio, Au grades may indicate that these deposits have affinities with Cu–Au deposits, and should be considered potential targets for gold mineralization in the porphyry environment. In the post-subduction tectonic regime of northern Greece, the extreme Re and Te enrichments in the magmatic-hydrothermal systems over a large areal extent are attributed to an anomalous source (e.g., chemical inhomogenities in the mantle-wedge triggered magmatism, although local scale processes cannot be underestimated.

  2. Determination of Mineralization Zones Using Interpretation of IP and RS Data in The GarmabCopper Deposit (South Khorasan province

    Directory of Open Access Journals (Sweden)

    Mansour Adelpour

    2016-07-01

    Full Text Available Introduction The Garmab copper deposit is located northeast of Qaen (South Khorasan province in the1:100,000 scale map of Abiz in the eastern tectonic zone of Iran. It is hosted by Late Paleocene-Eocene lava flows consisting mainly of andesite, trachy¬andesite, andesite-basalt and basalt lavas, as well as pyroclastic rocks, including tuffs and ignimbrites. The Lut Block has undergone intense magmatic activitywith a variety of geochemical characteristics due to changing tectonic conditions (e.g., compression during subduction followed by tensional conditions; Karimpour et al., 2012; Zarrinkoub et al., 2012. The Lut Block has a great potential for the discovery of new mineral deposits, like the Mahrabad and Khonik porphyry copper-gold deposits (Malekzadeh shafarodi, 2009, the Dehsalam porphyry copper deposit (Arjmandzadeh, 2011, high sulfidation epithermal gold deposits such as Chah Shalghami (Karimpour, 2005 and IOCG deposits such as Kuh-E-Zar and Qaleh Zari (Mazlomi et al., 2008. Materials and methods After field studies of the Garmab area, 32 thin sections and 21 polished sections were prepared for petrological and mineralogical studies.In addition, 10 least-altered and fractured samples of volcanic rocks were selected for geochemical studies. Major oxides were determined using XRF analyses at the Zarazma laboratory. Induced polarization and resistivity geophysical data were collected and correlated with geological and alteration maps. The geophysical datawere collectedfrom 420 individual points, using a dipole-dipole arrangement along five profiles separated 60m apart.This covered the study area entirely. After a change in the mineralization trend was observed,additional profileswere designed, twoon bearings of 25º and three on 75º. Results The Garmab volcanic rocks exhibit typical geochemical characteristics of subduction zone magmas including strong enrichment in LILE and depletion in HFSE. Based on the discrimination plot of Irvine and

  3. The discovery and geophysical response of the Atlántida Cu-Au porphyry deposit, Chile

    Science.gov (United States)

    Hope, Matthew; Andersson, Steve

    2016-03-01

    The discovery of the Atlántida Cu-Au-Mo porphyry deposit, which is unconformably overlain by 25-80 m of gravels, is a recent example of exploration success under cover in a traditional mining jurisdiction. Early acquisition of geophysics was a key tool in the discovery, and in later guiding further exploration drilling throughout the life of the project. Detailed review of the geophysical response of the deposit, with respect to the distribution of lithologies and alteration, coupled with their petrophysical properties has allowed full characterisation, despite no exposure at the surface of host rock nor porphyry-style mineralisation. Data acquired over the project include induced polarisation, magnetotellurics, ground and airborne magnetics, ground-based gravimetry, and petrophysical sampling. The distribution of the key geological features of the deposit has been inferred via acquisition of petrophysical properties and interpretation of surface geophysical datasets. Magnetic susceptibility is influenced strongly by both alteration and primary lithology, whilst density variations are dominated by primary lithological control. Several studies have shown that electrical properties may map the footprint of the hydrothermal system and associated mineralisation, via a combination of chargeability and resistivity. These properties are observed in geophysical datasets acquired at surface and allow further targeting and sterilisation at the deposit and project scale. By understanding these geophysical characteristics in a geological context, these data can be used to infer distribution of lithological units, depth to exploration targets and the potential for high grade mineralisation. Future exploration will likely be increasingly reliant on the understanding of the surface manifestations of buried deposits in remotely acquired data. This review summarises the application and results of these principles at the Atlántida project of northern Chile. Geophysical data can be

  4. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  5. Utility of high-altitude infrared spectral data in mineral exploration: Application to Northern Patagonia Mountains, Arizona

    Science.gov (United States)

    Berger, B.R.; King, T.V.V.; Morath, L.C.; Phillips, J.D.

    2003-01-01

    Synoptic views of hydrothermal alteration assemblages are of considerable utility in regional-scale minerals exploration. Recent advances in data acquisition and analysis technologies have greatly enhanced the usefulness of remotely sensed imaging spectroscopy for reliable alteration mineral assemblages mapping. Using NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor, this study mapped large areas of advanced argillic and phyllic-argillic alteration assemblages in the southeastern Santa Rita and northern Patagonia mountains, Arizona. Two concealed porphyry copper deposits have been identified during past exploration, the Red Mountain and Sunnyside deposits, and related published hydrothermal alteration zoning studies allow the comparison of the results obtained from AVIRIS data to the more traditional field mapping approaches. The AVIRIS mapping compares favorably with field-based studies. An analysis of iron-bearing oxide minerals above a concealed supergene chalcocite deposit at Red Mountain also indicates that remotely sensed data can be of value in the interpretation of leached caps above porphyry copper deposits. In conjunction with other types of geophysical data, AVIRIS mineral maps can be used to discriminate different exploration targets within a region.

  6. CO2-rich and CO2-poor ore-forming fluids of porphyry molybdenum systems in two contrasting geologic setting: evidence from Shapinggou and Zhilingtou Mo deposits, South China

    Science.gov (United States)

    Ni, P.

    2017-12-01

    Porphyry deposits are the world most important source of Mo, accounting for more than 95% of world Mo production. Porphyry Mo deposits have been classified into Climax type and Endako type. The Climax type was generally formed in an intra-continental setting, and contain high contents of Mo (0.15-0.45 wt.%) and F (0.5-5 wt.%). In contrast, the Endako type was generated in a continental arc setting and featured by low concentrations of Mo (0.05-0.15 wt.%) and F (0.05-0.15 wt.%). The systematic comparison of ore fluids in two contrasting tectonic environments is still poorly constrained. In this study, the Shapinggou and Zhilingtou Mo deposits in South China were selected to present the contrasting ore-forming fluid features. The fluid inclusion study of Shapinggou Mo deposit suggest: Early barren quartz veins contain fluid inclusions with salinities of 7.9-16.9 wt% NaCl equiv . CO2 contents are high enough to be detected by Raman. Later molybdenite-quartz veins contain vapor-type fluid inclusions with lower salinities (0.1-7.4 wt% NaCl equiv) but higher CO2-contents, coexisting with brine inclusions with 32.9-50.9 wt% NaCl equiv. The fluid inclusion study on Zhilintou Mo deposit suggest : Early barren quartz veins contain mostly intermediate density fluid inclusions with salinities of 5.3-14.1 wt% NaCl equiv, whereas main-stage quartz-molybdenite veins contain vapor-rich fluid inclusions of 0.5-6.2 wt% NaClequiv coexisting with brine inclusions of 38.6-44.8 wt% NaCl equiv. In contrast to the Shapinggou Mo deposit, the fluid inclusions at Shizitou contain only minor amounts of CO2. This study suggests the two porphyry molybdenum deposits experienced a similar fluid evolution trend, from single-phase fluids at the premineralization stage to two-phase fluids at the mineralization stage. Fluid boiling occurred during the ore stage and probably promoted a rapid precipitation of molybdenite. Intensive phyllic alteration, CO2-poor ore-forming fluids, and continental arc

  7. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  8. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  9. Magmatic context of Bou Skour copper deposit (Eastern Anti-Atlas, Morocco): Petrogrography, geochemistry and alterations

    Science.gov (United States)

    EL Azmi, Daoud; Aissa, M.; Ouguir, H.; Mahdoudi, M. L.; El Azmi, M.; Ouadjo, A.; Zouhair, M.

    2014-09-01

    The Bou Skour copper deposit is located in the western part of the Saghro massif (Eastern Anti-Atlas), about 50 km East of the city of Ouarzazate. It is subdivided into several areas that are, from North to South: “Panthère”, “Chaigne”, “Anne Marie”, “Chapeau de fer” and “Patte d'Oie”. The latter is economically the most important and is the object of this study. The “Patte d'Oie” district consists mainly of extrusive and intrusive igneous rocks. The extrusive rocks are represented by andesites spatially associated with pyroclastic terms (ignimbrites and pyroclastic breccias). This volcanic unit is intruded by a pink granite pluton and a I-type granodiorite with equigranular texture (Bou Skour granodiorite) showing to the border a microgranular facies (microgranodiorite). All these magmatic formations are intersected by rhyolitic dykes (NNE-SSW) and doleritic dykes (WNW-ESE to NW-SE). The granodiorite and andesite have undergone a polyphase hydrothermal alteration: (i) potassic alteration, (ii) phyllitic alteration, (iii) silicification, (iv) argillic alteration and (v) propylitic alteration. The analysis of geochemical data of granodiorite, granite, andesite and dolerite confirmed: (i) their petrographic natures, (ii) the medium-K calc-alkaline affiliation of andesite and granodiorite, which would have been set up into an active geotectonic environment, probably of island arc or collision, during the Pan-African orogeny, (iii) The high-K calc-alkaline character of granite indicating a post-collision development during the Pan-African orogeny and (iv) The alkaline affinity of the dolerite which is linked to an extensive post-orogenic setting (post-Pan-African). The copper mineralization of “Patte d'Oie” area is hosted, exclusively, in the andesitic and granodioritic facies. It is represented, essentially, by chalcopyrite and bornite minerals and is, probably, related to a porphyry system (disseminated and stockwork mineralization

  10. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  11. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  12. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  13. First insights on the molybdenum-copper Bled M'Dena complex (Eglab massif, Algeria)

    Science.gov (United States)

    Lagraa, Karima; Salvi, Stefano; Béziat, Didier; Debat, Pierre; Kolli, Omar

    2017-03-01

    Molybdenum-Copper showings in the Eglab massif (eastern part of the Reguibat rise of Algeria), are found in quartz-monzodiorite and granodiorite of the Bled M'Dena complex, a Paleoproterozoic circular structure of ∼5 km in diameter, comprising volcanic and intrusive suites. The latter consist of quartz-diorite, quartz-monzodiorite and granodiorite with a metaluminous normative composition. They display an "adakitic character" with moderate light rare-earth element (LREE) enrichment, minor Eu anomalies, high Sr/Y ratio and low Yb concentration, suggestive of a hydrous, arc magma of volcanic-arc affinity. The mineralization occurs mostly in quartz + molybdenite + chalcopyrite stockwork veins marked by widespread propylitic alteration along the selvages. Molybdenite and chalcopyrite are commonly associated with calcite, which precipitated at relatively late stages of the hydrothermal alteration. Fluid inclusions related to the mineralization stage, range from aqueous to aqueous-carbonic to solid bearing. The latter inclusions have the highest homogenization temperature (up to ∼400 °C), are salt saturated, and commonly contain molybdenite and/or chalcopyrite crystals. The petrology and geochemistry of the host rocks, the style of the hydrothermal alteration, the ore mineral associations, and the characteristics of the fluid inclusions, are all coherent in indicating that the Bled M'Dena represents a Paleoproterozoic porphyry style Mo mineralization, which is far unreported in the African continent.

  14. Characterization and zircon SHRIMP U-Pb geochronology of the subvolcanic rocks from Yarumalito Porphyry System, Marmato District, Colombia; Caracterizacao e geocronologia SHRIMP U-Pb em zircao das rochas subvulcanicas do sistema porfiro Yarumalito, Distrito de Marmato, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Henrichs, Isadora A.; Frantz, Jose Carlos; Marques, Juliana C.; Castoldi, Marco S., E-mail: isahenrichs@gmail.com, E-mail: jose.frantz@ufrgs.br, E-mail: juliana.marques@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Geociencias; Ordonez-Carmona, Oswaldo, E-mail: oswaldo.geologo@gmail.com [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Minas; Sato, Kei, E-mail: keisato@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Centro de Pesquisas Geocronologicas

    2014-09-15

    The mining District of Marmato, located in the Central Cordillera, is considered one of the oldest gold districts in Colombia and its exploration dates back to the Inca’s times, being exploited regularly for more than a thousand years. Inserted in this context lies the Yarumalito porphyry system (YPS), characterized to concentrate ore in structure related veins and stockworks. The YPS is related to the Miocene magmatism of the Combia Formation. In this paper, the subvolcanic rocks directly associated with the mineralized zones were described in order to obtain U-Pb ages in zircon to the intrusions. Selected samples from two fertile intrusions, one andesitic (more abundant in the area) and other dioritic (more restricted), were carefully described and dated by SHRIMP. The results points to a very restricted interval for the ages, with weighted average {sup 206}Pb/{sup 238}U varying from 7,00 ± 0,15 Ma for the andesitic porphyry and 6.95 ± 0.16 Ma for the dioritic porphyry. These results constrain the Yarumalito system to the final stages of the Combia magmatism and suggest a brief period for the crystallization of the mineralized subvolcanic rocks in the area and in the Marmato District. (author)

  15. Tellurium

    Science.gov (United States)

    Goldfarb, Richard J.; Berger, Byron R.; George, Micheal W.; Seal, Robert R.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Tellurium (Te) is a very rare element that averages only 3 parts per billion in Earth’s upper crust. It shows a close association with gold and may be present in orebodies of most gold deposit types at levels of tens to hundreds of parts per million. In large-tonnage mineral deposits, such as porphyry copper and seafloor volcanogenic massive sulfide deposits, sulfide minerals may contain hundreds of parts per million tellurium, although the orebodies likely have overall concentrations of 0.1 to 1.0 parts per million tellurium. Tellurium is presently recovered as a primary ore from only two districts in the world; these are the gold-tellurium epithermal vein deposits located adjacent to one another at Dashuigou and Majiagou (Sichuan Province) in southwestern China, and the epithermal-like mineralization at the Kankberg deposit in the Skellefteå VMS district of Västerbotten County, Sweden. Combined, these two groups of deposits account for about 15 percent (about 70 metric tons) of the annual global production of between 450 and 470 metric tons of tellurium. Most of the world’s tellurium, however, is produced as a byproduct of the mining of porphyry copper deposits. These deposits typically yield concentrations of 1 to 4 percent tellurium in the anode slimes recovered during copper refining. Present production of tellurium from the United States is solely from the anode slimes at ASARCO LLC’s copper refinery in Amarillo, Texas, and may total about 50 metric tons per year. The main uses of tellurium are in photovoltaic solar cells and as an additive to copper, lead, and steel alloys in various types of machinery. The environmental data available regarding the mining of tellurium are limited; most concerns to date have focused on the more-abundant metals present in the large-tonnage deposits from which tellurium is recovered as a byproduct. Global reserves of tellurium are estimated to be 24,000 metric tons, based on the amount of tellurium likely contained in

  16. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang

    2018-01-01

    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The

  17. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang

    2018-01-01

    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA

  18. Zircon U–Pb geochronology and geochemistry of rhyolitic tuff, granite porphyry and syenogranite in the Lengshuikeng ore district, SE China: Implications for a continental arc to intra-arc rift setting

    NARCIS (Netherlands)

    Wang, Changming; Zhang, Da; Wu, Gangguo; Xu, Yigan; Carranza, E.J.M; Zhang, Yaoyao; Li, Haikun; Geng, Jianzhen

    2013-01-01

    SE China is well known for its Mesozoic large-scale granitoid plutons and associated ore deposits. Here, zircon U–Pb geochronological and geochemical data have been used to better constrain the petrogenesis of the igneous rocks associated with porphyry Ag–Pb–Zn deposits in the Lengshuikeng ore

  19. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  20. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  1. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  2. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  3. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  4. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  5. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  6. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  7. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  9. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  10. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  11. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  12. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  13. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  14. Statistical methods of estimating mining costs

    Science.gov (United States)

    Long, K.R.

    2011-01-01

    Until it was defunded in 1995, the U.S. Bureau of Mines maintained a Cost Estimating System (CES) for prefeasibility-type economic evaluations of mineral deposits and estimating costs at producing and non-producing mines. This system had a significant role in mineral resource assessments to estimate costs of developing and operating known mineral deposits and predicted undiscovered deposits. For legal reasons, the U.S. Geological Survey cannot update and maintain CES. Instead, statistical tools are under development to estimate mining costs from basic properties of mineral deposits such as tonnage, grade, mineralogy, depth, strip ratio, distance from infrastructure, rock strength, and work index. The first step was to reestimate "Taylor's Rule" which relates operating rate to available ore tonnage. The second step was to estimate statistical models of capital and operating costs for open pit porphyry copper mines with flotation concentrators. For a sample of 27 proposed porphyry copper projects, capital costs can be estimated from three variables: mineral processing rate, strip ratio, and distance from nearest railroad before mine construction began. Of all the variables tested, operating costs were found to be significantly correlated only with strip ratio.

  15. Geochronological studies in the Chuquicamata district, Chile: a review

    International Nuclear Information System (INIS)

    Zentilli, M; Tassinari, C.C.G; Rojas, J; Reynolds, P.H.; Pemberton, G.B; Munizaga, F; Mathur, R; Maksaev, V; Lindsay, D.D; Heaman, L; Graves, M.C.; Arnott, A.M

    2001-01-01

    The dating and discrimination of significant events in the complex Chuquicamata porphyry copper system have been challenging. The work by others and us indicates that the first mineralizing (Chuqui) porphyries were emplaced at ca.35 Ma, followed by potassic alteration and various hydrothermal pulses to ca. 33 Ma. This system evolved within a dynamic ductile to brittle shear system. After 1- 2 km of exhumation, a discrete mineralizing (quartz-sericitic) event was superimposed at ca. 31 Ma. Relatively slower exhumation followed, allowing for the development and preservation of important supergene blankets (19 to 15 Ma) and exotic copper deposits. The unmineralized Fortuna igneous complex, juxtaposed across the NS (Falla Oeste) fault system, is relatively older than the Chuqui porphyries. Historically, in the 1960s, Pb-alpha on zircon approximately dated the Paleozoic and Mesozoic hosts to the Chuqui porphyries, and the Eocene Fortuna. In the 1970s and 1980s, conventional K/Ar dated the main potassic alteration at 35 to 33 Ma, and the quartz-sericite alteration at 31-28 Ma. In the 1990s, Rb-Sr accurately dated the major homogenization of the Chuqui system at 35 ±2 Ma and confirmed that Fortuna is older. 40 Ar/ 39 Ar defined two thermal pulses and documented thermal overprint by the younger event. U-Pb dating is hindered by the presence of xenocrystic zircon with Paleozoic ages. Recently, ELA-ICP-MS dating of zircon distinguish 3 intrusive phases at 34.8, 33.4 and 33.3 Ma, compatible with a 34.9 Ma age by Re-Os in molybdenite. Re-Os in Cu-Fe sulfides confirms the ca. 31 Ma age of the quartz-sericitic stage. Fission-track data on zircon and apatite, and (U-Th)/He dating, point to extremely fast cooling to o C after the quartz-sericitic event, and improve exhumation histories. Fission-track data on apatite and ESR of quartz in fault gouge suggest that the Falla Oeste was active into the Pliocene and Pleistocene, respectively (au)

  16. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  17. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    Science.gov (United States)

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  18. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  19. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  20. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  1. gold mineralization in Masjeddaghi area, east of Jolfa, NW Iran

    OpenAIRE

    Ali Imamalipour; Hossein Abdoli; Behzad Hajalilo

    2010-01-01

    Two types of mineralization including porphyry copper and epithermal gold mineralization have occurred in relation with an intermediate volcano-plutonic complex in Masjeddaghi area. Different alterations including silica, advanced argillic, intermediate argillic and propylitic have been distinguished in relation with epithermal mineralization, which have a zonal pattern. Elemental mass gains and losses during alterations were calculated using Zr as an immobile monitor. Silica zone has enriche...

  2. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  3. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  4. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  5. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  6. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  7. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  8. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  9. Copper metabolism: a multicompartmental model of copper kinetics in the rat

    International Nuclear Information System (INIS)

    Dunn, M.A.

    1985-01-01

    A qualitative multicompartmental model was developed that describes the whole-body kinetics of copper metabolism in the adult rat. The model was developed from radiocopper percent dose vs. time data measured over a three day period in plasma, liver, skin, skeletal muscle, bile and feces after the intravenous injection of 10 μg copper labeled with 64 Cu. Plasma radiocopper was separated into ceruloplasmin (Cp) and nonceruloplasmin (NCp) fractions. Liver cytosolic radiocopper was fractionated into void volume superoxide dismutase (SOD) containing and metallothionein fractions by gel filtration. Liver particulate fractions were isolated by differential centrifugation. The SAAM and CONSAM modeling programs were used to develop the model. The sizes of compartments, fractional rate constants and mass transfer rates between compartments were evaluated. The intracellular metabolism of copper was similar in hepatic and extrahepatic tissues being comprised of a faster turning over compartment (FTC) exchanging copper with NCp and a slower turning over compartment (STC) with input from Cp. Output from the STC was into the FTC. In the liver the STC was postulated to represent SOD copper which unlike the extrahepatic tissues received much of its input from the FTC. A small amount of biliary copper (9%) was postulated to return to plasma NCp by enterohepatic recycling. The model developed was contrasted and compared with two previous models of copper metabolism

  10. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  11. A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran

    Science.gov (United States)

    Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain

    2013-03-01

    Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.

  12. Reconstructing Magmatic-Hydrothermal Systems via Geologic Mapping of the Tilted, Cross-sectional Exposures of the Yerington District, Nevada

    Science.gov (United States)

    Dilles, J. H.; Proffett, J. M.

    2011-12-01

    The Jurassic Yerington batholith was cut by Miocene to recent normal faults and tilted ~90° west (Proffett, 1977). Exposures range from the volcanic environment to ~6 km depth in the batholith. Magmatic-hydrothermal fluids derived from the Luhr Hill granite and associated porphyry dikes produced characteristic porphyry copper mineralization and rock alteration (K-silicate, sericitic, and advanced argillic) in near-vertical columnar zones above cupolas on the deep granite. In addition, saline brines derived from the early Mesozoic volcanic and sedimentary section intruded by the batholith were heated and circulated through the batholith producing voluminous sodic-calcic and propylitic alteration. The magnetite-copper ore body at Pumpkin Hollow is hosted in early Mesozoic sedimentary rocks in the contact aureole of the batholith, and appears to be an IOCG type deposit produced where the sedimentary brines exited the batholith. Although many advances in understanding of Yerington have been made by lab-based geochronology and geochemistry studies, the first order igneous and hydrothermal features were recognized first in the 1960s and 1970s and are best documented by geological mapping at a variety of scales ranging from 1:500 to 1:24,000. The Anaconda technique of mapping mine benches, trenches, and drill cores was perfected here (Einaudi, 1997), and other techniques were used for surface exposures. The geologic and hydrothermal alteration maps establish that hydrothermal alteration accompanied each of several porphyry dike intrusions, and affected more than 100 km3 of rock. Both zonation in alteration mineralogy and vein orientations allow reconstruction of source areas and >5 km-long flow-paths of hydrothermal fluids through the batholith and contact aureole.

  13. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  14. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  15. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  16. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  17. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  18. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  19. The study of molybdenite types related to the ore processing plant of the Sar Cheshmeh mine

    OpenAIRE

    Balandeh Aminzadeh; Jamshid Shahabpour; Mortaza Asadipour

    2010-01-01

    Molybdenite occurs in five forms in the Sar Cheshmeh porphyry copper deposit, namely, (1)-veinlets with quartz-molybdenite, (2)-veinlets with quartz-molydenite that were filled with pyrite, (3)-veinlets with quartz-molybdenite-pyrite–chalcopyrite, (4)-Molybdenite veinlets with very low quartz and (5)-disseminated molybdenite grains. Because of their large size, the veinlet-related molybdenite grains are easily liberated from the gangue minerals, provided the grinding is properly conducted (74...

  20. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Science.gov (United States)

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  1. Chalcopyrite—bearer of a precious, non-precious metal

    Science.gov (United States)

    Kimball, Bryn E.

    2013-01-01

    The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.

  2. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  3. Recovery of Copper from Copper Slag by Hydrometallurgy Method, from Iraqi Factories Waste

    Directory of Open Access Journals (Sweden)

    Bahaa Sami Mahdi

    2018-05-01

    Full Text Available   In this research, the recovery of copper from copper slag is investigated using hydrometallurgy method. Slag samples were taken from Al-Shaheed State Company. The results of the chemical analysis showed that the slag contained 11.4% of copper. The recovery process included two stages; the first stage is leaching using diluted sulfuric acid. The most important variables that effect on the leaching process was studied, such as acid concentration, hydrogen peroxide adding, particle size, liquid to solid, stirring speed and leaching time by changing the condition and the stabilizing of other factors at room temperature.               The second stage is precipitation of copper from leaching solution by zinc powder with different weights and times, at room temperature and 1.5 PH value. The results of the first stage manifested that about 99.7% of the copper have been dissolved at the following operational conditions: 50% acid concentration, 5 ml hydrogen peroxide adding, particle size (-75+53 micron, 1:10 liquid to solid, 500 rpm stirring speed and 25 min of leaching time. The highest percentage of copper precipitation in the second stage was 99.8% when added 3gm zinc powder at 20 min. The XRD result revealed that the predominant phase was pure copper. The results of EDS exhibited that a few percentage of oxygen appeared with copper powder. The final of copper recovery ratio was 99.3% with 99.2% purity.

  4. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  5. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  6. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  7. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    Science.gov (United States)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  8. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  9. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    Science.gov (United States)

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  10. The Hyrkkoelae native copper mineralization as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1996-10-01

    The Hyrkkoelae U-Cu mineralization is located in southwestern Finland, near the Palmottu analogue site. The age of the mineralization is estimated to be between 1.8 and 1.7 Ga. Petrological and mineralogical studies have demonstrated that this mineralization has many geological features that parallel those of the sites being considered for nuclear waste disposal in Finland. A particular feature is the existence of native copper and copper sulfides in open fractures in the near-surface zone. This allows us to study the native copper corrosion process in analogous conditions as expected to dominate in the nuclear fuel waste repository. The occurrence of uranyl compounds at these fractures permits also considerations about the sorption properties of the engineered barrier material (metallic copper) and its corrosion products. From the study of mineral assemblages or paragenesis, it appears that the formation of copper sulfide (djurleite, Cu 1.934 ) after native copper (Cu 0 ) under anoxic (reducing) conditions is enhanced by the availability of dissolved HS - in the groundwater circulating in open fractures in the near-surface zone. The minimum concentration of HS - in the groundwater is estimated to be of the order of 10 -5 M (∼ 10 -4 g/l) and the minimum pH value not lower than about 7.8 as indicated by the presence of calcite crystals in the same fracture. The present study is the first one that has been performed on findings of native copper in reducing, neutral to slightly alkaline groundwaters. Thus, the data obtained is of most relevance in improving models of anoxic corrosion of copper canisters. (orig.)

  11. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  12. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  13. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  14. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  15. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  16. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Science.gov (United States)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  17. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-01-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10 -5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  18. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M., E-mail: chumakov.xray@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I. [State University of Moldova (Moldova, Republic of); Jeanneau, E. [Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces (France); Bairac, N. N. [State University of Moldova (Moldova, Republic of); Bocelli, G. [National Research Council (IMEM-CNR), Institute of Materials for Electronics and Magnetism (Italy); Poirier, D.; Roy, J. [Centre Hospitalier Universitaire de Quebec (CHUQ) (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2008-09-15

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10{sup -5} mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  19. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  20. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  1. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  2. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  3. Hepatic copper content, urinary copper excretion, and serum ceruloplasmin in liver disease. [Activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ritland, S; Skrede, S [Rikshospitalet, Oslo (Norway); Steinnes, E [Institutt for Atomenergi, Kjeller (Norway)

    1977-01-01

    Liver copper content, urinary copper output and plasma ceruloplasmin have been evaluated in a variety of liver disorders. An activation analysis procedure for the determination of liver copper content is described. Dried biopsy samples were irradiated for two days at a thermal neutron flux of 1.5x10/sup 13/ ncm/sup -2/sec/sup -1/. After one day's delay the samples were dissolved in an acid mixture with copper carrier, and separated on an anion exchange column. The /sup 64/Cu activity in the separated fractions was recorded by gamma spectrometry using a Ge(Li) solid detector. The urinary copper excretion and the serum ceruloplasmin were determined by conventional laboratory methods.

  4. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  5. Chronology of magmatism and mineralization in the Kassandra mining area, Greece: The potentials and limitations of dating hydrothermal illites

    Science.gov (United States)

    Gilg, H. Albert; Frei, Robert

    1994-05-01

    Various geochronological methods ( U/Pb, Rb/Sr, and K/Ar) have been applied to constrain the timing of magmatism and polymetallic mineralization in the Kassandra mining district, northern Greece. These data provide the first geochronological evidence that porphyry copper mineralization, proximal copper skarns, and distal high-temperature carbonate-hosted Pb-Zn-Ag-Au replacement ores formed contemporaneously and probably within less than 2 million years. Polymetallic mineralization is temporally related to the emplacement of granodioritic to quartz dioritic porphyries (24-25 Ma) that postdate the largest post-tectonic intrusion of the area, the Stratoni granodiorite (27.9 ± 1.2 Ma). Andesite porphyry dikes, which crosscut the Pb-Zn-Ag-Au ores and associated alterations, represent the last magmatic phase in the area (19.1 ± 0.6 Ma) and did not contribute to metal concentration. The combination of K/Ar, Rb/Sr, and oxygen isotope studies of hydrothermal illite-rich clays and careful granulometric analysis constrains the reliability of these geochronological methods and emphasizes the importance of characterizing the post-formational history of the sample. We identify various processes which partly disturbed the K/Ar and Rb/Sr system of some clays, such as retrograde alteration by heated meteoric waters, superimposed supergene illitization, and resetting of both isotopic systems due to a hydrothermal overprint related to the intrusion of the andesite porphyry. Our data, however, suggest that diffusive Ar loss from the finest clay fractions ( 200°C), therefore, do not give reliable formation ages. The loss of Ar may be used to model the cooling history of the hydrothermal system applying the concept of closure temperatures ( DODSON, 1973). 40K- 40Ar rad isochrons of natural, coarser grained (> 0.6 μm) size fractions of illites from single samples, even when slightly contaminated with feldspars, may yield meaningful ages either of the formation or of a reheating event

  6. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    Science.gov (United States)

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  7. Gibbs energy calculation of electrolytic plasma channel with inclusions of copper and copper oxide with Al-base

    Science.gov (United States)

    Posuvailo, V. M.; Klapkiv, M. D.; Student, M. M.; Sirak, Y. Y.; Pokhmurska, H. V.

    2017-03-01

    The oxide ceramic coating with copper inclusions was synthesized by the method of plasma electrolytic oxidation (PEO). Calculations of the Gibbs energies of reactions between the plasma channel elements with inclusions of copper and copper oxide were carried out. Two methods of forming the oxide-ceramic coatings on aluminum base in electrolytic plasma with copper inclusions were established. The first method - consist in the introduction of copper into the aluminum matrix, the second - copper oxide. During the synthesis of oxide ceramic coatings plasma channel does not react with copper and copper oxide-ceramic included in the coating. In the second case is reduction of copper oxide in interaction with elements of the plasma channel. The content of oxide-ceramic layer was investigated by X-ray and X-ray microelement analysis. The inclusions of copper, CuAl2, Cu9Al4 in the oxide-ceramic coatings were found. It was established that in the spark plasma channels alongside with the oxidation reaction occurs also the reaction aluminothermic reduction of the metal that allows us to dope the oxide-ceramic coating by metal the isobaric-isothermal potential oxidation of which is less negative than the potential of the aluminum oxide.

  8. Petrogenesis of low-δ18O quartz porphyry dykes, Koegel Fontein complex, South Africa

    Science.gov (United States)

    Harris, Chris; Mulder, Kwenidyn; Sarkar, Saheli; Whitehead, Benjamin; Roopnarain, Sherissa

    2018-04-01

    This paper investigates the origin of low-δ18O quartz porphyry dykes associated with the 144-133 Ma Koegel Fontein Igneous Complex, which was intruded during the initial phase of breakup of Africa and South America. The 25-km diameter Rietpoort Granite is the largest and youngest phase of activity, and is roofed by a 10-km diameter pendant of gneiss. Quartz porphyry (QP) dykes, up to 15 m in width, strike NW-SE across the complex. The QP dykes that intruded outside the granite have similar quartz phenocryst δ18O values (average 8.0‰, ± 0.7, n = 33) to the granite (average 8.3 ± 1.0, n = 7). The QP dykes that intruded the roof pendant have quartz phenocrysts with more variable δ18O values (average 1.6‰, ± 2.1, n = 55). In some cases quartz phenocrysts have δ18O values as low as - 2.5‰. The variation in δ18O value within the quartz crystal population of individual dykes is small relative to the overall range, and core and rim material from individual quartz phenocrysts in three samples are identical within error. There is no evidence that quartz phenocryst δ18O values have been affected by fluid-rock interaction. Based on a Δquartz-magma value of 0.6‰, magma δ18O values must have been as low as - 3.1‰. Samples collected along the length of the two main QP dykes that traverse the roof pendant have quartz phenocryst δ18O values that range from + 1.1 to + 4.6‰, and - 2.3 to + 5.6‰, respectively. These δ18O values correlate negatively ( r = - 0.96) with initial 87Sr/86Sr, which can be explained by the event that lowered δ18O values of the source being older than the dykes. We suggest that the QP dykes were fed by magma produced by partial melting of gneiss, which had been variably altered at high temperature by 18O-depleted meteoric water during global glaciation at 550 Ma. The early melts had variable δ18O value but as melt pockets interconnected during melting, the δ18O values approached that of average gneiss. Variable quartz phenocryst

  9. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  10. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  11. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process.

    Science.gov (United States)

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo

    2011-10-01

    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  12. Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films

    Science.gov (United States)

    Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team

    2014-03-01

    This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.

  13. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  14. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  15. Post-collisional magmatism and ore-forming systems in the Menderes massif: new constraints from the Miocene porphyry Mo-Cu Pınarbaşı system, Gediz-Kütahya, western Turkey

    Science.gov (United States)

    Delibaş, Okan; Moritz, Robert; Chiaradia, Massimo; Selby, David; Ulianov, Alexey; Revan, Mustafa Kemal

    2017-12-01

    The Pınarbaşı Mo-Cu prospect is hosted within the Pınarbaşı intrusion, which is exposed together with the NW-SE-trending Koyunoba, Eğrigöz, and Baklan plutons along the northeastern border of the Menderes massif. The Pınarbaşı intrusion predominantly comprises monzonite, porphyritic granite, and monzodiorite. All units of the Pınarbaşı intrusion have sharp intrusive contacts with each other. The principal mineralization style at the Pınarbaşı prospect is a porphyry-type Mo-Cu mineralization hosted predominantly by monzonite and porphyritic granite. The porphyry type Mo-Cu mineralization consists mostly of stockwork and NE- and EW-striking sub-vertical quartz veins. Stockwork-type quartz veins hosted by the upper parts of the porphyritic granite within the monzonite, are typically enriched in chalcopyrite, molybdenite, pyrite, and limonite. The late NE- and EW-striking normal faults cut the stockwork vein system and control the quartz-molybdenite-chalcopyrite-sphalerite-fahlore-galena veins, as well as molybdenite-hematite-bearing silicified zones. Lithogeochemical and whole-rock radiogenic isotope data (Sr, Nd and Pb) of the host rocks, together with Re-Os molybdenite ages (18.3 ± 0.1 Ma - 18.2 ± 0.1 Ma) reveal that the monzonitic and granitic rocks of the Pınarbaşı intrusion were derived from an enriched lithospheric mantle-lower crust during Oligo-Miocene post-collisional magmatism. The lithospheric mantle was metasomatised by fluids and subducted sediments, and the mantle-derived melts interacted with lower crust at 35-40 km depth. This mechanism explains the Mo and Cu enrichments of the Pınarbaşı intrusion during back-arc magmatism. We conclude that the melt of the Pınarbaşı intrusion could have rapidly ascended to mid-crustal levels, with only limited crustal assimilation along major trans-lithospheric faults as a result of thinning of the middle to upper crust during regional extension, and resulted in the development of porphyry

  16. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Taxen, C.

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H 2 O - H + - H 2 - F - - Cl - - S 2- - SO 4 2- - NO 3 - - NO 2 - - NH 4 + PO 4 3- - CO 3 2+ . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O 2 in groundwater are the most damaging components for copper corrosion. If available, HS - will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl - ]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH ( + . The negative effects of Cl - are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E H , has been found to be inadequate to describe copper corrosion in a nuclear repository. The available amounts of oxidants/reductants, and the stoichiometry of the corrosion reactions are

  17. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  18. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The physical hydrology of magmatic-hydrothermal systems: High-resolution 18O records of magmatic-meteoric water interaction from the Yankee Lode tin deposit (Mole Granite, Australia)

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2016-04-01

    apparent discrepancy can be explained by the presence of a fluid of meteoric origin that was isotopically equilibrated with a hot, but already solidified and fractured granitic intrusion under rock-dominated conditions prior their transfer to the cold ore deposition site (Heinrich, 1990). Conversely, in porphyry copper systems meteoric fluid incursion has been assumed to participate in formation of peripheral or post-mineralization processes (Bowman et al., 1987; Sillitoe, 2010; Williams-Jones and Migdisov, 2014). However, recent numerical simulations of porphyry copper systems identify a significant role of meteoric fluids for the enrichment process, providing a cooling mechanism for metal-rich fluids expelled from an upper crustal magma chamber (Weis et al. 2012, Weis 2015). Furthermore, new petrographic and fluid inclusion work of ore-mineralized quartz veins (Landtwing et al., 2010; Stefanova et al., 2014) indicates lower (˜ 450r{ }C) than magmatic fluid temperatures for copper precipitation. Given that the Yankee Lode study validated the capability of high resolution, in situ δ 18O analysis to trace meteoric water incursion, we will apply this method to hydrothermal quartz samples from two significant porphyry copper deposits (Bingham Canyon, USA and Elatsite, Bulgaria). By this we intend to better constrain a potential role of meteoric water incursion in porphyry copper ore precipitation. REFERENCES Audétat, A., Günther, D., Heinrich, C. A. 1998: Formation of a Magmatic-Hydrothermal Ore Deposit: Insights with LA-ICP-MS Analysis of Fluid Inclusions: Science, 279, 2091-2094. Audétat, A. 1999: The magmatic-hydrothermal evolution of the Sn/W-mineralized Mole Granite (Eastern Australia): PhD Thesis, 211. Bowman, J. R., Parry, W. T., Kropp, W. P., and Kruer, S. A., 1987: Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah: Economic Geology, 82, 395-428. Heinrich, C.A. 1990: The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition: Economic

  20. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  1. Induction of ceruloplasmin synthesis by interleukin-1 in copper deficient and copper sufficient rats

    International Nuclear Information System (INIS)

    Barber, E.F.; Cousins, R.J.

    1986-01-01

    Ceruloplasmin (Cp) is a copper-containing plasma protein important in the body's acute phase defense system. In copper sufficient rats given two injections of interleukin-1 (IL-1) at 0 and 8 h, ceruloplasmin activity began to significantly increase within 6 h, but did not peak until at least 24 h. The 24 h stimulated activity was 84 +/- 2 umole p-phenylene diamine (pPD) oxidized x min -1 x L -1 compared to a control of 43 +/- 5. These rats were injected with 100uCi 3 H-leucine (ip) 2 h before sacrifice to label newly synthesized proteins. When the 3 H immunoprecipitated by rabbit anti-rat Cp serum is expressed as a percent of the 3 H precipitated by trichloroacetic acid (TCA), the basal Cp synthesis rate was 3% of the total serum protein synthesis. The rate of Cp synthesis peaked 12 h after IL-1 injection at 7% of total serum protein synthesis and by 24 h was back to the basal rate. In copper deficient rats, IL-1 given with copper induced pPD oxidase activity, while IL-1 given alone did not stimulate activity. The basal Cp synthesis rate in these rats was 3%, the same as in the copper sufficient rats. In copper deficient rats, the Cp synthesis rate was induced by IL-1 with or without an injection of copper. Therefore, if dietary copper is in short supply, then although Cp synthesis is induced by this mediator of host defense mechanisms, Cp cannot carry out its functions

  2. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Z.

    2009-01-01

    Full Text Available Hydrometallurgical processes for copper revalorization from overburden of abandoned mine Cerovo in Eastern Serbia were studied. Paper contain results of percolation leaching tests, performed with acidic mine waters accumulated in the bottom of the former open pit, followed by solvent extraction (SX and electrowinning (EW processes on achieved copper pregnant leach solutions. Usage of accumulated waste waters was objected to minimizing the environmental hazard due to uncontrolled leaking of these waters in nearby creeks and rivers. Chemical composition of acidic mine waters used for leaching tests was: (g/dm3: Cu - 0.201; Fe - 0.095; Mn - 0.041; Zn - 0.026; Ni - 0.0004; pH value - 3.3. Copper content in overburden sample used for leaching tests was 0.21% from which 64% were oxide copper minerals. In scope of leaching tests were examined influence of leaching solution pH values and iron (III concentration on copper recovery. It was established that for 120 hours of leaching on pH=1.5 without oxidant agents, copper concentration in pregnant leach solutions enriched up to 1.08g/dm3 which was enough for copper extraction from solution with SX-EW treatment. As extraction reagent in SX circuit was used LIX-984N in a kerosene diluent. Cathode current density in electrowinning cell was 220Am-2 while electrolyte temperature was kept on 50±2oC. Produced cathode copper at the end of SX-EW process has purity of 99.95% Cu.

  3. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  4. William Franke, Sulla verità poetica che è superiore alla Storia: Porfirio e la critica filosofica della letteratura William Franke, On the Poetic Truth that is Higher than History: Porphyry and the Philosophical Interpretation of Literature

    Directory of Open Access Journals (Sweden)

    Laura Lucia Rossi

    2010-06-01

    Full Text Available

    In this article we propose the translation of William Franke’s paper On the Poetic Truth that is Higher than History: Porphyry and the Philosophical Criticism of Literature, in which the American scholar presents the hermeneutic method of the ancient commentators of Homer, with particular reference to the critic practice applied by the Neoplatonic Porphyry in his De Antro Nympharum. With this treatment Franke proposes and hopes for the return to an interpretive method, called philosophical or speculative, also for contemporary criticism.

    In questo articolo è presentata la traduzione del saggio di William Franke Sulla verità poetica che è superiore alla Storia: Porfirio e la critica filosofica della letteratura, in cui lo studioso americano presenta il metodo ermeneutico degli antichi commentatori di Omero, con particolare riferimento alla critica praticata dal neoplatonico Porfirio, proponendo e auspicando il ritorno ad una modalità interpretativa, detta filosofica o speculativa, anche per la critica contemporanea.

  5. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  6. Chemistry of the copper silicon interface

    International Nuclear Information System (INIS)

    Ford, M.J.; Sashin, V.A.; Nixon, K.

    2002-01-01

    Full text: Copper and silicon readily interdiffuse, even at room temperature, to form an interface which can be several nanometers thick. Over the years considerable effort has gone into investigating the diffusion process and chemical nature of the interface formed. Photoemission measurements give evidence for the formation of a stable suicide with a definite stoichiometry, Cu 3 Si. This is evidenced by splitting of the Si LVV Auger line and slight shifts and change in shape of the copper valence band density of states as measured by ultra-violet photoemission. In this paper we present calculations of the electronic structure of copper suicide, bulk copper and silicon, and preliminary measurements of the interface by electron momentum spectroscopy. Densities of states for copper and copper suicide are dominated by the copper 3d bands, and difference between the two compounds are relatively small. By contrast, the full band structures are quite distinct. Hence, experimental measurements of the full band structure of the copper on silicon interface, for example by EMS, have the potential to reveal the chemistry of the interface in a detailed way

  7. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  8. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  9. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    Science.gov (United States)

    Stanojlović, Rodoljub D.; Sokolović, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  10. Unraveling the Amycolatopsis tucumanensis copper-resistome.

    Science.gov (United States)

    Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia

    2012-10-01

    Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.

  11. The role of metasomatism in the balance of halogens in ore-forming process at porphyry Cu-Mo deposits

    Science.gov (United States)

    Berzina, A. N.

    2009-04-01

    Volatile components play an important role in the evolution of ore-magmatic systems and their ore potential. Of special interest are fluorine and chlorine compounds that principally control the transportation of ore elements by the fluid in a magmatic process and under high-temperature hydrothermal conditions. Study of the evolution of fluorine-chlorine activity in the ore-forming process and their source is usually based on analysis of their magmatic history, whereas the additional source of fluorine and chlorine released during metasomatic alteration of rocks hosting mineralization is poorly discussed in the existing literature. Based on microprobe data on Cl and F abundances in halogen-containing minerals (biotite, amphibole, apatite, titanite) in intrusive rocks and their hydrothermally altered varieties, the role of metasomatic processes in the balance of volatiles in the ore-forming system is discussed by the example of porphyry Cu-Mo deposits of Siberia (Russia) and Mongolia. Two groups of the deposits are considered: copper-molybdenum (Erdenetiin Ovoo, Mongolia and Aksug, Russia) with prevailing propylitic and phyllic alteration and molybdenum-copper (Sora, Russia), with predominant potassic alteration. All types of hydrothermal alterations have led to drastic decrease in Cl contents in metasomatic minerals as compared with halogen-containing magmatic minerals. All studied deposits (particularly those where propylitic and phyllic alteration were developed) show a nearly complete chlorine removal from altered halogen-containing rock-forming minerals (biotite and amphibole). The Cl content in amphibole decreases several times at the stage of replacement with actinolite in the process of propylitization. In the later chlorites (ripidolite and brunsvigite) that replace amphibole, actinolite, and biotite, chlorine is not detected by microprobe (detection limit 0.01-0.02% Cl). Chlorine was also not detected in white micas (muscovite-phengite series) in quartz

  12. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  13. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  14. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Puigdomenech, I. [Royal Inst. of Tech., Stockholm (Sweden); Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H{sub 2}O - H{sup +} - H{sub 2} - F{sup -} - Cl{sup -} - S{sup 2-} - SO{sub 4}{sup 2-} - NO{sub 3}{sup -} - NO{sub 2}{sup -} - NH{sub 4}{sup +} PO{sub 4}{sup 3-} - CO{sub 3}{sup 2+} . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O{sub 2} in groundwater are the most damaging components for copper corrosion. If available, HS{sup -} will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl{sup -}]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH (< 4 at 25 deg C, or < 5 at 100 deg C). The presence of other oxidants than H{sup +}. The negative effects of Cl{sup -} are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E

  15. The future of copper in China--A perspective based on analysis of copper flows and stocks.

    Science.gov (United States)

    Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan

    2015-12-01

    This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  17. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  18. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  19. Native copper in Permian Mudstones from South Devon: A natural analogue of copper canisters for high-level radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Werme, L.; Oversby, V.M.

    2001-01-01

    Native copper (>99.9% Cu) sheets associated with complex uraniferous and vanadiferous concretions in Upper Permian Mudstones from south Devon (United Kingdom) have been studied as a 'natural analogue' for copper canisters designed to be used in the isolation of spent fuel and high-level radioactive wastes (HLW) for deep geological disposal. Detailed analysis demonstrates that the copper formed before the mudstones were compacted. The copper displays complex corrosion and alteration. The earliest alteration was to copper oxides, followed sequentially by the formation of copper arsenides, nickel arsenide and copper sulphide, and finally nickel arsenide accompanied by nickel-copper arsenide, copper arsenide and uranium silicates. Petrographic observations demonstrate that these alteration products also formed prior to compaction. Consideration of the published history for the region indicates that maximum compaction of the rocks will have occurred by at least the Lower Jurassic (i.e. over 176 Ma ago). Since that time the copper sheets have remained isolated by the compacted mudstones and were unaffected by further corrosion until uplift and exposure to present-day surface weathering

  20. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  1. Thermal conductivity of tungsten–copper composites

    International Nuclear Information System (INIS)

    Lee, Sang Hyun; Kwon, Su Yong; Ham, Hye Jeong

    2012-01-01

    Highlights: ► We present the temperature dependence of the thermophysical properties for tungsten–copper composite from room temperature to 400 °C. The powders of tungsten–copper were produced by the spray conversion method and the W–Cu alloys were fabricated by the metal injection molding. Thermal conductivity and thermal expansion of tungsten–copper composite was controllable by volume fraction copper. - Abstract: As the speed and degree of integration of semiconductor devices increases, more heat is generated, and the performance and lifetime of semiconductor devices depend on the dissipation of the generated heat. Tungsten–copper alloys have high electrical and thermal conductivities, low contact resistances, and low coefficients of thermal expansion, thus allowing them to be used as a shielding material for microwave packages, and heat sinks for high power integrated circuits (ICs). In this study, the thermal conductivity and thermal expansion of several types of tungsten–copper (W–Cu) composites are investigated, using compositions of 5–30 wt.% copper balanced with tungsten. The tungsten–copper powders were produced using the spray conversion method, and the W–Cu alloys were fabricated via the metal injection molding. The tungsten–copper composite particles were nanosized, and the thermal conductivity of the W–Cu alloys gradually decreases with temperature increases. The thermal conductivity of the W–30 wt.% Cu composite was 238 W/(m K) at room temperature.

  2. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  3. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  4. Copper toxicity in housed lambs

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  5. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  6. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  7. Copper Recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  8. “Pulling the plug” on cellular copper: The role of mitochondria in copper export

    OpenAIRE

    Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2008-01-01

    Mitochondria contain two enzymes, Cu, Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondria...

  9. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii

    Science.gov (United States)

    Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.

    2016-01-01

    ABSTRACT Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa. Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic

  10. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Williams, Caitlin L; Neu, Heather M; Gilbreath, Jeremy J; Michel, Sarah L J; Zurawski, Daniel V; Merrell, D Scott

    2016-10-15

    Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options

  11. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.

    1983-10-01

    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  12. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  13. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S.; Sood, D.K.; Zmood, R.B. [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1993-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  14. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S; Sood, D K; Zmood, R B [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1994-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  15. Seeding of silicon by copper ion implantation for selective electroless copper plating

    International Nuclear Information System (INIS)

    Bhansali, S.; Sood, D.K.; Zmood, R.B.

    1993-01-01

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm 2 using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm 2 for 'seed' formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by 'scotch tape test'. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs

  16. COPPER RESISTANT STRAIN CANDIDA TROPICALIS RomCu5 INTERACTION WITH SOLUBLE AND INSOLUBLE COPPER COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ie. P. Prekrasna

    2015-10-01

    Full Text Available The focus of the study was interaction of Candida tropicalis RomCu5 isolated from highland Ecuador ecosystem with soluble and insoluble copper compounds. Strain C. tropicalis RomCu5 was cultured in a liquid medium of Hiss in the presence of soluble (copper citrate and CuCl2 and insoluble (CuO and CuCO3 copper compounds. The biomass growth was determined by change in optical density of culture liquid, composition of the gas phase was measured on gas chromatograph, redox potential and pH of the culture fluid was defined potentiometrically. The concentration of soluble copper compounds was determined colorimetrically. Maximal permissible concentration of Cu2+ for C. tropicalis RomCu5 was 30 000 ppm of Cu2+ in form of copper citrate and 500 ppm of Cu2+ in form of CuCl2. C. tropicalis was metabolically active at super high concentrations of Cu2+, despite the inhibitory effect of Cu2+. C. tropicalis immobilized Cu2+ in the form of copper citrate and CuCl2 by it accumulation in the biomass. Due to medium acidification C. tropicalis dissolved CuO and CuCO3. High resistance of C. tropicalis to Cu2+ and ability to interact with soluble and insoluble copper compounds makes it biotechnologically perspective.

  17. Colloidal and electrochemical aspects of copper-CMP

    Science.gov (United States)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  18. Theft in Price-Volatile Markets: On the Relationship between Copper Price and Copper Theft

    OpenAIRE

    Sidebottom, A.; Belur, J.; Bowers, K.; Tompson, L.; Johnson, S. D.

    2011-01-01

    Recently, against a backdrop of general reductions in acquisitive crime, increases have been observed in the frequency of metal theft offences. This is generally attributed to increases in metal prices in response to global demand exceeding supply. The main objective of this article was to examine the relationship between the price of copper and levels of copper theft, focusing specifically on copper cable theft from the British railway network. Results indicated a significant positive correl...

  19. Adsorption of copper from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120

    International Nuclear Information System (INIS)

    Jha, Manis Kumar; Nghiem Van Nguyen; Lee, Jae-chun; Jeong, Jinki; Yoo, Jae-Min

    2009-01-01

    In view of the increasing importance of the waste processing and recycling to meet the strict environmental regulations, the present investigation reports an adsorption process using the cationic exchanger Amberlite IR 120 for the recovery/removal of copper from the synthetic sulphate solution containing copper ≤0.7 mg/mL similar to the CMP waste effluent of electronic industry. Various process parameters, viz. contact time, solution pH, resin dose, and acid concentration of eluant were investigated for the adsorption of copper from the effluents. The 99.99% copper was found to be adsorbed from the sulphate solution containing copper 0.3-0.7 mg/mL of solution (feed pH 5) at A/R ratio 100 and eq. pH 2.5 in contact time 14 min. The mechanism for the adsorption of copper was found to follow Langmuir isotherm and second order rate. From the loaded organic, copper was eluted effectively by 1.8 M sulphuric acid at A/R ratio 25. The raffinate obtained after the recovery copper could be disposed safely without affecting the environment.

  20. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    Science.gov (United States)

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  1. Reparatory adaptation to copper-induced injury and occurrence of a copper-binding protein in the polycheate, Eudistylia vancouveri

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.; Roesijadi, G.

    1983-01-01

    Chemically injured branchial pinnae of copper-treated polychaetes, Eudistylia vancouveri, regenerated while still exposed to copper. The first observations of pinna regeneration coincided with the apparent induction of a low molecular weight (approx.5000 daltons) copper-binding protein. This protein may play a role in the detoxification of copper and subsequent tissue regeneration. 7 references, 5 figures.

  2. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  3. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  4. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris.

    Science.gov (United States)

    Balakumaran, Palanisamy Athiyaman; Förster, Jan; Zimmermann, Martin; Charumathi, Jayachandran; Schmitz, Andreas; Czarnotta, Eik; Lehnen, Mathias; Sudarsan, Suresh; Ebert, Birgitta E; Blank, Lars Mathias; Meenakshisundaram, Sankaranarayanan

    2016-02-20

    Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge

  5. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  6. Activation determination of copper in food

    International Nuclear Information System (INIS)

    Jiranek, V.; Bludovsky, R.

    1982-01-01

    Neutron activation analysis was used for determining copper content in food. Analyzed were dried milk, flour, coffee, tea, husked rice, and liver. Bowen's kale powder with a guaranteed copper content of 3.6 to 6.5 ppm was used as a reference biological material. The instruments, chemicals and solutions used are reported. The method is described of copper separation with α-benzoinoxime and pyridine as is the procedure for the destructive activation analysis of samples. The copper concentrations in the foods under analysis were found to range within usual limits. The copper concentration determined in the reference material agreed with the measured value. The analysis confirms that the method yields reliable results. (J.B.)

  7. Chronic copper poisoning. III. Effects of copper acetate injected into the bloodstream of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Todd, J R; Thompson, R H

    1964-01-01

    A study was made of the clinical and biochemical effects of injections of copper (as acetate) into the bloodstream of sheep of 100 to 130 lb. liveweight. Copper in a dose of 160 mg. caused death in 3 sheep in a few hours, and 80 mg. caused death in 3 out of 4 sheep, 2 after 2 days and 1 after 11 days. Symptoms, biochemical lesions and post-mortem appearances did not resemble those of chronic copper poisoning, but rather those of gastro-enteritis. Blood glutathione concentrations were not markedly reduced, but haemoconcentration was a prominent feature. Post-mortem examination showed gross congestion of blood vessels and marked inflammatory reactions in the abomasum and small intestine. Single injections of smaller amounts (25 to 40 mg. copper) were tolerated without effect, but repeated injections, twice daily for 2 to 3 days, caused haemolytic episodes in 3 sheep similar to the crisis of chronic copper poisoning in that a marked reduction in blood glutathione concentration and accumulation of methaemoglobin occurred. No other clinical effects were produced, however, and all three animals recovered uneventfully.

  8. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  9. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  10. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  11. VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS

    Directory of Open Access Journals (Sweden)

    M. O. Fomina

    2014-04-01

    Full Text Available The aim of work was to elucidate the mechanisms of bioaccumulation of copper leached from minerals by fungus Aspergillus niger with great bioremedial potential due to its ability to produce chelating metabolites and transform toxic metals and minerals. The special attention was paid to the chemical speciation of copper bioaccumulated within fungal colony in the process of fungal transformation of copper-containing minerals. Chemical speciation of copper within different parts of the fungal colony was studied using solid-state chemistry methods such as synchrotron-based X-ray absorption spectroscopy providing information about the oxidation state of the target element, and its coordination environment. The analysis of the obtained X-ray absorption spectroscopy spectra was carried out using Fourier transforms of Extended X-ray Absorption Fine Structure regions, which correspond to the oscillating part of the spectrum to the right of the absorption edge. Results of this study showed that fungus A. niger was involved in the process of solubilization of copper-containing minerals resulted in leaching of mobile copper and its further immobilization by fungal biomass with variable coordination of accumulated copper within fungal colony which depended on the age and physiological/reproductive state of fungal mycelium. X-ray absorption spectroscopy data demonstrated that copper accumulated within outer zone of fungal colony with immature vegetative mycelium was coordinated with sulphur–containing ligands, in contrast to copper coordination with phosphate ligands within mature mycelium with profuse conidia in the central zone of the colony. The findings of this study not only broaden our understanding of the biogeochemical role of fungi but can also be used in the development of various fungal-based biometallurgy technologies such as bioremediation, bioaccumulation and bioleaching and in the assessment of their reliability. The main conclusion is that

  12. 21 CFR 74.3045 - [Phthalocyaninato(2-)] copper.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false [Phthalocyaninato(2-)] copper. 74.3045 Section 74...-)] copper. (a) Identity. The color additive is [phthalocyaninato(2-)] copper (CAS Reg. No. 147-14-8) having... [phthalocyaninato(2-)] copper shall conform to the following specifications and shall be free from impurities other...

  13. Oxidation-assisted graphene heteroepitaxy on copper foil.

    Science.gov (United States)

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-11-10

    We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.

  14. Electroforming copper targets for RTNS-II

    International Nuclear Information System (INIS)

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-01-01

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described

  15. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    Energy Technology Data Exchange (ETDEWEB)

    Boon, G.T. [State Univ. Groningen (Netherlands); Bouwman, L.A.; Bloem, J.; Roemkens, P.F.A.M. [Research Inst. for Agrobiology and Soil Fertility, Haren (Netherlands)

    1998-10-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reduced crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.

  16. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  17. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    Directory of Open Access Journals (Sweden)

    H. Kokes

    2014-03-01

    Full Text Available The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III hydroxide was precipitated by adjusting the pH level of the solution. Subsequently, copper sulfate pentahydrate was obtained by using various precipitants (i.e. ethanol, methanol and sulfuric acid.

  18. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    OpenAIRE

    Qing-qing Pan; Hui-qing Peng

    2018-01-01

    The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing...

  19. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  20. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    Science.gov (United States)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  1. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  2. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    Science.gov (United States)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  3. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    2017-05-01

    Full Text Available The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs, and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically or enhancement of copper-exporting activity (CrpA in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.

  4. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  5. Atmospheric pollution with copper around the copper mine and flotation, 'Buchim', Republic of Macedonia, using biomonitoring moss and lichen technique

    International Nuclear Information System (INIS)

    Balabanova, Biljana; Bacheva, Katerina; Shajn, Robert; Stafilov, Trajche

    2009-01-01

    This paper has studied the atmospheric pollution with copper due to copper mining and flotation 'Buchim' near Radovish, Republic of Macedonia. The copper ore and ore tailings continually are exposed to open air, which occur winds carry out the fine particles in to atmosphere. Moss (Hyloconium splendens and Pleurozium schrebery) and lichen (Hypogymnia physodes and Parmelia sulcata) samples were used for biomonitoring the possible atmospheric pollution with copper in the mine vicinity. Moss and lichen samples were digested by using of microwave digestion system and copper was analyzed by atomic emission spectrometry with inductively coupled plasma (ICPAES). The obtained values for the content of copper in moss and lichen samples were statistically processed using the nonparametric and parametric analysis. Maps of areal deposition of copper show an increase content of copper in the vicinity of mine, but long distance distribution of this element is not established yet.

  6. Photoelectrochemistry of copper(I) acetylide films electrodeposited onto copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G.; Cattarin, S.; Mengoli, G.; Fleischmann, M.; Peter, L.M.

    1986-01-01

    Films of copper acetylide (Cu/sub 2/C/sub 2/) were grown electrochemically on copper and characterized by transmittance and reflectance techniques. The photoelectrochemical properties of the filmed electrodes in alkaline solution indicate that Cu/sub 2/C/sub 2/ behaves as a p-type semiconducting material (1.5 eV band gap). The photocurrents depend on film thickness and aging and high resistivity or recombination losses limit the quantum yield to some 4% for thicknesses of practical importance (250 nm).

  7. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    OpenAIRE

    H. Kokes; M.H. Morcali; E. Acma

    2014-01-01

    The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III) hydroxide was precipitated by...

  8. Rate and Regulation of Copper Transport by Human Copper Transporter 1 (hCTR1)*

    Science.gov (United States)

    Maryon, Edward B.; Molloy, Shannon A.; Ivy, Kristin; Yu, Huijun; Kaplan, Jack H.

    2013-01-01

    Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry. PMID:23658018

  9. 21 CFR 73.2647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.2647 Section 73.2647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The color additive copper powder shall conform in identity and specifications to the requirements of § 73...

  10. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    Directory of Open Access Journals (Sweden)

    Hille Fieten

    2016-01-01

    Full Text Available The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional

  11. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    International Nuclear Information System (INIS)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  12. Studies on the copper-poisoned soils. Part 2. Actual condition of the copper-poison in the soils and the rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Koshiba, N.; Sano, Y.

    1968-01-01

    Copper contents of soils and rice plants in paddylands were correlated with growth. The results were as follows: available copper content in paddies was 181.8 ppm where the rice plants grew poorly, and was more than 4 times the value of the soil where rice plants grew favorably. The difference growth was obviously caused by available copper. The copper content of the rice plants showing poor growth was the same as those which grew well. Plants were poisoned by available copper of more than 100 ppm. The available copper contents were increased by drying processes of the paddyland soils distributed in the copper-poisoned area. 8 references, 6 tables.

  13. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803

    Science.gov (United States)

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-01-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960

  14. Corrosion of copper and copper alloys in a basaltic repository environment

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1990-01-01

    Corrosion testing done on copper and copper alloys in support of the basalt repository program is discussed. Tests were performed under anoxic conditions at 50C, 100C, 150C and 200C in the presence of a saturated basalt-bentonite packing. Tests were also performed in an air/steam mixture at temperatures between 150C and 200C. Some tests, particularly those in air/steam mixtures, were done in the presence of radiation fields of 10 2 , 10 3 or 10 4 rad/h. Exposure periods were up to 28 months. A synthetic groundwater, Grande Ronde ≠4, was used. The materials studied were ASTM B402μm·a for copper and 17 μm·a for cupronickel, but the average rates were muμm·a was obtained. The rates at longer times were less than a third of this value. Corrosion increased monotonically with time and temperature. Chalcocite (Cu 2 S) was the corrosion product at 200C. There was no detectable radiation effect, and no pitting was observed. In air/steam corrosion was uniform with no pitting. Linear corrosion was observed for pure copper. The maximum corrosion penetration after 25 months was 0.13 mm at 300C; cupronickel corroded more slowly, with a maximum penetration of 0.045mm after 25 months. Cuprite (Cu 2 O) and tenorite (CuO) were identified on cupronickel, but only Cu 2 O on copper. A pronounced radiation effect was seen at 250C, but not at 150C; the surface film morphology was different under irradiation. In the short term the presence of packing increased the corrosion rate. 5 refs

  15. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  16. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  17. Bioleaching of two different genetic types of chalcopyrite and their comparative mineralogical assessment.

    Science.gov (United States)

    Deng, Sha; Gu, Guohua; Ji, Jing; Xu, Baoke

    2018-02-01

    The bioleaching of two different genetic types of chalcopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans was investigated by leaching behaviors elucidation and their comparative mineralogical assessment. The leaching experiment showed that the skarn-type chalcopyrite (STC) revealed a much faster leaching rate with 33.34% copper extracted finally, while only 23.53% copper was bioleached for the porphyry-type chalcopyrite (PTC). The mineralogical properties were analyzed by XRD, SEM, XPS, and Fermi energy calculation. XRD indicated that the unit cell volume of STC was a little larger than that of PTC. SEM indicated that the surface of STC had more steps and ridges. XPS spectra showed that Cu(I) was the dominant species of copper on the surfaces of the two chalcopyrite samples, and STC had much more copper with lower Cu 2p 3/2 binding energy. Additionally, the Fermi energy of STC was much higher than that of PTC. These mineralogical differences were in good agreement with the bioleaching behaviors of chalcopyrite. This study will provide some new information for evaluating the oxidation kinetics of chalcopyrite.

  18. Temperature and Copper Concentration Effects on the Formation of Graphene-Encapsulated Copper Nanoparticles from Kraft Lignin

    Directory of Open Access Journals (Sweden)

    Weiqi Leng

    2017-06-01

    Full Text Available The effects of temperature and copper catalyst concentration on the formation of graphene-encapsulated copper nanoparticles (GECNs were investigated by means of X-ray diffraction, Fourier transform infrared spectroscopy-attenuated total reflectance, and transmission electron microscopy. Results showed that higher amounts of copper atoms facilitated the growth of more graphene islands and formed smaller size GECNs. A copper catalyst facilitated the decomposition of lignin at the lowest temperature studied (600 °C. Increasing the temperature up to 1000 °C retarded the degradation process, while assisting the reconfiguration of the defective sites of the graphene layers, thus producing higher-quality GECNs.

  19. Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of Pantoea ananatis.

    Science.gov (United States)

    Nischwitz, C; Gitaitis, R; Sanders, H; Langston, D; Mullinix, B; Torrance, R; Boyhan, G; Zolobowska, L

    2007-10-01

    ABSTRACT A survey was conducted to evaluate differences in fatty acid methyl ester (FAME) profiles among strains of Pantoea ananatis, causal agent of center rot of onion (Allium cepa), isolated from 15 different onion cultivars in three different sites in Georgia. Differences in FAME composition were determined by plotting principal components (PCs) in two-dimensional plots. Euclidean distance squared (ED(2)) values indicated a high degree of similarity among strains. Plotting of PCs calculated from P. ananatis strains capable of growing on media amended with copper sulfate pentahydrate (200 mug/ml) indicated that copper-tolerant strains grouped into tight clusters separate from clusters formed by wild-type strains. However, unlike copper-sensitive strains, the copper-tolerant strains tended to cluster by location. A total of 80, 60, and 73% of the strains from Tift1, Tift2, and Tattnall, respectively, exhibited either confluent growth or partial growth on copper-amended medium. However, all strains were sensitive to a mixture of copper sulfate pentahydrate (200 mug/ml) and maneb (40 mug/ml). When copper-tolerant clones were analyzed and compared with their wild-type parents, in all cases the plotting of PCs developed from copper-tolerant clones formed tight clusters separate from clusters formed by the parents. Eigenvalues generated from these tests indicated that two components provided a good summary of the data, accounting for 98, 98, and 96% of the standardized variance for strains Pna 1-15B, Pna 1-12B, and Pna 2-5A, respectively. Furthermore, feature 4 (cis-9-hexadecenoic acid/2-hydroxy-13-methyltetradecanoic acid) and feature 7 (cis-9/trans-12/cis-7-octadecenoic acid) were the highest or second highest absolute values for PC1 in all three strains of the parents versus copper-tolerant clones, and hexadecanoic acid was the highest absolute value for PC2 in all three strains. Along with those fatty acids, dodecanoic acid and feature 3 (3-hydroxytetradecanoic

  20. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  1. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  2. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  3. Effectiveness acidic pre-cleaning for copper-gold ore

    Directory of Open Access Journals (Sweden)

    Antonio Clareti Pereira

    Full Text Available Abstract The presence of copper-bearing minerals is known to bring on many challenges during the cyanidation of gold ore, like high consumption of cyanide and low extraction of metal, which are undesirable impacts on the auriferous recovery in the subsequent process step. The high copper solubility in cyanide prevents the direct use of classical hydrometallurgical processes for the extraction of gold by cyanidation. Additionally, the application of a conventional flotation process to extract copper is further complicated when it is oxidized. As a result, an acid pre-leaching process was applied in order to clean the ore of these copper minerals that are cyanide consumers. The objective was to evaluate the amount of soluble copper in cyanide before and after acidic cleaning. From a gold ore containing copper, the study selected four samples containing 0.22%, 0.55%, 1.00% and 1.36% of copper. For direct cyanidation of the ore without pre-treatment, copper extraction by cyanide complexing ranged from 8 to 83%. In contrast, the pre-treatment carried out with sulfuric acid extracted 24% to 99% of initial copper and subsequent cyanidation extracted 0.13 to 1.54% of initial copper. The study also showed that the copper contained in the secondary minerals is more easily extracted by cyanide (83%, being followed by the copper oxy-hydroxide minerals (60%, while the copper contained in the manganese oxide is less complexed by cyanide (8% a 12%. It was possible to observe that minerals with low acid solubility also have low solubility in cyanide. Cyanide consumption decreased by about 2.5 times and gold recovery increased to above 94% after acidic pre-cleaning.

  4. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  5. Grape berry bacterial inhibition by different copper fungicides

    Directory of Open Access Journals (Sweden)

    Martins Guilherme

    2016-01-01

    Full Text Available Copper fungicides are widely used in viticulture. Due to its large spectrum of action, copper provides an efficient control over a great number of vine pathogens. Previous studies showed that, high levels of cupric residues can impact grape-berry microbiota, in terms of the size and population structure, reducing the diversity and the abundance. Due to the importance of grape-berry bacterial in crop health, and the potential impact of copper fungicides over the microbiota, we determined Minimum Inhibitory Concentration (MIC of different copper formulations for bacterial species isolated from grape berries. We study the Minimum Inhibitory Concentration (MIC of different copper formulations (copper sulphate (CuSO4 pure, Bordeaux mixture (CuSO4 + Ca(OH2, copper oxide (Cu2O, copper hydroxide (Cu(OH2 over 92 bacterial strains isolated from grape berries in different stages of the ripening process. The results of MIC measurements revealed that the different copper formulations have a variable inhibitory effect and among the different isolates, some species are the most resistant to all copper formulations than others. This study confirm that usage of cupric phytosanitary products should be reasonable independently of the farming system; they also provide evidence of the importance of the choice of which copper formulations are to be used regarding their impact on the grape berry bacterial microbiota.

  6. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  7. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    Science.gov (United States)

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  8. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  9. Oxidation-assisted graphene heteroepitaxy on copper foil

    OpenAIRE

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-01-01

    We propose an innovative, easy-to-implement approach to synthesize large-area singlecrystalline graphene sheets by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, f...

  10. Uranium accompanying recovery from copper ores

    International Nuclear Information System (INIS)

    Golynko, Z.Sh.; Laskorin, B.N.

    1981-01-01

    In the search for new raw material sources for nuclear power engineering a review of the technique of uranium accompaning recovery from copper ores reprocessing products in some countries is presented. In the USA a sorption method of uranium extraction by means of strongly basic ion exchange resins from solutions upon copper case- hardening with subsequent extraction from eluates by solutions of tertiary amines is realized. Elution is realized with sulphuric acid. In South Africa an extraction reprocessing of gravitational concentrate extracted from copper sulphide flotation tailings is organized. In India the uranium extraction from copper ores flotation enrichment tailings is organized on a commerical scale. Presented are data on the scale of uranium recovery, various conditions of its recovery as well as block diagrams of the processes. It is shown that copper ores become an additional source of uranium recovery [ru

  11. Influence of copper volume fraction on tensile strain/stress tolerances of critical current in a copper-plated DyBCO-coated conductor

    International Nuclear Information System (INIS)

    Ochiai, Shojiro; Okuda, Hiroshi; Arai, Takahiro; Sugano, Michinaka; Osamura, Kozo; Prusseit, Werner

    2013-01-01

    The influence of the volume fraction (V f ) of copper, plated at room temperature over a DyBa 2 Cu 3 O 7-δ -coated conductor, on the tensile strain tolerance and stress tolerance of critical current at 77 K was studied over a wide range of copper V f values. The copper plating exerts a tensile stress during cooling because copper has a higher coefficient of thermal expansion than the substrate conductor. Before application of tensile strain, the copper plated at room temperature yielded at 77 K when the copper V f was lower than a critical value, and was in an elastic state at 77 K when the copper V f was higher than the critical value. The strain tolerance of critical current increased with increasing copper V f due to an increase in thermally induced compressive strain in the substrate tape. The stress tolerance of critical current decreased with increasing copper V f because copper is softer than the substrate tape. These results, together with the trade-off between strain tolerance and stress tolerance (i.e., stress tolerance decreases with increasing strain tolerance), were analyzed by modeling. The results show that the restriction imposed by the trade-off, which limits the ability to simultaneously obtain a high strain tolerance and a high stress tolerance, can be relaxed by strengthening the copper. (author)

  12. In long-term bedridden elderly patients with dietary copper deficiency, biochemical markers of bone resorption are increased with copper supplementation during 12 weeks.

    Science.gov (United States)

    Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho

    2006-01-01

    Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.

  13. Comparison and analysis of the efficiency of heat exchange of copper rod and copper wires current lead

    International Nuclear Information System (INIS)

    Fang, J.; Yu, T.; Li, Z.M.; Wei, B.; Qiu, M.; Zhang, H.J.

    2013-01-01

    Highlights: •An optimized design of HTS binary current leads is proposed. •Temperature distributions of two different current leads are calculated. •Experiments are done to certify the calculated temperature distributions. •The experiments proved that the copper wires increase security margins. -- Abstract: Current leads are the key components that connect the low-temperature and high temperature parts of the cryogenic system. Owing to the wide range of temperatures, current leads are the main sources of heat leakage. Since the HTS tapes have no resistance and the generated Joule heat is almost zero, HTS binary current leads can reduce heat leakage compared to the conventional leads. However, heat will still be generated and conducted to the cryogenic system through the copper parts of the HTS current leads. In order to reduce heat leakage by the copper parts of the HTS current leads, this paper presents an optimized design of the copper parts of HTS binary current leads. Inside the leads, the copper wires were applied as an alternative to the copper rod without changing the overall dimensions. Firstly, the differential function of heat transfer was derived. By solving the function, the optimum number of the copper wires and the temperature distribution of two different current leads were gotten. Then the experiment of the temperature distribution was done, and the experimental results were basically the same with the calculative results. The simulation and related experiments proved that the copper wire can increase security margins and reduce maximum temperatures under the same shunt current

  14. Comparison and analysis of the efficiency of heat exchange of copper rod and copper wires current lead

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Yu, T. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Z.M.; Wei, B.; Qiu, M.; Zhang, H.J. [China Electric Power Research Institute, Haidian District, Beijing (China)

    2013-11-15

    Highlights: •An optimized design of HTS binary current leads is proposed. •Temperature distributions of two different current leads are calculated. •Experiments are done to certify the calculated temperature distributions. •The experiments proved that the copper wires increase security margins. -- Abstract: Current leads are the key components that connect the low-temperature and high temperature parts of the cryogenic system. Owing to the wide range of temperatures, current leads are the main sources of heat leakage. Since the HTS tapes have no resistance and the generated Joule heat is almost zero, HTS binary current leads can reduce heat leakage compared to the conventional leads. However, heat will still be generated and conducted to the cryogenic system through the copper parts of the HTS current leads. In order to reduce heat leakage by the copper parts of the HTS current leads, this paper presents an optimized design of the copper parts of HTS binary current leads. Inside the leads, the copper wires were applied as an alternative to the copper rod without changing the overall dimensions. Firstly, the differential function of heat transfer was derived. By solving the function, the optimum number of the copper wires and the temperature distribution of two different current leads were gotten. Then the experiment of the temperature distribution was done, and the experimental results were basically the same with the calculative results. The simulation and related experiments proved that the copper wire can increase security margins and reduce maximum temperatures under the same shunt current.

  15. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    Science.gov (United States)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  16. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials.

    Science.gov (United States)

    Tang, Yuanyuan; Chan, Siu-Wai; Shih, Kaimin

    2014-06-01

    A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  18. Method for providing uranium with a protective copper coating

    Science.gov (United States)

    Waldrop, Forrest B.; Jones, Edward

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  19. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  20. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui, E-mail: quxh@ustb.edu.cn

    2014-02-25

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m{sup −1} K{sup −1} and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m{sup −1} K{sup −1} and 8 to 5 ppm K{sup −1}, respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  1. Copper : recession and recovery

    International Nuclear Information System (INIS)

    Warwick-Ching, T.

    2002-01-01

    In 2002, the world output for copper will fall for the first time in nearly a decade because of financial pressure and voluntary constraints. Cutbacks at copper mines amount to 760,000 tonnes per year. These cutbacks have occurred mostly in the United States which holds the largest share of high cost mines. This paper discussed recent developments in both copper supply and demand. The United States is unique as both a large consumer and producer of copper. At 1.35 million tonnes, US mine output in 2001 was at its lowest since 1987. The cutbacks in mining in general were described in this paper with particular reference to the huge loss of mining and metallurgical activity in the United States during a prolonged period of low prices in the mid 1980s. The author noted that this period was followed by an exceptional decade when much of the industry rebounded. Only 8 mines closed outright in the United States and a handful in Canada since the recession of the 1980s, but that is partly because mines got bigger and there are fewer small mines in North America. There are only 4 electrolytic refineries and 3 smelters still active in the entire United States, of which 2 are operating at a fraction of capacity. It was noted that only the buoyancy of China prevented a much bigger decline in copper demand on a global scale

  2. Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials

    Science.gov (United States)

    Bastos, Carlos A. P.; Faria, Nuno; Ivask, Angela; Bondarenko, Olesja M.; Kahru, Anne; Powell, Jonathan

    2018-04-01

    Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here, we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe, and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm and a mean zeta potential of - 40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range, but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 h. We provide a practical formulation for topical copper-based antimicrobial therapy. Further studies, especially in vivo, are merited.

  3. Distribution and Diversity of the Cryptic Ant Genus Oxyepoecus (Hymenoptera: Formicidae: Myrmicinae in Paraguay with Descriptions of Two New Species

    Directory of Open Access Journals (Sweden)

    T. Delsinne

    2012-01-01

    Full Text Available We discuss the diversity and distribution of the ant genus Oxyepoecus in Paraguay. Oxyepoecus inquilinus is recorded for the first time, and new distribution data are given for O. rastratus and O. vezenyii. Published data for O. bruchi, O. rastratus, O. reticulatus, and O. vezenyii are summarized. Two new species are described (O. bidentatus n. sp. and O. striatus n. sp., and a key to the workers of the seven Paraguayan Oxyepoecus species is provided. At Teniente Enciso National Park, four species cooccur. This locality appears as a promising site for studies documenting the biology of this poorly known ant genus, and because of the IUCN “vulnerable“ Red List classification of O. inquilinus, the importance of the Teniente Enciso National Park for biological conservation is clearly established.

  4. Tracing low-temperature aqueous metal migration in mineralized watersheds with Cu isotope fractionation

    International Nuclear Information System (INIS)

    Mathur, R.; Munk, L.A.; Townley, B.; Gou, K.Y.; Gómez Miguélez, N.; Titley, S.; Chen, G.G.; Song, S.; Reich, M.; Tornos, F.; Ruiz, J.

    2014-01-01

    Highlights: • Cu isotope fractionation of ores and waters identifies copper sulfide weathering. • Redox reactions cause isotopic shift measured in areas of sulfide weathering. • Consistent isotope signature in different deposit, climate, or concentration. - Abstract: Copper isotope signatures in waters emanating from mineralized watersheds provide evidence for the source aqueous copper in solution. Low-temperature aqueous oxidation of Cu sulfide minerals produces significant copper isotopic fractionation between solutions and residues. Abiotic experimental data of fractionation (defined as Δ liquid–solid ‰ = δ 65 Cu liquid − δ 65 Cu solid ) are on the order of 1–3‰ and are unique for copper rich-sulfide minerals. Data presented here from ores and waters within defined boundaries of porphyry copper, massive sulfide, skarn, and epithermal ore deposits mimic abiotic experiments. Thus, the oxidation of sulfide minerals appears to cause the signatures in the waters although significant biological, temperature, and pH variations exist in the fluids. Regardless of the deposit type, water type, concentration of Cu in solution, or location, the data provide a means to trace sources of metals in solutions. This relationship allows for tracking sources and degree of metal migration in low temperature aqueous systems and has direct application to exploration geology and environmental geochemistry

  5. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    Science.gov (United States)

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.

  6. What is the Potential for More Copper Fabrication in Zambia?

    OpenAIRE

    World Bank

    2011-01-01

    The copper fabrication industry lies between: (1) the industry that produces copper (as a commodity metal from mined ores as well as from recycling), and (2) the users of copper in finished products such as electronic goods. Copper fabrication involves the manufacture of products such as copper wire, wire rod, low-voltage cable, and other copper based semi-manufactures. Copper is clearly a...

  7. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  8. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    Science.gov (United States)

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  9. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate

    International Nuclear Information System (INIS)

    Herrero, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J.

    2005-01-01

    Leaching of copper concentrates using cupric chloro complexes, generated in situ by the reaction between Cu(II), aported by the soluble copper content of the concentrate, and sodium chloride in acid media was studied. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Chemical and mineralogical characterization from original concentrates was made. Typical variable such as a chloride concentration, soluble copper concentration, leaching time, solid percentage and temperature were studied. DRX and EDS analyzed some of the residues. the experimental results indicated that it is possible to obtain solutions having high copper content (15 to 35 g/L) and 2 to 5 g/L free acid in order to submit this solution directly to a solvent extraction stage. The leaching tests use common reactive and low cost such as sodium chloride and sulfuric acid. (Author) 16 refs

  10. Beryllium-copper reactivity in an ITER joining environment

    International Nuclear Information System (INIS)

    Odegard, B.C.; Cadden, C.H.; Yang, N.Y.C.

    1998-01-01

    Beryllium-copper reactivity was studied using test parameters being considered for use in the ITER reactor. In this application, beryllium-copper tiles are produced using a low-temperature copper-copper diffusion bonding technique. Beryllium is joined to copper by first plating the beryllium with copper followed by diffusion bonding the electrodeposited (ED) copper to a wrought copper alloy (CuNiBe) at 450 C, 1-3 h using a hot isostatic press (HIP). In this bonded assembly, beryllium is the armor material and the CuNiBe alloy is the heat sink material. Interface temperatures in service are not expected to exceed 350 C. For this study, an ED copper-beryllium interface was subjected to diffusion bonding temperatures and times to study the reaction products. Beryllium-copper assemblies were subjected to 350, 450 and 550 C for times up to 200 h. Both BeCu and Be 2 Cu intermetallic phases were detected using scanning electron microscopy and quantitative microprobe analysis. Growth rates were determined experimentally for each phase and activation energies for formation were calculated. The activation energies were 66 mol and 62 kJ mol -1 for the BeCu and Be 2 Cu, respectively. Tensile bars were produced from assemblies consisting of coated beryllium (both sides) sandwiched between two blocks of Hycon-3. Tensile tests were conducted to evaluate the influence of these intermetallics on the bond strength. Failure occurred at the beryllium-copper interface at fracture strengths greater than 300 MPa for the room-temperature tests. (orig.)

  11. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies

    Science.gov (United States)

    Zhai, Degao; Liu, Jiajun; Tombros, Stylianos; Williams-Jones, Anthony E.

    2018-03-01

    The Hashitu porphyry molybdenum deposit is located in the Great Hinggan Range Cu-Mo-Pb-Zn-Ag polymetallic metallogenic province of NE China, in which the Mo-bearing quartz veins are hosted in approximately coeval granites and porphyries. The deposit contains more than 100 Mt of ore with an average grade of 0.13 wt.% Mo. This well-preserved magmatic-hydrothermal system provides an excellent opportunity to determine the source of the molybdenum, the evolution of the hydrothermal fluids and the controls on molybdenite precipitation in a potentially important but poorly understood metallogenic province. Studies of fluid inclusions hosted in quartz veins demonstrate that the Hashitu hydrothermal system evolved to progressively lower pressure and temperature. Mineralogical and fluid inclusion analyses and physicochemical calculations suggest that molybdenite deposition occurred at a temperature of 285 to 325 °C, a pressure from 80 to 230 bars, a pH from 3.5 to 5.6, and a Δlog fO2 (HM) of -3.0, respectively. Results of multiple isotope (O, H, S, Mo, and Pb) analyses are consistent in indicating a genetic relationship between the ore-forming fluids, metals, and the Mesozoic granitic magmatism (i.e., δ 18OH2O from +1.9 to +9.7‰, δDH2O from -106 to -87‰, δ 34SH2S from +0.3 to +3.9‰, δ 98/95Mo from 0 to +0.37‰, 206Pb/204Pb from 18.2579 to 18.8958, 207Pb/204Pb from 15.5384 to 15.5783, and 208Pb/204Pb from 38.0984 to 42.9744). Molybdenite deposition is interpreted to have occurred from a low-density magmatic-hydrothermal fluid in response to decreases in temperature, pressure, and fO2.

  12. Biokinetics of copper in black-banded rainbowfish (Melanotaenia nigrans) tolerant to elevated copper concentrations, using the radioisotope 64Cu

    International Nuclear Information System (INIS)

    Gale, S.; Jeffree, R.; Smith, S.; Lim, R.

    2000-01-01

    Full text: For over 40 years black-banded rainbowfish (Melanotaenia nigrans) living in the East Branch of the Finniss River, Northern Territory have been exposed to elevated copper concentrations due to mine waste from the Rum Jungle uranium/copper mine. In the 1970s prior to remediation of the mine, fish kills were observed along the length of the East Branch. While copper concentrations remain comparatively high (up to 2000 μg/L) in the East Branch since remediation of the mine site, M. nigrans have been observed in the area. It was, therefore, hypothesised that due to selective pressure of lethal exposure, the population of black-banded rainbowfish in the East Branch have developed a tolerance to elevated copper concentrations. This project aimed to demonstrate copper tolerance and evaluate possible mechanism(s). In May 2000, fish were collected from the East Branch (exposed fish) and from a catchment previously unexposed to elevated metal concentrations (reference fish). The 96-hour EC 50 , fish imbalance (i.e. the concentration of copper that affects 50% of fish over 96 hours) for the exposed fish was over 8 times higher than the reference fish. Using the radioisotope, 64 Cu, the biokinetics of newly accumulated copper was traced in exposed and reference fish at low and elevated copper concentrations. The uptake rate, and therefore body burden, were significantly (p=0.000) lower in exposed fish, at both low and elevated copper concentrations compared to reference fish. Possible mechanisms of reducing copper uptake will be discussed. Tolerance was not lost when fish were maintained in relatively low copper concentrations in the laboratory. Also, the two populations of fish were genetically dissimilar based on allozyme analysis, which suggests that the mechanism is genetically mediated. The outcome of this project will be important in assisting accurate risk assessment and the development of environmental management strategies for the conservation of biota. The

  13. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  14. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  15. Extra-Hepatic Storage of Copper

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else; Horn, N.

    1975-01-01

    The distribution of copper among the organs of an aborted, male foetus, expected to develop Menkes' syndrome, was entirely different from the distribution in 4 normal foetuses. Copper concentrations determined by neutron activation analysis showed a considerably reduced content in the liver...

  16. Relationship among aqueous copper half-lives and responses of Pimephales promelas to a series of copper sulfate pentahydrate concentrations.

    Science.gov (United States)

    Calomeni, Alyssa J; Kinley, Ciera M; Geer, Tyler D; Iwinski, Kyla J; Hendrikse, Maas; Rodgers, John H

    2018-04-01

    Copper algaecide exposures in situ are often of shorter duration than exposures for static toxicity experiments because aqueous concentrations in situ dissipate as a function of site-specific fate processes. Consequently, responses of organisms to static copper exposures may overestimate effects following in situ exposures. To understand the role of exposure duration for altering responses, Pimephales promelas survival was compared following static (96 h) and pulse (1.5, 4, 8, and 15 h half-lives) exposures of CuSO 4 •5H 2 O. Copper concentrations sorbed by fry indicated a consequence of different exposures. Responses of P. promelas to static exposures resulted in 96 h LC 50 s of 166 µgCu/L (95% confidence interval [CI], 142-189 µgCu/L) as soluble copper and 162 µgCu/L (CI, 140-183 µgCu/L) as acid soluble copper. Relative to static 96 h LC 50 s, exposures with half-lives of 1.5, 4 and 8 h resulted in LC 50 s 10, 3 and 2 times greater, respectively, for responses measured 96 h after exposure initiation. Copper concentrations extracted from fry exposed for 1.5, 4 and 8 h half-lives were less than the static experiment. However, copper sorbed by fry in the 15 h half-life experiment was not different than the static experiment. The relationship between 96 h LC 50 and 1/half-life was expressed using the equations y = 116 + 1360 × (R 2  = 0.97) for soluble copper and y = 147 + 1620 × (R 2  = 0.98) for acid soluble copper. Incorporation of exposure duration for predictions of P. promelas responses to copper pulse exposures increases prediction accuracy by an order of magnitude.

  17. Serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin concentrations in infants receiving intravenous zinc and copper supplementation.

    Science.gov (United States)

    Lockitch, G; Godolphin, W; Pendray, M R; Riddell, D; Quigley, G

    1983-02-01

    One hundred twenty-seven newborn infants requiring parenteral nutrition were randomly assigned to receive differing amounts of zinc (40 to 400 micrograms/kg/day) and copper (20 or 40 micrograms/kg/day) supplementation within five birth weight groups (600 to 2,500 gm). The serum zinc concentration remained relatively constant in the group receiving the most zinc supplementation after two weeks of therapy, but declined sharply in the groups receiving less supplementation. No effect of increased copper intake was noted on ceruloplasmin values, but a difference in serum copper concentrations was noted at two weeks. No correlation was noted between serum zinc and copper values or among those for serum zinc, retinol-binding protein, and prealbumin. Reference ranges were defined for serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin in the preterm infant.

  18. [Biohydrometallurgical technology of a complex copper concentrate process].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T F

    2011-01-01

    Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.

  19. Evidence for organic complexed copper in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Slowey, J F; Jeffrey, L M; Hood, D W

    1967-04-22

    A few attempts have been made to characterize the chemical components contributing to the copper content of seawater. About 0.3 mu/liter of particulate copper in 2 stations in the English Channel and 15 mu/liter of ultrafilterable (10 mu) but non-dialyzable copper in a sample from Texas Bay has been reported. Also the evidence has been shown for copper in the organic form in waters of the Florida Current. The occasional presence of non- dialyzable copper for many samples from the Gulf of Mexico suggests that strongly complexed copper-organic compounds are present in seawater. This communication presents evidence for such complexes that are extractable into a nonpolar solvent in the absence of any added chelating agent. Preliminary results have shown that the copper- organic complex isolated by chloroform extraction occurs in the eighth fraction of the Hirsch and Ahrens lipid separation method using silica gel chromatography. This would indicate that copper complex is associated with the phospholipid, amino lipid, or porphyrin fraction of the lipids.

  20. Copper in the sea: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.L.

    1977-04-01

    Life in the sea is vulnerable to the influx of trace metals resulting from man's activities. Although many pollutants introduced to the sea eventually degrade to less harmful forms, trace metals accumulate in sediments and have a continued potential for effect on biota. Copper has a toxic potential exceeding all other metals due to the quantity discharged and its toxicological effect. Fortunately, copper in the oceans is rendered less bioavailable or less toxic by its ready interaction with the complex chemical components of seawater. This bibliography was prepared to illustrate the status of current knowledge of the biogeochemistry of copper and to aid the development of research programs to define the effects of copper discharged to the marine environment. The references are categorized to aid the reader to locate literature concerning specific aspects of the biogeochemistry of copper. A brief comment describing the important findings in each category is given. Although this bibliography is not exhaustive, the listed references are likely representative of current knowledge.

  1. Engineering kinetic barriers in copper metallization

    International Nuclear Information System (INIS)

    Huang Hanchen; Wei, H.L.; Woo, C.H.; Zhang, X.X.

    2002-01-01

    In metallization processes of integrated circuits, it is desirable to deposit the metal lines (aluminum or copper) fast and at low temperatures. However, the lines (films) usually consist of undesirable columns and voids, because of the absence of sufficient diffusion--a direct result of large kinetic barriers. Following the proposal and realization of the three-dimensional Ehrlich-Schwoebel (3D ES) barrier, we present here a method to engineer this kinetic barrier so as to improve quality of deposited copper films. We deposit copper films by magnetron sputtering, characterize the film structure and texture by using the scanning electron microscope and the x-ray diffraction, respectively. Taking indium as surfactant during copper deposition, we have achieved much better density and bottom coverage of copper filled trenches. The characterizations show that the improvement is the result of the 3D ES barrier reduction caused by indium addition. Engineering the 3D ES barrier therefore leads to improved film quality

  2. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  3. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.

    Science.gov (United States)

    Gutierrez, H; Portman, T; Pershin, V; Ringuette, M

    2013-03-01

    To analyse the biocidal efficacy of thermal sprayed copper surfaces. Copper alloy sheet metals containing >60% copper have been shown to exhibit potent biocidal activity. Surface biocidal activity was assessed by epifluorescence microscopy. After 2-h exposure at 20 °C in phosphate-buffered saline (PBS), contact killing of Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis by brass sheet metal and phosphor bronze was 3-4-times higher than that by stainless steel. SEM observations revealed that the surface membranes of both bacterial strains were slightly more irregular when exposed to brass sheet metal than stainless steel. However, when exposed to phosphor bronze coating, E. coli were 3-4 times larger with irregular membrane morphology. In addition, the majority of the cells were associated with spherical carbon-copper-phosphate crystalline nanostructures characteristic of nanoflowers. The membranes of many of the S. epidermidis exhibited blebbing, and a small subset was also associated with nanoflowers. Our data indicate that increasing the surface roughness of copper alloys had a pronounced impact on the membrane integrity of Gram-positive and, to a lesser degree, Gram-negative bacteria. In the presence of PBS, carbon-copper-phosphate-containing nanoflowers were formed, likely nucleated by components derived from killed bacteria. The intimate association of the bacteria with the nanoflowers and phosphor bronze coating likely contributed to their nonreversible adhesion. Thermal spraying of copper alloys provides a strategy for the rapid coating of three-dimensional organic and inorganic surfaces with biocidal copper alloys. Our study demonstrates that the macroscale surface roughness generated by the thermal spray process enhances the biocidal activity of copper alloys compared with the nanoscale surface roughness of copper sheet metals. Moreover, the coating surface topography provides conditions for the rapid formation of organic copper

  4. Bioleaching of copper from old flotation tailings samples (Copper Mine Bor, Serbia

    Directory of Open Access Journals (Sweden)

    Stanković Srđan

    2015-01-01

    Full Text Available Bioleaching of samples taken from depths of 10, 15, and 20 meters from old flotation tailings of the Copper Mine Bor was conducted in shaken flasks using extremely acidic water of Lake Robuleas lixiviant. Yield of copper after five weeks of the bioleaching experiment was 68.34±1.21% for 15 m sample, 72.57±0.57% for 20 m sample and 97.78±5.50% for 10 m sample. The obtained results were compared to the results of acid leaching of the same samples and it was concluded that bioleaching was generally more efficient for the treatment of samples taken from depths of 10 m and 20 m. The content of pyrite in the 20 m sample, which contained the highest amount of this mineral, was reduced after bioleaching. Benefits of this approach are: recovery of substantial amounts of copper, reducing the environmental impact of flotation tailings and the application of abundant and free water from the Robule acidic lake as lixiviant. Results of the experiment showed that bioleaching can be more efficient than acid leaching for copper extraction from flotation tailings with higher sulfide contents. [Projekat Ministarstva nauke Republike Srbije, br. 176016 i br. 173048

  5. World Copper Market Outlook: 2003-2014

    OpenAIRE

    Florela Stoian

    2015-01-01

    This paper presents synthetically the copper market outlook (demand, supply, and prices) during 2003-2014, highlighting the impact of economic crisis of 2008-2009 on the world copper market. During the crisis, the decline in demand caused increases in excess supply of metal, as the supply has followed an upward trend, contributing to the imbalances of the copper market and putting pressure on stock prices at LME London Metal Exchange.

  6. 49 CFR 192.377 - Service lines: Copper.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.377 Service lines: Copper. Each copper service line installed within a building must be protected...

  7. Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.

    Science.gov (United States)

    Brewer, George J

    2015-01-01

    Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.

  8. Water requirements of the copper industry

    Science.gov (United States)

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  9. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.

    Science.gov (United States)

    Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady

    2011-05-30

    In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

    Science.gov (United States)

    Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao

    2017-11-09

    We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.

  11. Copper imbalances in ruminants and humans: unexpected common ground.

    Science.gov (United States)

    Suttle, Neville F

    2012-09-01

    Ruminants are more vulnerable to copper deficiency than humans because rumen sulfide generation lowers copper availability from forage, increasing the risk of conditions such as swayback in lambs. Molybdenum-rich pastures promote thiomolybdate (TM) synthesis and formation of unabsorbable Cu-TM complexes, turning risk to clinical reality (hypocuprosis). Selection pressures created ruminant species with tolerance of deficiency but vulnerability to copper toxicity in alien environments, such as specific pathogen-free units. By contrast, cases of copper imbalance in humans seemed confined to rare genetic aberrations of copper metabolism. Recent descriptions of human swayback and the exploratory use of TM for the treatment of Wilson's disease, tumor growth, inflammatory diseases, and Alzheimer's disease have created unexpected common ground. The incidence of pre-hemolytic copper poisoning in specific pathogen-free lambs was reduced by an infection with Mycobacterium avium that left them more responsive to treatment with TM but vulnerable to long-term copper depletion. Copper requirements in ruminants and humans may need an extra allowance for the "copper cost" of immunity to infection. Residual cuproenzyme inhibition in TM-treated lambs and anomalies in plasma copper composition that appeared to depend on liver copper status raise this question "can chelating capacity be harnessed without inducing copper-deficiency in ruminants or humans?" A model of equilibria between exogenous (TM) and endogenous chelators (e.g., albumin, metallothionein) is used to predict risk of exposure and hypocuprosis; although risk of natural exposure in humans is remote, vulnerability to TM-induced copper deficiency may be high. Biomarkers of TM impact are needed, and copper chaperones for inhibited cuproenzymes are prime candidates.

  12. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L.

    2000-08-01

    This report presents the results of a small-scale pilot study of the mineralogy and alteration characteristics of unusual sheet-like native copper occurring together with uraniferous and vanadiferous concretions in mudstones and siltstones of the Permian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The host mudstones and siltstones are smectitic and have been compacted through deep Mesozoic burial. The occurrence of native copper within these rocks represents a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of high-level radioactive waste by the SKB. The study was undertaken by the British Geological Survey (BGS) on behalf of SKB between November 1999 and June 2000. The study was based primarily on archived reference material collected by the BGS during regional geological and mineralogical surveys of the area in the 1970's and 1980's. However, a brief visit was made to Littleham Cove in January 2000 to try to examine the native copper in situ and to collect additional material. Unfortunately, recent landslips and mudflows obscured much of the outcrop, and only one new sample of native copper could be collected. The native copper occurs as thin plates, up to 160 mm in diameter, which occur parallel to bedding in the Permian Littleham Mudstone Formation at Littleham Cove (near Budleigh Salterton) in south Devon. Each plate is made up of composite stacks of individual thin copper sheets each 1-2 mm thick. The copper is very pure (>99.4% Cu) but is accompanied by minor amounts of native silver (also pure - >99%) which occurs as small inclusions within the native copper. Detailed mineralogical and petrological studies of the native copper sheets, using optical petrography, backscattered scanning electron microscopy, X-ray diffraction analysis and electron probe microanalytical techniques, reveal a complex history of

  13. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L. [Natural Environment Research Council (United Kingdom). British Geological Survey

    2000-08-01

    This report presents the results of a small-scale pilot study of the mineralogy and alteration characteristics of unusual sheet-like native copper occurring together with uraniferous and vanadiferous concretions in mudstones and siltstones of the Permian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The host mudstones and siltstones are smectitic and have been compacted through deep Mesozoic burial. The occurrence of native copper within these rocks represents a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of high-level radioactive waste by the SKB. The study was undertaken by the British Geological Survey (BGS) on behalf of SKB between November 1999 and June 2000. The study was based primarily on archived reference material collected by the BGS during regional geological and mineralogical surveys of the area in the 1970's and 1980's. However, a brief visit was made to Littleham Cove in January 2000 to try to examine the native copper in situ and to collect additional material. Unfortunately, recent landslips and mudflows obscured much of the outcrop, and only one new sample of native copper could be collected. The native copper occurs as thin plates, up to 160 mm in diameter, which occur parallel to bedding in the Permian Littleham Mudstone Formation at Littleham Cove (near Budleigh Salterton) in south Devon. Each plate is made up of composite stacks of individual thin copper sheets each 1-2 mm thick. The copper is very pure (>99.4% Cu) but is accompanied by minor amounts of native silver (also pure - >99%) which occurs as small inclusions within the native copper. Detailed mineralogical and petrological studies of the native copper sheets, using optical petrography, backscattered scanning electron microscopy, X-ray diffraction analysis and electron probe microanalytical techniques, reveal a complex history of

  14. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  15. Utilization of Copper Alloys for Marine Applications

    Science.gov (United States)

    Drach, Andrew

    Utilization of copper alloy components in systems deployed in marine environment presents potential improvements by reducing maintenance costs, prolonging service life, and increasing reliability. However, integration of these materials faces technological challenges, which are discussed and addressed in this work, including characterization of material performance in seawater environment, hydrodynamics of copper alloy components, and design procedures for systems with copper alloys. To characterize the hydrodynamic behavior of copper alloy nets, mesh geometry of the major types of copper nets currently used in the marine aquaculture are analyzed and formulae for the solidity and strand length are proposed. Experimental studies of drag forces on copper alloy net panels are described. Based on these studies, empirical values for normal drag coefficients are proposed for various types of copper netting. These findings are compared to the previously published data on polymer nets. It is shown that copper nets exhibit significantly lower resistance to normal currents, which corresponds to lower values of normal drag coefficient. The seawater performance (corrosion and biofouling) of copper alloys is studied through the field trials of tensioned and untensioned specimens in a one-year deployment in the North Atlantic Ocean. The corrosion behavior is characterized by weight loss, optical microscopy, and SEM/EDX analyses. The biofouling performance is quantified in terms of the biomass accumulation. To estimate the effects of stray electrical currents on the seawater corrosion measurements, a low cost three-axis stray electric current monitoring device is designed and tested both in the lab and in the 30-day field deployment. The system consists of a remotely operated PC with a set of pseudo-electrodes and a digital compass. The collected data is processed to determine magnitudes of AC and DC components of electric field and dominant AC frequencies. Mechanical behavior of

  16. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  17. Bonding and structure of copper nitrenes.

    Science.gov (United States)

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  18. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  19. Microbial leaching of low grade copper ores

    International Nuclear Information System (INIS)

    Rauf, A.; Ashfaq, M.

    1991-01-01

    Biotechnology is regarded as one of the most promising and revolutionary solution to various problems which are generally faced in the extraction of metals from their ores such as high energy, capital costs and environmental pollution. The paper deals with the study of low grade copper ores for their beneficiation and extraction of copper. The ores used were chalcopyrite and oxidized copper ores. Microorganisms play a vital role in the solubilization of valuable contents from ores such as copper and other metals. Studies have been conducted on the indigenous copper ores by using thiobacillus ferro oxidans and thiobacillus thio oxidans. For comparison purpose some experiments have also been conducted by chemical leaching. The results of bacterial leaching are encouraging. (author)

  20. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion

    NARCIS (Netherlands)

    Roelofsen, H; Wolters, H; Van Luyn, MJA; Miura, N; Kuipers, F; Vonk, RJ

    Background & Aims: Mutations in the ATP7B gene, encoding a copper-transporting P-type adenosine triphosphatase, lead to excessive hepatic copper accumulation because of impaired biliary copper excretion in Wilson's disease. In human liver, ATP7B is predominantly localized to the trans-Golgi network,

  1. Calibration equations for energy-dispersive XRF determination of copper, iron and lead in copper ore slurries

    International Nuclear Information System (INIS)

    Lakosz, M.

    1976-01-01

    Calibration equations for the X-ray fluorescence analysis determination of copper, iron and lead in copper ore slurries have been derived and tested. The measurement of Ksub(α) lines of copper and iron and Lsub(α) line of lead excited by rays from 238 Pu source have been used. Si/Li detector coupled to multichannel analyzer and minicomputer have been applied in measurements. The matrix and density effect have been eliminated by additional measurement of back-scattered primary radiation. (author)

  2. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    Science.gov (United States)

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  3. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  4. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    International Nuclear Information System (INIS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-01-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm 2 ) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  5. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  6. 21 CFR 73.2120 - Disodium EDTA-copper.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Disodium EDTA-copper. 73.2120 Section 73.2120 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2120 Disodium EDTA-copper. (a) Identity. The color additive disodium EDTA-copper is disodium [[N,N′- 1,2- ethanediylbis[N - (carboxymethyl) glycinato...

  7. Functional recovery of biofilm bacterial communities after copper exposure

    International Nuclear Information System (INIS)

    Boivin, Marie-Elene Y.; Massieux, Boris; Breure, Anton M.; Greve, Gerdit D.; Rutgers, Michiel; Admiraal, Wim

    2006-01-01

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 μmol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 μmol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 μmol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days. - Genetically different bacterial communities can have similar functions and tolerance to copper

  8. Fatigue performance of copper and copper alloys before and after irradiation with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Toft, P.; Stubbins, J.F.

    1997-05-01

    The fatigue performance of pure copper of the oxygen free, high conductivity (OFHC) grade and two copper alloys (CuCrZr and CuAl-25) was investigated. Mechanical testing and microstructural analysis were carried out to establish the fatigue life of these materials in the unirradiated and irradiated states. The present report provides the first information on the ability of these copper alloys to perform under cyclic loading conditions when they have undergone significant irradiation exposure. Fatigue specimens of OFHC-Cu, CuCrZr and CuAl-25 were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of ∼2.5 x 10 17 n/m 2 s (E > 1 MeV) to fluence levels of 1.5 - 2.5 x 10 24 n/m 2 s (E > 1 MeV) at ∼47 and 100 deg. C. Specimens irradiated at 47 deg. C were fatigue tested at 22 deg. C, whereas those irradiated at 100 deg. C were tested at the irradiation temperature. The major conclusion of the present work is that although irradiation causes significant hardening of copper and copper alloys, it does not appear to be a problem for the fatigue life of these materials. In fact, the present experimental results clearly demonstrate that the fatigue performance of the irradiated CuAl-25 alloy is considerably better in the irradiated than that in the unirradiated state tested both at 22 and 100 deg. C. This improvement, however, is not so significant in the case of the irradiated OFHC-copper and CuCrZr alloy tested at 22 deg. C. These conclusions are supported by the microstructural observations and cyclic hardening experiments. (au) 4 tabs., 26 ills., 10 refs

  9. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  10. Possibilities of radioisotopic fluorescence analysis application in copper industry

    International Nuclear Information System (INIS)

    Parus, J.; Kierzek, J.

    1983-01-01

    The main applications of X-ray fluorescence analysis in copper industry such as: copper ores and other materials from flotation analysis, lead and silver determination in blister copper, analysis of metallurgic dusts and copper base alloys analysis are presented. (A.S.)

  11. Copper Homeostasis in Escherichia coli and Other Enterobacteriaceae.

    Science.gov (United States)

    Rensing, Christopher; Franke, Sylvia

    2007-04-01

    An interesting model for studying environmental influences shaping microbial evolution is provided by a multitude of copper resistance and copper homeostasis determinants in enteric bacteria. This review describes these determinants and tries to relate their presence to the habitat of the respective organism, as a current hypothesis predicts that the environment should determine an organism's genetic makeup. In Escherichia coli there are four regulons that are induced in the presence of copper. Two, the CueR and the CusR regulons, are described in detail. A central component regulating intracellular copper levels, present in all free-living enteric bacteria whose genomes have so far been sequenced, is a Cu(I)translocating P-type ATPase. The P-type ATPase superfamily is a ubiquitous group of proteins involved in the transport of charged substrates across biological membranes. Whereas some components involved in copper homeostasis can be found in both anaerobes and aerobes, multi-copper oxidases (MCOs) implicated in copper tolerance in E. coli, such as CueO and the plasmid-based PcoA, can be found only in aerobic organisms. Several features indicate that CueO, PcoA, and other related MCOs are specifically adapted to combat copper-mediated oxidative damage. In addition to these well-characterized resistance operons, there are numerous other genes that appear to be involved in copper binding and trafficking that have not been studied in great detail. SilE and its homologue PcoE, for example, are thought to effect the periplasmic binding and sequestration of silver and copper, respectively.

  12. Modification of polycrystalline copper by proton irradiation

    International Nuclear Information System (INIS)

    Garcia S, F.; Cabral P, A.; Saniger B, J.M.; Banuelos, J.G.; Barragan V, A.

    1997-01-01

    Polished copper samples were irradiated with proton beams of 300 and 700 keV at room temperature and at -150 Centigrade. In this work the obtained results are reported when such copper irradiated samples are analysed with Sem, Tem, AFM. The Sem micrographs showed evident changes in surface of these copper samples, therefore an EDAX microanalysis was done for its characterization. additionally, the Tem micrographs showed heaps formation until 200 nm. Its electron diffraction spectra indicated that these heaps consist of a copper compound. Finally with AFM were observed changes in coloration of the irradiated sample surface, as well as changes in texture and rugosity of them. These results show in general that irradiation process with protons which is known as an innocuo process produces changes in the copper properties. (Author)

  13. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  14. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  15. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  16. [Use of copper oxide wire particles (Copinox) for the prevention of congenital copper deficiency in a herd of German Improved Fawn breed of goat].

    Science.gov (United States)

    Winter, P; Hochsteiner, W; Chizzola, R

    2004-10-01

    In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.

  17. Electrical characterization of copper related defect reactions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, T. [Centre National de la Recherche Scientifique, 67 - Strasbourg (France). Lab. PHASE; Istratov, A.A.; Flink, C.; Weber, E.R. [Department of Material Science and Mineral Engineering, University of California at Berkeley, 577 Evans Hall, Berkeley, CA 94720 (United States)

    1999-02-12

    Defect reactions involving interstitial copper impurities (Cu{sub i}) in silicon are reviewed. The influence of the Coulomb interaction between positively charged copper and negatively charged defects, such as acceptor states of transition metals and lattice defects, on the complex formation rate is discussed in detail. The diffusivity of interstitial copper and the dissociation kinetics of copper-acceptor pairs are studied using the recently introduced transient ion drift (TID) method. TID results reveal that most interstitial copper impurities remain dissolved immediately after the quench and form pairs with shallow acceptors. It is shown that in moderately and heavily doped silicon the diffusivity of copper is trap limited, while in low B-doped silicon the interstitial copper-acceptor pairing is weak enough to allow the assessment of the copper intrinsic diffusion coefficient. The intrinsic diffusion barrier is estimated to be 0.18{+-}0.01 eV. It is concluded that the Coulomb potential used in previous publications underestimated considerably the acceptor-copper interaction. In light of these results, a general discussion on Cu related defect reactions is given. (orig.) 44 refs.

  18. A Case of Isolated Elevated Copper Levels during Pregnancy

    Directory of Open Access Journals (Sweden)

    LaToya R. Walker

    2011-01-01

    Full Text Available Introduction. Outside of Wilson's Disease, abnormal copper metabolism is a rare condition. In pregnancy, excess copper levels can be associated with intrauterine growth restriction, preeclampsia and neurological disease. Case Report. A 32 year old Gravida 4 para 2012 with an obstetrical history complicated by elevated copper levels presented for routine prenatal care. Her children had elevated copper levels at birth, with her firstborn child being diagnosed with autism and suffering three myocardial infarctions and being treated for elevated copper levels. During her prior pregnancies, she declined treatment for her elevated copper levels. During this pregnancy, she had declined chelation therapy and instead choose zinc therapy. She delivered a healthy infant with normal copper levels. Conclusion. Alterations in copper metabolism are rare, the consequences in pregnancy can be devastating. While isolated elevations of copper in pregnancy is exceedingly rare, it is treated the same as Wilson's disease. The goal is to prevent fetal growth restricting and neurological sequelae in the newborn and preeclampsia in the mother. Counseling, along with treatment options and timely delivery can greatly improve neonatal and maternal outcome.

  19. Copper accumulation by stickleback nests containing spiggin.

    Science.gov (United States)

    Pinho, G L L; Martins, C M G; Barber, I

    2016-07-01

    The three-spined stickleback is a ubiquitous fish of marine, brackish and freshwater ecosystems across the Northern hemisphere that presents intermediate sensitivity to copper. Male sticklebacks display a range of elaborate reproductive behaviours that include nest construction. To build the nests, each male binds nesting material together using an endogenous glycoprotein nesting glue, known as 'spiggin'. Spiggin is a cysteine-rich protein and, therefore, potentially binds heavy metals present in the environment. The aim of this study was to investigate the capacity of stickleback nests to accumulate copper from environmental sources. Newly built nests, constructed by male fish from polyester threads in laboratory aquaria, were immersed in copper solutions ranging in concentration from 21.1-626.6 μg Cu L(-1). Bundles of polyester threads from aquaria without male fish were also immersed in the same copper solutions. After immersion, nests presented higher amounts of copper than the thread bundles, indicating a higher capacity of nests to bind this metal. A significant, positive correlation between the concentration of copper in the exposure solution and in the exposed nests was identified, but there was no such relationship for thread bundles. Since both spiggin synthesis and male courtship behaviour are under the control of circulating androgens, we predicted that males with high courtship scores would produce and secrete high levels of the spiggin protein. In the present study, nests built by high courtship score males accumulated more copper than those built by low courtship score males. Considering the potential of spiggin to bind metals, the positive relationship between fish courtship and spiggin secretion seems to explain the higher amount of copper on the nests from the fish showing high behaviour scores. Further work is now needed to determine the consequences of the copper binding potential of spiggin in stickleback nests for the health and survival of

  20. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  1. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    International Nuclear Information System (INIS)

    Osipov, E. M.; Polyakov, K. M.; Tikhonova, T. V.; Kittl, R.; Dorovatovskii, P.V.; Shleev, S. V.; Popov, V. O.; Ludwig, R.

    2015-01-01

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu + -containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu + - and Cu 2+ -containing solutions. Copper ions were found to be incorporated into the active site only when Cu + was used. A comparative analysis of the native and depleted forms of the enzymes was performed

  2. The chemistry of copper chalcogenides in waste glasses

    International Nuclear Information System (INIS)

    Schreiber, H.D.; Lambert, H.W.

    1994-01-01

    The solubilities of copper chalcogenides (CuS, CuSe, CuTe) were measured in a glass melt which is representative of those proposed for nuclear waste immobilization and circuit board vitrification. CuTe is more soluble than CuS and CuSe in the glass melt under relatively oxidizing conditions. However, the solubilities of all the copper chalcogenides in the glass melt are virtually identical at reducing conditions, probably a result of the redox-controlled solubility of copper metal in all cases. The redox chemistry of a glass melt coexisting with an immiscible copper chalcogenide depends primarily on the prevailing oxygen fugacity, not on the identity of the chalcogenide. The target concentration of less than 0.3 to 0.5 wt% copper in the waste glass should eliminate the precipitation of copper chalcogenides during processing

  3. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    Science.gov (United States)

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.

  4. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  5. Biochar and compost as amendments in copper-enriched vineyard soils - stabilization or mobilization of copper?

    Science.gov (United States)

    Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pHeffects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally resulting in enhanced mobilization. Presumably immobilization of copper with biochar would work best in acidic soils low in organic carbon and with low or no compost addition although this might

  6. A brief review of cavity swelling and hardening in irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1990-01-01

    The literature on radiation-induced swelling and hardening in copper and its alloy is reviewed. Void formation does not occur during irradiation of copper unless suitable impurity atoms such as oxygen or helium are present. Void formation occurs for neutron irradiation temperatures of 180 to 550 degree C, with peak swelling occurring at ∼320 degree C for irradiation at a damage rate of 2 x 10 -7 dpa/s. The post-transient swelling rate has been measured to be ∼0.5%/dpa at temperatures near 400 degree C. Dispersion-strengthened copper has been found to be very resistant to void swelling due to the high sink density associated with the dispersion-stabilized dislocation structure. Irradiation of copper at temperatures below 400 degree C generally causes an increase in strength due to the formation of defect clusters which inhibit dislocation motion. The radiation hardening can be adequately described by Seeger's dispersed barrier model, with a barrier strength for small defect clusters of α ∼ 0.2. The radiation hardening apparently saturates for fluences greater than ∼10 24 n/m 2 during irradiation at room temperature due to a saturation of the defect cluster density. Grain boundaries can modify the hardening behavior by blocking the transmission of dislocation slip bands, leading to a radiation- modified Hall-Petch relation between yield strength and grain size. Radiation-enhanced recrystallization can lead to softening of cold-worked copper alloys at temperatures above 300 degree C

  7. Study of solid and liquid behavior in large copper flotation cells (130 m2) using radioactive tracers

    International Nuclear Information System (INIS)

    Diaz, F.; Jimenez, O.; Yianatos, J.; Contreras, F.

    2013-01-01

    The behavior of the solid and liquid phases, in large flotation cells, was characterized by means of the radioactive tracer technique. The use of radioactive tracers enabled the identification of the Residence Time Distribution, of floatable and non-floatable solid, from continuous (on-line) measuring at the output streams of the flotation cells. For this study, the proper radioactive tracers were selected and applied in order to characterize the different phases; i.e. for liquid phase Br-82 as Ammonium Bromide, for floatable solid recovered in the concentrate Cu-64, and for non-floatable solid in three particle size classes (coarse: >150 μm, intermediate: 45 μm, and fine: <45 μm), Na-24. The experimental results confirmed the strong effect of particle size on the Residence Time Distribution, and mean residence time of solids in larger flotation cells, and consequently in flotation hydrodynamics. From a hydrodynamic point of view, the experimental data confirmed that a single mechanical flotation cells, of large size, can deviate significantly from perfect mixing. The experimental work was developed in a 130 m3 industrial flotation cell of the rougher circuit at El Teniente Division, Codelco-Chile. (authors)

  8. Improved dust handling at Inco's Copper Cliff smelter

    International Nuclear Information System (INIS)

    Dutton, A.; Warner, A.E.M.; Humphris, M.J.

    1989-01-01

    The Cooper Cliff Smelter Complex comprises three major production departments - a Nickel Smelter for the processing of nickel concentrated to a low iron, nickel - copper sulphide (Bessemer) matte; a Matte Processing plant for the separation of matte sulphides and the production of market nickel oxides and refinery feeds and a Copper Smelter to process copper concentrates to blister copper. Annual production is currently -114,000 tonnes of copper as blister and -110,000 tonnes of nickel. The nickel concentrate (11-13% Ni, 2-3% Cu) is roasted in multi-hearth roasters, smelted in oxy-fuel fired reverberatory furnaces to a 30-35% CuNiCo matte and converted to Bessemer matte (75% CuNiCo) in Peirce-Smith converters. The Bessemer matte is slow cooled and crushed for subsequent separation by mineral dressing techniques in the Matte Processing plant into nickel (sulphide and metallic) concentrates and a copper (chalcocite) concentrate. Nickel sulphides are further processed in fluid bed reactors to oxide market product or refinery feedstock. The copper concentrate (29-30% Cu, 0.9% No.) is dried in fluid bed driers, smelted to a 40-50% copper matte in an Inco oxygen flash furnace and converted to blister copper in Peirce-Smith converters. The chalcocite concentrate from the matte separation stage is flash converted to a semi-blister (3-4% S, 4-5% Ni) and then finished to lighter conventionally. A schematic process flowsheet of the Smelter Complex is shown in this paper

  9. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  10. Method for producing superconductive wires of multifilaments which are encased in copper or a copper alloy and contain niobium and aluminium

    International Nuclear Information System (INIS)

    Flukiger, R.

    1983-01-01

    A method is disclosed for producing a superconductive wire of multifilaments having components comprising niobium and aluminum encased in copper or a copper alloy, wherein the multifilament configuration and the formation of a superconductive A15 phase are positively developed from the components disposed in a copper or copper alloy tube having an interior metallic coating serving as a diffusion barrier, by cold forming and subsequent heat treatment

  11. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  12. Some aspects of copper metabolism in Brindled mice

    International Nuclear Information System (INIS)

    Prins, H.W.

    1981-01-01

    The semi-dominant X-linked mutation in Brindled mice causes a severe copper deficiency of which the hemizygous Brindled mice die between 14 and 21 days post partum. Previously, in analogy to Menkes' disease in man, the primary defect in mutated Brindled mice has been described as a block in the resorption of alimentary copper, i.e., the transport of copper from the intestinal lumen into the portal blood circulation. During this research it became clear that the impaired resorption of alimentary copper is only a part of a more general aberration of copper metabolism in epithelioid cells. Tracer techniques using 64 Cu are used for metabolism studies. (Auth.)

  13. A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes.

    Science.gov (United States)

    Penttinen, Leena; Rutanen, Chiara; Saloheimo, Markku; Kruus, Kristiina; Rouvinen, Juha; Hakulinen, Nina

    2018-01-01

    Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.

  14. A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes.

    Directory of Open Access Journals (Sweden)

    Leena Penttinen

    Full Text Available Coupled binuclear copper (CBC enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4 and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.

  15. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    Directory of Open Access Journals (Sweden)

    Qing-qing Pan

    2018-01-01

    Full Text Available The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing flotation. However, Fe3+ ions would increase the surface potential, reduce the S2− adsorption, generate more sulfur element, and therefore inhibit the sulphidizing flotation.

  16. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles

    International Nuclear Information System (INIS)

    Civardi, Chiara; Schwarze, Francis W.M.R.; Wick, Peter

    2015-01-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm–25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. - Highlights: • We compared copper particulate wood preservatives with conventional ones. • We assessed the fungicidal activity of particulate copper wood preservatives. • We reviewed the Cu-tolerance mechanisms of some wood-destroying fungi. • Fungi colonizing wood treated with particulate copper may release Cu-loaded spores. - We assess the fungicidal activity of particulate copper wood preservatives and their possible release in the air by Cu-tolerant wood-destroying fungi

  17. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    Water is essential for the survival of life on Earth, but pollutants in water can cause dangerous diseases and fatalities. The need for purified water has been increasing with increasing world population; however, natural sources of water such as rivers, lakes and streams, are progressively falling shorter and shorter of meeting water needs. The provision of clean, drinkable water to people is a key factor for the development of novel and alternative water purification technologies, such as membrane separations. Nanofiltration (NF) is a membrane separations technology that purifies water from lower quality sources, such as brackish water, seawater and wastewater. During the filtration of such sources, materials that are rejected by the membrane may accumulate on the surface of the membrane to foul it. Such materials include organic and inorganic matter, colloids, salts and microorganisms. The former four can often be controlled via pretreatment; however, the accumulation of microorganisms is more problematic to membranes. Biofouling is the accumulation and growth of microorganisms on the surface of membranes and on feed spacers. After attachment, microorganisms excrete extracellular polymeric substances (EPS), which form a matrix around the organism's outer surface as biofilm. These biofilms are detrimental and result in irreversible membrane fouling. Copper and silver ions inactivate the bacterial cells and prevent the DNA replication in microbial cells. Previous studies using copper-charged feed spacers have shown the ability of copper to control biofouling without a significant amount of copper leaching from copper-charged polypropylene (PP) feed spacers during crossflow filtration. Also, filtration using unmodified speed facers experienced almost 70% flux decline, while filtration using copper-charged feed spacers displayed only 25% flux decline. These intriguing results led to the hypothesis that the polymer chemistry could be extrapolated to produce membranes

  18. Copper Promoted Synthesis of Diaryl Ethers

    OpenAIRE

    Ghosh, Rajshekhar; Samuelson, Ashoka G

    2004-01-01

    An efficient protocol using copper based reagents for the coupling of aryl halides with phenols to generate diaryl ethers is described. Acopper( I) complex, [ Cu( CH3CN) (4)] ClO4, or the readily available copper( II) source, CuCO3 . Cu( OH) (2) . H2O ( in combination with potassium phosphate), can be used. Aryl halides and phenols with different steric and electronic demands have been used to assess the efficiency of the procedure. The latter source of copper gives better yields under all co...

  19. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  20. copper(II)

    Indian Academy of Sciences (India)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  1. Figurines in Pietrele: Copper Age ideology

    Directory of Open Access Journals (Sweden)

    Svend Hansen

    2011-12-01

    Full Text Available Major trends in figurine production of the copper age settlement of Pietrele (Romania are discussed. The bone figurines are seen as an ideological innovation of the Early Copper Age system in the Eastern Balkans.

  2. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  3. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  4. Case of sensory ataxic ganglionopathy-myelopathy in copper deficiency.

    Science.gov (United States)

    Zara, Gabriella; Grassivaro, Francesca; Brocadello, Filippo; Manara, Renzo; Pesenti, Francesco Francini

    2009-02-15

    Spinal cord involvement associated with severe copper deficiency has been reported in the last 8 years. Copper deficiency may produce an ataxic myelopathy. Clinical and neuroimaging findings are similar to the subacute combined degeneration seen in patients with vitamin B12 deficiency. Macrocytic, normocytic and microcytic anemia, leukopenia and, in severe cases, pancytopenia are well known hematologic manifestations. The most patients with copper deficiency myelopathy had unrecognized carency. Some authors suggested that early recognition and copper supplementation may prevent neurologic deterioration but clinical findings do not improve. We present a patient with copper deficiency, dorsal root ganglions and cervical dorsal columns involvement. Clinical status and neuroimaging improved after copper replacement therapy. Sensory neurons of dorsal root ganglia may be the most sensitive nervous pathway. In this case the early copper treatment allowed to improve neurologic lesions and to prevent further involvements.

  5. Moderate Dilution of Copper Slag by Natural Gas

    Science.gov (United States)

    Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang

    2018-01-01

    To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.

  6. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  7. Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran

    Science.gov (United States)

    Ghezelbash, Reza; Maghsoudi, Abbas

    2018-05-01

    The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.

  8. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    Science.gov (United States)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  9. Refining processes of selected copper alloys

    Directory of Open Access Journals (Sweden)

    S. Rzadkosz

    2009-04-01

    Full Text Available The analysis of the refining effectiveness of the liquid copper and selected copper alloys by various micro additions and special refiningsubstances – was performed. Examinations of an influence of purifying, modifying and deoxidation operations performed in a metal bath on the properties of certain selected alloys based on copper matrix - were made. Refining substances, protecting-purifying slag, deoxidation and modifying substances containing micro additions of such elements as: zirconium, boron, phosphor, sodium, lithium, or their compounds introduced in order to change micro structures and properties of alloys, were applied in examinations. A special attention was directed to macro and micro structures of alloys, their tensile and elongation strength and hot-cracks sensitivity. Refining effects were estimated by comparing the effectiveness of micro structure changes with property changes of copper and its selected alloys from the group of tin bronzes.

  10. Copper in Surface Soil of Veles Region, Macedonia

    International Nuclear Information System (INIS)

    Panchevski, Zlatko; Stafilov, Trajche; Frontasyeva, Marina V.

    2006-01-01

    For the first time a systematic study of copper distribution in surface soil over of the Veles region, known for its lead and zinc industrial activity, was undertaken. A total of 201 soil samples were collected according to a dense net (0.5 km) in urban and less dense net (1 km) in rural areas. Copper was determined by flame atomic absorption spectrometry (FAAS) using microwave digestion technique with two different types of solvents: aqua regia (HCI and HNO 3 )and the mixture of strong acids (HNO 3 , HCI, and HF). So far the same soil samples were subjected to reactor non-destructive multi-element instrumental neutron activation analysis (INAA), it served as a reference analytical technique for bulk copper determination. The results obtained by two methods of FAAS and INAA are discussed. GIS technology was applied to reveal the areas most affected by copper contamination. It was found that the content of copper in soil samples around the lead and zinc smelter plant is the highest and reaches 1800 mg/kg. Copper content in surface soil all around the town of Veles exceeds maximum permissible level for urban surface soil. Elevated copper content in some rural areas of the Veles region most likely could be explained through using copper containing fungicides for agricultural needs. (Author)

  11. A Study on the Copper Effect on gold leaching in copper-ethanediamine-thiosulphate solutions

    Science.gov (United States)

    Liu, Qiong; Xiang, Pengzhi; Huang, Yao

    2018-01-01

    A simple, fast and sensitive square-wave voltammetry (SWV), cyclic voltammetry(CV) and tafel method for the determination of various factors of gold in thiosulphate solution in this paper. We present our study on the effect of copper(II) on the leaching of gold in thiosulphate solutions. The current study aims to establish the interaction of copper in the leaching process by electrochemical method.

  12. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...

  13. Brazing copper to dispersion-strengthened copper

    Science.gov (United States)

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  14. Metabolism of manganese, iron, copper, and selenium in calves

    International Nuclear Information System (INIS)

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism

  15. Remediation of copper in vineyards – A mini review

    International Nuclear Information System (INIS)

    Mackie, K.A.; Müller, T.; Kandeler, E.

    2012-01-01

    Viticulturists use copper fungicide to combat Downy Mildew. Copper, a non-degradable heavy metal, can accumulate in soil or leach into water sources. Its accumulation in topsoil has impacted micro and macro organisms, spurring scientists to research in situ copper removal methods. Recent publications suggest that microorganism assisted phytoextraction, using plants and bacteria to actively extract copper, is most promising. As vineyards represent moderately polluted sites this technique has great potential. Active plant extraction and chelate assisted remediation extract too little copper or risk leaching, respectively. However, despite interesting pot experiment results using microorganism assisted phytoextraction, it remains a challenge to find plants that primarily accumulate copper in their shoots, a necessity in vineyards where whole plant removal would be time consuming and financially cumbersome. Vineyard remediation requires a holistic approach including sustainable soil management, proper plant selection, increasing biodiversity and microorganisms. - Highlights: ► We describe copper distribution and availability in vineyards. ► We explain the environmental impact of copper on organisms, plants and processes. ► We detail possible remediation methods within vineyards. ► Microbially assisted phytoremediation is the most promising remediation method. ► A solution requires an interdisciplinary approach between plants, soil and vines. - This review is significant because it highlights prospective remediation methods usable in copper contaminated vineyards.

  16. Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting

    Science.gov (United States)

    Yin, Yanan; Gu, Jie; Wang, Xiaojuan; Song, Wen; Zhang, Kaiyu; Sun, Wei; Zhang, Xin; Zhang, Yajun; Li, Haichao

    2017-01-01

    Copper is one of the most abundant heavy metals present in swine manure. In this study, a laboratory-scale aerobic composting system was amended with Cu at three levels (0, 200, and 2000 mg kg-1, i.e., control, Cu200, and Cu2000 treatments, respectively) to determine its effect on the fate of copper resistance genes [copper resistance genes (CRGs): pcoA, cusA, copA, and tcrB], antibiotic resistance genes [antibiotic resistance genes (ARGs): erm(A) and erm(B)], and intl1. The results showed that the absolute abundances of pcoA, tcrB, erm(A), erm(B), and intl1 were reduced, whereas those of copA and cusA increased after swine manure composting. Redundancy analysis showed that temperature significantly affected the variations in CRGs, ARGs, and intl1. The decreases in CRGs, ARGs, and intI1 were positively correlated with the exchangeable Cu levels. The bacterial community could be grouped according to the composting time under different treatments, where the high concentration of copper had a more persistent effect on the bacterial community. Network analysis determined that the co-occurrence of CRGs, ARGs, and intI1, and the bacterial community were the main contributors to the changes in CRGs, ARG, and intl1. Thus, temperature, copper, and changes in the bacterial community composition had important effects on the variations in CRGs, ARGs, and intl1 during manure composting in the presence of added copper. PMID:28316595

  17. Tolerance of Serpula lacrymans to copper-based wood preservatives

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Green, Frederick; Clausen, Carol A.

    2005-01-01

    construction, but some decay fungi are known to be copper tolerant. In this study, soil-block tests were undertaken to clarify the effect of copper, copper citrate, and alkaline copper quaternary-type D (ACQ-D) on the decay capabilities of S. lacrymans compared with an alternative wood preservative......Serpula lacrymans, the dry rot fungus, is considered the most economically important wood decay fungus in certain temperate regions of the world, namely northern Europe, Japan, and Australia. Previously, copper-based wood preservatives were commonly used for pressure treatment of wood for building...... not containing copper. Twelve isolates of the dry rot fungus S. lacrymans and four other brown-rot species were evaluated for weight loss on wood treated with 1.2% copper citrate, 0.5% ACQ-D, and 0.5% naphthaloylhydroxylamine (NHA). Eleven out of 12 isolates of S. lacrymans were shown to be tolerant towards...

  18. Towards an all-copper redox flow battery based on a copper-containing ionic liquid.

    Science.gov (United States)

    Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan

    2016-01-07

    The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.

  19. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  20. Copper Bioleaching in China: Review and Prospect

    OpenAIRE

    Shenghua Yin; Leiming Wang; Eugie Kabwe; Xun Chen; Rongfu Yan; Kai An; Lei Zhang; Aixiang Wu

    2018-01-01

    The commercial application of copper bioleaching, an environmentally-friendly approach for low-grade and secondary mineral resources recycling, has increased worldwide since the 2000s. As the world’s second-largest economic entity and the largest developing country, China has the largest demand for metal resources, significantly advancing the theory and industrial technology of copper bioleaching. This paper reviews the exploration and application of copper bioleaching in China. Two typical b...