WorldWideScience

Sample records for tendon derived fibroblast

  1. Influence of nanofibers on growth and gene expression of human tendon derived fibroblast

    Directory of Open Access Journals (Sweden)

    Schmitt Jan

    2010-02-01

    Full Text Available Abstract Background Rotator cuff tears are a common and frequent lesion especially in older patients. The mechanisms of tendon repair are not fully understood. Common therapy options for tendon repair include mini-open or arthroscopic surgery. The use of growth factors in experimental studies is mentioned in the literature. Nanofiber scaffolds, which provide several criteria for the healing process, might be a suitable therapy option for operative treatment. The aim of this study was to explore the effects of nanofiber scaffolds on human tendon derived fibroblasts (TDF's, as well as the gene expression and matrix deposition of these fibroblasts. Methods Nanofibers composed of PLLA and PLLA/Col-I were seeded with human tendon derived fibroblasts and cultivated over a period of 22 days under growth-inductive conditions, and analyzed during the course of culture, with respect to gene expression of different extra cellular matrix components such as collagens, bigylcan and decorin. Furthermore, we measured cell densities and proliferation by using fluorescene microscopy. Results PLLA nanofibers possessed a growth inhibitory effect on TDF's. Furthermore, no meaningful influence on the gene expression of collagen I, collagen III and decorin could be observed, while the expression of collagen X increased during the course of cultivation. On the other hand, PLLA/Col-I blend nanofibers had no negative influence on the growth of TDF's. Furthermore, blending PLLA nanofibers with collagen had a positive effect on the gene expression of collagen I, III, X and decorin. Here, gene expression indicated that focal adherence kinases might be involved. Conclusion This study indicates that the use of nanofibers influence expression of genes associated with the extra cellular matrix formation. The composition of the nanofibers plays a critical role. While PLLA/Col-I blend nanofibers enhance the collagen I and III formation, their expression on PLLA nanofibers was

  2. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  3. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    Science.gov (United States)

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-11-19

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  4. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  5. Platelet-Rich Plasma Activates Proinflammatory Signaling Pathways and Induces Oxidative Stress in Tendon Fibroblasts.

    Science.gov (United States)

    Hudgens, Joshua L; Sugg, Kristoffer B; Grekin, Jeremy A; Gumucio, Jonathan P; Bedi, Asheesh; Mendias, Christopher L

    2016-08-01

    Tendon injuries are one of the most common musculoskeletal conditions in active patients. Platelet-rich plasma (PRP) has shown some promise in the treatment of tendon disorders, but little is known as to the mechanisms by which PRP can improve tendon regeneration. PRP contains numerous different growth factors and cytokines that activate various cellular signaling cascades, but it has been difficult to determine precisely which signaling pathways and cellular responses are activated after PRP treatment. Additionally, macrophages play an important role in modulating tendon regeneration, but the influence of PRP on determining whether macrophages assume a proinflammatory or anti-inflammatory phenotype remains unknown. To use genome-wide expression profiling, bioinformatics, and protein analysis to determine the cellular pathways activated in fibroblasts treated with PRP. The effect of PRP on macrophage polarization was also evaluated. Controlled laboratory study. Tendon fibroblasts or macrophages from rats were cultured and treated with either platelet-poor plasma (PPP) or PRP. RNA or protein was isolated from cells and analyzed using microarrays, quantitative polymerase chain reaction, immunoblotting, or bioinformatics techniques. Pathway analysis determined that the most highly induced signaling pathways in PRP-treated tendon fibroblasts were TNFα and NFκB pathways. PRP also downregulated the expression of extracellular matrix genes and induced the expression of autophagy-related genes and reactive oxygen species (ROS) genes and protein markers in tendon fibroblasts. PRP failed to have a major effect on markers of macrophage polarization. PRP induces an inflammatory response in tendon fibroblasts, which leads to the formation of ROS and the activation of oxidative stress pathways. PRP does not appear to significantly modulate macrophage polarization. PRP might act by inducing a transient inflammatory event, which could then trigger a tissue regeneration response

  6. Transplantation of fetal instead of adult fibroblasts reduces the probability of ectopic ossification during tendon repair.

    Science.gov (United States)

    Fang, Zhi; Zhu, Ting; Shen, Wei Liang; Tang, Qiao Mei; Chen, Jia Lin; Yin, Zi; Ji, Jun Feng; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-07-01

    Although cell transplantation therapy can effectively promote functional tendon repair, occasional ectopic ossification during tendon regeneration undermines its efficacy. The effect of transplanted cell types on ectopic ossification has not yet been systematically evaluated. This study compared the rate of ectopic ossification during tendon repair upon transplantation with mouse fetal fibroblasts (FFs) and their adult counterparts (adult fibroblasts [AFs]). Alkaline phosphatase (ALP) staining, immunofluorescence, and gene expression analysis were used to compare the spontaneous osteogenic differentiation of FFs and AFs in vitro. X-ray, histology, and gene expression analysis were used to investigate the ectopic ossification in a mouse Achilles tendon repair model in vivo. ALP staining and immunofluorescence data in vitro showed that FFs had less spontaneous osteogenic differentiation capacity, and lower expression of runt-related transcription factor 2 (runx2). For the in vivo study, the FFs transplant group displayed reduced ectopic ossification (2/7 vs. 7/7, Mann-Whitney test ptransplantation and enhanced tendon repair (general histological score at week 6, 7.53 vs. 10.56, ptransplantation in the AFs transplant group. Gene expression analysis of the regenerated tissue showed significantly higher expression levels of transforming growth factor beta1 (TGF-β1) and transforming growth factor beta3 (TGF-β3) in the AFs group during the early stages of tendon repair. Our study demonstrates that transplantation of fetal instead of AFs is more promising for tendon repair, underscoring the importance of the origin of seed cells for tendon repair.

  7. Tissue engineering of flexor tendons: the effect of a tissue bioreactor on adipoderived stem cell-seeded and fibroblast-seeded tendon constructs.

    Science.gov (United States)

    Angelidis, Ioannis K; Thorfinn, Johan; Connolly, Ian D; Lindsey, Derek; Pham, Hung M; Chang, James

    2010-09-01

    Tissue-engineered flexor tendons could eventually be used for reconstruction of large tendon defects. The goal of this project was to examine the effect of a tissue bioreactor on the biomechanical properties of tendon constructs seeded with adipoderived stem cells (ASCs) and fibroblasts (Fs). Rabbit rear paw flexor tendons were acellularized and seeded with ASCs or Fs. A custom bioreactor applied a cyclic mechanical load of 1.25 N at 1 cycle/minute for 5 days onto the tendon constructs. Three additional groups were used as controls: fresh tendons and tendons reseeded with either ASCs or Fs that were not exposed to the bioreactor treatment and were left in stationary incubation for 5 days. We compared the ultimate tensile stress (UTS) and elastic modulus (EM) of bioreactor-treated tendons with the unloaded control tendons and fresh tendons. Comparison across groups was assessed using one-way analysis of variance with the significance level set at ptendons that were exposed to cyclic load were significantly higher than those of unloaded control tendons. Acellularized tendon constructs that were reseeded with ASCs and exposed to a cyclic load had a UTS of 66.76 MPa and an EM of 906.68 MPa; their unloaded equivalents had a UTS of 47.90 MPa and an EM of 715.57 MPa. Similar trends were found in the fibroblast-seeded tendon constructs that were exposed to the bioreactor treatment. The bioreactor-treated tendons approached the UTS and EM values of fresh tendons. Histologically, we found that cells reoriented themselves parallel to the direction of strain in response to cyclic strain. The application of cyclic strain on seeded tendon constructs that were treated with the bioreactor helped achieve a UTS and an EM comparable with those of fresh tendons. Bioreactor pretreatment and alternative cell lines, such as ASCs and Fs, might therefore contribute to the in vitro production of strong tendon material. Copyright 2010. Published by Elsevier Inc.

  8. Characteristics of human infant primary fibroblast cultures from Achilles tendons removed post-mortem

    DEFF Research Database (Denmark)

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob

    2014-01-01

    Primary cell cultures were investigated as a tool for molecular diagnostics in a forensic setting. Fibroblast cultures had been established from human Achilles tendon resected at autopsies, from cases of sudden infant death syndrome and control infants who died in traumatic events (n=41). After...

  9. Transplantation of Fetal Instead of Adult Fibroblasts Reduces the Probability of Ectopic Ossification During Tendon Repair

    Science.gov (United States)

    Fang, Zhi; Zhu, Ting; Shen, Wei Liang; Tang, Qiao Mei; Chen, Jia Lin; Yin, Zi; Ji, Jun Feng; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-01-01

    Although cell transplantation therapy can effectively promote functional tendon repair, occasional ectopic ossification during tendon regeneration undermines its efficacy. The effect of transplanted cell types on ectopic ossification has not yet been systematically evaluated. This study compared the rate of ectopic ossification during tendon repair upon transplantation with mouse fetal fibroblasts (FFs) and their adult counterparts (adult fibroblasts [AFs]). Alkaline phosphatase (ALP) staining, immunofluorescence, and gene expression analysis were used to compare the spontaneous osteogenic differentiation of FFs and AFs in vitro. X-ray, histology, and gene expression analysis were used to investigate the ectopic ossification in a mouse Achilles tendon repair model in vivo. ALP staining and immunofluorescence data in vitro showed that FFs had less spontaneous osteogenic differentiation capacity, and lower expression of runt-related transcription factor 2 (runx2). For the in vivo study, the FFs transplant group displayed reduced ectopic ossification (2/7 vs. 7/7, Mann–Whitney test p<0.01) at 14 weeks post-transplantation and enhanced tendon repair (general histological score at week 6, 7.53 vs. 10.56, p<0.05). More chondrocytes formed at 6 weeks, and all mice developed bone marrow at 14 weeks post-transplantation in the AFs transplant group. Gene expression analysis of the regenerated tissue showed significantly higher expression levels of transforming growth factor beta1 (TGF-β1) and transforming growth factor beta3 (TGF-β3) in the AFs group during the early stages of tendon repair. Our study demonstrates that transplantation of fetal instead of AFs is more promising for tendon repair, underscoring the importance of the origin of seed cells for tendon repair. PMID:24410299

  10. Recombinant fibroblast growth protein enhances healing ability of experimentally induced tendon injury in vivo.

    Science.gov (United States)

    Oryan, A; Moshiri, A

    2014-06-01

    This study was designed to investigate the effects of recombinant human basic fibroblast growth factor (bFGF) on a complete superficial digital flexor tendon (SDFT) rupture after surgical repair in rabbits. Eighty mature New Zealand White rabbits of both sexes were randomly divided into two equal groups: Treated and Control. Each group was subdivided into two 28- and 84-day post-injury subgroups. After tenotomy and surgical repair, the animals were immobilized for 14 days. In the treated group, bFGF was directly applied subcutaneously over the lesion on days 3, 7 and 10 after injury. The control animals received normal saline injection of the same viscosity and volume and at the same intervals. Ultrasonographical observations were conducted at weekly intervals. The animals were euthanized at 28 and 84 days after injury. The tendons were evaluated at macroscopic, histopathologic and ultrastructural levels and were assessed for biomechanical and percentage dry weight parameters. Compared to injured control animals, treated animals showed a decrease in the diameter of the injured tendon and peritendinous adhesion as well as increased tenoblast proliferation, collagen production and ultimate strength of the injured tendons (p tendons compared to controls (p = 0.001). bFGF showed promising curative effects on restoration of the biomechanical and morphological properties of the ruptured SDFT in rabbits and may be applicable in clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Bone marrow-derived mesenchymal stem cells obtained during arthroscopic rotator cuff repair surgery show potential for tendon cell differentiation after treatment with insulin.

    Science.gov (United States)

    Mazzocca, Augustus D; McCarthy, Mary Beth R; Chowaniec, David; Cote, Mark P; Judson, Christopher H; Apostolakos, John; Solovyova, Olga; Beitzel, Knut; Arciero, Robert A

    2011-11-01

    The purpose of this study was to determine whether a one-time physiologic dose of insulin when compared with the growth factors insulin-like growth factor 1, β-fibroblastic growth factor, and growth differentiation factor 5 is capable of differentiating bone marrow-derived mesenchymal stem cells (MSCs) into tendon. Eleven patients undergoing arthroscopic rotator cuff repair consented to undergo aspiration of bone marrow. A dose-response curve was calculated to determine the optimal dose of insulin needed to differentiate MSCs into tendon. After purification of bone marrow in the operating room, MSCs were exposed to either insulin or tendon-inducing growth factors or were left untreated to serve as a control. The potential for MSCs in each of these groups to differentiate into tendon was evaluated with a multistep process that included determination of the genetic upregulation for tendon-specific proteins, confirmation that the levels of these proteins were actually increased, staining of the MSCs with antibodies for these proteins to ensure that they were expressed on the cell surface, and finally, evaluation of cell morphology to verify the MSCs' tendon-like appearance. MSCs treated with insulin showed increased gene expression of tendon-specific markers (P differentiated into cells with characteristics consistent with tendon. The potential for MSCs to differentiate into tendon after a 1-time dose of insulin may assist in developing practical biologic options for augmentation of rotator cuff repairs. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  12. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kairui; Zhang, Sheng [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Li, Qianqian [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Yang, Jun [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Department of Orthopaedics, 421 Hospital of PLA, Guangzhou 510318 (China); Dong, Weiqiang [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Department of Orthopaedics, The First Affiliated Hospital to Guangzhou Medical University, Guangzhou 510120 (China); Wang, Shengnan; Cheng, Yirong; Al-Qwbani, Mohammed [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Wang, Qiang, E-mail: 1780468505@qq.com [Department of Orthopaedics, Subei People’s Hospital of Jiangsu Province (Clinical Medical College of Yangzhou University), Yangzhou, Jiangsu Province 225001 (China); Yu, Bin, E-mail: carryzhang1985@live.com [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China)

    2014-07-18

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aims to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation.

  13. Skin-derived fibroblasts for the treatment of refractory Achilles tendinosis: preliminary short-term results.

    Science.gov (United States)

    Obaid, Haron; Clarke, Andrew; Rosenfeld, Peter; Leach, Christopher; Connell, David

    2012-02-01

    Chronic Achilles tendinosis is a common musculoskeletal disorder often refractory to conservative management. Our study aimed to assess the safety and efficacy of the use of autologous skin-derived collagen-producing cells in the treatment of refractory Achilles tendinosis. We conducted a randomized, double-blind study on forty Achilles tendons in thirty-two patients (eight with bilateral involvement) who had a clinical and radiographic diagnosis of Achilles tendinosis. The patients ranged from twenty-two to sixty-seven years old and had a mean age of 45.2 years. The patients with unilateral involvement were randomized into the treatment group (twelve patients) and control group (twelve patients). The eight patients with bilateral involvement were individually randomized into treatment and control groups, with eight Achilles tendons in each group. Achilles tendons in the treatment group were injected under ultrasound guidance with laboratory-expanded, skin-derived fibroblasts suspended in autologous plasma. The control group received ultrasound-guided injection of a local anesthetic and physiotherapy. The Victorian Institute of Sport Assessment (VISA) questionnaire and visual analog scale (VAS) scores were used as the main outcome measures for both groups. Significant differences in the mean VISA and VAS scores were detected between the treatment and the control groups for the patients with unilateral involvement at six months (p tendinosis is safe. However, larger studies with a longer duration of follow-up are required to determine the long-term effectiveness before wider clinical application is considered.

  14. Clinical and morphological evaluation of snake venom derived fibrin glue on the tendon healing in dogs

    Directory of Open Access Journals (Sweden)

    G. C. Ferraro

    2005-12-01

    Full Text Available The aim of this study was to evaluate the effect of snake venom derived fibrin glue on the healing of the deep digital flexor tendon, during three periods. The tendon of the 2nd digit of 30 thoracic limbs of dogs was partially sectioned for glue application. Biopsies were performed 7, 15, and 30 days post surgery for the clinical and morphological study of tendons. Analysis of the results showed that 73.3% of the tendons showed stump retraction and 16.6% moderate to excessive adherence, which affected sliding. There was a significant difference in the number of inflammatory cells among the three studied periods, being the highest on day 15. The morphological analysis revealed a typical tendon healing process with a lower level of inflammation in the acute phase, facilitating the cicatricial maturation phase. Snake venom derived fibrin glue promotes the healing in dog flexor tendon.

  15. Dosed myofascial release in three-dimensional bioengineered tendons: effects on human fibroblast hyperplasia, hypertrophy, and cytokine secretion.

    Science.gov (United States)

    Cao, Thanh V; Hicks, Michael R; Campbell, David; Standley, Paul R

    2013-10-01

    The purpose of this study was to investigate potential differences of magnitudes and durations associated with dosed myofascial release (MFR) on human fibroblast proliferation, hypertrophy, and cytokine secretions. Bioengineered tendons (BETs) attached to nylon mesh anchors were strained uniaxially using a vacuum pressure designed to model MFR varying in magnitudes (0%, 3%, 6%, 9%, and 12% elongation) and durations (0.5 and 1-5 minutes). Conditioned media were analyzed for cytokine secretion via protein microarray (n = 2). Bioengineered tendons were weighted and fibroblasts extracted from the BET were assessed for total cell protein and proliferation via double-stranded DNA quantification (n = 5). All data were compared by a 1-way analysis of variance with post hoc Dunnett test and Student t test. Changing MFR magnitude and duration did not have an effect on total fibroblast cellular protein or DNA accumulation. However, we observed a stepwise increase in BET weight with higher-magnitude MFR treatments. Longer durations of MFR resulted in progressive increase in the secretions of angiogenin, interleukin (IL)-3, IL-8, growth colony-stimulating factor, and thymus activation-regulated chemokine. Alternatively, increasing strain magnitude induced secretions of IL-1β, monocyte chemoattractant cytokine, and regulated and normal T cell expressed and secreted chemotactic cytokine. Cellular proliferation and hypertrophy were not significantly changed by any treatment. However, the change in total BET dry weight suggests that production of extracellular matrix protein may be up-regulated. Different MFR parameters induce secretions of a unique subset of cytokines and growth factors that can be further enhanced by increasing the magnitude and duration of treatment. If clinically translatable, these results suggest that variations to manual therapy biomechanical parameters may differentially affect physiological responses in vivo. © 2013. Published by National University of

  16. Anterior cruciate ligament- and hamstring tendon-derived cells: in vitro differential properties of cells involved in ACL reconstruction.

    Science.gov (United States)

    Ghebes, Corina Adriana; Kelder, Cindy; Schot, Thomas; Renard, Auke J; Pakvis, Dean F M; Fernandes, Hugo; Saris, Daniel B

    2017-04-01

    Anterior cruciate ligament (ACL) reconstruction involves the replacement of the torn ligament with a new graft, often a hamstring tendon (HT). Described as similar, the ACL and HT have intrinsic differences related to their distinct anatomical locations. From a cellular perspective, identifying these differences represents a step forward in the search for new cues that enhance recovery after the reconstruction. The purpose of this study was to characterize the phenotype and multilineage potential of ACL- and HT-derived cells. ACL- and HT-derived cells were isolated from tissue harvest from patients undergoing total knee arthroplasty (TKA) or ACL reconstruction. In total, three ACL and three HT donors were investigated. Cell morphology, self-renewal potential (CFU-F), surface marker profiling, expression of tendon/ligament-related markers (PCR) and multilineage potential were analysed for both cell types; both had fibroblast-like morphology and low self-renewal potential. No differences in the expression of tendon/ligament-related genes or a selected set of surface markers were observed between the two cell types. However, differences in their multilineage potential were observed: while ACL-derived cells showed a high potential to differentiate into chondrocytes and adipocytes, but not osteoblasts, HT-derived cells showed poor potential to form adipocytes, chondrocytes and osteoblasts. Our results demonstrated that HT-derived cells have low multilineage potential compared to ACL-derived cells, further highlighting the need for extrinsic signals to fully restore the function of the ACL upon reconstruction. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Adipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Mehdi Behfar

    2011-11-01

    Full Text Available Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF, derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differentiation into multiple lineages to be used in regenerative medicine. In the present study, we investigated potentials of this source on tendon healing. Twenty rabbits were divided into control and treatment groups. Five rabbits were used as donors of adipose tissue. The injury model was unilateral complete transection through the middle one third of deep digital flexor tendon. Immediately after suture repair, either fresh stromal vascular fraction from enzymatic digestion of adipose tissue or placebo was intratendinously injected into the suture site in treatments and controls, respectively. Cast immobilization was continued for two weeks after surgery. Animals were sacrificed at the third week and tendons underwent histological, immunohistochemical, and mechanical evaluations. By histology, improved fibrillar organization and remodeling of neotendon were observed in treatment group. Immunohistochemistry revealed an insignificant increase in collagen type III and I expression in treatments over controls. Mechanical testing showed significant increase in maximum load and energy absorption in SVF treated tendons. The present study showed that intratendinous injection of uncultured adipose derived stromal vascular fraction improved structural and mechanical properties of repaired tendon and it could be an effective modality for treating tendon laceration.

  18. Passage and concentration-dependent effects of Indomethacin on tendon derived cells

    Directory of Open Access Journals (Sweden)

    Scutt Andy

    2009-04-01

    Full Text Available Abstract Background Non-steroidal anti-inflammatory drugs (NSAID are commonly used in the treatment of tendinopathies such as tendonitis and tendinosis. Despite this, little is known of their direct actions on tendon-derived cells. As NSAIDs have been shown to delay healing in a number of mesenchymal tissues we have investigated the direct effects of indomethacin on the proliferation of tendon-derived cells. Results and Discussion The results obtained were dependent on both the type of cells used and the method of measurement. When measured using the Alamar blue assay, a common method for the measurement of cell proliferation and viability, no effect of indomethacin was seen regardless of cell source. It is likely that this lack of effect was due to a paucity of mitochondrial enzymes in tendon cells. However, when cell number was assessed using the methylene blue assay, which is a simple nuclear staining technique, an Indomethacin-induced inhibition of proliferation was seen in primary cells but not in secondary subcultures. Conclusion These results suggest that firstly, care must be taken when deciding on methodology used to investigate tendon-derived cells as these cells have a quite different metabolism to other mesenchymal derive cells. Secondly, Indomethacin can inhibit the proliferation of primary tendon derived cells and that secondary subculture selects for a population of cells that is unresponsive to this drug.

  19. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration.

    Science.gov (United States)

    Chang, Chung-Hsun; Tsai, Wen-Chung; Lin, Miao-Sui; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2011-03-01

    Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway.

  20. Tendon-derived progenitor cells improve healing of collagenase-induced flexor tendinitis.

    Science.gov (United States)

    Durgam, Sushmitha S; Stewart, Allison A; Sivaguru, Mayandi; Wagoner Johnson, Amy J; Stewart, Matthew C

    2016-12-01

    Tendinitis is a common and a performance-limiting injury in athletes. This study describes the value of intralesional tendon-derived progenitor cell (TDPC) injections in equine flexor tendinitis. Collagenase-induced tendinitis was created in both front superficial digital flexor (SDF) tendons. Four weeks later, the forelimb tendon lesions were treated with 1 × 107 autogenous TDPCs or saline. Tendinitis was also induced by collagenase in one hind SDF tendon, to study the survival and distribution of DiI-labeled TDPCs 1, 2, 4, and 6 weeks after injection. The remaining normal tendon was used as a "control." Twelve weeks after forelimb TDPC injections, tendons were harvested for assessment of matrix gene expression, biochemical, biomechanical, and histological characteristics. DiI-labeled TDPCs were abundant 1 week after injection but gradually declined over time and were undetectable after 6 weeks. Twelve weeks after TDPC injection, collagens I and III, COMP and tenomodulin mRNA levels were similar (p = 0.3) in both TDPC and saline groups and higher (p < 0.05) than normal tendon. Yield and maximal stresses of the TDPC group were significantly greater (p = 0.005) than the saline group's and similar (p = 0.6) to normal tendon. However, the elastic modulus of the TDPC and saline groups were not significantly different (p = 0.32). Histological assessment of the repair tissues with Fourier transform-second harmonic generation imaging demonstrated that collagen alignment was significantly better (p = 0.02) in TDPC group than in the saline controls. In summary, treating collagenase-induced flexor tendon lesions with TDPCs improved the tensile strength and collagen fiber alignment of the repair tissue. Study Design © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2162-2171, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Capacity of muscle derived stem cells and pericytes to promote tendon graft integration and ligamentization following anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Ćuti, Tomislav; Antunović, Maja; Marijanović, Inga; Ivković, Alan; Vukasović, Andreja; Matić, Igor; Pećina, Marko; Hudetz, Damir

    2017-06-01

    The aim of this study is to examine the capacity of muscle tissue preserved on hamstring tendons forming candy-stripe grafts in order to improve tendon to bone ingrowth and ligamentization. We hypothesized that muscle tissue does possess a stem cell population that could enhance the healing process of the ACL graft when preserved on the tendons. Human samples from gracilis and semitendinosus muscles were collected during ACL surgery from ten patients and from these tissue samples human muscle-derived stem cells and tendon-derived stem cells were isolated and propagated. Both stem cell populations were in-vitro differentiated into osteogenic lineage. Alkaline phosphatase activity was determined at days zero and 14 of the osteogenic induction and von Kossa staining to assess mineralization of the cultures. Total RNA was collected from osteoblast cultures and real time quantitative PCR was performed. Western-blot for osteocalcin and collagen type I followed protein isolation. Immunofluorescence double labeling of pericytes in muscle and tendon tissue was performed. Mesenchymal stem cells from muscle and tendon tissue were isolated and expanded in cell culture. More time was needed to grow the tendon derived culture compared to muscle derived culture. Muscle derived stem cells exhibited more alkaline phosphatase actvity compared to tendon derived stem cells, whereas tendon derived stem cells formed more mineralized nodules after 14 days of osteoinduction. Muscle derived stem cells exhibited higher expression levels of bone sialoprotein, and tendon derived stem cells showed higher expression of dental-matrix-protein 1 and osteocalcin. Immunofluorescent staining against pericytes indicated that they are more abundant in muscle tissue. These results indicate that muscle tissue is a better source of stem cells than tendon tissue. Achievement of this study is proof that there is vast innate capacity of muscle tissue for enhancement of bone-tendon integration and

  2. Isolation and biological characterization of tendon-derived stem cells from fetal bovine.

    Science.gov (United States)

    Yang, Jinjuan; Zhao, Qianjun; Wang, Kunfu; Liu, Hao; Ma, Caiyun; Huang, Hongmei; Liu, Yingjie

    2016-09-01

    The lack of appropriate candidates of cell sources for cell transplantation has hampered efforts to develop therapies for tendon injuries, such as tendon rupture, tendonitis, and tendinopathy. Tendon-derived stem cells (TDSCs) are a type of stem cells which may be used in the treatment of tendon injuries. In this study, TDSCs were isolated from 5-mo-old Luxi Yellow fetal bovine and cultured in vitro and further analyzed for their biological characteristics using immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR) assays. It was found that primary TDSCs could be expanded for 42 passages in vitro maintaining proliferation. The expressions of stem cell marker nucleostemin and tenocyte-related markers, such as collagen I, collagen II, collagen III, and tenascin-C, were observed on different passage cells by immunofluorescence. The results from RT-PCR show that TDSCs were positive for collagen type I, CD44, tenascin-C, and collagen type III but negative for collagen type II. Meanwhile, TDSC passage 4 was successfully induced to differentiate into osteoblasts, adipocytes, and chondrocytes. Our results indicate that the fetal bovine TDSCs not only had strong self-renewal capacity but also possess the potential for multi-lineage differentiation. This study provides theoretical basis and experimental foundation for potential therapeutic application of the fetal bovine TDSCs in the treatment of tendon injuries.

  3. A long term study on the role of exogenous human recombinant basic fibroblast growth factor on the superficial digital flexor tendon healing in rabbits.

    Science.gov (United States)

    Oryan, A; Moshiri, A

    2011-06-01

    This study was designed to investigate the effects of basic fibroblast growth factor on the remodeling phase of the tenotomized superficial digital flexor tendon in rabbits. Forty white New Zealand mature male rabbits were divided randomly into two equal groups of treated and control. After tenotomy and surgical repair, using modified Kessler technique and running pattern, the injured legs were casted for 14 days. Human recombinant basic fibroblast growth factor (bFGF) was injected subcutaneously over the lesion on days 3, 7 and 10 post injuries. The control animals received normal saline injection similarly. The weight of the animals, tendon diameter, radiographic and ultrasonographic evaluations was conducted at weekly intervals. The animals were euthanized 84 days post-injury and the tendons were evaluated at macroscopic, histopathologic and ultrastructural level and were also assessed for biomechanical and percentage dry weight parameters. Treatment significantly reduced the diameter and increased the echogenicity and dry weight content of the injured tendons. Treatment also significantly enhanced the maturation of the tenoblasts, fibrillogenesis, the collagen fibrils' diameter, fibrillar density, stiffness, and ultimate and yield strength. Subcutaneous administration of human recombinant bFGF is effective in restoring the morphological and biomechanical properties of the injured SDFT in rabbits.

  4. Therapeutic Mechanisms of Human Adipose-Derived Mesenchymal Stem Cells in a Rat Tendon Injury Model.

    Science.gov (United States)

    Lee, Sang Yoon; Kwon, Bomi; Lee, Kyoungbun; Son, Young Hoon; Chung, Sun G

    2017-05-01

    Although survival of transplanted stem cells in vivo and differentiation of stem cells into tenocytes in vitro have been reported, there have been no in vivo studies demonstrating that mesenchymal stem cells (MSCs) could secrete their own proteins as differentiated tenogenic cells. Purpose/Hypothesis: Using a xenogeneic MSC transplantation model, we aimed to investigate whether MSCs could differentiate into the tenogenic lineage and secrete their own proteins. The hypothesis was that human MSCs would differentiate into the human tenogenic lineage and the cells would be able to secrete human-specific proteins in a rat tendon injury model. Controlled laboratory study. The Achilles tendons of 57 Sprague Dawley rats received full-thickness rectangular defects. After the modeling, the defective tendons were randomly assigned to 3 groups: (1) cell group, implantation with human adipose-derived mesenchymal stem cells (hASCs) and fibrin glue (106 cells in 60 μL); (2) fibrin group, implantation with fibrin glue and same volume of cell media; and (3) sham group, identical surgical procedure without any treatment. Gross observation and biomechanical, histopathological, immunohistochemistry, and Western blot analyses were performed at 2 and 4 weeks after modeling. hASCs implanted into the defective rat tendons were viable for 4 weeks as detected by immunofluorescence staining. Tendons treated with hASCs showed better gross morphological and biomechanical recovery than those in the fibrin and sham groups. Furthermore, the expression of both human-specific collagen type I and tenascin-C was significantly higher in the cell group than in the other 2 groups. Transplantation of hASCs enhanced rat tendon healing biomechanically. hASCs implanted into the rat tendon defect model survived for at least 4 weeks and secreted human-specific collagen type I and tenascin-C. These findings suggest that transplanted MSCs may be able to differentiate into the tenogenic lineage and contribute

  5. Adipose tissue-derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion.

    Science.gov (United States)

    Spiekman, Maroesjka; Przybyt, Ewa; Plantinga, Josée A; Gibbs, Susan; van der Lei, Berend; Harmsen, Martin C

    2014-10-01

    Adipose tissue-derived stromal cells augment wound healing and skin regeneration. It is unknown whether and how they can also influence dermal scarring. The authors hypothesized that adipose tissue-derived stromal cells inhibit adverse differentiation of dermal fibroblasts induced by the pivotal factor in scarring, namely, transforming growth factor (TGF)-β. TGF-β1-treated adult human dermal fibroblasts and keloid scar-derived fibroblasts were incubated with adipose tissue-derived stromal cell-conditioned medium and assessed for proliferation and differentiation, particularly the production of collagen, expression of SM22α, and development of hypertrophy and contractility. TGF-β1-induced proliferation of adult human dermal fibroblasts was abolished by adipose tissue-derived stromal cell-conditioned medium. Simultaneously, the medium reduced SM22α gene and protein expression of TGF-β1-treated adult human dermal fibroblasts, and their contractility was reduced also. Furthermore, the medium strongly reduced transcription of collagen I and III genes and their corresponding proteins. In contrast, it tipped the balance of matrix turnover to degradation through stimulating gene expression of matrix metalloproteinase (MMP)-1, MMP-2, and MMP-14, whereas MMP-2 activity was up-regulated also. Even in end-stage myofibroblasts (i.e., keloid scar-derived fibroblasts), adipose tissue-derived stromal cell-conditioned medium suppressed TGF-β1-induced myofibroblast contraction and collagen III gene expression. The authors show that adipose tissue-derived stromal cells inhibit TGF-β1-induced adverse differentiation and function of adult human dermal fibroblasts and TGF-β1-induced contraction in keloid scar-derived fibroblasts, in a paracrine fashion.

  6. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Kyle J Hewitt

    2011-02-01

    Full Text Available Human induced pluripotent stem (hiPS cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK and their hES-derived counterparts (EDK showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM-production (COL1A1 by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ, revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.

  7. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Hayman, Ryan B; Margvelashvili, Mariam; Dong, Shumin; Carlson, Mark W; Garlick, Jonathan A

    2011-02-28

    Human induced pluripotent stem (hiPS) cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES) cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK) and their hES-derived counterparts (EDK) showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM)-production (COL1A1) by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ), revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.

  8. Effect of snake venom derived fibrin glue on the tendon healing in dogs: clinical and biomechanical study

    Directory of Open Access Journals (Sweden)

    G. C. Ferraro

    2005-09-01

    Full Text Available The aim of this study was to evaluate the effect of snake venom derived fibrin glue on the strength oftendon healing in dogs. The deep digital flexor tendon of the 5th digit of 24 thoracic limbs was partially sectioned for adhesive application. On the 7th, 15th, and 30th postoperative day tendons segments were removed for the clinical and biomechanical study. Results indicated that 62.5% of the tendons showed stump retraction and 20.8% moderate to excessive adherence, which affected gliding. The biomechanical evaluation showed that, over time, tendon healing gained progressive resistance for maximum traction and permanent deformations with satisfactory results on the 15th day for rigidity and resilience compared to the other two studied periods. Snake venom derived fibrin glue promotes healing in dog flexor tendon.

  9. Mesenchymal stem cells modulate release of matrix proteins from tendon surfaces in vitro: a potential beneficial therapeutic effect.

    Science.gov (United States)

    Garvican, Elaine R; Dudhia, Jayesh; Alves, Ana-Liz; Clements, Lucy E; Plessis, Francois Du; Smith, Roger K W

    2014-05-01

    Injury of tendons contained within a synovial environment, such as joint, bursa or tendon sheath, frequently fails to heal and releases matrix proteins into the synovial fluid, driving inflammation. This study investigated the effectiveness of cells to seal tendon surfaces and provoke matrix synthesis as a possible effective injectable therapy. Equine flexor tendon explants were cultured overnight in suspensions of bone marrow and synovium-derived mesenchymal stems cells and, as controls, two sources of fibroblasts, derived from tendon and skin, which adhered to the explants. Release of the most abundant tendon extracellular matrix proteins into the media was assayed, along with specific matrix proteins synthesis by real-time PCR. Release of extracellular matrix proteins was influenced by the coating cell type. Fibroblasts from skin and tendon appeared less capable of preventing the release of matrix proteins than mesenchymal stems cells. The source of cell is an important consideration for cell therapy.

  10. Ear fibroblasts derived from Taiwan yellow cattle are more heat resistant than those from Holstein cattle.

    Science.gov (United States)

    Wu, Hung-Yi; Peng, Shao-Yu; Li, Hung; Lee, Jai-Wei; Kesorn, Piyawit; Wu, Hsi-Hsun; Ju, Jyh-Cherng; Shen, Perng-Chih

    2017-05-01

    The objective of this study was to compare the thermotolerances of ear fibroblasts derived from Holstein (H) and Taiwan yellow cattle (Y) and their apoptosis-related protein expressions with (1, 3, 6, 12, and 24h) or without heat shock treatment. The results showed that the vaginal temperatures of Y (38.4-38.5°C) were (Pderived from Y (6h: 1.1%; 12h: 1.6%; 24h: 2.6%) were lower (Pderived from H (6h: 1.8%; 12h: 4.0%; 24h: 6.9%), respectively, after heat shock (42°C). The expression level of apoptosis inducing factor (AIF) in ear fibroblasts derived from H was higher (Pderived from Y after the heat shock treatment for 6h and 12h, respectively. The level of cytochrome c of ear fibroblasts derived from H was higher (Pderived from Y after the heat shock treatment for 1-12h, respectively. The abundances of Caspase-3, Caspase-8 and Caspase-9 of ear fibroblasts derived from H were higher (Pderived from Y after 12h and 24h of heat shock, respectively; the Bcl-2/Bax ratios of ear fibroblasts derived from H were lower (Pderived fibroblasts after heated for 1-24h. The expression level of HSP-70 of Y-derived ear fibroblasts was also higher (Pderived from Taiwan yellow cattle was better than that of cells derived from Holstein cattle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Adipose Tissue-Derived Stromal Cells Inhibit TGF-beta 1-Induced Differentiation of Human Dermal Fibroblasts and Keloid Scar-Derived Fibroblasts in a Paracrine Fashion

    NARCIS (Netherlands)

    Spiekman, Maroesjka; Przybyt, Ewa; Plantinga, Josee A.; Gibbs, Susan; van der Lei, Berend; Harmsen, Martin C.

    2014-01-01

    Background: Adipose tissue-derived stromal cells augment wound healing and skin regeneration. It is unknown whether and how they can also influence dermal scarring. The authors hypothesized that adipose tissue-derived stromal cells inhibit adverse differentiation of dermal fibroblasts induced by the

  12. File list: InP.PSC.05.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.hESC_derived_fibroblasts hg19 Input control Pluripotent stem cell hESC derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.05.AllAg.hESC_derived_fibroblasts.bed ...

  13. File list: DNS.PSC.10.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.iPS_derived_fibroblasts hg19 DNase-seq Pluripotent stem cell iPS derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.iPS_derived_fibroblasts.bed ...

  14. File list: NoD.PSC.05.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.05.AllAg.iPS_derived_fibroblasts hg19 No description Pluripotent stem cell iPS derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.05.AllAg.iPS_derived_fibroblasts.bed ...

  15. File list: Pol.PSC.20.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.hESC_derived_fibroblasts hg19 RNA polymerase Pluripotent stem cell hESC derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.hESC_derived_fibroblasts.bed ...

  16. File list: Unc.PSC.05.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.hESC_derived_fibroblasts hg19 Unclassified Pluripotent stem cell hESC derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.hESC_derived_fibroblasts.bed ...

  17. File list: DNS.PSC.05.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.hESC_derived_fibroblasts hg19 DNase-seq Pluripotent stem cell hESC derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.hESC_derived_fibroblasts.bed ...

  18. File list: Pol.PSC.20.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.iPS_derived_fibroblasts hg19 RNA polymerase Pluripotent stem cell iPS derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.iPS_derived_fibroblasts.bed ...

  19. File list: DNS.PSC.05.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.iPS_derived_fibroblasts hg19 DNase-seq Pluripotent stem cell iPS derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.iPS_derived_fibroblasts.bed ...

  20. File list: Pol.PSC.10.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.hESC_derived_fibroblasts hg19 RNA polymerase Pluripotent stem cell hESC derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.hESC_derived_fibroblasts.bed ...

  1. File list: Oth.PSC.20.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.hESC_derived_fibroblasts hg19 TFs and others Pluripotent stem cell hESC derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.20.AllAg.hESC_derived_fibroblasts.bed ...

  2. File list: NoD.PSC.50.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.50.AllAg.hESC_derived_fibroblasts hg19 No description Pluripotent stem cell hESC derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.50.AllAg.hESC_derived_fibroblasts.bed ...

  3. File list: Pol.PSC.50.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.iPS_derived_fibroblasts hg19 RNA polymerase Pluripotent stem cell iPS derived... fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.50.AllAg.iPS_derived_fibroblasts.bed ...

  4. File list: His.PSC.10.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.iPS_derived_fibroblasts hg19 Histone Pluripotent stem cell iPS der...ived fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.10.AllAg.iPS_derived_fibroblasts.bed ...

  5. File list: InP.PSC.05.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.iPS_derived_fibroblasts hg19 Input control Pluripotent stem cell iPS... derived fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.05.AllAg.iPS_derived_fibroblasts.bed ...

  6. File list: Pol.PSC.10.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.iPS_derived_fibroblasts hg19 RNA polymerase Pluripotent stem cell iPS... derived fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.iPS_derived_fibroblasts.bed ...

  7. File list: Oth.PSC.20.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.iPS_derived_fibroblasts hg19 TFs and others Pluripotent stem cell iPS... derived fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.20.AllAg.iPS_derived_fibroblasts.bed ...

  8. File list: Oth.PSC.10.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.iPS_derived_fibroblasts hg19 TFs and others Pluripotent stem cell iPS... derived fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.10.AllAg.iPS_derived_fibroblasts.bed ...

  9. File list: InP.PSC.10.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.10.AllAg.iPS_derived_fibroblasts hg19 Input control Pluripotent stem cell iPS... derived fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.10.AllAg.iPS_derived_fibroblasts.bed ...

  10. File list: His.PSC.05.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.iPS_derived_fibroblasts hg19 Histone Pluripotent stem cell iPS der...ived fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.05.AllAg.iPS_derived_fibroblasts.bed ...

  11. File list: His.PSC.20.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.iPS_derived_fibroblasts hg19 Histone Pluripotent stem cell iPS der...ived fibroblasts http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.AllAg.iPS_derived_fibroblasts.bed ...

  12. No donor age effect of human serum on collagen synthesis signaling and cell proliferation of human tendon fibroblasts

    DEFF Research Database (Denmark)

    Bayer, Monika L; Schjerling, Peter; Biskup, Edyta

    2012-01-01

    The aging process of tendon tissue is associated with decreased collagen content and increased risk for injuries. An essential factor in tendon physiology is transforming growth factor-ß1 (TGF-ß1), which is presumed to be reduced systemically with advanced age. The aim of this study was to invest......The aging process of tendon tissue is associated with decreased collagen content and increased risk for injuries. An essential factor in tendon physiology is transforming growth factor-ß1 (TGF-ß1), which is presumed to be reduced systemically with advanced age. The aim of this study...... and elderly donors, and we found no difference in collagen expression when cells were subjected to human serum from elderly versus young donors. In addition, tendon cell proliferation was similar when culture medium was supplemented with serum of different donor age. These findings suggest that factors...... such as the cell intrinsic capacity or the tissue-specific environment rather than systemic circulating factors are important for functional capacity throughout life in human tendon cells....

  13. Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model.

    Science.gov (United States)

    Lui, Pauline Po Yee; Wong, On Tik; Lee, Yuk Wa

    2016-01-01

    Treatment of tendon-derived stem cells (TDSCs) with connective tissue growth factor (CTGF) and ascorbic acid promoted their tenogenic differentiation. We investigated the effects of TDSCs pre-treated with CTGF and ascorbic acid on tendon repair in a patellar tendon window injury rat model. Green fluorescent protein-TDSCs (GFP-TDSCs) were pre-treated with or without CTGF and ascorbic acid for 2 weeks before transplantation. The patellar tendons of rats were injured and divided into three groups: fibrin glue-only group (control group), untreated and treated TDSC group. The rats were followed up until week 16. The treated TDSCs accelerated and enhanced the quality of tendon repair compared with untreated TDSCs up to week 8, which was better than that in the controls up to week 16 as shown by histology, ultrasound imaging and biomechanical test. The fibrils in the treated TDSC group showed better alignment and larger size compared with those in the control group at week 8 (P = 0.004). There was lower risk of ectopic mineralization after transplantation of treated or untreated TDSCs (all P ≤ 0.050). The transplanted cells proliferated and could be detected in the window wound up to weeks 2 to 4 and week 8 for the untreated and treated TDSC groups, respectively. The transplantation of TDSCs promoted tendon repair up to week 16, with CTGF and ascorbic acid pre-treatment showing the best results up to week 8. Pre-treatment of TDSCs with CTGF and ascorbic acid may be used to further enhance the rate and quality of tendon repair after injury. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Differential effect of extracellular matrix derived from papillary and reticular fibroblasts on epidermal development in vitro.

    Science.gov (United States)

    Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb

    2017-06-01

    Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.

  15. Structural and functional modulation of early healing of full-thickness superficial digital flexor tendon rupture in rabbits by repeated subcutaneous administration of exogenous human recombinant basic fibroblast growth factor.

    Science.gov (United States)

    Moshiri, Ali; Oryan, Ahmad

    2011-01-01

    The present study was designed to investigate the effects of basic fibroblast growth factor on the healing of the acute phase of complete superficial digital flexor tendon rupture in rabbits. A total of 40 skeletally mature female white New Zealand rabbits were randomly divided into 2 equal groups of injured treated and injured control. After tenotomy and surgical anastomosis, using a modified Kessler and running pattern, the injured legs were placed in casts for 14 days, and basic fibroblast growth factor was injected subcutaneously over the lesion on days 3, 7, and 10 after injury. The injured control rabbits received a normal saline injection in a similar protocol. The rabbits' weight, tendon diameter, clinical signs, radiographs, and ultrasound scans were evaluated weekly. The rabbits were killed 28 days after injury, and the tendons were evaluated at the macroscopic, histopathologic, and ultrastructural levels and for biomechanical and the percentage of dry weight analysis. Treatment significantly reduced the diameter and increased the echogenicity and dry weight content and enhanced the maturation rate of the tenoblasts, fibrillogenesis, collagen fibril diameter, fibrillar density, tensile strength, and stiffness and stress of the injured tendons. Treatment with basic fibroblast growth factor was effective in restoring the morphologic and biomechanical properties of the injured superficial digital flexor tendon and could be valuable in clinical trial studies. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion.

    Science.gov (United States)

    Huegel, Julianne; Kim, Dong Hwa; Cirone, James M; Pardes, Adam M; Morris, Tyler R; Nuss, Courtney A; Mauck, Robert L; Soslowsky, Louis J; Kuntz, Andrew F

    2017-06-01

    Rotator cuff tendon tears are one of the most common shoulder pathologies, especially in the aging population. Due to a poor healing response and degenerative changes associated with aging, rotator cuff repair failure remains common. Although cell-based therapies to augment rotator cuff repair appear promising, it is unknown whether the success of such a therapy is age-dependent. We hypothesized that autologous cell therapy would improve tendon-to-bone healing across age groups, with autologous juvenile cells realizing the greatest benefit. In this study, juvenile, adult, and aged rats underwent bilateral supraspinatus tendon repair with augmentation of one shoulder with autologous tendon-derived cell-seeded polycaprolactone scaffolds. At 8 weeks, shoulders treated with cells in both juvenile and aged animals exhibited increased cellularity, increased collagen organization, and improved mechanical properties. No changes between treated and control limbs were seen in adult rats. These findings suggest that cell delivery during supraspinatus repair initiates earlier matrix remodeling in juvenile and aged animals. This may be due to the relative "equilibrium" of adult tendon tissue with regards to catabolic and anabolic processes, contrasted with actively growing juvenile tendons and degenerative aged tendons. This study demonstrates the potential for autologous cell-seeded scaffolds to improve repairs in both the juvenile and aged population. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1250-1257, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Lithium Attenuates TGF-β 1-Induced Fibroblasts to Myofibroblasts Transition in Bronchial Fibroblasts Derived from Asthmatic Patients

    Science.gov (United States)

    Michalik, Marta; Wójcik, Katarzyna Anna; Jakieła, Bogdan; Szpak, Katarzyna; Pierzchalska, Małgorzata; Sanak, Marek; Madeja, Zbigniew; Czyż, Jarosław

    2012-01-01

    Bronchial asthma is a chronic disorder accompanied by phenotypic transitions of bronchial epithelial cells, smooth muscle cells, and fibroblasts. Human bronchial fibroblasts (HBFs) derived from patients with diagnosed asthma display predestination towards TGF-β-induced phenotypic switches. Since the interference between TGF-β and GSK-3β signaling contributes to pathophysiology of chronic lung diseases, we investigated the effect of lithium, a nonspecific GSK-3β inhibitor, on TGF-β 1-induced fibroblast to myofibroblast transition (FMT) in HBF and found that the inhibition of GSK-3β attenuates TGF-β 1-induced FMT in HBF populations derived from asthmatic but not healthy donors. Cytoplasmically sequestrated β-catenin, abundant in TGF-β 1/LiCl-stimulated asthmatic HBFs, most likely interacts with and inhibits the nuclear accumulation and signal transduction of Smad proteins. These data indicate that the specific cellular context determines FMT-related responses of HBFs to factors interfering with the TGF-β signaling pathway. They may also provide a mechanistic explanation for epidemiological data revealing coincidental remission of asthmatic syndromes and their recurrence upon the discontinuation of lithium therapy in certain psychiatric diseases. PMID:22988467

  18. Lithium Attenuates TGF-β1-Induced Fibroblasts to Myofibroblasts Transition in Bronchial Fibroblasts Derived from Asthmatic Patients

    Directory of Open Access Journals (Sweden)

    Marta Michalik

    2012-01-01

    Full Text Available Bronchial asthma is a chronic disorder accompanied by phenotypic transitions of bronchial epithelial cells, smooth muscle cells, and fibroblasts. Human bronchial fibroblasts (HBFs derived from patients with diagnosed asthma display predestination towards TGF-β-induced phenotypic switches. Since the interference between TGF-β and GSK-3β signaling contributes to pathophysiology of chronic lung diseases, we investigated the effect of lithium, a nonspecific GSK-3β inhibitor, on TGF-β1-induced fibroblast to myofibroblast transition (FMT in HBF and found that the inhibition of GSK-3β attenuates TGF-β1-induced FMT in HBF populations derived from asthmatic but not healthy donors. Cytoplasmically sequestrated β-catenin, abundant in TGF-β1/LiCl-stimulated asthmatic HBFs, most likely interacts with and inhibits the nuclear accumulation and signal transduction of Smad proteins. These data indicate that the specific cellular context determines FMT-related responses of HBFs to factors interfering with the TGF-β signaling pathway. They may also provide a mechanistic explanation for epidemiological data revealing coincidental remission of asthmatic syndromes and their recurrence upon the discontinuation of lithium therapy in certain psychiatric diseases.

  19. Lithium Attenuates TGF-β(1)-Induced Fibroblasts to Myofibroblasts Transition in Bronchial Fibroblasts Derived from Asthmatic Patients.

    Science.gov (United States)

    Michalik, Marta; Wójcik, Katarzyna Anna; Jakieła, Bogdan; Szpak, Katarzyna; Pierzchalska, Małgorzata; Sanak, Marek; Madeja, Zbigniew; Czyż, Jarosław

    2012-01-01

    Bronchial asthma is a chronic disorder accompanied by phenotypic transitions of bronchial epithelial cells, smooth muscle cells, and fibroblasts. Human bronchial fibroblasts (HBFs) derived from patients with diagnosed asthma display predestination towards TGF-β-induced phenotypic switches. Since the interference between TGF-β and GSK-3β signaling contributes to pathophysiology of chronic lung diseases, we investigated the effect of lithium, a nonspecific GSK-3β inhibitor, on TGF-β(1)-induced fibroblast to myofibroblast transition (FMT) in HBF and found that the inhibition of GSK-3β attenuates TGF-β(1)-induced FMT in HBF populations derived from asthmatic but not healthy donors. Cytoplasmically sequestrated β-catenin, abundant in TGF-β(1)/LiCl-stimulated asthmatic HBFs, most likely interacts with and inhibits the nuclear accumulation and signal transduction of Smad proteins. These data indicate that the specific cellular context determines FMT-related responses of HBFs to factors interfering with the TGF-β signaling pathway. They may also provide a mechanistic explanation for epidemiological data revealing coincidental remission of asthmatic syndromes and their recurrence upon the discontinuation of lithium therapy in certain psychiatric diseases.

  20. Regeneration of Full-Thickness Rotator Cuff Tendon Tear After Ultrasound-Guided Injection With Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Rabbit Model

    OpenAIRE

    Park, Gi-Young; Kwon, Dong Rak; Lee, Sang Chul

    2015-01-01

    The therapeutic effects of ultrasound-guided human umbilical cord blood (UBC)-derived mesenchymal stem cell (MSC) injection to regenerate a full-thickness subscapularis tendon tear in a rabbit model were studied. Gross morphology and histology of the injected tendon were evaluated, and improvement in functional ability was assessed by motion analysis. Histology revealed that UCB-derived MSCs induced regeneration of the rotator cuff tendon; motion analysis showed improved walking capacity.

  1. Platelet-Derived Growth Factor-BB Enhances Adipogenesis in Orbital Fibroblasts.

    Science.gov (United States)

    Virakul, Sita; Dalm, Virgil A S H; Paridaens, Dion; van den Bosch, Willem A; Mulder, Monique T; Hirankarn, Nattiya; van Hagen, P Martin; Dik, Willem A

    2015-08-01

    Platelet-derived growth factor (PDGF)-BB has been identified as important factor in pathogenesis of Graves' ophthalmopathy (GO). It stimulates proliferation, cytokine, and hyaluronan production, and thyrotropin receptor expression by orbital fibroblasts. Therefore, the PDGF-pathway has been proposed as a target for pharmacological intervention in GO. However, increased adipogenesis is another major pathological characteristic of GO and it is unknown whether this is affected by PDGF-BB. The aim of this study was to investigate the effect of PDGF-BB on adipocyte differentiation by orbital fibroblasts. Orbital fibroblasts from five healthy controls and nine GO patients were collected. Adipogenesis was induced by culturing orbital fibroblasts in differentiation medium, either in the presence or absence of PDGF-BB. Adipogenesis was determined by Oil-Red-O staining, triglyceride measurement, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA expression. Platelet-derived growth factor-BB significantly enhanced adipocyte differentiation by orbital fibroblasts (Oil-Red-O staining [P BB on adipogenesis was independent of autocrine IL-6 signaling as it was not abrogated by IL-6-receptor-α neutralizing antibody. The clinically applicable tyrosine kinase inhibitor dasatinib and tyrphostin AG1296, which both block PDGF receptor tyrosine kinase activity, inhibited PDGF-BB-enhanced adipogenesis (P BB enhances adipogenesis in orbital fibroblasts, and, thus, may contribute to adipose tissue expansion in GO. Therefore, the PDGF-signaling cascade may represent a target of therapy to interfere with adipogenesis in GO.

  2. File list: His.PSC.05.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.hESC_derived_fibroblasts hg19 Histone Pluripotent stem cell hESC derived...archive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.05.AllAg.hESC_derived_fibroblasts.bed ...

  3. File list: ALL.PSC.05.AllAg.hESC_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.hESC_derived_fibroblasts hg19 All antigens Pluripotent stem cell hESC derived...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.05.AllAg.hESC_derived_fibroblasts.bed ...

  4. File list: ALL.PSC.10.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.iPS_derived_fibroblasts hg19 All antigens Pluripotent stem cell iPS derived...4,SRX1099982,SRX1099970,SRX1099965,SRX1099961,SRX1099958,SRX1099949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.10.AllAg.iPS_derived_fibroblasts.bed ...

  5. Adult Cells Combined With Platelet-Rich Plasma for Tendon Healing

    Science.gov (United States)

    Rubio-Azpeitia, Eva; Sánchez, Pello; Delgado, Diego; Andia, Isabel

    2017-01-01

    Background: The combination of cells with platelet-rich plasma (PRP) may fulfill tendon deficits and help overcome the limited ability of tendons to heal. Purpose: To examine the suitability of 3 human cell types in combination with PRP and the potential impact of the tenocyte-conditioned media (CM) to enhance tendon healing. Study Design: Controlled laboratory study. Methods: Tenocytes, bone marrow–derived mesenchymal stem cells, and skin fibroblasts were cultured in 3-dimensional PRP hydrogels supplemented or not with CM, and cell proliferation and migration were examined. The effect of tendon-derived CM on matrix-forming phenotype and secretion of inflammatory proteins was determined through their administration to mesenchymal stem cells, tendon, and skin fibroblasts by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: Differences were found in the matrix-forming phenotype between each of the cell types. The ratio of collagen I:collagen III was greater in bone marrow–derived mesenchymal stem cells than in skin fibroblasts and tenocytes. The bone marrow–derived mesenchymal stem cells expressed increased levels of cartilage-related genes than tenocytes or skin fibroblasts. The presence of the tenocyte-CM stimulated basic healing mechanisms including proliferation and chemotaxis in all cell types. In addition, the tenocyte-CM modified the matrix-forming phenotype of every cell type when cultured in PRP hydrogels. Each cell type secreted interleukin-6, interleukin-8, and monocyte chemotactic protein-1 in PRP hydrogels, but mesenchymal stem cells secreted less interleukin-8 and monocyte chemotactic protein-1 than tenocytes or skin fibroblasts. Conclusion: The tenocyte-CM combined with PRP stimulated tenogenesis in mesenchymal stem cells and in skin fibroblasts and reduced the secretion of inflammatory proteins. Clinical Relevance: Modifying the target tissue with PRP prior to cell

  6. Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study

    Directory of Open Access Journals (Sweden)

    Weinans Harrie

    2007-02-01

    Full Text Available Abstract Background Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential. Methods Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs. Results Tendon-derived cells stained D7-FIB (fibroblast-marker positive, but α-SMA (marker for smooth muscle cells and pericytes negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker, and 73% positive for CD105 (mesenchymal progenitor-cell marker. In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4 and PPARG (peroxisome proliferative activated receptor γ. In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations. Conclusion This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis.

  7. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    Science.gov (United States)

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β-catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro, incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  8. Enhancement of rotator cuff tendon-bone healing with fibroblast growth factor 2 impregnated in gelatin hydrogel sheets in a rabbit model.

    Science.gov (United States)

    Tokunaga, Takuya; Karasugi, Tatsuki; Arimura, Hitoshi; Yonemitsu, Ryuji; Sakamoto, Hidetoshi; Ide, Junji; Mizuta, Hiroshi

    2017-10-01

    Application of fibroblast growth factor 2 (FGF-2) may improve the healing response after rotator cuff (RC) surgical repair. This study aimed to determine whether FGF-2-impregnated gelatin hydrogel sheet (GHS) incorporation into the bony trough on the greater tuberosity facilitates healing after RC surgical repair in rabbits. We assigned 120 adult male Japanese white rabbits treated with unilateral surgery for supraspinatus tendon repair into the following groups: suture-only group (suture); suture and GHS with phosphate-buffered saline (carrier); suture and GHS with 3 µg of FGF-2 (F3); and suture and GHS with 30 µg of FGF-2 (F30). The effect of FGF-2 was assessed using histologic, biomechanical, and microcomputed tomography evaluations at 2, 6, and 12 weeks. At 12 weeks, loose fibrovascular tissues emerged at the repair site in the suture and carrier groups and dense tendon-like tissues in the F3 and F30 groups, which demonstrated significantly higher ultimate load-to-failure and stress-to-failure at 12 weeks than that in the suture and carrier groups. Microcomputed tomography imaging showed ectopic calcification formation in some specimens from each group. Appearances or frequencies were similar among groups. The histologic and biomechanical effects of FGF-2 on RC healing were obvious at ≥6 weeks postoperatively. FGF-2-impregnated GHS incorporation into the bony trough on the greater tuberosity before RC surgical repair is feasible and results in histologic and biomechanical improvements during RC healing in rabbits. No detrimental effect on ectopic calcification was observed. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. File list: ALL.PSC.50.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.iPS_derived_fibroblasts hg19 All antigens Pluripotent stem cell iPS...8,SRX1099970,SRX1099949,SRX1099977,SRX1099965,SRX1099969,SRX1099955 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.50.AllAg.iPS_derived_fibroblasts.bed ...

  10. File list: Unc.PSC.05.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.iPS_derived_fibroblasts hg19 Unclassified Pluripotent stem cell iPS...1,SRX1099989,SRX1099969,SRX1099949,SRX1099955,SRX1099970,SRX1099965 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.iPS_derived_fibroblasts.bed ...

  11. File list: ALL.PSC.20.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.iPS_derived_fibroblasts hg19 All antigens Pluripotent stem cell iPS...2,SRX1099961,SRX1099958,SRX1099970,SRX1099949,SRX1099977,SRX1099965 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.20.AllAg.iPS_derived_fibroblasts.bed ...

  12. File list: Unc.PSC.50.AllAg.iPS_derived_fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.iPS_derived_fibroblasts hg19 Unclassified Pluripotent stem cell iPS...8,SRX1099970,SRX1099949,SRX1099977,SRX1099965,SRX1099969,SRX1099955 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.50.AllAg.iPS_derived_fibroblasts.bed ...

  13. Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Hostettler, Katrin E; Zhong, Jun; Papakonstantinou, Eleni; Karakiulakis, George; Tamm, Michael; Seidel, Petra; Sun, Qingzhu; Mandal, Jyotshna; Lardinois, Didier; Lambers, Christopher; Roth, Michael

    2014-12-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The kinase inhibitor nintedanib specific for vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) and fibroblast growth factor receptor (FGFR) significantly reduced the rate of decline of forced vital capacity versus placebo. To determine the in vitro effect of nintedanib on primary human lung fibroblasts. Fibroblasts were isolated from lungs of IPF patients and from non-fibrotic controls. We assessed the effect of VEGF, PDGF-BB and basic FGF (bFGF) ± nintedanib on: (i) expression/activation of VEGFR, PDGFR, and FGFR, (ii) cell proliferation, secretion of (iii) matrix metalloproteinases (MMP), (iv) tissue inhibitor of metalloproteinase (TIMP), and (v) collagen. IPF fibroblasts expressed higher levels of PDGFR and FGFR than controls. PDGF-BB, bFGF, and VEGF caused a pro-proliferative effect which was prevented by nintedanib. Nintedanib enhanced the expression of pro-MMP-2, and inhibited the expression of TIMP-2. Transforming growth factor-beta-induced secretion of collagens was inhibited by nintedanib. Our data demonstrate a significant anti-fibrotic effect of nintedanib in IPF fibroblasts. This effect consists of the drug's anti-proliferative capacity, and on its effect on the extracellular matrix, the degradation of which seems to be enhanced.

  14. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK.

    Science.gov (United States)

    Neufert, Clemens; Becker, Christoph; Türeci, Özlem; Waldner, Maximilian J; Backert, Ingo; Floh, Katharina; Atreya, Imke; Leppkes, Moritz; Jefremow, Andre; Vieth, Michael; Schneider-Stock, Regine; Klinger, Patricia; Greten, Florian R; Threadgill, David W; Sahin, Ugur; Neurath, Markus F

    2013-04-01

    Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms.

  15. Treatment of postoperative lower extremity wounds using human fibroblast-derived dermis: a retrospective analysis.

    Science.gov (United States)

    Carlson, Russell M; Smith, Nicholas C; Dux, Katherine; Stuck, Rodney M

    2014-04-01

    Human fibroblast-derived dermis skin substitute is a well-studied treatment for diabetic foot ulcers; however, no case series currently exist for its use in healing postoperative wounds of the lower extremity. A retrospective analysis was conducted on 32 lower extremity postoperative wounds treated weekly with human fibroblast-derived dermis skin substitute. Postoperative wounds were defined as a wound resulting from an open partial foot amputation, surgical wound dehiscence, or nonhealing surgical wound of the lower extremity. Wound surface area was calculated at 4 and 12 weeks or until wound closure if prior to 12 weeks. Postoperative wounds treated with weekly applications showed mean improvement in surface area reduction of 63.6% at 4 weeks and 96.1% at 12 weeks. More than 56% of all wounds healed prior to the 12-week endpoint. Additionally, only one adverse event was noted in this group. This retrospective review supports the use of human fibroblast-derived dermis skin substitute in the treatment of postoperative lower extremity wounds. This advanced wound care therapy aids in decreased total healing time and increased rate of healing for not only diabetic foot wounds but also postoperative wounds of the lower extremity, as demonstrated by this retrospective review.

  16. Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts.

    Science.gov (United States)

    Donovan, Johanna; Shiwen, Xu; Norman, Jill; Abraham, David

    2013-05-10

    Platelet-derived growth factor (PDGF) signalling is essential for many key cellular processes in mesenchymal cells. As there is redundancy in signalling between the five PDGF ligand isoforms and three PDGF receptor isoforms, and deletion of either of the receptors in vivo produces an embryonic lethal phenotype, it is not know which ligand and receptor combinations mediate specific cellular functions. Fibroblasts are key mediators in wound healing and tissues repair. Recent clinical trials using broad spectrum tyrosine kinase inhibitors in fibrotic diseases have highlighted the need to further examine the specific cellular roles each of the tyrosine kinases plays in fibrotic processes. In this study, we used PDGFR-specific neutralising antibodies to dissect out receptor-specific signalling events in fibroblasts in vitro, to further understand key cellular processes involved in wound healing and tissue repair. Neutralising antibodies against PDGFRs were shown to block signalling through PDGFRα and PDGFRβ receptors, reduce human PDGF-AA and PDGF-BB-induced collagen gel remodelling in dermal fibroblasts, and reduce migration stimulated by all PDGF ligands in human dermal and lung fibroblasts. PDGFRα and PDGFRβ neutralising antibodies can be a useful tool in studying PDGFR isoform-specific cellular events.

  17. Comparison of the early period effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on the Achilles tendon ruptures in rats.

    Science.gov (United States)

    Yuksel, Serdar; Guleç, M Akif; Gultekin, M Zeki; Adanır, Oktay; Caglar, Aysel; Beytemur, Ozan; Onur Küçükyıldırım, B; Avcı, Ali; Subaşı, Cansu; İnci, Çiğdem; Karaoz, Erdal

    2016-09-01

    This study aims to histopathologically, biomechanically, and immunohistochemically compare the fourth-week efficiencies of local platelet-rich plasma (PRP) and bone marrow-derived mesenchymal stem cell (rBM-MSC) treatments of the Achilles tendon ruptures created surgically in rats. The study included 35 12-month-old male Sprague Dawley rats, with an average weight of 400-500 g. Five rats were used as donors for MSC and PRP, and 30 rats were separated into MSC, PRP, and control groups (n = 10). The Achilles tendons of the rats were cut transversely, the MSC from bone marrow was administered to the MSC group, the PRP group received PRP, and the control group received physiological saline to create the same surgical effect. In previous studies, it was shown that this physiological saline does not have any effect on tendon recovery. Thirty days after the treatment, the rats were sacrificed and their Achilles tendons were examined histopathologically, immunohistochemically, and biomechanically. The use of rBM-MSC and PRP in the Achilles tendon ruptures when the tendon is in its weakest phase positively affected the recovery of the tendon in histopathologic, immunohistochemical, and biomechanical manners compared to the control group (p tendon recovery, such as IL2, VEGF, transforming growth factor-beta, and HGF, were significantly higher in the MSC group than those of the PRP and control groups (p tendon and increase its structural strength. The use of PRP and MSC provides hope for the treatment of the Achilles tendon ruptures that limit human beings' functionalities and quality of life, particularly for athletes. It is thought that the use of MSC can be more effective for tendon healing; hence, more extensive and advanced studies are needed on this topic.

  18. Effect of skin fibroblast-derived allogeneic feeder cells on porcine ES-like cell establishment.

    Science.gov (United States)

    Panasophonkul, Sasithorn; Tharasanit, Theerawat; Techakumphu, Mongkol

    2012-10-01

    In the present study, the effect of two types of allogeneic-derived feeder cells [porcine ear and tail skin fibroblasts (PESF, PTSF)] and three types of xenogeneic-derived feeder cells [human foreskin fibroblasts (HFK), mouse embryonic fibroblasts (MEF) and immortalized mouse embryonic fibroblasts (STO)] on the isolation and cultivation of putative porcine embryonic stem cells (pESCs) was evaluated. In vivo derived zona pellucida (ZP)-free blastocysts were cultured on different mitotically inactivated feeder layers. The rates of ICM outgrowth and primary colony formation were observed, and further passage onto new feeders was performed. The characteristics of pESCs, including alkaline phosphatase (AP) activity, and pluripotent-related markers (OCT3/4, NANOG, SSEA-4) and genes were examined. Attached blastocysts cultured on HFK and STO feeders showed a higher percentage of ICM outgrowths than those cultured on PESF (76.7, 72.9 and 38.9%, respectively; P<0.05). The rates of primary ES-like colony formation and the number of putative ESC lines were significantly decreased when ICM outgrowths were cultured on PESF, compared with those cultured on HFK (30.6 vs. 76.7%, respectively; P<0.05). Only ES-like colonies from one (25%) and three (50%) cell lines developed on PTSF and STO feeders, respectively, were further maintained in an undifferentiated morphology associated with the presence of all ES characteristics; however, these characteristics disappeared when colonies were continued to the 8th and 6th passages, respectively. The present study indicated that feeder cell types affect the success of pESC establishment and maintenance of their pluripotency.

  19. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis

  20. Serum platelet-derived growth factor and fibroblast growth factor in patients with benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Steffensen, Karina Dahl; Olsen, Dorte Aalund

    2012-01-01

    New biological markers with predictive or prognostic value are highly warranted in the treatment of ovarian cancer. The platelet-derived growth factor (PDGF) system and fibroblast growth factor (FGF) system are important components in tumor growth and angiogenesis....

  1. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction.

    Science.gov (United States)

    Zhang, Xin; Ma, Yong; Fu, Xin; Liu, Qiang; Shao, Zhenxing; Dai, Linghui; Pi, Yanbin; Hu, Xiaoqing; Zhang, Jiying; Duan, Xiaoning; Chen, Wenqing; Chen, Ping; Zhou, Chunyan; Ao, Yingfang

    2016-01-08

    Runx2 is a powerful osteo-inductive factor and adipose-derived stem cells (ADSCs) are multipotent. However, it is unknown whether Runx2-overexpressing ADSCs (Runx2-ADSCs) could promote anterior cruciate ligament (ACL) reconstruction. We evaluated the effect of Runx2-ADSCs on ACL reconstruction in vitro and in vivo. mRNA expressions of osteocalcin (OCN), bone sialoprotein (BSP) and collagen I (COLI) increased over time in Runx2-ADSCs. Runx2 overexpression inhibited LPL and PPARγ mRNA expressions. Runx2 induced alkaline phosphatase activity markedly. In nude mice injected with Runx2-ADSCs, promoted bone formation was detected by X-rays 8 weeks after injection. The healing of tendon-to-bone in a rabbit model of ACL reconstruction treated with Runx2-ADSCs, fibrin glue only and an RNAi targeting Runx2, was evaluated with CT 3D reconstruction, histological analysis and biomechanical methods. CT showed a greater degree of new bone formation around the bone tunnel in the group treated with Runx2-ADSCs compared with the fibrin glue group and RNAi Runx2 group. Histology showed that treatment with Runx2-ADSCs led to a rapid and significant increase at the tendon-to-bone compared with the control groups. Biomechanical tests demonstrated higher tendon pullout strength in the Runx2-ADSCs group at early time points. The healing of the attachment in ACL reconstruction was enhanced by Runx2-ADSCs.

  2. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells

    Science.gov (United States)

    Kim, Bona; Yoon, Byung Sun; Moon, Jai-Hee; Kim, Jonggun; Jun, Eun Kyoung; Lee, Jung Han; Kim, Jun Sung; Baik, Cheong Soon; Kim, Aeree; Whang, Kwang Youn

    2012-01-01

    Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal-endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin-induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus. PMID:22020533

  3. Botulinum Toxin Type A Inhibits α-Smooth Muscle Actin and Myosin II Expression in Fibroblasts Derived From Scar Contracture.

    Science.gov (United States)

    Chen, Minliang; Yan, Tongtong; Ma, Kui; Lai, Linying; Liu, Chang; Liang, Liming; Fu, Xiaobing

    2016-09-01

    Scar contracture (SC) is one of the most common complications resulting from major burn injuries. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Recent reports suggest that botulinum toxin type A (BTXA) is effective at reducing SC clinically, but the molecular mechanism for this action is unknown. α-Smooth muscle actin (α-SMA) and myosin II are the main components of stress fibers, which are the contractile structures of fibroblasts. The effects of BTXA on α-SMA and myosin II in SC are still unknown. This study aimed to explore the effect of BTXA on α-SMA and myosin II expression in fibroblasts derived from SC and to elucidate its actual mechanism further. Fibroblasts were isolated from tissue specimens of SC. Fibroblasts were cultured in Dulbecco modified Eagle medium with different concentrations of BTXA and their proliferation was analyzed through the tetrazolium-based colorimetric method at 1, 4, and 7 days. Proteins of α-SMA and myosin II were checked using Western blot in fibroblasts treated with different concentrations of BTXA at 1, 4, and 7 days. Fibroblasts without BTXA treatment had a higher proliferation than that in other groups, which indicated that the proliferation of fibroblasts was significantly inhibited by BTXA (P < 0.05). Proteins of α-SMA and myosin II between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (P < 0.05). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from SC and reduced the expression of α-SMA and myosin II, which provided theoretical support for the application of BTXA to control SC.

  4. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites.

    Science.gov (United States)

    Aggarwal, Saurabh; Brennen, W Nathaniel; Kole, Thomas P; Schneider, Elizabeth; Topaloglu, Ozlem; Yates, Melinda; Cotter, Robert J; Denmeade, Samuel R

    2008-01-22

    A highly consistent trait of tumor stromal fibroblasts is the induction of the membrane-bound serine protease fibroblast activation protein-alpha (FAP), which is overexpressed on the surface of reactive stromal fibroblasts present within the stroma of the majority of human epithelial tumors. In contrast, FAP is not expressed by tumor epithelial cells or by fibroblasts or other cell types in normal tissues. The proteolytic activity of FAP, therefore, represents a potential pan-tumor target that can be exploited for the release of potent cytotoxins from inactive prodrugs consisting of an FAP peptide substrate coupled to a cytotoxin. To identify FAP peptide substrates, we used liquid chromatography tandem mass spectroscopy based sequencing to generate a complete map of the FAP cleavage sites within human collagen I derived gelatin. Positional analysis of the frequency of each amino acid at each position within the cleavage sites revealed FAP consensus sequences PPGP and (D/E)-(R/K)-G-(E/D)-(T/S)-G-P. These studies further demonstrated that ranking cleavage sites based on the magnitude of the LC/MS/MS extracted ion current predicted FAP substrates that were cleaved with highest efficiency. Fluorescence-quenched peptides were synthesized on the basis of the cleavage sites with the highest ion current rankings, and kinetic parameters for FAP hydrolysis were determined. The substrate DRGETGP, which corresponded to the consensus sequence, had the lowest Km of 21 microM. Overall the Km values were relatively similar for both high and low ranked substrates, whereas the kcat values differed by up to 100-fold. On the basis of these results, the FAP consensus sequences are currently being evaluated as FAP-selective peptide carriers for incorporation into FAP-activated prodrugs.

  5. Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients.

    Science.gov (United States)

    Zanotti, Simona; Bragato, Cinzia; Zucchella, Andrea; Maggi, Lorenzo; Mantegazza, Renato; Morandi, Lucia; Mora, Marina

    2016-01-15

    Tissue fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the end point of diseases affecting the kidney, bladder, liver, lung, gut, skin, heart and muscle. In Duchenne muscular dystrophy (DMD), connective fibrotic tissue progressively substitutes muscle fibers. So far no specific pharmacological treatment is available for muscle fibrosis. Among promising anti-fibrotic molecules, pirfenidone has shown anti-fibrotic and anti-inflammatory activity in animal and cell models, and has already been employed in clinical trials. Therefore we tested pirfenidone anti-fibrotic properties in an in vitro model of muscle fibrosis. We evaluated effect of pirfenidone on fibroblasts isolated from DMD muscle biopsies. These cells have been previously characterized as having a pro-fibrotic phenotype. We tested cell proliferation and migration, secretion of soluble collagens, intracellular levels of collagen type I and fibronectin, and diameter of 3D fibrotic nodules. We found that pirfenidone significantly reduced proliferation and cell migration of control and DMD muscle-derived fibroblasts, decreased extracellular secretion of soluble collagens by control and DMD fibroblasts, as well as levels of collagen type I and fibronectin, and, in DMD fibroblasts only, reduced synthesis and deposition of intracellular collagen. Furthermore, pirfenidone was able to reduce the diameter of fibrotic-nodules in our 3D model of in vitro fibrosis. These pre-clinical results indicate that pirfenidone has potential anti-fibrotic effects also in skeletal muscle fibrosis, urging further studies in in vivo animal models of muscular dystrophy in order to translate the drug into the treatment of muscle fibrosis in DMD patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Mouse embryonic fibroblasts derived from Odin deficient mice display a hyperproliiferative phenotype

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zaccharias Glahn; Nielsen, Mogens Møller; Blagoev, Blagoy

    2004-01-01

    as a KIAA clone (KIAA 0229) from the Kazusa DNA Research Institute which maintains the HUGE protein database--a database devoted to the analysis of long cDNA clones encoding large proteins (>50 kDa). Odin has been demonstrated to cause downregulation of c-Fos promoter activity and to inhibit PDGF...... of the kidney, lung and liver does not show any major abnormalities as compared to wild-type controls. However, mouse embryonic fibroblasts (MEFs) generated from Odin-deficient mice exhibit a hyperproliferative phenotype compared to wild-type-derived MEFs, consistent with its role as a negative regulator...

  7. Achilles Tendonitis

    Science.gov (United States)

    ... You Treat Achilles Tendonitis? en español Tendinitis de Aquiles Kim didn't do much over the summer ... Achilles Tendonitis and Who Gets It? Your Achilles tendon is located at the back of your foot, ...

  8. Spontaneous Immortalization of Clinically Normal Colon-Derived Fibroblasts from a Familial Adenomatous Polyposis Patient

    Directory of Open Access Journals (Sweden)

    Nicholas R. Forsyth

    2004-05-01

    Full Text Available Normal human diploid cells do not spontaneously immortalize in culture, but instead enter replicative senescence after a finite number of population doublings. Ablation of key checkpoint arrest or cancersuppressor genes, through dominantly inherited germline mutation (p53+/-, Li-Fraumeni or viral oncogene expression (SV40 large T, HPV16/18, E6/E7 can lead to escape from senescence, additional doublings, entrance into crisis phase, where immortal clones emerge at low frequency. In the vast majority of cases, telomerase is reactivated and telomeres are stabilized. Here we describe the spontaneous immortalization of clinically normal fibroblasts derived from colonic stroma of a familial adenomatous polyposis (FAP patient. The preimmortal (C26C and the spontaneously immortalized derivative (C26Ci cells are heterozygous for a characterized germline mutation in exon 15 of the adenomatous polyposis coli gene. Immortalization was accompanied by spontaneous reactivation of endogenous telomerase and establishment of telomeres at presenescent lengths. Normal checkpoint behavior is retained and a diploid karyotype is maintained. These cells provide a valuable new addition to the limited number of spontaneously immortalized human cell types, particularly fibroblast cells, will be useful in experimentally determining the functional pathways in neoplastic development and in the identification of potential molecular targets for cancer chemoprevention.

  9. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis.

    Science.gov (United States)

    Liu, Xueting; Fang, Shencun; Liu, Haijun; Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei; Wang, Wei; Zhang, Yingming; Liao, Hong; Zhang, Wei; Yao, Honghong; Chao, Jie

    2015-10-15

    Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO2 treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO2-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO2-induced increase in cell migration. These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO2. CCR2 was also up-regulated in response to SiO2, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO2-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Effects of DNA damaging agents on cultured fibroblasts derived from patients with Cockayne syndrome.

    Science.gov (United States)

    Wade, M H; Chu, E H

    1979-01-01

    The cytotoxic action of physical and chemical agents on 10 skin fibroblast strains in culture derived from individuals with Cockayne's syndrome was measured in terms of colony-forming ability. As compared to fibroblasts from normal donors, all Cockayne cell strains tested exhibited a significantly increased sensitivity to UV light and a normal sensitivity to X-rays. Cells from two sets of parents of unrelated Cockayne children showed an intermediate level of UV sensitivity. There was no effect of 0.5 mM caffeine on UV survival in normal and two Cockayne strains tested, indicating that postreplicational repair in Cockayne cells as measured by caffeine sensitivity was probably normal. Sensitivity of normal and Cockayne cells to the chemical carcinogens and mutagens 4NQO, N-AcO-AAF, ICR-170 and EMS was also compared. An increased sensitivity of Cockayne cells to 4NQO or N-AcO-AAF, but not the ICR-170 or EMS, was observed. However, unlike the intermediate UV sensitivity, the cell strains from two parents of Cockayne patients showed the same sensitivity to N-AcO-AAF or 4NQO as fibroblasts from normal individuals. Quantiation of damage to the DNA after 20 J . m-2 UV irradiation indicates normal levels of [3H] thymidine incorporation in the Cockayne cells, in contrast to UV-irradiated xeroderma pigmentosum cells (XP 12BE) in which there was a very low level of repari synthesis. Moreover, we have shown previously that excision of UV-induced pyrimidine dimers in 2 of the 10 Cockayne cell strains was normal.

  11. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy

    Science.gov (United States)

    Datta, Ritwik; Bansal, Trisha; Rana, Santanu; Datta, Kaberi; Datta Chaudhuri, Ratul; Chawla-Sarkar, Mamta

    2016-01-01

    ABSTRACT Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy. PMID:28031326

  12. Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts.

    Science.gov (United States)

    Villa, Oscar; Brookes, Steven J; Thiede, Bernd; Heijl, Lars; Lyngstadaas, Staale P; Reseland, Janne E

    2015-01-01

    Enamel matrix derivative is used to promote periodontal regeneration during the corrective phase of the treatment of periodontal defects. Our main goal was to analyze the bioactivity of different molecular weight fractions of enamel matrix derivative. Enamel matrix derivative, a complex mixture of proteins, was separated into 13 fractions using size-exclusion chromatography and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-electrospray ionization-tandem mass spectrometry. Human periodontal ligament fibroblasts were treated with either enamel matrix derivative or the different fractions. Proliferation and cytokine secretion to the cell culture medium were measured and compared to untreated cells. The liquid chromatography-electrospray ionization-tandem mass spectrometry analyses revealed that the most abundant peptides were amelogenin and leucine-rich amelogenin peptide related. The fractions containing proteins above 20 kDa induced an increase in vascular endothelial growth factor and interleukin-6 secretion, whereas lower molecular weight fractions enhanced proliferation and secretion of interleukin-8 and monocyte chemoattractant protein-1 and reduced interleukin-4 release. The various molecular components in the enamel matrix derivative formulation might contribute to reported effects on tissue regeneration through their influence on vascularization, the immune response, and chemotaxis.

  13. Clenbuterol induces cardiac myocyte hypertrophy via paracrine signalling and fibroblast-derived IGF-1.

    Science.gov (United States)

    Bhavsar, Pankaj K; Brand, Nigel J; Felkin, Leanne E; Luther, Pradeep K; Cullen, Martin E; Yacoub, Magdi H; Barton, Paul J R

    2010-12-01

    The β(2)-selective adrenoreceptor agonist clenbuterol promotes both skeletal and cardiac muscle hypertrophy and is undergoing clinical trials in the treatment of muscle wasting and heart failure. We have previously demonstrated that clenbuterol induces a mild physiological ventricular hypertrophy in vivo with normal contractile function and without induction of α-skeletal muscle actin (αSkA), a marker of pathological hypertrophy. The mechanisms of this response remain poorly defined. In this study, we examine the direct action of clenbuterol on cardiocyte cultures in vitro. Clenbuterol treatment resulted in increased cell size of cardiac myocytes with increased protein accumulation and myofibrillar organisation characteristic of hypertrophic growth. Real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed elevated mRNA expression of ANP and brain natriuretic peptide (BNP) but without change in αSkA, consistent with physiological hypertrophic growth. Clenbuterol-treated cultures also showed elevated insulin-like growth factor I (IGF-1) mRNA and activation of the protein kinase Akt. Addition of either IGF-1 receptor-blocking antibodies or LY294002 in order to inhibit phosphatidylinositol 3-kinase, a downstream effector of the IGF-1 receptor, inhibited the hypertrophic response indicating that IGF-1 signalling is required. IGF-1 expression localised primarily to the minor population of cardiac fibroblasts present in the cardiocyte cultures. Together these data show that clenbuterol acts to induce mild cardiac hypertrophy in cardiac myocytes via paracrine signalling involving fibroblast-derived IGF-1.

  14. In Vivo Remodeling of Fibroblast-Derived Vascular Scaffolds Implanted for 6 Months in Rats

    Directory of Open Access Journals (Sweden)

    Maxime Y. Tondreau

    2016-01-01

    Full Text Available There is a clinical need for tissue-engineered small-diameter (<6 mm vascular grafts since clinical applications are halted by the limited suitability of autologous or synthetic grafts. This study uses the self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold (FDVS that can be available off-the-shelf. Briefly, extracellular matrix scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and decellularized by immersion in deionized water. The FDVSs were implanted as an aortic interpositional graft in six Sprague-Dawley rats for 6 months. Five out of the six implants were still patent 6 months after the surgery. Histological analysis showed the infiltration of cells on both abluminal and luminal sides, and immunofluorescence analysis suggested the formation of neomedia comprised of smooth muscle cells and lined underneath with an endothelium. Furthermore, to verify the feasibility of producing tissue-engineered blood vessels of clinically relevant length and diameter, scaffolds with a 4.6 mm inner diameter and 17 cm in length were fabricated with success and stored for an extended period of time, while maintaining suitable properties following the storage period. This novel demonstration of the potential of the FDVS could accelerate the clinical availability of tissue-engineered blood vessels and warrants further preclinical studies.

  15. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy

    National Research Council Canada - National Science Library

    Bang, Claudia; Batkai, Sandor; Dangwal, Seema; Gupta, Shashi Kumar; Foinquinos, Ariana; Holzmann, Angelika; Just, Annette; Remke, Janet; Zimmer, Karina; Zeug, Andre; Ponimaskin, Evgeni; Schmiedl, Andreas; Yin, Xiaoke; Mayr, Manuel; Halder, Rashi; Fischer, Andre; Engelhardt, Stefan; Wei, Yuanyuan; Schober, Andreas; Fiedler, Jan; Thum, Thomas

    2014-01-01

    ...; however, miRNAs have emerged recently as paracrine signaling mediators. Thus, we investigated a potential paracrine miRNA crosstalk between cardiac fibroblasts and cardiomyocytes and found that cardiac fibroblasts secrete miRNA-enriched exosomes...

  16. Lovastatin-induced decrease of intracellular cholesterol level attenuates fibroblast-to-myofibroblast transition in bronchial fibroblasts derived from asthmatic patients.

    Science.gov (United States)

    Michalik, Marta; Soczek, Ewelina; Kosińska, Milena; Rak, Monika; Wójcik, Katarzyna Anna; Lasota, Sławomir; Pierzchalska, Małgorzata; Czyż, Jarosław; Madeja, Zbigniew

    2013-03-15

    Chronic inflammation of the airways and structural changes in the bronchial wall are basic hallmarks of asthma. Human bronchial fibroblasts derived from patients with diagnosed asthma display in vitro predestination towards TGF-β-induced fibroblast-to-myofibroblast transition (FMT), a key event in the bronchial wall remodelling. Statins inhibit 3-hydroxymethyl-3-glutaryl coenzyme A reductase, a key enzyme in the cholesterol synthesis pathway and are widely used as antilipidemic drugs. The pleiotropic anti-inflammatory effects of statins, independent of their cholesterol-lowering capacity, are also well established. Since commonly used anti-asthmatic drugs do not reverse the structural remodelling of the airways and statins have tentative anti-asthmatic activity, we have studied the effect of lovastatin on FMT in populations of human bronchial fibroblasts derived from asthmatic patients. We demonstrate that the intensity of FMT induced by TGF-β1 was strongly and dose-dependently attenuated by lovastatin. Furthermore, we show that neither the suppression of prenylation of signalling proteins nor the effect on reactive oxygen species formation are important for lovastatin-induced inhibition of myofibroblast differentiation. On the other hand, we show that a squalene synthase inhibitor, zaragozic acid A, reduced the TGF-β1-induced FMT to an extent comparable to lovastatin effect. Additionally we demonstrate that in bronchial fibroblast populations, both inhibitors (lovastatin and zaragozic acid A) attenuate the TGF-β1-induced Smad2 nuclear translocation in a manner dependent on intracellular cholesterol level. Our data suggest that statins can directly, by decrease of intracellular cholesterol level, affect basic cell signalling events crucial for asthmatic processes and potentially prevent perilous bronchial wall remodelling associated with intensive myofibroblast formation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sylvie Séguier

    Full Text Available We investigated whether gingival fibroblasts (GFs can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05 inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  18. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Science.gov (United States)

    Séguier, Sylvie; Tartour, Eric; Guérin, Coralie; Couty, Ludovic; Lemitre, Mathilde; Lallement, Laetitia; Folliguet, Marysette; El Naderi, Samah; Terme, Magali; Badoual, Cécile; Lafont, Antoine; Coulomb, Bernard

    2013-01-01

    We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  19. Heparan sulfate dependent signaling of fibroblast growth factor (FGF) 18 by chondrocyte-derived perlecan

    Science.gov (United States)

    Chuang, Christine Y.; Lord, Megan S.; Melrose, James; Rees, Martin D.; Knox, Sarah M.; Freeman, Craig; Iozzo, Renato V.; Whitelock, John M.

    2010-01-01

    Perlecan is a large multi-domain proteoglycan which is essential for normal cartilage development. In this study perlecan was localized in the pericellular matrix of hypertrophic chondrocytes in developing human cartilage rudiments. Perlecan immunopurified from medium conditioned by cultured human fetal chondrocytes was found to be substituted with heparan sulfate (HS), chondroitin sulfate (CS) and keratan sulfate (KS). Ligand and carbohydrate engagement (LACE) assays demonstrated that immunopurified chondrocyte-derived perlecan formed HS dependent ternary complexes with fibroblast growth factors (FGF) 2 and either FGFR receptors (FGFRs) 1 or 3, however these complexes were not biologically active in the BaF32 cell system. Chondrocyte-derived perlecan also formed HS dependent ternary complexes with FGF18 and FGFR3. The proliferation of BaF32 cells expressing FGFR3 was promoted by chondrocyte-derived perlecan in the presence of FGF18 and this activity was reduced by digesting the HS with either heparinase III or mammalian heparanase. These data suggest that FGF2 and 18 bind to discrete structures on the HS chains attached to chondrocyte-derived perlecan which modulate the growth factor activities. The presence and activity of mammalian heparanase may be important in the turnover of HS and subsequent signaling required for the establishment and maintenance of functional osteo-chondral junctions in long bone growth. PMID:20507176

  20. Mouse embryonic fibroblasts derived from Odin deficient mice display a hyperproliiferative phenotype

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zaccharias Glahn; Nielsen, Mogens Møller; Blagoev, Blagoy

    2004-01-01

    -induced mitogenesis in cell lines. To further investigate the role of Odin in growth factor receptor signaling and to elucidate its biological function in vivo, we have generated mice deficient in Odin by gene targeting. Odin-deficient mice do not display any obvious phenotype, and histological examination...... of the kidney, lung and liver does not show any major abnormalities as compared to wild-type controls. However, mouse embryonic fibroblasts (MEFs) generated from Odin-deficient mice exhibit a hyperproliferative phenotype compared to wild-type-derived MEFs, consistent with its role as a negative regulator...... of growth factor receptor signaling. Our results confirm that although Odin expression in mice is not essential for any major developmental pathway, it could play a significant functional role to negatively regulate growth factor receptor signaling pathways....

  1. Effects of Cellular Pathway Disturbances on Misfolded Superoxide Dismutase-1 in Fibroblasts Derived from ALS Patients.

    Directory of Open Access Journals (Sweden)

    Isil Keskin

    Full Text Available Mutations in superoxide dismutase-1 (SOD1 are a common known cause of amyotrophic lateral sclerosis (ALS. The neurotoxicity of mutant SOD1s is most likely caused by misfolded molecular species, but disease pathogenesis is still not understood. Proposed mechanisms include impaired mitochondrial function, induction of endoplasmic reticulum stress, reduction in the activities of the proteasome and autophagy, and the formation of neurotoxic aggregates. Here we examined whether perturbations in these cellular pathways in turn influence levels of misfolded SOD1 species, potentially amplifying neurotoxicity. For the study we used fibroblasts, which express SOD1 at physiological levels under regulation of the native promoter. The cells were derived from ALS patients expressing 9 different SOD1 mutants of widely variable molecular characteristics, as well as from patients carrying the GGGGCC-repeat-expansion in C9orf72 and from non-disease controls. A specific ELISA was used to quantify soluble, misfolded SOD1, and aggregated SOD1 was analysed by western blotting. Misfolded SOD1 was detected in all lines. Levels were found to be much lower in non-disease control and the non-SOD1 C9orf72 ALS lines. This enabled us to validate patient fibroblasts for use in subsequent perturbation studies. Mitochondrial inhibition, endoplasmic reticulum stress or autophagy inhibition did not affect soluble misfolded SOD1 and in most cases, detergent-resistant SOD1 aggregates were not detected. However, proteasome inhibition led to uniformly large increases in misfolded SOD1 levels in all cell lines and an increase in SOD1 aggregation in some. Thus the ubiquitin-proteasome pathway is a principal determinant of misfolded SOD1 levels in cells derived both from patients and controls and a decline in activity with aging could be one of the factors behind the mid-to late-life onset of inherited ALS.

  2. Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts.

    Science.gov (United States)

    Vermilyea, Scott C; Guthrie, Scott; Meyer, Michael; Smuga-Otto, Kim; Braun, Katarina; Howden, Sara; Thomson, James A; Zhang, Su-Chun; Emborg, Marina E; Golos, Thaddeus G

    2017-09-01

    The common marmoset monkey (Callithrix jacchus; Cj) is an advantageous nonhuman primate species for modeling age-related disorders, including Parkinson's disease, due to their shorter life span compared to macaques. Cj-derived induced pluripotent stem cells (Cj-iPSCs) from somatic cells are needed for in vitro disease modeling and testing regenerative medicine approaches. Here we report the development of a novel Cj-iPSC line derived from adult marmoset fibroblasts. The Cj-iPSCs showed potent pluripotency properties, including the development of mesodermal lineages in tumors after injection to immunocompromised mice, as well as ectoderm and endoderm lineages after in vitro differentiation regimens, demonstrating differentiated derivatives of all three embryonic layers. In addition, expression of key pluripotency genes (ZFP42, PODXL, DNMT3B, C-MYC, LIN28, KLF4, NANOG, SOX2, and OCT4) was observed. We then tested the neural differentiation capacity and gene expression profiles of Cj-iPSCs and a marmoset embryonic stem cell line (Cj-ESC) after dual-SMAD inhibition. Exposure to CHIR99021 and sonic hedgehog (SHH) for 12 and 16 days, respectively, patterned the cells toward a ventralized midbrain dopaminergic phenotype, confirmed by expression of FOXA2, OTX2, EN-1, and tyrosine hydroxylase. These results demonstrate that common marmoset stem cells will be able to serve as a platform for investigating regenerative medicine approaches targeting the dopaminergic system.

  3. Loss of AMP-activated protein kinase in X-linked adrenoleukodystrophy patient-derived fibroblasts and lymphocytes.

    Science.gov (United States)

    Singh, Jaspreet; Giri, Shailendra

    2014-02-28

    X-Adrenoleukodystrophy (X-ALD) is a peroxisomal disorder characterized by accumulation of very-long-chain (VLC) fatty acids, which induces inflammatory disease and alterations in cellular redox, both of which are reported to play a role in the pathogenesis of the severe form of the disease (childhood cerebral ALD). While the mutation defect in ABCD1 gene is common to all forms of X-ALD it fails to account for the spectrum of phenotypic variability seen in X-ALD patients, strongly suggesting a role for as yet unidentified modifier gene(s). Here we report, for the first time, loss of AMP-activated protein kinase alpha1 (AMPKα1) in patient-derived fibroblasts and lymphocytes of the severe cerebral form of X-ALD (ALD), and not in the milder adrenomyeloneuropathy (AMN) form. Decrease in AMPK was observed at both protein and mRNA levels. AMPK loss in ALD patient-derived fibroblasts was associated with increased ubiquitination. Using the Seahorse Bioscience XF(e)96 Flux Analyzer for measuring the mitochondrial oxygen consumption and extracellular acidification rate we show that ALD patient-derived fibroblasts have a significantly lower "metabolic state" than AMN fibroblasts. Unstimulated ALD patient-derived lymphocytes had significantly higher proinflammatory gene expression. Selective AMPK loss represents a novel physiopathogenic factor in X-ALD disease mechanism. Strategies aimed at upregulating/recovering AMPK levels might have beneficial therapeutic effects in X-ALD. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Metformin reduces TGF-β1-induced extracellular matrix production in nasal polyp-derived fibroblasts.

    Science.gov (United States)

    Park, Il-Ho; Um, Ji-Young; Hong, Sung-Moon; Cho, Jung-Sun; Lee, Seung Hoon; Lee, Sang Hag; Lee, Heung-Man

    2014-01-01

    BACKGROUND AND OBJECTS: Metformin is widely used to treat type 2 diabetes mellitus, and adenosine monophosphate-activated protein kinase (AMPK) is thought to be the target that mediates its effects. Recently, it has been demonstrated that metformin has antifibrotic effects beyond its antihyperglycemic action. The purposes of this study were to investigate the effect of metformin on TGF-β1-induced myofibroblast differentiation (α-smooth muscle actin [α-SMA]) and extracellular matrix (ECM) production and to determine the underlying mechanism of the action of metformin in nasal polyp-derived fibroblasts (NPDFs). Basic research. The rhinology laboratory of Korea University Guro Hospital, Seoul, Korea. NPDFs from 7 patients were incubated with TGF-β1 and treated with metformin or compound C, an inhibitor of AMPK. To determine the proliferation rate of nasal fibroblasts, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was performed. The expression levels of α-SMA and fibronectin were determined by reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescent staining. Phosphorylation of AMPK and phosphorylation of Smad2/3 were evaluated by Western blot analysis. In TGF-β1-induced NPDFs, metformin inhibited the expression of α-SMA and fibronectin, as confirmed by both RT-PCR and Western blot analysis. Metformin increased the phosphorylation of AMPK and the expression levels of α-SMA and fibronectin. However, compound C reversed these effects. Metformin inhibited TGF-β1-induced phosphorylation of Smad2/3. This study showed that metformin inhibits TGF-β1-induced myofibroblast differentiation and ECM production in NPDFs via the Smad2/3 pathway. AMPK can be a therapeutic target for the prevention of ECM remodeling in nasal polyps.

  5. Epigallocatechin-3-gallate inhibits collagen production of nasal polyp-derived fibroblasts.

    Science.gov (United States)

    Kang, Jae Seong; Park, Il-Ho; Cho, Jung-Sun; Hong, Sung-Moon; Kim, Tae Hoon; Lee, Sang Hag; Lee, Heung-Man

    2014-01-01

    Nasal polyps are chronic inflammatory conditions characterized by myofibroblast differentiation and extracelluar matrix accumulation. The major catechin from green tea is (-)-epigallocatechin-3-gallate (EGCG), which has garnered attention for its potential to prevent oxidative stress-related diseases. The purpose of this study was twofold: (i) to determine the effect of EGCG on fibroblast differentiation into myofibroblasts and extracellular matrix accumulation in transforming growth factor (TGF)-β1-induced nasal polyp-derived fibroblasts (NPDFs) and (ii) to determine if the antioxidative effect of EGCG on reactive oxygen species (ROS) production in TGF-β1-induced NPDFs is involved in the aforementioned processes. TGF-β1-induced NPDFs were treated with or without EGCG. α-smooth muscle actin (α-SMA) and collagen type I mRNA were analyzed by reverse transcription-polymerase chain reaction. α-SMA protein was also detected using immunofluorescent staining. The amount of total soluble collagen was analyzed by Sircol collagen assay. ROS activity was measured by the nitroblue tetrazolium reduction assay and visualized by fluorescent microscopy. EGCG significantly inhibited expressions of α-SMA and collagen type I mRNA and reduced α-SMA and collagen protein levels at concentrations of 10-20 µg/mL. EGCG also inhibited TGF-β1-induced ROS production at the same concentrations. These results suggest the possibility that EGCG may be effective at inhibiting the development of nasal polyps through an anti-oxidant effect. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Biomechanic and histologic analysis of fibroblastic effects of tendon-to-bone healing by transforming growth factor β1 (TGF-β1) in rotator cuff tears.

    Science.gov (United States)

    Zhang, Chong; Liu, Yu-Jie

    2017-12-01

    To evaluate the effect of transforming growth factor β1 (TGF-β1) on tendon-to-bone reconstruction of rotator cuff tears. Seventy-two rat supraspinatus tendons were transected and reconstructed in situ. At 8 and 16 weeks, specimens of three groups; that is control, L-dose (low dose), and H-dose (high dose) were harvested and underwent a biomechanical test to evaluate the maximum load and stiffness values. Histology sections of the tendon-to-bone interface were identified by hematoxylin-eosin or Masson trichrome stain. Collagen type III was observed by picric acid sirius red staining under polarized light. The level of insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) was measured by the enzyme-linked immunosorbent assay (ELISA) method. Collagen type III of the H-dose group had a significant difference in histology structure compared with the L-dose group (P<0.05). The maximum load and stiffness decreased significantly in the control group compared with the values of the L-dose and H-dose groups. The stiffness among the three groups differed significantly at the same postoperative time (P<0.05). Interestingly, progressive reestablishment of collagen type III affected tendon-to-bone healing significantly in the later stages. The H-dose was associated with an increased collagen type III morphology stimulated by TGF-β1.

  7. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  8. Tendon Injuries

    Science.gov (United States)

    ... What OT Can Do: Video For Professionals Ethics Tendon Injuries When a person experiences a tendon injury in the hand that affects the ability ... plan. What can a person with a hand tendon injury do? Implement a home exercise program recommended ...

  9. On the fail-safe design of tendon-driven manipulators with redundant tendons

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, Jinn Biau; Liu, Tyng; Lee, Jyh Jone [National Taiwan University, Taipei (China)

    2012-06-15

    A tendon-driven manipulator having redundant tendons may possess more flexibility in operation, such as optimizing the performance of tendons, reducing the burden of each tendon, and providing fail-safe features. The purpose of this paper is to investigate the design of tendon-driven manipulators with a fail-safe feature, that is, to synthesize a system that may still remain controllable as any of the tendons have broken down or malfunctioned. Characteristics of tendon-driven manipulators are briefly discussed. Criteria for tendon-driven manipulators with redundant tendons and fail-safe feature are then established. Subsequently, constraints for such system are derived from the structure of tendon-driven manipulator. Associated with the criteria, manipulators can remain controllable when any of the tendons fails to function. Finally, a geometric method for determining the structure is developed. Examples of two-DOF and three-DOF tendondriven manipulators are demonstrated.

  10. Clinical follow-up of horses treated with allogeneic equine mesenchymal stem cells derived from umbilical cord blood for different tendon and ligament disorders.

    Science.gov (United States)

    Van Loon, Vic J F; Scheffer, Carmen J W; Genn, Herman J; Hoogendoorn, Arie C; Greve, Jan W

    2014-01-01

    Mesenchymal stem cells (MSCs) offer promise as therapeutic aids in the repair of tendon and ligament disorders in sport horses. Equine allogeneic MSCs derived from umbilical cord blood (eUCB-MSCs) can be obtained in a minimally invasive fashion with successful propagation of MSCs. The objective of this study was to determine the applicability and therapeutic effect of eUCB-MSCs on tendinitis of the superficial digital flexor tendon, desmitis of the suspensory ligament, tendinitis of the deep digital flexor tendon, and desmitis of the inferior check ligament in clinical cases. A retrospective clinical study was performed. At two equine clinics, 52 warmblood horses were treated with cultured eUCB-MSCs between 2009 and 2012. About 2-10 × 10(6) cells per lesion were administered. When a lesion was treated twice, the total amount could run up to 20 × 10(6) cells. Pearson's chi-squared test was used to compare the effect of the injured structure on the success rate, as well as the effect of the age of the horse. Based on repeated examinations, 40 horses (77%) returned to work on the same or a higher level based on information provided by the owner. Neither the injured structure nor the age of the horse had a statistically significant influence on the result. Overall, the results of treatment of some tendon and ligament injuries with eUCB-MSCs in clinical cases are promising.

  11. Doxycycline inhibits TGF-β1-induced extracellular matrix production in nasal polyp-derived fibroblasts.

    Science.gov (United States)

    Shin, Jae-Min; Park, Joo-Hoo; Park, Il-Ho; Lee, Heung-Man

    2016-03-01

    Doxycycline has been shown to have antibacterial and anti-inflammatory effects and suppresses collagen biosynthesis. The purpose of this study was to evaluate the effects of doxycycline on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts (NPDFs). We also determined the molecular mechanisms of action for doxycycline. NPDFs were isolated from nasal polyps from 8 patients. Doxycycline was used to pretreat TGF-β1-induced NPDFs. Cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Expression levels of α-smooth muscle actin (SMA) and fibronectin were measured using Western blot, reverse-transcription polymerase chain reaction, and immunofluorescence staining. Total collagen production was analyzed with the Sircol collagen assay, while mitogen-activated protein kinase (MAPK) and NF-κB activation were determined using Western blot analysis. Luciferase assay was used to evaluate the transcriptional activity of NF-κB. Although doxycycline (0 to 40 μg/mL) had no significant cytotoxic effects in TGF-β1-induced NPDFs, it significantly reduced the expression levels of α-SMA, fibronectin, and collagen in TGF-β1-induced NPDFs in a dose-dependent manner. Doxycycline also inhibited the TGF-β1-induced activation of p38, c-Jun NH2 -terminal kinase (JNK), and NF-κB, and its inhibitory effects were similar to those of the specific inhibitors for each. Doxycycline has an inhibitory effect on TGF-β1-induced myofibroblast differentiation and extracellular matrix production via the p38 and JNK/NF-κB signal pathways in NPDFs. © 2015 ARS-AAOA, LLC.

  12. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.

    Science.gov (United States)

    Shamis, Yulia; Silva, Eduardo A; Hewitt, Kyle J; Brudno, Yevgeny; Levenberg, Shulamit; Mooney, David J; Garlick, Jonathan A

    2013-01-01

    Human embryonic and induced pluripotent stem cells (hESC/hiPSC) are promising cell sources for the derivation of large numbers of specific cell types for tissue engineering and cell therapy applications. We have describe a directed differentiation protocol that generates fibroblasts from both hESC and hiPSC (EDK/iPDK) that support the repair and regeneration of epithelial tissue in engineered, 3D skin equivalents. In the current study, we analyzed the secretory profiles of EDK and iPDK cells to investigate the production of factors that activate and promote angiogenesis. Analysis of in vitro secretion profiles from EDK and iPDK cells demonstrated the elevated secretion of pro-angiogenic soluble mediators, including VEGF, HGF, IL-8, PDGF-AA, and Ang-1, that stimulated endothelial cell sprouting in a 3D model of angiogenesis in vitro. Phenotypic analysis of EDK and iPDK cells during the course of differentiation from hESCs and iPSCs revealed that both cell types progressively acquired pericyte lineage markers NG2, PDGFRβ, CD105, and CD73 and demonstrated transient induction of pericyte progenitor markers CD31, CD34, and Flk1/VEGFR2. Furthermore, when co-cultured with endothelial cells in 3D fibrin-based constructs, EDK and iPDK cells promoted self-assembly of vascular networks and vascular basement membrane deposition. Finally, transplantation of EDK cells into mice with hindlimb ischemia significantly reduced tissue necrosis and improved blood perfusion, demonstrating the potential of these cells to stimulate angiogenic responses in vivo. These findings demonstrate that stable populations of pericyte-like angiogenic cells can be generated with high efficiency from hESC and hiPSC using a directed differentiation approach. This provides new cell sources and opportunities for vascular tissue engineering and for the development of novel strategies in regenerative medicine.

  13. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yulia Shamis

    Full Text Available Human embryonic and induced pluripotent stem cells (hESC/hiPSC are promising cell sources for the derivation of large numbers of specific cell types for tissue engineering and cell therapy applications. We have describe a directed differentiation protocol that generates fibroblasts from both hESC and hiPSC (EDK/iPDK that support the repair and regeneration of epithelial tissue in engineered, 3D skin equivalents. In the current study, we analyzed the secretory profiles of EDK and iPDK cells to investigate the production of factors that activate and promote angiogenesis. Analysis of in vitro secretion profiles from EDK and iPDK cells demonstrated the elevated secretion of pro-angiogenic soluble mediators, including VEGF, HGF, IL-8, PDGF-AA, and Ang-1, that stimulated endothelial cell sprouting in a 3D model of angiogenesis in vitro. Phenotypic analysis of EDK and iPDK cells during the course of differentiation from hESCs and iPSCs revealed that both cell types progressively acquired pericyte lineage markers NG2, PDGFRβ, CD105, and CD73 and demonstrated transient induction of pericyte progenitor markers CD31, CD34, and Flk1/VEGFR2. Furthermore, when co-cultured with endothelial cells in 3D fibrin-based constructs, EDK and iPDK cells promoted self-assembly of vascular networks and vascular basement membrane deposition. Finally, transplantation of EDK cells into mice with hindlimb ischemia significantly reduced tissue necrosis and improved blood perfusion, demonstrating the potential of these cells to stimulate angiogenic responses in vivo. These findings demonstrate that stable populations of pericyte-like angiogenic cells can be generated with high efficiency from hESC and hiPSC using a directed differentiation approach. This provides new cell sources and opportunities for vascular tissue engineering and for the development of novel strategies in regenerative medicine.

  14. Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Lui, Pauline Po Yee; Wong, On Tik; Lee, Yuk Wa

    2014-03-01

    Both osteointegration and remodeling of graft midsubstance (collectively called graft healing) are slow processes after anterior cruciate ligament (ACL) reconstruction. Tendon-derived stem cells (TDSCs) form a cell sheet after treatment with connective tissue growth factor (CTGF) and ascorbic acid, which exhibits higher tenogenic and maintains high chondro-osteogenic gene expression of TDSCs. No external scaffold is required for cell delivery. Wrapping the TDSC sheet around the ACL graft would promote early graft healing in a rat model. Controlled laboratory study. Green fluorescent protein (GFP) rat TDSCs were treated with connective tissue growth factor and ascorbic acid to promote cell sheet formation. Rats undergoing unilateral ACL reconstruction were divided into a control group and a TDSC group. The tendon graft was wrapped with the GFP-TDSC sheet before graft insertion in the TDSC group. At weeks 2, 6, and 12 after reconstruction, the samples were harvested for computed tomography imaging and histologic or biomechanical testing. The fate of the transplanted cell sheet was examined by immunohistochemical staining of GFP. There were significantly higher tunnel bone mineral density (BMD) (42.3% increase, P = .047) and bone volume/total volume (BV/TV) (625% increase, P = .009) at the metaphyseal region of the tibial tunnel at week 2 and at the femoral tunnel at week 6 (BMD: 30.8% increase, P = .014; BV/TV: 100% increase, P = .014) in the TDSC group compared with the control group. Only the TDSC group showed a time-dependent increase in tunnel BMD (overall P = .038) and BV/TV (overall P = .015) at the epiphyseal region of the tibial tunnel. Semiquantitative image analysis showed better graft osteointegration and higher intra-articular graft integrity with lower cellularity and vascularity, better cell alignment, and higher collagen birefringence in the TDSC group. The ultimate load at week 2 (52.5% increase, P = .027) and stiffness at week 6 (62% increase, P

  15. Heparinized collagen sutures for sustained delivery of PDGF-BB: Delivery profile and effects on tendon-derived cells In-Vitro.

    Science.gov (United States)

    Younesi, Mousa; Donmez, Baris Ozgur; Islam, Anowarul; Akkus, Ozan

    2016-09-01

    Suturing is the standard of repair for lacerated flexor tendons. Past studies focused on delivering growth factors to the repair site by incorporating growth factors to nylon sutures which are commonly used in the repair procedure. However, conjugation of growth factors to nylon or other synthetic sutures is not straightforward. Collagen holds promise as a suture material by way of providing chemical sites for conjugation of growth factors. On the other hand, collagen also needs to be reconstituted as a mechanically robust thread that can be sutured. In this study, we reconstituted collagen solutions as suturable collagen threads by using linear electrochemical compaction. Prolonged release of PDGF-BB (Platelet derived growth factor-BB) was achieved by covalent bonding of heparin to the collagen sutures. Tensile mechanical tests of collagen sutures before and after chemical modification indicated that the strength of sutures following chemical conjugation stages was not compromised. Strength of lacerated tendons sutured with epitendinous collagen sutures (11.2±0.7N) converged to that of the standard nylon suture (14.9±2.9N). Heparin conjugation of collagen sutures didn't affect viability and proliferation of tendon-derived cells and prolonged the PDGF-BB release up to 15days. Proliferation of cells seeded on PDGF-BB incorporated collagen sutures was about 50% greater than those seeded on plain collagen sutures. Collagen that is released to the media by the cells increased by 120% under the effects of PDGF-BB and collagen production by cells was detectable by histology as of day 21. Addition of PDGF-BB to collagen sutures resulted in a moderate decline in the expression of the tendon-associated markers scleraxis, collagen I, tenomodulin, and COMP; however, expression levels were still greater than the cells seeded on collagen gel. The data indicate that the effects of PDGF-BB on tendon-derived cells mainly occur through increased cell proliferation and that longer

  16. Fibroblasts derived from human embryonic stem cells direct development and repair of 3D human skin equivalents.

    Science.gov (United States)

    Shamis, Yulia; Hewitt, Kyle J; Carlson, Mark W; Margvelashvilli, Mariam; Dong, Shumin; Kuo, Catherine K; Daheron, Laurence; Egles, Christophe; Garlick, Jonathan A

    2011-02-21

    Pluripotent, human stem cells hold tremendous promise as a source of progenitor and terminally differentiated cells for application in future regenerative therapies. However, such therapies will be dependent upon the development of novel approaches that can best assess tissue outcomes of pluripotent stem cell-derived cells and will be essential to better predict their safety and stability following in vivo transplantation. In this study we used engineered, human skin equivalents (HSEs) as a platform to characterize fibroblasts that have been derived from human embryonic stem (hES) cell. We characterized the phenotype and the secretion profile of two distinct hES-derived cell lines with properties of mesenchymal cells (EDK and H9-MSC) and compared their biological potential upon induction of differentiation to bone and fat and following their incorporation into the stromal compartment of engineered, HSEs. While both EDK and H9-MSC cell lines exhibited similar morphology and mesenchymal cell marker expression, they demonstrated distinct functional properties when incorporated into the stromal compartment of HSEs. EDK cells displayed characteristics of dermal fibroblasts that could support epithelial tissue development and enable re-epithelialization of wounds generated using a 3D tissue model of cutaneous wound healing, which was linked to elevated production of hepatocyte growth factor (HGF). Lentiviral shRNA-mediated knockdown of HGF resulted in a dramatic decrease of HGF secretion from EDK cells that led to a marked reduction in their ability to promote keratinocyte proliferation and re-epithelialization of cutaneous wounds. In contrast, H9-MSCs demonstrated features of mesenchymal stem cells (MSC) but not those of dermal fibroblasts, as they underwent multilineage differentiation in monolayer culture, but were unable to support epithelial tissue development and repair and produced significantly lower levels of HGF. Our findings demonstrate that hES-derived cells

  17. [Effects of silencing Smad ubiquitination regulatory factor 2 on the function of human hypertrophic scar-derived fibroblasts].

    Science.gov (United States)

    Zhang, Z; Kuang, F; Liu, C L; Chen, B; Tang, W B; Li, X J

    2017-03-20

    Objective: To explore the effects of silencing Smad ubiquitination regulatory factor 2 (Smurf2) on the secretion of transforming growth factor beta 1 (TGF-β(1)), alpha-smooth muscle actin (α-SMA), and collagen type Ⅰ by human hypertrophic scar-derived fibroblasts. Methods: The human normal skin-derived fibroblasts and hypertrophic scar-derived fibroblasts were cultured with explant culture technique from the normal skin and hypertrophic scar tissue, which was obtained from 9 patients with hypertrophic scars after burn. Two kinds of fibroblasts of the third passage were both divided into 6 groups according to the random number table, with 9 wells in each group. Fibroblasts in blank control group were cultured for 72 h without transfection of any small interfering RNA (siRNA), fibroblasts in negative control group were for cultured for 72 h after transfected with non-target siRNA, fibroblasts in Smurf2 siRNA group were cultured for 72 h after transfected with 100 nmol/L Smurf2 siRNA, fibroblasts in blank control+ TGF-β(1) group were cultured for 72 h without transfection of any siRNA and then treated with 10 ng/mL TGF-β(1) for 6 h, fibroblasts in negative control+ TGF-β(1) group were cultured for 72 h after transfected with non-target siRNA and then treated with 10 ng/mL TGF-β(1) for 6 h, fibroblasts in Smurf2 siRNA+ TGF-β(1) group were cultured for 72 h after transfected with Smurf2 siRNA and then treated with 10 ng/mL TGF-β(1) for 6 h. (1) The protein and mRNA expression levels of Smurf2 of the two kinds of cells in blank control group, negative control group, and Smurf2 siRNA group were assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR), respectively. (2) The content of TGF-β(1) in the cell culture supernatant of the two kinds of cells in blank control group and Smurf2 siRNA group was determined by enzyme-linked immunosorbent assay (ELISA). (3) The protein expression levels of α-SMA of the two kinds of cells in

  18. Synthetic NCAM-derived Ligands of the Fibroblast Growth Factor Receptor

    DEFF Research Database (Denmark)

    Hansen, Stine; Li, Shizhong; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) responds to cues in the external environment and transmits signals to the cell through extracellular and intracellular interactions with a number of other signal transduction molecules. One such NCAM interaction partner is the fibroblast growth factor...

  19. Microstructured human fibroblast-derived extracellular matrix scaffold for vascular media fabrication.

    Science.gov (United States)

    Bourget, Jean-Michel; Laterreur, Véronique; Gauvin, Robert; Guillemette, Maxime D; Miville-Godin, Caroline; Mounier, Maxence; Tondreau, Maxime Y; Tremblay, Catherine; Labbé, Raymond; Ruel, Jean; Auger, François A; Veres, Teodor; Germain, Lucie

    2017-09-01

    In the clinical and pharmacological fields, there is a need for the production of tissue-engineered small-diameter blood vessels. We have demonstrated previously that the extracellular matrix (ECM) produced by fibroblasts can be used as a scaffold to support three-dimensional (3D) growth of another cell type. Thus, a resistant tissue-engineered vascular media can be produced when such scaffolds are used to culture smooth muscle cells (SMCs). The present study was designed to develop an anisotropic fibroblastic ECM sheet that could replicate the physiological architecture of blood vessels after being assembled into a small diameter vascular conduit. Anisotropic ECM scaffolds were produced using human dermal fibroblasts, grown on a microfabricated substrate with a specific topography, which led to cell alignment and unidirectional ECM assembly. Following their devitalization, the scaffolds were seeded with SMCs. These cells elongated and migrated in a single direction, following a specific angle relative to the direction of the aligned fibroblastic ECM. Their resultant ECM stained for collagen I and III and elastin, and the cells expressed SMC differentiation markers. Seven days after SMCs seeding, the sheets were rolled around a mandrel to form a tissue-engineered vascular media. The resulting anisotropic ECM and cell alignment induced an increase in the mechanical strength and vascular reactivity in the circumferential direction as compared to unaligned constructs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Macerated-Pineapple Core Crude Extract-derived Bromelain Has Low Cytotoxic Effect in NIH-3T3 Fibroblast

    Directory of Open Access Journals (Sweden)

    Dewi Liliany Margaretta

    2015-08-01

    Full Text Available BACKGROUND: Bromelain is a sulfhydryl proteolytic enzyme that can hydrolyze protein, protease or peptide. Bromelain can be found in pineapple stem, fruit and core. Bromelain is composed of 212 amino acid residues with cysteine-25 forming a polypeptide chain that can hydrolyze peptide bonds by H2O. In medicine, bromelain has been developed as antibiotic, cancer drug, anti-inflammatory agent and immunomodulator. In dentistry, bromelain has potential to reduce plaque formation on the teeth and to irrigate root canal. METHODS: Pineapple core was dried for 3 days to get simplicia. Then simplicia was extracted with water solvent for 24 hours. After that, the macerated-pineapple core crude extract-derived bromelain (PCB was separated by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE followed by Coomassie Brilliant Blue (CBB staining to ensure the presence of bromelain. In cytotoxic test, NIH-3T3 fibroblast cultures were treated with extracts in various concentrations to for 24 or 48 hours. Number of fibroblasts was calculated using 3-(4,5-dimethylthiazol-2- yl-2,5-Diphenyltetrazolium bromide (MTT assay. RESULTS: Pineapple core extraction using maceration method produced relative high yield (concentration: 1.5424 g/mL of bromelain, which was confirmed by CBB staining results with the molecular weight of 33 kDa. Based on cytotoxic test results of PCB on NIH-3T3 fibroblasts, 24-hours-incubation LD50 was 95.7 g/L, while 48-hours-incubation LD50 was 51.1 g/L. CONCLUSIONS: PCB has low cytotoxic effect in NIH-3T3 fibroblasts. KEYWORDS: bromelain, pineapple, extract, cytotoxic, MTT.

  1. The early effects of sustained platelet-derived growth factor administration on the functional and structural properties of repaired intrasynovial flexor tendons: an in vivo biomechanic study at 3 weeks in canines.

    Science.gov (United States)

    Gelberman, Richard H; Thomopoulos, Stavros; Sakiyama-Elbert, Shelly E; Das, Rosalina; Silva, Matthew J

    2007-03-01

    A bioactive fibrin-based delivery system was used to provide sustained administration of platelet-derived growth factor (PDGF-BB) in a clinically relevant model of intrasynovial flexor tendon repair. We hypothesized that PDGF-BB administered in this manner would improve the sutured tendon's functional and structural properties 3 weeks after repair. A delivery system consisting of 30 microL of fibrin matrix, peptide, heparin, and 100 ng of PDGF-BB was incorporated into the repair sites of randomly selected medial or lateral forepaw flexor digitorum profundus tendons of 8 adult mongrel dogs. The remaining forepaw flexor digitorum profundus tendons were repaired without the growth-factor and fibrin-based delivery system and served as controls. The surgically treated forelimbs were treated with controlled passive motion rehabilitation. The animals were killed at 3 weeks, at which time the tendons were tested for range of motion with a motion analysis system and for tensile properties with a materials testing machine. Proximal interphalangeal joint and distal interphalangeal joint rotation values were significantly higher for the PDGF-BB-treated tendons compared with the repair-alone tendons. Excursion values were also significantly higher in the PDGF-BB-treated tendons. There were no significant differences in tensile properties when comparing PDGF-BB-treated with repair-alone tendons. The functional properties of repaired intrasynovial flexor tendons were significantly improved with the sustained administration of PDGF-BB. The failure to achieve improvements in ultimate load, stiffness, and strain in the experimental group may have been due to suboptimal PDGF-BB dosage or suboptimal release kinetics.

  2. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Directory of Open Access Journals (Sweden)

    Coppock Donald L

    2008-12-01

    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  3. Proanthocyanidins Attenuation of H2O2-Induced Oxidative Damage in Tendon-Derived Stem Cells via Upregulating Nrf-2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Wenshuang Sun

    2017-01-01

    Full Text Available Proanthocyanidins (PCs have shown inhibition of oxidative damage by improving Nrf-2 expression in many tissues. However, the cytoprotective effects of PCs on H2O2-induced tendon damage have not been verified. The current study was aimed at assessing the cytoprotection of PCs on the oxidative cellular toxicity of tendon-derived stem cells (TDSCs induced by H2O2. The TDSCs were isolated from patellar tendons of Sprague Dawley (SD rats, and the cells after third passage were used for subsequent experiments. The isolated cells were identified by flow cytometry assay and multidifferentiation potential assay. Cell Counting Kit-8 assay was performed to examine cell viability. Real-Time PCR and Western Blot were employed to, respectively, assess the mRNA and protein expressions of Nrf-2, GCLM, NQO-1, and HO-1. PCs significantly improved the cell viability of TDSCs. Furthermore, H2O2 upregulated Nrf-2, GCLM, NQO-1, and HO-1 without significant difference, while the proteins expressions were increased with significant difference in PCs group and PCs + H2O2 cotreated group. All the findings indicated that PCs could protect against the oxidative damage induced by H2O2 in TDSCs, and the cytoprotective effects might be due to the ability of PCs to activate the expressions of GCLM, HO-1, and NQO-1 via upregulating Nrf-2 signaling pathway.

  4. Flexor tendon specimens in organ cultures.

    Science.gov (United States)

    Rank, F; Eiken, O; Bergenholtz, A; Lundborg, G; Erkel, L J

    1980-01-01

    The healing process of sectioned and subsequently sutured rabbit tendon segments was studied over a period of 3 weeks, using an organ culture technique. In one series, the tendon specimens were exposed to a chemically defined culture medium for nutrition. In two control series, the specimens were kept in the synovial cavity of the knee joint for varying periods of time, before being transferred to the culture medium. The tendons remained viable in the medium. The superficial tendon cells demonstrated the morphological characteristics of fibroblasts, but cellular fibroplasia could not be detected. The two control series subjected to synovia prior to transfer into the culture medium showed superficial repair similar to the findings in previous studies on healing capacity of tendon nourished by synovia. The investigation supports the hypothesis that superficial tendon cells are fibroblasts with a potential for repair and that synovia is an efficient nutrient medium. Thus, the beneficial effects on repair exercised by the tendon sheath function should be utilized in flexor tendon surgery.

  5. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available Induced pluripotent stem cell (iPSC technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs and fibroblasts (F-iPSCs. This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05, of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05. The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example. Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ. The findings suggest that neurons derived from T-iPSCs are suitable for disease

  6. Anterior cruciate ligament- and hamstring tendon- derived cells: in vitro differential properties of cells involved in ACL reconstruction

    NARCIS (Netherlands)

    Ghebes, C.A.; Kelder, C.; Schot, T.; Renard, A.J.S.; Pakvis, D.F.M.; Fernandes, H.; Saris, Daniël B.F.

    2015-01-01

    Anterior cruciate ligament (ACL) reconstruction involves the replacement of the torn ligament with a new graft, often a hamstring tendon (HT). Described as similar, the ACL and HT have intrinsic differences related to their distinct anatomical locations. From a cellular perspective, identifying

  7. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  8. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  9. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology.

    Science.gov (United States)

    Sun, Ying; Florer, Jane; Mayhew, Christopher N; Jia, Zhanfeng; Zhao, Zhiying; Xu, Kui; Ran, Huimin; Liou, Benjamin; Zhang, Wujuan; Setchell, Kenneth D R; Gu, Jianguo; Grabowski, Gregory A

    2015-01-01

    Gaucher disease (GD) is caused by insufficient activity of acid β-glucosidase (GCase) resulting from mutations in GBA1. To understand the pathogenesis of the neuronopathic GD, induced pluripotent stem cells (iPSCs) were generated from fibroblasts isolated from three GD type 2 (GD2) and 2 unaffected (normal and GD carrier) individuals. The iPSCs were converted to neural precursor cells (NPCs) which were further differentiated into neurons. Parental GD2 fibroblasts as well as iPSCs, NPCs, and neurons had similar degrees of GCase deficiency. Lipid analyses showed increases of glucosylsphingosine and glucosylceramide in the GD2 cells. In addition, GD2 neurons showed increased α-synuclein protein compared to control neurons. Whole cell patch-clamping of the GD2 and control iPSCs-derived neurons demonstrated excitation characteristics of neurons, but intriguingly, those from GD2 exhibited consistently less negative resting membrane potentials with various degree of reduction in action potential amplitudes, sodium and potassium currents. Culture of control neurons in the presence of the GCase inhibitor (conduritol B epoxide) recapitulated these findings, providing a functional link between decreased GCase activity in GD and abnormal neuronal electrophysiological properties. To our knowledge, this study is first to report abnormal electrophysiological properties in GD2 iPSC-derived neurons that may underlie the neuropathic phenotype in Gaucher disease.

  10. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available Gaucher disease (GD is caused by insufficient activity of acid β-glucosidase (GCase resulting from mutations in GBA1. To understand the pathogenesis of the neuronopathic GD, induced pluripotent stem cells (iPSCs were generated from fibroblasts isolated from three GD type 2 (GD2 and 2 unaffected (normal and GD carrier individuals. The iPSCs were converted to neural precursor cells (NPCs which were further differentiated into neurons. Parental GD2 fibroblasts as well as iPSCs, NPCs, and neurons had similar degrees of GCase deficiency. Lipid analyses showed increases of glucosylsphingosine and glucosylceramide in the GD2 cells. In addition, GD2 neurons showed increased α-synuclein protein compared to control neurons. Whole cell patch-clamping of the GD2 and control iPSCs-derived neurons demonstrated excitation characteristics of neurons, but intriguingly, those from GD2 exhibited consistently less negative resting membrane potentials with various degree of reduction in action potential amplitudes, sodium and potassium currents. Culture of control neurons in the presence of the GCase inhibitor (conduritol B epoxide recapitulated these findings, providing a functional link between decreased GCase activity in GD and abnormal neuronal electrophysiological properties. To our knowledge, this study is first to report abnormal electrophysiological properties in GD2 iPSC-derived neurons that may underlie the neuropathic phenotype in Gaucher disease.

  11. Topically Delivered Adipose Derived Stem Cells Show an Activated-Fibroblast Phenotype and Enhance Granulation Tissue Formation in Skin Wounds

    Science.gov (United States)

    Hong, Seok Jong; Xu, Wei; Leung, Kai P.; Mustoe, Thomas A.; Galiano, Robert D.

    2013-01-01

    Multipotent mesenchymal stem cells (MSCs) are found in various tissues and can proliferate extensively in vitro. MSCs have been used in preclinical animal studies and clinical trials in many fields. Adipose derived stem cells (ASCs) have several advantages compared to other MSCs for use in cell-based treatments because they are easy to isolate with relative abundance. However, quantitative approaches for wound repair using ASCs have been limited because of lack of animal models which allow for quantification. Here, we addressed the effect of topically delivered ASCs in wound repair by quantitative analysis using the rabbit ear model. We characterized rabbit ASCs, and analyzed their multipotency in comparison to bone marrow derived-MSCs (BM-MSCs) and dermal fibroblasts (DFs) in vitro. Topically delivered ASCs increased granulation tissue formation in wounds when compared to saline controls, whereas BM-MSCs or DFs did not. These studies suggest that ASCs and BM-MSCs are not identical, though they have similar surface markers. We found that topically delivered ASCs are engrafted and proliferate in the wounds. We showed that transplanted ASCs exhibited activated fibroblast phenotype, increased endothelial cell recruitment, and enhanced macrophage recruitment in vivo. PMID:23383253

  12. Mitophagy Failure in Fibroblasts and iPSC-Derived Neurons of Alzheimer’s Disease-Associated Presenilin 1 Mutation

    Directory of Open Access Journals (Sweden)

    Patricia Martín-Maestro

    2017-09-01

    Full Text Available Familial Alzheimer’s disease (FAD is clearly related with the accumulation of amyloid-beta (Aβ and its deleterious effect on mitochondrial function is well established. Anomalies in autophagy have also been described in these patients. In the present work, functional analyses have been performed to study mitochondrial recycling process in patient-derived fibroblasts and neurons from induced pluripotent stem cells harboring the presenilin 1 mutation A246E. Mitophagy impairment was observed due to a diminished autophagy degradation phase associated with lysosomal anomalies, thus causing the accumulation of dysfunctional mitochondria labeled by Parkin RBR E3 ubiquitin protein ligase (PARK2. The failure of mitochondrial recycling by autophagy was enhanced in the patient-derived neuronal model. Our previous studies have demonstrated similar mitophagy impairment in sporadic Alzheimer’s disease (AD; therefore, our data indicate that mitophagy deficiency should be considered a common nexus between familial and sporadic cases of the disease.

  13. p38 MAPK signaling in postnatal tendon growth and remodeling.

    Directory of Open Access Journals (Sweden)

    Andrew J Schwartz

    Full Text Available Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo.

  14. Hematopoietic Stem Cell–Derived Cancer–Associated Fibroblasts Are Novel Contributors to the Pro-Tumorigenic Microenvironment

    Directory of Open Access Journals (Sweden)

    Lindsay T. McDonald

    2015-05-01

    Full Text Available Targeting the tumor microenvironment is critical toward improving the effectiveness of cancer therapeutics. Cancer-associated fibroblasts (CAFs are one of the most abundant cell types of the tumor microenvironment, playing an important role in tumor progression. Multiple origins for CAFs have been proposed including resident fibroblasts, adipocytes, and bone marrow. Our laboratory previously identified a novel hematopoietic stem cell (HSC origin for CAFs; however, the functional roles of HSC-derived CAFs (HSC-CAFs in tumor progression have not yet been examined. To test the hypothesis that HSC-CAFs promote tumor progression through contribution to extracellular matrix (ECM and paracrine production of pro-angiogenic factors, we developed a method to isolate HSC-CAFs. HSC-CAFs were profiled on the basis of their expression of hematopoietic and fibroblastic markers in two murine tumor models. Profiling revealed production of factors associated with ECM deposition and remodeling. Functional in vivo studies showed that co-injection of HSC-CAFs with tumor cells resulted in increased tumor growth rate and significantly larger tumors than tumor cells alone. Immunohistochemical studies revealed increased blood vessel density with co-injection, demonstrating a role for HSC-CAFs in tumor vascularization. Mechanistic in vitro studies indicated that HSC-CAFs play a role in producing vascular endothelial growth factor A and transforming growth factor–β1 in endothelial tube formation and patterning. In vitro and in vivo findings suggest that HSC-CAFs are a critical component of the tumor microenvironment and suggest that targeting the novel HSC-CAF may be a promising therapeutic strategy.

  15. Notch1-WISP-1 axis determines the regulatory role of mesenchymal stem cell-derived stromal fibroblasts in melanoma metastasis.

    Science.gov (United States)

    Shao, Hongwei; Cai, Long; Moller, Mecker; Issac, Biju; Zhang, Leiming; Owyong, Mark; Moscowitz, Anna Elizabeth; Vazquez-Padron, Roberto; Radtke, Freddy; Liu, Zhao-Jun

    2016-11-29

    Mesenchymal stem cells-derived fibroblasts (MSC-DF) constitute a significant portion of stromal fibroblasts in the tumor microenvironment (TME) and are key modulators of tumor progression. However, the molecular mechanisms that determine their tumor-regulatory function are poorly understood. Here, we uncover the Notch1 pathway as a molecular determinant that selectively controls the regulatory role of MSC-DF in melanoma metastasis. We demonstrate that the Notch1 pathway's activity is inversely correlated with the metastasis-regulating function of fibroblasts and can determine the metastasis-promoting or -suppressing phenotype of MSC-DF. When co-grafted with melanoma cells, MSC-DFNotch1-/- selectively promote, while MSC-DFN1IC+/+ preferentially suppress melanoma metastasis, but not growth, in mouse models. Consistently, conditioned media (CM) from MSC-DFNotch1-/- and MSC-DFN1IC+/+ oppositely, yet selectively regulates migration, but not growth of melanoma cells in vitro. Additionally, when co-cultured with metastatic melanoma cells in vitro, MSC-DFNotch1-/- support, while MSC-DFN1IC+/+ inhibit melanoma cells in the formation of spheroids. These findings expand the repertoire of Notch1 signaling as a molecular switch in determining the tumor metastasis-regulating function of MSC-DF. We also identified Wnt-induced secreted protein-1 (WISP-1) as a key downstream secretory mediator of Notch1 signaling to execute the influential role of MSC-DF on melanoma metastasis. These findings reveal the Notch1-WISP-1 axis as a crucial molecular determinant in governing stromal regulation of melanoma metastasis; thus, establishing this axis as a potential therapeutic target for melanoma metastasis.

  16. Tendon sheath fibroma in the thigh.

    Science.gov (United States)

    Moretti, Vincent M; Ashana, Adedayo O; de la Cruz, Michael; Lackman, Richard D

    2012-04-01

    Tendon sheath fibromas are rare, benign soft tissue tumors that are predominantly found in the fingers, hands, and wrists of young adult men. This article describes a tendon sheath fibroma that developed in the thigh of a 70-year-old man, the only known tendon sheath fibroma to form in this location. Similar to tendon sheath fibromas that develop elsewhere, our patient's lesion presented as a painless, slow-growing soft tissue nodule. Physical examination revealed a firm, nontender mass with no other associated signs or symptoms. Although the imaging appearance of tendon sheath fibromas varies, our patient's lesion appeared dark on T1- and bright on T2-weighted magnetic resonance imaging. It was well marginated and enhanced with contrast.Histologically, tendon sheath fibromas are composed of dense fibrocollagenous stromas with scattered spindle-shaped fibroblasts and narrow slit-like vascular spaces. Most tendon sheath fibromas can be successfully removed by marginal excision, although 24% of lesions recur. No lesions have metastasized. Our patient's tendon sheath fibroma was removed by marginal excision, and the patient remained disease free 35 months postoperatively. Despite its rarity, tendon sheath fibroma should be included in the differential diagnosis of a thigh mass on physical examination or imaging, especially if it is painless, nontender, benign appearing, and present in men. Copyright 2012, SLACK Incorporated.

  17. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix.

    Science.gov (United States)

    Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K

    2016-10-01

    Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Cytotoxicity of Silver Nanoparticles in Human Embryonic Stem Cell-Derived Fibroblasts and an L-929 Cell Line

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2012-01-01

    Full Text Available Consensus about the toxicity of silver nanoparticles (Ag-NPs has not been reached, even though extensive attention has been paid to this issue. This confusion may be due to physicochemical factors of Ag-NPs and the cell model used for biological safety evaluation. In the present study, human embryonic stem cell-derived fibroblasts (EBFs, which have been considered a closer representative of the in vivo response, were used as a novel cell model to assess the cytotoxicity of Ag-NPs (~20 nm and ~100 nm in comparison with L-929 fibroblast cell line. Cell proliferation, cell cycle, apoptosis, p53 expression, and cellular uptake were examined. Results showed that Ag-NPs presented higher cytotoxicity to EBF than to L-929. EBF demonstrated a stronger capacity to ingest Ag-NPs, a higher G2/M arrest, and more upgraduated p53 expression after exposed to Ag-NPs for 48 h when compared with L-929. It could be concluded that EBF exhibited a more sensitive response to Ag-NPs compared with L-929 cells, indicating that EBF may be a valid candidate for cytotoxicity screening assays of nanoparticles.

  19. Annexin A1 N-terminal derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions.

    Directory of Open Access Journals (Sweden)

    Valentina Bizzarro

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we have evaluated whether Annexin A1 derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions. Using normal human skin fibroblasts WS1 in low glucose (LG or high glucose (HG we observed the enrichment of Annexin A1 protein at cell movement structures like lamellipodial extrusions and interestingly, a significant decrease in levels of the protein in HG conditions. The analysis of the translocation of Annexin A1 to cell membrane showed lower levels of Annexin A1 in both membrane pool and supernatants of WS1 cells treated with HG. Wound-healing assays using cell line transfected with Annexin A1 siRNAs indicated a slowing down in migration speed of cells suggesting that Annexin A1 has a role in the migration of WS1 cells. In order to analyze the role of extracellular Annexin A1 in cell migration, we have performed wound-healing assays using Ac2-26 showing that peptide was able to increase fibroblast cell migration in HG conditions. Experiments on the mobilization of intracellular calcium and analysis of p-ERK expression confirmed the activity of the FPR1 following stimulation with the peptide Ac2-26. A wound-healing assay on WS1 cells in the presence of the FPR agonist fMLP, of the FPR antagonist CsH and in the presence of Ac2-26 indicated that Annexin A1 influences fibroblast cell migration under HG conditions acting through FPR receptors whose expression was slightly increased in HG. In conclusion, these data demonstrate that (i Annexin A1 is involved in migration of WS1 cells, through interaction with FPRs; (ii N- terminal peptide of Annexin A1 Ac2-26 is able to stimulate direct migration of WS1 cells in high glucose treatment possibly due to the increased receptor expression observed in hyperglycemia conditions.

  20. Maternally-derived antibody to fibroblast growth factor-23 reduced dietary phosphate requirements in growing chicks.

    Science.gov (United States)

    Bobeck, Elizabeth A; Burgess, Kimberly S; Jarmes, Taylor R; Piccione, Michelle L; Cook, Mark E

    2012-04-13

    Phosphate in manure of monogastric animals pollutes the environment if improperly applied to soil. Strategies that reduce phosphate inputs into animal production systems reduce environmental pollution. Using a novel vaccine to fibroblast growth factor-23 (FGF-23), we induced neutralizing antibodies that reduced the phosphate requirement of growing chickens. Breeding hens were injected with a FGF-23 peptide (AFLPGMNP) conjugate. Antibody was passively transferred from hen to chick and chick response to deficient dietary phosphate intake was determined. Chicks without passive anti-FGF-23 antibody had a 43% and 21% reduction in blood phosphate and bone ash, respectively, when fed a phosphate deficient diet and compared to chicks fed a phosphate replete diet (P0.05). Neutralization of FGF-23 offers a new approach to reduce phosphate requirements of farmed animals and may provide a new means to reduce phosphate pollution related to animal farming. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Expression, content, and localization of insulin-like growth factor I in human achilles tendon

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Langberg, Henning

    2006-01-01

    In animals insulin-like growth factor I (IGF-I) stimulates collagen production by fibroblasts and is expressed in tendons together with its binding protein 4 (IGFBP-4). However, the presence of IGF-I and IGFBP-4 in human tendon tissue is not described. Tissue IGF-I content was examined by immunof...... the tendon fibroblasts and that mRNA for IGF-I and IGFBP-4 can be determined in human tendon tissue. The present study adds support for the roles of IGF-I and IGFBP-4 in the regulation of tendon adaptive responses to mechanical loading....

  2. Human lung fibroblast-derived matrix facilitates vascular morphogenesis in 3D environment and enhances skin wound healing.

    Science.gov (United States)

    Du, Ping; Suhaeri, Muhammad; Ha, Sang Su; Oh, Seung Ja; Kim, Sang-Heon; Park, Kwideok

    2017-05-01

    Extracellular matrix (ECM) is crucial to many aspects of vascular morphogenesis and maintenance of vasculature function. Currently the recapitulation of angiogenic ECM microenvironment is still challenging, due mainly to its diverse components and complex organization. Here we investigate the angiogenic potential of human lung fibroblast-derived matrix (hFDM) in creating a three-dimensional (3D) vascular construct. hFDM was obtained via decellularization of in vitro cultured human lung fibroblasts and analyzed via immunofluorescence staining and ELISA, which detect multiple ECM macromolecules and angiogenic growth factors (GFs). Human umbilical vein endothelial cells (HUVECs) morphology was more elongated and better proliferative on hFDM than on gelatin-coated substrate. To prepare 3D construct, hFDM is collected, quantitatively analyzed, and incorporated in collagen hydrogel (Col) with HUVECs. Capillary-like structure (CLS) formation at 7day was significantly better with the groups containing higher doses of hFDM compared to the Col group (control). Moreover, the group (Col/hFDM/GFs) with both hFDM and angiogenic GFs (VEGF, bFGF, SDF-1) showed the synergistic activity on CLS formation and found much larger capillary lumen diameters with time. Further analysis of hFDM via angiogenesis antibody array kit reveals abundant biochemical cues, such as angiogenesis-related cytokines, GFs, and proteolytic enzymes. Significantly up-regulated expression of VE-cadherin and ECM-specific integrin subunits was also noticed in Col/hFDM/GFs. In addition, transplantation of Col/hFMD/GFs with HUVECs in skin wound model presents more effective re-epithelialization, many regenerated hair follicles, better transplanted cells viability, and advanced neovascularization. We believe that current system is a very promising platform for 3D vasculature construction in vitro and for cell delivery toward therapeutic applications in vivo. Functional 3D vasculature construction in vitro is still

  3. Radiation response of chemically derived mitochondrial DNA-deficient AG01522 human primary fibroblasts.

    Science.gov (United States)

    Nieri, D; Fioramonti, M; Berardinelli, F; Leone, S; Cherubini, R; De Nadal, V; Gerardi, S; Moreno, S; Nardacci, R; Tanzarella, C; Antoccia, A

    2013-08-30

    Mitochondria are the main cellular source of Reactive Oxygen Species (ROS). Alterations of mitochondrial metabolism and consequent loss of mitochondrial membrane potential may lead to redox imbalance and in turn to DNA damage, chromosomal instability and apoptosis. On the other hand, impaired mitochondrial functions may either exacerbate the detrimental effects of geno- and cytotoxic agents or may bring beneficial cellular responses. To study the role of mitochondria within this framework, AG01522 human primary fibroblasts were incubated with the mitochondrial polymerase γ inhibitor 2',3'-dideoxycytidine (ddC), leading to mitochondrial DNA (mtDNA) depletion and to mitochondrial dysfunctions. The successful treatment toward mtDNA depletion was confirmed by Complex-IV subunit I (COX-I) immunofluorescence and western blot assays. mtDNA-depleted cells and their counterparts were ultrastructurally characterized by transmission electron microscopy. mtDNA-depleted cells showed dramatic mitochondrial alterations such as fragmentation and cristae disruption along with a reduction of the mitochondrial membrane potential and elevated levels of ROS. Despite increased ROS levels, we did not find any difference in telomere length between ddC-treated and untreated cells. The spontaneous rate of DNA double-strand breaks (DSBs) and chromosome aberrations was significantly enhanced in mtDNA-depleted cells whereas the induction of DSBs by low-Linear Energy Transfer (LET) (X-rays; 7.7keV/μm protons) and high-LET radiations (28.5keV/μm protons) did not differ when compared with normal cells. However, in irradiated cells impaired mitochondrial functions seemed to bring beneficial cellular responses to the detrimental effect of radiations. In fact, after X-irradiation mtDNA-depleted cells show less remaining unrejoined DSBs than normal cells and furthermore a lower induction of cytogenetic damage. Overall, these data show that active mitochondrial functions are required for the proper

  4. Establishment and cryopreservation of a fibroblast cell line derived from Bengal tiger (Panthera tigris tigris).

    Science.gov (United States)

    Guan, W J; Liu, C Q; Li, C Y; Liu, D; Zhang, W X; Ma, Y H

    2010-01-01

    The Bengal tiger ear marginal tissue fibroblasts cell line (BTF22), containing 157 tubes of frozen cells, was successfully established by using primary explants technique and cell cryoconservation technology. Biological analysis showed that the population doubling time (PDT) for revival cells was approximately 28 h. Measurement of LDH and MDH isoenzymes showed no cross-contamination among the cells. Karyotyping showed that the frequency of cells with chromosome number 2n = 38 was 90.6-92.2%. Tests for bacteria, fungi, viruses and mycoplasma were negative. Plasmids encoding the fluorescent proteins pEGFP-N3, pEGFP-C1, pECFP-N1, pECFP-mito, pDsRed1-N1, and pEYFP-N1 were transfected into cells to study exogenous gene expression in the cells. The plasmid transfection efficiency was between 4.4% and 31.9%. Every index of the BTF22 cell line meets all the standard quality controls of American type Culture Collection (ATCC). Not only has the germline of this important Bengal tiger species been preserved at the cell level, but also valuable material had been provided for genome, postgenome and somacloning research. Moreover, the establishment of this technical platform would provide both technical and theoretical support for storing the genetic resources of other animals and poultry at the cell level.

  5. Production and validation of a good manufacturing practice grade human fibroblast line for supporting human embryonic stem cell derivation and culture.

    Science.gov (United States)

    Prathalingam, Nilendran; Ferguson, Linda; Young, Lesley; Lietz, Georg; Oldershaw, Rachel; Healy, Lyn; Craig, Albert; Lister, Helen; Binaykia, Rakesh; Sheth, Radhika; Murdoch, Alison; Herbert, Mary

    2012-03-28

    The development of reproducible methods for deriving human embryonic stem cell (hESC) lines in compliance with good manufacturing practice (GMP) is essential for the development of hESC-based therapies. Although significant progress has been made toward the development of chemically defined conditions for the maintenance and differentiation of hESCs, efficient derivation of new hESCs requires the use of fibroblast feeder cells. However, GMP-grade feeder cell lines validated for hESC derivation are not readily available. We derived a fibroblast cell line (NclFed1A) from human foreskin in compliance with GMP standards. Consent was obtained to use the cells for the production of hESCs and to generate induced pluripotent stem cells (iPSCs). We compared the line with a variety of other cell lines for its ability to support derivation and self-renewal of hESCs. NclFed1A supports efficient rates (33%) of hESC colony formation after explantation of the inner cell mass (ICM) of human blastocysts. This compared favorably with two mouse embryonic fibroblast (MEF) cell lines. NclFed1A also compared favorably with commercially available foreskin fibroblasts and MEFs in promoting proliferation and pluripotency of a number of existing and widely used hESCs. The ability of NclFed1A to maintain self-renewal remained undiminished for up to 28 population doublings from the master cell bank. The human fibroblast line Ncl1Fed1A, produced in compliance with GMP standards and qualified for derivation and maintenance of hESCs, is a useful resource for the advancement of progress toward hESC-based therapies in regenerative medicine.

  6. Effects of in vivo applications of peripheral blood-derived mesenchymal stromal cells (PB-MSCs) and platlet-rich plasma (PRP) on experimentally injured deep digital flexor tendons of sheep.

    Science.gov (United States)

    Martinello, Tiziana; Bronzini, Ilaria; Perazzi, Anna; Testoni, Stefania; De Benedictis, Gulia Maria; Negro, Alessandro; Caporale, Giovanni; Mascarello, Francesco; Iacopetti, Ilaria; Patruno, Marco

    2013-02-01

    Tendon injuries, degenerative tendinopathies, and overuse tendinitis are common in races horses. Novel therapies aim to restore tendon functionality by means of cell-based therapy, growth factor delivery, and tissue engineering approaches. This study examined the use of autologous mesenchymal stromal cells derived from peripheral blood (PB-MSCs), platelet-rich plasma (PRP) and a combination of both for ameliorating experimental lesions on deep digital flexor tendons (DDFT) of Bergamasca sheep. In particular, testing the combination of blood-derived MSCs and PRP in an experimental animal model represents one of the few studies exploring a putative synergistic action of these treatments. Effectiveness of treatments was evaluated at 30 and 120 days comparing clinical, ultrasonographic, and histological features together with immunohistochemical expression of collagen types 1 and 3, and cartilage oligomeric matrix protein (COMP). Significant differences were found between treated groups and their corresponding controls (placebo) regarding tendon morphology and extracellular matrix (ECM) composition. However, our results indicate that the combined use of PRP and MSCs did not produce an additive or synergistic regenerative response and highlighted the predominant effect of MSCs on tendon healing, enhanced tissue remodeling and improved structural organization. Copyright © 2012 Orthopaedic Research Society.

  7. Comparison of the effect of intra-tendon applications of recombinant human platelet-derived growth factor-BB, platelet-rich plasma, steroids in a rat achilles tendon collagenase model.

    Science.gov (United States)

    Solchaga, Luis A; Bendele, Alison; Shah, Vivek; Snel, Leo B; Kestler, Hans K; Dines, Joshua S; Hee, Christopher K

    2014-01-01

    This study compared the effect of intra-tendon (IT) delivery of recombinant human platelet-derived growth factor-BB (rhPDGF-BB), platelet-rich plasma (PRP) and corticosteroids in a rat tendinopathy model. Seven days after collagenase induction of tendinopathy, a 30-µl IT injection was administered. Treatments included: saline; 3 µg rhPDGF-BB; 10 µg rhPDGF-BB; PRP; and 300 µg triamcinolone acetonide (TCA). Outcomes were assessed 7 and 21 days after treatment. All groups exhibited good to excellent repair. Relative to saline, cell proliferation increased 65% in the 10 µg rhPDGF-BB group and decreased 74% in the TCA group; inflammation decreased 65% in the TCA group. At 7 days, maximum load-to-failure was increased in the 3 µg rhPDGF-BB group relative to saline, PRP, and TCA (p BB group relative to saline, PRP, and TCA (p BB group compared to saline and TCA (p BB group was increased compared to saline, PRP, and TCA (p BB increased maximum load-to-failure (3 and 10 µg) and stiffness (10 µg) relative to controls and commonly used treatments. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:145-150, 2014. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Effect of [6]-gingerol on myofibroblast differentiation in transforming growth factor beta 1-induced nasal polyp-derived fibroblasts.

    Science.gov (United States)

    Park, Sook A; Park, Il-Ho; Cho, Jung-Sun; Moon, You-Mi; Lee, Seung Hoon; Kim, Tae Hoon; Lee, Sang Hag; Lee, Heung-Man

    2012-01-01

    [6]-Gingerol is one of the major pungent principles of ginger and has diverse effects, including anti-inflammatory, and antioxidative effects. Reactive oxygen species (ROS) are released during the phenotypic transformation of fibroblasts to myofibroblasts, a process that is involved in the growth of nasal polyps by inducing extracellular matrix (ECM) accumulation. The purpose of this study was to determine the effect of [6]-gingerol on myofibroblast differentiation and collagen production of nasal polyp-derived fibroblasts (NPDFs) and to determine if the effect of [6]-gingerol is linked to an antioxidant effect. NPDFs were incubated and treated with transforming growth factor (TGF) beta 1. The ROS generated by NPDFs were determined using 2″,7″-dichlorfluorescein-diacetate. The fluorescence was captured by a fluorescent microscope and measured using a fluorometer. The expression of alpha-smooth muscle actin (SMA) and collagen type IV mRNA was determined by a reverse transcription-polymerase chain reaction, and the expression of α-SMA protein and pSmad2/3 was determined by immunofluorescence microscopy and or Western blotting. The amount of total soluble collagen production was analyzed by the SirCol collagen dye-binding assay. TGF-beta 1 stimulation increased ROS production by NPDFs. [6]-Gingerol decreased the production of ROS in TGF-beta 1-induced NPDFs. Myofibroblast differentiation, collagen production, and phosphorylation of Smad2/3 were prevented by [6]-gingerol and inhibition of ROS generation with antioxidant such as diphenyliodonium, N-acetylcysteine, and ebselen. These results suggest the possibility that [6]-gingerol may play an important role in inhibiting the production of the ECM in the development of nasal polyps through an antioxidant effect.

  9. Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative (Emdogain®).

    Science.gov (United States)

    Kwon, Yong-Dae; Choi, Hyun-Jung; Lee, Heesu; Lee, Jung-Woo; Weber, Hans-Peter; Pae, Ahran

    2014-10-01

    The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD 25 µg/mL, and (3) with EMD 100 µg/mL on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-β1 was evaluated with the real-time polymerase chain reaction (RT-PCR). From MTT assay, HGF showed more proliferation in EMD 25 µg/mL group than control and EMD 100 µg/mL group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD 25 µg/mL group and EMD 100 µg/mL group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-β1 was increased at EMD 100 µg/mL. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD 25 µg/mL. Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-β1 in high concentration levels. With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants.

  10. Stimulation of the Fibrillar Collagen and Heat Shock Proteins by Nicotinamide or Its Derivatives in Non-Irradiated or UVA Radiated Fibroblasts, and Direct Anti-Oxidant Activity of Nicotinamide Derivatives

    Directory of Open Access Journals (Sweden)

    Neena Philips

    2015-05-01

    Full Text Available In skin aging, from intrinsic factors or exposure to ultraviolet (UV radiation, there is loss of structural fibrillar collagen and regulatory heat shock proteins. Phenolic compounds, with hydroxyl groups attached to an aromatic ring, have antioxidative and anti-inflammatory properties. Nicotinamide is an amide derivative of niacin or vitamin B3, with an amide linked to an aromatic ring, with UV absorptive, antioxidant, anti-inflammatory and anti-cell death/apoptosis properties. The goal of this research was to investigate the anti-skin aging mechanism of nicotinamide and its derivatives, 2,6-dihydroxynicotinamide, 2,4,5,6-tetrahydroxynicotinamide, and 3-hydroxypicolinamide (collectively niacin derivatives, through the stimulation of fibrillar collagens (type I, III and V, at protein and/or promoter levels and the expression of heat shock proteins (HSP-27, 47, 70, and 90 in non-irradiated or UVA radiated dermal fibroblasts; and from its direct antioxidant activity. UVA radiation inhibited the expression of types I and III collagen, and HSP-47 in dermal fibroblasts. The niacin derivatives significantly and similarly stimulated the expression of types I (transcriptionally, III and V collagens in non-irradiated, and UVA radiated fibroblasts indicating predominant effects. The 2,6-dihydroxynicotinamide had greater stimulatory effect on types I and III collagen in the non-irradiated, and UVA radiated fibroblasts, as well as greater direct antioxidant activity than the other niacin derivatives. The niacin derivatives, with a few exceptions, stimulated the expression of HSP-27, 47, 70 and 90 in non-irradiated, and UVA radiated fibroblasts. However, they had varied effects on the expression of the different HSPs in non-irradiated, and UVA radiated fibroblasts indicating non-predominant, albeit stimulatory, effect. Overall, nicotinamide and its derivatives have anti skin aging potential through the stimulation of fibrillar collagen and HSPs.

  11. The incidence of lower-extremity amputation and bone resection in diabetic foot ulcer patients treated with a human fibroblast-derived dermal substitute.

    Science.gov (United States)

    Frykberg, Robert G; Marston, William A; Cardinal, Matthew

    2015-01-01

    Diabetic foot ulcers (DFUs) are frequently recalcitrant and at risk for infection, which may lead to lower-extremity amputation or bone resection. Reporting the incidence of amputations/bone resections may shed light on the relationship of ulcer healing to serious complications. This study aimed to evaluate the incidence of amputations/bone resections in a randomized controlled trial comparing human fibroblast-derived dermal substitute plus conventional care with conventional care alone for the treatment of DFUs. Ulcer-related amputation/bone resection data were extracted from data on all adverse events reported for the intent-to-treat population (N = 314), and amputations were categorized by type: below the knee, Syme, Chopart, transmetatarsal, ray, toe, or partial toe. Data were analyzed retrospectively for the incidence of amputation/bone resection by treatment. Randomized controlled trial. Patients with full-thickness DFUs greater than 6 weeks' duration. Standard wound care plus human fibroblast-derived dermal substitute versus standard wound care alone. The incidence of amputation/bone resection in the study was 8.9% (28/314) overall, 5.5% (9/163) for patients receiving human fibroblast-derived dermal substitute, and 12.6% (19/151) for patients receiving conventional care (P = .031). Of the 28 cases of amputation/bone resection, 27 were preceded by ulcer-related infection. There were significantly fewer amputations/bone resections in patients who received human fibroblast-derived dermal substitute versus conventional care, likely related to the lower incidence of infection adverse events observed in the human fibroblast-derived dermal substitute treatment group.

  12. Hydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts.

    Science.gov (United States)

    Eklund, Erik A; Merbouh, Nabyl; Ichikawa, Mie; Nishikawa, Atsushi; Clima, Jessica M; Dorman, James A; Norberg, Thomas; Freeze, Hudson H

    2005-11-01

    Patients with Type I congenital disorders of glycosylation (CDG-I) make incomplete lipid-linked oligosaccharides (LLO). These glycans are poorly transferred to proteins resulting in unoccupied glycosylation sequons. Mutations in phosphomannomutase (PMM2) cause CDG-Ia by reducing the activity of PMM, which converts mannose (Man)-6-P to Man-1-P before formation of GDP-Man. These patients have reduced Man-1-P and GDP-Man. To replenish intracellular Man-1-P pools in CDG-Ia cells, we synthesized two hydrophobic, membrane permeable acylated versions of Man-1-P and determined their ability to normalize LLO size and N-glycosylation in CDG-Ia fibroblasts. Both compounds, compound I (diacetoxymethyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate) (C-I) and compound II (diacetoxymethyl 2,3,4,6-tetra-O-ethyloxycarbonyl-alpha-D-mannopyranosyl phosphate) (C-II), contain two acetoxymethyl (CH2OAc) groups O-linked to phosphorous. C-I contains acetyl esters and C-II contains ethylcarbonate (CO2Et) esters on the Man residue. Both C-I and C-II normalized truncated LLO, but C-II was about 2-fold more efficient than C-I. C-II replenished the GDP-Man pool in CDG-Ia cells and was more efficiently incorporated into glycoproteins than exogenous Man at low concentrations (25-75 mM). In a glycosylation assay of DNaseI in CDG-Ia cells, C-II restored glycosylation to control cell levels. C-II also corrected impaired LLO biosynthesis in cells from a Dolichol (Dol)-P-Man deficient patient (CDG-Ie) and partially corrected LLO in cells from an ALG12 mannosyltransferase-deficient patient (CDG-Ig), whereas cells from an ALG3-deficient patient (CDG-Id) and from an MPDU1-deficient patient (CDG-If) were not corrected. These results validate the general concept of using pro-Man-1-P substrates as potential therapeutics for CDG-I patients.

  13. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Animal embryonic stem cells (ESCs provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs, have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes.

  14. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohui [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Yang [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Jingwen [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Li, Peng [Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR (China); Liu, Yinan [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Wen, Jinhua, E-mail: jhwen@bjmu.edu.cn [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Luan, Qingxian, E-mail: kqluanqx@126.com [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China)

    2016-05-06

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  15. Adipose Tissue-Derived Stem Cells Differentiate into Carcinoma-Associated Fibroblast-Like Cells under the Influence of Tumor-Derived Factors

    Directory of Open Access Journals (Sweden)

    Constantin Jotzu

    2010-01-01

    Full Text Available Carcinoma-associated fibroblasts (CAF are considered to contribute to tumor growth, invasion and metastasis. However, the cell type of origin remains unknown. Since human adipose tissue-derived stem cells (hASCs are locally adjacent to breast cancer cells and might directly interact with tumor cells, we investigated whether CAFs may originate from hASCs. We demonstrated that a significant percentage of hASCs differentiated into a CAF-like myofibroblastic phenotype (e.g., expression of alpha smooth muscle actin and tenascin-C when exposed to conditioned medium from the human breast cancer lines MDAMB231 and MCF7. The conditioned medium from MDAMB231 and MCF7 contains significant amounts of transforming growth factor-beta 1 (TGFβ1 and the differentiation of hASCs towards CAFs is dependent on TGFβ1 signaling via Smad3 in hASCs. The induction of CAFs can be abolished using a neutralizing antibody to TGFβ1 as well as by pretreatment of the hASCs with SB431542, a TGFβ1 receptor kinase inhibitor. Additionally, we found that these hASC-derived CAF-like cells exhibit functional properties of CAFs, including the ability to promote tumor cell invasion in an in vitro invasion assay, as well as increased expression of stromal-cell-derived factor 1 (SDF-1 and CCL5. Taken together, these data suggest that hASCs are a source of CAFs which play an important role in the tumor invasion.

  16. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions : A pilot study

    NARCIS (Netherlands)

    Geburek, Florian; Mundle, Kathrin; Conrad, Sabine; Hellige, Maren; Walliser, Ulrich; van Schie, Hans T M|info:eu-repo/dai/nl/184641411; van Weeren, René|info:eu-repo/dai/nl/074628550; Skutella, Thomas; Stadler, Peter M

    2016-01-01

    BACKGROUND: Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of

  17. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Ceylan, Ahmet; Mazzoni, Gianluca

    2017-01-01

    Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed...... more light on the underlying biological mechanisms of porcine pluripotency. LIF-derived piPSCs were more successful than their FGF-derived counterparts in the generation of in vitro chimeras and in teratoma formation. When LIF piPSCs chimeras were transferred into surrogate sows and allowed to develop...

  18. Achilles Tendon Rupture

    Science.gov (United States)

    ... Achilles tendon rupture. Obesity. Excess weight puts more strain on the tendon. Prevention To reduce your chance of developing Achilles tendon problems, follow these tips: Stretch and strengthen calf muscles. Stretch your calf until you feel a noticeable ...

  19. Posterior Tibial Tendon Dysfunction

    Science.gov (United States)

    .org Posterior Tibial Tendon Dysfunction Page ( 1 ) Posterior tibial tendon dysfunction is one of the most common problems of the foot and ankle. It occurs when the posterior tibial tendon becomes inflamed or torn. As a result, the ...

  20. Achilles tendon repair

    Science.gov (United States)

    Achilles tendon rupture-surgery; Percutaneous Achilles tendon rupture repair ... To fix your torn Achilles tendon, the surgeon will: Make a cut down the back of your heel Make several small cuts rather than one large ...

  1. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  2. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Ceylan, Ahmet; Mazzoni, Gianluca

    2017-01-01

    Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed......, only their prescence within the embryonic membranes could be detected. Whole transcriptome analysis of the piPSCs and porcine neonatal fibroblasts showed that they clustered together, but apart from the two pluripotent cell populations of early porcine embryos, indicating incomplete reprogramming....... Indeed, bioinformatic analysis of the pluripotency-related gene network of the LIF- versus FGF-derived piPSCs revealed that ZFP42 (REX1) expression was absent in both piPSC-like cells, whereas it was expressed in the porcine inner cell mass at Day 7/8. A second striking difference was the expression...

  3. Primary dermal fibroblasts derived from sdc-1 deficient mice migrate faster and have altered alphav integrin function.

    Science.gov (United States)

    Jurjus, Rosalyn A; Liu, Yueyuan; Pal-Ghosh, Sonali; Tadvalkar, Gauri; Stepp, Mary Ann

    2008-01-01

    ABSTRACT The goal of this study is to determine whether dermal fibroblasts lacking syndecan-1 (sdc1) show differences in integrin expression and function that could contribute to the delayed skin and corneal wound healing phenotypes seen in sdc-1 null mice. Using primary dermal fibroblasts, we show that after 3 days in culture no differences in alpha-smooth muscle actin were detected but sdc-1 null cells expressed significantly more alphav and beta1 integrin than wildtype (wt) cells. Transforming growth factor beta1 (TGFbeta1) treatment at day 3 increased alphav- and beta1-integrin expression in sdc-1 null cells at day 5 whereas wt cells showed increased expression only of alphav-integrin. Using time-lapse studies, we showed that the sdc-1 null fibroblasts migrate faster than wt fibroblasts, treatment with TGFbeta1 increased these migration differences, and treatment with a TGFbeta1 antagonist caused sdc-1 null fibroblasts to slow down and migrate at the same rate as untreated wt cells. Cell spreading studies on replated fibroblasts showed altered cell spreading and focal adhesion formation on vitronectin and fibronectin-coated surfaces. Additional time lapse studies with beta1- and alphav-integrin antibody antagonists, showed that wt fibroblasts expressing sdc-1 had activated integrins on their surface that impeded their migration whereas the null cells expressed alphav-containing integrins which were less adhesive and enhanced cell migration. Surface expression studies showed increased surface expression of alpha2beta1 and alpha3beta1 on the sdc-1 null fibroblasts compared with wt fibroblasts but no significant differences in surface expression of alpha5beta1, alphavbeta3, or alphavbeta5. Taken together, our data indicates that sdc-1 functions in the activation of alphav-containing integrins and support the hypothesis that impaired wound healing phenotypes seen in sdc-1 null mice could be due to integrin-mediated defects in fibroblast migration after injury.

  4. Magnesium inhibits the calcification of the extracellular matrix in tendon-derived stem cells via the ATP-P2R and mitochondrial pathways.

    Science.gov (United States)

    Yue, Jiaji; Jin, Shanzi; Li, Yaqiang; Zhang, Li; Jiang, Wenwei; Yang, Chunxi; Du, Jiang

    2016-09-09

    Tendon calcification has been widely regarded by researchers to result from the osteogenic differentiation of Tendon-Derived Stem Cells (TDSCs) and ectopic mineralization caused by the calcification of cellular matrix. Recent studies have revealed a correlation between the Mg(2+)/Ca(2+) balance and the degeneration or calcification of tendon tissues. Furthermore, the ATP-P2X/P2Y receptor pathway has been shown to play a decisive role in the process of calcification, with calcium exportation from mitochondria and calcium oscillations potentially representing the cohesive signal produced by this pathway. Our previous study demonstrated that matrix calcification is inhibited by magnesium. In this study, we examined the effects of extracellular Mg(2+) on the deposition of calcium phosphate matrix and cellular pathways in TDSCs. The suppression of the export of calcium from mitochondria has also been detected. We found that a high concentration of extracellular Mg(2+) ([Mg(2+)]e) inhibited the mineralization of the extracellular matrix in TDSCs and that 100 μM ATP reversed this inhibitory effect in vitro. In addition, the spontaneous release of ATP was inhibited by high [Mg(2+)]e levels. A high [Mg(2+)]e suppressed the expression of P2X4, P2X5 and P2X7 and activated the expression of P2Y1, P2Y2, P2Y4 and P2Y14. The interaction between Mg(2+) and Ca(2+) is therefore contradictory, Mg(2+) inhibits mitochondrial calcium concentrations, meanwhile it reverses the opening of mPTP that is induced by Ca(2+). JC-1 staining verified the protective effect of Mg(2+) on mitochondrial membrane potential and the decrease induced by Ca(2+). Taken together, these results indicate that high [Mg(2+)]e interferes with the expression of P2 receptors, resulting in decreased extracellular mineralization. The balance between Mg(2+) and Ca(2+) influences mitochondrial calcium exportation and provides another explanation for the mechanism underlying matrix calcification in TDSCs. Copyright

  5. Cancer cell-derived lymphotoxin mediates reciprocal tumour-stromal interactions in human ovarian cancer by inducing CXCL11 in fibroblasts.

    Science.gov (United States)

    Lau, Tat-San; Chung, Tony Kwok-Hung; Cheung, Tak-Hong; Chan, Loucia Kit-Ying; Cheung, Leonard Wing-Hong; Yim, So-Fan; Siu, Nelson Shing-Shun; Lo, Kwok-Wai; Yu, May Mei-Yung; Kulbe, Hagen; Balkwill, Frances R; Kwong, Joseph

    2014-01-01

    We have investigated the role of cytokine lymphotoxin in tumour-stromal interactions in human ovarian cancer. We found that lymphotoxin overexpression is commonly shared by the cancer cells of various ovarian cancer subtypes, and lymphotoxin-beta receptor (LTBR) is expressed ubiquitously in both the cancer cells and cancer-associated fibroblasts (CAFs). In monoculture, we showed that ovarian cancer cells are not the major lymphotoxin-responsive cells. On the other hand, our co-culture studies demonstrated that the cancer cell-derived lymphotoxin induces chemokine expression in stromal fibroblasts through LTBR-NF-κB signalling. Amongst the chemokines being produced, we found that fibroblast-secreted CXCL11 promotes proliferation and migration of ovarian cancer cells via the chemokine receptor CXCR3. CXCL11 is highly expressed in CAFs in ovarian cancer biopsies, while CXCR3 is found in malignant cells in primary ovarian tumours. Additionally, the overexpression of CXCR3 is significantly associated with the tumour grade and lymph node metastasis of ovarian cancer, further supporting the role of CXCR3, which interacts with CXCL11, in promoting growth and metastasis of human ovarian cancer. Taken together, these results demonstrated that cancer-cell-derived lymphotoxin mediates reciprocal tumour-stromal interactions in human ovarian cancer by inducing CXCL11 in fibroblasts. Our findings suggest that lymphotoxin-LTBR and CXCL11-CXCR3 signalling represent therapeutic targets in ovarian cancer. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Tendon Force Transmission at the Nanoscale

    DEFF Research Database (Denmark)

    Svensson, René

    2013-01-01

    of connective tissue function that are poorly understood. One such aspect is the microscopic mechanisms of force transmission through tendons over macroscopic distances. Force transmission is at the heart of tendon function, but the large range of scales in the hierarchical structure of tendons has made...... it difficult to tackle. The tendon hierarchy ranges from molecules (2 nm) over fibrils (200 nm), fibers (2 μm) and fascicles (200 μm) to tendons (10 mm), and to derive the mechanisms of force transmission it is necessary to know the mechanical behavior at each hierarchical level. The aim of the present work...... was to elucidate the mechanisms of force transmission in tendons primarily by investigating the mechanical behavior at the hierarchical level of collagen fibrils. To do so we have developed an atomic force microscopy (AFM) method for tensile testing of native collagen fibrils. The thesis contains five papers...

  7. Umbilical Cord-Derived Mesenchymal Stem Cells Inhibit Cadherin-11 Expression by Fibroblast-Like Synoviocytes in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Cheng Zhao

    2015-01-01

    Full Text Available This study aimed to determine whether umbilical cord-derived mesenchymal stem cells (UCMSC regulate Cadherin-11 (CDH11 expression by fibroblast-like synoviocytes (FLS in rheumatoid arthritis (RA. FLS were isolated from the synovium of RA and osteoarthritis (OA patients. FLS from RA patients were cocultured with UCMSC in a transwell system. CDH11 mRNA levels in FLS were tested, and levels of soluble factors expressed by UCMSC, such as indoleamine 2,3-dioxygenase (IDO, hepatocyte growth factor (HGF, and interleukin- (IL- 10, were determined. IDO, HGF, and IL-10 were upregulated in cocultures, so that appropriate inhibitors were added before determination of CDH11 expression. The effects of UCMSC on arthritis were investigated in the collagen-induced arthritis (CIA model in Wistar rats. FLS from RA patients expressed higher CDH11 levels than those from OA patients, and this effect was suppressed by UCMSC. The inhibitory effect of UCMSC on CDH11 expression by FLS was abolished by suppression of IL-10 activity. CDH11 expression in synovial tissues was higher in the context of CIA than under basal conditions, and this effect was prevented by UCMSC administration. IL-10 mediates the inhibitory effect of UCMSC on CDH11 expression by FLS, and this mechanism might be targeted to ameliorate arthritis.

  8. Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering.

    Science.gov (United States)

    Tan, Qi; Lui, Pauline Po Yee; Rui, Yun Feng

    2012-03-20

    This study aimed to compare clonogenicity, proliferation, stem cell-related marker expression, senescence, and differentiation potential of rat patellar tendon-derived stem cells (TDSCs) at early (P5), mid (P10), and late (P20, P30) passages. The clonogenicity of the cells was assessed by colony-forming assay and their proliferative potential was assessed by bromodeoxyuridine assay. The surface expression of CD90 and CD73 was assessed by flow cytometry. The cellular senescence was assessed by β-galactosidase activity. The adipogenic, chondrogenic, and osteogenic differentiation potentials of TDSCs were assessed by standard assays after induction. The mRNA expression of tendon-related markers, scleraxis (Scx) and tenomodulin (Tnmd), was measured by quantitative real-time reverse transcription-polymerase chain reaction. Both the colony numbers and proliferative potential of TDSCs increased with passaging. Concomitantly, there was significant upregulation of β-galactosidase activity with TDSC passaging. The subculture of TDSCs downregulated the expression of CD90 and CD73. Lipid droplets were formed in the early and mid passages of TDSCs upon adipogenic induction, but were absent in the late passages. The expression of peroxisome proliferator activator receptor gamma 2 (PPARγ2) and CCAAT/enhancer binding protein alpha (C/EBPα) in TDSCs after adipogenic induction decreased with passaging. Chondrogenesis, proteoglycan deposition, collagen type II protein expression, collagen type 2A1 (Col2AI), and aggrecan (Acan) mRNA expression were less in pellets formed with later passages of TDSCs after chondrogenic induction. The expression of Scx and Tnmd was lower in the late, compared with early and mid, passages of TDSCs. However, matrix mineralization and expression of alkaline phosphatase (Alpl) and osteocalcin (Bglap) mRNA after osteogenic induction increased with TDSC passaging. Researchers and clinicians should consider the changes of stem cell-related properties of

  9. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    Science.gov (United States)

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA1-deficient (LPA1-/-) or -sufficient (LPA1+/+) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA1-/-Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA1-/-Col-GFP mice. LPA-LPA1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. Effect of cinnamoyl and flavonol glucosides derived from cherry blossom flowers on the production of advanced glycation end products (AGEs) and AGE-induced fibroblast apoptosis.

    Science.gov (United States)

    Shimoda, Hiroshi; Nakamura, Seiko; Morioka, Makoto; Tanaka, Junji; Matsuda, Hisashi; Yoshikawa, Masayuki

    2011-09-01

    Cherry blossom flowers are familiar to the Japanese, and some species of the flowers soaked in salty vinegar are used as processed foods. The constituents of aqueous ethanol extract from cherry blossom (Prunus lannesiana) flowers (CBE) were examined and cinnamoyl and flavonol glucosides were isolated. To elucidate the pharmacological functions of CBE and its constituents, their effects on the production of advanced glycation end products (AGEs) and on AGE-induced fibroblast damage were examined. CBE and 1-O-(E)-caffeoyl-β-D-glucopyranoside (CaG), a principal compound in CBE, significantly suppressed the production of AGEs derived from glucose and albumin at 100 μg/mL. Among the flavonol glucosides, quercetin 3-O-β-D-glucopyranoside (QG) exhibited potent suppressive activity (IC50 : 30 μg/mL). CBE and CaG suppressed glyoxal-induced AGE production in fibroblasts at 10 μg/mL, but QG did not. In addition, CBE and CaG recovered collagen lattice formation consisting of collagen and glycated fibroblasts at 10 μg/mL. Moreover, CBE and its constituents, except kaempferol 3-O-(6″-malony)-β-D-glucopyranoside, significantly suppressed fibroblast apoptosis induced by carboxymethyl lysine-collagen at 10 μg/mL. These results show that cinnamoyl and flavonol glucosides of cherry blossom flowers suppress AGE production and AGE-induced fibroblast apoptosis. Cherry blossom flowers may be effective against skin AGE production and fibroblast damage by AGEs. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Tendon biomechanics and mechanobiology - a mini-review of basic concepts and recent advancements

    Science.gov (United States)

    Wang, James H-C.; Guo, Qianping; Li, Bin

    2011-01-01

    Due to their unique hierarchical structure and composition, tendons possess characteristic biomechanical properties, including high mechanical strength and viscoelasticity, which enable them to carry and transmit mechanical loads (muscular forces) effectively. Tendons are also mechano-responsive by adaptively changing their structure and function in response to altered mechanical loading conditions. In general, mechanical loading at physiological levels is beneficial to tendons, but excessive loading or disuse of tendons is detrimental. This mechano-adaptability is due to the cells present in tendons. Tendon fibroblasts (tenocytes) are the dominant tendon cells responsible for tendon homeostasis and repair. Tendon stem cells (TSCs), which were recently discovered, also play a vital role in tendon maintenance and repair by virtue of their ability to self-renew and differentiate into tenocytes. TSCs may also be responsible for chronic tendon injury, or tendinopathy, by undergoing aberrant differentiation into non-tenocytes in response to excessive mechanical loading. Thus, it is necessary to devise optimal rehabilitation protocols in order to enhance tendon healing while reducing scar tissue formation and tendon adhesions. Moreover, along with scaffolds that can mimic tendon matrix environments and platelet-rich plasma (PRP), which serves as a source of growth factors, TSCs may be the optimal cell type for enhancing repair of injured tendons. PMID:21925835

  12. Local Application of Gelatin Hydrogel Sheets Impregnated With Platelet-Derived Growth Factor BB Promotes Tendon-to-Bone Healing After Rotator Cuff Repair in Rats.

    Science.gov (United States)

    Tokunaga, Takuya; Ide, Junji; Arimura, Hitoshi; Nakamura, Takayuki; Uehara, Yusuke; Sakamoto, Hidetoshi; Mizuta, Hiroshi

    2015-08-01

    To determine whether the local application of platelet-derived growth factor BB (PDGF-BB) in hydrogel sheets would promote healing and improve histologic characteristics and biomechanical strength after rotator cuff (RC) repair in rats. To assess the effect of PDGF-BB on tendon-to-bone healing we divided 36 adult male Sprague-Dawley rats treated with bilateral surgery to repair the supraspinatus tendon at its insertion site into 3 groups: group 1 = suture-only group; group 2 = suture and gelatin hydrogel sheets impregnated with phosphate-buffered saline (PBS); and group 3 = suture and gelatin hydrogel sheets impregnated with PDGF-BB (0.5 μg). Semiquantitative histologic evaluation was carried out 2, 6, and 12 weeks later; cell proliferation was assessed 2 and 6 weeks postoperatively by immunostaining for proliferating cell nuclear antigen (PCNA), and biomechanical testing, including ultimate load to failure, stiffness, and ultimate stress to failure, was performed 12 weeks after the operation. At 2 weeks, the average percentage of PCNA-positive cells at the insertion site was significantly higher in group 3 (40.5% ± 2.4%) than in group 1 (32.1% ± 6.9%; P = .03) and group 2 (31.9% ± 3.7%; P = .02). At 2 and 6 weeks, the histologic scores were similar among the 3 groups. At 12 weeks, the histologic score was significantly higher in group 3 (10.3 ± 0.8) than in group 1 (8.5 ± 0.5; P = .002) or group 2 (8.8 ± 0.8; P = .009), whereas ultimate load to failure, stiffness, and ultimate load to stress (normal control population, 44.73 ± 9.75 N, 27.59 ± 4.32 N/mm, and 21.33 ± 4.65 N/mm(2), respectively) were significantly higher in group 3 (28.28 ± 6.28 N, 11.05 ± 2.37 N/mm, and 7.99 ± 2.13 N/mm(2), respectively) than in group 1 (10.44 ± 1.98 N, 4.74 ± 1.31 N/mm, and 3.28 ± 1.27 N/mm(2), respectively; all P < .001) or group 2 (11.85 ± 2.89 N, 5.86 ± 1.75 N/mm, and 3.31 ± 0.80 N/mm(2), respectively; all P < .001). The placement of a PDGF

  13. Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: in vitro evaluation on adipose-derived stem cell differentiation.

    Science.gov (United States)

    Min, Hyun Ki; Oh, Se Heang; Lee, Jong Min; Im, Gun Il; Lee, Jin Ho

    2014-03-01

    Polycaprolactone (PCL)/Pluronic F127 membrane with reverse gradients of dual platelet-derived growth factor-β (PDGF-BB) and bone morphogenetic protein 2 (BMP-2) concentrations was fabricated using a diffusion method to investigate the effect of reverse gradients of dual growth factor concentrations on adipose-derived stem cell (ASC) differentiations, such as tenogenesis and osteogenesis. The PDGF-BB and BMP-2 were continuously released from the membrane for up to 35 days, with reversely increasing/decreasing growth factors along the membrane length. Human ASCs were seeded on the membrane with reverse PDGF-BB and BMP-2 gradients. The cells were confluent after 1 week of culture, regardless of growth factor types or concentrations on the membrane. Gene expression (real-time polymerase chain reaction), Western blot and immunohistological analyses after 1 and 2 weeks of ASC culture showed that the membrane sections with higher PDGF-BB and lower BMP-2 concentrations provided a better environment for ASC tenogenesis, while the membrane sections with higher BMP-2 and lower PDGF-BB concentrations were better for promoting osteogenesis. The results suggest that the membrane with reverse gradients of PDGF-BB and BMP-2 may be promising for tendon-to-bone repair, as most essential biological processes are mediated by gradients of biological molecules in the body. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Sex differences in tendon structure and function.

    Science.gov (United States)

    Sarver, Dylan C; Kharaz, Yalda Ashraf; Sugg, Kristoffer B; Gumucio, Jonathan P; Comerford, Eithne; Mendias, Christopher L

    2017-10-01

    Tendons play a critical role in the transmission of forces between muscles and bones, and chronic tendon injuries and diseases are among the leading causes of musculoskeletal disability. Little is known about sex-based differences in tendon structure and function. Our objective was to evaluate the mechanical properties, biochemical composition, transcriptome, and cellular activity of plantarflexor tendons from 4 month old male and female C57BL/6 mice using in vitro biomechanics, mass spectrometry-based proteomics, genome-wide expression profiling, and cell culture techniques. While the Achilles tendons of male mice were approximately 6% larger than female mice (p differences in mechanical properties (p > 0.05) of plantaris tendons were observed. Mass spectrometry proteomics analysis revealed no significant difference between sexes in the abundance of major extracellular matrix (ECM) proteins such as collagen types I (p = 0.30) and III (p = 0.68), but female mice had approximately twofold elevations (p differed by only 1%. In vitro, neither the sex of the serum that fibroblasts were cultured in, nor the sex of the ECM in which they were embedded, had profound effects on the expression of collagen and cell proliferation genes. Our results indicate that while male mice expectedly had larger tendons, male and female tendons have very similar mechanical properties and biochemical composition, with small increases in some ECM proteins and proteoglycans evident in female tendons. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2117-2126, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Flexor tendon nutrition.

    Science.gov (United States)

    Manske, P R; Lesker, P A

    1985-02-01

    The concepts regarding nutrient pathways to flexor tendons within the digital sheath are reviewed. Historically, both diffusion and perfusion have been considered significant pathways to the flexor tendon. Theories of tendon healing and adhesion formation, as well as techniques employed by the surgeon in the repair of tendons, are based on these concepts.

  16. Vitamin D decreases the secretion of eotaxin and RANTES in nasal polyp fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyps

    Directory of Open Access Journals (Sweden)

    Ling-Feng Wang

    2015-02-01

    Full Text Available Eosinophils are important inflammatory cells involved in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP. Vitamin D and its derivatives, in addition to their classic role as regulators of electrolytes homeostasis, have modulatory effects in immunological and inflammatory responses. Such properties suggest that vitamin D might also play a role in inflammatory airway diseases such as CRSwNP. In this study, we investigated the effect of vitamin D derivatives (calcitriol and tacalcitol on the secretion of eotaxin and Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES, the two major eosinophil chemoattractants, in fibroblasts derived from the polyps of Taiwanese CRSwNP patients. Patients diagnosed with eosinophilic CRSwNP but without malignancies or asthma and undergoing elective endoscopic sinus surgery were recruited. Three primary fibroblast cultures were established using the polyp specimens obtained from these patients. The third to eighth passages of the fibroblasts were used for in vitro studies. Nasal polyp-derived fibroblasts were stimulated with IL-1β (10 ng/mL for 24 hours, followed by replacement with media alone or with calcitriol or tacalcitol (10μM and incubation for another 24 hours. After the treatments, the levels of secreted eotaxin and RANTES were evaluated by ELISA assays. The results showed that IL-1β could substantially stimulate the secretion of eotaxin (p < 0.01 and RANTES (p < 0.01 in nasal polyp-derived fibroblasts. More importantly, this stimulatory effect was significantly suppressed by adding calcitriol (p ≤ 0.002 for eotaxin and p ≤ 0.008 for RANTES or tacalcitol (p ≤ 0.009 for eotaxin and p ≤ 0.02 for RANTES. Therefore, the inhibitory effect of vitamin D derivatives on eotaxin and RANTES secretion might shed light not only on the disease mechanism, but also on the potential use of vitamin D in pharmacotherapy of Taiwanese patients with CRSwNP.

  17. Elasticity Modulation of Fibroblast-Derived Matrix for Endothelial Cell Vascular Morphogenesis and Mesenchymal Stem Cell Differentiation.

    Science.gov (United States)

    Du, Ping; Suhaeri, Muhammad; Subbiah, Ramesh; Van, Se Young; Park, Jimin; Kim, Sang Heon; Park, Kwideok; Lee, Kangwon

    2016-03-01

    Biophysical properties of the microenvironment, including matrix elasticity and topography, are known to affect various cell behaviors; however, the specific role of each factor is unclear. In this study, fibroblast-derived matrix (FDM) was used as cell culture substrate and physically modified to investigate the influence of its biophysical property changes on human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) behavior in vitro. These FDMs were physically modified by simply storing them at different temperatures: the one stored at 4°C, maintained its original properties, was considered natural FDM, whereas the ones stored at -20°C or -80°C, exhibited a distinct surface morphology, were considered physically modified FDM. Physical modification induced matrix fiber rearrangement in FDM, forming different microstructures on the surface as characterized by focused ion beam (FIB)-cryoSEM. A significant increase of matrix elasticity was found with physically modified FDMs as determined by atomic force microscopy. HUVEC and hMSC behaviors on these natural and physically modified FDMs were observed and compared with each other and with gelatin-coated coverslips. HUVECs showed a similar adhesion level on these substrates at 3 h, but exhibited different proliferation rates and morphologies at 24 h; HUVECs on natural FDM proliferated relatively slower and assembled to capillary-like structures (CLSs). It is observed that HUVECs assembled to CLSs on natural FDMs are independent on the exogenous growth factors and yet dependent on nonmuscle myosin II activity. This result indicates the important role of matrix mechanical properties in regulating HUVECs vascular morphogenesis. As for hMSCs multilineage differentiation, adipogenesis is improved on natural FDM that with lower matrix elasticity, while osteogenesis is accelerated on physically modified FDMs that with higher matrix elasticity, these results further confirm the crucial

  18. Gas6 derived from cancer-associated fibroblasts promotes migration of Axl-expressing lung cancer cells during chemotherapy.

    Science.gov (United States)

    Kanzaki, Ryu; Naito, Hisamichi; Kise, Kazuyoshi; Takara, Kazuhiro; Eino, Daisuke; Minami, Masato; Shintani, Yasushi; Funaki, Soichiro; Kawamura, Tomohiro; Kimura, Toru; Okumura, Meinoshin; Takakura, Nobuyuki

    2017-09-06

    Alterations to the tumor stromal microenvironment induced by chemotherapy could influence the behavior of cancer cells. In the tumor stromal microenvironment, cancer-associated fibroblasts (CAFs) play an important role. Because the receptor tyrosine kinase Axl and its ligand Gas6 could be involved in promoting non-small cell lung cancer (NSCLC), we investigated the role of Gas6 secreted by CAFs during chemotherapy in NSCLC. In a murine model, we found that Gas6 expression by CAFs was upregulated following cisplatin treatment. Gas6 expression might be influenced by intratumoral hypoperfusion during chemotherapy, and it increased after serum starvation in a human lung CAF line, LCAF hTERT . Gas6 is associated with LCAF hTERT cell growth. Recombinant Gas6 promoted H1299 migration, and conditioned medium (CM) from LCAF hTERT cells activated Axl in H1299 cells and promoted migration. Silencing Gas6 in LCAF hTERT reduced the Axl activation and H1299 cell migration induced by CM from LCAF hTERT . In clinical samples, stromal Gas6 expression increased after chemotherapy. Five-year disease-free survival rates for patients with tumor Axl- and stromal Gas6-positive tumors (n = 37) was significantly worse than for the double negative group (n = 12) (21.9% vs 51.3%, p = 0.04). Based on these findings, it is presumed that Gas6 derived from CAFs promotes migration of Axl-expressing lung cancer cells during chemotherapy and is involved in poor clinical outcome.

  19. Individual variation of the genetic response to bisphenol a in human foreskin fibroblast cells derived from cryptorchidism and hypospadias patients.

    Directory of Open Access Journals (Sweden)

    Xian-Yang Qin

    Full Text Available BACKGROUND/PURPOSE: We hypothesized that polymorphic differences among individuals might cause variations in the effect that environmental endocrine disruptors (EEDs have on male genital malformations (MGMs. In this study, individual variation in the genetic response to low-dose bisphenol A (BPA was investigated in human foreskin fibroblast cells (hFFCs derived from child cryptorchidism (CO and hypospadias (HS patients. METHODOLOGY/PRINCIPAL FINDINGS: hFFCs were collected from control children without MGMs (n=5 and child CO and HS patients (n=8 and 21, respectively. BPA exposure (10 nM was found to inhibit matrix metalloproteinase-11 (MMP11 expression in the HS group (0.74-fold, P=0.0034 but not in the control group (0.93-fold, P=0.84 and CO group (0.94-fold, P=0.70. Significantly lower levels of MMP11 expression were observed in the HS group compared with the control group (0.80-fold, P=0.0088 and CO group (0.79-fold, P=0.039 in response to 10 nM BPA. The effect of single-nucleotide polymorphism rs5000770 (G>A, located within the aryl hydrocarbon receptor nuclear translocator 2 (ARNT2 locus, on individual sensitivity to low-dose BPA was investigated in the HS group. A significant difference in neurotensin receptor 1 (NTSR1 expression in response to 10 nM BPA was observed between AA and AG/GG groups (n=6 and 15, respectively. P=0.031. However, no significant difference in ARNT2 expression was observed (P=0.18. CONCLUSIONS/SIGNIFICANCE: This study advances our understanding of the specificity of low-dose BPA effects on human reproductive health. Our results suggest that genetic variability among individuals affects susceptibility to the effects of EEDs exposure as a potential cause of HS.

  20. Nerve growth factor has a modulatory role on human primary fibroblast cultures derived from vernal keratoconjunctivitis-affected conjunctiva

    Science.gov (United States)

    Micera, Alessandra; Lambiase, Alessandro; Stampachiacchiere, Barbara; Sgrulletta, Roberto; Normando, Eduardo Maria; Bonini, Sergio

    2007-01-01

    Purpose To evaluate the role of nerve growth factor (NGF) in remodeling processes of vernal keratoconjunctivitis (VKC). VKC is a chronic inflammatory disorder of the conjunctiva and is characterized by marked tissue remodeling. NGF, a pleiotrophic factor with documented profibrogenic activities, is produced by inflammatory and structural cells populating the VKC conjunctiva and is increased in the serum and tears of VKC patients. Methods Primary cultures of VKC-derived fibroblasts (VKC-FBs) were exposed to increasing NGF concentrations (1-500 ng/ml) to evaluate and compare the expression of α-smooth muscle actin (αSMA, a defining myofibroblast marker), collagens (types I and IV), and metalloproteinases and tissue inhibitors (MMP9/TIMP1, MMP2/TIMP2) at the biochemical as well as molecular levels. Results Endogenous NGF was increased in the VKC-FB supernatant, as compared to healthy-FB supernatant. VKC-FBs expressed αSMA and increased types I and IV collagens. VKC-FBs, and in particular all αSMA positive cells, expressed both trkANGFR and p75NTR, while healthy-FBs only expressed trkANGFR. Exogenous NGF did not change αSMA expression, while αSMA expression was enhanced by specific neutralization of p75NTR. NGF (10 ng/ml) exposure significantly decreased type I collagen expression, without affecting type IV collagen, and increased MMP9mRNA and protein. Conclusions The autocrine modulation of differentiation and response of VKC-FBs to NGF exposure with downregulation of type I collagen and upregulation of MMP9 expression supports a relevant role for NGF in tissue remodeling of VKC. PMID:17653039

  1. Induction of Neuronal Differentiation of Rat Muscle-Derived Stem Cells in Vitro Using Basic Fibroblast Growth Factor and Ethosuximide

    Directory of Open Access Journals (Sweden)

    Jin Seon Kwon

    2013-03-01

    Full Text Available Several studies have demonstrated that basic fibroblast growth factor (bFGF can induce neural differentiation of mesenchymal stem cells. In this study, we investigated the neural differentiation of muscle-derived stem cells (MDSCs following treatment with bFGF and ethosuximide, a small molecule used as an anticonvulsant in humans. Stem cells isolated from rat skeletal muscle (rMDSCs were pre-induced by culturing with 25 ng/mL bFGF for 24 h and then were transferred to a medium supplemented with or without 4 mM ethosuximide. Neuronal differentiation was assessed by immunocytochemical and western blotting analyses of marker expression. Immunocytochemistry of rMDSCs treated with bFGF and ethosuximide identified abundant cells expressing neuronal markers (TuJ1, neuron-specific class III β-tubulin; NeuN, neuronal nuclear antigen; and NF-MH; neurofilament M and H. Olig2 (oligodendrocyte transcription factor 2-positive cells were also observed, indicating the presence of oligodendrocyte lineage cells. These findings were substantiated by western blotting analysis of marker proteins. In particular, the expression of NeuN and TuJ1 was significantly higher in rMDSCs treated with ethosuximide and bFGF than in cells stimulated with bFGF alone (NeuN, p < 0.05 and TuJ1, p < 0.001. Expression of the astrocyte marker GFAP (glial fibrillary acidic protein was not detected in this study. Collectively, the results showed that treatment with bFGF and ethosuximide induced effective transdifferentiation of rMDSCs into cells with a neural-like phenotype. Notably, rMDSCs treated with a combination of bFGF plus ethosuximide showed enhanced differentiation compared with cells treated with bFGF alone, implying that ethosuximide may stimulate neuronal differentiation.

  2. Iliopsoas Tendon Reformation after Psoas Tendon Release

    Directory of Open Access Journals (Sweden)

    K. Garala

    2013-01-01

    Full Text Available Internal snapping hip syndrome, or psoas tendonitis, is a recognised cause of nonarthritic hip pain. The majority of patients are treated conservatively; however, occasionally patients require surgical intervention. The two surgical options for iliopsoas tendinopathy are step lengthening of the iliopsoas tendon or releasing the tendon at the lesser trochanter. Although unusual, refractory snapping usually occurs soon after tenotomy. We report a case of a 47-year-old active female with internal snapping and pain following an open psoas tenotomy. Postoperatively she was symptom free for 13 years. An MRI arthrogram revealed reformation of a pseudo iliopsoas tendon reinserting into the lesser trochanter. The pain and snapping resolved after repeat iliopsoas tendon release. Reformation of tendons is an uncommon sequela of tenotomies. However the lack of long-term studies makes it difficult to calculate prevalence rates. Tendon reformation should be included in the differential diagnosis of failed tenotomy procedures after a period of symptom relief.

  3. Peroneal tendon disorders

    OpenAIRE

    Davda, Kinner; Malhotra, Karan; O'Donnell, Paul; Singh, Dishan; Cullen, Nicholas

    2017-01-01

    Pathological abnormality of the peroneal tendons is an under-appreciated source of lateral hindfoot pain and dysfunction that can be difficult to distinguish from lateral ankle ligament injuries. Enclosed within the lateral compartment of the leg, the peroneal tendons are the primary evertors of the foot and function as lateral ankle stabilisers. Pathology of the tendons falls into three broad categories: tendinitis and tenosynovitis, tendon subluxation and dislocation, and tendon splits and ...

  4. Endoscopic adhesiolysis for extensive tibialis posterior tendon and Achilles tendon adhesions following compound tendon rupture

    OpenAIRE

    Lui, Tun Hing

    2013-01-01

    Tendon adhesion is one of the most common causes of disability following tendon surgery. A case of extensive peritendinous adhesions of the Achilles tendon and tibialis posterior tendon after compound rupture of the tendons was reported. This was managed by endoscopic adhesiolysis of both tendons. The endoscopic approach allows early postoperative mobilisation which can relieve the tendon adhesion.

  5. Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients.

    Directory of Open Access Journals (Sweden)

    Xian-Yang Qin

    Full Text Available The effect of low-dose bisphenol A (BPA exposure on human reproductive health is still controversial. To better understand the molecular basis of the effect of BPA on human reproductive health, a genome-wide screen was performed using human foreskin fibroblast cells (hFFCs derived from child hypospadias (HS patients to identify novel targets of low-dose BPA exposure.Gene expression profiles of hFFCs were measured after exposure to 10 nM BPA, 0.01 nM 17β-estradiol (E2 or 1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD for 24 h. Differentially expressed genes were identified using an unpaired Student's t test with P value cut off at 0.05 and fold change of more than 1.2. These genes were selected for network generation and pathway analysis using Ingenuity Pathways Analysis, Pathway Express and KegArray. Seventy-one genes (42 downregulated and 29 upregulated were identified as significantly differentially expressed in response to BPA, among which 43 genes were found to be affected exclusively by BPA compared with E2 and TCDD. Of particular interest, real-time PCR analysis revealed that the expression of matrix metallopeptidase 11 (MMP11, a well-known effector of development and normal physiology, was found to be inhibited by BPA (0.47-fold and 0.37-fold at 10 nM and 100 nM, respectively. Furthermore, study of hFFCs derived from HS and cryptorchidism (CO patients (n = 23 and 11, respectively indicated that MMP11 expression was significantly lower in the HS group than in the CO group (0.25-fold, P = 0.0027.This present study suggests that an involvement of BPA in the etiology of HS might be associated with the downregulation of MMP11. Further study to elucidate the function of the novel target genes identified in this study during genital tubercle development might increase our knowledge of the effects of low-dose BPA exposure on human reproductive health.

  6. Platelet-derived growth factor receptor-α and Ras-related C3 botulinum toxin substrate-1 regulate mechano-responsiveness of lung fibroblasts.

    Science.gov (United States)

    McGowan, Stephen E; McCoy, Diann M

    2017-12-01

    Platelet-derived growth factor (PDGF)-A, which only signals through PDGF-receptor-α (PDGFR-α), is required for secondary alveolar septal formation. Although PDGFR-α distinguishes mesenchymal progenitor cells during the saccular stage, PDGFR-α-expressing alveolar cells persist through adulthood. PDGF-A sustains proliferation, limits apoptosis, and maintains α-smooth muscle actin (α-SMA)-containing alveolar cells, which congregate at the alveolar entry ring at postnatal day (P)12. PDGFR-α-expressing, α-SMA-containing alveolar cells redistribute in the elongating septum, suggesting that they migrate to the alveolar entry rings, where mechanical tension is higher. We hypothesized that PDGFR-α and Ras-related C3 botulinum toxin substrate 1(Rac1) are required for mechanosensitive myofibroblast migration. Spreading of PDGFR-α-deficient lung fibroblasts was insensitive to increased rigidity, and their migration was not reduced by Rac1-guanine exchange factor (GEF)-inhibition. PDGFR-α-expressing fibroblasts migrated toward stiffer regions within two-dimensional substrates by increasing migrational persistence (durotaxis). Using a Förster resonance energy transfer (FRET) biosensor for Rac1-GTP, we observed that PDGFR-α was required for fibroblast Rac1 responsiveness to stiffness within a three-dimensional collagen substrate, which by itself increased Rac1-FRET. Rho-GTPase stabilized, whereas Rac1-GTPase increased the turnover of focal adhesions. Under conditions that increased Rac1-GTP, PDGFR-α signaled through both phosphoinositide-3-kinase (PIK) or Src to engage the Rac1 GEF dedicator of cytokinesis-1 (Dock180) and p21-activated-kinase interacting exchange factor-β (βPIX). In cooperation with collagen fibers, these signaling pathways may guide fibroblasts toward the more rigid alveolar entry ring during secondary septation. Because emphysema and interstitial fibrosis disrupt the parenchymal mechanical continuum, understanding how mechanical factors regulate

  7. Three-Dimensional Human Tissue Models That Incorporate Diabetic Foot Ulcer-Derived Fibroblasts Mimic In Vivo Features of Chronic Wounds

    Science.gov (United States)

    Maione, Anna G.; Brudno, Yevgeny; Stojadinovic, Olivera; Park, Lara K.; Smith, Avi; Tellechea, Ana; Leal, Ermelindo C.; Kearney, Cathal J.; Veves, Aristidis; Tomic-Canic, Marjana; Mooney, David J.

    2015-01-01

    Diabetic foot ulcers (DFU) are a major, debilitating complication of diabetes mellitus. Unfortunately, many DFUs are refractory to existing treatments and frequently lead to amputation. The development of more effective therapies has been hampered by the lack of predictive in vitro methods to investigate the mechanisms underlying impaired healing. To address this need for realistic wound-healing models, we established patient-derived fibroblasts from DFUs and site-matched controls and used them to construct three-dimensional (3D) models of chronic wound healing. Incorporation of DFU-derived fibroblasts into these models accurately recapitulated the following key aspects of chronic ulcers: reduced stimulation of angiogenesis, increased keratinocyte proliferation, decreased re-epithelialization, and impaired extracellular matrix deposition. In addition to reflecting clinical attributes of DFUs, the wound-healing potential of DFU fibroblasts demonstrated in this suite of models correlated with in vivo wound closure in mice. Thus, the reported panel of 3D DFU models provides a more biologically relevant platform for elucidating the cell–cell and cell–matrix-related mechanisms responsible for chronic wound pathogenesis and may improve translation of in vitro findings into efficacious clinical applications. PMID:25343343

  8. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair.

    Science.gov (United States)

    Yin, Zi; Chen, Xiao; Zhu, Ting; Hu, Jia-jie; Song, Hai-xin; Shen, Wei-liang; Jiang, Liu-yun; Heng, Boon Chin; Ji, Jun-feng; Ouyang, Hong-Wei

    2013-12-01

    It is reported that decellularized collagen matrices derived from dermal skin and bone have been clinically used for tendon repair. However, the varying biological and physical properties of matrices originating from different tissues may influence the differentiation of tendon stem cells, which has not been systematically evaluated. In this study, the effects of collagenous matrices derived from different tissues (tendon, bone and dermis) on the cell differentiation of human tendon stem/progenitor cells (hTSPCs) were investigated, in the context of tendon repair. It was found that all three matrices supported the adhesion and proliferation of hTSPCs despite differences in topography. Interestingly, tendon-derived decellularized matrix promoted the tendinous phenotype in hTSPCs and inhibited their osteogenesis, even under osteogenic induction conditions, through modulation of the teno- and osteolineage-specific transcription factors Scleraxis and Runx2. Bone-derived decellularized matrix robustly induced osteogenic differentiation of hTSPCs, whereas dermal skin-derived collagen matrix had no apparent effect on hTSPC differentiation. Based on the specific biological function of the tendon-derived decellularized matrix, a tissue-engineered tendon comprising TSPCs and tendon-derived matrix was successfully fabricated for Achilles tendon reconstruction. Implantation of this cell-scaffold construct led to a more mature structure (histology score: 4.08 ± 0.61 vs. 8.51 ± 1.66), larger collagen fibrils (52.2 ± 1.6 nm vs. 47.5 ± 2.8 nm) and stronger mechanical properties (stiffness: 21.68 ± 7.1 Nm m(-1) vs.13.2 ± 5.9 Nm m(-1)) of repaired tendons compared to the control group. The results suggest that stem cells promote the rate of repair of Achilles tendon in the presence of a tendinous matrix. This study thus highlights the potential of decellularized matrix for future tissue engineering applications, as well as developing a practical strategy for functional tendon

  9. Flexor tendon tissue engineering: acellularization of human flexor tendons with preservation of biomechanical properties and biocompatibility.

    Science.gov (United States)

    Pridgen, Brian C; Woon, Colin Y L; Kim, Maxwell; Thorfinn, Johan; Lindsey, Derek; Pham, Hung; Chang, James

    2011-08-01

    Acellular human tendons are a candidate scaffold for tissue engineering flexor tendons of the hand. This study compared acellularization methods and their compatibility with allogeneic human cells. Human flexor tendons were pretreated with 0.1% ethylenediaminetetracetic acid (EDTA) for 4  h followed by 24  h treatments of 1% Triton X-100, 1% tri(n-butyl)phosphate, or 0.1% or 1% sodium dodecyl sulfate (SDS) in 0.1% EDTA. Outcomes were assessed histologically by hematoxylin and eosin and SYTO green fluorescent nucleic acid stains and biochemically by a QIAGEN DNeasy kit, Sircol collagen assay, and 1,9 dimethylmethylene blue glycosaminoglycan assay. Mechanical data were collected using a Materials Testing System to pull to failure tendons acellularized with 0.1% SDS. Acellularized tendons were re-seeded in a suspension of human dermal fibroblasts. Attachment of viable cells to acellularized tendon was assessed biochemically by a cell viability assay and histologically by a live/dead stain. Data are reported as mean±standard deviation. Compared with the DNA content of fresh tendons (551±212  ng DNA/mg tendon), only SDS treatments significantly decreased DNA content (1% SDS [202.8±37.4  ng DNA/mg dry weight tendon]; 0.1% SDS [189±104  ng DNA/mg tendon]). These findings were confirmed by histology. There was no decrease in glycosaminoglycans or collagen following acellularization with SDS. There was no difference in the ultimate tensile stress (55.3±19.2 [fresh] vs. 51.5±6.9 [0.1% SDS] MPa). Re-seeded tendons demonstrated attachment of viable cells to the tendon surface using a viability assay and histology. Human flexor tendons were acellularized with 0.1% SDS in 0.1% EDTA for 24  h with preservation of mechanical properties. Preservation of collagen and glycoaminoglycans and re-seeding with human cells suggest that this scaffold is biocompatible. This will provide a promising scaffold for future human flexor tendon tissue engineering studies to

  10. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts

    NARCIS (Netherlands)

    Reijnders, C.M.A.; van Lier, A.; Roffel, S.; Kramer, D.; Scheper, R.J.; Gibbs, S.

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve

  11. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...

  12. Identification of neural cell adhesion molecule L1-derived neuritogenic ligands of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Li, Shizhong; Kiselyov, Vladislav

    2009-01-01

    The neural cell adhesion molecule L1 plays an important role in axon growth, neuronal survival, and synaptic plasticity. We recently demonstrated that the L1 fibronectin type III (FN3) modules interact directly with the fibroblast growth factor (FGF) receptor (FGFR). Sequence alignment...

  13. Diseases of the tendons and tendon sheaths.

    Science.gov (United States)

    Steiner, Adrian; Anderson, David E; Desrochers, André

    2014-03-01

    Contracted flexor tendon leading to flexural deformity is a common congenital defect in cattle. Arthrogryposis is a congenital syndrome of persistent joint contracture that occurs frequently in Europe as a consequence of Schmallenberg virus infection of the dam. Spastic paresis has a hereditary component, and affected cattle should not be used for breeding purposes. The most common tendon avulsion involves the deep digital flexor tendon. Tendon disruptions may be successfully managed by tenorrhaphy and external coaptation or by external coaptation alone. Medical management alone is unlikely to be effective for purulent tenosynovitis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Fibroma of the flexor hallucis longus tendon sheath.

    Science.gov (United States)

    Kim, Sang Wha; Lee, So Young; Jung, Sung-No; Sohn, Won Il; Kwon, Ho

    2012-01-01

    Fibroma of tendon sheath is a rare benign tumor that usually occurs in upper extremities. It is mostly asymptomatic and grows slowly within the tendons or tendon sheaths. Histopathologic findings show well-demarcated nodules consisting of haphazardly arranged fibroblast-like spindle cells, which are embedded in a dense, collagenous matrix. We present a patient with fibroma of the tendon sheath on the flexor hallucis longus tendon, which was in an unusual location and has never been reported. The lesion was completely excised and showed no evidence of recurrence after 2 years of follow-up. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. An altered redox balance and increased genetic instability characterize primary fibroblasts derived from xeroderma pigmentosum group A patients

    Energy Technology Data Exchange (ETDEWEB)

    Parlanti, Eleonora [Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Pietraforte, Donatella; Iorio, Egidio; Visentin, Sergio; De Nuccio, Chiara [Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Zijno, Andrea; D’Errico, Mariarosaria; Simonelli, Valeria [Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Sanchez, Massimo [Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Fattibene, Paola [Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Falchi, Mario [National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, Eugenia, E-mail: dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome (Italy)

    2015-12-15

    Highlights: • Increased levels and different types of intracellular radical species as well as an altered glutathione redox state characterize XP-A human cells when compared to normal. • A more glycolytic metabolism and higher ATP levels are associated with alteration of mitochondrial morphology and response to mitochondrial toxicants when XPA is defective. • XP-A human cells show increased spontaneous micronuclei frequency, a hallmark of cancer risk. - Abstract: Xeroderma pigmentosum (XP)-A patients are characterized by increased solar skin carcinogenesis and present also neurodegeneration. XPA deficiency is associated with defective nucleotide excision repair (NER) and increased basal levels of oxidatively induced DNA damage. In this study we search for the origin of increased levels of oxidatively generated DNA lesions in XP-A cell genome and then address the question of whether increased oxidative stress might drive genetic instability. We show that XP-A human primary fibroblasts present increased levels and different types of intracellular reactive oxygen species (ROS) as compared to normal fibroblasts, with O{sub 2−}· and H{sub 2}O{sub 2} being the major reactive species. Moreover, XP-A cells are characterized by decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios as compared to normal fibroblasts. The significant increase of ROS levels and the alteration of the glutathione redox state following silencing of XPA confirmed the causal relationship between a functional XPA and the control of redox balance. Proton nuclear magnetic resonance ({sup 1}H NMR) analysis of the metabolic profile revealed a more glycolytic metabolism and higher ATP levels in XP-A than in normal primary fibroblasts. This perturbation of bioenergetics is associated with different morphology and response of mitochondria to targeted toxicants. In line with cancer susceptibility, XP-A primary fibroblasts showed increased spontaneous micronuclei (MN) frequency, a

  16. Peroneal Tendon Injuries

    Science.gov (United States)

    ... the type of peroneal tendon injury. Options include: Immobilization. A cast or splint may be used to ... arthritis, gout, tendonitis, fracture, nerve compression (tarsal tunnel syndrome), infection and... Founded in 1942, the American College ...

  17. Chronic Achilles Tendon Rupture

    Science.gov (United States)

    Maffulli, Nicola; Via, Alessio Giai; Oliva, Francesco

    2017-01-01

    Background: The Achilles tendon, the largest and strongest tendon in the human body, is nevertheless one of the tendons which most commonly undergoes a complete subcutaneous tear. Achilles tendon ruptures are especially common in middle aged men who occasionally participate in sport. Even though Achilles tendon ruptures are frequent, up to 25% of acute injuries are misdiagnosed, and present as chronic injuries. Methods: This is a review article about diagnosis and management of chronic Achilles tendon ruptures. Minimally invasive Achilles tendon reconstruction is discussed. Results: The optimal surgical procedure is still debated, however, less invasive peroneus brevis reconstruction technique and free hamstring autograft provide good functional results. Conclusion: The management of chronic ruptures is more demanding than acute tears, because of the retraction of the tendon ends, and the gap makes primary repair impossible. Wound complications and infections are frequent after open procedures. Minimally invasive treatments provide good functional results and lower complications rate. PMID:29081863

  18. Increase in tendon protein synthesis in response to insulin-like growth factor-I is preserved in elderly men

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Holm, Lars; Malmgaard-Clausen, Nikolaj Mølkjær

    2014-01-01

    Insulin-like growth factor-I (IGF-I) is known to be an anabolic factor in tendon, and the systemic levels are reduced with aging. However, it is uncertain how tendon fibroblasts are involved in tendon aging and how aging cells respond to IGF-I. The purpose of this study was to investigate...... the in vivo IGF-I stimulation of tendon protein synthesis in elderly compared with young men. We injected IGF-I in the patellar tendons of young (n = 11, 20-30 yr of age) and old (n = 11, 66-75 yr of age) men, and the acute fractional synthesis rate (FSR) of tendon protein was measured with the stable isotope......, despite lower systemic IGF-I levels in the old group. This could indicate that the changed phenotype in aging tendon is not caused by decreased fibroblast function....

  19. Biologics for tendon repair☆

    Science.gov (United States)

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.

    2015-01-01

    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  20. Thompson Test in Achilles Tendon Rupture

    Directory of Open Access Journals (Sweden)

    Spencer Albertson

    2016-07-01

    Full Text Available HPI: A 26-year old male presented to the emergency department after experiencing the acute onset of left ankle pain while playing basketball. Upon jumping, he felt a “pop” in his left posterior ankle, followed by pain and difficulty ambulating. His exam was notable for a defect at the left Achilles tendon on palpation. The practitioner performed a Thompson test, which was positive (abnormal on the left. Significant Findings: The left Achilles tendon had a defect on palpation, while the right Achilles tendon was intact. When squeezing the right (unaffected calf, the ankle spontaneously plantar flexed, indicating a negative (normal Thompson test. Upon squeeze of the left (affected calf, the ankle did not plantar flex, signifying a positive (abnormal Thompson test. The diagnosis of left Achilles tendon rupture was confirmed intraoperatively one week later. Discussion: The Achilles tendon (also: calcaneal tendon or heel cord is derived from the medial and lateral heads of the gastrocnemius muscle, as well as the soleus muscle. Rupture of the Achilles tendon most commonly occurs in the distal tendon, approximately 2-6 cm from its attachment to the calcaneal tuberosity, in an area of hypovascularity known as the “watershed” or “critical” zone.1-3 The Thompson test (also: Simmonds-Thompson test, described by Simmonds in 1957 and Thompson in 1962, is done while the patient is in the prone position, with feet hanging over the end of a table/gurney, or with the patient kneeling on a stool or chair.4-5 Squeezing the calf of an unaffected limb will cause the ankle to plantar flex, but squeezing the calf of a limb with an Achilles tendon rupture will cause no motion. The sensitivity of the Thompson’s test for the diagnosis of a complete Achilles tendon rupture is 96-100% and the specificity is 93-100%, but data is limited.6-8

  1. FIBRILLINS IN TENDON

    Directory of Open Access Journals (Sweden)

    Betti Giusti

    2016-10-01

    Full Text Available Tendons among connective tissue, mainly collagen, contain also elastic fibres made of fibrillin 1, fibrillin 2 and elastin that are broadly distributed in tendons and represent 1-2% of the dried mass of the tendon. Only in the last years, studies on structure and function of elastic fibres in tendons have been performed. Aim of this review is to revise data on the organization of elastic fibres in tendons, in particular fibrillin structure and function, and on the clinical manifestations associated to alterations of elastic fibres in tendons. Indeed, microfibrils may contribute to tendon mechanics; therefore, their alterations may cause joint hypermobility and contractures which have been found to be clinical features in patients with Marfan syndrome and Beals syndrome. The two diseases are caused by mutations in genes FBN1 and FBN2 encoding fibrillin 1 and fibrillin 2, respectively.

  2. The Tissue-Engineered Tendon-Bone Interface: In Vitro and In Vivo Synergistic Effects of Adipose-Derived Stem Cells, Platelet-Rich Plasma, and Extracellular Matrix Hydrogel.

    Science.gov (United States)

    McGoldrick, Rory; Chattopadhyay, Arhana; Crowe, Christopher; Chiou, Grace; Hui, Kenneth; Farnebo, Simon; Davis, Christopher; Le Grand, Anais; Jacobs, Molly; Pham, Hung; Chang, James

    2017-12-01

    Suboptimal healing of the tendon-bone interface remains an unsolved problem. The authors hypothesized that (1) platelet-rich plasma and prolonged in vitro incubation will produce interface scaffolds with greater reseeding of viable adipose-derived stem cells; and (2) when implanted with extracellular matrix hydrogel, constructs will display superior in vivo strength repair and biocompatibility. Achilles-calcaneal composite tendon-bone interface scaffold grafts were harvested from 30 Wistar rats. After physicochemical decellularization and lyophilization, scaffolds were revitalized in rat plasma or 100% activated rat platelet-rich plasma and reseeded with viable adipose-derived stem cells. For part 2 of the study, 90 Sprague-Dawley rats underwent reconstruction with one of five decellularized, lyophilized scaffold revitalization/reseeding conditions: (1) phosphate-buffered saline; (2) lyophilized, 100% activated platelet-rich plasma; (3) platelet-rich plasma and extracellular matrix hydrogel; (4) platelet-rich plasma and 14-day reseeding with ASC-luc2-eGFP cells; and (5) plasma, reseeding, and hydrogel. In part 1, platelet-rich plasma-revitalized grafts demonstrated greater live viable adipose-derived stem cell loads at 3, 7, and 14 days and total adipose-derived stem cell loads at 7 and 14 days with visibly greater live surface cellularity, layering, migration, and penetration. In part 2, bioluminescence imaging confirmed cell viability to day 22 after implantation. Biomechanical strength testing demonstrated a significant increase in ultimate failure load for reseeded groups compared with all other groups at week 2, whereas only reseeded grafts with hydrogel remained significantly stronger at weeks 4 and 8. Histologic examination demonstrated most increased tendinous cellular invasion and fibrocartilage repopulation at 8 weeks in the reseeded group with hydrogel. Masson trichrome staining demonstrated persistence of the scaffold structure at week 8 and blinded

  3. Shear Wave Measurements for Evaluation of Tendon Diseases.

    Science.gov (United States)

    Yeh, Chia-Lun; Kuo, Po-Ling; Gennisson, Jean-Luc; Brum, Javier; Tanter, Mickael; Li, Pai-Chi

    2016-11-01

    This paper investigated the feasibility of using supersonic shear wave measurements to quantitatively differentiate normal and damaged tendons based on their mechanical properties. Five freshly harvested porcine tendons excised from pig legs were used. Tendon damage was induced by incubating the tendons with a 1% w/v collagenase solution. Values of shear modulus were derived both by a time-of-flight (TOF) approach and a transverse isotropic plate model (TI-model). The results show that as the preload applied to the tendon increased from 0 to 3 N, the mean shear modulus derived based on the TOF approach, the TI-model, and Young's modulus estimated from mechanical testing increased from 14.6 to 89.9 kPa, 53.9 to 348 kPa, and from 1.45 to 10.36 MPa, respectively, in untreated tendons, and from 8.4 to 67 kPa, 28 to 258 kPa, and from 0.93 to 7.2 MPa in collagenase-treated tendons. Both the TOF approach and the TI-model correlated well with the changes in Young's modulus. Although there is bias on the estimation of shear modulus using the TOF approach, it still provides statistical significance to differentiate normal and damaged tendons. Our data indicate that supersonic shear wave imaging is a valuable imaging technique to assess tendon stiffness dynamics and characterize normal and collagenase-damaged tendons.

  4. MRI-Based Assessment of Intralesional Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Equine Tendonitis

    Directory of Open Access Journals (Sweden)

    Alexandra Scharf

    2016-01-01

    Full Text Available Ultrasound-guided intralesional injection of mesenchymal stem cells (MSCs is held as the benchmark for cell delivery in tendonitis. The primary objective of this study was to investigate the immediate cell distribution following intralesional injection of MSCs. Unilateral superficial digital flexor tendon (SDFT lesions were created in the forelimb of six horses and injected with 10 × 106 MSCs labeled with superparamagnetic iron oxide nanoparticles (SPIOs under ultrasound guidance. Assays were performed to confirm that there were no significant changes in cell viability, proliferation, migration, or trilineage differentiation due to the presence of SPIOs. Limbs were imaged on a 1.5-tesla clinical MRI scanner postmortem before and after injection to determine the extent of tendonitis and detect SPIO MSCs. Clusters of labeled cells were visible as signal voids in 6/6 subjects. Coalescing regions of signal void were diffusely present in the peritendinous tissues. Although previous reports have determined that local injury retains cells within a small radius of the site of injection, our study shows greater than expected delocalization and relatively few cells retained within collagenous tendon compared to surrounding fascia. Further work is needed if this is a reality in vivo and to determine if directed intralesional delivery of MSCs is as critical as presently thought.

  5. Simvastatin and atorvastatin reduce the mechanical properties of tendon constructs in vitro and introduce catabolic changes in the gene expression pattern

    DEFF Research Database (Denmark)

    Eliasson, Pernilla; Svensson, Rene B; Giannopoulos, Antonis

    2017-01-01

    investigated the effect of statin treatment on mechanical strength, cell proliferation, collagen content and gene expression pattern in a tendon-like tissue made from human tenocytes in vitro. Human tendon fibroblasts were grown in a 3D tissue culture model (tendon constructs), and treated with either...... expression pattern and a reduced collagen content indicated a disturbed balance in matrix production of tendon due to statin administration....

  6. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E.; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do...... species suitable for locus-directed transgene expression in cell cultures and, in addition, for transgene analyses in the very early embryonic stages.......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon......-based docking vector harbouring a selection gene, an eGFP reporter gene, and an Flp recombinase site for locus-directed gene insertion. PFV cells have insertion of a single docking vector with stable eGFP expression and generated phenotypic normal blastocysts with transgene expression after somatic cell nuclear...

  7. Cholesterol metabolism is altered in Rett syndrome: a study on plasma and primary cultured fibroblasts derived from patients.

    Directory of Open Access Journals (Sweden)

    Marco Segatto

    Full Text Available Rett (RTT syndrome is a severe neurological disorder that affects almost exclusively females. Several detectable mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2 are responsible for the onset of the disease. MeCP2 is a key transcription regulator involved in gene silencing via methylation-dependent remodeling of chromatin. Recent data highlight that lipid metabolism is perturbed in brains and livers of MECP2-null male mice. In addition, altered plasma lipid profile in RTT patients has been observed. Thus, the aim of the work is to investigate the protein network involved in cholesterol homeostasis maintenance on freshly isolated fibroblasts and plasma from both RTT and healthy donors. To this end, protein expression of 3-hydroxy-3methyl glutaryl Coenzyme A reductase (HMGR, sterol regulatory element binding proteins (SREBPs, low density lipoprotein receptor (LDLr and scavenger receptor B-1 (SRB-1 was assessed in cultured skin fibroblasts from unaffected individuals and RTT patients. In addition, lipid profile and the abundance of proprotein convertase subtilisin/kexin type 9 (PCSK9 were analyzed on plasma samples. The obtained results demonstrate that the main proteins belonging to cholesterol regulatory network are altered in RTT female patients, providing the proof of principle that cholesterol metabolism may be taken into account as a new target for the treatment of specific features of RTT pathology.

  8. Three-dimensional muscle-tendon geometry after rectus femoris tendon transfer.

    Science.gov (United States)

    Asakawa, Deanna S; Blemker, Silvia S; Rab, George T; Bagley, Anita; Delp, Scott L

    2004-02-01

    Rectus femoris tendon transfer is performed in patients with cerebral palsy to improve knee flexion during walking. This procedure involves detachment of the muscle from its insertion into the quadriceps tendon and reattachment to one of the knee flexor muscles. The purpose of the present study was to evaluate the muscle-tendon geometry and to assess the formation of scar tissue between the rectus femoris and adjacent structures. Magnetic resonance images of the lower extremities were acquired from five subjects after bilateral rectus femoris tendon transfer. A three-dimensional computer model of the musculoskeletal geometry of each of the ten limbs was created from these images. The three-dimensional paths of the rectus femoris muscles after transfer demonstrated that the muscle does not follow a straight course from its origin to its new insertion. The typical muscle-tendon path included an angular deviation; this deviation was sharp (>35 degrees ) in seven extremities. In addition, scar tissue between the transferred rectus femoris and the underlying muscles was visible on the magnetic resonance images. The angular deviations in the rectus femoris muscle-tendon path and the presence of scar tissue between the rectus femoris and the underlying muscles suggest that the beneficial effects of rectus femoris tendon transfer are derived from reducing the effects of the rectus femoris muscle as a knee extensor rather than from converting the muscle to a knee flexor. These findings clarify our understanding of the mechanism by which rectus femoris tendon transfer improves knee flexion.

  9. Effect of doxycycline on transforming growth factor-beta-1-induced matrix metalloproteinase 2 expression, migration, and collagen contraction in nasal polyp-derived fibroblasts.

    Science.gov (United States)

    Shin, Jae-Min; Park, Joo-Hoo; Kang, Byungjin; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-11-01

    It is well known that doxycycline has antibacterial and anti-inflammatory effects. In this study, we aimed to investigate the effects of doxycycline on the transforming growth factor (TGF) beta 1-induced matrix metalloproteinase (MMP) 2 expression, migration, and collagen contraction, and to determine its molecular mechanism on nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from the nasal polyps of six patients. Doxycycline was used to pretreat TGF-beta-1-induced NPDFs and ex vivo organ cultures of nasal polyps. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Smad2/3 is one of the major transcription factors of TGF-beta signaling. The expression levels of MMP2 and Smad2/3 were measured by using Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence staining. The enzymic activity of MMP2 was analyzed by using gelatin zymography. Fibroblast migration was evaluated by using transwell migration assays. Contractile activity was measured by a collagen gel contraction assay. The expression level of MMP2 in nasal polyp tissues increased in comparison with inferior turbinate tissues. TGF-beta-1-induced NPDFs were not affected by doxycycline (0-40 μg/mL). The expression levels of MMP2 and activation of Smad2/3 in TGF-beta-1-induced NPDFs and in organ cultures of nasal polyps were significantly downregulated with doxycycline pretreatment. Doxycycline also reduced TGF-beta-1-induced fibroblast migration and collagen contraction in NPDFs. Doxycycline inhibited TGF-beta-1-induced MMP2 expression, migration, and collagen contraction via the Smad2/3 signal pathways in NPDFs.

  10. Notch1—WISP-1 axis determines the regulatory role of mesenchymal stem cell-derived stromal fibroblasts in melanoma metastasis

    Science.gov (United States)

    Moller, Mecker; Issac, Biju; Zhang, Leiming; Owyong, Mark; Moscowitz, Anna Elizabeth; Vazquez-Padron, Roberto; Radtke, Freddy; Liu, Zhao-Jun

    2016-01-01

    Mesenchymal stem cells-derived fibroblasts (MSC-DF) constitute a significant portion of stromal fibroblasts in the tumor microenvironment (TME) and are key modulators of tumor progression. However, the molecular mechanisms that determine their tumor-regulatory function are poorly understood. Here, we uncover the Notch1 pathway as a molecular determinant that selectively controls the regulatory role of MSC-DF in melanoma metastasis. We demonstrate that the Notch1 pathway's activity is inversely correlated with the metastasis-regulating function of fibroblasts and can determine the metastasis-promoting or -suppressing phenotype of MSC-DF. When co-grafted with melanoma cells, MSC-DFNotch1−/− selectively promote, while MSC-DFN1IC+/+ preferentially suppress melanoma metastasis, but not growth, in mouse models. Consistently, conditioned media (CM) from MSC-DFNotch1−/− and MSC-DFN1IC+/+ oppositely, yet selectively regulates migration, but not growth of melanoma cells in vitro. Additionally, when co-cultured with metastatic melanoma cells in vitro, MSC-DFNotch1−/− support, while MSC-DFN1IC+/+ inhibit melanoma cells in the formation of spheroids. These findings expand the repertoire of Notch1 signaling as a molecular switch in determining the tumor metastasis-regulating function of MSC-DF. We also identified Wnt-induced secreted protein-1 (WISP-1) as a key downstream secretory mediator of Notch1 signaling to execute the influential role of MSC-DF on melanoma metastasis. These findings reveal the Notch1—WISP-1 axis as a crucial molecular determinant in governing stromal regulation of melanoma metastasis; thus, establishing this axis as a potential therapeutic target for melanoma metastasis. PMID:27813493

  11. Cardiac Fibroblast-Derived Extracellular Matrix (Biomatrix as a Model for the Studies of Cardiac Primitive Cell Biological Properties in Normal and Pathological Adult Human Heart

    Directory of Open Access Journals (Sweden)

    Clotilde Castaldo

    2013-01-01

    Full Text Available Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix, composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  12. Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts.

    Science.gov (United States)

    Petruk, Ganna; Illiano, Anna; Del Giudice, Rita; Raiola, Assunta; Amoresano, Angela; Rigano, Maria Manuela; Piccoli, Renata; Monti, Daria Maria

    2017-07-01

    UV-A radiations are known to induce cellular oxidative stress, leading to premature skin aging. Consumption of açai fruit (Euterpe oleracea Martius) is known to have many health benefits due to its high level of antioxidants. Herein, we analyzed the ability of phenolic compounds extracted from this fruit to attenuate UV-A-induced oxidative stress in immortalized fibroblast. A methanol/water açai extract was fractionated by HPLC and each fraction tested for anti-oxidant stress activity. Immortalized fibroblasts were pre-incubated with açai fractions and then exposed to UV-A radiations. Açai extract was found to be able to strongly protect cells from oxidative stress. In particular, reactive oxygen species (ROS) production, GSH depletion, lipid peroxidation and no increase in the phosphorylation levels of proteins involved in the oxidative stress pathway was observed in cells pre-incubated with the extract and then irradiated by UV-A. Mass spectrometry analyses of HPLC fractionated extract led us to the identification of malvidin and cyanidin derivatives as the most active molecules able to counteract the negative effects induced by UV-A irradiation. Our results indicate, for the first time, that açai fruit is a valuable natural source for malvidin and cyanidin to be used as anti-stress molecules and represent good candidates for dietary intervention in the prevention of age related skin damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tendon functional extracellular matrix.

    Science.gov (United States)

    Screen, Hazel R C; Berk, David E; Kadler, Karl E; Ramirez, Francesco; Young, Marian F

    2015-06-01

    This article is one of a series, summarizing views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the "Functional Extracellular Matrix" stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment, and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely varying extrinsic and intrinsic factors such as age, nutrition, exercise levels, and biomechanics. Consequently, tendon adapts dynamically during development, aging, and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Percutaneous Achilles Tendon Lengthening

    Science.gov (United States)

    ... Ligament Reconstruction Lateral Ankle Stabilization Mosaicplasty for Osteochondral Lesions of the Talus Peroneus Longus to Achilles Tendon Transfer Pilon Fracture Surgery Posterior Ankle Endoscopy or ...

  15. Tendon and ligament imaging

    Science.gov (United States)

    Hodgson, R J; O'Connor, P J; Grainger, A J

    2012-01-01

    MRI and ultrasound are now widely used for the assessment of tendon and ligament abnormalities. Healthy tendons and ligaments contain high levels of collagen with a structured orientation, which gives rise to their characteristic normal imaging appearances as well as causing particular imaging artefacts. Changes to ligaments and tendons as a result of disease and injury can be demonstrated using both ultrasound and MRI. These have been validated against surgical and histological findings. Novel imaging techniques are being developed that may improve the ability of MRI and ultrasound to assess tendon and ligament disease. PMID:22553301

  16. Decellularized and Engineered Tendons as Biological Substitutes: A Critical Review

    Directory of Open Access Journals (Sweden)

    Arianna B. Lovati

    2016-01-01

    Full Text Available Tendon ruptures are a great burden in clinics. Finding a proper graft material as a substitute for tendon repair is one of the main challenges in orthopaedics, for which the requirement of a biological scaffold would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon-derived matrix increasingly represents an interesting approach to treat tendon ruptures. We analyzed in vitro and in vivo studies focused on the development of efficient protocols for the decellularization and for the cell reseeding of the tendon matrix to obtain medical devices for tendon substitution. Our review considered also the proper tendon source and preclinical animal models with the aim of entering into clinical trials. The results highlight a wide panorama in terms of allogenic or xenogeneic tendon sources, specimen dimensions, physical or chemical decellularization techniques, and the cell type variety for reseeding from terminally differentiated to undifferentiated mesenchymal stem cells and their static or dynamic culture employed to generate implantable constructs tested in different animal models. We try to identify the most efficient approach to achieve an optimal biological scaffold for biomechanics and intrinsic properties, resembling the native tendon and being applicable in clinics in the near future, with particular attention to the Achilles tendon substitution.

  17. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase......-Cgamma (PLCgamma) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM-derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2alpha, ShcA, and PLCgamma in a time- and dose-dependent manner. However, the activation...... of FRS2alpha by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor....

  18. Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts.

    Science.gov (United States)

    Liwak-Muir, Urszula; Mamady, Hapsatou; Naas, Turaya; Wylie, Quinlan; McBride, Skye; Lines, Matthew; Michaud, Jean; Baird, Stephen D; Chakraborty, Pranesh K; Holcik, Martin

    2016-06-18

    SIFD (Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay) is a novel form of congenital sideroblastic anemia associated with B-cell immunodeficiency, periodic fevers, and developmental delay caused by mutations in the CCA-adding enzyme TRNT1, but the precise molecular pathophysiology is not known. We show that the disease causing mutations in patient-derived fibroblasts do not affect subcellular localization of TRNT1 and show no gross morphological differences when compared to control cells. Analysis of cellular respiration and oxidative phosphorylation (OXPHOS) complexes demonstrates that both basal and maximal respiration rates are decreased in patient cells, which may be attributed to an observed decrease in the abundance of select proteins of the OXPHOS complexes. Our data provides further insight into cellular pathophysiology of SIFD.

  19. The Healing Effects of Aquatic Activities and Allogenic Injection of Platelet-Rich Plasma (PRP) on Injuries of Achilles Tendon in Experimental Rat.

    Science.gov (United States)

    Rajabi, Hamid; Sheikhani Shahin, Homa; Norouzian, Manijeh; Mehrabani, Davood; Dehghani Nazhvani, Seifollah

    2015-01-01

    Clinical tendon injuries represent serious and unresolved issues of the case on how the injured tendons could be improved based on natural structure and mechanical strength. The aim of this studies the effect of aquatic activities and alogenic platelet rich plasma (PRP) injection in healing Achilles tendons of rats. Forty rats were randomly divided into 5 equal groups. Seventy two hours after a crush lesion on Achilles tendon, group 1 underwent aquatic activity for 8 weeks (five sessions per week), group 2 received intra-articular PRP (1 ml), group 3 had aquatic activity together with injection PRP injection after an experimental tendon injury, group 4 did not receive any treatment after tendon injury and the control group with no tendon injuries. of 32 rats. After 8 weeks, the animals were sacrificed and the tendons were transferred in 10% formalin for histological evaluation. There was a significant increase in number of fibroblast and cellular density, and collagen deposition in group 3 comparing to other groups denoting to an effective healing in injured tendons. However, there was no significant difference among the studied groups based on their tendons diameter. Based on our findings on the number of fibroblast, cellular density, collagen deposition, and tendon diameter, it was shown that aquatic activity together with PRP injection was the therapeutic measure of choice enhance healing in tendon injuries that can open a window in treatment of damages to tendons.

  20. Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue.

    Science.gov (United States)

    Bradfield, Paul F; Amft, Nicole; Vernon-Wilson, Elizabeth; Exley, Andrew E; Parsonage, Greg; Rainger, G Ed; Nash, Gerard B; Thomas, Andrew M C; Simmons, David L; Salmon, Mike; Buckley, Christopher D

    2003-09-01

    A characteristic feature of the inflammatory infiltrate in rheumatoid arthritis is the segregation of CD4 and CD8 T lymphocyte subsets into distinct microdomains within the inflamed synovium. The aim of this study was to test the hypothesis that chemokines in general and stromal cell-derived factor 1 (SDF-1; CXCL12) in particular are responsible for generating this distinctive microcompartmentalization. We examined how synovial CD4/CD8 T cell subsets interacted in coculture assays with fibroblasts derived from chronic inflammatory synovial lesions and normal synovial tissue as well as from fetal lung and adult skin. We used the ability of T cells to migrate beneath fibroblasts (a process called pseudoemperipolesis) as an in vitro marker of T cell accumulation within synovial tissue. Rheumatoid fibroblast-like synoviocytes (FLS) displayed a unique ability to support high levels of CD4 and CD8 T cell pseudoemperipolesis. Nonrheumatoid FLS as well as fetal lung fibroblasts supported low levels of pseudoemperipolesis, while skin-derived fibroblasts were unable to do so. CD8 T cells migrated under fibroblasts more efficiently and at a higher velocity than CD4 T cells, a feature that was intrinsic to CD8 T cells. Rheumatoid fibroblasts constitutively produced high levels of SDF-1 (CXCL12), which was functionally important, since blocking studies showed reductions in T cell pseudoemperipolesis to levels seen in nonrheumatoid FLS. Rheumatoid fibroblasts also constitutively produced high levels of vascular cell adhesion molecule 1 (VCAM-1; CD106), but this did not contribute to T cell pseudoemperipolesis, unlike the case for B cells, which require SDF-1 (CXCL12)-CXCR4 and CD49d-VCAM-1 (CD106) interactions. Importantly, only combinations of rheumatoid FLS and rheumatoid-derived synovial fluid T cells supported pseudoemperipolesis when examined ex vivo, confirming the in vivo relevance of these findings. These studies demonstrate that features intrinsic to both fibroblasts

  1. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome.

    Science.gov (United States)

    Wilkin, D J; Szabo, J K; Cameron, R; Henderson, S; Bellus, G A; Mack, M L; Kaitila, I; Loughlin, J; Munnich, A; Sykes, B; Bonaventure, J; Francomano, C A

    1998-01-01

    More than 97% of achondroplasia cases are caused by one of two mutations (G1138A and G1138C) in the fibroblast growth factor receptor 3 (FGFR3) gene, which results in a specific amino acid substitution, G380R. Sporadic cases of achondroplasia have been associated with advanced paternal age, suggesting that these mutations occur preferentially during spermatogenesis. We have determined the parental origin of the achondroplasia mutation in 40 sporadic cases. Three distinct 1-bp polymorphisms were identified in the FGFR3 gene, within close proximity to the achondroplasia mutation site. Ninety-nine families, each with a sporadic case of achondroplasia in a child, were analyzed in this study. In this population, the achondroplasia mutation occurred on the paternal chromosome in all 40 cases in which parental origin was unambiguous. This observation is consistent with the clinical observation of advanced paternal age resulting in new cases of achondroplasia and suggests that factors influencing DNA replication or repair during spermatogenesis, but not during oogenesis, may predispose to the occurrence of the G1138 FGFR3 mutations. PMID:9718331

  2. Hesperidin derivative-11 inhibits fibroblast-like synoviocytes proliferation by activating Secreted frizzled-related protein 2 in adjuvant arthritis rats.

    Science.gov (United States)

    Liu, Yanhui; Sun, Zhenghao; Xu, Dandan; Liu, Junda; Li, Xiaofeng; Wu, Xiaoqin; Zhang, Yilong; Wang, Qianqian; Huang, Cheng; Meng, Xiaoming; Li, Jun

    2017-01-05

    Hesperidin (HDN), a flavanone glycoside derived from the citrus cultivation, has a multitude of pharmacological properties, which include antioxidant, anti-inflammatory, hypolipidaemic and anti-carcinogenic actions, but the underlying mechanisms by which treatment of HDN attenuates Rheumatoid Arthritis (RA) remain elusive. Here we engaged to determine whether Hesperidin derivative-11(HDND-11), a HDN derivative with enhanced water-solubility and bioavailability, is effective on treating arthritis in rats. In this study, results of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetra-zolium bromide (MTT) assay and Flow cytometry indicated that administration of HDND-11 inhibited proliferation of fibroblast-like synoviocytes (FLS). Results of Western blot, Real-time quantitative PCR (RT-qPCR) analysis and Immunofluorescence staining demonstrated that HDND-11 was able to up-regulate the expression of Secreted frizzled-related proteins 2 (SFRP2) and diminish DNA methyltransferase 1(DNMT1) expression. We also identified that the effect of DNMT1 inhibition was completely similar to the effects of HDND-11 on SFRP2 gene expression. Furthermore, our results indicated that treatment with HDND-11 could suppress activation of Wnt pathway. Taken together, we found that the HDND-11diminished inhibitory effect of DNMT1 on SFRP2, thereby down-regulated β-catenin expression and inhibited the activation of Wnt signaling pathways to inhibit FLS growth. Copyright © 2016. Published by Elsevier B.V.

  3. Tendon lengthening and transfer.

    Science.gov (United States)

    Fitoussi, F; Bachy, M

    2015-02-01

    Tendon lengthening and transfer are usually indicated for certain neuromuscular disorders, peripheral or central nerve injury, congenital disorder or direct traumatic or degenerative musculotendinous lesion. In musculotendinous lengthening, technique depends on muscle anatomy, degree of correction required, and the need to avoid excessive loss of force. Lengthening within the muscle or aponeurosis is stable. In the tendon, however, it may provide greater gain but is not stable and requires postoperative immobilization to avoid excessive lengthening. Tendon transfer consists in displacing a muscle's tendon insertion in order to restore function. The muscle to be transferred is chosen according to strength, architecture and course, contraction timing, intended direction, synergy and the joint moment arm to be restored. Functions to be restored have to be prioritized, and alternatives to transfer should be identified. The principles of tendon transfer require preoperative assessment of the quality of the tissue through which the transfer is to pass and of the suppleness of the joints concerned. During the procedure, transfer tension should be optimized and the neurovascular bundle should be protected. The method of fixation, whether tendon-to-bone or tendon-to-tendon suture, should be planned according to local conditions and the surgeon's experience. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts.

    Science.gov (United States)

    Kim, Min Ho; Wu, Wen Hao; Choi, Jee Hyun; Kim, Jihyun; Jun, Jin Hyun; Ko, Yong; Lee, Jong Hun

    2017-08-30

    Keratinocytes and fibroblasts cells play important roles in the skin-wound healing process and are the cell types activated by trauma. Activated cells participate in epithelialization, granulation, scar tissue formation, wound remodeling, and angiogenesis via a series of cellular activities including migration and proliferation. Previous studies reported that the conditioned medium (CM) of adipose-derived stem cells (ADSCs) stimulated the migration and proliferation of cell types involved in the skin wound healing process; however, these studies only show ADSC-CM effects that were obtained using 2-dimensional (2D) culture. Recently, 3-dimensional (3D) culture has been considered as a more physiologically appropriate system than 2D culture for ADSC cultures; therefore, ADSC-CM was collected from 3D culture (ADSC-CM-3D) and compared with ADSC-CM from 2D culture (ADSC-CM-2D) to investigate the effects on the migration and proliferation of human keratinocytes (HaCaTs) and fibroblasts. The migrations of the HaCaT cells and fibroblasts were significantly higher with ADSC-CM-3D compared with the 2D culture; similarly, the proliferation of HaCaT cells was also highly stimulated by ADSC-CM-3D. Proteomic analyses of the ADSC-CM revealed that collagens and actins were highly expressed in the 3D-culture system. Chitinase 3-like 1 (CHI3L1), tissue inhibitor of metalloproteinases (TIMP), and galectin-1 were specifically expressed only in ADSC-CM-3D. Especially, through antibody neutralization, galectin-1 in ADSC-CM-3D was found to be an important factor for the migration of human keratinocytes. Therefore, these results suggest that ADSC-CM-3D was more effective in the wound healing than ADSC-CM-2D, and galectin-1 in ADSC-CM-3D was could be a promising option for skin-wound healing. Furthermore, the differential expressions of several ADSC-CM proteins between the 2D- and 3D-culture systems may be used as basic information for the development of efficient wound-healing strategies

  5. A systems biology-based approach to deciphering the etiology of steatosis employing patient-derived dermal fibroblasts and iPS cells

    Directory of Open Access Journals (Sweden)

    Justyna eJozefczuk

    2012-09-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD comprises a broad spectrum of disease states ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. As a result of increases in the prevalences of obesity, insulin resistance, and hyperlipidemia, the number of people with hepatic steatosis continues to increase. Differences in susceptibility to steatohepatitis and its progression to cirrhosis have been attributed to a complex interplay of genetic and external factors all addressing the intracellular network. Increase in sugar or refined carbohydrate consumption results in an increase of insulin and insulin resistance that can lead to the accumulation of fat in the liver. Here we demonstrate how a multidisciplinary approach encompassing cellular reprogramming, transcriptomics, proteomics, metabolomics, modeling, network reconstruction and data management can be employed to unveil the mechanisms underlying the progression of steatosis. Proteomics revealed reduced AKT/mTOR signaling in fibroblasts derived from steatosis patients and further establishes that the insulin-resistant phenotype is present not only in insulin-metabolizing central organs, e.g. the liver, but is also manifested in skin fibroblasts. Transcriptome data enabled the generation of a regulatory network based on the transcription factor SREBF1, linked to a metabolic network of glycerolipid and fatty acid biosynthesis including the downstream transcriptional targets of SREBF1 which include LIPIN1 (LPIN and low density lipoprotein receptor (LDLR. Glutathione metabolism was among the pathways enriched in steatosis patients in comparison to healthy controls. By using a model of the glutathione pathway we predict a significant increase in the flux through glutathione synthesis as both gamma-glutamylcysteine synthetase and glutathione synthetase have an increased flux. We anticipate that a larger sample of patients and matching controls will confirm our preliminary findings presented

  6. A Systems Biology Approach to Deciphering the Etiology of Steatosis Employing Patient-Derived Dermal Fibroblasts and iPS Cells.

    Science.gov (United States)

    Jozefczuk, Justyna; Kashofer, Karl; Ummanni, Ramesh; Henjes, Frauke; Rehman, Samrina; Geenen, Suzanne; Wruck, Wasco; Regenbrecht, Christian; Daskalaki, Andriani; Wierling, Christoph; Turano, Paola; Bertini, Ivano; Korf, Ulrike; Zatloukal, Kurt; Westerhoff, Hans V; Lehrach, Hans; Adjaye, James

    2012-01-01

    Non-alcoholic fatty liver disease comprises a broad spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis. As a result of increases in the prevalences of obesity, insulin resistance, and hyperlipidemia, the number of people with hepatic steatosis continues to increase. Differences in susceptibility to steatohepatitis and its progression to cirrhosis have been attributed to a complex interplay of genetic and external factors all addressing the intracellular network. Increase in sugar or refined carbohydrate consumption results in an increase of insulin and insulin resistance that can lead to the accumulation of fat in the liver. Here we demonstrate how a multidisciplinary approach encompassing cellular reprogramming, transcriptomics, proteomics, metabolomics, modeling, network reconstruction, and data management can be employed to unveil the mechanisms underlying the progression of steatosis. Proteomics revealed reduced AKT/mTOR signaling in fibroblasts derived from steatosis patients and further establishes that the insulin-resistant phenotype is present not only in insulin-metabolizing central organs, e.g., the liver, but is also manifested in skin fibroblasts. Transcriptome data enabled the generation of a regulatory network based on the transcription factor SREBF1, linked to a metabolic network of glycerolipid, and fatty acid biosynthesis including the downstream transcriptional targets of SREBF1 which include LIPIN1 (LPIN) and low density lipoprotein receptor. Glutathione metabolism was among the pathways enriched in steatosis patients in comparison to healthy controls. By using a model of the glutathione pathway we predict a significant increase in the flux through glutathione synthesis as both gamma-glutamylcysteine synthetase and glutathione synthetase have an increased flux. We anticipate that a larger cohort of patients and matched controls will confirm our preliminary findings presented here.

  7. Transforming growth factor β and platelet-derived growth factor modulation of myofibroblast development from corneal fibroblasts in vitro.

    Science.gov (United States)

    Singh, Vivek; Barbosa, Flavia L; Torricelli, Andre A M; Santhiago, Marcony R; Wilson, Steven E

    2014-03-01

    The purpose of this study was to test the hypotheses that development of mature vimentin+/α-smooth muscle actin+/desmin+ (V+A+D+) myofibroblasts from corneal fibroblasts is regulated by transforming growth factor (TGF) β and platelet-derived growth factor (PDGF); and that myofibroblast development in vitro follows a similar developmental pathway as it does in vivo. Mouse corneal stromal fibroblasts (MSF) were isolated from the corneas of Swiss Webster mice and cultured in serum-free media augmented with DMEM/F12 and varying doses of TGFβ (0.1-2.0 ng/ml), with and without mouse PDGF-AA and/or PDGF-BB (2.0 ng/ml), to study the transition of the MSF to V+A+D+ myofibroblasts. The mean percentage of vimentin+, α-SMA+ and desmin+ cells was determined at each time point (2-15 days), with each growth factor concentration. MSF in vitro were noted to undergo the same developmental transition from V+A-D- to V+A+D- to V+A+D+ myofibroblasts as precursors undergo in vivo. TGFβ at a dose of 0.5 ng/ml and 1.0 ng/ml with 2.0 ng/ml PDGF-AA and 2.0 ng/ml PDGF-BB in DMEM/F12 serum-free media was optimal for the development of V+A+D+ myofibroblasts. This study defines optimal in vitro conditions to monitor the development of MSF into myofibroblasts. The combined effects of TGFβ and PDGF promote the full development of V+A+D+ myofibroblasts from MSF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Suture materials and suture techniques used in tendon repair.

    Science.gov (United States)

    Ketchum, L D

    1985-02-01

    . The less traumatic suture techniques facilitate closure of the tendon sheath, which not only acts as a mechanical barrier to the ingrowth of extrasheath adhesion, which produces fibroblasts, but also re-establishes the continuity of the synovial fluid system, which is a major source of nutrition to the tendon. The healing tendon then can be thought of as a delicate structure, one not to be overmanipulated, traumatized, strangulated, or stretched.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Tendon Gradient Mineralization for Tendon to Bone Interface Integration

    Science.gov (United States)

    Qu, Jin; Thoreson, Andrew R.; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C.; Zhao, Chunfeng

    2014-01-01

    Tendon-to-bone integration is a great challenge for tendon or ligament reconstruction regardless of use of autograft or allograft tendons. We mineralized the tendon, thus transforming the tendon-to-bone into a “bone-to-bone” interface for healing. Sixty dog flexor digitorum profundus (FDP) tendons were divided randomly into 5 groups: 1) normal FDP tendon, 2) CaP (Non-extraction and mineralization without fetuin), 3) CaPEXT (Extraction by Na2HPO4 and mineralization without fetuin), 4) CaPFetuin (Non-extraction and mineralization with fetuin), and 5) CaPEXTFetuin (Extraction and mineralization with fetuin). The calcium and phosphate content significantly increased in tendons treated with combination of extraction and fetuin compared to the other treatments. Histology also revealed a dense mineral deposition throughout the tendon outer layers and penetrated into the tendon to a depth of 200 μm in a graded manner. Compressive moduli were significantly lower in the four mineralized groups compared with normal control group. No significant differences in maximum failure strength or stiffness were found in the suture pull-out test among all groups. Mineralization of tendon alters the interface from tendon to bone into mineralized tendon to bone, which may facilitate tendon-to-bone junction healing following tendon or ligament reconstruction. PMID:23939935

  10. Fibroblastic rheumatism

    Directory of Open Access Journals (Sweden)

    Jyoti Ranjan Parida

    2017-01-01

    Full Text Available Fibroblastic rheumatism (FR is a rare dermoarthopathy reported from different parts of the world since 1980. Although the exact cause is unknown, few reports implicate infection may be a triggering event. Patients usually present with multiple skin nodules and polyarthropathy with progressive skin contractures. Laboratory parameters including acute phase reactants are usually normal. The confirmatory diagnosis is based on histopathologic study of skin nodules, which demonstrate fibroblastic proliferation, thickened collagen fibers, dermal fibrosis, and decreased number of elastic fibers. Immunoreactivity for b-catenin, smooth muscle actin, and the monoclonal antibody HHF35 show myofibroblastic differentiation. Treatments with oral prednisolone and other disease-modifying drugs such as methotrexate, infliximab, and interferon have been tried with variable success. In general, skin lesions respond more aptly than joint symptoms indicating that skin fibroblast is more amenable to treatment than synovial fibroblasts. Awareness regarding this orphan disease among clinicians and pathologists will help in more reporting of such cases and finding out optimal treatment regimen.

  11. Peroneal tendon disorders.

    Science.gov (United States)

    Davda, Kinner; Malhotra, Karan; O'Donnell, Paul; Singh, Dishan; Cullen, Nicholas

    2017-06-01

    Pathological abnormality of the peroneal tendons is an under-appreciated source of lateral hindfoot pain and dysfunction that can be difficult to distinguish from lateral ankle ligament injuries.Enclosed within the lateral compartment of the leg, the peroneal tendons are the primary evertors of the foot and function as lateral ankle stabilisers.Pathology of the tendons falls into three broad categories: tendinitis and tenosynovitis, tendon subluxation and dislocation, and tendon splits and tears. These can be associated with ankle instability, hindfoot deformity and anomalous anatomy such as a low lying peroneus brevis or peroneus quartus.A thorough clinical examination should include an assessment of foot type (cavus or planovalgus), palpation of the peronei in the retromalleolar groove on resisted ankle dorsiflexion and eversion as well as testing of lateral ankle ligaments.Imaging including radiographs, ultrasound and MRI will help determine the diagnosis. Treatment recommendations for these disorders are primarily based on case series and expert opinion.The aim of this review is to summarise the current understanding of the anatomy and diagnostic evaluation of the peroneal tendons, and to present both conservative and operative management options of peroneal tendon lesions. Cite this article: EFORT Open Rev 2017;2:281-292. DOI: 10.1302/2058-5241.2.160047.

  12. How Obesity Affects Tendons?

    Science.gov (United States)

    Abate, Michele; Salini, Vincenzo; Andia, Isabel

    Several epidemiological and clinical observations have definitely demonstrated that obesity has harmful effects on tendons. The pathogenesis of tendon damage is multi-factorial. In addition to overload, attributable to the increased body weight, which significantly affects load-bearing tendons, systemic factors play a relevant role. Several bioactive peptides (chemerin, leptin, adiponectin and others) are released by adipocytes, and influence tendon structure by means of negative activities on mesenchymal cells. The ensuing systemic state of chronic, sub-clinic, low-grade inflammation can damage tendon structure. Metabolic disorders (diabetes, impaired glucose tolerance, and dislipidemia), frequently associated with visceral adiposity, are concurrent pathogenetic factors. Indeed, high glucose levels increase the formation of Advanced Glycation End-products, which in turn form stable covalent cross-links within collagen fibers, modifying their structure and functionality.Sport activities, so useful for preventing important cardiovascular complications, may be detrimental for tendons if they are submitted to intense acute or chronic overload. Therefore, two caution rules are mandatory: first, to engage in personalized soft training program, and secondly to follow regular check-up for tendon pathology.

  13. Tendon progenitor cells in injured tendons have strong chondrogenic potential: the CD105-negative subpopulation induces chondrogenic degeneration.

    Science.gov (United States)

    Asai, Shuji; Otsuru, Satoru; Candela, Maria Elena; Cantley, Leslie; Uchibe, Kenta; Hofmann, Ted J; Zhang, Kairui; Wapner, Keith L; Soslowsky, Louis J; Horwitz, Edwin M; Enomoto-Iwamoto, Motomi

    2014-12-01

    To study the cellular mechanism of the tendon repair process, we used a mouse Achilles tendon injury model to focus on the cells recruited to the injured site. The cells isolated from injured tendon 1 week after the surgery and uninjured tendons contained the connective tissue progenitor populations as determined by colony-forming capacity, cell surface markers, and multipotency. When the injured tendon-derived progenitor cells (inTPCs) were transplanted into injured Achilles tendons, they were not only integrated in the regenerating area expressing tenogenic phenotype but also trans-differentiated into chondrogenic cells in the degenerative lesion that underwent ectopic endochondral ossification. Surprisingly, the micromass culture of the inTPCs rapidly underwent chondrogenic differentiation even in the absence of exogenous bone morphogenetic proteins or TGFβs. The cells isolated from human ruptured tendon tissues also showed connective tissue progenitor properties and exhibited stronger chondrogenic ability than bone marrow stromal cells. The mouse inTPCs contained two subpopulations one positive and one negative for CD105, a coreceptor of the TGFβ superfamily. The CD105-negative cells showed superior chondrogenic potential in vitro and induced larger chondroid degenerative lesions in mice as compared to the CD105-positive cells. These findings indicate that tendon progenitor cells are recruited to the injured site of tendons and have a strong chondrogenic potential and that the CD105-negative population of these cells would be the cause for chondroid degeneration in injured tendons. The newly identified cells recruited to the injured tendon may provide novel targets to develop therapeutic strategies to facilitate tendon repair. © 2014 AlphaMed Press.

  14. Adequacy of palmaris longus and plantaris tendons for tendon grafting.

    Science.gov (United States)

    Jakubietz, Michael G; Jakubietz, Danni F; Gruenert, Joerg G; Zahn, Robert; Meffert, Rainer H; Jakubietz, Rafael G

    2011-04-01

    The reconstruction of tendon defects is challenging. The palmaris longus and plantaris tendon are generally considered best for tendon grafting. Only a few studies have examined whether these tendons, when present, meet criteria for successful grafting. The purpose of this study was to evaluate these tendons in regard to adequacy as tendon grafts. To evaluate adequacy for grafting, the palmaris longus and plantaris tendons were harvested from 92 arms and legs of 46 cadavers. Macroscopic evaluation and measurements concerning presence, length, and diameter of the tendons were obtained. Criteria for adequacy were a minimum length of 15 cm with diameter of 3 mm or, alternatively, 30 cm with a diameter of 1.5 mm. The palmaris longus tendon was present bilaterally in 36 cases and was absent bilaterally in 4 cases. The plantaris tendon was present bilaterally in 38 cases and absent bilaterally in 4 cases. In 29 cadavers, the palmaris longus tendon did not meet the criteria to be used as a tendon graft. Only in 8 cases were the tendons satisfactory for grafting bilaterally. The plantaris tendon met criteria for grafting in 20 cases bilaterally. In 17 cases, the tendons were considered inadequate bilaterally. Despite their presence, the palmaris longus and plantaris tendons are adequate for grafting less often than previously thought. In less than 50%, the tendons, although present, would serve as useful grafts. Our findings underscore the importance of choosing a second donor site before surgery in case the primarily selected tendon is not found to be suitable. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Tendon Transfers for Tetraplegia.

    Science.gov (United States)

    Bednar, Michael S

    2016-08-01

    It is estimated that 65% to 75% of patients with cervical spinal cord injuries could benefit from upper extremity tendon transfer surgery. The goals of surgery are to restore elbow extension, as well as hand pinch, grasp, and release. Patients who have defined goals, actively participate in therapy, and understand expected outcomes, appear to have the highest satisfaction following tendon transfer procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Degenerative Suspensory Ligament Desmitis (DSLD in Peruvian Paso Horses Is Characterized by Altered Expression of TGFβ Signaling Components in Adipose-Derived Stromal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available Equine degenerative suspensory ligament desmitis (DSLD in Peruvian Paso horses typically presents at 7-15 years and is characterized by lameness, focal disorganization of collagen fibrils, and chondroid deposition in the body of the ligament. With the aim of developing a test for disease risk (that can be used to screen horses before breeding we have quantified the expression of 76 TGFβ-signaling target genes in adipose-derived stromal fibroblasts (ADSCs from six DSLD-affected and five unaffected Paso horses. Remarkably, 35 of the genes showed lower expression (p<0.05 in cells from DSLD-affected animals and this differential was largely eliminated by addition of exogenous TGFβ1. Moreover, TGFβ1-mediated effects on expression were prevented by the TGFβR1/2 inhibitor LY2109761, showing that the signaling was via a TGFβR1/2 complex. The genes affected by the pathology indicate that it is associated with a generalized metabolic disturbance, since some of those most markedly altered in DSLD cells (ATF3, MAPK14, ACVRL1 (ALK1, SMAD6, FOS, CREBBP, NFKBIA, and TGFBR2 represent master-regulators in a wide range of cellular metabolic responses.

  17. Combined influence of basal media and fibroblast growth factor on the expansion and differentiation capabilities of adipose-derived stem cells.

    Science.gov (United States)

    Ahearne, Mark; Lysaght, Joanne; Lynch, Amy P

    2014-01-01

    Interest in adipose-derived stem cells (ASCs) has increased in recent years due to their multi-linage differentiation capabilities. While much work has been done to optimize the differentiation media, few studies have focused on examining the influence of different expansion media on cell behavior. In this study, three basal media (low glucose Dulbecco's modified Eagle's medium (DMEM), high glucose DMEM and DMEM-F12) supplemented with or without fibroblast growth factor 2 (FGF) were examined to assess their suitability for expanding ASCs. Flow cytometry, colony-forming unit assays (CFU-Fs) and differentiation assays were utilized to study cell behavior. High glucose media CFU-Fs produced fewest colonies while the addition of FGF increased colony size. By passage 2, the majority of cells were positive for CD44, 45, 73, 90 and 105 and negative for CD14, 31 and 45, indicating a mesenchymal phenotype. A sub-population of CD34 positive cells was present among passage 2 cells; however, by passage 4 the cells were negative for CD34. FGF has a negative effective on passage 4 ASC adipogenesis and high glucose media plus FGF-enhanced osteogenic capacity of passage 4 ASCs. FGF supplemented basal media were most suitable for chondrogenesis. High glucose media plus FGF appeared to be the most beneficial for priming ASCs to induce a keratocyte phenotype. These findings demonstrate the reciprocal effect FGF and basal media have on ASCs. This research has implications for those interested regenerating bone, cartilage, cornea or adipose tissues.

  18. Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts

    Directory of Open Access Journals (Sweden)

    Keita Suzuki

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM- MSCs. The expression of monocyte chemotactic protein- (MCP-1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue.

  19. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.

    Science.gov (United States)

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Zhang, Junfeng; Qin, Haiyan; Hu, Qingang

    2016-01-01

    Human embryonic stem cells and adult stem cells have always been the cell source for bone tissue engineering. However, their limitations are obvious, including ethical concerns and/or a short lifespan. The use of human induced pluripotent stem cells (hiPSCs) could avoid these problems. Nanohydroxyapatite (nHA) is an important component of natural bone and bone tissue engineering scaffolds. However, its regulation on osteogenic differentiation with hiPSCs from human gingival fibroblasts (hGFs) is unknown. The purpose of the present study was to investigate the osteogenic differentiation of hiPSCs from patient-derived hGFs regulated by nHA/chitosan/gelatin (HCG) scaffolds with different nHA ratios, such as HCG-111 (1 wt/vol% nHA) and HCG-311 (3 wt/vol% nHA). First, hGFs were reprogrammed into hiPSCs, which have enhanced osteogenic differentiation capability. Second, HCG-111 and HCG-311 scaffolds were successfully synthesized. Finally, hiPSC/HCG complexes were cultured in vitro or subcutaneously transplanted into immunocompromised mice in vivo. The osteogenic differentiation effects of two types of HCG scaffolds on hiPSCs were assessed for up to 12 weeks. The results showed that HCG-311 increased osteogenic-related gene expression of hiPSCs in vitro proved by quantitative real-time polymerase chain reaction, and hiPSC/HCG-311 complexes formed much bone-like tissue in vivo, indicated by cone-beam computed tomography imaging, H&E staining, Masson staining, and RUNX-2, OCN immunohistochemistry staining. In conclusion, our study has shown that osteogenic differentiation of hiPSCs from hGFs was improved by HCG-311. The mechanism might be that the nHA addition stimulates osteogenic marker expression of hiPSCs from hGFs. Our work has provided an innovative autologous cell-based bone tissue engineering approach with soft tissues such as clinically abundant gingiva. The present study focused on patient-personalized bone tissue engineering. Human induced pluripotent stem cells

  20. The development of zebrafish tendon and ligament progenitors

    Science.gov (United States)

    Chen, Jessica W.; Galloway, Jenna L.

    2014-01-01

    Despite the importance of tendons and ligaments for transmitting movement and providing stability to the musculoskeletal system, their development is considerably less well understood than that of the tissues they serve to connect. Zebrafish have been widely used to address questions in muscle and skeletal development, yet few studies describe their tendon and ligament tissues. We have analyzed in zebrafish the expression of several genes known to be enriched in mammalian tendons and ligaments, including scleraxis (scx), collagen 1a2 (col1a2) and tenomodulin (tnmd), or in the tendon-like myosepta of the zebrafish (xirp2a). Co-expression studies with muscle and cartilage markers demonstrate the presence of scxa, col1a2 and tnmd at sites between the developing muscle and cartilage, and xirp2a at the myotendinous junctions. We determined that the zebrafish craniofacial tendon and ligament progenitors are neural crest derived, as in mammals. Cranial and fin tendon progenitors can be induced in the absence of differentiated muscle or cartilage, although neighboring muscle and cartilage are required for tendon cell maintenance and organization, respectively. By contrast, myoseptal scxa expression requires muscle for its initiation. Together, these data suggest a conserved role for muscle in tendon development. Based on the similarities in gene expression, morphology, collagen ultrastructural arrangement and developmental regulation with that of mammalian tendons, we conclude that the zebrafish tendon populations are homologous to their force-transmitting counterparts in higher vertebrates. Within this context, the zebrafish model can be used to provide new avenues for studying tendon biology in a vertebrate genetic system. PMID:24803652

  1. Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways.

    Science.gov (United States)

    Frederich, Bert J; Timofeyev, Valeriy; Thai, Phung N; Haddad, Michael J; Poe, Adam; Lau, Victor C; Moshref, Maryam; Knowlton, Anne A; Sirish, Padmini; Chiamvimonvat, Nipavan

    2017-06-28

    The limited regenerative capacity of cardiac tissue has long been an obstacle to treating damaged myocardium. Cell-based therapy offers an enormous potential to the current treatment paradigms. However, the efficacy of regenerative therapies remains limited by inefficient delivery and engraftment. Electrotaxis (electrically guided cell movement) has been clinically used to improve recovery in a number of tissues but has not been investigated for treating myocardial damage. The purpose of this study was to test the electrotactic behaviors of several types of cardiac cells. Cardiac progenitor cells (CPCs), cardiac fibroblasts (CFs), and human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) were used. CPCs and CFs electrotax toward the anode of a direct current electric field, whereas hiPSC-CPCs electrotax toward the cathode. The voltage-dependent electrotaxis of CPCs and CFs requires the presence of serum in the media. Addition of soluble vascular cell adhesion molecule to serum-free media restores directed migration. We provide evidence that CPC and CF electrotaxis is mediated through phosphatidylinositide 3-kinase signaling. In addition, very late antigen-4, an integrin and growth factor receptor, is required for electrotaxis and localizes to the anodal edge of CPCs in response to direct current electric field. The hiPSC-derived CPCs do not express very late antigen-4, migrate toward the cathode in a voltage-dependent manner, and, similar to CPCs and CFs, require media serum and phosphatidylinositide 3-kinase activity for electrotaxis. The electrotactic behaviors of these therapeutic cardiac cells may be used to improve cell-based therapy for recovering function in damaged myocardium. Published by Elsevier Inc.

  2. History of flexor tendon repair.

    Science.gov (United States)

    Manske, Paul R

    2005-05-01

    The first issue of Hand Clinics published 20 years ago was devoted to flexor tendon injuries. This was most appropriate, because no subject in hand surgery has sparked more interest or discussion. That inaugural issue included excellent presentations on the basic science of tendon injuries (anatomy, biomechanics, nutrition, healing, adhesions) and the clinical practice of tendon repair. Of interest, there was no presentation on the fascinating history of flexor tendon surgery. It is most appropriate, therefore, that this current update of the flexor tendon begins with a historical review of the evolution of flexor tendon repair.

  3. Tendon transfer or tendon graft for ruptured finger extensor tendons in rheumatoid hands.

    Science.gov (United States)

    Chung, U S; Kim, J H; Seo, W S; Lee, K H

    2010-05-01

    We evaluated the clinical outcome of tendon reconstruction using tendon graft or tendon transfer and the parameters related to clinical outcome in 51 wrists of 46 patients with rheumatoid arthritis with finger extensor tendon ruptures. At a mean follow-up of 5.6 years, the mean metacarpophalangeal (MP) joint extension lag was 8 degrees (range, 0-45) and the mean visual analogue satisfaction scale was 74 (range, 10-100). Clinical outcome did not differ significantly between tendon grafting and tendon transfer. The MP joint extension lag correlated with the patient's satisfaction score, but the pulp-to-palm distance did not correlate with patient satisfaction. We conclude that both tendon grafting and tendon transfer are reliable reconstruction methods for ruptured finger extensor tendons in rheumatoid hands.

  4. Fibroblast Growth Factor 2 Regulates High Mobility Group A2 Expression in Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kalomoiris, Stefanos; Cicchetto, Andrew C; Lakatos, Kinga; Nolta, Jan A; Fierro, Fernando A

    2016-09-01

    Mesenchymal stem cells (MSCs) are an excellent source for numerous cellular therapies due to their simple isolation, low immunogenicity, multipotent differentiation potential and regenerative secretion profile. However, over-expanded MSCs show decreased therapeutic efficacy. This shortcoming may be circumvented by identifying methods that promote self-renewal of MSCs in culture. HMGA2 is a DNA-binding protein that regulates self-renewal in multiple types of stem cells through chromatin remodeling, but its impact on human bone marrow-derived MSCs is not known. Using an isolation method to obtain pure MSCs within 9 days in culture, we show that expression of HMGA2 quickly decreases during early expansion of MSCs, while let-7 microRNAs (which repress HMGA2) are simultaneously increased. Remarkably, we demonstrate that FGF-2, a growth factor commonly used to promote self-renewal in MSCs, rapidly induces HMGA2 expression in a time- and concentration-dependent manner. The signaling pathway involves FGF-2 receptor 1 (FGFR1) and ERK1/2, but acts independent from let-7. By silencing HMGA2 using shRNAs, we demonstrate that HMGA2 is necessary for MSC proliferation. However, we also show that over-expression of HMGA2 does not increase cell proliferation, but rather abrogates the mitogenic effect of FGF-2, possibly through inhibition of FGFR1. In addition, using different methods to assess in vitro differentiation, we show that modulation of HMGA2 inhibits adipogenesis, but does not affect osteogenesis of MSCs. Altogether, our results show that HMGA2 expression is associated with highly proliferating MSCs, is tightly regulated by FGF-2, and is involved in both proliferation and adipogenesis of MSCs. J. Cell. Biochem. 117: 2128-2137, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Identification of Novel Equine (Equus caballus Tendon Markers Using RNA Sequencing

    Directory of Open Access Journals (Sweden)

    Jan M. Kuemmerle

    2016-11-01

    Full Text Available Although several tendon-selective genes exist, they are also expressed in other musculoskeletal tissues. As cell and tissue engineering is reliant on specific molecular markers to discriminate between cell types, tendon-specific genes need to be identified. In order to accomplish this, we have used RNA sequencing (RNA-seq to compare gene expression between tendon, bone, cartilage and ligament from horses. We identified several tendon-selective gene markers, and established eyes absent homolog 2 (EYA2 and a G-protein regulated inducer of neurite outgrowth 3 (GPRIN3 as specific tendon markers using RT-qPCR. Equine tendon cells cultured as three-dimensional spheroids expressed significantly greater levels of EYA2 than GPRIN3, and stained positively for EYA2 using immunohistochemistry. EYA2 was also found in fibroblast-like cells within the tendon tissue matrix and in cells localized to the vascular endothelium. In summary, we have identified EYA2 and GPRIN3 as specific molecular markers of equine tendon as compared to bone, cartilage and ligament, and provide evidence for the use of EYA2 as an additional marker for tendon cells in vitro.

  6. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix

    Science.gov (United States)

    Subramanian, Arul; Schilling, Thomas F.

    2015-01-01

    Tendons and ligaments are extracellular matrix (ECM)-rich structures that interconnect muscles and bones. Recent work has shown how tendon fibroblasts (tenocytes) interact with muscles via the ECM to establish connectivity and strengthen attachments under tension. Similarly, ECM-dependent interactions between tenocytes and cartilage/bone ensure that tendon-bone attachments form with the appropriate strength for the force required. Recent studies have also established a close lineal relationship between tenocytes and skeletal progenitors, highlighting the fact that defects in signals modulated by the ECM can alter the balance between these fates, as occurs in calcifying tendinopathies associated with aging. The dynamic fine-tuning of tendon ECM composition and assembly thus gives rise to the remarkable characteristics of this unique tissue type. Here, we provide an overview of the functions of the ECM in tendon formation and maturation that attempts to integrate findings from developmental genetics with those of matrix biology. PMID:26672092

  7. [Achilles tendon rupture].

    Science.gov (United States)

    Thermann, H; Hüfner, T; Tscherne, H

    2000-03-01

    The treatment of acute of Achilles tendon rupture experienced a dynamic development in the last ten years. Decisive for this development was the application of MRI and above all the ultrasonography in the diagnostics of the pathological changes and injuries of tendons. The question of rupture morphology as well as different courses of healing could be now evaluated objectively. These advances led consequently to new modalities in treatment concepts and rehabilitation protocols. The decisive input for improvements of the outcome results and particularly the shortening of the rehabilitation period came with introduction of the early functional treatment in contrast to immobilizing plaster treatment. In a prospective randomized study (1987-1989) at the Trauma Dept. of the Hannover Medical School could show no statistical differences comparing functional non-operative with functional operative therapy with a special therapy boot (Variostabil/Adidas). The crucial criteria for therapy selection results from the sonographically measured position of the tendon stumps in plantar flexion (20 degrees). With complete adaptation of the tendons' ends surgical treatment does not achieve better results than non-operative functional treatment in term of tendon healing and functional outcome. Regarding the current therapeutic standards each method has is advantages and disadvantages. Both, the operative and non-operative functional treatment enable a stable tendon healing with a low risk of re-rupture (1-2%). Meanwhile there is consensus for early functional after-treatment of the operated Achilles' tendons. There seems to be a trend towards non-operative functional treatment in cases of adequate sonographical findings, or to minimal invasive surgical techniques.

  8. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rajesh L. Thangapazham

    2014-05-01

    Full Text Available Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.

  9. Steroid injections - tendon, bursa, joint

    Science.gov (United States)

    ... gov/ency/article/007678.htm Steroid injections - tendon, bursa, joint To use the sharing features on this ... can be injected into a joint, tendon, or bursa. Description Your health care provider inserts a small ...

  10. Tendon Driven Finger Actuation System

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  11. Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes

    Science.gov (United States)

    Lee, Darwin V.; Li, Dongmei; Yan, Qingyun; Zhu, Yimin; Goodwin, Bryan; Calle, Roberto; Brenner, Martin B.; Talukdar, Saswata

    2014-01-01

    Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway. PMID:25365322

  12. Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC adipocytes.

    Directory of Open Access Journals (Sweden)

    Darwin V Lee

    Full Text Available Fibroblast growth factor 21 (FGF21 has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR, insulin receptor substrate-1 (IRS-1, and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway.

  13. Fibroblast Growth Factor Type 1 (FGF1)-Overexpressed Adipose-Derived Mesenchaymal Stem Cells (AD-MSCFGF1) Induce Neuroprotection and Functional Recovery in a Rat Stroke Model.

    Science.gov (United States)

    Ghazavi, Hamed; Hoseini, Seyed Javad; Ebrahimzadeh-Bideskan, Alireza; Mashkani, Baratali; Mehri, Soghra; Ghorbani, Ahmad; Sadri, Kayvan; Mahdipour, Elahe; Ghasemi, Faezeh; Forouzanfar, Fatemeh; Hoseini, Azar; Pasdar, Ali Reza; Sadeghnia, Hamid Reza; Ghayour-Mobarhan, Majid

    2017-10-01

    Stroke, as the second most common cause of death, imposes a great financial burden on both the individual and society. Mesenchymal stem cells from rodents have demonstrated efficacy in experimental animal models of stroke due to enhanced neurological recovery. Since FGF1 (fibroblast growth factor 1) displays neuroprotective properties, for the first time, we investigated the effect of acute intravenous administration of FGF1 gene transfected adipose-derived mesenchymal stem cell (AD-MSC FGF1 ) on transient experimental ischemic stroke in rats. Stroke induction was made by transient middle cerebral artery occlusion (tMCAO). 2 × 10 6  AD-MSC FGF1 was administrated intravenously 30 min after carotid reperfusion. The ability of technetium 99m -hexamethyl propylene amine oxime ( 99m Tc-HMPAO)-labeled AD-MSC FGF1 to enter into ischemic brain was evaluated 2 h post injection. 24 h post operation, the neurological recovery (rotarod and Roger's tests), the infarct volume (2, 3, 5-triphenyltetrazolium chloride, TTC assay), apoptosis rate (TUNEL assay), and the expression of FGF1 protein (western blotting) in the ischemic hemisphere were assessed. The 99m Tc-HMPAO-labeled AD-MSC FGF1 could enter into the ischemic brain. Ischemic hemisphere activity was significantly higher than that observed in the contralateral hemisphere (p = 0.002). The administration of AD-MSC FGF1 resulted in significant improvement of neurological function tests and increased density of FGF1 protein in the peri-infarct area, while the infarct volume and the apoptotic index were significantly decreased, in comparison to the other treated groups. In conclusion, acute intravenous administration of AD-MSC FGF1 can be a novel and promising candidate approach for the treatment of ischemic stroke.

  14. Comparison between subcutaneous injection of basic fibroblast growth factor-hydrogel and intracavernous injection of adipose-derived stem cells in a rat model of cavernous nerve injury.

    Science.gov (United States)

    Bae, Jang Ho; Shrestha, Kshitiz Raj; Park, Yong Hyun; Kim, In Gul; Piao, Shuyu; Jung, Ae Ryang; Jeon, Seung Hwan; Park, Ki Dong; Lee, Ji Youl

    2014-11-01

    To compare the effects of subcutaneous penile injection of basic fibroblast growth factor (bFGF)-hydrogel and intracavernous injection of human adipose-derived stem cells (h-ADSCs) on improving erectile function in a rat model of cavernous nerve injury. Adult male Sprague-Dawley rats were randomly divided into 5 groups (n = 10 per group): age-matched control (normal group), bilateral cavernous nerve injury (BCNI group), penile subcutaneous injection of hydrogel after BCNI (hydrogel group), penile subcutaneous injection of bFGF-hydrogel after BCNI (bFGF-hydrogel group) and intracavernous injection of h-ADSCs after BCNI (ADSC group). Four weeks after the treatment, all rats underwent an erectile function test. Then, penile tissue was harvested for immunohistological analysis of bFGF, phalloidin, and cluster of differentiation (CD) 31. The cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum was quantified by cGMP assay. From the functional test and immunohistological result, we observed that bFGF-hydrogel and h-ADSCs injection significantly elevated intracavernous pressure. The evaluation of filamentous actin content, CD31 expression, and cGMP concentration in the corpus cavernosum were meaningfully increased in the bFGF-hydrogel and ADSC groups compared with BCNI group. The bFGF released from bFGF-hydrogel prevented smooth muscle atrophy. Moreover, bFGF expression was significantly increased in bFGF-hydrogel group. The subcutaneous injection of bFGF-hydrogel prevented smooth muscle atrophy, increased the intracavernous pressure, and improved erectile function like an intracavernous injection of h-ADSCs. Copyright © 2014. Published by Elsevier Inc.

  15. Clinical aspects of tendon healing

    NARCIS (Netherlands)

    J.C.H.M. van der Meulen (Jacques)

    1974-01-01

    textabstractWe know that healing of a tendon wound takes place by an invasion of fibreblasts from the surrounding tissues; the tendon itself has no intrinsic healing capacity. lt was Potenza (1962) who proved that a traumatic suture of the tendons within their sheath is followed by disintegration of

  16. Application of periodontal tissue engineering using enamel matrix derivative and a human fibroblast-derived dermal substitute to stimulate periodontal wound healing in Class III furcation defects.

    Science.gov (United States)

    Hovey, Lawrence R; Jones, Archie A; McGuire, Michael; Mellonig, James T; Schoolfield, John; Cochran, David L

    2006-05-01

    Enamel matrix derivative (EMD) has been shown to promote several aspects of periodontal regeneration in vitro and in vivo. Recently, a bioengineered tissue (DG) was developed to promote wound healing of chronic skin ulcers. This pilot study sought to assess the effects of EMD and DG, alone or in combination, on periodontal wound healing in surgically created Class III furcation defects. Six female baboons received bilateral ostectomy of approximately 10 mm around the first and second mandibular molars to achieve Class III, subclass C furcation defects. Wire ligatures and cotton pellets were left in place for 2 months to maintain the depth of the defects and promote plaque accumulation. Each furcally involved molar was then assigned to one of four treatments: open flap debridement (OFD), OFD plus EMD, OFD plus DG, or OFD plus DG and EMD. This resulted in six total sites per treatment group. Seven months after defect creation and 5 months after treatment, and after no oral hygiene, tissue blocks of the mandible were taken for blinded histometric analysis to assess parameters of periodontal regeneration adjacent to furcal root surfaces and from the mid-furcal aspect (i.e., new bone, new connective tissue attachment, new epithelial attachment, and new cementum formation). Histometric analysis demonstrated differential regenerative responses with respect to treatment within each animal. However, statistically significant differences between treatments from all six animals were not observed (P >0.20, mixed-model analysis of variance). EMD-treated sites presented mildly positive regenerative results and no negative responses. Both DG only and combination therapy demonstrated similar or less than positive responses relative to OFD controls. The descriptive analysis may suggest a positive effect of enamel matrix proteins and a negative effect of DG used alone or in combination with enamel matrix proteins on the regeneration of Class III furcation defects in baboons.

  17. Altered fibroblast proteoglycan production in COPD.

    Science.gov (United States)

    Hallgren, Oskar; Nihlberg, Kristian; Dahlbäck, Magnus; Bjermer, Leif; Eriksson, Leif T; Erjefält, Jonas S; Löfdahl, Claes-Göran; Westergren-Thorsson, Gunilla

    2010-05-11

    Airway remodeling in COPD includes reorganization of the extracellular matrix. Proteoglycans play a crucial role in this process as regulators of the integrity of the extracellular matrix. Altered proteoglycan immunostaining has been demonstrated in COPD lungs and this has been suggested to contribute to the pathogenesis. The major cell type responsible for production and maintenance of ECM constituents, such as proteoglycans, are fibroblasts. Interestingly, it has been proposed that central airways and alveolar lung parenchyma contain distinct fibroblast populations. This study explores the hypothesis that altered depositions of proteoglycans in COPD lungs, and in particular versican and perlecan, is a result of dysregulated fibroblast proteoglycan production. Proliferation, proteoglycan production and the response to TGF-beta1 were examined in vitro in centrally and distally derived fibroblasts isolated from COPD patients (GOLD stage IV) and from control subjects. Phenotypically different fibroblast populations were identified in central airways and in the lung parenchyma. Versican production was higher in distal fibroblasts from COPD patients than from control subjects (p proteoglycan production in distally derived fibroblasts from COPD patients and control subjects. In contrast, centrally derived fibroblasts from COPD patients were less responsive to TGF-beta1 than those from control subjects. The results show that fibroblasts from COPD patients have alterations in proteoglycan production that may contribute to disease development. Distally derived fibroblasts from COPD patients have enhanced production of versican that may have a negative influence on the elastic recoil. In addition, a lower perlecan production in centrally derived fibroblasts from COPD patients may indicate alterations in bronchial basement membrane integrity in severe COPD.

  18. Altered fibroblast proteoglycan production in COPD

    Directory of Open Access Journals (Sweden)

    Erjefält Jonas S

    2010-05-01

    Full Text Available Abstract Background Airway remodeling in COPD includes reorganization of the extracellular matrix. Proteoglycans play a crucial role in this process as regulators of the integrity of the extracellular matrix. Altered proteoglycan immunostaining has been demonstrated in COPD lungs and this has been suggested to contribute to the pathogenesis. The major cell type responsible for production and maintenance of ECM constituents, such as proteoglycans, are fibroblasts. Interestingly, it has been proposed that central airways and alveolar lung parenchyma contain distinct fibroblast populations. This study explores the hypothesis that altered depositions of proteoglycans in COPD lungs, and in particular versican and perlecan, is a result of dysregulated fibroblast proteoglycan production. Methods Proliferation, proteoglycan production and the response to TGF-β1 were examined in vitro in centrally and distally derived fibroblasts isolated from COPD patients (GOLD stage IV and from control subjects. Results Phenotypically different fibroblast populations were identified in central airways and in the lung parenchyma. Versican production was higher in distal fibroblasts from COPD patients than from control subjects (p 1 triggered similar increases in proteoglycan production in distally derived fibroblasts from COPD patients and control subjects. In contrast, centrally derived fibroblasts from COPD patients were less responsive to TGF-β1 than those from control subjects. Conclusions The results show that fibroblasts from COPD patients have alterations in proteoglycan production that may contribute to disease development. Distally derived fibroblasts from COPD patients have enhanced production of versican that may have a negative influence on the elastic recoil. In addition, a lower perlecan production in centrally derived fibroblasts from COPD patients may indicate alterations in bronchial basement membrane integrity in severe COPD.

  19. Sex Hormones and Tendon

    DEFF Research Database (Denmark)

    Hansen, Mette; Kjaer, Michael

    2016-01-01

    The risk of overuse and traumatic tendon and ligament injuries differ between women and men. Part of this gender difference in injury risk is probably explained by sex hormonal differences which are specifically distinct during the sexual maturation in the teenage years and during young adulthood....... The effects of the separate sex hormones are not fully elucidated. However, in women, the presence of estrogen in contrast to very low estrogen levels may be beneficial during regular loading of the tissue or during recovering after an injury, as estrogen can enhance tendon collagen synthesis rate. Yet...

  20. Open Achilles tendon lacerations.

    Science.gov (United States)

    Said, M Nader; Al Ateeq Al Dosari, Mohamed; Al Subaii, Nasser; Kawas, Alaa; Al Mas, Ali; Al Ser, Yaser; Abuodeh, Yousef; Shakil, Malik; Habash, Ali; Mukhter, Khalid

    2015-04-01

    In contrast to closed Achilles tendon ruptures, open injuries are rarely reported in the literature. This paper provides information about open Achilles tendon wounds that are eventually seen in the Middle East. The reporting unit, Hamad Medical Corporation, is one of the biggest trauma centers in the Gulf area and the major health provider in Qatar. This is a retrospective study including patients admitted and operated for open Achilles tendon injuries between January 2011 and December 2013. Two hundred and five cases of open Achilles tendon lacerations were operated in Hamad General Hospital in this period. Forty-eight cases showed partial injuries, and the remaining are complete tendons cut. In the same period, fifty-one closed ruptured Achilles tendons were operated in the same trauma unit. In the majority of cases, the open injury resulted from a slip in the floor-leveled traditional toilette seats. Local damage to the toilette seats resulted in sharp edges causing the laceration of the heel if the patient was slipping over the wet floor. This occurrence is the cause in the vast majority of the cases. Wounds were located 1-5 cm proximal to tendon insertion. Standard treatment principles were applied. This included thorough irrigation in the emergency room, intravenous antibiotics, surgical debridement and primary repair within 24 h. Patients were kept in the hospital 1-7 days for intravenous antibiotics and possible dressing changes. Postoperatively below knee slabs were applied in the majority of patients and were kept for about 4 weeks followed by gradual weight bearing and range of motion exercises. Outpatients follow up in 1-2 weeks. Further follow-up visits at around 2-, 4-, 8- and 12-week intervals until complete wound healing and satisfactory rehabilitation outcome. Sixteen cases needed a second procedure. A high incidence of Achilles tendon open injuries is reported. This seems to be related to partially damaged floor-level toilettes in the

  1. Fibroma of tendon sheath with 11q rearrangements.

    Science.gov (United States)

    Nishio, Jun; Iwasaki, Hiroshi; Nagatomo, Masaya; Naito, Masatoshi

    2014-09-01

    Fibroma of tendon sheath is an uncommon, benign fibroblastic tumor that usually occurs in the upper extremities of young and middle-aged adults. A clonal chromosomal aberration, t(2;11)(q31-32;q12), has been described in one case. We herein present a unique cytogenetic finding of fibroma of tendon sheath arising in the first web space of the right hand of a 38-year-old woman. Physical examination showed a 3.5-cm, firm, mobile, non-tender mass. Magnetic resonance imaging showed a well-defined soft tissue mass with iso- to slightly-low signal intensity relative to skeletal muscle on both T1- and T2-weighted sequences. Contrast-enhanced T1-weighted sequences demonstrated moderate patchy enhancement of the mass. A fibroma or giant cell tumor of tendon sheath was suggested, and the lesion was marginally excised. Histological examination confirmed the diagnosis of fibroma of tendon sheath. Cytogenetic analysis revealed a novel t(9;11)(p24;q13-14) translocation among other karyotypic abnormalities. The postoperative course was uneventful, and the patient is doing well without local recurrence two months after surgery. To the best of our knowledge, this is only the second report of fibroma of tendon sheath with clonal chromosomal abnormalities. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. The plantaris tendon in association with mid-portion Achilles tendinosis: tendinosis-like morphological features and presence of a non-neuronal cholinergic system.

    Science.gov (United States)

    Spang, Christoph; Alfredson, Håkan; Ferguson, Mark; Roos, Beverley; Bagge, Johan; Forsgren, Sture

    2013-05-01

    The plantaris tendon is often neglected in morphological/clinical studies on the lower extremity. There is, however, clinical evidence that the plantaris tendon is involved in cases with Achilles midportion tendinopathy/tendinosis. It is nevertheless unclear if the plantaris tendon exhibits tendinosis-like features in this situation. We therefore investigated the plantaris tendon of patients with midportion Achilles tendinosis when the plantaris tendon was found to be located very close to or invaginated into the Achilles tendon, a situation which very often has been found to be the case. There was a very large number of tenocytes in the tendon tissue and the tenocytes showed abnormal and irregular appearances, exhibiting widened/rounded and wavy appearances, and were frequently lined up in rows. These features are characteristic features in Achilles tendinosis tendons. The tendon cells showed a distinct immunoreaction for the acetylcholine (ACh) -producing enzyme choline acetyltransferase (ChAT). Frequent fibroblasts were found in the loose connective tissue and these cells also showed a marked ChAT immunoreaction. The study shows that the plantaris tendon is morphologically affected in a similar way to the Achilles tendon in cases with midportion Achilles tendinosis and medial pain. The plantaris tendon may accordingly be a co-factor in these cases. The results also favour that there is a local ACh production both within the tendon tissue of the plantaris tendon and in the loose connective tissue. In conclusion, it is evident that plantaris tendons lying invaginated into or very close to the Achilles tendon in cases with midportion Achilles tendinosis show similar tendinosis features, as previously shown for the Achilles tendon itself in these cases.

  3. Effectiveness of xenogenous-based bovine-derived platelet gel embedded within a three-dimensional collagen implant on the healing and regeneration of the Achilles tendon defect in rabbits

    Science.gov (United States)

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid; Koohi-Hosseinabadi, Omid

    2014-01-01

    Background and objective: Tissue engineering is an option in reconstructing large tendon defects and managing their healing and regeneration. We designed and produced a novel xenogeneic-based bovine platelet, embedded it within a tissue-engineered collagen implant (CI) and applied it in an experimentally induced large tendon defect model in rabbits to test whether bovine platelets could stimulate tendon healing and regeneration in vivo. Methods: One hundred twenty rabbits were randomly divided into two experimental and pilot groups. In all the animals, the left Achilles tendon was surgically excised and the tendon edges were aligned by Kessler suture. Each group was then divided into three groups of control (no implant), treated with CI and treated with collagen-platelet implant. The pilot groups were euthanized at 10, 15, 30 and 40 days post-injury (DPI), and their gross and histologic characteristics were evaluated to study host–graft interaction mechanism. To study the tendon healing and its outcome, the experimental animals were tested during the experiment using hematologic, ultrasonographic and various methods of clinical examinations and then euthanized at 60 DPI and their tendons were evaluated by gross pathologic, histopathologic, scanning electron microscopic, biophysical and biochemical methods. Results: Bovine platelets embedded within a CI increased inflammation at short term while it increased the rate of implant absorption and matrix replacement compared with the controls and CI alone. Treatment also significantly increased diameter, density, amount, alignment and differentiation of the collagen fibrils and fibers and approximated the water uptake and delivery behavior of the healing tendons to normal contralaterals (p tendons and reduced peritendinous adhesion, muscle fibrosis and atrophy, and therefore, it improved the clinical scores and physical activity related to the injured limb when compared with the controls (p Achilles tendon in rabbit

  4. Achilles tendon rupture - aftercare

    Science.gov (United States)

    ... will cover your foot and go to your knee. Your toes will be pointing downward. The cast will be changed every 2 to 3 weeks to help stretch your tendon. If you have a leg brace, splint, or boot, it will keep you from ...

  5. Engaging Stem Cells for Customized Tendon Regeneration

    Directory of Open Access Journals (Sweden)

    Hatim Thaker

    2012-01-01

    Full Text Available The need for a consistent therapeutic approach to tendon injury repair is long overdue. Patients with tendon microtears or full ruptures are eligible for a wide range of invasive and non invasive interventions, often subjectively decided by the physician. Surgery produces the best outcomes, and while studies have been conducted to optimize graft constructs and to track outcomes, the data from these studies have been inconclusive on the whole. What has been established is a clear understanding of healthy tendon architecture and the inherent process of healing. With this knowledge, tissue regeneration efforts have achieved immense progress in scaffold design, cell line selection, and, more recently, the appropriate use of cytokines and growth factors. This paper evaluates the plasticity of bone-marrow-derived stem cells and the elasticity of recently developed biomaterials towards tendon regeneration efforts. Mesenchymal stem cells (MSCs, hematopoietic progenitor cells, and poly(1,8-octanediol co-citrate scaffolds (POC are discussed in the context of established grafting strategies. With POC scaffolds to cradle the growth of MSCs and hematopoietic progenitor cells, developing a fibroelastic network guided by cytokines and growth factors may contribute towards consistent graft constructs, enhanced functionality, and better patient outcomes.

  6. Thermal Preconditioning May Prevent Tendon Adhesion by Up-Regulating HSP72 in Rats.

    Science.gov (United States)

    Tan, Yang; Wu, Qin-Fen; Wu, Qiang; Tan, Xin-Ti; Chen, Liao-Bin; Wang, Xin

    2017-01-01

    The study aims to determine the effects of thermal preconditioning on tendon adhesion by regulating the expression of heat shock protein 72 (HSP72) in rat models. Sixty male Wistar rats were collected and randomly assigned into the thermal preconditioning and control groups. During the 4th and 8th weeks following surgery, 15 rats were sacrificed in each period respectively, and their tendon adhesion was observed and evaluated. Biomechanical testing was performed to measure the tensile strength and gliding distance of tendons. Hematoxylin-eosin (HE) was used to observe the morphological structure of the tendons. Immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the HSP72, fibroblast growth factor-2 (FGF-2), fibroblast growth factor receptor-1 (FGFR-1), β-catenin, epithelial cell adhesion molecule (EPCAM), Tenomodulin and scleraxis protein expressions. Pearson correlation analysis was applied to analyze the correlation between HSP72 expression and tendon adhesion. At the 4th week after surgery, we found no differences in the tendon adhesion scores or mRNA and protein expressions of HSP72 between the thermal preconditioning and control groups. However, after the 8th week after surgery, the thermal preconditioning group had a lower tendon adhesion score and higher mRNA and protein expressions of HSP72 than the control group. During the same period, we found longer gliding distance and higher expression levels of FGF-2, FGFR-1, β-catenin, Tenomodulin and scleraxis, but lower EPCAM expression in the thermal preconditioning group. Pearson correlation analysis indicated that HSP72 mRNA and protein expression levels were negatively correlated with tendon adhesion. These findings provide evidence that thermal preconditioning may alleviate tendon adhesions via upregulation of HSP72 expression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Expression of angiogenic basic fibroblast growth factor, platelet derived growth factor, thrombospondin-1 and their receptors at the porcine maternal-fetal interface

    Directory of Open Access Journals (Sweden)

    LaMarre Jonathan

    2011-01-01

    Full Text Available Abstract Background Commercial swine breeds in North America undergo two waves of spontaneous fetal loss; one during peri-attachment and another during mid-gestation. Although an exact mechanism for this loss is not known, deficits in vasculature at the attachment sites appear to be a major cause. We hypothesized that a balance between pro-angiogenic and anti-angiogenic factors is needed at the maternal-fetal interface for successful conceptus development. Six selected members of the pro-angiogenic fibroblast growth factor (FGF and platelet derived growth factor (PDGF families and anti-angiogenic factor thrombospondin-1 (TSP-1 and its receptor CD36 were quantified and localized at the porcine maternal-fetal interface at early and midgestation time points. Methods Mesometrial endometrium was collected from non-pregnant gilts (n = 8. Endometrial and chorioallantoic membrane samples were collected from healthy and arresting conceptus attachment sites at gestation day (gd 20 (n = 8 and gd 50 (n = 8. At gd20 arresting conceptus attachment sites were distinguished by decreased vasculature of the placental membranes and decreased conceptus size. At gd50 arresting conceptuses attachment sites were identified by smaller conceptus length and weight measurements. Quantitative real time PCR was used to determine relative transcript levels of genes of interest, and cellular localization was determined by immunohistochemistry in paraffin embedded endometrial sections. Results At gd20, endometrial samples from arresting conceptuses had elevated transcripts for bFGF, and PDGF-bb than healthy sites (p Conclusions We provide comprehensive analysis of pro and anti-angiogenic factors at the porcine maternal fetal interface during early and mid-pregnancy. At mRNA levels, the majority of pro-angiogenic factors investigated were elevated at the sites of fetal arrest. These observations contrast with our previous findings of decreased Vascular Endothelial Growth Factor

  8. In-vivo comparison of the acute retention of stem cell derivatives and fibroblasts after intramyocardial transplantation in the mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Cajetan; David, Robert [University of Rostock, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock (Germany); Lehner, Sebastian; Todica, Andrei; Boening, Guido; Zacherl, Mathias; Bartenstein, Peter [University of Munich, Department of Nuclear Medicine, Ludwig-Maximilians, Munich (Germany); Franz, Wolfgang-Michael [University of Innsbruck, Department of Cardiology, Innbruck (Austria); Krause, Bernd Joachim [University of Rostock, Department of Nuclear Medicine, Rostock (Germany); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Wien (Austria)

    2014-12-15

    Various strategies have been applied to increase the engraftment of an intramyocardial cell transplant (Tx) to treat ischemic myocardium. Thereby, co-transplanted fibroblasts (FB) improve the long-term survival of stem cell derivatives (SCD) in a murine model of myocardial infarction. For therapeutic use, the time frame in which FB exert putative supportive effects needs to be identified. Therefore, we tracked the biodistribution and retention of SCD and FB in vivo using highly sensitive positron emission tomography (PET) imaging. Murine [{sup 18} F]-fluorodeoxyglucose (FDG) labeled SCD and FB were transplanted after left anterior descending artery (LAD) ligation into the border zone of the ischemic area in female C57BL/6 mice. Cardiac retention and biodistribution during the initial 2 h after injection were measured via PET imaging. Massive initial cell loss occurred independently of the cell type. Thereby, FB were retained slightly, yet significantly better than SCD until 60 min post-injection (7.5 ± 1.7 vs. 5.2 ± 0.7 % ID at 25 min and 7.0 ± 1.5 vs. 4.8 ± 0.8 % ID at 60 min). Thereafter, a fraction of ∝5 % that withstood the massive initial washout remained at the site of injection independently of the applied cell type (120 min, SCD vs. FB P = 0.64). Most of the lost cells were detected in the lungs (∝30 % ID). We were able to quantitatively define the retention and biodistribution of different cell types via PET imaging in a mouse model after intramyocardial Tx. The utmost accuracy was achieved through this cell- and organ-specific approach by correcting PET data for cellular FDG efflux. Thereby, we observed a massive initial cell loss of ∝95 %, causing low rates of long-term engraftment for both SCD and FB. We conclude that FB are not privileged compared to SCD regarding their acute retention kinetics, and therefore exert their beneficial effects at a later time point. (orig.)

  9. A comparison of the effect of epidermal growth factor, platelet-derived growth factor, and fibroblast growth factor on rat periodontal ligament fibroblast-like cells' DNA synthesis and morphology

    DEFF Research Database (Denmark)

    Blom, S; Holmstrup, P; Dabelsteen, Erik

    1994-01-01

    An enhanced formation of bone, dentin, and collagen fibers in periodontal wounds after application of polypeptide growth factors has recently been reported. However, the complex environment in vivo makes it impossible to determine the specific effects of growth factors on various cells involved...... was established from rat PDL tissue. The cell line was characterized according to morphology, growth pattern, cytoskeletal proteins, and growth kinetics. The mitogenic effect of growth factors was assessed by incorporation of [3H]thymidine in the cellular DNA for 4 hours. Differences between groups...... been identified by the presence of parameters considered to be characteristic of a normal fibroblast-like cell line. The morphogenic analysis of both experimental and control cultures showed a monolayer of adherent cells with spindle or stellate morphology, a random alignment and round or elongated...

  10. Tendon injuries of the hand

    Science.gov (United States)

    Schöffl, Volker; Heid, Andreas; Küpper, Thomas

    2012-01-01

    Tendon injuries are the second most common injuries of the hand and therefore an important topic in trauma and orthopedic patients. Most injuries are open injuries to the flexor or extensor tendons, but less frequent injuries, e.g., damage to the functional system tendon sheath and pulley or dull avulsions, also need to be considered. After clinical examination, ultrasound and magnetic resonance imaging have proved to be important diagnostic tools. Tendon injuries mostly require surgical repair, dull avulsions of the distal phalanges extensor tendon can receive conservative therapy. Injuries of the flexor tendon sheath or single pulley injuries are treated conservatively and multiple pulley injuries receive surgical repair. In the postoperative course of flexor tendon injuries, the principle of early passive movement is important to trigger an “intrinsic” tendon healing to guarantee a good outcome. Many substances were evaluated to see if they improved tendon healing; however, little evidence was found. Nevertheless, hyaluronic acid may improve intrinsic tendon healing. PMID:22720265

  11. Miscellaneous conditions of tendons, tendon sheaths, and ligaments.

    Science.gov (United States)

    Dyson, S J; Dik, K J

    1995-08-01

    The use of diagnostic ultrasonography has greatly enhances our ability to diagnose injuries of tendons and tendon sheaths that were previously either unrecognized or poorly understood. For may of these injuries, there is currently only a small amount of follow-up data. This article considers injuries of the deep digital flexor tendon and its accessory ligament, the carpal tunnel syndrome soft tissue swellings on the dorsal aspect of the carpus, intertubercular (bicipital) bursitis and bicipital tendinitis, injuries of the gastrocnemius tendon, common calcaneal tendinitis, rupture of peroneus (fibularis tertius) and ligaments injuries of the back.

  12. MRI of the Achilles tendon

    Energy Technology Data Exchange (ETDEWEB)

    Naegele, M.; Lienemann, A.; Hahn, D.; Lissner, J.; Boehm, P.

    1987-06-01

    The Achilles tendon and preachillar space of 30 patients was studied by MRI. A surface coil (Helmholtz' principle) was applied and all patients were examined with a superconducting magnet operating at 1.0 Tesla field strength. The purpose of the study was to illustrate pathological changes of the tendon and the surrounding soft tissue. In 3 cases MRI diagnosed a total rupture of the Achilles tendon. Furthermore, the strain of the tendon and side effects of an inflammatory process could be demonstrated. The use of a surface coil yields a high resolution of the normal anatomy of the region and of the pathological changes of the tendon and the surrounding soft tissue structures. The advantages of MRI for Achilles tendon diagnostics against competitive modalities are 1) excellent soft tissue contrast, 2) multiplanar imaging, 3) as well as exact delineation and visualisation of the lesion.

  13. Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension.

    Science.gov (United States)

    Ricard, Nicolas; Tu, Ly; Le Hiress, Morane; Huertas, Alice; Phan, Carole; Thuillet, Raphaël; Sattler, Caroline; Fadel, Elie; Seferian, Andrei; Montani, David; Dorfmüller, Peter; Humbert, Marc; Guignabert, Christophe

    2014-04-15

    Pericytes and their crosstalk with endothelial cells are critical for the development of a functional microvasculature and vascular remodeling. It is also known that pulmonary endothelial dysfunction is intertwined with the initiation and progression of pulmonary arterial hypertension (PAH). We hypothesized that pulmonary endothelial dysfunction, characterized by abnormal fibroblast growth factor-2 and interleukin-6 signaling, leads to abnormal microvascular pericyte coverage causing pulmonary arterial medial thickening. In human lung tissues, numbers of pericytes are substantially increased (up to 2-fold) in distal PAH pulmonary arteries compared with controls. Interestingly, human pulmonary pericytes exhibit, in vitro, an accentuated proliferative and migratory response to conditioned media from human idiopathic PAH endothelial cells compared with conditioned media from control cells. Importantly, by using an anti-fibroblast growth factor-2 neutralizing antibody, we attenuated these proliferative and migratory responses, whereas by using an anti-interleukin-6 neutralizing antibody, we decreased the migratory response without affecting the proliferative response. Furthermore, in our murine retinal angiogenesis model, both fibroblast growth factor-2 and interleukin-6 administration increased pericyte coverage. Finally, using idiopathic PAH human and NG2DsRedBAC mouse lung tissues, we demonstrated that this increased pericyte coverage contributes to pulmonary vascular remodeling as a source of smooth muscle-like cells. Furthermore, we found that transforming growth factor-β, in contrast to fibroblast growth factor-2 and interleukin-6, promotes human pulmonary pericyte differentiation into contractile smooth muscle-like cells. To the best of our knowledge, this is the first report of excessive pericyte coverage in distal pulmonary arteries in human PAH. We also show that this phenomenon is directly linked with pulmonary endothelial dysfunction.

  14. Combined Effects of Brain-Derived Neurotrophic Factor Immobilized Poly-Lactic-Co-Glycolic Acid Membrane with Human Adipose-Derived Stem Cells and Basic Fibroblast Growth Factor Hydrogel on Recovery of Erectile Dysfunction

    Science.gov (United States)

    Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean

    2014-01-01

    Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with

  15. Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Emma Patricia Bavin

    2015-11-01

    Full Text Available Tendon injuries occur commonly in horses and their repair through scar tissue formation predisposes horses to a high rate of re-injury. Pluripotent stem cells may provide a cell replacement therapy to improve tendon tissue regeneration and lower the frequency of re-injury. We have previously demonstrated that equine embryonic stem cells (ESCs differentiate into the tendon cell lineage upon injection into the damaged horse tendon and can differentiate into functional tendon cells in vitro to generate artificial tendons. Induced pluripotent stem cells (iPSCs have now been derived from horses but, to date, there are no reports on their ability to differentiate into tendon cells. As iPSCs can be produced from adult cell types, they provide a more accessible source of cells than ESCs, which require the use of horse embryos. The aim of this study was to compare tendon differentiation by ESCs and iPSCs produced through two independent methods. In 2-dimensional differentiation assays the iPSCs expressed tendon associated genes and proteins, which were enhanced by the presence of transforming growth factor-β3. However, in 3-dimensional differentiation assays the iPSCs failed to differentiate into functional tendon cells and generate artificial tendons. These results demonstrate the utility of the 3-dimensional in vitro tendon assay for measuring tendon differentiation and the need for more detailed studies to be performed on equine iPSCs to identify and understand their epigenetic differences from pluripotent ESCs prior to their clinical application.

  16. Wide-Awake Primary Flexor Tendon Repair, Tenolysis, and Tendon Transfer

    OpenAIRE

    Tang, Jin Bo

    2015-01-01

    Tendon surgery is unique because it should ensure tendon gliding after surgery. Tendon surgery now can be performed under local anesthesia without tourniquet, by injecting epinephrine mixed with lidocaine, to achieve vasoconstriction in the area of surgery. This method allows the tendon to move actively during surgery to test tendon function intraoperatively and to ensure the tendon is properly repaired before leaving the operating table. I applied this method to primary flexor tendon repair ...

  17. Gastrocnemius tendon length and strain are different when assessed using straight or curved tendon model

    OpenAIRE

    Stosic, Jelena; Finni Juutinen, Taija

    2011-01-01

    The present study investigated the effects of tendon curvature on measurements of tendon length using 3D-kinematic analysis. Curved and straight tendon models were employed for assessing medial gastrocnemius tendon length and strain during hopping (N = 8). Tendon curvature was identified using small reflective markers placed on the skin surface along the length of the tendon and a sum of vectors between the markers from the calcaneous up to the marker at the origin of tendon was calculated. T...

  18. Intrinsic flexor-tendon repair. A morphological study in vitro.

    Science.gov (United States)

    Manske, P R; Gelberman, R H; Vande Berg, J S; Lesker, P A

    1984-03-01

    Rabbit flexor tendons with a 90 per cent mid-section transverse laceration demonstrated the intrinsic capacity to participate in the repair process in the absence of extrinsic cell sources and without the benefit of nutrition from a circulating blood supply or the influence of synovial fluid. Two cellular processes were involved in the in vitro repair process: (1) phagocytosis occurred by differentiation of fibroblasts from the epitenon--the cells migrated into the repair site and removed cellular debris and collagen fragments, and (2) collagen synthesis occurred primarily within the endotenon cells. The results of this experimental study support the concept that flexor tendons have the intrinsic capacity to phagocytize old collagen and synthesize new collagen fibrils. Consequently, clinical attempts to prevent or control the peripheral adhesions appear valid, since these adhesions do not appear to be an essential component of the repair process.

  19. Novel methods for tendon investigations

    DEFF Research Database (Denmark)

    Kjær, Michael; Langberg, Henning; Bojsen-Møller, J.

    2008-01-01

    Purpose. Tendon structures have been studied for decades, but over the last decade, methodological development and renewed interest for metabolic, circulatory and tissue protein turnover in tendon tissue has resulted in a rising amount of investigations. Method. This paper will detail the various...

  20. Ultrasound-guided tendon fenestration.

    Science.gov (United States)

    Chiavaras, Mary M; Jacobson, Jon A

    2013-02-01

    A potential treatment for chronic tendinosis or tendinopathy is percutaneous ultrasound-guided tendon fenestration, also termed dry needling or tenotomy. This procedure involves gently passing a needle through the abnormal tendon multiple times to change a chronic degenerative process into an acute condition that is more likely to heal. This article reviews the literature on tendon fenestration and describes the technical aspects of this procedure including postprocedural considerations. Although peer-reviewed literature on this topic is limited, studies to date have shown that ultrasound-guided tendon fenestration can improve patient symptoms. Several other percutaneous treatments for tendinopathy that include prolotherapy, autologous whole-blood injection, and autologous platelet-rich plasma injection are often performed in conjunction with fenestration. It is currently unknown if these other percutaneous procedures have any benefit over ultrasound-guided tendon fenestration alone. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Hyperresistance to 4-nitroquinoline 1-oxide cytotoxicity and reduced DNA damage formation in dermal fibroblast strains derived from five members of a cancer-prone family.

    Science.gov (United States)

    Mirzayans, R; Sabour, M; Rauth, A M; Paterson, M C

    1993-11-01

    Dermal fibroblasts cultured from members of a family presenting multiple polyps and sarcomas were compared with fibroblast strains from unrelated healthy donors for sensitivity to killing by four genotoxic agents. Cells from the sister of the male proband (strain 3437T), mother (strain 3703T), two of his paternal aunts (3701T and 3704T) and one paternal uncle (3702T) displayed marked resistance (1.8 to 4.3 times greater than the normal mean) to 4-nitroquinoline 1-oxide (4NQO), a procarcinogen whose DNA-damaging properties encompass those of both far (254 nm) ultraviolet (UV) light and ionising radiation. These same 4NQO-resistant cells, however, responded normally to reproductive inactivation by UV light, 60Co gamma radiation or the alkylating agent methylnitrosourea, signifying that the abnormal resistance of these cells to 4NQO is not associated with aberrant DNA metabolism. In keeping with this conclusion, exposure to a given dose of 4NQO produced decreased amounts of DNA damage and stimulated lower levels of repair DNA synthesis in all five 4NQO-resistant strains than in normal controls. Moreover, exogenous radiolabelled 4NQO accumulated to a lesser extent in the 4NQO-resistant than in the normal fibroblasts. Cell sonicates of strains 3437T, 3701T and 3702T exhibited reduced capacities (40-60% of normal) to catalise the conversion of 4NQO to the proximate carcinogen 4-hydroxyaminoquinoline 1-oxide. However, the 4NQO-resistant strains 3703T and 3704T carried out 4NQO bioreduction at normal rates. Our data therefore indicate that enhanced resistance to 4NQO cytotoxicity in 3437T, 3701T and 3702T is a consequence of anomalies in both intracellular accumulation and enzymatic reduction of 4NQO, whereas 4NQO resistance in 3703T and 3704T appears to result solely from reduced intracellular drug accumulation.

  2. Enamel matrix-derived protein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor beta1 release of periodontal ligament and gingival fibroblasts

    NARCIS (Netherlands)

    van der Pauw, M. T.; van den Bos, T.; Everts, V.; Beertsen, W.

    2000-01-01

    Although it is claimed that enamel matrix-derived proteins (EMP) can be used to promote new attachment formation around periodontally involved teeth, the underlying biological mechanism is not understood. It was the aim of the present study to investigate the effects of EMP on the behavior of human

  3. Successful induction of sclerostin in human-derived fibroblasts by 4 transcription factors and its regulation by parathyroid hormone, hypoxia, and prostaglandin E2.

    Science.gov (United States)

    Fujiwara, Makoto; Kubota, Takuo; Wang, Wei; Ohata, Yasuhisa; Miura, Kohji; Kitaoka, Taichi; Okuzaki, Daisuke; Namba, Noriyuki; Michigami, Toshimi; Kitabatake, Yasuji; Ozono, Keiichi

    2016-04-01

    Sclerostin, coded by SOST, is a secretory protein that is specifically expressed in osteocytes and suppresses osteogenesis by inhibiting WNT signaling. The regulatory mechanism underlying SOST expression remains unclear mainly due to the absence of an adequate human cell model. Thus, we herein attempted to establish a cell model of human dermal fibroblasts in order to investigate the functions of sclerostin. We selected 20 candidate transcription factors (TFs) that induce SOST expression by analyzing gene expression patterns in the human sarcoma cell line, SaOS-2, between differentiation and maintenance cultures using microarrays. An effective set of TFs to induce SOST expression was sought by their viral transduction into fibroblasts, and a combination of four TFs: ATF3, KLF4, PAX4, and SP7, was identified as the most effective inducer of SOST expression. Quantitative PCR demonstrated that the expression levels of SOST in fibroblasts treated with the 4 TFs were 199- and 1439-fold higher than those of the control after 1-week and 4-week cultures, respectively. The level of sclerostin in the conditioned medium, as determined by ELISA, was 21.2pmol/l 4weeks after the transduction of the 4 TFs. Interestingly, the production of Dickkopf1 (DKK1), another secreted inhibitor of WNT signaling, was also increased by transduction of these 4 TFs. Parathyroid hormone (PTH) significantly suppressed the induced SOST by 38% and sclerostin by 82% that of the vehicle. Hypoxia increased the induced SOST by 62% that of normoxia. Furthermore, prostaglandin E2 (PGE2) increased SOST expression levels to 16-fold those of the vehicle. In conclusion, the efficient induction of SOST expression and sclerostin production was achieved in human dermal fibroblasts by the transduction of ATF3, KLF4, PAX4, and SP7, and the induced SOST and sclerostin were regulated by PTH, hypoxia, and PGE2. This model may contribute to elucidating the regulatory mechanisms underlying SOST expression and advancing

  4. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women

    Directory of Open Access Journals (Sweden)

    Tanaka M

    2015-02-01

    Full Text Available Miyuki Tanaka,1 Eriko Misawa,1 Koji Yamauchi,1 Fumiaki Abe,1 Chiaki Ishizaki2 1Functional Food Research Department, Food Science and Technology Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, 2Ebisu Skin Research Center, Inforward, Inc., Tokyo, Japan Background: Aloe is known for its topical use for treating wounds and burns. Many previous studies reported the healing effects of Aloe vera. However, there are few clinical studies on the effect of orally administered A. vera gel on the skin. Aloe sterols are a type of plant sterols that have the capability to regulate the metabolism of glucose and lipids. In a recent study, we confirmed that ingested Aloe sterols reached the peripheral tissues through the bloodstream. However, their influence on dermal fibroblasts has not been investigated. Methods: First, we investigated the capability of Aloe sterols (cycloartenol and lophenol to stimulate human dermal fibroblasts in vitro. Then, we investigated the effect of intake of Aloe vera gel powder (AVGP containing 40 µg Aloe sterols on the skin conditions in Japanese women with dry skin in a randomized, double-blind, placebo-controlled trial. Results: After cocultivation with Aloe sterols, the production of collagen and hyaluronic acid increased by approximately two-fold and 1.5-fold, and gene expression levels of these enzymes responsible for their synthesis were also observed in human dermal fibroblasts. An increase in arm skin hydration was observed at 8 weeks in the AVGP group, whereas a slight decrease in arm skin hydration was noted in the placebo group. However, there was no statistical difference between AVGP and placebo groups in skin moisture. In subgroup analysis, the change in the mean wrinkle depth was significantly lower in the AVGP group than in the control group. In addition, percent body fat after 8 weeks was significantly lower in the AVGP group. No AVGP intake-dependent harmful phenomenon was observed during the intake

  5. Characterization of the receptor for platelet-derived growth factor on human fibroblasts. Demonstration of an intimate relationship with a 185,000-Dalton substrate for the platelet-derived growth factor-stimulated kinase.

    Science.gov (United States)

    Heldin, C H; Ek, B; Rönnstrand, L

    1983-08-25

    The receptor for platelet-derived growth factor (PDGF) on human foreskin fibroblasts has been characterized. The molecular weight of the PDGF-receptor complex was estimated by affinity labeling techniques to about 200,000, as determined by sodium dodecyl sulfate-gel electrophoresis performed under reducing conditions. Subtraction of the Mr of reduced PDGF (18,000 to 15,000) gives a Mr for the receptor proper of 185,000 (+/- 10,000). The mobility in sodium dodecyl sulfate-gel electrophoresis was similar whether or not reducing agents were present, suggesting that the receptor may be a single chain protein. The hydrodynamic size of the 125I-PDGF-receptor complex after solubilization with Triton X-100, corresponded to a Mr of approximately 320,000, as determined by gel chromatography. Subtraction of the Mr contributions from Triton X-100 and PDGF, respectively, gives a Mr of approximately 200,000 for the receptor itself, an estimate in good agreement with the value obtained from the affinity-labeling experiments. Several lectins were analyzed for their ability to inhibit binding of 125I-PDGF to its receptor. It was found that wheat germ agglutinin and a lectin from Crotalaria juncea were effective inhibitors and that their inhibitory effects could be neutralized by N-acetylglucosamine and galactose, respectively, suggesting that the receptor contains these sugars. The properties of the receptor were compared with those of a 185,000-Da component, being the major substrate for the membrane-bound PDGF-stimulated kinase. It was found that the 185,000-Da component behaved similar to the PDGF receptor in sodium dodecyl sulfate-gel electrophoresis, performed with or without reducing agents present. Further, the 185,000-Da component co-eluted with the PDGF receptor on a Sepharose 6B column, and had affinity for the same lectins that inhibited the binding of 125I-PDGF to its receptor. Finally, the 185,000-Da component had affinity for PDGF immobilized on Sepharose beads

  6. Distribution and persistence of technetium-99 hexamethyl propylene amine oxime-labelled bone marrow-derived mesenchymal stem cells in experimentally induced tendon lesions after intratendinous injection and regional perfusion of the equine distal limb.

    Science.gov (United States)

    Sole, A; Spriet, M; Padgett, K A; Vaughan, B; Galuppo, L D; Borjesson, D L; Wisner, E R; Vidal, M A

    2013-11-01

    Intralesional (i.l.) injection is currently the most commonly used technique for stem cell therapy in equine tendon injury. A comparison of different techniques of injection of mesenchymal stem cells for the treatment of tendon lesions is required. We hypothesised that vascular perfusion of the equine distal limb with mesenchymal stem cells (MSCs) would result in preferential distribution of MSCs to acute tendon injuries. In vivo experimental study. Lesions were surgically induced in forelimb superficial digital flexor tendons of 8 horses. Three or 10 days after lesion induction, technetium-99 hexamethyl propylene amine oxime-labelled MSCs were injected via i.v. or intra-arterial (i.a.) regional limb perfusion (RLP) at the level of the distal antebrachium and compared to i.l. injection. Mesenchymal stem cell persistence and distribution within the forelimb and tendon lesions was assessed with scintigraphy for 24 h. Lesion uptake was higher with i.l. injection than with RLP, but MSC persistence decreased similarly over time in all 3 techniques. Intra-arterial RLP resulted in a better distribution of MSCs and a higher uptake at the lesion site than i.v. RLP. Limbs perfused i.a. on Day 10 showed greater accumulation of MSCs in the lesion than limbs perfused on Day 3. Arterial thrombosis occurred in 50% of the i.v. RLP limbs and in 100% of the i.a. RLP limbs, which led to clinical complications in one horse. Compared with i.l. injection, RLP results in lower uptake but similar persistence of MSCs at the site of tendon lesions. A time dependent accumulation of MSCs was identified with i.a. RLP. The i.a. RLP appears more advantageous than the i.v. RLP in terms of distribution and uptake. However, the described i.a. technique produced arterial thrombosis and thus cannot currently be recommended for clinical use. © 2013 EVJ Ltd.

  7. Rectus Femoris Tendon Calcification

    Science.gov (United States)

    Zini, Raul; Panascì, Manlio; Papalia, Rocco; Franceschi, Francesco; Vasta, Sebastiano; Denaro, Vincenzo

    2014-01-01

    Background: Since it was developed, hip arthroscopy has become the favored treatment for femoroacetabular impingement. Due to recent considerable improvements, the indications for this technique have been widely extended. Injuries of the rectus femoris tendon origin, after an acute phase, could result in a chronic tendinopathy with calcium hydroxyapatite crystal deposition, leading to pain and loss of function. Traditionally, this condition is addressed by local injection of anesthetic and corticosteroids or, when conservative measures fail, by open excision of the calcific lesion by an anterior approach. Purpose: To assess whether arthroscopic excision of calcification of the proximal rectus is a safe and effective treatment. Study Design: Case series; Level of evidence, 4. Methods: Outcomes were studied from 6 top amateur athletes (age range, 30-43 years; mean, 32.6 years) affected by calcification of the proximal rectus who underwent arthroscopic excision of the calcification. Patients were preoperatively assessed radiographically, and diagnosis was confirmed by a 3-dimensional computed tomography scan. To evaluate the outcome, standardized hip rating scores were used pre- and postoperatively (at 6 and 12 months): the Hip disability and Osteoarthritis Outcome Score, Oxford Hip Score, and Modified Harris Hip Score. Moreover, visual analog scales (VAS) for pain, sport activity level (SAL), and activities of daily living (ADL) were also used. Results: One year after surgery, all patients reported satisfactory outcomes, with 3 of 6 rating their return-to-sport level as high as preinjury level, and the remaining 3 with a percentage higher than 80%. Five patients ranked their ability to carry on daily activities at 100%. Statistical analysis showed significant improvement of the Oxford Hip Score, the Modified Harris Hip Score, and all 3 VAS subscales (pain, SAL, and ADL) from pre- to latest postoperative assessment (P < .05). Conclusion: Arthroscopic excision of

  8. Biceps Tendon Rupture

    Directory of Open Access Journals (Sweden)

    Daniel M Polvino

    2018-01-01

    Full Text Available History of present illness: A 55-year-old male presented to the emergency department with a chief complaint of right arm pain. Five days prior to arrival, he attempted to lift himself up on his van and experienced what he described as a “rubber band snapping” in his right arm. He reported severe pain at the time that persisted but lessened in severity. Additionally, he reported increasing bruising over the proximal right arm. He had no history of prior right arm or shoulder injury. Significant findings: Physical exam was significant for ecchymosis and mild swelling of the right bicep. When the right arm was flexed at the elbow, a prominent mass was visible and palpable over the right bicep. Right upper extremity strength was 4/5 with flexion at the elbow. Discussion: The biceps brachii muscle is comprised of a long and short head, which share a common attachment at the bicipital tuberosity on the radius. The short head originates from the coracoid process of the scapula and the long head originates from the supraglenoid tubercle.1 Biceps tendon rupture has been found to occur at a rate of 0.53/100,000 over five years, and is three times more likely to occur in men than women.2 Risk factors for biceps tendon rupture include male sex, old age, increased body mass index, smoking, and pre-existing shoulder pathology.3,4 Diagnosis of biceps tendon rupture is typically a clinical diagnosis utilizing inspection and palpation as well as special testing such as the Speed’s and/or Yergason’s tests. Ultrasound may be used to aid in diagnosis; in full-thickness tears, ultrasound was found to have a sensitivity of 88% and a specificity of 98%. However, in partial thickness tears ultrasound has a sensitivity of 27% and a specificity of 100%.5 Often considered the gold standard in diagnosis, MRI has been found to have a sensitivity of only 67% and specificity of 98% in detecting complete tears6. Treatment initially consists of rest, ice, compression

  9. [Pathophysiology of overuse tendon injury].

    Science.gov (United States)

    Kannus, P; Paavola, M; Paakkala, T; Parkkari, J; Järvinen, T; Järvinen, M

    2002-10-01

    Overuse tendon injury is one of the most common injuries in sports. The etiology as well as the pathophysiological mechanisms leading to tendinopathy are of crucial medical importance. At the moment intrinsic and extrinsic factors are assumed as mechanisms of overuse tendon injury. Except for the acute, extrinsic trauma, the chronic overuse tendon injury is a multifactorial process. There are many other factors, such as local hypoxia, less of nutrition, impaired metabolism and local inflammatory that may also contribute to the development of tissue damage. The exact interaction of these factors cannot be explained entirely at the moment. Further studies will be necessary in order to get more information.

  10. The Effects of a Crosslinked, Modified Hyaluronic Acid (xCMHA-S) Gel on Equine Tendon Healing.

    Science.gov (United States)

    Jann, Henry W; Hart, James C A; Stein, Larry E; Ritchey, Jerry; Blaik, Margaret; Payton, Mark; Fackelman, Gustave E; Rezabek, Grant B; Mann, Brenda K

    2016-02-01

    To assess the effects of a crosslinked, modified hyaluronic acid (xCMHA-S) gel on equine tendon healing using an in vivo surgical model. In vivo experimental study. Adult horses (n = 5). Full thickness bilateral forelimb window tenectomies were surgically created in both forelimb superficial digital flexor tendons and xCMHA-S gel was implanted intraoperatively into the right forelimb lesion of each horse whereas the left forelimb served as the untreated control. Healing was monitored by serial ultrasound examinations every 14 days over the course of the 84 day study. In addition, gross pathology, scanning electron microscopy for fiber diameter, and histological scoring were completed on tendon samples harvested after euthanasia at 84 days. Ultrasound assessment demonstrated a significant decrease in mean lesion size of treated (0%) compared to control (30%) tendons at 84 days. Mean (±SD) cumulative histologic tendon scores for control tendons (17.7 ± 2.7) were significantly higher than treated tendons (13.6 ± 1.9), indicating less advanced healing in the control group. Tendon cell density was increased and neovascularization, intensity of inflammation, and uniformity of fiber diameter were increased in control compared to treated tendons. There were no differences in fibroblast shape, levels of intralesional hemorrhage, linearity of collagen fibers, or collagen fiber diameter or distribution between treated and control tendons. Tendons treated with xCMHA-S gel at the time of model induction had superior histologic healing scores and sonographically smaller lesions compared to controls, suggesting that xCMHA-S gel may aid the natural healing process. © Copyright 2016 by The American College of Veterinary Surgeons.

  11. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    DEFF Research Database (Denmark)

    Svenstrup, B; Brünner, N; Dombernowsky, P

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase...... and 3 alpha-hydroxysteroid oxidoreductase was investigated by isolating estrone, estradiol, estriol, dihydrotestosterone, androstanedione, androsterone, 3 alpha-androstanediol, testosterone and androstenedione after incubation of the cells with [14C]testosterone or [14C]androstenedione. For experiments.......5-1.0 x 10(-6) M in both cell lines. When preincubation with cortisol was omitted no estrogen synthesis was detected. The formation of androgen was not altered after preincubation with cortisol. Pronounced differences were found in estrogen and in androgen metabolism in the two cell lines suggesting...

  12. Ultrasonographic assessment of flexor tendon mobilization: Effect of different protocols on tendon excursion

    NARCIS (Netherlands)

    J.-W.H. Korstanje (Jan-Wiebe); J. Soeters (Johannes); A.R. Schreuders (Ton); P.C. Amadio (Peter ); S.E.R. Hovius (Steven); H.J. Stam (Henk); R.W. Selles (Ruud)

    2012-01-01

    textabstractBackground: Different mobilization protocols have been proposed for rehabilitation after hand flexor tendon repair to provide tendon excursion sufficient to prevent adhesions. Several cadaver studies have shown that the position of the neighboring fingers influences tendon excursions of

  13. The effect of tranilast on fibroblast activation protein α (FAP-α expression in normal and keloid fibroblasts in vitro

    Directory of Open Access Journals (Sweden)

    Paweł P. Antończak

    2017-07-01

    Full Text Available Introduction . Tranilast (N-(3’,4’-demethoxycinnamoyl-anthranilic acid is an anti-allergic drug. Its mechanism of action is based on the inhibition of antigen-induced release of chemical mediators from mast cells and basophils. It also reveals antifibroproliferative activities. These properties of tranilast are used in the treatment of hypertrophic scars and keloids. Keloids are characterized by incorrect extracellular matrix components turnover. Fibroblasts derived from keloids reveal overproduction of collagen type I and decreased degradation of extracellular matrix in comparison with normal fibroblasts. Fibroblast activation protein α (FAP-α may play an important role in remodeling of extracellular matrix and the invasive properties of keloids. Objective . In the present study, the effect of tranilast on expression of FAP-α gene and its protein was evaluated in normal human dermal fibroblasts and fibroblasts derived from keloids cultured in vitro . Materials and methods. In the first stage of the study, the influence of tranilast on cell viability was estimated. The second stage of the study included the quantitative evaluation of FAP-α mRNA expression in normal and keloid fibroblasts treated with tranilast. The third stage of the study comprised fibroblast activation protein α expression analysis in the examined cells treated with tranilast. Results and conclusions . The expression of FAP-α gene and fibroblast activation protein α is higher in keloid fibroblasts. Tranilast at concentrations of 3 μM and 30 μM up-regulated mRNA FAP-α expression in normal fibroblasts but did not influence keloid fibroblasts. The drug, at concentrations of 30 μM and 300 μM up-regulated fibroblast activation protein α expression in normal fibroblasts and did not influence keloid fibroblasts. Tranilast antiproliferative effect is not associated with FAP-α expression in keloid fibroblasts.

  14. Radiofrequency preserves histoarchitecture and enhances collagen synthesis in experimental tendon injury.

    Science.gov (United States)

    Akamatsu, Flavia Emi; Saleh, Samir Omar; Hojaij, Flávio; Martinez, Carlos Augusto Real; Andrade, Mauro; Teodoro, Walcy Rosolia; Jacomo, Alfredo Luiz

    2016-05-01

    We investigated the action of radiofrequency (RF) on the healing process after inducing experimental lesions of the Achilles tendon in rats. Wistar rats were surgically subjected to bilateral partial transverse sectioning of the Achilles tendon. The right tendon was treated with radiofrequency (RFT), whereas the left tendon served as a control (CT). On the third postoperative day, the rats were divided into three experimental groups consisting of ten rats each, which were treated with monopolar radiofrequency (Tonederm™) until they were sacrificed on the 7th, 14th or 28th days. The histological specimens were studied for inflammatory cell content, collagen types I and III, immunostaining and morphometry. Total collagen were biochemically analyzed and to evalute fibroblast and myofibroblast proliferation by vimentin and α-actin smooth muscle immunohistochemistry methods. Statistical analysis was performed using the Student's t-test, the sign test and the Kruskal-Wallis test to compare tendons treated with radiofrequency with the non-treated tendons (α=5%; α=10%). Larger amounts of collagen I with hydroxyproline content and myofibroblast cells were clearly evident within 7 days (ptendon healing. Clinical studies may include RF among the therapeutic tools in tendinous lesion management.

  15. Plasma platelet-rich autogenous healing tendon of the gastrocnemius muscle in rabbits

    Directory of Open Access Journals (Sweden)

    Duvaldo Eurides

    2015-04-01

    Full Text Available Tendon lesions may involve the partial or total section of the common calcaneal tendon and cause postural changes of the member. This study evaluated, after 45 and 90 postoperative days (PO, the repair of the tendon of gastrocnemius muscle of rabbits with topical application of autologous platelet concentrate. Twelve adult rabbits were divided into two groups (n = 6 undergoing cardiac puncture and collection of 10 ml of blood to obtain platelet rich-plasma (PRP. Animals of both groups had a transverse tenotomy in the middle third of the lateral belly of the gastrocnemius tendon and muscle that was approximated with modified Kessler suture and nylon thread. In the animals of the treated group it was applied the average of 490.644 platelets / uL of PRP, per animal over the tendon synthesis. The treated group showed a higher amount of collagen fibers than the control one, and at 90 PO days the intensity of collagen was higher than at 45 days with more fibroblasts in the control than in treated one. The administration of plasma autogenous platelet concentrate in the repair of the gastrocnemius tendon of rabbits stimulates and organizes the repair process and causes early production of collagen fibers.

  16. Assessment of skin, joint, tendon and muscle involvement.

    NARCIS (Netherlands)

    Akesson, A.; Fiori, G.; Krieg, T.; Hoogen, F.H.J. van den; Seibold, J.R.

    2003-01-01

    This report makes recommendations for standardized techniques of data gathering and collection regarding: 1) skin involvement 2) joint and tendon involvement, and 3) involvement of the skeletal muscles. The recommendations in this report derive from a critical review of the available literature and

  17. The tendon approximator device in traumatic injuries.

    Science.gov (United States)

    Forootan, Kamal S; Karimi, Hamid; Forootan, Nazilla-Sadat S

    2015-01-01

    Precise and tension-free approximation of two tendon endings is the key predictor of outcomes following tendon lacerations and repairs. We evaluate the efficacy of a new tendon approximator device in tendon laceration repairs. In a comparative study, we used our new tendon approximator device in 99 consecutive patients with laceration of 266 tendons who attend a university hospital and evaluated the operative time to repair the tendons, surgeons' satisfaction as well as patient's outcomes in a long-term follow-up. Data were compared with the data of control patients undergoing tendon repair by conventional method. Totally 266 tendons were repaired by approximator device and 199 tendons by conventional technique. 78.7% of patients in first group were male and 21.2% were female. In approximator group 38% of patients had secondary repair of cut tendons and 62% had primary repair. Patients were followed for a mean period of 3years (14-60 months). Time required for repair of each tendon was significantly reduced with the approximator device (2 min vs. 5.5 min, ptendon repair were identical in the two groups and were not significantly different. 1% of tendons in group A and 1.2% in group B had rupture that was not significantly different. The new nerve approximator device is cheap, feasible to use and reduces the time of tendon repair with sustained outcomes comparable to the conventional methods.

  18. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling

    DEFF Research Database (Denmark)

    Barker, Holly E; Bird, Demelza; Lang, Georgina

    2013-01-01

    models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular...... fibroblasts, it was determined that expression of α-SMA was localized to fibroblasts recruited from the host tissue. This marker also revealed that the matrix present in tumors with reduced levels of LOXL2 was more scattered compared with control tumors which exhibited matrices with dense, parallel alignments....... Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of α-SMA...

  19. Combination of biochemical and mechanical cues for tendon tissue engineering.

    Science.gov (United States)

    Testa, Stefano; Costantini, Marco; Fornetti, Ersilia; Bernardini, Sergio; Trombetta, Marcella; Seliktar, Dror; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-11-01

    Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-β) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts.

    Science.gov (United States)

    Lu, F; Jiang, J; Li, N; Zhang, S; Sun, H; Luo, C; Wei, Y; Shi, D

    2011-09-15

    The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P fusion (P fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Daria Nawrocka

    2017-01-01

    Full Text Available Type 2 diabetes (T2D is a chronic metabolic disorder affecting increasing number of people in developed countries. Therefore new strategies for treatment of T2D and its complications are of special interest. Nowadays, cellular therapies involving mesenchymal stromal cells that reside in adipose tissue (ASCs constitute a promising approach; however, there are still many obstacles concerning safety and effectiveness that need to be overcome before ASCs could be engaged for the treatment of diabetes mellitus. One of the challenges is preventing ASCs from deterioration caused by elevated oxidative stress present in diabetes milieu. In the current study we investigated the effect of basic fibroblast growth factor (bFGF treatment on ASCs isolated from patients with diagnosed T2D. We demonstrate here that cell exposition to bFGF in 5 and 10 ng/mL dosages results in improved morphology, increased proliferative activity, reduced cellular senescence and apoptosis, and decreased oxidative stress, indicating recovery of ASCs’ function impaired by T2D. Therefore our results provide a support for bFGF as a potential therapeutic agent for improving stem cell-based approaches for the treatment of diabetes mellitus and its complications.

  2. Histopathological findings in chronic tendon disorders.

    Science.gov (United States)

    Järvinen, M; Józsa, L; Kannus, P; Järvinen, T L; Kvist, M; Leadbetter, W

    1997-04-01

    Tendon injuries and other tendon disorders represent a common diagnostic and therapeutic challenge in sports medicine, resulting in chronic and long-lasting problems. Tissue degeneration is a common finding in many sports-related tendon complaints. In the great majority of spontaneous tendon ruptures, chronic degenerative changes are seen at the rupture site of the tendon (1). Systemic diseases and diseases specifically deteriorating the normal structure of the tendon (i.e. foreign bodies, and metabolic, inherited and infectious tendon diseases) are only rarely the cause of tendon pathology. Inherited diseases, such as various hereditary diseases with disturbed collagen metabolism and characteristic pathological structural alterations (Ehlers-Danlos syndrome, Marfani syndrome, homocystinuria (ochronosis)), represent approximately 1% of the causes of chronic tendon complaints (2), whereas foreign bodies are somewhat more common and are found in less than 10% of all chronic tendon problems (1). Rheumatoid arthritis and sarcoidosis are typical systemic diseases that cause chronic inflammation in tendon and peritendinous tissues. Altogether, these 'specific' disorders represented less than 2% of the pathological alterations found in the histological analysis of more than 1000 spontaneously ruptured tendons (1, 3, 4). In this material, degenerative changes were seen in a great majority of the tendons, indicating that a spontaneous tendon rupture is a typical clinical end-state manifestation of a degenerative process in the tendon tissue. The role of overuse in the pathogenesis of chronic tendon injuries and disorders is not completely understood. It has been speculated that when tendon is overused it becomes fatigued and loses its basal reparative ability, the repetitive microtraumatic processes thus overwhelming the ability of the tendon cells to repair the fiber damage. The intensive repetitive activity, which often is eccentric by nature, may lead to cumulative

  3. Proteomics-based identification of novel proteins in temporal tendons of patients with masticatory muscle tendon--aponeurosis hyperplasia.

    Science.gov (United States)

    Nakamoto, A; Sato, T; Hirosawa, N; Nakamoto, N; Enoki, Y; Chida, D; Usui, M; Takeda, S; Nagai, T; Sasaki, A; Sakamoto, Y; Yoda, T

    2014-01-01

    Masticatory muscle tendon-aponeurosis hyperplasia (MMTAH) is a new disease associated with limited mouth opening that is often misdiagnosed as a temporomandibular disorder; subsequently, patients are mistakenly treated with irreversible operations. Due to the poor presentation and characterization of symptoms, the underlying pathological conditions remain unclear. We have previously conducted a proteomic analysis of tendons derived from one MMTAH subject and one facial deformity subject using two-dimensional fluorescence difference gel electrophoresis and liquid chromatography coupled with tandem mass spectrometry. However, the results were obtained for only one subject. The aim of the present study was to confirm the expression of specific molecules in tendon tissues from multiple subjects with MMTAH by applying two-dimensional polyacrylamide gel electrophoresis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Of the 19 proteins identified in tendons from both MMTAH and facial deformity patients, fibrinogen fragment D and beta-crystallin A4 were up-regulated, whereas myosin light chain 4 was down-regulated in MMTAH. We also found fibrinogen to be expressed robustly in tendon tissues of MMTAH patients. Our data provide the possibility that the distinctive expression of these novel proteins is associated with the pathology of MMTAH. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Second Harmonic Generation Imaging and Fourier Transform Spectral Analysis Reveal Damage in Fatigue-Loaded Tendons

    Science.gov (United States)

    Fung, David T.; Sereysky, Jedd B.; Basta-Pljakic, Jelena; Laudier, Damien M.; Huq, Rumana; Jepsen, Karl J.; Schaffler, Mitchell B.; Flatow, Evan L.

    2016-01-01

    Conventional histologic methods provide valuable information regarding the physical nature of damage in fatigue-loaded tendons, limited to thin, two-dimensional sections. We introduce an imaging method that characterizes tendon microstructure three-dimensionally and develop quantitative, spatial measures of damage formation within tendons. Rat patellar tendons were fatigue loaded in vivo to low, moderate, and high damage levels. Tendon microstructure was characterized using multiphoton microscopy by capturing second harmonic generation signals. Image stacks were analyzed using Fourier transform-derived computations to assess frequency-based properties of damage. Results showed 3D microstructure with progressively increased density and variety of damage patterns, characterized by kinked deformations at low, fiber dissociation at moderate, and fiber thinning and out-of-plane discontinuities at high damage levels. Image analysis generated radial distributions of power spectral gradients, establishing a “fingerprint” of tendon damage. Additionally, matrix damage was mapped using local, discretized orientation vectors. The frequency distribution of vector angles, a measure of damage content, differed from one damage level to the next. This study established an objective 3D imaging and analysis method for tendon microstructure, which characterizes directionality and anisotropy of the tendon microstructure and quantitative measures of damage that will advance investigations of the microstructural basis of degradation that precedes overuse injuries. PMID:20232150

  5. [Successive ruptures of patellar and Achilles tendons. Anabolic steroids in competitive sports].

    Science.gov (United States)

    Isenberg, J; Prokop, A; Skouras, E

    2008-01-01

    Derivatives of testosterone or of 19-nor-testosterone are used as anabolics for the purpose of improving performance although the effect of anabolics is known still to be under discussion. The use of anabolic steroids continues among competitive athletes despite increased controls and increasingly frequent dramatic incidents connected with them. Whereas metabolic dysfunction during anabolic use is well documented, ruptures of the large tendons are rarely reported. Within 18 months, a 29-year-old professional footballer needed surgery for rupture of the patellar tendon and of both Achilles tendons. Carefully directed questioning elicited confirmation that he had taken different anabolic steroids regularly for 3 years with the intention of improving his strength. After each operation anabolic steroids were taken again at a high dosage during early convalescence and training. Minimally invasive surgery and open suturing techniques led to complete union of the Achilles tendons in good time. Training and anabolic use (metenolon 300 mg per week) started early after suturing of the patellar tendon including bone tunnels culminated in histologically confirmed rerupture after 8 weeks. After a ligament reconstruction with a semitendinosus tendon graft with subsequent infection, the tendon and reserve traction apparatus were lost. Repeated warnings of impaired healing if anabolic use was continued had been given without success. In view of the high number of unrecorded cases in competitive and athletic sports, we can assume that the use of anabolic steroids is also of quantitative relevance in the operative treatment of tendon ruptures.

  6. Triceps brachii tendon: anatomic-MR imaging study in cadavers with histologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Belentani, Clarissa [University of California, Department of Radiology, San Diego, CA (United States); Pastore, Daniel; Wangwinyuvirat, Mani; Dirim, Berna; Trudell, Debra J.; Resnick, Donald [University of California, Department of Radiology, San Diego, CA (United States); University of California, VA Medical Center, San Diego, CA (United States); Haghighi, Parviz [University of California, VA Medical Center, San Diego, CA (United States); University of California, Department of Histology, San Diego (United States)

    2009-02-15

    The purpose of this cadaveric study was to describe the normal MR anatomy of the triceps brachii tendon (TBT) insertion, to correlate the findings with those seen in anatomic sections and histopathologic analysis, and to review triceps tendon injuries. Twelve cadaveric elbows were used according to institution guidelines. T1-weighted spin-echo MR images were acquired in three planes. Findings on MR imaging were correlated with those derived from anatomic and histologic study. On MR images, the TBT had a bipartite appearance as it inserted on olecranon in all specimens. The insertion of the medial head was deeper than that of the long and lateral heads and was mainly muscular at its insertion, with a small amount of the tendon blending with the muscle distally, necessitating histologic analysis to determine if there was tendon blending with the muscle at the site of insertion and if the medial head inserted together with the common tendon or as a single unit. At histopathologic analysis, the three heads of the triceps tendon had a common insertion on the olecranon. The bipartite aspect of the tendon that was identified in the MR images was not seen by histologic study, indicating that there was a union of the medial and common tendons just before they inserted into bone. TBT has a bipartite appearance on MR images and inserts on olecranon as a single unit. (orig.)

  7. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases.

    Science.gov (United States)

    Whitelock, J M; Murdoch, A D; Iozzo, R V; Underwood, P A

    1996-04-26

    Perlecan is a modular heparan sulfate proteoglycan that is localized to cell surfaces and within basement membranes. Its ability to interact with basic fibroblast growth factor (bFGF) suggests a central role in angiogenesis during development, wound healing, and tumor invasion. In the present study we investigated, using domain specific anti-perlecan monoclonal antibodies, the binding site of bFGF on human endothelial perlecan and its cleavage by proteolytic and glycolytic enzymes. The heparan sulfate was removed from perlecan by heparitinase treatment, and the approximately 450-kDa protein core was digested with various proteases. Plasmin digestion resulted in a large fragment of approximately 300 kDa, whereas stromelysin and rat collagenase cleaved the protein core into smaller fragments. All three proteases removed immunoreactivity toward the anti-domain I antibody. We showed also that perlecan bound bFGF specifically by the heparan sulfate chains located on the amino-terminal domain I. Once bound, the growth factor was released very efficiently by stromelysin, rat collagenase, plasmin, heparitinase I, platelet extract, and heparin. Interestingly, heparinase I, an enzyme with a substrate specificity for regions of heparan sulfate similar to those that bind bFGF, released only small amounts of bFGF. Our findings provide direct evidence that bFGF binds to heparan sulfate sequences attached to domain I and support the hypothesis that perlecan represents a major storage site for this growth factor in the blood vessel wall. Moreover, the concerted action of proteases that degrade the protein core and heparanases that remove the heparan sulfate may modulate the bioavailability of the growth factor.

  8. Functional efficacy of human recombinant FGF-2s tagged with (His)6 and (His-Asn)6 at the N- and C-termini in human gingival fibroblast and periodontal ligament-derived cells.

    Science.gov (United States)

    Lee, Ji-Hye; Lee, Ji-Eun; Kang, Kyung-Jung; Jang, Young-Joo

    2017-07-01

    Fibroblast growth factor (FGF) is a multifunctional growth factor that induces cell proliferation, survival, migration, and differentiation in various cell types and tissues. With these biological functions, FGF-2 has been evaluated for clinical use in the regeneration of damaged tissues. The expression of hFGF-2 in Escherichia coli and a purification system using the immobilized metal affinity chromatography (IMAC) is well established to generate a continuous supply of FGF-2. Although hexa-histidine tag (H6) is commonly used for IMAC purification, hexa-histidine-asparagine tag (HN6) is also efficient for purification as it is easily exposed on the surface of the protein. In this study, four different tagging constructs of hFGF-2 based on tag positions and types (H6-FGF2, FGF2-H6, HN6-FGF2, and FGF2-HN6) were designed and expressed under the inducible T7 expression system in E. coli. The experimental conditions of expression and purification of each recombinant protein were optimized. The effective dosages of the recombinant proteins were determined based on the increase of cell proliferation in human gingival fibroblast. ED50s of H6-FGF2, FGF2-H6, HN6-FGF2, and FGF2-HN6 were determined (4.42 ng/ml, 3.55 ng/ml, 3.54 ng/ml, and 4.14 ng/ml, respectively) and found to be comparable to commercial FGF-2 (3.67 ng/ml). All the recombinant hFGF-2s inhibit the osteogenic induction and mineralization in human periodontal ligament-derived cells. Our data suggested that biological activities of the recombinant hFGF-2 are irrelevant to types and positions of tags, but may have an influence on the expression efficiency and solubility. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Acute calcific tendinitis simulating tendon sheath infection.

    Science.gov (United States)

    Omololu, B; Alonge, T O; Ogunlade, S O

    2001-01-01

    Tendon sheath infection has catastrophic consequences if not diagnosed. We present acute calcific tendinitis, a simulator of tendon sheath infection with a good prognosis in a 14 year old athletic tennis player.

  10. Basic mechanisms of tendon fatigue damage

    OpenAIRE

    Neviaser, Andrew; Andarawis-Puri, Nelly; Flatow, Evan

    2012-01-01

    Pathologic processes intrinsic and extrinsic to the tendons have been proposed as the underlying cause of rotator cuff disease, but the precise etiology is not known. Tear formation is, in part, attributable to the accumulation of subrupture tendon fatigue damage. We review the molecular, mechanical, and structural changes induced in tendons subjected to controlled amounts of fatigue loading in an animal model of early tendinopathy. The distinct tendon responses to low and moderate levels of ...

  11. MRI of normal achilles tendon

    Energy Technology Data Exchange (ETDEWEB)

    Rollandi, G.A. [Institute of Radiology, Univ. of Genoa (Italy); Bertolotto, M. [Institute of Radiology, Univ. of Genoa (Italy); Perrone, R. [Institute of Radiology, Univ. of Genoa (Italy); Garlaschi, G. [Institute of Radiology, Univ. of Genoa (Italy); Derchi, L.E. [Institute of Radiology, Univ. of Genoa (Italy)

    1995-12-01

    To investigate the normal internal structure of tendons 11 volunteers without clinical evidence of tendinopathy were examined using conventional spin-echo T1-, T2- and proton-density weighted sequences. The Achilles tendon was chosen because of its high frequency of injury in athletic activity, large size, superficial position and because it is oriented nearly parallel to the static magnetic field, therefore minimizing the ``magic angle phenomenon``. The tendons exhibited areas of slighly increased signal in four T1-weighted and in all but one proton-density-weighted scans. No intratendinous signal was detected in T2-weighted images. The possible origin of these findings is discussed. We conclude that the knowledge of these normal signals may be useful to avoid incorrectly diagnosing as pathological. (orig.). With 2 figs.

  12. Achilles tendon reflex measuring system

    Science.gov (United States)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  13. Midportion Achilles tendinosis and the plantaris tendon.

    Science.gov (United States)

    Alfredson, Håkan

    2011-10-01

    When re-operating patients with midportion Achilles tendinosis, having had a poor effect of ultrasound (US) and Doppler-guided scraping, the author found the involvement of the plantaris tendon to be a likely reason for the poor result. The aim of this study was to investigate the occurrence of a plantaris tendon in close relation to the Achilles tendon in consecutive patients with midportion Achilles tendinosis undergoing treatment with US and Doppler-guided scraping. This study includes 73 consecutive tendons with chronic painful midportion Achilles tendinosis, where US+Doppler examination showed thickening, irregular tendon structure, hypo-echoic regions, and localised high blood flow outside and inside the ventral Achilles midportion. The tendons were treated with US+Doppler-guided scraping, via a medial incision. If there was a plantaris tendon located in close relation to the medial Achilles, it was extirpated. An invaginated, or 'close by located', enlarged plantaris tendon was found in 58 of 73 (80%) tendons. Preliminary clinical results of the combined procedure, US + Doppler-guided surgical scraping and extirpation of the plantaris tendon, are very promising. A thickened plantaris tendon located in close relation to the medial Achilles seems common in patients with chronic painful midportion tendinosis. The role of the plantaris tendon in midportion Achilles tendinosis needs to be further evaluated and should be kept in mind when treating this condition.

  14. Heel pain and Achilles tendonitis -- aftercare

    Science.gov (United States)

    ... About Your Injury The Achilles tendon connects your calf muscles to your heel bone. Together, they help ... running or jumping. Do activities that do not strain the tendon, such as ... and strengthen the muscles and tendon. Range of motion exercises will help ...

  15. Spontaneous Achilles tendon rupture in alkaptonuria | Mohammed ...

    African Journals Online (AJOL)

    Spontaneous Achilles tendon ruptures are uncommon. We present a 46-year-old man with spontaneous Achilles tendon rupture due to ochronosis. To our knowledge, this has not been previously reported in Sudan literature. The tendon of the reported patient healed well after debridement and primary repairs.

  16. Characterization of differential properties of rabbit tendon stem cells and tenocytes

    Directory of Open Access Journals (Sweden)

    Wang James

    2010-01-01

    Full Text Available Abstract Background Tendons are traditionally thought to consist of tenocytes only, the resident cells of tendons; however, a recent study has demonstrated that human and mouse tendons also contain stem cells, referred to as tendon stem/progenitor cells (TSCs. However, the differential properties of TSCs and tenocytes remain largely undefined. This study aims to characterize the properties of these tendon cells derived from rabbits. Methods TSCs and tenocytes were isolated from patellar and Achilles tendons of rabbits. The differentiation potential and cell marker expression of the two types of cells were examined using histochemical, immunohistochemical, and qRT-PCR analysis as well as in vivo implantation. In addition, morphology, colony formation, and proliferation of TSCs and tenocytes were also compared. Results It was found that TSCs were able to differentiate into adipocytes, chondrocytes, and osteocytes in vitro, and form tendon-like, cartilage-like, and bone-like tissues in vivo. In contrast, tenocytes had little such differentiation potential. Moreover, TSCs expressed the stem cell markers Oct-4, SSEA-4, and nucleostemin, whereas tenocytes expressed none of these markers. Morphologically, TSCs possessed smaller cell bodies and larger nuclei than ordinary tenocytes and had cobblestone-like morphology in confluent culture whereas tenocytes were highly elongated. TSCs also proliferated more quickly than tenocytes in culture. Additionally, TSCs from patellar tendons formed more numerous and larger colonies and proliferated more rapidly than TSCs from Achilles tendons. Conclusions TSCs exhibit distinct properties compared to tenocytes, including differences in cell marker expression, proliferative and differentiation potential, and cell morphology in culture. Future research should investigate the mechanobiology of TSCs and explore the possibility of using TSCs to more effectively repair or regenerate injured tendons.

  17. The effect of platelet-rich plasma on Achilles tendon healing in a rabbit model.

    Science.gov (United States)

    Takamura, Masaki; Yasuda, Toshito; Nakano, Atsushi; Shima, Hiroaki; Neo, Masashi

    2017-01-01

    The aim of the present study was to evaluate the effects of PRP on Achilles tendon healing in rabbits during the inflammatory, proliferative, and remodeling phases by histological examination and quantitative assessments. Fifty mature male Japanese albino rabbits with severed Achilles tendons were divided into two equal groups and treated with platelet-rich plasma (PRP) or left untreated. Tendon tissue was harvested at 1, 2, 3, 4, and 6 weeks after treatment, and sections were stained with hematoxylin-eosin and monoclonal antibodies against CD31 and type I collagen. Collagen fibers proliferated more densely early after severance, and subsequent remodeling of the collagen fibers and approximation of normal tendinous tissue occurred earlier in the PRP group than in the control group. The fibroblast number was significantly higher in the PRP group than in the control group at 1 and 2 weeks. Similarly, the area ratio of CD31-positive cells was significantly higher in the PRP group than in the control group at 1 and 2 weeks. Positive staining for type I collagen was more intense in the PRP group than in the control group after 3 weeks, indicating tendon maturation. Administration of PRP shortened the inflammatory phase and promoted tendon healing during the proliferative phase. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  18. [Comparative study on animal model of acute Achilles tendon rupture with surgical treatment using platelet-rich plasma].

    Science.gov (United States)

    Hernández-Martínez, J C; Vásquez, C R; Ceja, C B; Fuentes, C C E; Sesma, J F; Benítez, A G

    2012-01-01

    To compare the functional and histologicalal course of two animal model groups with acute Achilles tendon tears using platelet rich plasma. An open clinical trial was conducted with dogs donated by the animal facility of the Autonomous University of Puebla (BUAP, for its acronym in Spanish). Dogs were divided into 2 groups: a control group and a problem group. Intentional surgical Achilles tendon tear was performed to them. The Krackow technique was used to repair the tendon and the control group received platelet rich plasma (PRP) as a clot; the other group did not receive PRP. The dogs were seen at 4 weeks to check functionality using the Farell and Schwarz scale to assess the degree of limping. They were sacrificed at week 5; the tendons were removed and sent to the histopathology lab. Functionality results according to the Farell and Schwarz scale showed grades I and II in the problem group, and grades IV and V in the control group. Histologically, the problem group showed moderate vascular proliferation and abundant fibroblastic proliferation. The control group had mild to moderate vascular proliferation and moderate fibroblastic proliferation. PRP improves tendon healing and this has repercussions on functional recovery.

  19. Chronic Achilles tendon rupture reconstructed using hamstring tendon autograft.

    Science.gov (United States)

    Ellison, Philip; Mason, Lyndon William; Molloy, Andrew

    2016-03-01

    Chronic rupture of the Achilles tendon (delayed diagnosis of more than 4 weeks) can result in retraction of the tendon and inadequate healing. Direct repair may not be possible and augmentation methods are challenging when the defect exceeds 5-6 cm, especially if the distal stump is grossly tendinopathic. We describe our method of Achilles tendon reconstruction with ipsilateral semitendinosis autograft and interference screw fixation in a patient with chronic rupture, a 9 cm defect and gross distal tendinopathy. Patient reported outcome measures consistently demonstrated improved health status at 12 months post surgery: MOXFQ-Index 38-25, EQ5D-5L 18-9, EQ VAS 70-90 and VISA-A 1-64. The patient was back to full daily function, could single leg heel raise and was gradually returning to sport. No complications or adverse events were recorded. Reconstruction of chronic tears of the Achilles tendon with large defects and gross tendinopathy using an ipsilateral semitendinosis autograft and interference screw fixation can achieve satisfactory improvements in patient reported outcomes up to 1 year post-surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nutrition of flexor tendons in monkeys.

    Science.gov (United States)

    Manske, P R; Bridwell, K; Whiteside, L A; Lesker, P A

    1978-10-01

    The hydrogen washout technique was used to investigate the role of synovial diffusion versus vascular perfusion in the nutrition of monkey flexor tendons within the digital sheath. There was no significant difference in the uptake and washout of hydrogen tracer by tendons in contact with synovium but detached from the surrounding vasculature, compared to control tendons. However, there was insignificant uptake of tracer by tendons with intact vasculature, but separated from synovium. Synovial diffusion is a primary nutrient pathway of monkey flexor tendons within the digital sheath.

  1. Can PRP effectively treat injured tendons?

    Science.gov (United States)

    Wang, James H-C

    2014-01-01

    PRP is widely used to treat tendon and other tissue injuries in orthopaedics and sports medicine; however, the efficacy of PRP treatment on injured tendons is highly controversial. In this commentary, I reason that there are many PRP- and patient-related factors that influence the outcomes of PRP treatment on injured tendons. Therefore, more basic science studies are needed to understand the mechanism of PRP on injured tendons. Finally, I suggest that better understanding of the PRP action mechanism will lead to better use of PRP for the effective treatment of tendon injuries in clinics.

  2. Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    Hallgren, Oskar; Rolandsson, Sara; Andersson-Sjöland, Annika; Nihlberg, Kristian; Wieslander, Elisabet; Kvist-Reimer, Martina; Dahlbäck, Magnus; Eriksson, Leif; Bjermer, Leif; Erjefält, Jonas S; Löfdahl, Claes-Göran; Westergren-Thorsson, Gunilla

    2012-08-22

    During wound healing processes fibroblasts account for wound closure by adopting a contractile phenotype. One disease manifestation of COPD is emphysema which is characterized by destruction of alveolar walls and our hypothesis is that fibroblasts in the COPD lungs differentiate into a more contractile phenotype as a response to the deteriorating environment. Bronchial (central) and parenchymal (distal) fibroblasts were isolated from lung explants from COPD patients (n = 9) (GOLD stage IV) and from biopsies from control subjects and from donor lungs (n = 12). Tissue-derived fibroblasts were assessed for expression of proteins involved in fibroblast contraction by western blotting whereas contraction capacity was measured in three-dimensional collagen gels. The basal expression of rho-associated coiled-coil protein kinase 1 (ROCK1) was increased in both centrally and distally derived fibroblasts from COPD patients compared to fibroblasts from control subjects (p < 0.001) and (p < 0.01), respectively. Distally derived fibroblasts from COPD patients had increased contractile capacity compared to control fibroblasts (p < 0.01). The contraction was dependent on ROCK1 activity as the ROCK inhibitor Y27632 dose-dependently blocked contraction in fibroblasts from COPD patients. ROCK1-positive fibroblasts were also identified by immunohistochemistry in the alveolar parenchyma in lung tissue sections from COPD patients. Distally derived fibroblasts from COPD patients have an enhanced contractile phenotype that is dependent on ROCK1 activity. This feature may be of importance for the elastic dynamics of small airways and the parenchyma in late stages of COPD.

  3. Antitumor Effect of AZD4547 in a Fibroblast Growth Factor Receptor 2–Amplified Gastric Cancer Patient–Derived Cell Model

    Directory of Open Access Journals (Sweden)

    Jiryeon Jang

    2017-08-01

    Full Text Available BACKGROUND: FGFR2 amplification is associated with aggressive gastric cancer (GC, and targeted drugs have been developed for treatment of GC. We evaluated the antitumor activity of an FGFR inhibitor in FGFR2-amplified GC patients with peritoneal carcinomatosis. METHODS: Two GC patients with FGFR2 amplification confirmed by fluorescence in situ hybridization showed peritoneal seeding and malignant ascites. We used the patient-derived xenograft model; patient-derived cells (PDCs from malignant ascites were used to assess FGFR2 expression and its downstream pathway using immunofluorescence analysis and immunoblot assay in vitro. Apoptosis and cell cycle arrest after treatment of FGFR inhibitor were analyzed by Annexin V-FITC assay and cell cycle analysis. RESULTS: FGFR2 amplification was verified in both PDC lines. AZD4547 as an FGFR inhibitor decreased proliferation of PDCs, and the IC50 value was estimated to be 250 nM in PDC#1 and 210 nM in PDC#2. FGFR inhibitor also significantly decreased levels of phosphorylated FGFR2 and downstream signaling molecules in FGFR2-amplified PDC lines. In cell cycle analysis, apoptosis was significantly increased in AZD4547-treated cells compared with nontreated cells. The proportion of cells in the sub-G1 stage was significantly higher in AZD4547-treated PDCs than in control cells. CONCLUSION: Our findings suggest that FGFR2 amplification is a relevant therapeutic target in GC with peritoneal carcinomatosis.

  4. Hyaluronic acid production by irradiated human synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yaron, M.; Yaron, I.; Levita, M.; Herzberg, M.

    1977-03-01

    Radioactive particles as well as x irradiation from an external source has been used in the treatment of rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. In order to clarify effects of ionizing irradiation on synovial cells, radioactive gold (/sup 198/Au) and yttrium (/sup 90/Y) were added to fibroblast cultures derived from human synovial membranes. Other cultures were irradiated by a Picker x-ray machine. Fibroblast growth and hyaluronic acid production were measured. Radioactive gold and yttrium particles induced a significant increase of hyaluronic acid synthesis rate (pg/cell/day) and inhibited fibroblast growth. Fibroblasts continued to overproduce hyaluronic acid and to show growth inhibition 3 weeks after irradiation with radioactive gold. Hydrocortisone inhibited hyaluronic acid overproduction induced by radioactive gold. Overproduction of hyaluronic acid induced by the x-ray machine was inhibited by hydrocortisone, actinomycin-D, and cycloheximide. Fibroblasts derived from normal and rheumatoid patients responded similarly to ionizing irradiation.

  5. Bioreactor Design for Tendon/Ligament Engineering

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  6. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair

    Science.gov (United States)

    Guerquin, Marie-Justine; Charvet, Benjamin; Nourissat, Geoffroy; Havis, Emmanuelle; Ronsin, Olivier; Bonnin, Marie-Ange; Ruggiu, Mathilde; Olivera-Martinez, Isabel; Robert, Nicolas; Lu, Yinhui; Kadler, Karl E.; Baumberger, Tristan; Doursounian, Levon; Berenbaum, Francis; Duprez, Delphine

    2013-01-01

    Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1–/– mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro–engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-β2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies. PMID:23863709

  7. Functionally Distinct Tendons From Elastin Haploinsufficient Mice Exhibit Mild Stiffening and Tendon-Specific Structural Alteration.

    Science.gov (United States)

    Eekhoff, Jeremy D; Fang, Fei; Kahan, Lindsey G; Espinosa, Gabriela; Cocciolone, Austin J; Wagenseil, Jessica E; Mecham, Robert P; Lake, Spencer P

    2017-11-01

    Elastic fibers are present in low quantities in tendon, where they are located both within fascicles near tenocytes and more broadly in the interfascicular matrix (IFM). While elastic fibers have long been known to be significant in the mechanics of elastin-rich tissue (i.e., vasculature, skin, lungs), recent studies have suggested a mechanical role for elastic fibers in tendons that is dependent on specific tendon function. However, the exact contribution of elastin to properties of different types of tendons (e.g., positional, energy-storing) remains unknown. Therefore, this study purposed to evaluate the role of elastin in the mechanical properties and collagen alignment of functionally distinct supraspinatus tendons (SSTs) and Achilles tendons (ATs) from elastin haploinsufficient (HET) and wild type (WT) mice. Despite the significant decrease in elastin in HET tendons, a slight increase in linear stiffness of both tendons was the only significant mechanical effect of elastin haploinsufficiency. Additionally, there were significant changes in collagen nanostructure and subtle alteration to collagen alignment in the AT but not the SST. Hence, elastin may play only a minor role in tendon mechanical properties. Alternatively, larger changes to tendon mechanics may have been mitigated by developmental compensation of HET tendons and/or the role of elastic fibers may be less prominent in smaller mouse tendons compared to the larger bovine and human tendons evaluated in previous studies. Further research will be necessary to fully elucidate the influence of various elastic fiber components on structure-function relationships in functionally distinct tendons.

  8. Multiple extensor tendons reconstruction with hamstring tendon grafts and flap coverage for severe dorsal hand injuries.

    Science.gov (United States)

    Ozbaydar, M; Orman, O; Ozel, O; Altan, E

    2017-10-10

    Treatment of patients with traumatic loss of skin and multiple extensor tendons on the dorsum of the hand is a challenge. The aim of this study was to assess the outcome after reconstruction of soft tissues and multiple extensor tendons in patients who suffered traumatic loss of skin and multiple extensor tendons. Ten patients were enrolled in the study. These patients underwent single-stage reconstruction with autogenous hamstring tendon grafts for multiple extensor tendon defects and fasciocutaneous flaps for coverage of dorsal hand defects. In total, 25 tendons (2 tendons in 5 patients and 3 tendons in 5 patients) were reconstructed. The semitendinosus tendon was used in all patients and the gracilis tendon was added in five patients for tendon reconstruction. Total tendon length requiring reconstruction was between 9cm and 31cm. Free anterolateral thigh flaps were used in six patients and reverse pedicled forearm flaps were used in four patients. According to Miller's scoring system, 8 fingers had excellent results, 12 fingers had good results and 5 fingers had fair results at the final follow-up. Hamstring tendons can be used satisfactorily for primary reconstruction of multiple digital extensor tendons due to their availability and compatibility, with a fasciocutaneous flap. IV. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.

  9. Hyperuricemic PRP in Tendon Cells

    Directory of Open Access Journals (Sweden)

    I. Andia

    2014-01-01

    Full Text Available Platelet-rich plasma (PRP is injected within tendons to stimulate healing. Metabolic alterations such as the metabolic syndrome, diabetes, or hyperuricemia could hinder the therapeutic effect of PRP. We hypothesise that tendon cells sense high levels of uric acid and this could modify their response to PRP. Tendon cells were treated with allogeneic PRPs for 96 hours. Hyperuricemic PRP did not hinder the proliferative actions of PRP. The gene expression pattern of inflammatory molecules in response to PRP showed absence of IL-1b and COX1 and modest expression of IL6, IL8, COX2, and TGF-b1. IL8 and IL6 proteins were secreted by tendon cells treated with PRP. The synthesis of IL6 and IL8 proteins induced by PRP is decreased significantly in the presence of hyperuricemia (P = 0.017 and P = 0.012, resp.. Concerning extracellular matrix, PRP-treated tendon cells displayed high type-1 collagen, moderate type-3 collagen, decorin, and hyaluronan synthase-2 expression and modest expression of scleraxis. Hyperuricemia modified the expression pattern of extracellular matrix proteins, upregulating COL1 (P = 0.036 and COMP (P = 0.012 and downregulating HAS2 (P = 0.012. Positive correlations between TGF-b1 and type-1 collagen (R = 0.905, P = 0.002 and aggrecan (R = 0.833, P = 0.010 and negative correlations between TGF-b1 and IL6 synthesis (R = −0.857, P = 0.007 and COX2 (R = −0.810, P = 0.015 were found.

  10. The biological activities of (1,3)-(1,6)-{beta}-d-glucan and porous electrospun PLGA membranes containing {beta}-glucan in human dermal fibroblasts and adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Yeon I; Park, Bong Joo; Kim, Hye-Lee; Lee, Mi Hee; Kim, Jungsung; Park, Jong-Chul [Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yang, Young-Il [Department of Pathology, School of Medicine, Paik Institute for Clinical Research, Inje University, 633-165 Gae-dong, Busan-jin-gu, Busan 614-735 (Korea, Republic of); Kim, Jung Koo [Department of Biomedical Engineering, College of Biomedical Science and Engineering, Inje University, Kimhae 621-749 (Korea, Republic of); Tsubaki, Kazufumi [R and D division, Asahi Denka Co. Ltd, 7-2-35 Higashi-ogu, Arakawa-ku, Tokyo 116-8554 (Japan); Han, Dong-Wook, E-mail: parkjc@yuhs.a [Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University, geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2010-08-01

    In this study, we investigated the possible roles of (1,3)-(1,6)-{beta}-d-glucan ({beta}-glucan) and porous electrospun poly-lactide-co-glycolide (PLGA) membranes containing {beta}-glucan for skin wound healing, especially their effect on adult human dermal fibroblast (aHDF) and adipose tissue-derived stem cell (ADSC) activation, proliferation, migration, collagen gel contraction and biological safety tests of the prepared membrane. This study demonstrated that {beta}-glucan and porous PLGA membranes containing {beta}-glucan have enhanced the cellular responses, proliferation and migration, of aHDFs and ADSCs and the result of a collagen gel contraction assay also revealed that collagen gels contract strongly after 4 h post-gelation incubation with {beta}-glucan. Furthermore, we confirmed that porous PLGA membranes containing {beta}-glucan are biologically safe for wound healing study. These results indicate that the porous PLGA membranes containing {beta}-glucan interacted favorably with the membrane and the topical administration of {beta}-glucan was useful in promoting wound healing. Therefore, our study suggests that {beta}-glucan and porous PLGA membranes containing {beta}-glucan may be useful as a material for enhancing wound healing.

  11. Induction of Tenogenic Differentiation Mediated by Extracellular Tendon Matrix and Short-Term Cyclic Stretching

    Directory of Open Access Journals (Sweden)

    Janina Burk

    2016-01-01

    Full Text Available Tendon and ligament pathologies are still a therapeutic challenge, due to the difficulty in restoring the complex extracellular matrix architecture and biomechanical strength. While progress is being made in cell-based therapies and tissue engineering approaches, comprehensive understanding of the fate of progenitor cells in tendon healing is still lacking. The aim of this study was to investigate the effect of decellularized tendon matrix and moderate cyclic stretching as natural stimuli which could potentially direct tenogenic fate. Equine adipose-derived mesenchymal stromal cells (MSC were seeded on decellularized tendon matrix scaffolds. Mechanical stimulation was applied in a custom-made cyclic strain bioreactor. Assessment was performed 4 h, 8 h, and 24 h following mechanical stimulation. Scaffold culture induced cell alignment and changes in expression of tendon-related genes, although cell viability was decreased compared to monolayer culture. Short mechanical stimulation periods enhanced most of the scaffold-induced effects. Collagen 1A2 expression levels were decreased, while collagen 3A1 and decorin levels were increased. Tenascin-C and scleraxis expression showed an initial decrease but had increased 24 h after stimulation. The results obtained suggest that decellularized tendon matrix, supported by cyclic stretching, can induce tenogenic differentiation and the synthesis of tendon components important for matrix remodeling.

  12. The effects of scaffold architecture and fibrin gel addition on tendon cell phenotype.

    Science.gov (United States)

    Pawelec, K M; Wardale, R J; Best, S M; Cameron, R E

    2015-01-01

    Development of tissue engineering scaffolds relies on careful selection of pore architecture and chemistry of the cellular environment. Repair of skeletal soft tissue, such as tendon, is particularly challenging, since these tissues have a relatively poor healing response. When removed from their native environment, tendon cells (tenocytes) lose their characteristic morphology and the expression of phenotypic markers. To stimulate tendon cells to recreate a healthy extracellular matrix, both architectural cues and fibrin gels have been used in the past, however, their relative effects have not been studied systematically. Within this study, a combination of collagen scaffold architecture, axial and isotropic, and fibrin gel addition was assessed, using ovine tendon-derived cells to determine the optimal strategy for controlling the proliferation and protein expression. Scaffold architecture and fibrin gel addition influenced tendon cell behavior independently in vitro. Addition of fibrin gel within a scaffold doubled cell number and increased matrix production for all architectures studied. However, scaffold architecture dictated the type of matrix produced by cells, regardless of fibrin addition. Axial scaffolds, mimicking native tendon, promoted a mature matrix, with increased tenomodulin, a marker for mature tendon cells, and decreased scleraxis, an early transcription factor for connective tissue. This study demonstrated that both architectural cues and fibrin gel addition alter cell behavior and that the combination of these signals could improve clinical performance of current tissue engineering constructs.

  13. Alzheimer skin fibroblasts show increased susceptibility to free radicals.

    Science.gov (United States)

    Tesco, G; Latorraca, S; Piersanti, P; Piacentini, S; Amaducci, L; Sorbi, S

    1992-11-01

    We have studied the response to toxic oxygen metabolites of fibroblasts derived from skin biopsies of 5 patients with familial (FAD) and 4 with sporadic (AD) Alzheimer's disease compared with those derived from 4 normal controls. Fibroblasts were damaged by the generation of oxygen metabolites during the enzymatic oxidation of acetaldehyde by 50 munits of xanthine-oxidase (Xo). To quantify cell damage we measured lactate dehydrogenase (LDH) activity in the culture medium and cell viability in fibroblast cultures. We found a significant increase in LDH activity in the FAD vs. controls and also in the AD vs. controls.

  14. Mechanical properties of the human Achilles tendon, in vivo

    DEFF Research Database (Denmark)

    Kongsgaard, M; Nielsen, C H; Hegnsvad, S

    2011-01-01

    Ultrasonography has been widely applied for in vivo measurements of tendon mechanical properties. Assessments of human Achilles tendon mechanical properties have received great interest. Achilles tendon injuries predominantly occur in the tendon region between the Achilles-soleus myotendinous...... Achilles tendon in vivo by the use of ultrasonography and 2) assess the between-day reproducibility of these measurements....

  15. [Diagnosis of flexor tendon injuries of the hand].

    Science.gov (United States)

    Hahn, P; Unglaub, F; Spies, C K

    2015-10-01

    Open or closed flexor tendon injuries may be caused by a variety of circumstances. Loss of function based on flexor tendon injuries is quite often missed. Therefore, a precise knowledge of the anatomy, the biomechanical behaviour of tendons and the intrinsic hand muscles enables the clinician to examine flexor tendon injuries adequately. This article focuses on relevant clinical tests for flexor tendon injuries.

  16. Tendon healing in vivo. An experimental model.

    Science.gov (United States)

    Abrahamsson, S O; Lundborg, G; Lohmander, L S

    1989-01-01

    Flexor tendon segments were incubated in a diffusion chamber in the subcutis of rabbits. Tendons incubated up to 6 weeks in the diffusion chamber showed proliferating and migrating cells from the epitenon cell layer as well as viable endotenon cells. Explants frozen in liquid nitrogen prior to incubation showed no signs of extrinsic cell contamination and remained non-viable indicating that no cell penetration occurred through the Millipore filter and that cell division seen in non-frozen and incubated tendons was an expression of intrinsic cellular proliferative capacity of the tendon. In tendon segments incubated in chambers for three weeks, collagen synthesis was reduced by 50% and the rate of cell proliferation measured as 3H-thymidine incorporation, was 15 times that of native tendons. Frozen and incubated tendons showed only traces of remaining matrix synthesis or cell proliferation. With this experimental model we have histologically and biochemically shown that tendons may survive and heal while the nutrition exclusively could be based on diffusion and the tendons have an intrinsic capacity of healing. The described model enables further studies on tendon healing and its regulation.

  17. Ipsilateral free semitendinosus tendon graft transfer for reconstruction of chronic tears of the Achilles tendon

    Directory of Open Access Journals (Sweden)

    Gougoulias Nikolaos

    2008-07-01

    Full Text Available Abstract Background Many techniques have been developed for the reconstruction of the Achilles tendon in chronic tears. In presence of a large gap (greater than 6 centimetres, tendon augmentation is required. Methods We present our method of minimally invasive semitendinosus reconstruction for the Achilles tendon using one para-midline and one midline incision. Results The first incision is a 5 cm longitudinal incision, made 2 cm proximal and just medial to the palpable end of the residual tendon. The second incision is 3 cm long and is also longitudinal but is 2 cm distal and in the midline to the distal end of the tendon rupture. The distal and proximal Achilles tendon stumps are mobilised. After trying to reduce the gap of the ruptured Achilles tendon, if the gap produced is greater than 6 cm despite maximal plantar flexion of the ankle and traction on the Achilles tendon stumps, the ipsilateral semitendinosus tendon is harvested. The semitendinosus tendon is passed through small incisions in the substance of the proximal stump of the Achilles tendon, and it is sutured to the Achilles tendon. It is then passed beneath the intact skin bridge into the distal incision, and passed from medial to lateral through a transverse tenotomy in the distal stump. With the ankle in maximal plantar flexion, the semitendinosus tendon is sutured to the Achilles tendon at each entry and exit point Conclusion This minimally invasive technique allows reconstruction of the Achilles tendon using the tendon of semitendinosus preserving skin integrity over the site most prone to wound breakdown, and can be especially used to reconstruct the Achilles tendon in the presence of large gap (greater than 6 centimetres.

  18. Exposure of a tendon extracellular matrix to synovial fluid triggers endogenous and engrafted cell death: A mechanism for failed healing of intrathecal tendon injuries.

    Science.gov (United States)

    Garvican, Elaine R; Salavati, Mazdak; Smith, Roger K W; Dudhia, Jayesh

    2017-09-01

    The purpose of this study was to investigate the effect of normal synovial fluid (SF) on exposed endogenous tendon-derived cells (TDCs) and engrafted mesenchymal stem cells (MSCs) within the tendon extracellular matrix. Explants from equine superficial digital flexor (extra-synovial) and deep digital flexor tendons (DDFTs) from the compressed, intra-synovial and the tensile, extra-synovial regions were cultured in allogeneic or autologous SF-media. Human hamstring explants were cultured in allogeneic SF. Explant viability was assessed by staining. Proliferation of equine monolayer MSCs and TDCs in SF-media and co-culture with DDFT explants was determined by alamarblue®. Non-viable Native Tendon matrices (NNTs) were re-populated with MSCs or TDCs and cultured in SF-media. Immunohistochemical staining of tendon sections for the apoptotic proteins caspase-3, -8, and -9 was performed. Contact with autologous or allogeneic SF resulted in rapid death of resident tenocytes in equine and human tendon. SF did not affect the viability of equine epitenon cells, or of MSCs and TDCs in the monolayer or indirect explant co-culture. MSCs and TDCs, engrafted into NNTs, died when cultured in SF. Caspase-3, -8, and -9 expression was the greatest in SDFT explants exposed to allogeneic SF. The efficacy of cells administered intra-synovially for tendon lesion repair is likely to be limited, since once incorporated into the matrix, cells become vlnerable to the adverse effects of SF. These observations could account for the poor success rate of intra-synovial tendon healing following damage to the epitenon and contact with SF, common with most soft tissue intra-synovial pathologies.

  19. Collagen Structure of Tendon Relates to Function

    Directory of Open Access Journals (Sweden)

    Marco Franchi

    2007-01-01

    Full Text Available A tendon is a tough band of fibrous connective tissue that connects muscle to bone, designed to transmit forces and withstand tension during muscle contraction. Tendon may be surrounded by different structures: 1 fibrous sheaths or retinaculae; 2 reflection pulleys; 3 synovial sheaths; 4 peritendon sheaths; 5 tendon bursae. Tendons contain a few cells, mostly represented by tenoblasts along with endothelial cells and some chondrocytes; b proteoglycans (PGs, mainly decorin and hyaluronan, and c collagen, mostly type I. Tendon is a good example of a high ordered extracellular matrix in which collagen molecules assemble into filamentous collagen fibrils (formed by microfibrils which aggregate to form collagen fibers, the main structural components. It represents a multihierarchical structure as it contains collagen molecules arranged in fibrils then grouped in fibril bundles, fascicles and fiber bundles that are almost parallel to the long axis of the tendon, named as primary, secondary and tertiary bundles. Collagen fibrils in tendons show prevalently large diameter, a D-period of about 67 nm and appear built of collagen molecules lying at a slight angle (< 5°. Under polarized light microscopy the collagen fiber bundles appear crimped with alternative dark and light transverse bands. In recent studies tendon crimps observed via SEM and TEM show that the single collagen fibrils suddenly changing their direction contain knots. These knots of collagen fibrils inside each tendon crimp have been termed “fibrillar crimps”, and even if they show different aspects they all may fulfil the same functional role. As integral component of musculoskeletal system, the tendon acts to transmit muscle forces to the skeletal system. There is no complete understanding of the mechanisms in transmitting/absorbing tensional forces within the tendon; however it seems likely that a flattening of tendon crimps may occur at a first stage of tendon stretching

  20. Field Evaluation of the System Identification Approach for Tension Estimation of External Tendons

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Noh

    2015-01-01

    Full Text Available Various types of external tendons are considered to verify the applicability of tension estimation method based on the finite element model with system identification technique. The proposed method is applied to estimate the tension of benchmark numerical example, model structure, and field structure. The numerical and experimental results show that the existing methods such as taut string theory and linear regression method show large error in the estimated tension when the condition of external tendon is different with the basic assumption used during the derivation of relationship between tension and natural frequency. However, the proposed method gives reasonable results for all of the considered external tendons in this study. Furthermore, the proposed method can evaluate the accuracy of estimated tension indirectly by comparing the measured and calculated natural frequencies. Therefore, the proposed method can be effectively used for field application of various types of external tendons.

  1. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration☆

    Science.gov (United States)

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-01-01

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7–21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  2. Biceps tendon disorders in athletes.

    Science.gov (United States)

    Eakin, C L; Faber, K J; Hawkins, R J; Hovis, W D

    1999-01-01

    It has been proposed that the long head of the biceps functions as a humeral head depressor and stabilizer. In addition, in many overhead sports, the biceps helps to accelerate and decelerate the arm. With improper training or fatigue, inordinate stresses can be placed on the biceps as it attempts to compensate for other muscles. This can lead to attrition and failure, either within the tendon substance or at its origin. Bicipital problems in athletes usually occur in conjunction with other types of shoulder disorders, such as rotator cuff impingement and glenohumeral instability, making determination of the role and degree of biceps involvement difficult. Conditions affecting the biceps tendon in athletes can be generally classified as degeneration, instability, and disorders of the origin. Because of the close association of biceps lesions with other abnormalities, a thorough evaluation of the shoulder with a suspected biceps disorder is essential. Treatment of bicipital problems in athletes must often be accompanied by treatment of associated shoulder conditions.

  3. Nutrient pathways of flexor tendons in primates.

    Science.gov (United States)

    Manske, P R; Lesker, P A

    1982-09-01

    The perfusion and diffusion pathways to the flexor profundus tendons of 40 monkeys were investigated by measuring the uptake of tritiated proline by various tendon segments. In the absence of all vascular connections, the process of diffusion provides nutrients to all areas of flexor tendon and in this study the process of diffusion was greater. The distal segment of tendon was observed to be profused most rapidly. The proximal tendon segment is perfused from both the muscular-tendinous junction and the vinculum longus; vincular segment perfusion is via the vinculum longus vessels alone; central segment perfusion is shared by the vinculum longus and vinculum brevis vasculature. The distal segment uptake is by both the process of diffusion or vinculum brevis perfusion. The osseous attachment at the distal phalanx contributes little to tendon nutrition.

  4. Nutrient pathways of flexor tendons in primates

    Energy Technology Data Exchange (ETDEWEB)

    Manske, P.R.; Lesker, P.A.

    1982-09-01

    The perfusion and diffusion pathways to the flexor profundus tendons of 40 monkeys were investigated by measuring the uptake of tritiated proline by various tendon segments. In the absence of all vascular connections, the process of diffusion provides nutrients to all areas of flexor tendon and in this study the process of diffusion was greater. The distal segment of tendon was observed to be profused most rapidly. The proximal tendon segment is perfused from both the muscular-tendinous junction and the vinculum longus; vincular segment perfusion is via the vinculum longus vessels alone; central segment perfusion is shared by the vinculum longus and vinculum brevis vasculature. The distal segment uptake is by both the process of diffusion or vinculum brevis perfusion. The osseous attachment at the distal phalanx contributes little to tendon nutrition.

  5. Achilles tendon rupture in badminton.

    Science.gov (United States)

    Kaalund, S; Lass, P; Høgsaa, B; Nøhr, M

    1989-01-01

    The typical badminton player with an Achilles tendon rupture is 36 years old and, despite limbering up, is injured at the rear line in a sudden forward movement. He resumes work within three months and has a slight lack of dorsiflexion in the ankle as the main complication. Most patients resume badminton within one year, but some finish their sports career, mainly due to fear of a new injury. The investigation discusses predisposing factors and prophylactic measures. PMID:2605439

  6. Investigating tendon mineralisation in the avian hindlimb: a model for tendon ageing, injury and disease

    Science.gov (United States)

    Agabalyan, Natacha A; Evans, Darrell J R; Stanley, Rachael L

    2013-01-01

    Mineralisation of the tendon tissue has been described in various models of injury, ageing and disease. Often resulting in painful and debilitating conditions, the processes underlying this mechanism are poorly understood. To elucidate the progression from healthy tendon to mineralised tendon, an appropriate model is required. In this study, we describe the spontaneous and non-pathological ossification and calcification of tendons of the hindlimb of the domestic chicken (Gallus gallus domesticus). The appearance of the ossified avian tendon has been described previously, although there have been no studies investigating the developmental processes and underlying mechanisms leading to the ossified avian tendon. The tissue and cells from three tendons – the ossifying extensor and flexor digitorum longus tendons and the non-ossifying Achilles tendon – were analysed for markers of ageing and mineralisation using histology, immunohistochemistry, cytochemistry and molecular analysis. Histologically, the adult tissue showed a loss of healthy tendon crimp morphology as well as markers of calcium deposits and mineralisation. The tissue showed a lowered expression of collagens inherent to the tendon extracellular matrix and presented proteins expressed by bone. The cells from the ossified tendons showed a chondrogenic and osteogenic phenotype as well as tenogenic phenotype and expressed the same markers of ossification and calcification as the tissue. A molecular analysis of the gene expression of the cells confirmed these results. Tendon ossification within the ossified avian tendon seems to be the result of an endochondral process driven by its cells, although the roles of the different cell populations have yet to be elucidated. Understanding the role of the tenocyte within this tissue and the process behind tendon ossification may help us prevent or treat ossification that occurs in injured, ageing or diseased tendon. PMID:23826786

  7. Quadriceps tendon allografts as an alternative to Achilles tendon allografts: a biomechanical comparison.

    Science.gov (United States)

    Mabe, Isaac; Hunter, Shawn

    2014-12-01

    Quadriceps tendon with a patellar bone block may be a viable alternative to Achilles tendon for anterior cruciate ligament reconstruction (ACL-R) if it is, at a minimum, a biomechanically equivalent graft. The objective of this study was to directly compare the biomechanical properties of quadriceps tendon and Achilles tendon allografts. Quadriceps and Achilles tendon pairs from nine research-consented donors were tested. All specimens were processed to reduce bioburden and terminally sterilized by gamma irradiation. Specimens were subjected to a three phase uniaxial tension test performed in a custom environmental chamber to maintain the specimens at a physiologic temperature (37 ± 2 °C) and misted with a 0.9 % NaCl solution. There were no statistical differences in seven of eight structural and mechanical between the two tendon types. Quadriceps tendons exhibited a significantly higher displacement at maximum load and significantly lower stiffness than Achilles tendons. The results of this study indicated a biomechanical equivalence of aseptically processed, terminally sterilized quadriceps tendon grafts with bone block to Achilles tendon grafts with bone block. The significantly higher displacement at maximum load, and lower stiffness observed for quadriceps tendons may be related to the failure mode. Achilles tendons had a higher bone avulsion rate than quadriceps tendons (86 % compared to 12 %, respectively). This was likely due to observed differences in bone block density between the two tendon types. This research supports the use of quadriceps tendon allografts in lieu of Achilles tendon allografts for ACL-R.

  8. Effect of Aloe vera application on the content and molecular arrangement of glycosaminoglycans during calcaneal tendon healing.

    Science.gov (United States)

    Aro, Andrea Aparecida de; Esquisatto, Marcelo Augusto Marretto; Nishan, Umar; Perez, Mylena Oliveira; Rodrigues, Rodney Alexandre Ferreira; Foglio, Mary Ann; Carvalho, João Ernesto de; Gomes, Laurecir; Vidal, Benedicto De Campos; Pimentel, Edson Rosa

    2014-12-01

    Although several treatments for tendon lesions have been proposed, successful tendon repair remains a great challenge for orthopedics, especially considering the high incidence of re-rupture of injured tendons. Our aim was to evaluate the pharmacological potential of Aloe vera on the content and arrangement of glycosaminoglycans (GAGs) during tendon healing, which was based on the effectiveness of A. vera on collagen organization previously observed by our group. In rats, a partial calcaneal tendon transection was performed with subsequent topical A. vera application at the injury site. The tendons were treated with A. vera ointment for 7 days and excised on the 7(th) , 14(th) , or 21(st) day post-surgery. Control rats received ointment without A. vera. A higher content of GAGs and a lower amount of dermatan sulfate were detected in the A. vera-treated group on the 14(th) day compared with the control. Also at 14 days post-surgery, a lower dichroic ratio in toluidine blue stained sections was observed in A. vera-treated tendons compared with the control. No differences were observed in the chondroitin-6-sulfate and TGF-β1 levels between the groups, and higher amount of non-collagenous proteins was detected in the A. vera-treated group on the 21(st) day, compared with the control group. No differences were observed in the number of fibroblasts, inflammatory cells and blood vessels between the groups. The application of A. vera during tendon healing modified the arrangement of GAGs and increased the content of GAGs and non-collagenous proteins. © 2014 Wiley Periodicals, Inc.

  9. Multipotent Mesenchymal Stem Cells from Human Subacromial Bursa: Potential for Cell Based Tendon Tissue Engineering

    Science.gov (United States)

    Song, Na; Armstrong, April D.; Li, Feng; Ouyang, Hongsheng

    2014-01-01

    Rotator cuff injuries are a common clinical problem either as a result of overuse or aging. Biological approaches to tendon repair that involve use of scaffolding materials or cell-based approaches are currently being investigated. The cell-based approaches are focused on applying multipotent mesenchymal stem cells (MSCs) mostly harvested from bone marrow. In the present study, we focused on characterizing cells harvested from tissues associated with rotator cuff tendons based on an assumption that these cells would be more appropriate for tendon repair. We isolated MSCs from bursa tissue associated with rotator cuff tendons and characterized them for multilineage differentiation in vitro and in vivo. Human bursa was obtained from patients undergoing rotator cuff surgery and cells within were isolated using collagenase and dispase digestion. The cells isolated from the tissues were characterized for osteoblastic, adipogenic, chondrogenic, and tenogenic differentiation in vitro and in vivo. The results showed that the cells isolated from bursa tissue exhibited MSCs characteristics as evidenced by the expression of putative cell surface markers attributed to MSCs. The cells exhibited high proliferative capacity and differentiated toward cells of mesenchymal lineages with high efficiency. Bursa-derived cells expressed markers of tenocytes when treated with bone morphogenetic protein-12 (BMP-12) and assumed aligned morphology in culture. Bursa cells pretreated with BMP-12 and seeded in ceramic scaffolds formed extensive bone, as well as tendon-like tissue in vivo. Bone formation was demonstrated by histological analysis and immunofluorescence for DMP-1 in tissue sections made from the scaffolds seeded with the cells. Tendon-like tissue formed in vivo consisted of parallel collagen fibres typical of tendon tissues. Bursa-derived cells also formed a fibrocartilagenous tissue in the ceramic scaffolds. Taken together, the results demonstrate a new source of MSCs with a

  10. One-step generation of engineered drug-laden poly(lactic-co-glycolic acid) micropatterned with Teflon chips for potential application in tendon restoration.

    Science.gov (United States)

    Shi, Xuetao; Zhao, Yihua; Zhou, Jianhua; Chen, Song; Wu, Hongkai

    2013-11-13

    Regulating cellular behaviors such as cellular spatial arrangement and cellular phenotype is critical for managing tissue microstructure and biological function for engineered tissue regeneration. We herein pattern drug-laden poly(lactic-co-glycolic acid) (PLGA) into grooves using novel Teflon stamps (that possess excellent properties of resistance to harsh organic solvents and molecular adsorption) for engineered tendon-repair therapeutics. The drug release and biological properties of melatonin-laden PLGA grooved micropatterns are investigated. The results reveal that fibroblasts cultured on the melatonin-laden PLGA groove micropatterns not only display significant cell alignment that mimics the cell behavior in native tendon, but also promote the secretion of a major extracellular matrix in tendon, type I collagen, indicating great potential for the engineering of functional tendon regeneration.

  11. The roentgenographic findings of achilles tendon rupture

    Energy Technology Data Exchange (ETDEWEB)

    Seouk, Kang Hyo; Keun, Rho Yong [Shilla General Hospital, Seoul (Korea, Republic of)

    1999-03-01

    To evaluate the diagnostic value of a lateral view of the ankles in Achilles tendon rupture. We performed a retrospective analysis of the roentgenographic findings of 15 patients with surgically proven Achilles tendon rupture. Four groups of 15 patients(normal, ankle sprain, medial lateral malleolar fracture, and calcaneal fracture) were analysed as reference groups. Plain radiographs were reviewed with regard to Kager's triangle, Arner's sign, Toygar's angle, ill defined radiolucent shadow through the Achilles tendon, sharpness of the anterior margin of Achilles tendon, and meniscoid smooth margin of the posterior skin surface of the ankle. Kager's triangle was deformed and disappeared after rupture of the Achilles tendon in nine patients(60%) with operative verification of the rupture, six patients(40%) had a positive Arner's sign, while none had a diminished Toygars angle. In 13 patients(87%) with a ruptured Achilles tendon, the thickness of this was nonuniform compared with the reference group. The anterior margin of the Achilles tendon became serrated and indistinct in 14 patients(93%) in whom this was ruptured. An abnormal ill defined radiolucent shadow through the Achilles tendon was noted in nine patient(60%), and nonparallelism between the anterior margin of the Achilles tendon and posterior skin surface of the ankle was detected in 11 patients(73%). The posterior skin surface of the ankle had a nodular surface margin in 13 patients(87%). A deformed Kager's triangle and Achilles tendon, and an abnormal ill defined radiolucent shadow through the Achilles tendon in a lateral view of the ankles are important findings for the diagnesis of in diagnosing achilles tendon rupture.

  12. Histologic pattern of biomechanic properties of the carbon fiber-augmented ligament tendon. A laboratory and clinical study.

    Science.gov (United States)

    Mendes, D G; Iusim, M; Angel, D; Rotem, A; Roffman, M; Grishkan, A; Mordohohovich, D; Boss, J

    1985-06-01

    Implantation of carbon fiber tow (CFT) for ligament and tendon augmentation was investigated in ten dogs and 45 patients. CFT produced a new structure with a remarkably consistent structural pattern. The basic pattern of the CFT-augmented unit consisted of a core of carbon fiber surround by concentric layers of fibroblasts and collagen fibers. This unit structure was developed from continuous irritation of physical structure of the carbon fiber. In dogs, ultimate tensile strength of the augmented tendon one year after surgery averaged 88% of natural tendon. Digestion of the connective tissue component of the CFT unit exposed the original carbon fiber tow. The connective tissue-free CFT maintained its original tensile strength. The continuous production of collagenous tissue surrounding carbon fibers produced a ligamentous structure that was physiologically compatible and biomechanically sufficient.

  13. Collagen Gel Contraction by Fibroblasts: The Role of Myosin 2 and Gravity Effects

    Science.gov (United States)

    Johnson-Wint, Barbara P.; Malouvier, Alexandre; Holton, Emily

    1996-01-01

    Several lines of evidence suggest that collagen organization by connective tissue cells is sensitive to force. For instance, in flight experiments on rats the collagen fibrils which were produced under weightlessness and which were immediately next to the tendon fibroblasts were shown to be oriented randomly around the cells while the older fibrils right next to these and which were produced under 1 G, were highly organized.

  14. [Microstructure of tendon and its clinical significance].

    Science.gov (United States)

    Yan, J G

    1990-08-01

    Superficial and internal-structure of human and rat tendons were investigated under scanning electronic microscopy. Histologically, there are many pores on the synovium, under which a layer of network of fiber bands wraps the tendon. The synovial fluid propulsion system includes: Synovium----pores----network of fiber bands----space of tendon bands----space of tendon fibers. The synovial fluid is propelled through the above structure. The function of the network structure is like a sponge, it has the function of nutrition, absorption of heat, and lubrication.

  15. Simulation of tendon energy storage in pedaling

    DEFF Research Database (Denmark)

    Rasmussen, John; Damsgaard, Michael; Christensen, Søren Tørholm

    2001-01-01

    system is based on inverse dynamics, where the redundancy problem is solved by a minimum fatigue criterion guaranteeing maximuminter-muscular collaboration. The tendons are assumed to be linearly elastic. It is concluded that tendon elasticity is responsible for metabolic power loss......The role of elastic energy stored in tendons during pedaling is investigated by means of numerical simulation using the AnyBody body modeling system. The loss of metabolic energy due to tendon elasticity is computed and compared to the mechanical work involved in the process. The AnyBody simulation...

  16. Early diagnosis of tendon pathologies with sonoelastography

    Directory of Open Access Journals (Sweden)

    Zeynep ilerisoy Yakut

    2015-04-01

    RESULTS: Achilles tendon thicknesses measured at three segments (proximal, middle ,distal. did not show any statistically significant difference in both painless and symptomatic side. Proximal part of achilles tendon's elasticity did not show any difference in both side (p=0.31. In middle and distal segment , the elasticity was statistically different in symptomatic side than normal side p=0.005 and p=0.001 respectively. CONCLUSION: Sonoelastographic examination of Achilles tendons in patients with FMF suffering from talalgia may be useful for determining early dejenerative changes in tendons either in the absence of B-mode ultrasound findings. [TAF Prev Med Bull 2015; 14(2.000: 75-80

  17. Aging contributes to inflammation in upper extremity tendons and declines in forelimb agility in a rat model of upper extremity overuse.

    Directory of Open Access Journals (Sweden)

    David M Kietrys

    Full Text Available We sought to determine if tendon inflammatory and histopathological responses increase in aged rats compared to young rats performing a voluntary upper extremity repetitive task, and if these changes are associated with motor declines. Ninety-six female Sprague-Dawley rats were used in the rat model of upper extremity overuse: 67 aged and 29 young adult rats. After a training period of 4 weeks, task rats performed a voluntary high repetition low force (HRLF handle-pulling task for 2 hrs/day, 3 days/wk for up to 12 weeks. Upper extremity motor function was assessed, as were inflammatory and histomorphological changes in flexor digitorum and supraspinatus tendons. The percentage of successful reaches improved in young adult HRLF rats, but not in aged HRLF rats. Forelimb agility decreased transiently in young adult HRLF rats, but persistently in aged HRLF rats. HRLF task performance for 12 weeks lead to increased IL-1beta and IL-6 in flexor digitorum tendons of aged HRLF rats, compared to aged normal control (NC as well as young adult HRLF rats. In contrast, TNF-alpha increased more in flexor digitorum tendons of young adult 12-week HRLF rats than in aged HRLF rats. Vascularity and collagen fibril organization were not affected by task performance in flexor digitorum tendons of either age group, although cellularity increased in both. By week 12 of HRLF task performance, vascularity and cellularity increased in the supraspinatus tendons of only aged rats. The increased cellularity was due to increased macrophages and connective tissue growth factor (CTGF-immunoreactive fibroblasts in the peritendon. In conclusion, aged rat tendons were overall more affected by the HRLF task than young adult tendons, particularly supraspinatus tendons. Greater inflammatory changes in aged HRLF rat tendons were observed, increases associated temporally with decreased forelimb agility and lack of improvement in task success.

  18. Comparison of the Achilles tendon moment arms determined using the tendon excursion and three?dimensional methods

    OpenAIRE

    Hashizume, Satoru; Fukutani, Atsuki; Kusumoto, Kazuki; Kurihara, Toshiyuki; Yanagiya, Toshio

    2016-01-01

    Abstract The moment arm of muscle?tendon force is a key parameter for calculating muscle and tendon properties. The tendon excursion method was used for determining the Achilles tendon moment arm (ATMA). However, the accuracy of this method remains unclear. This study aimed to investigate the magnitude of error introduced in determining the ATMA using the tendon excursion method by comparing it with the reference three?dimensional (3D) method. The tendon excursion method determined the ATMA a...

  19. Tendon mineralization is accelerated bilaterally and creep of contralateral tendons is increased after unilateral needle injury of murine achilles tendons.

    Science.gov (United States)

    O'Brien, Etienne John Ogilvy; Shrive, Nigel G; Rosvold, Joshua M; Thornton, Gail M; Frank, Cyril B; Hart, David A

    2013-10-01

    Heterotopic mineralization may result in tendon weakness, but effects on other biomechanical responses have not been reported. We used a needle injury, which accelerates spontaneous mineralization of murine Achilles tendons, to test two hypotheses: that injured tendons would demonstrate altered biomechanical responses; and that unilateral injury would accelerate mineralization bilaterally. Mice underwent left hind (LH) injury (I; n = 11) and were euthanized after 20 weeks along with non-injured controls (C; n = 9). All hind limbs were examined by micro computed tomography followed by biomechanical testing (I = 7 and C = 6). No differences were found in the biomechanical responses of injured tendons compared with controls. However, the right hind (RH) tendons contralateral to the LH injury exhibited greater static creep strain and total creep strain compared with those LH tendons (p ≤ 0.045) and RH tendons from controls (p ≤ 0.043). RH limb lesions of injured mice were three times larger compared with controls (p = 0.030). Therefore, despite extensive mineralization, changes to the responses we measured were limited or absent 20 weeks postinjury. These results also suggest that bilateral occurrence should be considered where tendon mineralization is identified clinically. This experimental system may be useful to study the mechanisms of bilateral new bone formation in tendinopathy and other conditions. Copyright © 2013 Orthopaedic Research Society.

  20. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    Science.gov (United States)

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Fibroma of the tendon sheath: A diagnostic dilemma on fine-needle aspiration cytology

    Directory of Open Access Journals (Sweden)

    Jitendra G Nasit

    2015-01-01

    Full Text Available Fibroma of the tendon sheath (FTS is an uncommon benign soft tissue tumor (STS of the tendon sheath. Clinical and radiological features are not distinctive enough to clinch the diagnosis preoperatively. Although histological features are well described, diagnostic cytological features of FTS are still lacking. Till date only two reports describe the fine-needle aspiration cytology (FNAC findings of FTS. The present case is a 50-year-old female who presented with a slow growing nodule on the right thigh over a period of 2 years. FNAC revealed low cell yield with loose clusters of fibrotic spindle cells and stellate cells intermingled with fibro-collagenous and myxoid matrix. Few cells showed mild degree of nuclear atypia. Necrosis and atypical mitoses were not seen. Cytology findings were suggestive of benign/low-grade fibroblastic or fibromyxoid lesion. Histology confirmed the diagnosis of FTS. This article discusses the diagnostic role of FNAC in FTS with its differential diagnosis

  2. Masticatory muscle tendon-aponeurosis hyperplasia exhibits heterotopic calcification in tendons.

    Science.gov (United States)

    Sato, T; Hori, N; Nakamoto, N; Akita, M; Yoda, T

    2014-05-01

    Masticatory muscle tendon-aponeurosis hyperplasia is a new disease entity associated with limited mouth opening. In this study, we analyzed the microstructural characteristics of muscles and tendons in masticatory muscle tendon-aponeurosis hyperplasia by electron microscopy and energy-dispersive X-ray analysis to determine the elemental composition. Histological analysis was performed to detect the calcification. Transmission electron microscopy and scanning electron microscopy were conducted to clarify the microstructural characteristics of muscles and tendons. Energy-dispersive X-ray microanalysis was performed to identify the distribution of elements. Mineralized nodules were observed in tendon tissues of masticatory muscle tendon-aponeurosis hyperplasia as compared with facial deformity. Electron microscopy revealed that the muscle and tendon tissues in masticatory muscle tendon-aponeurosis hyperplasia showed degenerative changes and distinctive histological findings as compared with tissues in facial deformity. We found that Ca, P, and Si were detected only in masticatory muscle tendon-aponeurosis hyperplasia. We demonstrated that masticatory muscle tendon-aponeurosis hyperplasia exhibits heterotopic calcification in tendon tissues. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Single-stage reconstruction of flexor tendons with vascularized tendon transfers.

    Science.gov (United States)

    Cavadas, P C; Pérez-García, A; Thione, A; Lorca-García, C

    2015-03-01

    The reconstruction of finger flexor tendons with vascularized flexor digitorum superficialis (FDS) tendon grafts (flaps) based on the ulnar vessels as a single stage is not a popular technique. We reviewed 40 flexor tendon reconstructions (four flexor pollicis longus and 36 finger flexors) with vascularized FDS tendon grafts in 38 consecutive patients. The donor tendons were transferred based on the ulnar vessels as a single-stage procedure (37 pedicled flaps, three free flaps). Four patients required composite tendon and skin island transfer. Minimum follow-up was 12 months, and functional results were evaluated using a total active range of motion score. Multiple linear regression analysis was performed to evaluate the factors that could be associated with the postoperative total active range of motion. The average postoperative total active range of motion (excluding the thumbs) was 178.05° (SD 50°). The total active range of motion was significantly lower for patients who were reconstructed with free flaps and for those who required composite tendon and skin island flap. Age, right or left hand, donor/motor tendon and pulley reconstruction had no linear effect on total active range of motion. Overall results were comparable with a published series on staged tendon grafting but with a lower complication rate. Vascularized pedicled tendon grafts/flaps are useful in the reconstruction of defects of finger flexor tendons in a single stage, although its role in the reconstructive armamentarium remains to be clearly established. © The Author(s) 2014.

  4. Flexor tendon physiology: tendon nutrition and cellular activity in injury and repair.

    Science.gov (United States)

    Gelberman, R H

    1985-01-01

    Scientific studies of the past 20 years have done much to redefine the mechanisms by which flexor tendons heal. Several points have become increasingly clear: Flexor tendons are nourished to a greater extent by synovial fluid diffusion than vascular perfusion. Tendon cells are capable of proliferating, producing collagen, and reconstructing their own gliding surface in the absence of adhesion ingrowth. The key to a successful outcome after flexor tendon repair appears to be an early restoration of tendon continuity, reconstruction of the sheath, if possible, and early passive mobilization. This complex stimulates the tendon's intrinsic repair potential, which is contained within the cells of the tendon itself but appears to be expressed only under ideal experimental and clinical situations.

  5. From Tendon Injury to Collagen-based Tendon Regeneration: Overview and Recent Advances.

    Science.gov (United States)

    Rieu, Clement; Picaut, Lise; Mosser, Gervaise; Trichet, Lea

    2017-01-01

    Tendon injury is a clinical, societal and economical issue. Moreover, tendon repair represents an important clinical challenge, partly due to the mechanical constraints that occur at the junctions with muscle and bone. Several strategies have been developed for tendon repair. In this review, we first assess the importance of tendon injuries from different sites and their causes. After a short overview of tendon three-dimensional organization, the complexity of the perfect repair quest is presented ranging from current clinical procedures to new engineering scaffolds. We then sum up tendon engineering requirements and focus on new collagen-based scaffolds, which raise promising prospects to mimic and repair tendon. In particular, we survey quantitatively a large panel of techniques to produce these scaffolds, detailing their principle and recent improvements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Patellofemoral Joint and Achilles Tendon Loads During Overground and Treadmill Running.

    Science.gov (United States)

    Willy, Richard W; Halsey, Lisa; Hayek, Andrew; Johnson, Holly; Willson, John D

    2016-08-01

    Study Design Level 4, controlled laboratory study. Background Little is known regarding how the potential differences between treadmill and overground running may affect patellofemoral joint and Achilles tendon loading characteristics. Objectives To compare measures of loading of the patellofemoral joint and Achilles tendon across treadmill and overground running in healthy, uninjured runners. Methods Eighteen healthy runners ran at their self-selected speed on an instrumented treadmill and overground, while 3-D running mechanics were sampled. A musculoskeletal model derived peak load, rate of loading, and estimated cumulative load per 1 km of continuous running for the patellofemoral joint and Achilles tendon for each condition. Data were analyzed via paired t tests and Pearson correlations to detect differences and assess relationships, respectively, between the 2 running mediums. Results No differences (P>.05) were found between treadmill and overground running for peak load, rate of loading, or estimated cumulative patellofemoral joint stress per 1 km of continuous running. However, treadmill running resulted in 12.5% greater peak Achilles tendon force (PAchilles tendon force (PAchilles tendon force per 1 km of continuous running (P0.70) and moderate agreements (r>0.50) for most patellofemoral joint and Achilles measures, respectively, between treadmill and overground running. Conclusion No differences were observed in loading characteristics to the patellofemoral joint between running mediums; however, treadmill running resulted in greater Achilles tendon loading compared with overground running. Future investigations should examine whether sudden bouts of treadmill running may increase the risk of mechanical overload of the Achilles tendon in runners who habitually train overground. J Orthop Sports Phys Ther 2016;46(8):664-672. Epub 12 May 2016. doi:10.2519/jospt.2016.6494.

  7. The pathology of flexor tendon repair.

    Science.gov (United States)

    Matthews, P

    1979-10-01

    This paper discusses the problems of failure after tendon repair. For a long time the subject has been dominated by the problem of adhesion formation. Recent work has shown that this is not inevitable, and consideration of other factors, particularly the nutrition of tendon tissue is leading to the possibilities of other methods of treatment.

  8. [Spontaneous achilles tendon rupture in granulomatous vasculitis].

    Science.gov (United States)

    Benthien, Jan Philipp; Delling, G; Rüther, W

    2003-08-01

    A 66-year old patient sustained a non-traumatic rupture of her left achilles tendon. She suffered from Sjögren's syndrome which occurred in conjunction with a systemic vasculitis, and recurrent episcleritis. The combination of Sjögren's syndrome and systemic vasculitis is well known. Subsequently, she was treated with high-dose systemic steroids over a period of 2 years. In order to reduce the amount of steroids due to preexisting severe osteoporosis and thoracic vertebral fractures, her medication was changed to cyclophosphamide shortly before her injury. Intraoperatively, a granuloma was discovered at the site of the rupture. This granuloma had infiltrated most of the achilles tendon at this site and virtually replaced viable tendon tissue. Originally, the rupture was supposedly due to the high dose steroids. This theory had to be revised according to the intraoperative findings. Following excision of the granuloma and operative treatment of the achilles tendon rupture, the continuity of the tendon could be completely restored. A MRI scan 3 months after the procedure demonstrated a completely healed Achilles tendon. Spontaneous achilles tendon rupture due to a granuloma in patients with vasculitis seems to be a rare event. However, tendon ruptures in combination with systemic lupus erythematodes have been described. Mostly, these events are attributed to long term application of steroids. Spontaneous rupture in combination with high dose treatment of steroids seems to be an underestimated problem.

  9. Recent advances in flexor tendon repair

    NARCIS (Netherlands)

    J.C.H.M. van der Meulen (Jacques)

    1971-01-01

    markdownabstractThe prognosis for restoration of good function after the treatment of a tendon lesion in 'no-man's land' is influenced by a number of factors which may be summarized as follows: - The nature of the injury. - The amplitude of the tendon excursion. - The motility of the

  10. Ultrasonographic assessment of the equine palmar tendons.

    Science.gov (United States)

    Padaliya, N R; Ranpariya, J J; Kumar, Dharmendra; Javia, C B; Barvalia, D R

    2015-02-01

    The present study was conducted to evaluate the equine palmar tendon by ultrasonography (USG) in standing the position. USG of palmar tendons was performed in 40 adult horses using linear transducer having frequency of 10-18 MHz (e-soate, My Lab FIVE) and L52 linear array transducer (Titan, SonoSite) with frequencies ranging from 8 to 10 MHz. Palmar tendon was divided into 7 levels from distal to accessory carpal bone up to ergot in transverse scanning and 3 levels in longitudinal scanning. The USG evaluation was very useful for diagnosis of affections of the conditions such as chronic bowed tendon, suspensory ligament desmitis, carpal sheath tenosynovitis and digital sheath effusions. The mean cross-sectional area (cm(2)) of affected tendons was significantly increased in affected than normal tendons. The echogenicity was also found reduced in affected tendons and ligaments along with disorganization of fiber alignment depending on the severity of lesion and injury. USG proved ideal diagnostic tool for diagnosis and post-treatment healing assessment of tendon injuries in horses.

  11. MANAGEMENT OF OPEN ACHILLES TENDON INJURY: PRIMARY ...

    African Journals Online (AJOL)

    is attributable to increase in both competitive and recreational sports. In most of the literature written on Achilles tendon injuries there were rarely any information about open Achilles tendon lacerations. In ... Methods: This was a prospective study that took place at the Plastic Surgery Unit of Irrua Specialist. Teaching Hospital ...

  12. Instructive materials for tendon and ligament augmentation

    NARCIS (Netherlands)

    Ribeiro Pereira Simões Crispim, João Francisco

    2016-01-01

    Tendons and ligaments (T/L) are the connective tissue that connect muscles to bone and bone to bone, respectively. The main function of tendons is to translate muscle contractions into join motion and consequently generate movement. Ligaments function to stabilize joints and guide them during their

  13. Bilateral synchronous rupture of the quadriceps tendon.

    LENUS (Irish Health Repository)

    Ellanti, P

    2012-09-01

    Bilateral simultaneous rupture of the quadriceps tendon is a rare entity. They are often associated with degenerative changes of the tendons and predisposing conditions such as diabetes or excessive steroid use. They most commonly tend to occur in patients of 40 years of age or older.

  14. Tendon xanthomas : Not always familial hypercholesterolemia

    NARCIS (Netherlands)

    Koopal, Charlotte; Visseren, Frank L J; Marais, A David; Westerink, Jan; Spiering, Wilko

    2016-01-01

    Tendon xanthoma are most commonly associated with Familial Hypercholesterolemia, but the differential diagnosis includes sitosterolemia and cerebrotendinous xanthomatosis (CTX). The case presented here is of a 48-year old male with large tendon xanthomas attributable to CTX. CTX is a rare, recessive

  15. Rupture of Achilles Tendon : Usefulness of Ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyeon; Ki, Won Woo; Yoon, Kwon Ha; Kim, Song Mun; Shin, Myeong Jin [Ulsan Medical College, Ulsan (Korea, Republic of); Kwon, Soon Tae [Chungnam University College of Medicine, Daejeon (Korea, Republic of)

    1996-06-15

    To differentiate a complete rupture of Achilles tendon from an incomplete one which is important because its treatment is quite different. And it is necessary to know the exact site of the rupture preoperatively. Fifteen cases of fourteen patients which were diagnosed as Achilles tendon rupture by ultrasonography and surgery were reviewed. We compared sonographic rupture site with surgical findings. Ultrasonographic criteria for differentiation of complete and incomplete rupture was defined as follows : the discreteness, which means the proximal intervening hypoechogenicity to the interface echogenicity of distal margin of ruptured tendon : the slant sign, which represents the interface of ruptured distal margin which was seen over the 3/4 of the thickness of the tendon without intervening low echogeneicity : the invagination sign, which means the echogenic invagination from Kager triangle into posterior aspect of Achilles tendon over the half thickness of the tendon. The sites of complete tendon rupture were exactly corresponded to surgical finding in four cases of ten complete ruptures. And the discrepancy between sonographic and surgical findings in the site of complete rupture was 1.2 {+-} 0.4 cm in six cases. Three of ten complete ruptures showed the discreteness sign, all of ten showed the slant sign and two of ten showed the invagination sign. It is helpful to differentiate a complete from incomplete rupture of the Achilles tendon and to localize the site of the complete rupture with the ultrasonographic evaluation

  16. Cell Toxicity in Fibroblasts, Tenocytes, and Human Mesenchymal Stem Cells-A Comparison of Necrosis and Apoptosis-Inducing Ability in Ropivacaine, Bupivacaine, and Triamcinolone.

    Science.gov (United States)

    Zhang, Anja Z; Ficklscherer, Andreas; Gülecyüz, Mehmet F; Paulus, Alexander C; Niethammer, Thomas R; Jansson, Volkmar; Müller, Peter E

    2017-04-01

    To analyze the ability of ropivacaine, bupivacaine, and triamcinolone to induce apoptosis and necrosis in fibroblasts, tenocytes, and human mesenchymal stem cells. Human dermal fibroblasts, adipose-derived human mesenchymal stem cells (hMSCs), and tenocytes gained from the rotator cuff tendon were seeded with a cell density of 0.5 × 10(4)/cm(2). One specimen of ropivacaine, bupivacaine, and triamcinolone was tested separately on the cells with separate concentrations of 0.5%, 0.25%, and 0.125% for each specimen. The negative control received no agent, only a change of medium. The incubation period for each agent was 30 minutes. After a change of medium and 1 hour, 24 hours, and 7 days of incubation, 10(4) cells were harvested and analyzed via fluorescence-activated cell sorting with double-staining with annexin V and propidium iodide. Statistical analysis to determine significant difference (P necrosis-inducing effects on fibroblasts and tenocytes, with the necrotic effect peaking at 0.5% and 0.25%. Ropivacaine and triamcinolone caused no significant necrosis. Compared with fibroblasts and tenocytes, hMSCs did not show significant necrotic or apoptotic effects after exposure to bupivacaine. Overall, no significant differences in apoptosis were detected between different cell lines, varying concentrations, or time measurements. Bupivacaine 0.5% and 0.25% have the most necrosis-inducing effects on fibroblasts and tenocytes. Ropivacaine caused less necrosis than bupivaine. Compared with fibroblasts and tenocytes, hMSCs were not affected by necrosis using any of the tested agents. A significant apoptosis-inducing effect could not be detected for the different cell lines. Possible cell toxicity raises questions of concern for intra-articular injections using local anesthetics and corticosteroids. The present study demonstrates the necrotic and apoptotic effects of ropivacaine, bupivacaine, and triamcinolone and may give recommendations for intra-articular use of

  17. Tendon Vasculature in Health and Disease

    Science.gov (United States)

    Tempfer, Herbert; Traweger, Andreas

    2015-01-01

    Tendons represent a bradytrophic tissue which is poorly vascularized and, compared to bone or skin, heal poorly. Usually, a vascularized connective scar tissue with inferior functional properties forms at the injury site. Whether the increased vascularization is the root cause of tissue impairments such as loss of collagen fiber orientation, ectopic formation of bone, fat or cartilage, or is a consequence of these pathological changes remains unclear. This review provides an overview of the role of tendon vasculature in healthy and chronically diseased tendon tissue as well as its relevance for tendon repair. Further, the nature and the role of perivascular tendon stem/progenitor cells residing in the vascular niche will be discussed and compared to multipotent stromal cells in other tissues. PMID:26635616

  18. Simultaneous bilateral patellar tendon rupture without

    Directory of Open Access Journals (Sweden)

    LU Hua-ding

    2012-04-01

    Full Text Available 【Abstract】There is a dearth of case reports de-scribing simultaneous bilateral patellar tendon ruptures in the medical literature. These ruptures are often associated with systemic disorders such as lupus erythematosus or chronic steroid use. The author describes a case of a 24-year-old man who sustained traumatic bilateral patellar ten-don ruptures without any history of systemic disease or steroidal medication. We repaired and reattached the rup-tured tendons to the patella and augmented our procedure with allogeneic tendon followed by wire loop reinforcement. One year after operation, the patient regained a satisfactory range of motion of both knees with good quadriceps strength and no extensor lag. The recurrent microtrauma from a history of intense sports activity and a high body mass index may have played an important role in this trauma event. Key words: Patella; Patellar ligament; Rupture; Ten-don injuries; Knee

  19. Cryopreservation of canine ovarian and testicular fibroblasts.

    Science.gov (United States)

    Yu, Il-Jeoung; Leibo, S P; Songsasen, Nucharin; Dresser, Betsy L; Kim, In-Shik

    2009-01-01

    To derive a practical procedure to store canine somatic cells, fibroblasts isolated from testicular or ovarian tissues were cryopreserved in 1.2 M ethylene glycol or in 1.2 M dimethylsulfoxide prepared in Dulbecco's Modified Eagle Medium as cryoprotectants, and were frozen either in plastic straws or vials. Thawed cells were cultured for 24 hr at 38.5 degree C in a humidified atmosphere of 5 percent CO2 95 percent air, and then their membrane integrity was assayed with a double fluorescent stain, Fertilight. In addition, frozen-thawed fibroblasts were cultured for 4 days, and then their functional survival was measured after staining small colonies with trypan blue. After freezing and thawing, membrane integrity of testicular fibroblasts was 55-70 percent and functional survival ranged from 20-40 percent. With frozen-thawed ovarian cells, the average membrane integrity was 55-75 percent and the average functional survival was 35-40 percent. When frozen in ethylene glycol, functional survival of ovarian fibroblasts was significantly higher than that of testicular cells (P less than 0.05). These methods should prove useful to preserve cells collected from canids in the wild.

  20. [Clinical application of peroneal muscles tendon transposition in repair of Achilles tendon rupture].

    Science.gov (United States)

    Jin, Rihao; Jin, Yu; Fang, Xiulin

    2006-07-01

    To discuss applied anatomy, biomechanics and surgical procedures of long peroneal muscles tendon transposition in repair of occlusive achilles tendon rupture. The blood supply and the morphology of long peroneal muscles tendon were observed in the lower extremity of 50 sides adult specimens and the mechanical tests which stretch load on the tendon were carried out. The methods were designed on the basis of the anatomical characteristics and morphology. Ten patients suffering occlusive Achilles tendon rupture were treated by using long peroneal muscles tendon transposition from March 2001 to July 2004. Among 10 patients, there were 7 males and 3 females, aging 32 to 54 years including 6 cases of jump injury, 2 cases of bruise, 1 case of step vacancy and 1 case of spontaneity injury. The interval between injury and surgery was 6 hours to 7 days in 7 fresh rupture and 21 days to 3 months in 3 old rupture. All cases belonged to occlusive Achilles tendon rupture (8 cases of complete rupture and 2 cases of incomplete rupture). The origin of long peroneal muscles was proximal tibia and fibular head, the end of them was base of first metatarsal bones and medial cuboid. The length of tendon was 13.5 +/- 2.5 cm. The width of origin tendon was 0.9 +/- 0.2 cm and the thickness was 0.3 +/- 0.1 cm; the width on apex of lateral malleolus was 0.7 +/- 0.1 cm and the thickness was 0.4 +/- 0.1 cm, the width on head of cuboid was 0.7 +/- 0.1 cm and the thickness was 0.3 +/- 0.1 cm. The long peroneal muscles tendon had abundant blood supply. The results of mechanical test showed that the biggest load was 2,292.4 +/- 617.3 N on tendon calcaneus, 1,020.4 +/- 175.4 N on long peroneal muscles tendon, 752.0 +/- 165.4 N on peroneus brevis tendon and 938.2 +/- 216.7 N on tibialis posterior tendon. Ten cases of occlusive Achilles tendon rupture achieved healing by first intention and were followed up 18-24 months. No Achilles tendon re-rupture, necrosis of skin or other complications occurred

  1. Gastric pentadecapeptide BPC 157 accelerates healing of transected rat Achilles tendon and in vitro stimulates tendocytes growth.

    Science.gov (United States)

    Staresinic, M; Sebecic, B; Patrlj, L; Jadrijevic, S; Suknaic, S; Perovic, D; Aralica, G; Zarkovic, N; Borovic, S; Srdjak, M; Hajdarevic, K; Kopljar, M; Batelja, L; Boban-Blagaic, A; Turcic, I; Anic, T; Seiwerth, S; Sikiric, P

    2003-11-01

    In studies intended to improve healing of transected Achilles tendon, effective was a stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W. 1419). Currently in clinical trials for inflammatory bowel disease (PLD-116, PL 14736, Pliva), it ameliorates internal and external wound healing. In rats, the right Achilles tendon transected (5 mm proximal to its calcaneal insertion) presents with a large tendon defect between cut ends. Agents (/kg b.w., i.p., once time daily) (BPC 157 (dissolved in saline, with no carrier addition) (10 microg, 10 ng or 10 pg) or saline (5.0 ml)), were firstly applied at 30 min after surgery, the last application at 24 h before autopsy. Achilles functional index (AFI) was assessed once time daily. Biomechanical, microscopical and macroscopical assessment was on day 1, 4, 7, 10 and 14. Controls generally have severely compromised healing. In comparison, pentadecapeptide BPC 157 fully improves recovery: (i) biomechanically, increased load of failure, load of failure per area and Young's modulus of elasticity; (ii) functionally, significantly higher AFI-values; (iii) microscopically, more mononuclears and less granulocytes, superior formation of fibroblasts, reticulin and collagen; (iv) macroscopically, smaller size and depth of tendon defect, and subsequently the reestablishment of full tendon integrity. Likewise, unlike TGF-beta, pentadecapeptide BPC 157, presenting with no effect on the growth of cultured cell of its own, consistently opposed 4-hydroxynonenal (HNE), a negative modulator of the growth. HNE-effect is opposed in both combinations: BPC 157+HNE (HNE growth inhibiting effect reversed into growth stimulation of cultured tendocytes) and HNE+BPC 157(abolished inhibiting activity of the aldehyde), both in the presence of serum and serum deprived conditions. In conclusion, these findings, particularly, Achilles tendon transection fully recovered in rats, peptide stability suitable delivery, usefully favor gastric

  2. Studies in flexor tendon reconstruction: biomolecular modulation of tendon repair and tissue engineering.

    Science.gov (United States)

    Chang, James

    2012-03-01

    The Andrew J. Weiland Medal is presented each year by the American Society for Surgery of the Hand and the American Foundation for Surgery of the Hand for a body of work related to hand surgery research. This essay, awarded the Weiland Medal in 2011, focuses on the clinical need for flexor tendon reconstruction and on investigations into flexor tendon biology. Reconstruction of the upper extremity is limited by 2 major problems after injury or degeneration of the flexor tendons. First, adhesions formed after flexor tendon repair can cause decreased postoperative range of motion and hand function. Second, tendon losses can result from trauma and degenerative diseases, necessitating additional tendon graft material. Tendon adhesions are even more prevalent after tendon grafting; therefore these 2 problems are interrelated and lead to considerable disability. The total costs in terms of disability and inability to return to work are enormous. In this essay, published work from the past 12 years in our basic science laboratory is summarized and presented with the common theme of using molecular techniques to understand the cellular process of flexor tendon wound healing and to create substances and materials to improve tendon repair and regeneration. These are efforts to address 2 interrelated and clinically relevant problems that all hand surgeons face in their practice. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Is higher serum cholesterol associated with altered tendon structure or tendon pain? A systematic review.

    Science.gov (United States)

    Tilley, Benjamin J; Cook, Jill L; Docking, Sean I; Gaida, James E

    2015-12-01

    Tendon pain occurs in individuals with extreme cholesterol levels (familial hypercholesterolaemia). It is unclear whether the association with tendon pain is strong with less extreme elevations of cholesterol. To determine whether lipid levels are associated with abnormal tendon structure or the presence of tendon pain. We conducted a systematic review and meta-analysis. Relevant articles were found through an electronic search of 6 medical databases-MEDLINE, Cochrane, AMED, EMBASE, Web of Science and Scopus. We included all case-control or cross-sectional studies with data describing (1) lipid levels or use of lipid-lowering drugs and (2) tendon structure or tendon pain. 17 studies (2612 participants) were eligible for inclusion in the review. People with altered tendon structure or tendon pain had significantly higher total cholesterol, low-density lipoprotein cholesterol and triglycerides, as well as lower high-density lipoprotein cholesterol; with mean difference values of 0.66, 1.00, 0.33, and -0.19 mmol/L, respectively. The results of this review indicate that a relationship exists between an individual's lipid profile and tendon health. However, further longitudinal studies are required to determine whether a cause and effect relationship exists between tendon structure and lipid levels. This could lead to advancement in the understanding of the pathoaetiology and thus treatment of tendinopathy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Elastographic characteristics of the metacarpal tendons in horses without clinical evidence of tendon injury.

    Science.gov (United States)

    Lustgarten, Meghann; Redding, W Rich; Labens, Raphael; Morgan, Michel; Davis, Weston; Seiler, Gabriela S

    2014-01-01

    Tendon and ligament injuries are common causes of impaired performance in equine athletes. Gray-scale ultrasonography is the current standard method for diagnosing and monitoring these injuries, however this modality only provides morphologic information. Elastography is an ultrasound technique that allows detection and measurement of tissue strain, and may provide valuable mechanical information about equine tendon and ligament injuries. The purpose of this study was to determine the feasibility, reproducibility, and repeatability of elastography; and to describe elastographic characteristics of metacarpal tendons in sound horses. Nineteen legs for 17 clinically sound horses without evidence of musculoskeletal pathology were included. Elastographic images of the superficial and deep digital flexor tendons and the branches of the suspensory ligament (tendon of the interosseous muscle) were described quantitatively and qualitatively. There was no statistically significant difference between operators (P = 0.86) nor within operators (P = 0.93). For qualitative assessments, reproducibility (0.46) was moderate and repeatability (0.78) was good. Similar to human Achilles tendons, equine tendons were classified as predominantly hard using elastography. There was no statistically significant difference in stiffness of the flexor tendons (P = 0.96). No significant difference in stiffness was found with altered leg position during standing (P = 0.84) and while nonweight bearing (P = 0.61). The flexor tendons were softer when imaged in longitudinal versus transverse planes (P tendons and ligaments of the distal forelimb in horses. © 2013 American College of Veterinary Radiology.

  5. Minimally invasive, endoscopic Achilles tendon reconstruction using semitendinosus and gracilis tendons with Endobutton stabilization.

    Science.gov (United States)

    Piontek, Tomasz; Bąkowski, Paweł; Ciemniewska-Gorzela, Kinga; Grygorowicz, Monika

    2016-06-03

    Plantaris tendon, peronus brevis tendon and flexor hallucis longus tendon augmentation, commonly used in Achilles tendon rupture, often lead to weakening of injured foot and they require the immobilization after the surgery. It is essential to develop the technique, which gives no such limitation and allows for immediate functional improvement. We present our method of minimally invasive, endoscopic Achilles tendon reconstruction using semitendinosus and gracilis tendons with Endobutton stabilization. Posterolateral and posteromedial portals were made approximately 3 cm above the posterosuperior part of the calcaneus to clean the area of the Achilles tendon endoscopically. Then the hamstrings are harvested and prepared for the "Endobutton" system. A midline incision of the skin is performed approximately 1 cm above the posterosuperior part of the calcaneus to approach to the posterosuperior part of the calcaneus. Then under fluoroscopy the calcaneus was drilled through using K-wire. The distal end of the graft equipped with an Endobutton loop was entered into the drilled tunnel in the calcaneus. Later, 8 consecutive skin incisions are performed. Proximal ends of the graft were brought out through the native Achilles tendon reaching medial and lateral skin incisions. The final step was to transfer and tie the graft ends through the most proximal skin incision. This minimally invasive, endoscopic technique allows reconstruction of the Achilles tendon using semitendinosus and gracilis tendons with Endobutton stabilization and can be used in so-called "difficult", resistant cases as a "salvage procedure".

  6. Serial superficial digital flexor tendon biopsies for diagnosing and monitoring collagenase-induced tendonitis in horses

    Directory of Open Access Journals (Sweden)

    José C. de Lacerda Neto

    2013-06-01

    Full Text Available The purpose of this investigation was to demonstrate the feasibility of a biopsy technique by performing serial evaluations of tissue samples of the forelimb superficial digital flexor tendon (SDFT in healthy horses and in horses subjected to superficial digital flexor tendonitis induction. Eight adult horses were evaluated in two different phases (P, control (P1 and tendonitis-induced (P2. At P1, the horses were subjected to five SDFT biopsies of the left forelimb, with 24 hours (h of interval. Clinical and ultrasonographic (US examinations were performed immediately before the tendonitis induction, 24 and 48 h after the procedure. The biopsied tendon tissues were analyzed through histology. P2 evaluations were carried out three months later, when the same horses were subjected to tendonitis induction by injection of bacterial collagenase into the right forelimb SDFT. P2 clinical and US evaluations, and SDFT biopsies were performed before, and after injury induction at the following time intervals: after 24, 48, 72 and 96 h, and after 15, 30, 60, 90, 120 and 150 days. The biopsy technique has proven to be easy and quick to perform and yielded good tendon samples for histological evaluation. At P1 the horses did not show signs of localised inflammation, pain or lameness, neither SDFT US alterations after biopsies, showing that the biopsy procedure per se did not risk tendon integrity. Therefore, this procedure is feasible for routine tendon histological evaluations. The P2 findings demonstrate a relation between the US and histology evaluations concerning induced tendonitis evolution. However, the clinical signs of tendonitis poorly reflected the microscopic tissue condition, indicating that clinical presentation is not a reliable parameter for monitoring injury development. The presented method of biopsying SDFT tissue in horses enables the serial collection of material for histological analysis causing no clinical signs and tendon damage seen

  7. The effect of glucocorticoids on tendon cell viability in human tendon explants

    Science.gov (United States)

    Lui, Wai Ting; Chuen Fu, Sai; Man Lee, Kwong

    2009-01-01

    Background and purpose Previous studies on the culture of human tenocytes have shown that dexamethasone and triamcino-lone reduce cell viability, suppress cell proliferation, and reduce collagen synthesis. However, such cell cultures lack the extracellular matrix and three-dimensional structure of normal tendons, which affects their response to stimuli. We established a human tendon explant culture system and tested the effects of dexamethasone and triamcinolone on cell viability. Methods Primary human tendon explant cultures were prepared from healthy hamstring tendons. Tendon strips were harvested from hamstring tendons and cultured in 24-well plates in Dulbecco’s modification of Eagle’s Medium (DMEM) supplemented with 2% fetal calf serum. The tendon explants were treated with 0 μM (control), 10 μM, or 100 μM dexamethasone sodium phosphate or 0 μM (control), 10 μM, or 100 μM triamcinolone acetonide in DMEM for 96 h. Cell viability was measured by Alamar blue assay before and after glucocorticoid treatment. Results Incubation with 10 μM and 100 μM dexamethasone reduced cell viability in human tendon explants by 35% and 45%, respectively, as compared to a 6% increase in the controls (p = 0.01, mixed-effects ANOVA). Triamcinolone at 10 μM and 100 μM reduced cell viability by 33% and 36%, respectively, as compared to a 9% increase in the controls (p = 0.07, mixed-effects ANOVA). Interpretation Human tendon explant cultures can be used to study the effects of glucocorticoids on human tendon. Dexamethasone and triamcinolone suppress the cell viability of human tendon in its natural 3-dimensional environment with matrix anchorage. Human tendon explant cultures provide a species-specific model for further investigation of the effects of glucocorticoids on the metabolism of the extracellular matrix of human tendon, and on its mechanical properties. PMID:19421908

  8. Blood flow and clearance in tendons. Studies with dogs.

    Science.gov (United States)

    Hooper, G; Davies, R; Tothill, P

    1984-05-01

    Blood flow in intact tendons in dogs was measured using 57Co-labelled microspheres and compared with the simultaneous clearance of a diffusible radionuclide, 85Sr, by the same tendons. Clearance was significantly greater than flow in all tendons, indicating that diffusion from surrounding tissues may be important in the nutrition of normal tendons.

  9. [Experimental study of allogenic tendon with sheath grafting in chicken].

    Science.gov (United States)

    Zhang, Y L; Wang, S L; Gao, X S

    2001-03-01

    To investigate availability of deep freeze stored allogenic tendon with sheath grafting in repairing the tendon and sheath defect in the II area of flexor digitorum tendon. Sixty chickens with tendon and sheath defect were divided into 2 groups randomly, group A was treated with allogenic grafting and group B was treated with autogenic grafting, these two groups were divided into two subgroups respectively, they were, group A1 allogenic tendon with whole sheath grafting, group A2 allogenic tendon with partial sheath grafting, group B1 autogenic tendon with whole sheath grafting and group B2 autogenic tendon with whole sheath grafting. All the allogenic grafts were treated by deep freeze. Histomorphological study, histoimmunological study and slipping function of the grafts were measured after operation. In group A1 and B1, the local reaction was sever, the nutrition of tendon graft was barricaded by the whole sheath resulting in adhesion, degeneration and necrosis. In group A2 and B2, the tendon graft healed well and little adhesion existed between tendon and sheath. The results showed that there were significant differences between tendon grafting with whole sheath and tendon grafting with partial sheath. Deep freeze store can reduce the immunogenicity of allogenic tendon with sheath. Allogenic tendon with partial sheath grafting can be used as a new biological material for repairing the tendon and sheath defect.

  10. Achilles tendon: US diagnosis of pathologic conditions. Work in progress

    Energy Technology Data Exchange (ETDEWEB)

    Blei, C.L.; Nirschl, R.P.; Grant, E.G.

    1986-06-01

    Twenty-three patients were prospectively examined with ultra-sound (US) for acute or recurrent Achilles tendon symptoms. Three types of pathologic conditions of the Achilles tendon were found: tendinitis/tenosynovitis, acute tendon trauma, and postoperative changes. US appears to enable differentiation of these conditions and to contribute to the diagnosis of a broad range of Achilles tendon disorders.

  11. Micromechanical properties and collagen composition of ruptured human achilles tendon

    DEFF Research Database (Denmark)

    Hansen, Philip; Kovanen, Vuokko; Hölmich, Per

    2013-01-01

    The Achilles tendon is one of the strongest tendons in the human body, and yet it frequently ruptures, which is a substantial clinical problem. However, the cause of ruptures remains elusive.......The Achilles tendon is one of the strongest tendons in the human body, and yet it frequently ruptures, which is a substantial clinical problem. However, the cause of ruptures remains elusive....

  12. Preparation of extracellular matrices produced by cultured and primary fibroblasts

    Science.gov (United States)

    Franco-Barraza, Janusz; Beacham, Dorothy A.; Amatangelo, Michael D.; Cukierman, Edna

    2016-01-01

    Fibroblasts secrete and organize extracellular matrix (ECM), which provides structural support for their adhesion, migration, and tissue organization, besides regulating cellular functions such as growth and survival. Cell-to-matrix interactions are vital for vertebrate development. Disorders in these processes have been associated with fibrosis, developmental malformations, cancer, and other diseases. This unit describes a method for preparing a three-dimensional matrix derived from fibroblastic cells; the matrix is three-dimensional, cell and debris free, and attached to a two-dimensional culture surface. Cell adhesion and spreading are normal on these matrices. This matrix can also be compressed into a two-dimensional matrix and solubilized to study the matrix biochemically. Culturing fibroblasts on traditional two-dimensional (2-D) substrates induces an artificial polarity between lower and upper surfaces of these normally nonpolar cells. Not surprisingly, fibroblast morphology and migration differ once suspended in three-dimensional (3-D) collagen gels (Friedl and Brocker, 2000). However, the molecular composition of collagen gels does not mimic the natural fibroblast (i.e., mesenchymal) microenvironment. Fibroblasts secrete and organize ECM, which provides structural support for their adhesion, migration, and tissue organization, in addition to regulating cellular functions such as growth and survival (Buck and Horwitz, 1987; Hay, 1991; Hynes, 1999; Geiger et al., 2001). Cell-to-matrix interactions are vital for vertebrate development. Disorders in these processes have been associated with fibrosis, developmental malformations, cancer (i.e., desmoplastic tumor microenvironment), and other diseases (Rybinski et al., 2014). This unit describes methods for generating tissue culture surfaces coated with a fibroblast-derived 3-D ECM produced and deposited by both established and primary fibroblasts. The matrices closely resemble in vivo mesenchymal matrices and

  13. Differential Expression of Matrix Metalloproteases in Human Fibroblasts with Different Origins

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2012-01-01

    Full Text Available Fibroblasts are widely distributed cells and are responsible for the deposition of extracellular matrix (ECM components but also secrete ECM-degrading matrix metalloproteases. A finely balanced equilibrium between deposition and degradation of ECM is essential for structural integrity of tissues. In the past, fibroblasts have typically been understood as a uniform cell population with comparable functions regardless of their origin. Here, we determined growth curves of fibroblasts derived from heart, skin, and lung and clearly show the lowest proliferation rate for cardiac fibroblasts. Furthermore, we examined basal expression levels of collagen and different MMPs in these three types of fibroblasts and compared these concerning their site of origin. Interestingly, we found major differences in basal mRNA expression especially for MMP1 and MMP3. Moreover, we treated fibroblasts with TNF-α and observed different alterations under these proinflammatory conditions. In conclusion, fibroblasts show different properties in proliferation and MMP expression regarding their originated tissue.

  14. Hamstring tendons insertion - an anatomical study

    Directory of Open Access Journals (Sweden)

    Cristiano Antonio Grassi

    2013-09-01

    Full Text Available OBJECTIVE: To study the anatomy of the hamstring tendons insertion and anatomical rela-tionships. METHODS: Ten cadaver knees with medial and anterior intact structures were selected. The dissection was performed from anteromedial access to exposure of the insertion of the flexor tendons (FT, tibial plateau (TP and tibial tuberosity (TT. A needle of 40 × 12 and a caliper were used to measure the distance of the tibial plateau of the knee flexor tendons insertion at 15 mm from the medial border of the patellar tendon and tibial tuberosity to the insertion of the flexor tendons of the knee. The angle between tibial plateau and the insertion of the flexor tendons of the knee (A-TP-FT was calculated using Image Pro Plus software. RESULTS: The mean distance TP-FT was 41 ± 4.6 mm. The distance between the TT-FT was 6.88 ± 1 mm. The (A-TP-FT was 20.3 ± 4.9°. CONCLUSION: In the anterior tibial flexor tendons are about 40 mm from the plateau with an average of 20°.

  15. Fibroma of the tendon sheath of the long head of the biceps tendon

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, Michel de; Shahabpour, Maryam [Universitair Ziekenhuis Brussel, Department of Radiology, Brussels (Belgium); Isacker, Tom van [Sint-Lucas Hospital, Department of Orthopedic Surgery, Brugge (Belgium); Lenchik, Leon [Wake Forest School of Medicine, Department of Radiology, Winston Salem, NC (United States); Caillie, Marie-Astrid van [Sint-Lucas Hospital, Department of Pathology, Brugge (Belgium)

    2014-03-15

    Fibroma of the tendon sheath is a benign tumor that is less common than giant cell tumor of the tendon sheath. Both tumors may present as a painless, slowly enlarging mass. Radiological findings may be similar for both tumors. Histologically, fibroma of the tendon sheath lacks the hemosiderin-laden macrophages that are typical for giant cell tumor of the tendon sheath. We report on a 49-year-old woman with fibroma of the tendon sheath of the long head of the biceps tendon. In our case, on MR images, we observed band-like hypointense areas centrally in the tumor, mild patchy contrast enhancement, and most importantly, no decrease of signal intensity on gradient echo images. These characteristics reflected histological findings. (orig.)

  16. A Rare Case of Simultaneous Acute Bilateral Quadriceps Tendon Rupture and Unilateral Achilles Tendon Rupture

    OpenAIRE

    Wei Yee Leong; Daniel Gheorghiu; Janardhan Rao

    2013-01-01

    Introduction: There have been multiple reported cases of bilateral quadriceps tendon ruptures (QTR) in the literature. These injuries frequently associated with delayed diagnosis, which results in delayed surgical treatment. In very unusual cases, bilateral QTRs can be associated with other simultaneous tendon ruptures. Case Report: We present a rare case of bilateral QTR with a simultaneous Achilles Tendon Rupture involving a 31 years old Caucasian man who is a semi-professional body bui...

  17. Suppression of cholesterol synthesis in cultured fibroblasts from a patient with homozygous familial hypercholesterolemia by her own low density lipoprotein density fraction. A possible role of apolipoprotein E

    NARCIS (Netherlands)

    Havekes, L.; Vermeer, B.J.; Wit, E. de

    1980-01-01

    The suppression of cellular cholesterol synthesis by low density lipoprotein (LDL) from a normal and from a homozygous familial hypercholesterolemic subject was measured on normal fibroblasts and on fibroblasts derived from the same homozygous familial hypercholesterolemic patient. On normal

  18. PTCH1 +/- dermal fibroblasts isolated from healthy skin of Gorlin syndrome patients exhibit features of carcinoma associated fibroblasts.

    Directory of Open Access Journals (Sweden)

    Alexandre Valin

    Full Text Available Gorlin's or nevoid basal cell carcinoma syndrome (NBCCS causes predisposition to basal cell carcinoma (BCC, the commonest cancer in adult human. Mutations in the tumor suppressor gene PTCH1 are responsible for this autosomal dominant syndrome. In NBCCS patients, as in the general population, ultraviolet exposure is a major risk factor for BCC development. However these patients also develop BCCs in sun-protected areas of the skin, suggesting the existence of other mechanisms for BCC predisposition in NBCCS patients. As increasing evidence supports the idea that the stroma influences carcinoma development, we hypothesized that NBCCS fibroblasts could facilitate BCC occurence of the patients. WT (n = 3 and NBCCS fibroblasts bearing either nonsense (n = 3 or missense (n = 3 PTCH1 mutations were cultured in dermal equivalents made of a collagen matrix and their transcriptomes were compared by whole genome microarray analyses. Strikingly, NBCCS fibroblasts over-expressed mRNAs encoding pro-tumoral factors such as Matrix Metalloproteinases 1 and 3 and tenascin C. They also over-expressed mRNA of pro-proliferative diffusible factors such as fibroblast growth factor 7 and the stromal cell-derived factor 1 alpha, known for its expression in carcinoma associated fibroblasts. These data indicate that the PTCH1(+/- genotype of healthy NBCCS fibroblasts results in phenotypic traits highly reminiscent of those of BCC associated fibroblasts, a clue to the yet mysterious proneness to non photo-exposed BCCs in NBCCS patients.

  19. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.

    Science.gov (United States)

    Wu, Shaohua; Wang, Ying; Streubel, Philipp N; Duan, Bin

    2017-10-15

    Non-woven nanofibrous scaffolds have been developed for tendon graft application by using electrospinning strategies. However, electrospun nanofibrous scaffolds face some obstacles and limitations, including suboptimal scaffold structure, weak tensile and suture-retention strengths, and compact structure for cell infiltration. In this work, a novel nanofibrous, woven biotextile, fabricated based on electrospun nanofiber yarns, was implemented as a tissue engineered tendon scaffold. Based on our modified electrospinning setup, polycaprolactone (PCL) nanofiber yarns were fabricated with reproducible quality, and were further processed into plain-weaving fabrics interlaced with polylactic acid (PLA) multifilaments. Nonwoven nanofibrous PCL meshes with random or aligned fiber structures were generated using typical electrospinning as comparative counterparts. The woven fabrics contained 3D aligned microstructures with significantly larger pore size and obviously enhanced tensile mechanical properties than their nonwoven counterparts. The biological results revealed that cell proliferation and infiltration, along with the expression of tendon-specific genes by human adipose derived mesenchymal stem cells (HADMSC) and human tenocytes (HT), were significantly enhanced on the woven fabrics compared with those on randomly-oriented or aligned nanofiber meshes. Co-cultures of HADMSC with HT or human umbilical vein endothelial cells (HUVEC) on woven fabrics significantly upregulated the functional expression of most tenogenic markers. HADMSC/HT/HUVEC tri-culture on woven fabrics showed the highest upregulation of most tendon-associated markers than all the other mono- and co-culture groups. Furthermore, we conditioned the tri-cultured constructs with dynamic conditioning and demonstrated that dynamic stretch promoted total collagen secretion and tenogenic differentiation. Our nanofiber yarn-based biotextiles have significant potential to be used as engineered scaffolds to

  20. Acidic Fibroblast Growth Factor Promotes Vascular Repair

    Science.gov (United States)

    Bjornsson, Thorir D.; Dryjski, Maciej; Tluczek, John; Mennie, Robert; Ronan, John; Mellin, Theodore N.; Thomas, Kenneth A.

    1991-10-01

    Intravascular injury to arteries can result in thickening of the intimal smooth muscle layer adjacent to the lumen by migration and proliferation of cells from the underlying medial smooth muscle layer accompanied by deposition of extracellular matrix. This pathological response, which decreases lumen diameter, might, in part, be the result of the access of smooth muscle cells to plasma and platelet-derived growth factors as a consequence of denudation of the overlying confluent monolayer of vascular endothelial cells. Injured rat carotid arteries were treated by i.v. administration of acidic fibroblast growth factor, a heparin-binding protein that is chemotactic and mitogenic for vascular endothelial cells. The growth factor treatment resulted in dose-dependent inhibition of intimal thickening with parallel promotion of endothelial regeneration over the injured area. Therefore, acidic fibroblast growth factor might be efficacious in the prevention of restenosis caused by intimal thickening following angioplasty in humans.

  1. Automated freeze-thaw cycles for decellularization of tendon tissue - a pilot study.

    Science.gov (United States)

    Roth, Susanne Pauline; Glauche, Sina Marie; Plenge, Amelie; Erbe, Ina; Heller, Sandra; Burk, Janina

    2017-02-14

    Decellularization of tendon tissue plays a pivotal role in current tissue engineering approaches for in vitro research as well as for translation of graft-based tendon restoration into clinics. Automation of essential decellularization steps like freeze-thawing is crucial for the development of more standardized decellularization protocols and commercial graft production under good manufacturing practice (GMP) conditions in the future. In this study, a liquid nitrogen-based controlled rate freezer was utilized for automation of repeated freeze-thawing for decellularization of equine superficial digital flexor tendons. Additional tendon specimens underwent manually performed freeze-thaw cycles based on an established procedure. Tendon decellularization was completed by using non-ionic detergent treatment (Triton X-100). Effectiveness of decellularization was assessed by residual nuclei count and calculation of DNA content. Cytocompatibility was evaluated by culturing allogeneic adipose tissue-derived mesenchymal stromal cells on the tendon scaffolds. There were no significant differences in decellularization effectiveness between samples decellularized by the automated freeze-thaw procedure and samples that underwent manual freeze-thaw cycles. Further, we inferred no significant differences in the effectiveness of decellularization between two different cooling and heating rates applied in the automated freeze-thaw process. Both the automated protocols and the manually performed protocol resulted in roughly 2% residual nuclei and 13% residual DNA content. Successful cell culture was achieved with samples decellularized by automated freeze-thawing as well as with tendon samples decellularized by manually performed freeze-thaw cycles. Automated freeze-thaw cycles performed by using a liquid nitrogen-based controlled rate freezer were as effective as previously described manual freeze-thaw procedures for decellularization of equine superficial digital flexor tendons

  2. Assessment of Postoperative Tendon Quality in Patients With Achilles Tendon Rupture Using Diffusion Tensor Imaging and Tendon Fiber Tracking.

    Science.gov (United States)

    Sarman, Hakan; Atmaca, Halil; Cakir, Ozgur; Muezzinoglu, Umit Sefa; Anik, Yonca; Memisoglu, Kaya; Baran, Tuncay; Isik, Cengiz

    2015-01-01

    Although pre- and postoperative imaging of Achilles tendon rupture (ATR) has been well documented, radiographic evaluations of postoperative intratendinous healing and microstructure are still lacking. Diffusion tensor imaging (DTI) is an innovative technique that offers a noninvasive method for describing the microstructure characteristics and organization of tissues. DTI was used in the present study for quantitative assessment of fiber continuity postoperatively in patients with acute ATR. The data from 16 patients with ATR from 2005 to 2012 were retrospectively analyzed. The microstructure of ART was evaluated using tendon fiber tracking, tendon continuity, fractional anisotropy, and apparent diffusion coefficient values by way of DTI. The distal and proximal portions were measured separately in both the ruptured and the healthy extremities of each patient. The mean patient age was 41.56 ± 8.49 (range 26 to 56) years. The median duration of follow-up was 21 (range 6 to 80) months. The tendon fractional anisotropy values of the ruptured Achilles tendon were significantly lower statistically than those of the normal side (p = .001). However, none of the differences between the 2 groups with respect to the distal and proximal apparent diffusion coefficient were statistically significant (p = .358 and p = .899, respectively). In addition, the fractional anisotropy and apparent diffusion coefficient measurements were not significantly different in the proximal and distal regions of the ruptured tendons compared with the healthy tendons. The present study used DTI and fiber tracking to demonstrate the radiologic properties of postoperative Achilles tendons with respect to trajectory and tendinous fiber continuity. Quantifying DTI and fiber tractography offers an innovative and effective tool that might be able to detect microstructural abnormalities not appreciable using conventional radiologic techniques. Copyright © 2015 American College of Foot and Ankle

  3. A Biomechanical Study of a Novel Asymmetric 6-Strand Flexor Tendon Repair Using Porcine Tendons.

    Science.gov (United States)

    Wong, Yoke Rung; Tay, Shian Chao

    2018-01-01

    This study evaluated the biomechanical performance of a novel asymmetric 6-strand flexor tendon repair technique without locking loops. Twenty porcine flexor tendons were equally repaired by using the asymmetric technique and compared with the modified Lim-Tsai repair technique. The ultimate tensile strength, load to 1-mm gap force, stiffness, and mechanism of failure were measured. The asymmetric repair technique had significantly higher tensile strength (63.3 ± 3.7 N) than the modified Lim-Tsai repairs (46.7 ± 8.3 N). A novel flexor tendon repair technique with improved biomechanical performance may be available for use in flexor tendon repairs.

  4. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair

    National Research Council Canada - National Science Library

    Guerquin, Marie-Justine; Charvet, Benjamin; Nourissat, Geoffroy; Havis, Emmanuelle; Ronsin, Olivier; Bonnin, Marie-Ange; Ruggiu, Mathilde; Olivera-Martinez, Isabel; Robert, Nicolas; Lu, Yinhui; Kadler, Karl E; Baumberger, Tristan; Doursounian, Levon; Berenbaum, Francis; Duprez, Delphine

    2013-01-01

    Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen...

  5. Multi-Layer Electrospun Membrane Mimicking Tendon Sheath for Prevention of Tendon Adhesions

    Directory of Open Access Journals (Sweden)

    Shichao Jiang

    2015-03-01

    Full Text Available Defect of the tendon sheath after tendon injury is a main reason for tendon adhesions, but it is a daunting challenge for the biomimetic substitute of the tendon sheath after injury due to its multi-layer membrane-like structure and complex biologic functions. In this study, a multi-layer membrane with celecoxib-loaded poly(l-lactic acid-polyethylene glycol (PELA electrospun fibrous membrane as the outer layer, hyaluronic acid (HA gel as middle layer, and PELA electrospun fibrous membrane as the inner layer was designed. The anti-adhesion efficacy of this multi-layer membrane was compared with a single-layer use in rabbit flexor digitorum profundus tendon model. The surface morphology showed that both PELA fibers and celecoxib-loaded PELA fibers in multi-layer membrane were uniform in size, randomly arrayed, very porous, and smooth without beads. Multi-layer membrane group had fewer peritendinous adhesions and better gliding than the PELA membrane group and control group in gross and histological observation. The similar mechanical characteristic and collagen expression of tendon repair site in the three groups indicated that the multi-layer membrane did not impair tendon healing. Taken together, our results demonstrated that such a biomimetic multi-layer sheath could be used as a potential strategy in clinics for promoting tendon gliding and preventing adhesion without poor tendon healing.

  6. Traumatic tibialis anterior tendon rupture: treatment with a two-stage silicone tube and an interposition hamstring tendons graft protocol.

    Science.gov (United States)

    Kontogeorgakos, Vasileios; Koutalos, Antonios; Hantes, Michael; Manoudis, Gregory; Badras, Leonidas; Malizos, Konstantinos

    2015-03-01

    A novel technique for managing ruptured tibialis anterior tendon complicated by infection and tendon substance loss in a young adult is described. A two-stage reconstruction technique with a silicon tube and tendon autograft was performed. At first, after local control of the infection, scar excision and placement of a silicone tube was performed. Ten weeks later, ipsilateral hamstrings tendons were harvested and bridged the 7 cm tendon gap. Eighteen months later, the patient has excellent clinical and functional outcome.

  7. Spatial organization and isotubulin composition of microtubules in epidermal tendon cells of Artemia franciscana.

    Science.gov (United States)

    Criel, Godelieve R J; Van Oostveldt, Patrick; MacRae, Thomas H

    2005-02-01

    Epidermally derived tendon cells attach the exoskeleton (cuticle) of the Branchiopod crustacean, Artemia franciscana, to underlying muscle in the hindgut, while the structurally similar transalar tendon (epithelial) cells, which also arise from the epidermis and are polarized, connect dorsal and ventral exopodite surfaces. To establish these latter attachments the transalar tendon cells interact with cuticles on opposite sides of the exopodite by way of their apical surfaces and with one another via basal regions, or the cuticle attachments may be mediated through linkages with phagocytic storage cells found in the hemolymph. In some cases, phyllopod tendon cells attach directly to muscle cells. Tendon cells in the hindgut of Artemia possess microtubule bundles, as do the transalar cells, and they extend from the basal myotendinal junction to the apical domain located near the cuticle. The bundled microtubules intermingle with thin filaments reminiscent of microfilaments, but intermediate filament-like structures are absent. Microtubule bundles converging at apical cell surfaces contact structures termed apical invaginations, composed of cytoplasmic membrane infoldings associated with electron-dense material. Intracuticular rods protrude from apical invaginations, either into the cuticle during intermolt or the molting fluid in premolt. Confocal microscopy of immunofluorescently stained samples revealed tyrosinated, detyrosinated, and acetylated tubulins, the first time posttranslationally modified isoforms of this protein have been demonstrated in crustacean tendon cells. Microfilaments, as shown by staining with phalloidin, coincided spatially with microtubule bundles. Artemia tendon cells clearly represent an interesting system for study of cytoskeleton organization within the context of cytoplasmic polarity and the results in this article indicate functional cooperation of microtubules and microfilaments. These cytoskeletal elements, either acting independently

  8. Converting round tendons to flat tendon constructs: Does the preparation process have an influence on the structural properties?

    Science.gov (United States)

    Domnick, C; Herbort, M; Raschke, M J; Schliemann, B; Siebold, R; Śmigielski, R; Fink, C

    2017-05-01

    The structural properties of hamstring tendon grafts were evaluated in a porcine model, after processing it to a flat shape, to better replace or augment anatomic flat structures (e.g. ACL, MPFL or MCL). In this biomechanical study, porcine flexor tendons were used which have a comparable shape to semitendinosus and gracilis tendons. One part of the tendon was prepared to a flat tendon construct by splitting the tendon longitudinally with a knife to half of the diameter of the tendon. The semi-split tendon was scratched out to a flat shape. The other matched part was tested in its original round shape. The tendons (n = 40) have been fixed in a uniaxial testing machine (Zwick/Roell) by cryo-clamps after preparing the fixed ends by 2-0 polyester sutures (2-0 Ethibond(®) EXCEL, Ethicon, Somerville, NJ). In every specimen, there was a free 60-mm tendon part between both clamps. The tendons have been loaded to failure to evaluate typical biomechanical parameters such as stiffness, yield load and maximum load. No statistically significant differences (n.s.) regarding stiffness, yield load and maximum load between natively round and processed flat tendons could be detected. A prepared flat-shaped tendon does not show any different structural properties compared with an original round tendon. Therefore, a flat tendon seems to be a biomechanical stable graft option for anatomic reconstruction or augmentation of injured natively flat-shaped structures such as MCL, MPFL or ACL.

  9. Position Control of Tendon-Driven Fingers

    Science.gov (United States)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Hargrave, B.; Pementer, Frank

    2011-01-01

    Conventionally, tendon-driven manipulators implement some force control scheme based on tension feedback. This feedback allows the system to ensure that the tendons are maintained taut with proper levels of tensioning at all times. Occasionally, whether it is due to the lack of tension feedback or the inability to implement sufficiently high stiffnesses, a position control scheme is needed. This work compares three position controllers for tendon-driven manipulators. A new controller is introduced that achieves the best overall performance with regards to speed, accuracy, and transient behavior. To compensate for the lack of tension feedback, the controller nominally maintains the internal tension on the tendons by implementing a two-tier architecture with a range-space constraint. These control laws are validated experimentally on the Robonaut-2 humanoid hand. I

  10. PERONEAL TENDON LESIONS IN ATHLETES (REVIEW)

    National Research Council Canada - National Science Library

    E. E. Achkasov; A. P. Sereda; A. D. Repetyuk

    2016-01-01

    .... Peroneal tendons pathology is not the major but the underestimated cause of pain in lateral and hindfoot as well as of foot dysfunction which is difficult to distinguish from lesions of lateral...

  11. Terminology for Achilles tendon related disorders

    NARCIS (Netherlands)

    van Dijk, C. N.; van Sterkenburg, M. N.; Wiegerinck, J. I.; Karlsson, J.; Maffulli, N.

    2011-01-01

    The terminology of Achilles tendon pathology has become inconsistent and confusing throughout the years. For proper research, assessment and treatment, a uniform and clear terminology is necessary. A new terminology is proposed; the definitions hereof encompass the anatomic location, symptoms,

  12. Is sonoelastography of value in assessing tendons?

    Science.gov (United States)

    Klauser, Andrea S; Faschingbauer, Ralph; Jaschke, Werner R

    2010-09-01

    Sonoelastography is a newly introduced ultrasound technique that evaluates tissue elasticity and thus provides additional information to that offered by conventional ultrasound images. In the musculoskeletal field, sonoelastography can help improve estimation of tendon stiffness. In this article, the principles and future developments of sonoelastography are discussed using the strongest and thickest tendon of the human body, the Achilles tendon, for illustrative purposes. Preliminary findings of sonoelastography in healthy and pathological Achilles tendons, technical considerations, examination technique and several limitations are addressed. The usefulness of elastography can be expected to increase rapidly in the musculoskeletal field, as soon as we learn to interpret elastographic artifacts as well as to take advantage of the new information provided by sonoelastography. Thieme Medical Publishers.

  13. Jumper's Knee (Patellar Tendonitis) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Jumper's Knee (Patellar Tendonitis) KidsHealth / For Parents / Jumper's Knee (Patellar ... prevent continued damage to the knee. How the Knee Works To understand how jumper's knee happens, it ...

  14. Achilles tendon assessed with sonoelastography: histologic agreement

    National Research Council Canada - National Science Library

    Klauser, Andrea S; Miyamoto, Hideaki; Tamegger, Mario; Faschingbauer, Ralph; Moriggl, Bernhard; Klima, Guenther; Feuchtner, Gudrun M; Kastlunger, Martin; Jaschke, Werner R

    2013-01-01

    ...) and sonoelastography of the Achilles tendon with findings at histologic assessment. This study was conducted with the approval of the institutional review boards, and all cadavers were in legal custody of the study institution...

  15. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  16. Mechanical properties of the equine superficial digital flexor tendon relate to specific collagen cross-link levels.

    Science.gov (United States)

    Thorpe, C T; Stark, R J F; Goodship, A E; Birch, H L

    2010-11-01

    Damage to the flexor tendons, particularly the superficial digital flexor tendon (SDFT), is one of the most common musculoskeletal injuries sustained by horses competing in all disciplines. Our previous work has shown that SDFTs from different individuals show a wide variation in mechanical strengths; this is important clinically as it may relate to predisposition to injury. The high mechanical strength of tendon relies on the correct orientation of collagen molecules within fibrils and stabilisation by the formation of chemical cross-links between collagen molecules. It is not known whether the variation in SDFT mechanical properties between individuals relates to differences in collagen cross-link levels. Enzyme-derived, intermolecular cross-linking of tendon collagen correlates with mechanical properties of the SDFT. SDFTs were collected from 38 horses and mechanically tested to failure. Structural and material properties were calculated from the load/deformation plot and cross-sectional area for each tendon. Following mechanical testing, pyrrolic cross-link levels were measured using a spectrophotometric assay for Ehrlich's reactivity and pyridinoline levels were quantified by HPLC. Cross-link levels were correlated with mechanical properties and statistical significance tested using a Pearson's correlation test. Pyrrole cross-link levels showed a significant positive correlation with ultimate stress (P = 0.004), yield stress (P = 0.003) and elastic modulus (P = 0.018) of the tendons, despite being a minor cross-link in these tendons. There was no significant correlation of mechanical properties with either hydroxylysyl- or lysyl-pyridinoline levels. Given the low absolute levels of pyrrole, we suggest that the correlation with high mechanical strength is through an indirect mechanism. Understanding the nature of the relationships between pyrrole cross-links, other matrix characteristics and tendon material properties may allow development of strategies to

  17. Early diagnosis of tendon pathologies with sonoelastography

    OpenAIRE

    Zeynep ilerisoy Yakut; Torel Ogur; sukran Erten; Deniz Delibas; Meltem Yildirim; Halil Arslan; Mehmet Gumus

    2015-01-01

    AIM : Sonoelastography (SE) is a new ultrasound-based imaging technique that provides information on tissue elasticity and stiffness. Strain sonoelastography is the most commonly used technique that allows real-time visualisation of the tissue. In this study, we searched the efficacy of SE for assessing Achilles tendon abnormalities in patients with familial mediterranean fever (FMF) suffering from talalgia. METHODS: Achilles tendons of 18 FMF patients suffering from unilateral talala...

  18. Suitable long tendon technologies and practices

    CSIR Research Space (South Africa)

    Altounyan, P

    2001-10-01

    Full Text Available to improve safety in coal mines. In order to improve safety in South African coal mining operations it is essential that rock engineering and support practices be improved in the light of available international knowledge and best practice... and Practices 2 1. The introduction of safer and more effective long tendon support systems. 2. The development of an industry wide guidance documents for each long tendon support type to be used. 3. The identification of appropriate laboratory...

  19. Tendon rupture associated with excessive smartphone gaming.

    Science.gov (United States)

    Gilman, Luke; Cage, Dori N; Horn, Adam; Bishop, Frank; Klam, Warren P; Doan, Andrew P

    2015-06-01

    Excessive use of smartphones has been associated with injuries. A 29-year-old, right hand-dominant man presented with chronic left thumb pain and loss of active motion from playing a Match-3 puzzle video game on his smartphone all day for 6 to 8 weeks. On physical examination, the left extensor pollicis longus tendon was not palpable, and no tendon motion was noted with wrist tenodesis. The thumb metacarpophalangeal range of motion was 10° to 80°, and thumb interphalangeal range of motion was 30° to 70°. The clinical diagnosis was rupture of the left extensor pollicis longus tendon. The patient subsequently underwent an extensor indicis proprius (1 of 2 tendons that extend the index finger) to extensor pollicis longus tendon transfer. During surgery, rupture of the extensor pollicis longus tendon was seen between the metacarpophalangeal and wrist joints. The potential for video games to reduce pain perception raises clinical and social considerations about excessive use, abuse, and addiction. Future research should consider whether pain reduction is a reason some individuals play video games excessively, manifest addiction, or sustain injuries associated with video gaming.

  20. TREATMENT OF OLD ACHILLES TENDON RUPTURES

    Directory of Open Access Journals (Sweden)

    N. A. Koryshkov

    2012-01-01

    Full Text Available From 1998 to 2010 32 patients (14 men, 18 women, aged 15-65 years, underwent surgical treatment for old Achilles tendon rupture. In all cases correct diagnosis was made not earlier than 1 month after injury. The importance of clinical Thompson test and sonographic examination for diagnosis of Achilles tendon rupture is underlined. For the restoration of Achilles tendon V-Y plasty was used. Surgery was performed in a period of 1 to 13 months in patients with subcutaneous Achilles tendon ruptures. Follow-up results of patients in the postoperative period ranged from 6 months to 10 years (mean follow-up 1 year 7 months. Date of observation in the postoperative period ranged from 6 months to 19 years. Marginal necrosis wound occurred in 3 (10% patients, re-rupture of the Achilles tendon to tendon suture zone - in one patient, even in one patient on day 14 became infected. Violations of the foot innervation were no detected.

  1. Triceps tendon rupture: repair and rehabilitation.

    Science.gov (United States)

    Kocialkowski, Cezary; Carter, Rebecca; Peach, Chris

    2018-01-01

    Triceps tendon ruptures are rare injuries and are frequently missed on initial presentation to the emergency department. In cases of complete rupture, surgical repair is recommended but no guidelines exist on the optimum reconstructive technique or rehabilitation. We present a surgical technique and rehabilitation programme for the management of these injuries. A midline posterior incision is performed, the ruptured triceps tendon is identified and mobilized, and the tendon footprint is prepared. The tendon is then repaired using bone suture anchors, with a parachute technique, and held in 40° of flexion. The rehabilitation programme is divided into five phases, over a period of 12 weeks. Range of movement is gradually increased in a brace for the first 6 weeks. Rehabilitation is gradually increase in intensity, progressing from isometric extension exercises to weight-resisted exercises, and finally plyometrics and throwing exercises. Our surgical technique provides a solid tendon repair without the need for further metalwork removal. The graduated rehabilitation programme also helps to protect the integrity of the repair at the same time as enabling patients to gradually increase the strength of the triceps tendon and ultimately return to sport activities.

  2. Arthroscopic quadriceps tendon repair: two case reports.

    Science.gov (United States)

    Saito, Hidetomo; Shimada, Yoichi; Yamamura, Toshiaki; Yamada, Shin; Sato, Takahiro; Nozaka, Koji; Kijima, Hiroaki; Saito, Kimio

    2015-01-01

    Recently, although some studies of open repair of the tendon of the quadriceps femoris have been published, there have been no reports in the literature on primary arthroscopic repair. In our present study, we present two cases of quadriceps tendon injury arthroscopically repaired with excellent results. Case 1 involved a 68-year-old man who was injured while shifting his weight to prevent a fall. MRI showed complete rupture at the insertion of the patella of the quadriceps tendon. The rupture was arthroscopically repaired using both suture anchor and pull-out suture fixation methods via bone tunnels (hereafter, pull-out fixation). Two years after surgery, retearing was not observed on MRI and both Japan Orthopedic Association (JOA) Knee and Lysholm scores had recovered to 100. Case 2 involved a 50-year-old man who was also injured when shifting his weight to prevent a fall. MRI showed incomplete superficial rupture at the insertion of the patella of the quadriceps tendon. The rupture was arthroscopically repaired using pull-out fixation of six strand sutures. One year after surgery, MRI revealed a healed tendon and his JOA and Lysholm scores were 95 and 100, respectively. Thus, arthroscopic repair may be a useful surgical method for repairing quadriceps tendon injury.

  3. Arthroscopic Quadriceps Tendon Repair: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Hidetomo Saito

    2015-01-01

    Full Text Available Recently, although some studies of open repair of the tendon of the quadriceps femoris have been published, there have been no reports in the literature on primary arthroscopic repair. In our present study, we present two cases of quadriceps tendon injury arthroscopically repaired with excellent results. Case 1 involved a 68-year-old man who was injured while shifting his weight to prevent a fall. MRI showed complete rupture at the insertion of the patella of the quadriceps tendon. The rupture was arthroscopically repaired using both suture anchor and pull-out suture fixation methods via bone tunnels (hereafter, pull-out fixation. Two years after surgery, retearing was not observed on MRI and both Japan Orthopedic Association (JOA Knee and Lysholm scores had recovered to 100. Case 2 involved a 50-year-old man who was also injured when shifting his weight to prevent a fall. MRI showed incomplete superficial rupture at the insertion of the patella of the quadriceps tendon. The rupture was arthroscopically repaired using pull-out fixation of six strand sutures. One year after surgery, MRI revealed a healed tendon and his JOA and Lysholm scores were 95 and 100, respectively. Thus, arthroscopic repair may be a useful surgical method for repairing quadriceps tendon injury.

  4. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Kavita S Subramaniam

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin and hormonal (estrogen and progesterone receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175% when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51% (P<0.0001. These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001, suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR, also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP-1, interleukin (IL-6, IL-8, RANTES and vascular

  5. [ISOLATION OF RAT PATELLAR TENDON STEM CELLS AND EFFECT OF MECHANICAL STRETCHING ON Sox-9 EXPRESSION].

    Science.gov (United States)

    Qin, Shengnan; Wang, Wen; Fu, Shiquan; Cheng, Yushan; Chen, Honghui; Dong, Fei; Chen, Qiming; Li, Aiguo

    2015-07-01

    To isolate the tendon stem cells (TSCs) from rat patellar tendon and to investigate the effect of mechanical stretching on the expression of Sox-9. TSCs were isolated from Sprague Dawley rat (12 weeks old) patellar tendon by collagenase digestion and low density culture. The cell colony morphology and number were observed by crystal violet staining; the cell morphology was observed by inverted phase contrast microscope, and the immunophenotypes of mesenchymal stem cells (MSCs) were determined by flow cytometry. The TSCs at passage 3 was given the mechanical stretching at 4%, 0.17 Hz for 4 hours and 24 hours in the experimental group, and cells without stretching was used as control. The Sox-9 gene and protein expressions were detected by real-time fluorescence quantitative PCR and Western blot. Primary cells showed clonal growth and star shape; after subculture, cells at passage 1 showed fibroblast-like shape. The cells formed cell colonies after 7 days; the expressions were positive for CD29, CD44, and CD90 and negative for CD45. The result of real-time fluorescence quantitative PCR showed that Sox-9 gene was down-regulated at 4 hours after mechanical stretching compared with control (P Sox-9 protein expression was lower at 4 hours after stretching, but higher at 24 hours after mechanical stretching than that in control group (P Sox-9 expression, but the inhibited effect might stimulate the Sox-9 expression after the mechanical stretching effect disappears.

  6. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Miyoshi, Keiko; Horiguchi, Taigo; Tanimura, Ayako; Hagita, Hiroko; Noma, Takafumi

    2015-01-01

    Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  7. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  8. Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface.

    Science.gov (United States)

    Silva, Elsa D; Babo, Pedro S; Costa-Almeida, Raquel; Domingues, Rui M A; Mendes, Bárbara B; Paz, Elvira; Freitas, Paulo; Rodrigues, Márcia T; Granja, Pedro L; Gomes, Manuela E

    2017-06-11

    Photocrosslinkable magnetic hydrogels are attracting great interest for tissue engineering strategies due to their versatility and multifunctionality, including their remote controllability ex vivo, thus enabling engineering complex tissue interfaces. This study reports the development of a photocrosslinkable magnetic responsive hydrogel made of methacrylated chondroitin sulfate (MA-CS) enriched with platelet lysate (PL) with tunable features, envisioning their application in tendon-to-bone interface. MA-CS coated iron-based magnetic nanoparticles were incorporated to provide magnetic responsiveness to the hydrogel. Osteogenically differentiated adipose-derived stem cells and/or tendon-derived cells were encapsulated within the hydrogel, proliferating and expressing bone- and tendon-related markers. External magnetic field (EMF) application modulated the swelling, degradation and release of PL-derived growth factors, and impacted both cell morphology and the expression and synthesis of tendon- and bone-like matrix with a more evident effect in co-cultures. Overall, the developed magnetic responsive hydrogel represents a potential cell carrier system for interfacial tissue engineering with EMF-controlled properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. [Treatment of unrecent patellar tendon tear with semitendinous and gracilis tendons].

    Science.gov (United States)

    Estrada-Malacón, C A; García-Estrada, G A

    2011-01-01

    The patellar tendon lesion is very important due to the role of this tendon on the conformation of the extensor mechanism of the quadriceps. When the terminal end of this mechanism is injured, the extensor function of the knee is completely lost and thus the functional capability of the involved limb is completely disrupted.

  10. Local trauma in human patellar tendon leads to widespread changes in the tendon gene expression

    DEFF Research Database (Denmark)

    Heinemeier, Katja Maria; Lorentzen, Marc P; Kildevang Jensen, Jacob

    2016-01-01

    of Insulin-like growth factor-I, connective tissue growth factor, scleraxis, decorin, fibromodulin, tenascin-C, tenomodulin, VEGFa, CD68, IL-6, MMP12 and MMP13. In conclusion, a moderate trauma to a healthy human tendon (e.g. biopsy sampling) results in a widespread up-regulation of tendon cell activity...

  11. Mechanical Properties of Human Patellar Tendon at the Hierarchical levels of Tendon and Fibril

    DEFF Research Database (Denmark)

    Svensson, Rene Brüggebusch; Hansen, Philip; Hassenkam, Tue

    2012-01-01

    that of tendon supports that fibrillar rather than interfibrillar properties govern sub-failure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition...

  12. Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women

    DEFF Research Database (Denmark)

    Hansen, M.; Kongsgaard, M; Holm, Lars

    2009-01-01

    therapy (ERT, n = 10) were studied at rest and in response to one-legged resistance exercise. Synthesis of tendon collagen was determined by stable isotope incorporation [fractional synthesis rate (FSR)] and microdialysis technique (NH(2)-terminal propeptide of type I collagen synthesis). Tendon area...

  13. Mechanical properties of the human Achilles tendon, in vivo

    DEFF Research Database (Denmark)

    Kongsgaard, M; Nielsen, C H; Hegnsvad, S

    2011-01-01

    Ultrasonography has been widely applied for in vivo measurements of tendon mechanical properties. Assessments of human Achilles tendon mechanical properties have received great interest. Achilles tendon injuries predominantly occur in the tendon region between the Achilles-soleus myotendinous...... junction and Achilles-calcaneus osteotendinous junction i.e. in the free Achilles tendon. However, there has been no adequate ultrasound based method for quantifying the mechanical properties of the free human Achilles tendon. This study aimed to: 1) examine the mechanical properties of the free human...

  14. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    Science.gov (United States)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  15. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren's Contracture

    Directory of Open Access Journals (Sweden)

    Satish Latha

    2012-05-01

    Full Text Available Abstract Background Dupuytren's contracture (DC is a fibroproliferative disorder characterized by the progressive development of a scar-like collagen-rich cord that affects the palmar fascia of the hand and leads to digital flexion contractures. DC is most commonly treated by surgical resection of the diseased tissue, but has a high reported recurrence rate ranging from 27% to 80%. We sought to determine if the transcriptomic profiles of fibroblasts derived from DC-affected palmar fascia, adjacent phenotypically normal palmar fascia, and non-DC palmar fascial tissues might provide mechanistic clues to understanding the puzzle of disease predisposition and recurrence in DC. Methods To achieve this, total RNA was obtained from fibroblasts derived from primary DC-affected palmar fascia, patient-matched unaffected palmar fascia, and palmar fascia from non-DC patients undergoing carpal tunnel release (6 patients in each group. These cells were grown on a type-1 collagen substrate (to better mimic their in vivo environments. Microarray analyses were subsequently performed using Illumina BeadChip arrays to compare the transcriptomic profiles of these three cell populations. Data were analyzed using Significance Analysis of Microarrays (SAM v3.02, hierarchical clustering, concordance mapping and Venn diagram. Results We found that the transcriptomic profiles of DC-disease fibroblasts and fibroblasts from unaffected fascia of DC patients exhibited a much greater overlap than fibroblasts derived from the palmar fascia of patients undergoing carpal tunnel release. Quantitative real time RT-PCR confirmed the differential expression of select genes validating the microarray data analyses. These data are consistent with the hypothesis that predisposition and recurrence in DC may stem, at least in part, from intrinsic similarities in the basal gene expression of diseased and phenotypically unaffected palmar fascia fibroblasts. These data also demonstrate that

  16. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren's Contracture

    Science.gov (United States)

    2012-01-01

    Background Dupuytren's contracture (DC) is a fibroproliferative disorder characterized by the progressive development of a scar-like collagen-rich cord that affects the palmar fascia of the hand and leads to digital flexion contractures. DC is most commonly treated by surgical resection of the diseased tissue, but has a high reported recurrence rate ranging from 27% to 80%. We sought to determine if the transcriptomic profiles of fibroblasts derived from DC-affected palmar fascia, adjacent phenotypically normal palmar fascia, and non-DC palmar fascial tissues might provide mechanistic clues to understanding the puzzle of disease predisposition and recurrence in DC. Methods To achieve this, total RNA was obtained from fibroblasts derived from primary DC-affected palmar fascia, patient-matched unaffected palmar fascia, and palmar fascia from non-DC patients undergoing carpal tunnel release (6 patients in each group). These cells were grown on a type-1 collagen substrate (to better mimic their in vivo environments). Microarray analyses were subsequently performed using Illumina BeadChip arrays to compare the transcriptomic profiles of these three cell populations. Data were analyzed using Significance Analysis of Microarrays (SAM v3.02), hierarchical clustering, concordance mapping and Venn diagram. Results We found that the transcriptomic profiles of DC-disease fibroblasts and fibroblasts from unaffected fascia of DC patients exhibited a much greater overlap than fibroblasts derived from the palmar fascia of patients undergoing carpal tunnel release. Quantitative real time RT-PCR confirmed the differential expression of select genes validating the microarray data analyses. These data are consistent with the hypothesis that predisposition and recurrence in DC may stem, at least in part, from intrinsic similarities in the basal gene expression of diseased and phenotypically unaffected palmar fascia fibroblasts. These data also demonstrate that a collagen

  17. Local administration of Trolox, a vitamin E analog, reduced tendon adhesion in a chicken model of flexor digitorum profundus tendon injury

    OpenAIRE

    Lee, Yuk Wa; Fu, Sai Chuen; Mok, Tsui Yu; Chan, Kai Ming; Hung, Leung Kim

    2016-01-01

    Background: Hand flexor tendon injuries are compromised with tendon adhesion. Tendon adhesion forms between flexor tendon and tendon sheath, reduces the range of motion of fingers, and affects their function. Oxidative stress is increased in flexor tendon after injury and might play a role in tendon adhesion formation. Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a water-soluble analog of vitamin E, is antioxidative. Trolox reduced oxidative stress and the expression of fi...

  18. Myxoinflammatory fibroblastic sarcoma: spectrum of disease and imaging presentation

    Energy Technology Data Exchange (ETDEWEB)

    Gaetke-Udager, Kara; Yablon, Corrie M.; Morag, Yoav [University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Lucas, David R. [University of Michigan Health System, Department of Pathology, Ann Arbor, MI (United States)

    2016-03-15

    To describe the imaging findings of a series of myxoinflammatory fibroblastic sarcomas (MFSs) from our institution, including a case of dedifferentiated MFS and two cases with areas of high-grade tumor, in addition to typical cases of low-grade tumor. To correlate the imaging findings with the pathologic features of these tumors. IRB approval was obtained. Retrospective search of the pathology database at our institution from 2000 to 2015 identified seven cases of MFS with available imaging. Imaging, pathology, and clinical data were reviewed. Unlike the majority of well-differentiated tumors in our series (four cases), one tumor showed dedifferentiation and two cases had areas of high-grade tumor. The dedifferentiated tumor showed peripheral post-contrast enhancement. One case with a substantial high-grade component showed osseous destruction and peripheral enhancement in the high-grade area, while the low-grade component enhanced diffusely. The second case had a small high-grade area and showed diffuse enhancement. All three of these cases had non-acral locations and lacked association with a tendon. The four cases of low-grade MFS demonstrated diffuse enhancement, were located in the distal extremities, and were associated with a tendon. The imaging findings of dedifferentiated and high-grade MFS differ from the more typical low-grade tumors in that they have nonenhancing areas, a non-acral location, lack association with a tendon, and may involve bone. The radiologist should be aware that MFS represents a spectrum that includes low-grade tumors, tumors with high-grade areas, and tumors with dedifferentiation and that this spectrum presents with differing imaging features. (orig.)

  19. Management of acute Achilles tendon rupture with tendon-bundle technique.

    Science.gov (United States)

    Li, Chun-Guang; Li, Bing; Yang, Yun-Feng

    2017-02-01

    Objective * These authors contributed equally to this work. To explore tendon-bundle technique for treating Achilles tendon rupture with no defects. Methods Patients with full unilateral Achilles tendon rupture with no defects were included. The Achilles tendon medial edge surgical repair approach was used, revealing horsetail-like rupture bundles. Tendon bundles were anatomically realigned and repaired end-to-end using 5-0 sutures. Patients were followed-up for 1 year, and assessed for differences between the repaired versus healthy limb. Results Out of 24 patients (18 male, 6 female; aged 19-56 years) at 1 year following surgery, mean American Orthopaedic Foot and Ankle Society score was 92.4 ± 5.9; mean differences between the surgically repaired versus contralateral side in dorsiflexion and plantarflexion angle were 3.5 ± 2.3° and 5.6 ± 3.2°, respectively; mean difference in calf circumference between the two sides was 0.9 ± 0.5 cm; and mean increase in Achilles tendon width versus the healthy side was 0.8 ± 0.2 cm. By 1 year post-surgery, there were no significant between-side differences in dorsiflexion and plantarflexion angle, or calf circumference. Conclusions Tendon-bundle surgery resulted in good ankle function restoration and low complication rates. Tendon-bundle surgery may reduce blood supply destruction and maximally preserve Achilles tendon length, and may be effective for treating Achilles tendon rupture with no defects.

  20. MR imaging in chronic Achilles tendon disorder

    Energy Technology Data Exchange (ETDEWEB)

    Movin, T.; Rolf, C. [Section for Sports Medicine, Dept. of Orthopedic Surgery, Huddinge Univ. Hospital (Sweden); Kristoffersen-Wiberg, M.; Aspelin, P. [Dept. of Diagnostic Radiology, Karolinska Inst., Huddinge Univ. Hospital (Sweden)

    1998-03-01

    Objectives: The primary objective was to compare 4 imaging sequences (T1-weighted, T2-weighted, proton density, and T1-weighted with gadolinium contrast agent enhancement) with regard to intratendinous signal abnormality in patients with achillodynia. The secondary objective was to relate the images to the clinical symptoms and histopathological findings. Material and Methods: Twenty patients (16 men, 4 women, median age 40 years) with chronic achillodynia participated in the study. The symptoms prohibited activity and clinical examination revealed swelling and tenderness 1.5-6 cm proximal to the Achilles tendon insertion. Of the 20 patients: 5 had bilateral achillodynia, 4 had had previous contralateral Achilles tendon disorder, and 11 had never had symptoms in the contralateral tendon region. These 11 tendons served as controls for comparison. MR imaging was performed on a superconductive 1.5 T unit. Both Achilles tendons were examined (n=40) at the same time, and multiple sagittal and transversal images were obtained. The corresponding sections on these images were visually graded according to both extension and level of MR signal intensity. Tissue was obtained for microscopic examination from the most symptomatic side in all patients (n=20). Results: T1-weighted images following gadolinium contrast medium enhancement proved to be the best method by which to visualize intratendinous signal abnormality. This sequence revealed signal abnormality in 24/25 symptomatic tendons and in 1/11 control tendons. Histopathological examination showed an increased noncollagenous extracellular matrix and altered fiber structure in the lesions corresponding to the contrast-enhanced areas. (orig./MG).

  1. Multiple Directional Differentiation Difference of Neonatal Rat Fibroblasts from Six Organs

    Directory of Open Access Journals (Sweden)

    Yuqiao Chang

    2016-06-01

    Full Text Available Background/Aims: Fibroblasts are abundantly distributed throughout connective tissues in the body and are very important in maintaining the structural and functional integrity. Recent reports have proved that fibroblasts and mesenchymal stem cells share much more in common than previously recognized. The aim of this study was to investigate comparative studies in fibroblasts on the differences in the expression of molecular markers and differentiation capacity from different organs. Methods: Combined trypsin/collagenase enzymes digestion method was used to isolate and culture the fibroblasts derived from heart, liver, spleen, lung, kidney and skin. Cell activity was determined by methyl thiazolyl tetrazolium (MTT assay. Common molecular markers for fibroblasts such as vimentin, DDR2 and FSP1, stem cell markers nanog, c-kit and sca-1 were detected by RT-PCR, immunofluorescence and western blotting. The osteogenic, adipogenic and cardiogenic differentiations of fibroblasts were performed by inductive culture in special mediums, and analyzed by Alizarin red, Oil red O and immunofluorescence staining of cTnT respectively. Results: The proliferation rate of fibroblasts in lung was faster than in other five organs. Common molecular markers for fibroblasts were expressed differently in different organs. DDR2 was strongly expressed in fibroblasts in the heart, partly expressed in the heart, skin, liver and spleen. Interestingly, no expression of DDR2 was detected in liver and kidney. However, vimentin and FSP1 were consistently expressed in fibroblasts from skin, liver, kidney, spleen and lung. nanog expression in fibroblasts from lung was less than that from heart, skin, liver and spleen (P . c-kit expression in fibroblasts from heart, skin and kidney was higher than that from spleen (P , while the c-kit positive fibroblasts from liver was obviously higher than that from spleen (P . But sca-1 expression in fibroblasts from lung was the lowest among six

  2. Increased versican content is associated with tendinosis pathology in the patellar tendon of athletes with jumper’s knee

    Science.gov (United States)

    Scott, A; Lian, Ø; Roberts, CR; Cook, JL; Handley, CJ; Bahr, R; Samiric, T; Ilic, MZ; Parkinson, J; Hart, DA; Duronio, V; Khan, KM

    2014-01-01

    Expansion of the extracellular matrix is a prominent but poorly characterized feature of tendinosis. The present study aimed to characterize the extent and distribution of the large aggregating proteoglycan versican in patients with patellar tendinosis. We obtained tendon from tendinopathy patients undergoing debridement of the patellar tendon and from controls undergoing intramedullary tibial nailing. Versican content was investigated by Western blotting and immunohistochemistry. Microvessel thickness and density were determined using computer-assisted image analysis. Markers for smooth muscle (α-SMA), endothelial cells (CD31) and proliferating cells (Ki67) were examined immunohistochemically. Western blot analysis and immunohistochemical staining revealed elevated versican content in the proximal patellar tendon of tendinosis patients (p=0.042). Versican content was enriched in regions of fibrocartilage metaplasia and fibroblast proliferation, as well as in the perivascular matrix of proliferating microvessels and within the media and intima of arterioles. Microvessel density was higher in tendinosis tissue compared to control tissue. Versican deposition is a prominent feature of patellar tendinosis. Because this molecule is not only a component of normal fibrocartilagenous matrices, but is also implicated in a variety of soft tissue pathologies, future studies should further detail both pathological and adaptive roles of versican in tendons. PMID:18067512

  3. Increased versican content is associated with tendinosis pathology in the patellar tendon of athletes with jumper's knee.

    Science.gov (United States)

    Scott, A; Lian, Ø; Roberts, C R; Cook, J L; Handley, C J; Bahr, R; Samiric, T; Ilic, M Z; Parkinson, J; Hart, D A; Duronio, V; Khan, K M

    2008-08-01

    Expansion of the extracellular matrix is a prominent but poorly characterized feature of tendinosis. The present study aimed to characterize the extent and distribution of the large aggregating proteoglycan versican in patients with patellar tendinosis. We obtained tendon from tendinopathy patients undergoing debridement of the patellar tendon and from controls undergoing intramedullary tibial nailing. Versican content was investigated by Western blotting and immunohistochemistry. Microvessel thickness and density were determined using computer-assisted image analysis. Markers for smooth muscle actin, endothelial cells (CD31) and proliferating cells (Ki67) were examined immunohistochemically. Western blot analysis and immunohistochemical staining revealed elevated versican content in the proximal patellar tendon of tendinosis patients (P=0.042). Versican content was enriched in regions of fibrocartilage metaplasia and fibroblast proliferation, as well as in the perivascular matrix of proliferating microvessels and within the media and intima of arterioles. Microvessel density was higher in tendinosis tissue compared with control tissue. Versican deposition is a prominent feature of patellar tendinosis. Because this molecule is not only a component of normal fibrocartilagenous matrices but also implicated in a variety of soft tissue pathologies, future studies should further detail both pathological and adaptive roles of versican in tendons.

  4. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians.

    Science.gov (United States)

    Tesco, G; Vergelli, M; Grassilli, E; Salomoni, P; Bellesia, E; Sikora, E; Radziszewska, E; Barbieri, D; Latorraca, S; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Franceschi, C; Sorbi, S

    1998-03-27

    Human fibroblast cultures, which have a finite replicative lifespan in vitro, are the most widely used model for the study of senescence at the cellular level. An inverse relationship between replicative capability and donor age has been reported in human fibroblast strains. We studied the growth capacity of fibroblast primary cultures derived from people whose lifespan was as closer as possible to the expected maximum human lifespan, i.e. people over one hundred. Our data suggest that outgrowth of fibroblasts from biopsies, growth kinetics at different population doubling levels, capability to respond to a classical mitogenic stimulus (such as 20% serum) and a variety of growth factors, were remarkably similar in fibroblasts from centenarians and young controls. On the whole, our data challenge the tenet of a simple and strict relationship between in vivo aging and in vitro proliferative capability of human fibroblasts, at least at the individual level.

  5. Direct Repair of Chronic Achilles Tendon Ruptures Using Scar Tissue Located Between the Tendon Stumps.

    Science.gov (United States)

    Yasuda, Toshito; Shima, Hiroaki; Mori, Katsunori; Kizawa, Momoko; Neo, Masashi

    2016-07-20

    Several surgical procedures for chronically ruptured Achilles tendons have been reported. Resection of the interposed scar tissue located between the tendon stumps and reconstruction using normal autologous tissue have been well described. We developed a direct repair procedure that uses scar tissue, which obviates the need to use normal autologous tissue. Thirty consecutive patients with Achilles tendon ruptures with a delay in diagnosis of >4 weeks underwent removal of a section of scar and healing tissue with direct primary suture of the ends of the tendon without the use of allograft or autograft. Patients were followed for a mean time of 33 months. Preoperative and postoperative clinical outcomes were measured with the Achilles Tendon Total Rupture Score (ATRS) and the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot score. In addition, the patients underwent preoperative and postoperative functional measurements and magnetic resonance imaging. Lastly, we evaluated the histology of the interposed healing tissue. The mean AOFAS scores were 82.8 points preoperatively and 98.1 points postoperatively. The mean postoperative ATRS was 92.0 points. At the time of the latest follow-up, none of the patients had experienced tendon reruptures or difficulties in walking or climbing stairs, and all except 2 patients could perform a single-limb heel rise. All athletes had returned to their pre-injury level of sports participation. Preoperative T2-weighted magnetic resonance imaging showed that 22 Achilles tendons were thickened with diffuse intratendinous high-signal alterations, and 8 Achilles tendons were thinned. Postoperative T2-weighted magnetic resonance imaging findings included fusiform-shaped tendon thickening and homogeneous low-signal alterations of the tendons in all patients. Histologically, the interposed scar tissue consisted of dense collagen fibers. Shortening of the tissue between the 2 tendon ends that included healing scar and direct

  6. Distal tendinosis of the tibialis anterior tendon.

    Science.gov (United States)

    Beischer, Andrew D; Beamond, Ben M; Jowett, Andrew J L; O'Sullivan, Richard

    2009-11-01

    Disorders of the tibialis anterior (TA) tendon have infrequently been reported but spontaneous rupture of this tendon is well recognized. The clinical presentation of tendinosis without rupture of the distal TA has not previously been reported and is the basis of this paper. A study of 29 patients diagnosed with distal TA tendinosis was undertaken. Data collected included, patient demographics, weight, height, pain profile and examination findings. All patients underwent MRI of the symptomatic foot. Operative findings of those patients undergoing surgery for this condition were collected. Twenty-nine patients (32 feet) were included in the study group. Their mean age was 62 years and 27 patients were female. Twenty-one patients were overweight. The usual presenting symptom was burning medial midfoot pain that was often reported to be worst at night. Swelling over the TA tendon was frequently observed. On MRI the TA was thickened in all patients. Longitudinal split tears were observed in 19 feet. Chondral thinning and/or osteophyte formation at the first tarsometatarsal or medial naviculocuneiform joints was observed in 11 feet. Eleven feet underwent surgery. Universally the TA tendon was macroscopically thickened and had lost its normal fibrillary appearance. Longitudinal split tears were observed in eight tendons. Pathology was typical of a degenerative tendinosis. Distal TA tendinosis is a condition that seems to predominantly affect overweight elderly women. It often presents with nocturnal burning medial midfoot pain.

  7. No Telescoping Effect with Dual Tendon Vibration.

    Directory of Open Access Journals (Sweden)

    Valeria Bellan

    Full Text Available The tendon vibration illusion has been extensively used to manipulate the perceived position of one's own body part. However, findings from previous research do not seem conclusive sregarding the perceptual effect of the concurrent stimulation of both agonist and antagonist tendons over one joint. On the basis of recent data, it has been suggested that this paired stimulation generates an inconsistent signal about the limb position, which leads to a perceived shrinkage of the limb. However, this interesting effect has never been replicated. The aim of the present study was to clarify the effect of a simultaneous and equal vibration of the biceps and triceps tendons on the perceived location of the hand. Experiment 1 replicated and extended the previous findings. We compared a dual tendon stimulation condition with single tendon stimulation conditions and with a control condition (no vibration on both 'upward-downward' and 'towards-away from the elbow' planes. Our results show a mislocalisation towards the elbow of the position of the vibrated arm during dual vibration, in line with previous results; however, this did not clarify whether the effect was due to arm representation contraction (i.e., a 'telescoping' effect. Therefore, in Experiment 2 we investigated explicitly and implicitly the perceived arm length during the same conditions. Our results clearly suggest that in all the vibration conditions there was a mislocalisation of the entire arm (including the elbow, but no evidence of a contraction of the perceived arm length.

  8. Animal Models for Tendon Repair Experiments: A Comparison of Pig, Sheep and Human Deep Flexor Tendons in Zone II.

    Science.gov (United States)

    Peltz, Tim Sebastian; Hoffman, Stuart William; Scougall, Peter James; Gianoutsos, Mark Peter; Savage, Robert; Oliver, Rema Antoinette; Walsh, William Robert

    2017-09-01

    This laboratory study compared pig, sheep and human deep flexor tendons in regards to their biomechanical comparability. To investigate the relevant biomechanical properties for tendon repair experiments, the tendons resistance to cheese-wiring (suture drag/splitting) was assessed. Cheese-wiring of a suture through a tendon is an essential factor for repair gapping and failure in a tendon repair. Biomechanical testing showed that forces required to pulling a uniform suture loop through sheep or pig tendons in Zone II were higher than in human tendons. At time point zero of testing these differences did not reach statistical significance, but differences became more pronounced when forces were measured beyond initial cheese-wiring (2 mm, 5 mm and 10 mm). The stronger resistance to cheese-wiring was more pronounced in the pig tendons. Also regarding size and histology, sheep tendons were more comparable to human tendons than pig tendons. Differences in tendon bio-properties should be kept in mind when comparing and interpreting the results of laboratory tendon experiments.

  9. Robot Arm with Tendon Connector Plate and Linear Actuator

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Nguyen, Vienny (Inventor); Millerman, Alexander (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  10. Sex Differences in Outcome After an Acute Achilles Tendon Rupture

    National Research Council Canada - National Science Library

    Grävare Silbernagel, Karin; Brorsson, Annelie; Olsson, Nicklas; Eriksson, Bengt I; Karlsson, Jon; Nilsson-Helander, Katarina

    2015-01-01

    Background: Tendon healing differs between the sexes. Comparisons in outcome between the sexes after an Achilles tendon rupture are often not possible because of the small cohort (<20%) of women. Purpose...

  11. 21 CFR 888.3025 - Passive tendon prosthesis.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3025 Passive tendon prosthesis. (a... flexor tendon of the hand. The device is implanted for a period of 2 to 6 months to aid growth of a new...

  12. Healing of AchiIIes Tendon lnjury : Ultrasonographic Findings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hyoen [Chungang University College of Medicine, Seoul (Korea, Republic of)

    1995-06-15

    To evaluate the ultrasonographic findings of ruptured Achilles tendon after healing by surgical or conservative treatment. Ultrasonography of Achilles tendon was performed in 15 patients with Achilles tendon injury that was believed to be cured after surgical or conservative treatment. We used 7MHz liner transducer. Ultrasonographic characteristics of the affected tendon were compared with those of the opposite healthy tendon in terms of echogenicity and thickness of tendon, contour disruption, and surrounding fluid collection. The thickness of the affected Achilles tendon was significantly greater than that of the healthy tendon(P<0.001). Ultrasonographic findings included focal hylpoechogenicity(4), diffusehypoechogenicity(9), isoecho-genicity(2) and focal sonolucent area(6). Ultrasonographic findings of healed Achilles are diffuse increase in thickness and diffuse or focal decrease in echogenicity in the avsence of surrounding fluid collection or hematoma

  13. Tendon Mineralization Is Progressive and Associated with Deterioration of Tendon Biomechanical Properties, and Requires BMP-Smad Signaling in the Mouse Achilles Tendon Injury Model

    Science.gov (United States)

    Zhang, Kairui; Asai, Shuji; Hast, Michael W.; Liu, Min; Usami, Yu; Iwamoto, Masahiro; Soslowsky, Louis J.; Enomoto-Iwamoto, Motomi

    2016-01-01

    Ectopic tendon mineralization can develop following tendon rupture or trauma surgery. The pathogenesis of ectopic tendon mineralization and its clinical impact have not been fully elucidated yet. In this study, we utilized a mouse Achilles tendon injury model to determine whether ectopic tendon mineralization alters the biomechanical properties of the tendon and whether BMP signaling is involved in this condition. A complete transverse incision was made at the midpoint of the right Achilles tendon in 8-week-old CD1 mice and the gap was left open. Ectopic cartilaginous mass formation was found in the injured tendon by 4 weeks post-surgery and ectopic mineralization was detected at 8–10 weeks post-surgery. Ectopic mineralization grew over time and volume of the mineralized materials of 25-weeks samples was about 2.5 fold bigger than that of 10-weeks samples, indicating that injury-induced ectopic tendon mineralization is progressive. In vitro mechanical testing showed that max force, max stress and mid-substance modulus in the 25-weeks samples were significantly lower than the 10-weeks samples. We observed substantial increases in expression of bone morphogenetic protein family genes in injured tendons 1 week post-surgery. Immunohistochemical analysis showed that phosphorylation of both Smad1 and Smad3 were highly increased in injured tendons as early as 1 week post-injury and remained high in ectopic chondrogenic lesions 4 weeks post-injury. Treatment with the BMP receptor kinase inhibitor (LDN193189) significantly inhibited injury-induced tendon mineralization. These findings indicate that injury-induced ectopic tendon mineralization is progressive, involves BMP signaling and associated with deterioration of tendon biomechanical properties. PMID:26825318

  14. A new strain energy function for modelling ligaments and tendons whose fascicles have a helical arrangement of fibrils.

    Science.gov (United States)

    Shearer, Tom

    2015-09-18

    A new strain energy function for the hyperelastic modelling of ligaments and tendons whose fascicles have a helical arrangement of fibrils is derived. The stress-strain response of a single fascicle whose fibrils exhibit varying levels of crimp throughout its radius is calculated and used to determine the form of the strain energy function. The new constitutive law is used to model uniaxial extension test data for human patellar tendon and is shown to provide an excellent fit, with the average relative error being 9.8%. It is then used to model shear and predicts that the stresses required to shear a tendon are much smaller than those required to uniaxially stretch it to the same strain level. Finally, the strain energy function is used to model ligaments and tendons whose fascicles are helical, and the relative effects of the fibril helix angle, the fascicle helix angle and the fibril crimp variable are compared. It is shown that they all have a significant effect; the fibril crimp variable governs the non-linearity of the stress-strain curve, whereas the helix angles primarily affect its stiffness. Smaller values of the helix angles lead to stiffer tendons; therefore, the model predicts that one would expect to see fewer helical sub-structures in stiff positional tendons, and more in those that are required to be more flexible. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  15. Compensatory muscle activation caused by tendon lengthening post Achilles tendon rupture

    Science.gov (United States)

    Suydam, Stephen M.; Buchanan, Thomas S.; Manal, Kurt; Silbernagel, Karin Gravare

    2013-01-01

    Purpose The purpose of this study was to establish a relationship between the lengthening of the Achilles tendon post rupture and surgical repair to muscle activation patterns during walking in order to serve as a reference for post-surgical assessment. Method The Achilles tendon lengths were collected from 4 patients with an Achilles tendon rupture 6 and 12 month post-surgery along with 5 healthy controls via ultrasound. EMG was collected from the triceps surae muscles and tibialis anterior during over-ground walking. Results Achilles lengths at 6 and 12 months post-surgery were significantly longer (p Achilles tendon rupture; no side to side difference was found in the healthy controls. The triceps surae muscles’ activations were fair to moderately correlated to the Achilles lengths (0.38 Achilles tendon length and iEMG from the triceps surae muscles indicate that loss of function is primarily caused by anatomical changes in the tendon and the appearance of muscle weakness is due to a lack of force transmission capability. This study indicates that when aiming for full return of function and strength an important treatment goal appears to be to minimize tendon elongation. Level of evidence Prognostic prospective case series. Level IV. PMID:23609529

  16. Acute partial rupture of the common extensor tendon

    OpenAIRE

    Kachrimanis, G.; Papadopoulou, O.

    2010-01-01

    Rupture of the common extensor tendon is the most common acute tendon injury of the elbow. The authors describe a case of a patient with a clinical history of tendinopathy caused by functional overload of the common extensor tendon, treated also with infiltrations of steroids, and subsequent partial rupture of the tendon during sport activity. The diagnosis was made clinically and at ultrasound (US) examination; US follow-up after some time showed the healing of the lesion. This case confirms...

  17. Calcaneal tendon: imaging findings; Tendao calcaneo: avaliacao por imagem

    Energy Technology Data Exchange (ETDEWEB)

    Montandon, Cristiano; Fonseca, Cristiano Rezio; Montandon Junior, Marcelo Eustaquio [Colegio Brasileiro de Radiologia e Diagnostico por Imagem, Sao Paulo, SP (Brazil)]. E-mail: crismontandon@hotmail.com; Lobo, Leonardo Valadares; Ribeiro, Flavia Aparecida de Souza; Teixeira, Kim-Ir-Sen Santos [Goias Univ., Goiania, GO (Brazil). Hospital de Clinicas. Dept. de Diagnostico por Imagem e Anatomia Patologica

    2003-12-01

    We reviewed the radiological and clinical features of 23 patients with calcaneal tendon diseases, who were submitted to ultrasound or magnetic resonance imaging. The objective of this study was to characterize the lesions for a precise diagnosis of calcaneal tendon injuries. A wide range of calcaneal tendon diseases include degenerative lesions, inflammation of the peritendinous tissue such as peritendinitis and bursitis, and rupture. Imaging methods are essential in the diagnosis, treatment and follow-up of calcaneal tendon diseases. (author)

  18. MRI in flexor tendon rupture after collagenase injection

    Energy Technology Data Exchange (ETDEWEB)

    Khurana, Shruti [Lady Hardinge Medical College, New Delhi (India); Wadhwa, Vibhor [University of Arkansas for Medical Sciences, Little Rock, AR (United States); Chhabra, Avneesh [UT Southwestern Medical Center, Dallas, TX (United States); Johns Hopkins University, Baltimore, MD (United States); Amirlak, Bardia [UT Southwestern Medical Center, Dallas, TX (United States)

    2017-02-15

    Flexor tendon rupture is an unusual complication following collagenase injection to relieve contractures. These patients require a close follow-up and in the event of tendon rupture, a decision has to be made whether to repair the tendon or manage the complication conservatively. The authors report the utility of MRI in the prognostication and management of a patient with Dupuytren's contracture, who underwent collagenase injection and subsequently developed flexor digitorum profundus tendon rupture. (orig.)

  19. Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients

    Directory of Open Access Journals (Sweden)

    Hallgren Oskar

    2012-08-01

    Full Text Available Abstract Background During wound healing processes fibroblasts account for wound closure by adopting a contractile phenotype. One disease manifestation of COPD is emphysema which is characterized by destruction of alveolar walls and our hypothesis is that fibroblasts in the COPD lungs differentiate into a more contractile phenotype as a response to the deteriorating environment. Methods Bronchial (central and parenchymal (distal fibroblasts were isolated from lung explants from COPD patients (n = 9 (GOLD stage IV and from biopsies from control subjects and from donor lungs (n = 12. Tissue-derived fibroblasts were assessed for expression of proteins involved in fibroblast contraction by western blotting whereas contraction capacity was measured in three-dimensional collagen gels. Results The basal expression of rho-associated coiled-coil protein kinase 1 (ROCK1 was increased in both centrally and distally derived fibroblasts from COPD patients compared to fibroblasts from control subjects (p  Conclusions Distally derived fibroblasts from COPD patients have an enhanced contractile phenotype that is dependent on ROCK1 activity. This feature may be of importance for the elastic dynamics of small airways and the parenchyma in late stages of COPD.

  20. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review

    Science.gov (United States)

    Rio, Ebonie; Kidgell, Dawson; Moseley, G Lorimer; Docking, Sean; Purdam, Craig; Cook, Jill

    2016-01-01

    Tendinopathy can be resistant to treatment and often recurs, implying that current treatment approaches are suboptimal. Rehabilitation programmes that have been successful in terms of pain reduction and return to sport outcomes usually include strength training. Muscle activation can induce analgesia, improving self-efficacy associated with reducing one's own pain. Furthermore, strength training is beneficial for tendon matrix structure, muscle properties and limb biomechanics. However, current tendon rehabilitation may not adequately address the corticospinal control of the muscle, which may result in altered control of muscle recruitment and the consequent tendon load, and this may contribute to recalcitrance or symptom recurrence. Outcomes of interest include the effect of strength training on tendon pain, corticospinal excitability and short interval cortical inhibition. The aims of this concept paper are to: (1) review what is known about changes to the primary motor cortex and motor control in tendinopathy, (2) identify the parameters shown to induce neuroplasticity in strength training and (3) align these principles with tendon rehabilitation loading protocols to introduce a combination approach termed as tendon neuroplastic training. Strength training is a powerful modulator of the central nervous system. In particular, corticospinal inputs are essential for motor unit recruitment and activation; however, specific strength training parameters are important for neuroplasticity. Strength training that is externally paced and akin to a skilled movement task has been shown to not only reduce tendon pain, but modulate excitatory and inhibitory control of the muscle and therefore, potentially tendon load. An improved understanding of the methods that maximise the opportunity for neuroplasticity may be an important progression in how we prescribe exercise-based rehabilitation in tendinopathy for pain modulation and potentially restoration of the corticospinal

  1. Structural tendon changes in patients with acromegaly: assessment of Achilles tendon with sonoelastography.

    Science.gov (United States)

    Onal, Eda Demil; Ipek, Ali; Evranos, Berna; Idilman, Ilkay Sedakat; Cakir, Bekir; Ersoy, Reyhan

    2016-03-01

    To describe the sonoelastographic appearance of the Achilles tendon in acromegalic patients and to determine whether the blood concentrations of growth hormone (GH) and insulin-like growth factor (IGF-1) are associated with the various sonographic elasticity types of Achilles tendons. Eighty-four Achilles tendons of 42 acromegaly patients and 84 Achilles tendons of 42 healthy volunteers were assessed with sonoelastography. The tendons were classified into two main types according to the elasticity features: type 1 blue/green (hard tissue) and type 2 yellow/red within green (intermediate-soft tissue). Two subtypes of these types were also defined. According to the definition, the elasticity of the tissue was in a spectrum ranging from hard to soft as the type progressed from 1a to 2b. The mean thickness of Achilles tendons in patients with acromegaly was significantly higher compared with healthy Achilles tendons (5.1+/-0.7 mm vs. 4.4+/-0.5, pAchilles tendons (5.5+/-0.8 mm vs. 4.8+/-0.5 mm in inactive disease, p=0.003). A significantly higher proportion of acromegaly patients had type 2 sonoelastographic appearance of the Achilles tendon (124/252 third; 49.2% vs. 81/252 third; 32.1%, p=0.0001). Activity status of acromegaly and GH/IGF-I levels were similar in patients with different types of elasticity (p>0.05). Sonoelastography revealed structural changes in the tendinous tissue of patients with acromegaly, but it was not sensitive enough to reflect changes in the serum levels of GH/IGF-1.

  2. [Fibroblast growth factor-2].

    Science.gov (United States)

    Faitová, J

    2004-01-01

    Fibroblast growth factor-2 is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. FGF-2 occurs in several isoforms resulting from alternative initiations of traslation: an 18 kDa cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22.5, 24 and 34 kDa). It acts mainly through a paracrine/autocrine mechanism involving high affinity transmembrane receptors and heparan sulfate proteoglycan low affinity receptors. It is expressed mostly in tissues of mesoderm and neuroectoderm origin, and plays an important role in mesoderm induction, stimulates the growth and development of the new blood vessels (angiogenesis), normal wound healing and tissue development. FGF-2 positively regulates hematopoiesis by acting on various cellular targets: stromal cells, early and committed hematopoietic progenitors and possibly some mature blood cells. FGF-2 is a potent hematopoietic growth factor that is likely to play an important role in physiological and pathological hematopoiesis.

  3. Endothelial cells, fibroblasts and vasculitis

    OpenAIRE

    Buckley, Christopher D.; Rainger, G.Ed; Nash, Gerard B; Raza, Karim

    2005-01-01

    One of the most important questions in vasculitis research is not why inflammation of blood vessels occurs but why it persists, often in a site-specific manner. In this review we illustrate how stromal cells, such as fibroblasts and pericytes, might play an important role in regulating the site at which vasculitis occurs. Smooth muscle cells and fibroblasts directly influence the behaviour of overlying vascular cells, amplifying the response of the endothelium to proinflammatory agents such a...

  4. Subscapularis tendon avulsions and biceps tendon dislocations. A series of forty five patients; Lesions isolees du tendon subscapularis et malpositions internes du tendon long biceps

    Energy Technology Data Exchange (ETDEWEB)

    Bernageau, J. [Hopital Lariboisiere, 75 - Paris (France); Goutallier, D. [Hopital Henri-Mondor, 94 - Creteil (France)

    1997-12-01

    Our series consists of 45 lesions of the subscapularis tendon investigated by arthrography and CT arthrography. Arthrography demonstrated opacification of the sub-acromial bursa in 24 % of cases, internal malposition of the long head of biceps in 46 % of cases and direct signs of a lesion of the subscapularis tendon in 91 % of cases. CT arthrography showed incomplete transverse avulsion in 18 % of cases and complete transverse avulsion in 82 % of cases. The biceps was dislocated in 35 % of cases, and subluxated in 11 % of cases. The subscapularis muscle was infiltrated by fat in 46 % of cases. Isolated lesions of the subscapularis can be difficult to diagnose clinically and are more frequent than generally thought. CT arthrography must therefore be requested at the slightest doubt, as the intraoperative search for a lesion of the subscapularis tendon is sometimes difficult. (authors)

  5. Lateral force transmission between human tendon fascicles

    DEFF Research Database (Denmark)

    Haraldsson, Bjarki T; Aagaard, Per; Qvortrup, Klaus

    2008-01-01

    Whether adjacent collagen fascicles transmit force in parallel is unknown. The purpose of the present study was to examine the magnitude of lateral force transmission between adjacent collagen fascicles from the human patellar and Achilles tendon. From each sample two adjacent strands of fascicles...... was transversally cut while the other fascicle and the fascicular membrane were kept intact. Cycle 3: both fascicles were cut in opposite ends while the fascicular membrane was left intact. A decline in peak force of 45% and 55% from cycle 1 to cycle 2, and 93% and 92% from cycle 2 to cycle 3 was observed...... in the patellar and Achilles tendon fascicles, respectively. A decline in stiffness of 39% and 60% from cycle 1 to cycle 2, and of 93% and 100% from cycle 2 to cycle 3 was observed in the patellar and Achilles tendon fascicles, respectively. The present data demonstrate that lateral force transmission between...

  6. Achilles tendon rupture; assessment of nonoperative treatment

    DEFF Research Database (Denmark)

    Barfod, Kristoffer Weisskirchner

    2014-01-01

    to be clarified, particularly the role of weight-bearing during early rehabilitation. Also, there is a need for a clinically applicable and accurate measurement to detect patients in risk of developing Achilles tendon elongation. PURPOSE: The aim of this PhD thesis was to evaluate non-operative treatment of acute......BACKGROUND: Acute Achilles tendon rupture is a frequent and potentially disabling injury. Over the past decade a change in treatment of acute Achilles tendon rupture away from operative towards non-operative treatment has taken place. However, the optimal non-operative treatment protocol remains.......3 mm), inter-rater reliability (ICC 0.97, SEM 3.3 mm and MDC 9.3 mm) and validity (measurement error 2%). CONCLUSION: Treatment algorithms across Scandinavia showed considerable variation, though operative treatment and controlled early weight-bearing was the preferred treatment in Denmark, Norway...

  7. PERONEAL TENDON LESIONS IN ATHLETES (REVIEW

    Directory of Open Access Journals (Sweden)

    E. E. Achkasov

    2016-01-01

    Full Text Available The authors analyzed scientific literature in respect of various issues in treatment of athletes with peroneal muscles lesions starting from 1987 till 2016. Key search and publications selection was made in PubMed and russian national electronic scientific library eLIBRARY. Peroneal tendons pathology is not the major but the underestimated cause of pain in lateral and hindfoot as well as of foot dysfunction which is difficult to distinguish from lesions of lateral ligaments of the ankle joint. Untreated lesions of peroneal tendons can result in chronic ankle pain and significant functional disorders. The purpose of the present paper is to improve the current comprehension of anatomy, to identify factors contributing to pathology, to perform diagnostic evaluation of peroneal tendons and to review current treatment options of such lesions.

  8. Triple Achilles Tendon Rupture: Case Report.

    Science.gov (United States)

    Saxena, Amol; Hofer, Deann

    2017-11-16

    We present a case report with 1-year follow-up data of a 57-year-old male soccer referee who had sustained an acute triple Achilles tendon rupture injury during a game. His triple Achilles tendon rupture consisted of a rupture of the proximal watershed region, a rupture of the main body (mid-watershed area), and an avulsion-type rupture of insertional calcific tendinosis. The patient was treated surgically with primary repair of the tendon, including tenodesis with anchors. Postoperative treatment included non-weightbearing for 4 weeks and protected weightbearing until 10 weeks postoperative, followed by formal physical therapy, which incorporated an "antigravity" treadmill. The patient was able to return to full activity after 26 weeks, including running and refereeing, without limitations. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  9. A Simulation Model for Extensor Tendon Repair

    Directory of Open Access Journals (Sweden)

    Elizabeth Aronstam

    2017-07-01

    Full Text Available Audience: This simulation model is designed for use by emergency medicine residents. Although we have instituted this at the PGY-2 level of our residency curriculum, it is appropriate for any level of emergency medicine residency training. It might also be adapted for use for a variety of other learners, such as practicing emergency physicians, orthopedic surgery residents, or hand surgery trainees. Introduction: Tendon injuries commonly present to the emergency department, so it is essential that emergency physicians be competent in evaluating such injuries. Indeed, extensor tendon repair is included as an ACGME Emergency Medicine Milestone (Milestone 13, Wound Management, Level 5 – “Performs advanced wound repairs, such as tendon repairs…”.1 However, emergency medicine residents may have limited opportunity to develop these skills due to a lack of patients, competition from other trainees, or preexisting referral patterns. Simulation may provide an alternative means to effectively teach these skills in such settings. Previously described tendon repair simulation models that were designed for surgical trainees have used rubber worms4, licorice5, feeding tubes, catheters6,7, drinking straws8, microfoam tape9, sheep forelimbs10 and cadavers.11 These models all suffer a variety of limitations, including high cost, lack of ready availability, or lack of realism. Objectives: We sought to develop an extensor tendon repair simulation model for emergency medicine residents, designed to meet ACGME Emergency Medicine Milestone 13, Level 5. We wished this model to be simple, inexpensive, and realistic. Methods: The learner responsible content/educational handout component of our innovation teaches residents about emergency department extensor tendon repair, and includes: 1 relevant anatomy 2 indications and contraindications for emergency department extensor tendon repair 3 physical exam findings 4 tendon suture techniques and 5 aftercare. During

  10. Primary flexor tendon repair: surgical techniques based on the anatomy and biology of the flexor tendon system.

    Science.gov (United States)

    Tonkin, M A

    1991-01-01

    The anatomy, biology and bio-mechanics of the flexor tendon system demand a precise approach to flexor tendon repair. Within the fibroosseous canal, the synovial fluid and a complex intratendinous vascular network provide nutrition for intrinsic flexor tendon healing. Retention of the synovial sheath theoretically maintains an enclosed tendon/tendon sheat environment in which the tendon repair is bathed in synovial fluid, and may glide within a smooth tunnel. The preservation of the intricate double tendon inter-relationship and the annular pulley system is vital to the efficiency of finger flexion. This review details surgical and postoperative techniques aimed at restoring the normal anatomy and providing optimal conditions for the return of flexor tendon function.

  11. MicroRNA29a Treatment Improves Early Tendon Injury.

    Science.gov (United States)

    Watts, Ashlee E; Millar, Neal L; Platt, Josh; Kitson, Susan M; Akbar, Moeed; Rech, Raquel; Griffin, Jay; Pool, Roy; Hughes, Tom; McInnes, Iain B; Gilchrist, Derek S

    2017-10-04

    Tendon injuries (tendinopathies) are common in human and equine athletes and characterized by dysregulated collagen matrix, resulting in tendon damage. We have previously demonstrated a functional role for microRNA29a (miR29a) as a post-transcriptional regulator of collagen 3 expression in murine and human tendon injury. Given the translational potential, we designed a randomized, blinded trial to evaluate the potential of a miR29a replacement therapy as a therapeutic option to treat tendinopathy in an equine model that closely mimics human disease. Tendon injury was induced in the superficial digital flexor tendon (SDFT) of 17 horses. Tendon lesions were treated 1 week later with an intralesional injection of miR29a or placebo. miR29a treatment reduced collagen 3 transcript levels at week 2, with no significant changes in collagen 1. The relative lesion cross-sectional area was significantly lower in miR29a tendons compared to control tendons. Histology scores were significantly better for miR29a-treated tendons compared to control tendons. These data support the mechanism of microRNA-mediated modulation of early pathophysiologic events that facilitate tissue remodeling in the tendon after injury and provides a strong proof of principle that a locally delivered miR29a therapy improves early tendon healing. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.

  12. Management of open achilles tendon injury: Primary repair and ...

    African Journals Online (AJOL)

    Background: Achilles tendon injuries have progressive increase worldwide in the last few decades. This is attributable to increase in both competitive and recreational sports. In most of the literature written on Achilles tendon injuries there were rarely any information about open Achilles